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MONODROMY PRESERVING DEFORMATION A N D 
DIFFERENTIAL GALOIS GROUP I 

by 

Hiroshi U m e m u r a 

For J.-P. Rarnis on the occasion of his 60th birthday 

Abstract. — In 1914, J. Drach interpreted in terms of his infinite dimensional differ­
ential Galois theory R. Fnchs' work on the monodromy preserving deformation and 
the sixth Painleve equation. This note of Drach contains a quite original idea but it 
is difficult to understand. We analyze his note by our infinite dimensional differen­
tial Galois theory. We get non-trivial examples of which we can calculate our Galois 
group. 

Résumé (Déformation isomonodromique et groupe de Galois différentiel). — En 1914. 
J. Drach interpréta le travail de R. Fuchs sur les déformations isomonodromiques et la 
sixième équation de Painlevé en termes de sa théorie de Galois de dimension infinie. 
La note de Drach contient une idée très originale mais difficile à comprendre. Nous 
analysons sa note en appliquant notre théorie de Galois différentielle de dimension 
infinie. Cela nous donne des exemples non triviaux dont nous pouvons calculer notre 
groupe de Galois. 

1. In t roduct ion 

Today, there are a variety of ways of defining the Painleve equations. Most of them 

are unimaginable from the original definition. 

(1) Historically the origin of the Painleve equations goes back to the pursuit of spe­

cial functions defined by algebraic differential equations of the second order. Around 

1900 Painleve succeeded in classifying algebraic differential equations y" — F(t. //. y') 

without movable singular points, where F is a rational function of t, y and y' and t is 

the independent variable so that y' = dy/dt and y" = d2y/d,t2. The property of being 

free from the movable singularities is nowadays called the Painleve property. After 

he classified the equations satisfying the condition, Painleve then threw away those 
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2 5 4 H. UMEMURA 

equations tha t he could integrate by the so far known functions and thus he arrived 

at the list of the six Painleve equations. This is the first definition of the Painleve 

equations. It is, however, very lucky that he could discover the Painleve equations in 

this manner. 

(2) In 1907, R. Fuchs discovered tha t the sixth Painleve equation describes a mon-

odromy preserving deformation of a second order ordinary linear equation y" = p(x)y. 

Later R. Gamier generalized this for the other Painleve equations. 

(3) In our former work [5], we showed that we can recover the second Painleve 

equation form a rational surface with a rational double point. We can regard this as 

an algebro-geometric definition of the second Painleve equation. 

(4) Masatoshi Noiimi and Yasuhiko Yamada interpreted theory of Painleve equa­

tions form the view point of Kac-Moody Lie algebra. They not only uniformly re­

viewed the theory of r function of the Painleve equations but also generalized the 

Painleve equations in a natural frame work. 

(5) There is another definition due to J. Drach [1] in 1914. He asserts the equiva­

lence of the following two conditions for a function X(t). 

(i) A(£) satisfies the sixth Painleve equation. 

(ii) The dimension of the Galois group of a non-linear differential equation 

dy 

dt 
= 

y(y-1)(t-x) 

t(t-l)(y-X) 

is finite. 

In the second condition, the Galois group of general algebraic differential equation is 

involved. Namely the second condition depends on his infinite dimensional differential 

Galois theory, which has been an object of discussion since he proposed it in his thesis 

in 1898. 

In this note, we apply our infinite dimensional Galois theory of differential equations 

[7] to study the result of J. Drach. We prove tha t the first condition (i) implies the 

second (ii). 

Theorem 1.1. — Let X(t) be a function oft satisfying the sixth Painleve equation. Let 

K = C(£, A(£), Xf (t)) which is a differential field with derivation d/dt. Let L = K(y) 

be a differential field extension of K such that y is transcendental over K and such 

that y satisfies 

dy 

dt 
= 

y(y-l)(t-X) 

t(t-l)(y-X)' 

Then the Galois group InfGal(L/ / f ) is at most of dimension 3. 

Remark 1.2. — We can expect that generically the dimension of InfGal(L/i\") is 3. 

Yet inequality dim InfGal (L/K) < 3 may occur. So it is important to determine the 

solutions A of the sixth Painleve equation and the corresponding In fGal (L /X) such 

tha t dim InfGal (L/X) < 3. 
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MONODROMY PRESERVING DEFORMATION AND DIFFERENTIAL GALOIS GROUP 2 5 5 

For the first Painleve equation, we can prove a more precise result. However, this 
still relies on a statement about constant fields, called Proposition 5.3 below, which 
will be proven in [8]. 

Theorem 1.3 (assuming Proposition 5.3 in §5). - Let X(t) be a function oft satisfying 
the first Painleve equation X" = OA2 + t. Let K = C{t.\(t),W'(t)) which is a differ­
ential field with derivation d/dt. Let L = K(y) be a differential field extension of K 
such that y is transcendental over K and, such that y satisfies q 

dy 
dt = 

1 
2 

1 

y - Mt) 

Then the Galois group 

InfGal (L/A) ~ S L 2 / , t . 

Remarks 1.4. As the proof of the Theorems shows, it is difficult to imagine how to 
deduce the condition (i) from (ii). 

The assertion of Drach should be properly understood otherwise we would have 
counter examples. In fact, the second condition (ii) is closed under the specialization 
of the function X(t). whereas the first (i) is not so. Hence the first condition (i) should 
be replaced by 

(i)* The function X(t) satisfies the sixth Painleve equation P\ j or a degeneration 
of Pvi-

Why are the Theorems interesting? Because the Galois group, which is a formal 
group of infinite dimension in general, is very difficult to calculate. We have only two 
types of examples where we can calculate the Galois group. (1) If L/K is a strongly 
normal extension in the sense of Kolchin which is his generalization of classical Galois 
extension so that the Galois group G := Gal(L/A") of the extension is an algebraic 
group, then InfGal(L / /v) = G and (2) for differential field extension L = K(y)/K 
such that y is a solution of a Riccati equation with coefficients in K. InfGal(A/A') is 
a formal subgroup of SL9 (cf. Theorem (5.10), [7]). 

Since we can prove only one direction of the assertion of Drach. our result is not-
satisfactory in the sense that it does not give us a new definition of the Painleve equa­
tion. It offers us. however, highly non-trivial examples of differential field extensions 
of which we can calculate our Galois group. 

The author would like to acknowledge his indebtedness to Daniel Bertrand. With­
out his constant interest in the subject and valuable discussions with him. this work 
would not have been done. It is a pleasure to thank B. Malgrange who kindly per­
mitted us to add his letter to D. Bertrand as an appendix to this note. 
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2 5 6 H. IJ M EMU RA 

2. Review of R. Fuchs' paper 

R. Fuchs studied a monodromy preserving deformation of a linear differential equa­
tion d2y/dx2 — p(x)y. Namely he considered a system of linear equations 

( i ) 

I 

0'2y, 
Ox2 

= pyi, 

dyi 
9t 

= Byt - A dyi 
dx 1 

for / = 1, 2. 

where 

V = a 
R 2 + 

b 
(x-l)2 + c 

(x - tV 
= e 

(x - A) 2 + • • • 

and we assume tha t A is not a function of x but it is a function of t, i.e., dX/Ox — 0. y\ 
and ij2 are linearly independent solutions. The hitegrability of the system (1) implies 

A(x. t) = x(x — l)(t — A) 
t(t-l)(x-X) 

and B(x. t) 1 
2 

dA 
dx 

and A(t) satisfies the sixth Painleve equation Pyj. 
Where does the non-linear differential equation 

dy 
(It = 

?/(// - !)(-// - A) 
t(t-l)(t-Y) 

in Theorem 1.1 come from? 

Lemma 2.1. - We may assume that the Wronskian 

Wr = 
( 
( 
( 

df V-2 

dyi/dx 0y2/0x 

) 
) 
) 

= 1. 

Proof. — It is an exercise to check dWr/dt — DWr/0x = 0 so tha t Wr is a constant. 
It is sufficient to replace yt by (1 / \jWr)yt for / = 1.2. • 

From now on we write T for t, W for x so that we consider the System 

:2) 

! 

d2y, 
nu • = PU • 

dm 
dT 

= D(W. T)y, - A(W.T) 
qui 
dW 

for •/ = 1, 2, 

Lemma 2.2. If we set y = y-i/vi, then we have 

I 

(hi 
ow 

= 
l 

qi2 

dy 
or 

= - A 
1 

s2fe 

Proof. This is a consequence of Lemma 2.1. 

ASTÉRISQUE 2<)6 
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We are working in the partial differential field 

(3) C(W, T)(\(T)) = O U . T. A(T), A ' (T) , . . . ) (y1 ,y2 , ö y i / y r , % 2 / ö T ) 

with derivations {<9/c№r, d/OT}. The differential field extension 

c ( w . T ) ( \ ( T ) ) ( M , n r . d y 2 / d T ) / c ( \ v , T ) ( X ( T ) ) 

is defined by the adjunction of the solutions //,, y2 of the system (2) of linear equations. 
Now we introduce differential operators 

(4) 

( 
( 
( 

D, = 
0 

dT 
+ A 

0 
dW 

Dw = VÌ 
d 

OW ' 

Then [Dt, D„] = 0 so that the held (3) is a differential field with derivations {Df. I>.\. 

If we regard the the field (3) as a partial differential field with derivations {Dt, Dw}. 

then it involves non-linear differential equations. 

Lemma 2.3. DtW = A(\V. T). 

Proof. This follows from the definition of the operator D, . 

Lemma 2.4. 
dy 

9T 
+ A 

Oy 

OW 
= 0 .SY; that Dfy = 0. 

Proof. This is a consequence of Lemma 2.2. 

Lemma 2.4 shows that ij is a first integral of a non-linear ordinary differential 

equation dY/dT = A(Y, T). 

It follows from the definition of the operator(4) DW{W) = \j\ and hence y\ is 

algebraic of decree at most 2 over C(T) (A) (y) (W). Here () should be interpreted in 

the partial differential field (3) with derivations {D/., Dw\. Since y-2 = //.//l. 

(5) • c i i . r ) ( A ) ( / y 1 . / / 2 . t > i / l / ( j n ' . ;>„, ;n\ -, c(T)(\)(y)(\v)) • 2. 

3. Infinite dimensional differential Galois theory 

Let us now explain our differential Galois theory of infinite dimension using a par­

ticular example. Namely we consider a differential field extension L = C(T)(\)(\V) 

over A" = C(T)(Y) with derivation Df such that 

(1) D,(T) = 1. 

(2) W is transcendental over the field K. 

(3) DAY = 
\V{W-1){T-X) 

T(T - I ) ( IT - A) 
and 

(4) A(T) is an arbitrary function of T. 

SOCIÉTÉ MATH ÉMATIQUK I)K FRANCK 2004 



258 II. UMEMIJIIA 

Remark 3.1. The extension L = C(T)(X){W)/K = C(T)(A> of the previous section 
is a special case of the extension introduced above. In the previous section, we assumed 
moreover tha t A is a solution of the sixth Painleve equation and tha t the fields L and K 
are differential subfields of 

С(1Г. T)(X] >{ywu2,dyi/dw. Om/dW). 

We star t from the differential field extension L = K(W)/K with derivation Dt. Wc 
define its Galois group. We consider the universal Taylor morphism / : L —> L^[[r]]. 
Namely we set for an element a £ A~[[T]] 

ila) = 
s 
sdd 

ii=0 

1 

71! 
D¡'(U)T". 

Here L= is the abstract field structure of the differential field L. Namely we forget in 

the differential field L the derivation Dt. The шар i introduced above is a morphism 
of rings compatible with the derivations Dt and О/От. 

Consider now on L b , the derivation 0/OW, which we denote by ( 0 / O W f ) = to avoid 
confusions. The differential field endowed with (0/0\\ ')= will be denoted by LK SO 
we have in the power series ring L=/[[т]] two mutually eominutative derivations О/От 
and (0/0W)=\ The latter operates as a deprivation of coeffieients of a power series. 

The quotient field of А^[[т]] is the field ^ [ [ т Щ г - 1 ] of Laurent series that is the 
differential field with derivations О/От and (0/0W)= In this partial differential field 
L^[ [ r ] ] [ r - 1 ] . let С be the partial differential subfield generated by i(L) and Lü and we 
define 1С as the partial differential subfield generated by i(K) and ZA 

Remark 3.2. The L b-vector space Dvr(L :k= / o f A^-derivations of L 3 is 1-dimen-
sional, and so it is spanned by any non zero element of the L q -vector space D e r ( L 3 / A ^ ) . 
Hence we have 

Der(LVA^) = L ' ( 0 / d \ \ y ° + 

Therefore the construction of C and JC is independent of the choice of a generator of 
the / A vector sparer Der (L b /A^) -

Now considering again the Taylor expansion of the coefficients of a Laurent series, 
we have a differential algebra morphism £ * [ [T ] ] [T - 1 ] —> ^[[£]][b"]][7~~ {], where £ is the 
variable appearing when we expand the coefficients of our Laurent scries. 

L L + ||E||. a i—> 
ОС 

E 

/1=0 

1 
df 

((q/qW)= = 
(a) En= 

So now С and 1С are differential subfields of Ab [[£]] [[r]] [r *] with derivations 
{д/1К.д/0т}. 

Now we consider the functor of infinitesimal deformations of С/1С in 

щж1т}}[т-1} 

ASTÉRISQUP: 2oe 
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that is a principal homogeneous space of a formal group InfGal(L/AT) of infinite 
dimension in general. This is the definition of our Galois group. To be more precise 
we consider the category Alg(Z^) of commutative L^-algebras. We define the functoi 
F : Alg(L^) (Sets) by setting for A G Alg(L^) 

FIA) :={<peC^ A[[E]][[t]][[t-1]]|cp is a differential algebra 

morphism satisfying the following two conditions below} 

(1) ip induces the identity map on /C. 
(2) Let N{A) be the ideal of the algebra A consisting of all the nilpotent elements 

of A. So we have a canonical morphism 

r : A[[e]][[t]][t-1] A/N(A)№\\\T]\\T-1\ 

of reducing the coefficients of Laurent series modulo the ideal N(A). Let j : C —> 
ArnmíT-1} be the composite of the inclusions 

¿ c L ' K l H M l l r - ' j c ^ K l H M H r - 1 ] . 

Using this notation, the condition that we require is r o (f — r o j . 

Intuitively (f is an infinitesimal deformation of the inclusion map j . Let 

W ( f , r ) G 1 } [[ez]][[t]][t-1] 

be the image of W G L by the canonical map 

I y 
L[[e]][[T]][[t-1]. 

Let <p G F (A). Then there exists a power series 

?/>(£) =a0 + ai£ + a 2 £ 2 + • • • G A[[Ç\] 

such that 

cp(w)= w(Y(E), T 

and such tha t ip(() is congruent to £ modulo N(A). More precisely 

ao, a i — 1, a 2 , a 3 , • • • G N(A). 

The infinitesimal deformation p is determined by the power series ^ ( O because the 

{ A , (d/dWO^-differential field C is generated over JC by W(f, r ) . The set 

G(A) = { ^ ( 0 = a 0 + a i£ + 2 Ç2 + • • • G A[[E]] | a 0 , ai - 1, a 2 , a 3 , • • • G JV(A).} 

of formal power series congruent to the identity £ modulo A/" (A) forms a group by the 

composite of power series. The group functor G plays the role of the Lie pseudo-group 

of all the coordinate transformations of 1-variable. We can show tha t 

H {A) = {il) I W ( ^ ( 0 , r ) defines an element of F (A)} 

forms a subgroup of G(A). The subgroup functor H is defined by a set of algebraic 

differential equations. We baptized such a functor a Lie-Ritt functor in [7]. In the 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2004 



260 H. UMEMURA 

classical language H is a Lie pseudo-group and H(A) operates on F(A) functorially. 

The group functor H is the Galois group InfGal (L/K) of L/K. 

4. Proof of Theorem 1.1 

We prove Theorem 1.1. Namely, we consider a differential field extension L = 

C(T)(A(T) ) (W) over K = C(T)(A(T)) with derivation Dt satisfying the following 

conditions. 

(1) Dt is a derivation over C. Or equivalently Dt(C) = 0. 

(2) T is a variable over C and Dt(T) = 1. 

(3) A(T) is a function of T satisfying the sixth Painleve equation. 

(4) W is transcendental over K. 

(5) DtW = 
W(W - 1)(T - À) 

T(T - 1)(W - A) 

We have to show tha t the Galois group InfGal(L/ i f ) is at most of dimension 3. We 

know tha t since A satisfies the sixth Painleve equation, we are in the framework of 

monodromy preserving deformation of R. Fuchs treated in § 2 and § 3. The differential 

fields L and K with derivation Dt are differential subfields of the partial differential 

field 

C{W, T)(A) (yuy2MdW, dy2/dW). 

with derivations Dt, Dw. We will show in [8] the following general fact. We prove, 

however, a par t of the assertion tha t allows us to show Theorem 1.1. 

Proposition 4.1. Consider in general an ordinary differential field extension L/K 

of an ordinary differential field K with derivation Dt such that L is finitely generated 

over K as an abstract field. Then, the dimension of the formal group InfGal(L/ i^) is 

equal to the transcendence degree tr . d.[/^ : JC^] of the abstract field extension C^/K^. 

Proof We give a sketch of a proof. Let us content ourselves to prove tha t the 

dimension of the Lie algebra Lie ( InfGal(L/K)) is equal to the transcendence degree 

tr. d.[£^ : JC^}. We construct C and JC by the general procedure of [7]. Namely we 

consider the universal Taylor morphism 

i : L L= [[t]]/ 

Let 2/1, 2/2, • • •, Un be a transcendence base of the abstract field extension L^/K^. Let 

d/dyl : K(yu 2/2, • • • ,2/n) K(Vi, 2/2, • • • ,2/n) 

be the derivation over K= of the rational function field 

K(yi, 2/2, • • • ,ynf 

for 1 < i ^ n. The derivation o/oyi can be extended to a unique derivation over /e* 

of Lfi tha t we denote also by d/dyt for 1 ^ i ^ n. The partial differential field 1 } 

ASTÉRISQUE 296 



MONODROMY PRESERVING DEFORMATION AND DIFFERENTIAL GALOIS GROUP 2 6 1 

endowed with derivations ä/öyi (1 ^ i ^ n) will be denoted by ZA C is the partial 
differential field generated by the image i(L) and Ü in ^ [ [ T - J H T - 1 ] ] with derivations 

(6) {d/dVl)K (d/dV2)\...A , . . . . d / d y n ) \ d/dr, 

where 

{d/dyi)\{d/dy2f ,.......(q/Qyn)= 

are derivations of coefficients of Laurent series so that derivations (6) of C commute. 

The partial differential field JC is defined in a similar way. Namely it is the partial 

differential subfield of L»[[r]] [--1 generated by L =and i(K). So C and JC are partial 

differential fields of L= Mir-1}} with derivations 

(d/dyi)\(d/dy2)\..., {d/dy n)= d/dr. 

The Galois group InfGal(L/Z^) is a formal group or a Lie-Ritt functor on the category 

of AlgfZ^) of L^-commutative algebras. We consider the restriction 

InfG al (L/Z\~) 0 L t i Ó 

of the functor 

InfGal (L/X) 

on the subcategory Alg(£^) of & commutative algebras. Another ingredient is the 

functor 

$ U K : A l g ( ^ ) sd (Sets), 

where (Sets) is the category of sets. Now we consider the universal Taylor morphism 

qsdffgggdfgggfgeerezqdsfsferref 

where t and w% are introduced by the derivations d/dr and d/dwz, which we identify 

with d/dy%, for 1 ^ i ^ n. So the universal Taylor morphism 

C dfdf 
fdf [[t,W1,W2l . . .,wn}\ 

maps an element a G £ to 

E 
m = (mo,mi,... ,'m-n. ) £ N71 + 1 

• 
ml 

dfd 

ßTm0 

drni 

dw7^ 

ßm2 

dw™2 dfdf 
dfdsf 

dw?n 
(a) sdfdfdfsfzef"srghgtrtgg 

For every L= algebra A, we have 

(7) Homdifferential algebra (£, A[[tìwi,w2ì... iWn]]) ~ Homaigebra(£^ A). 

We set for anL=-algebra A 

3L/K(A) :={/:£ - A[[t, w u w 2 , . . . , wn\] \ f is a partial differential algebra 

morphism that is an infinitesimal deformation over JC of the universal 

Taylor morphism} 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2004 



262 H. UMEMURA 

We know tha t the functor InfGal(L/ZC) (g)Lt,L= operates on the functor J L / K i n such 

a way tha t 

(InfGal(L/AT) ®L, C\ $ L / K ) 

is a principal homogeneous space. See Theorem ( 5 . 1 1 ) , [7]. So we have to show tha t 

the tangent space of the functor FL/Kat the point $L/K(&) LS equal to tr. d.[C^ : JC^}. 

In fact by (7), 

dL,K(&)[e]) = {f : L L [£\[[tìWiìW2ì - • -,Wn\\ I / is a partial differential 

algebra morphism tha t is an infinitesimal /C-deformation of 

the universal Taylor morphism} 

coincides with 

Hom^ti (C\ L + C \ e \ ) . 

The latter is nothing but 

D e r ^ ( ^ ) 

of which the dimension is tr. d. f L+: =] 

To prove Theorem 1 . 1 , by Proposition 4 . 1 , we have to show tr. d. \C : JC] ^ 3. The 

following fact is well-known. See [6], Lemma ( 1 . 1 ) for example. 

Lemma 4.2. — Let F be an ordinary differential field and A a differential F-algebra. 

Let CK and CA be the rings of constants of F and A respectively. Then F and CA 

are linearly disjoint over Cp. 

Let us denote 

C(W, T) (A)(2/1,2/2,^2/1/ IdW, dy2/dW) 

by M , which is a partial differential field with derivations { A , A 4 - M is an over 

field of L/K so tha t we have 

^ f H l f r - M c M + ^ H l f r - 1 ] . 

Let us consider subfields M^C and M^JC in M= t]][[t-1] They are closed under the 

derivation d/dr. 

Lemma 4.3. — In M*[[T])[T-1], (i)M* and C are linearly disjoint over L^ and (ii)M^ 

and JC are linearly disjoint over ZA 

Proof — We prove the first assertion, the second being proved similarly. Let us 

consider the composite field M^C and C in M^[ [ r ] ] [ r - 1 ] . They are partial differential 

fields. We consider only the derivation d/dr. If we notice tha t the ring of d/dr-

constants of M^C is M= and tha t the field of d/dr-const ants of C is Z^, then the 

assertion (i) follows from Lemma 4.2. • 

ASTÉRISQUE 296 
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It follows from Lemma 4.3 that 

(8) tr. d.[£ : JC] = tr. d.[M* OL= £ : M*OL= K] 

(9) = t r . d . | ; U : £ : M^JC]. 

C is the partial differential held in L=[[r]] [T ] generated by i(L) and L q w rith respect to 

the derivations (3/dWf and d/dr. Hence K-fiC is the differential held in A / ^ M H ^ " 1 ] 

generated by i(L) and A-fi with respect to the derivations (d/dW)^ and d/dr. Since 

d/dW = y{Dw in A/ by (4) and since y\ e A/, A / ^ is the partial differential held in 

A / ^ r ] ] ^ " 1 ] 

generated by i(L) and A/ q with respect to the derivations D\D and d/dr. Let us denote 

by abuse of notation by 

i : AI M\[T\] C M^[[T]][T-1] 

the universal Taylor morphism of Dt-differential field A/. Since Dt commutes with Dw, 

i(Dw(a)) = 
OG 

E 

><=() 

1 

RI! 
D)'(Dw(„))rn 

= 
OC 
sE 

» = 0 

1 
df Dw(D',l{a))Tn 

= Di i((a) 

for every element a 6 A/. Hence 

i(Dw(w)) = D=w (iW)) 

is in A / s £ . Since D,y = 0. 

¿(í/) = if= € AP C APC c ^ [ [ r l K r - 1 ] . 

So lot 

C (T) (A) <?,)<№') 

denote as in §2 the partial differential held generated by A, y over C (T) with respect 
to the derivations {Dt. Dw). then 

¡(C(T){\){>i)(W))cM*C. 

Hence 

AI^i(C(T)(X}(y)(W)) = A / q £ . 

It follows from (5) and from Lemma 4.2 

(10) tr .d. [A/ : £ : A/q/C] = tr .d .[A/^/(A/) : M=i(K)\ 

(H) = tr. d.[M^ ®Ca[ M : M* <8>c* A']. 

Here Ca/, CK denote respectively the field of /^ -cons tan ts of AI and K. 

Lemma 4.4. tr. (\.[M: (gjcAI M : A/ : ®cK A'l < 3. 
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Proof. — Let us recall 

M = C(W, T)(X) {yi,V2,dyi/i dW, dy2/dW), K = C(T)(\), 

with 

Vr = y $V2 

dW - 2/2 
qyi 

dW 
= 1 

and y = 2/2/2/1 £ C A / . Therefore tr. d.[M : KCM] ^ 3 . 

Now Theorem 1.1 follows from (8), (9), ( 1 0 ) , ( 1 1 ) and Lemma 4.4. 

5. Framework of proving Theorem 1.3 

Now we show a framework of proving Theorem 1.3. We consider the system ( 1 2 ) 

below according to Gamier [2]. p. 49. 

(12) 

f 

sfddf 

dW2 - 1>V>> 

diji 
dT =fsdd 

1 

2 

clB 

dW V i + B 
dyi 
dfdgf 

dfdfor i = 1, 2 , 

where 

p{W) = c4[W4 - A4 + T(W2 - A2)] + 2c 3 [2 (W 3 - A 3) + T(W - A)] 

+ c 2 ( W 2 - A 2 ) + 2 c i ( W - A ) + 
3 

A(W - A) 2 df 
A7 

IT A 
+ A'2 

and 

sdfggfg 1 
2 

1 

VL - A 

and 2/1, 2/2 are linearly independent solutions oi the first equation oi ( 1 2 ) , A being 

a function of T, A' = dX/dT and X" = d2X/d,T2. After Gamier , the integrability 

condition of ( 1 2 ) implies that A(T) satisfies 

( 1 3 ) X" = c 4 (2A 3 + AT) + c 3 (6A 2 + t) + c2A + cu 

where ci , C2, C3, C4 are constants. 

Remark 5.1. The ordinary differential equation of the second order ( 1 3 ) contains 

both the second Painleve equation 

A" = 2A 3 + AT + ci, 

when C4 = 1, C3 = 0 C2 — 0 , and the first Painleve equation 

A" = 6A2 + T. 

when C4 = 0 , C3 = 1, C2 = ci = 0 . 
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Using the notation of this section, we consider the partial differential fields 

(14) M = c(w, T)(\)(y1,y2,dy1/dw, dy2/d\v) 

with respect to the derivations d/dW, 8/dT. We introduce mutually commutative 

differential operators on M 

( 
( 
( 

Dt = 
d 

dT + 
1 

2 

1 

W - X(T) 

d 

sfsd 

Dw df 
dfd df 

dW 

Remark 5.2. It follows from the definition of differential operator Dt tha t 

DtT = 1, Dn

tX{T) = 
dnX(T) 

sdsfd 
for n = 0 , l , 2 , . . . . 

Hence the first Painleve equation 

X" = 6A 2 + T 

is equivalent to 

D2X = 6A 2 + T 

in M. 

Drach's idea for the sixth Painleve equation suggests the equivalence of the follow­

ing two conditions on a function A(T), where T is an independent variable. We use 

the same notation as above but logically they have nothing to do with the variables 

W, T and derivations Dt, Dw for a moment. 

(1) A(T) satisfies the first Painleve equation (13) with respect to the derivation Dt 

with 

A ( C ) = 0 , A ( T ) = 1. 

Namely DfX = 6A 2 + T. 

(2) ln fGal (L/K) is finite dimensional, where L = K{W), K = C(T)(A) such that 

Dt is a differential operator on L satisfying 

A ( C ) = 0 , + DtT=l, DtW = 
Ì 

2 

1 

W - X' 

the element W being transcendental over K. 

To prove Theorem 1.3, we argue as in §3. Let us assume the condition (i) above 

that A satisfies the first Painleve equation 

D2X = 6A 2 + T. 

We start from the differential fields L, K in Condition (ii). Then we know by Gamier 

by virtue of Condition (i) tha t we are in the situation of the beginning of this section. 

Namely K = C(T) (T ) , L = K(W) are partial differential subfields of 

M = C(W, T)(X)(yily2ldyi/dW, dy2/dW) 
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with derivations Du Dw. We construct as in §3, partial differential field £, JC. We 

have to show tha t 

(15) t r . d . [£ : JCK = 3. 

This implies tha t the dimension of the Lie algebra of the formal group InfGal (L/K) = 3. 

Then Lie's classification of Lie algebras operating on a manifold of dimension 1 shows 

Lie algebra of InfGal(L/A") ~ s / 2 

and hence 
lnïGtû(L/K) ~ S L 2 L , . 

To prove (15), we have to show 

(16) t r . d . [ M :K] = A 

and 

17 tr.d.[C A . / :CK] = 1. 

where K — C(T)(A) and Cm, CK are respectively Dt constants of Af, K. 

We will give a proof of (16) and (17) in [8]. The equality (16) is proved in a 

s tandard way. The proof of equality (17) is reduced to the following assertion. 

Proposition 5.3. The field of constants of the differential field 

C(T, A, A', W, yi dyl/dW) 

with derivation Dt coincides with C . 

The proof of the Proposition 5.3 is as much involved as tha t of the irreducibility 

Theorem of the first Painleve equation. See also Remark 1.2. 

6. Q u e s t i o n s 

Malgrange [3] proposes a differential Galois theory of infinite dimension. The 

relation between his theory and ours remains to be clarified. The following natural 

questions arises. 

Question 6.1. — Interprete Drach/s paper by Malgrange's theory. 

Looking at the first version of this note. Malgrange proved, in the frame work of 

his differential Galois theory, an analogue of the inequality in Theorem 1.1 for the 

first and sixth Painleve equations. So far as the inequality is concerned, his marvelous 

proof is geometric and more accessible than our algebraic argument. We notice here 

a difference. Namely his proof depends on the monodromy preserving deformation of 

a linear differential equation for a 2 x 2 matr ix introduced by Jimbo and Miwa. On 

the other hand, Noumi and Yamada [4] introduced a more symmetric monodromy 

preserving deformation associated with 50(8) to define the sixth Painleve equation. 

So it is na tura l to ask 
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Question 6.2. Can one use the Noumi-Yamada system associated with so(8) to 

prove Theorem 1.1? 

We naively believe that our extensions L/K offer us totally new examples of which 

we can determine the Galois group InfGal(L/ i f ) . You may doubt this belief. 

Question 6.3. Are the extensions L/K studied in this note subextenswns of strongly 

normal extensions? To be more affirmative, prove thai they are not so. 

7. Appendix: Extract from a letter of B. Malgrange to D. Bertrand 

Grenoble, le 16.10.03 

[...] Voici les détails dont je te parlais avant-hier. 

7.1 . S o r i t e g é n é r a l . — On considère un système linéaire 2 x 2 , 

dF = QF. F = 
( 

sd 

dsd 

) 
)) 
) 

et tt = U ^ ) . 1 < i . j< 2. 

Les uüij sont holomorphes sur un ouvert de C n (par exemple ; ou aussi polynomiales 

en x\,... ,xni etc. ; dans chaque cas, on a un résultat analogue). Ici, n est ^ 2 et, à 

part ça, quelconque. tt doit vérifier la condition d'intégrabilité dtt = tt A tt. 

Posons / 2 / / 1 = //'• 

w vérifie dw + a + ßw + 7 ^ - , avec a — —CJ21, ß = ^ 1 1 — ^22, 7 = ^12 \ la condition 
d nitégrabilité s'écrit ici du = TT A dir/dw, TT = dw + a + ßw + yw2/2 ; explicitement, 

da. — ex A ß, dß = a A 7, dy< — ß A 7. 

On a évidemment une structure projective transverse associée au feuilletage n = 0 

dans l'espace (x, w) ; d'où par restriction à w — 0 une structure projective transverse 

associée au feuilletage (¿21 (= - a= 0 dans l'espace des x (structure projective à 

prendre dans le sens de mon article^ sur Galois différentiel = des équations différen­

tielles qui définissent localement à un difféomorphisme près une structure projective 

au sens usuel). 

7.2. A p p l i c a t i o n à P a i n l e v é . — On applique ça aux équations de Painlevé qui 

proviennent de systèmes linéaires du type précédent; ici n — 2, et on écrit (:/;, t) au 

lieu de (x\, X2). 

^ ])B. Malgrange, Le groupoïde de Galois d'un feuilletage, Monogr. Ens. math., 38, 2001. 465-501, 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2004 



268 H. UMEMURA 

Cas de P\ (cf. Jirnbo-Miwœ2\ Appendix C). On considère le système 

dF 

dx 
= AF , 

dF 

dt 
= BF. avec 

A = 
( 
( 

0 1 

0 0, ) 
x2 + 

( 
Qy 
4 

( 
( X + 

) 
) 
) 

-z !r + t//2 
-4y z 

( 
( 
( 

. 
B = 

( 
( 

0 1/2 

0 0 J 
x -f ( 

'0 2/' 

2 0 ) . 

Les conditions dlntégrabi l i té s'écrivent ici dy/'dt = z, dz/dt = 6i/ 2 + £, z.e., /; satisfait 

à P\ (y et z sont supposés a priori dépendre de t seul). Alors, modulo ces équations, on 

peut appliquer ce qui précède ; on a il = Adx+Bd.t, uj\2 = A(x—y)dx+2dt, i.e., modulo 

que y satisfait à P\. on a une structure projective t r a n s v e r s e ^ (cf. Umemura^ 4 ^ 

th. 1.3). 

Cas de P6 

A = 
A( 

x 
+ 

A] 

x - 1 
+ 

Af 

x - t 
B = -

4,. 
x - t 

avec les notations Ao.Ai.At données dans Miwa-Jimbo (et reprises, avec un léger 

changement de notations dans B o a l c h ^ , p. 29-32). 

On prend ici Ui2 = 0; en explicitant, on trouve dsfgfgf 
x(x - 1) 

dx = y - t 
t(t-l) 

dt, avec // 

fonction de t vérifiant Po (cf. Umemura, th. 1.1). Détails ci-dessous 

Bien sûr. cela s'appliquerait à tous les sytèmes 2 x 2 vérifiant la condition d'inté-

grabilité. 

Tout cela est immédiat. La question difficile est de savoir s'il y a ou non des réduc­

tions supplémentaires (probablement pas pour P\, ni pour P ( i dans le cas générique). 

B. Malgrange 

Détail du calcul sur PQ (cf. Jimbo-Miwa ou Boalch, loc. cit.). On a 

An = 
( 
( 
( 

sqfgfhhgfqfsfdf 
{ZQ + 60)/U -Z{) ) 

Ai = 
( 

ZX + Vt -VZi 
IM+O^/V - 2 1 ) 

, At = 
( 
( 

zt+0t -wztA 
(zt + 6t)/w -zt ) . 

(Boalch écrit z\, z%, z2 au lieu de ZQ, Z\, zf.) 

Conditions : A 0 + Ai + At = -
( 

'fci 0 

0 k2 

) 
) (les 6 et k sont fixés), i.e.. 

ZQ + zi + zt = k2 , uz0 + vzi + wzt = 0 , [zo + 0ç>)/u + (zi + 0i)/v + (zt + 0t)/w = C 

(2)M. Jimbo, T. Miwa, Monodromy preserving déformations of LDEs with rational coefficients IL 
Physica 2D, 1981, 407-448. 
(3)ll faut prendre cette assertion au sens de mon article, avec toutefois un grain de sel (interpréter 
le fait que y satisfait à P\ au moyen d'un système de 2 feuilletages emboîtés, en regardant des 
transversales à l'un dans des transversales de l'autre. Il y a un sorite à écrire que je n'ai pas vérifié 
en détail). 
^ H . Umemura, Monodromy preserving deformation and differential Galois group I. ce volume. 
( 5 ) P . Boalch, The Klein solution to Painlevé1 s sixth equation, math.AG/0308221. 
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(et alors, on a : ki + k2 + 9{) + Oi + 0T = 0 . 

Ici, Öi2 = - sdfds 

X 
= 

VZi 
x - 1 = 

wzt 

x - / 
b\2 = wzt 

r -t' 
et l 'équation est 

s 
x 

UZQ 

X 4-
VZ\ 

x - 1 4 
WZi 

x - £ ) 
dx sd 

wzt 

x - t 
dt. 

Éliminons les variables inutiles avec les conditions précédentes, auxquelles on peut 

rajouter (c/. Boalch) (l+t)uZQ + tvZï +wzt = 1. On trouve 

—x + tuz\ 
x(x - 1) 

dx = wzt dt. 

Posant y = tuz\, la dernière condition d'intégrabilité est que y satisfasse à P$ (les 

autres conditions ont déjà été données implicitement, en écrivant que les classes de 

conjugaison des A sont fixées, et que leur somme est constante). 

On trouve, d 'autre part , //•:/ = y - t 
t(t-l) 

(loc. cil.), d'où le résultat final 

sqdqf 
x(x - 1) 

dx = 
v - t 

t(t-l) 
dt. 

annoncé plus haut, pour cui2 = 0 (avec y satisfaisant à P^). 

R e f e r e n c e s 

[1] J. DRACH — "Sur les équations différentielles du premier ordre et du premier degré", C. R. 
Acad. Sci. Paris (1914), p. 926-929. 

[2] M.R. GARNIER — "Sur les équations différentielles du troisième ordre dont l'intégrale 
générale est uniforme et sur une classe d'équations nouvelles d'ordre supérieur dont 
1'intégrale générale a ses points critiques fixes", Ann. Sci. École Norm. Sup. (1912), 
p. 1 126. 

[3] B. MALGRANGE "Le groupoïde de Galois d'un feuilletage", in Essays on geometry and, 
related topics. Vol. 1. 2. Monogr. Enseign. Math., vol. 38, l'Enseignement Mathématique, 
Genève, 2001, p. 465 501. 

[4] M. NOUMI & Y . YAMADA "A new Lax pair for t he sixth Painlevé equation associated 
with so(8)'\ arXiv: math-ph/0203029. 2002. 

[5] M.-H. SAITO & H. UMEMURA "Painlevé equations and deformations of rational surfaces 
with rational double points"', in Proc. of Nagoya international workshop on Physics and 
Combinatorics, World Scientific, Singapore, 2001, p. 320 365. 

[6] H. UMEMURA "Galois theory of algebraic and differential equations", Nagoya Math. J. 
144 (1996). p. 1 58. 

[7] , "Differential Galois theory of infinite dimension", Nagoya Math. J. 144 (1996), 
p. 59 135. 

[8] , "Monodromy preserving deformation and differential Galois group II", in prepa­
ration. 

H. UMEMURA, Graduate School of Mathematics, Nagoya University, Furocho Chikusaku 464-
8602, Nagoya (Japan) • E-mail : umemura@math. nagoya-u. ac . jp 

SOCIÉTÉ MATHKMATIQUK DE FRANCK 2004 


