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S K E W D I F F E R E N T I A L FIELDS, D I F F E R E N T I A L A N D 
D I F F E R E N C E EQUATIONS 

by 

Marius van der Put 

Dedicated to Jean-Pierre Ramis on the occasion of his 60th birthday 

Abstract. — The central question is: Let a differential or difference equation over a 
field K be isomorphic to all its Galois twists w.r.t. the group Gal(/\/A;). Does the 
equation descend to A;? For a number of categories of equations an answer is given. 
Résumé (Corps différentiels non commutatifs, équations différentielles et équations aux dif
férences) 

On étudie la descente sur un corps k d'une équation différentielle ou aux différences 
donnée sur un corps K et qui est isomorphe à toutes ses conjuguées sous l'action 
du groupe de Galois Gal (/<"/&) de K sur k. On traite le cas de plusieurs classes 
d'énuations. 

In t roduct ion 

Rationality questions for differential modules and differential operators are strongly 
related to skew differential fields. This theme has been developed in [H-P]. An open 
question in [H-P] has found an answer, namely the existence and unicity of the 
differentiation on a skew field of finite dimension over its center, that is. a differential 
field in the usual sense. The present paper, written in honour' of Jean-Pierre Ramis, 
reviews these descent problems but now in the context of meromorphic differential 
equations. A remarkable family of examples is the result. Equally surprising is that 
descent does hold for meromorphic ^/-difference equations. This is shown using recent 
wrork of J.-P. Ramis and J. Sauloy on moduli for these equations. Finally, it is shown 
that descent does not hold for meromorphic ordinary difference equations. 

2000 Mathematics Subject Classification. — Primary 12H, 34M35, 34M40, 39A11, 39A13: Secondary 
12G05, 14F22. 
Key words and phrases. — Differential equation, difference equation, descent, Galois cohomology. 
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192 M. VAN DER. PUT 

1. The construct ion of skew differential fields 

Let k denote a differential field having characteristic 0. The skew fields, or more 
generally the algebras F . that we consider here are cent rah simple, finite dimensional 
over their center k. A differentiation on F , extending the differentiation of h, is an 
additive map d : F -> F such that 0{ab) = d{a)b + ad{b) holds for all a.b e F. More
over, we require that 0(a) = a' for every a £ A;. For special cases, such differentiations 
are constructed in [H-P]. Here1 we prove a general result on differentiations. 

Theorem 1.1. — Let k be a differential field of characteristic 0. Let F be a central, 
simple algebra over k of finite dimension. Suppose that F contains a maximal com
mutative subfield K winch is Galois over k. There exists a differentiation do on F 
extending the differentiation of k and having the property OQK C K. 

Moreover, for any differentiation d on F extending the differentiation of k, there 
is an element c £ F (unique up to an element in k) such that d(a) = do (a) + a c — c a 

for all a £ F. 

Proof. --- The asumptions on F imply that F is a crossed product algebra (see [Bl], 
Chapitre IV). The structure of F is the following: 

The elements of F are uniquely given by expressions ^2aeG da[a], where G is the 
Galois group of K/k and all da £ K. The multiplication is given by the rules [a]d = 
a(d)[a] (for a £ G, d £ K) and [o~][r] = c(a,r)[ar}. Here (a, r) i—> c(o~,r) is a 
2-cocycle representing an element of H2(G. K*). 

Let 1 denote the unique differentiation on K, extending the one of A;. Then (a, r) H-» 
c(a, r)'/e(a, T) is a 2-cocycle for H2(G. K). Since the latter group is trivial (see [Se]). 
there are elements {a(a)} in K such that a(a) + °'a(r) — a(ar) — c(a; T)'/'cfo(a r ) . 
Now, define do by the formula 

a 4 E 4 H ) = E ( ' ( + i « W ) [ 4 

The verification that do has the required properties is straightforward. 
Let d be another derivation on F extending the one of k. Then 0 — do is a /c-linear 

derivation on F. It is known that these derivations are given by a H-> [a, c] := ac — ca 
for c £ F. (See [Ren]. Corollaire 3 on p. I I I ) . • 

We note that the differentiation 9 on F, extending the differentiation of A:, is almost 
unique if one prescribes that d is the usual differentiation on the maximal commutative 
subfield K of F . Indeed, d(a) = do (a) + [a. c] for some c £ F . For a £ K one has 
[a. c] = 0. Further, K is a maximal commutative subfield of F and, thus, c £ K. 

2. Skew differential fields over R({.x}) 

Nota t ions . — A: := R({jr}), K := C({x}) are the fields of convergent Laurent series 
over R and C. The differentiation on these fields is given by / ^ f := xdf/dx. 
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SKEW DIFFERENTIAL FIELDS. DIFFERENTIAL AND DIFFERENCE EQUATIONS 193 

Hamilton's quaternion field is denoted by H :— R l + Hi + R j + RA. Then F — 
H ®r A: is a quaternion field with center A;. Let || || denote the usual norm on H. 
The differentiation on F is defined by (h # /)' = h Q / ' for all h G H and / G A:. 
The elements of F are represented by convergent Laurent series with coefficients in H. 
Thus, an element of F has the form E a n x n with all an G H and such that only finitely 
many negative powers of .r are present and, moreover, there are positive constants 
C, R with ||a„|| ^ CRn for all n ^ 0. One observes that ( ^ a n / 1 ) ' = £>a.„;r". 

Consider the 1-diniensional differential module M = Fe over F, defined by the 
formula Oe = dc. After identifying F with A/, via /; i—> />e, one has d(v) = 7/ + v<i. 
For d we make the choice d = / + .r~lj. One can consider A/ as a differential module 
over K of dimension 2, by the obvious inclusion K C F. Further. A/ is also a 
differential module over k of dimension 4. 

Proposition 2.L — End^d] (A/), A/ic H-algebra of the endomorphisins of the k-differ
ential module A/, zs ogtza/ ¿0 H. 

Proof Every A>linear map L : A/ —> A/ has uniquely the form L(v) = mo ! / re/1 + 
.yVa2 + kva-s with ao a:$ G F. A calculation shows that 

(dL - L0)(v) = v(a{} + [a(), r/]) + iv + [a{, of]) + jv(a'2 + [a'2, d]) + Av(^ + [a3, d]). 

Hence L G End/,^ (A/) if and only if a[ + [a-,, d] — 0 for / = ( ) . . . . . 3. Therefore, the 
proposition follows from the statement: 

The only solutions a G F of a' + [a, d] = 0 are a G R. 

The proof of this statement is as follows. Write a = E ^ a „ x n with all an G H. 
Then, a' + [a. d] = 0 translates into 

E (na.n + [an,z] + \a„ . i..y!).x'" = 0. 

For // > 0 and t — to + f 1 •/ + A2j + A3A: G H one has 

/// + [A. •/] = ///0 + ntn + (///2 + 2t:])j + (/;A3 - 2t2)k. 

It follows that ||[nt||] + [A,/]|| ^ //||/||. 
For ,s = so + sii + s-2J + s:ik € H one has [.s\j] = 2.s;A*-- 2.s\v and thus | | [s?j | | ]^ 2||s||. 

One concludes that for n > 0 one has ||a„ + i || ^ ^-||a n||. If some am / 0 with 111 > 0. 
then a n 7̂  0 for all n ^ m. Moreover, for a suitable constant C > 0 one has 
||<7n|| ^ C2~A'//! for all n >m •///. This contradicts the assumption that the Laurent 
series a is convergent. The conclusion is that an — 0 for all n ^ 1. 

0 • OQ + [ao- + lai- j] — 0 implies that «0 G R + R/. After subtracting from a a real 
number, one has OQ G Hi. In the sequel we will write * for a non-zero real number. 
Suppose that ao = */'. Then — a_i + [a_i. /'] + [«o-j] = 0 implies that a_i = *j + *A\ 
The equation — 2a_ 2 + [«-2, ¿1 + [ a-D j] — ^ implies a_ 2 = *z. By induction, one finds 
that a _ 2 m = i* and a _ 2 m _ i = *j -f *k This contradicts the fact that a is a Laurent 
series. One concludes that ao = 0. • 
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194 M. VAN DER PUT 

In the proof of the following corollary we will use some ideas and results of [H-P]. 
For any differential fields k C if, one says that a differential module AI over if 
descends to k, if there exists a differential module N over k such that Al = if <S>h Ar. 
Suppose that K/k is a Galois extension with group G. For a differential module AI 
over K and for a G G, one defines the twisted differential module aAI by: 

aAI is equal to Al as an additive group. 
For / G if and m G aAl one puts fm = a~~l(f)m. 
The 9 on a M coincides with 9 on AI. 

If M descends to fc, then clearly Ma =M for all a G G. The descent problem of 
[H-P] asks whether the converse is true. In general, there is an obstruction given by 
the class of a 2-cocycle. 

Corollary 2.2. We keep the above notations. 

(a) AI = Fe is an irreducible differential module over k. 
(b) Let a denote the non-trivial element of the Galois group of K/k. Then the 

twisted, differential module aAI over K is isomorphic to AI. 
(c) The K-differential module AI does not descend to k. 
(d) Let k = R((.x)) and K = C((.x)). The K - differential module K(S)KAI descends 

to k. 

Proof 
(a) Suppose that AI is reducible as a K-differential module. Let N C AI be a 

1-dirnensional if-submodule. Then jN is also a I-dimensional if-submodule and 
AI = N + jN. In particular. 71/ is semi-simple as A'-differential module. If AI is 
irreducible as K-differential module, then AI is semi-simple, too. According to [H-P], 
proposition 2.7, AI is also semi-simple as ^-differential module. Since End¿.[¿)](M) is 
a skewT field, one has that AI is irreducible as ^-differential module. 

(b) The map &(cr) : AI —-> Af given by fe i—>• jfe, is a a-linear bijection commuting 
with 0. This proves the statement. 

(c) Since $(cr)$(a) = - I , the 2-cocycle class in H2{{1, a} , C*), associated to AL 
is not trivial. It follows from [H-P], theorem 2.8, that the /^-differential module Al 
does not descend to k. 

(d) Put Al = K®K M- The twisted if-module ° AI is isomorphic to Al. According 
to [H-P], theorem 2.4, AI descends to k. • 

Explicit calculations. — The element e of the if-differential module Al = Fe is a 
cyclic vector. The minimal monic operator L^ G K[d] with L^e — 0 can be calculated 
to be 

á2 + á + ( l + a T 2 - ¿ ) . 

Here, we prefer to write S = xd/dx instead of d, since the latter may be confusing. 
Note that 5x = xS + x. The corollary translates into the following: 
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L2 is equivalent to its conjugate cr(L2) — 82 + '̂ + (1 + * 2 + ?')• I*1 fR Ct, one has 

(j(L2)x\ (6 - i) = x(6 - i - 2)L2. 

Furthermore, L2 is not equivalent over K to an operator in k[S\. 
Finally, L2 is over K. equivalent to the operator 62 -\- 6 -\- x~2 in k[S]. 

Now. we apply the methods of [M-R] (see also [P-S2]) in order to obtain the 
formal classification, the formal differential Galois group Gformai, the monodromy 
group and the differential Galois group G of the 2-dimensional differential module M 
over K = C({x}). 

(i) 71/ \— K ®K 71/ has a basis c\,c2 such that 8c, = q,c3 for j = 1.2 and with 
q1 =ix~1,q2 — ix 1 . This is the formal classification. One observes that a(qi) — q2. 
This implies what we know already, namely that M descends to k — R((.r)). 

(ii) The formal differential Galois group, i.e., the differential Galois group of M 
over K, is the group 

G formal — { ( 0 
0 
.... 1 

) | c e C * } ^ G m . 

The formal monodromy is the identity. 
(hi) The topological monodromy group of 82 + 8 + (1 + x~'2 — i) can be calculated at 

the point OG. The local exponents are — / — 1 and the eigenvalues of the topological 
monodromy are e2n,e~27r. 

(iv) The differential Galois group G is contained in SL2, since the second exterior 
power of 71/ corresponds to the equation 6 — 1. Since 71/ is irreducible, the group G 
is an irreducible subgroup of SL2. According to [M -R] , the group G is generated, 
as an algebraic group, by Gformai and the Stokes matrices. There are two singular 
directions ±TT/2 and two Stokes matrices (Q ") and ( l

b 01) Since G is irreducible both 
Stokes matrices are different from 1. One concludes that G = SL2. 

(v) The two Stokes matrices correspond to the singular directions for q\ — q2 and 
q2 — q\. From these one sees that the formal solutions involve Gevrey-1 functions. 
This is explicitly seen in the calculation of proposition 2.1, where the factor n\ occurs 
as measure for the divergence. 

(vi) According to [M-R] and [P-S2], the product of the twx> Stokes matrices is 
conjugated to the topological monodromy. In particular, 2 + ab = c2rr + e~2n. This 
confirms again that a ^ 0 ^ 6 . 

Moreover, one can convince oneself that the Stokes matrices of the twisted differ
ential module aM are (J ~ 6 ) and (1/ a 0/1) (where a J) are the complex conjugates of 
a. /;). The statement aM = M is equivalent to b = —a. 

(vii) We have shown that the above condition b = —a on the Stokes matrices does 
not imply that 71/ descends to R({x}). The 'explanation' is rather deep. We will use 
differential modules. Let the differential module TV over K be given by the matrix 
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196 M. VAN DER PUT 

equation 

ö + 
( 

n -T.-1 ' 

x-1 0 ) 
with ö = x 

d 

dx 

Babbitt and Varadarajan have considered the moduli set BV consisting of equiva
lence classes of pairs (A/, e/>) consisting of a differential module M over K and an 
isomorphism CB : K 0 K hi —> K 0K N. This moduli set has the structure of an 
algebraic variety over C . In this special case BV = A q . This is a coarse moduli 

space. An element (a, b) G BV corresponds to the two Stokes matrices ( è ï ) . (ir) 
that multisummation associates with (M. O). 

There is also a fine moduli space M , again = A ^ , with a universal family on it, 
namely 

SI 
( 

A - x -1 + B 
x~l + i -a ) 

with (A,ß) G M ( C ) . 

M has an obvious natural structure over R. In this special case, the analytic morphism 
St : M —» BV is explicitly known, namely 

Sl(n..i) - IF(<R - I2) • (n • / I n I.I). where /'(7) = 2 
sin \ft 

yft 
. 

Take £ G M ( C ) . Suppose that £ is isomorphic to £. Is there a 7j G M ( R ) with £ 
equivalent to ?/? This question translates into: Suppose that St(£) -~ St(£). Is there 
an rj G St - 1 (St(£)) with 7] G M ( R ) . One sees that the answer is negative in general. 

(viii) The element e is also a cyclic element for M considered as differential module 
over k. The minimal rnoiric operator L 4 G k[S] with L±e = 0 is calculated to be: 

L4 = Ö4 + 20* + (3 + 2x~'2)S2 + (2 - 2x,-2)S + (2 + 4x~2 + .x" 4). 

Clearly, L 2 is an irreducible right hand factor of L4 in the operator ring K[S]. Also 
cr(L2) is an irreducible right hand factor of L4. Since L 2 and a(L2) commute, one 
has in fact L4 = <T(L 2)L 2. By the above, L4 is irreducible in k[S]. However L4 has a 
right hand factor in k[S). 

Remarks. The above example can be largely extended as follows. Let F be the 
skew differential field considered above. On the left vector space A/ := Fa over F 
one considers a structure d of F-differential module given by d(v) = v' + vD, where 
v' = (vi, . . .. vay := {v[.. . .. v'a) and where D G Matr(a. F). As in [H-P], proposition 
2.14, for a suitable choice of D. one has: 

(a) EndK[0](il/) = C . 
(b) T/ie £wzs£ aAI is isomorphic to the K-differential module M. 
(c) End/j.[#](A/) = H emri A/ is an irreducible k-differential module. 
(d) T/ze K-differential module M does not descend to k. 
(e) The K-differential module K 0 K hi descends to k. 
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Other skew fields over A; = R({./*}). — It is known that K — G({x}) is a C1-field. 
It follows that the Brauer group of K is trivial. As a consequence, K is a splitting field 
for any skew field F. of finite dimension over its center k. Thus the Brauer group of k 
is equal to the cohomology group H2({1, a}, K*). The map C* x Z x xC{x} —> A*, 
given by (r. //. /') i > ex11 exp(/) is an isomorphism of {1. a}-modules. One calculates 
that # 2 ({ l ,cr} ? C*) and H2({l.a}.Z) are both isomorphic to Z/2Z. The {1.a}-
module xC{x} is an induced module and its H2 is 0. Therefore the Brauer group 
of k is isomorphic to Z/2Z x Z/2Z. The three non-zero elements of this Brauer group 
correspond to the three distinct skew fields of finite dimension over their center k. 
One can give them explicitly as follows. 

A quaternion algebra with center k is given by a basis bo, b\. b2, 63 over k and rules 
of multiplication: bo = 1; b2 = Ah G k for i — 1,2,3; b\b2 — —b2b\ = 63 and thus 
AXA2 = - A 3 . 

For suitable choices of A\,A2 one obtains the three skew fields mentioned above, 
namely: 

(1) Ai = - 1 , A2 = - 1 . This is the skew field H (>oR k that we have used. 
(2) A1 = -l. A2 = x. 
(3) Ax = - 1 , A2 = -x. 

The cases (2) and (3) lead to other examples of differential equations over k having 
interesting descent properties. 

Another family of examples. — F denotes the quaternion field over k — R({.r}) 
with basis 6 0 , . . . , 63 and multiplication given by bo = 1, b\b2 = —b2b]_ = 63 and 
l)\ = —1, b'2 — x. The differentiation ' on F, extending xd/dx on k. is defined by 
b'{] = b\ = 0 and l/2 = 1/2- b2. b'A - 1/2 • b:i. The field A" = C({x}) is seen as a subfield 
of F by the identification of / with bi. 

One considers the differential module AI = Fe over F. defined by De = de. Later on 
we will choose d = b\ -\-x~lb2. Now AI is a differential module over K of dimension 2, 
with basis c, b2e. The twisted module AAI is isomorphic to AI(&KL, where L = A r with 
Or = 1/2 • r. Indeed, the rr-linear bijection A(a) : AI —> AI. defined by A(<r)'m = b2m. 
has the property dA(cr) — A{o~){d+l/2). The second symmetric power N := Sym^ AI 
is a differential module of dimension 3 with basis e & c, b2e qo e, b2e <>) b2e. The rr-linear 
bijection B : N N. with formula B(a)M1 (G> m2 = x~lb2nim1i >; 62w-2 commutes 
with c?. Further B(a)B(a) is the identity on TV. Put iV° = {n e N \ B(a)n = n}. 
Then one calculates that № is a vector space over A* with basis 

n°i = e ® (' + x~lb2e 0$ b2e, /¿2 = b\e Cv e — b\x~ib2e (x) 62c, /¿3 = 62̂  0 <°. 

Clearly A r o is a differential module over A: and K eg)/,. № = N. In other words. 
A/" descends to A'. For the choice d — b\ + x~lb2. the minimal monic operator A3 with 
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L3H3 = 0 can be calculated: 

L3 = S:i - 1/2 • Ó2 + (4 - l.r l)d + l.r 1 - 2. 

Here one has written S instead of 0 in order to emphasize that 5 is the operator xd/dx. 
The main interesting properties of the 3-dimensional differential module № over k 

are: 

Proposition 2.3 (Properties of AI and № ) 

(i) № is not the second symmetric power of a differential module over k. 
(ii) For a finite fi,eld extension L D A:, which is a splitting field of F, the module 

L <g)A: № is a second symmetric power. This holds in particular for L = K and 
L = k (Vx) . 

(iii) A: <S>k № is a second symmetric power-. 
(iv) M := K (G)K hi descends to k. 

Again with d = b\ + x lb2. one computes that the monic minimal operator L2 for 
the cyclic element c of AI (over the differential field K); 

L2 - S2 + 1/2 • S - x-1 + 1 - i/2. 

In this formula we have again written S := xd/dx, in order to emphasize that the 
differentiation on K is given by / 1—> xdf/dx. By construction L3 is equivalent, but 
not equal (!), to the second symmetric power of L2. 

(i) states that L3 is not equivalent ovc.̂ r A- to the second symmetric power of an 
operator in k[S}. 

(ii) states that L3 is equivalent to a second symmetric power in L[S] if L D A' is a 
splitting field for F. 

(iii) states that L3 is eciuivalent over A; to the second symmetric power of an element 
in k[S]. 

(iv) states that L2 is ecmivalent over K to an operator in k[S]. 

Proof. For the proof of (i) and (ii), we use methods of [M-R] and [P-S2]. In 
particular we determine the formal differential Galois group Gformai, the topological 
monodromy group, the differential Galois G, et cetera of L2. 

(a) G and Gformai are contained in {A G GL2 | det(A)2 = 1}. (because of the term 
1/2-5 in L2). 

(b) The eigenvalues of the operator L2 are ± : r ' - 1 / 2 . (follows from a computation 
with the Riccati equation u' + a2 + 1/2 • u + {-x~l + 1 - i/2) = 0). 

(c) Gformai is the dihedral group generated by { ( (

f

) c ° i ) I (' e C*} and ( ^ ) . 
(follows from the explicit form K(x1^2, exp(2:/: - 1/ 2)) of the Picard-Vessiot field). 

(d) G = {A e GL 2 I det(A) 2 = 1}. 
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(The topological monodromy can be calculated at oc. The formal monodromy is easy 
to calculate. The product of the formal monodromy and the Stokes matrices is con
jugated to the topological monodromy. Hence there are non-trivial Stokes matrices. 
Finally G, as algebraic group, is generated by Gformai and the Stokes matrices. Thus 
G is the above group). 

The test for a differential module Z of dimension 3 to be a second symmetric 
power, is the existence of a 1-dimensional submodule of Sym2 Z, which corresponds 
to non-singular quadratic form having a rational point over the differential field. We 
refer to [H-P] for a proof of this and for the statement that the only candidate in 
case № is the quadratic form corresponding to F. Here one uses that sym 4

K M has 
no 1-dimensional submodules, which is a consequence of the above calculation of G. 
Now (i) and (ii) follow. 

Let F denote the quaternion field over k. given by the same formulas as F. Then 
AI := K 0K A/ = Fe is a differential module over F with the same formula de = 
(fri + x~ll)2)e. We will show that there exists an element / = ue, with u £ F, u ^ 0, 
such that df = x~lb2f. Assuming this, one considers Al again as a A'-differential 
module with cyclic vector / . The mimimal monic operator L2 £ K[S\ with L2f — 0 
is easily calculated, namely 

L2 = ô'2 + 1/2-S-xr1. 

This proves (iv). Part (iii) follows at once from (iv), since L3 is equivalent over k to 
the second symmetric power of L2. 

The (dement a G F that we are looking for must be a non-zero solution of the 
equation d(ue) = x~lb2ue. This translates into 

u + J//../- U)2\ + ubi = 0. 

Consider the operator L : F —> Fgiven by L(u) := /// + [//, :r 1b2]
J

r

rub1. One observes 
that: 

L(l) = b1 lÁb\x) = 263 + (61 - 1)./ 

L(b2) = l /2-6 2 + 63 L(63) = 1/2 • h + 2&! - b2 

and for n ^ 1 one has the formulas 

L(xn) = (7l + bi).XN LibixN +1) = 2b3x
n + ((n + l)6i - l ) ^ n + 1 

L{b2x
n) = ({n+l/2)b2 + b:i)xn L(b3x

n) = ({n + 1/2)63 + 2B1 -b2)x
n. 

Let U{) be a non-trivial R-linear combination of lj)B1\xj)B2,b3 such that L(uo) lies in 
R[[x]]-module W spanned by 1. xb\, ;/;62, x'63. Let V be the R[[x]]-module spanned by 
x, x2b\, .7:62, xb-.\. The formulas show that L : V W is bijective. Let u\ £ V satisfy 
L(iii) — —L(u()). Then u — do + //1 is a non-zero element of F and L(u) = 0 . • 

The method of proposition 2.3 extends and produces a large class of differential 
equations over A1, having interesting descent properties. 
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3 . Descent for q-difference equat ions 

In this section we compare (/-difference equations over the fields R({.r}) and 
C({x}). For this purpose one supposes that q G R and 0 < \q\ < 1. Let a denote 
the complex conjugation of C and its natural extension to an automorphism of 
C({x}) over R({.i;}). The automorphism a on both fields C({;r}) and R({.r}) is 
defined by ox = qx. A (/-difference module AI — (AI.&) over R({j;}) or C({x}) is a 
finite dimensional vector space over that field together with a bijective additive map 
$ : M —> AI satisfying [I] (fm) = cb(f)$>(m) for rn G AI and / in the field. For a 
Q-difference module AI over C({./'}) one defines the twist aM = (aM,a§) as follows: 

(i) aAI is equal to AI as additive group. a<I> is equal to <£> and 
(ii) aAI has a new structure as C({./'})-vector space given by the formula / * rn : = 

a(f)m. 

Theorem 3.1 (Descent for (/-difference modules). Let q-difference module AI over 
C({./'}) satisfy aAI ^ AI. There exists a q-difference module N over R({.i'}) such 
that AI = C ® R N. 

Proof We sketch here the proof which is based on the work of J.-P. Ramis and 
J. Sauloy ([D-R-S-Z] and a preprint in preparation) concerning moduli spaces for 
convergent ry-difference equations (i.e., (/-difference modules over C({./'})). 

We consider first the case of a regular singular ^/-difference module AI over C({:;;}). 
The classification of regular singular modules can be formulated as follows. There is 
a unique C-vector space 11' C AI with the following properties: 

(a) the natural map C({x"}) '»c W —> hi is a bijection. 
(b) $(IF) = W and all eigenvalues A of the restriction Y of <I> to W satisfy \q\ < 

| A K 1 . 

We write W(AI) and (.'(AI) for the W and i}> above. A morphism / : AI -> N 
between regular singular modules induces a linear map / : W(AI) W(N) satisfying 
/ o 'ij'(AI) = 0(A^) o / . One obtains in this way a C-linear bijection (with obvious 
notations): 

Hom(i\/, iV) —> Horn ((W(AI).(A(M)). (U'(.V). /.-(A'))). 

The pair (W,i/;) associated to aAI is equal to (aW(M),il;{M)), where aW(M) is 
the twist of W{AI). More precisely. aW{M) coincides with W(M) as an additive 
group. The new scalar multiplication on aW(AI) is given by a * w = aw (with a G C, 
w G W{AI) and a the complex conjugate of a). If GAI = AL then there exists 
an additive bijective A : W(AT) —» W(AI), commuting with YJ(AI) and such that 
A(aw) = liA(w) for all a G C and w G W(AT). It is not dificult to verify that there 
exists a real vector space V together with an R-linear automorphism r such that 
C Cx̂R ( K r ) = {W{M),i/>{AI)). Aioreover N := R({.r}) 0 R (KT), with its obvious 
structure of a (/-difference module over R({.r}). satisfies C ®R N = AI. 
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One associates, in a canonical way, to a general (/-difference module AI a Newton 
polygon and a decreasing slope filtration {AI^11µ} of AI by submodules. Each non zerc 
quotient AI^ f l/M>flµ is a pure (/-difference module. The latter means that the Newton 
polygon of this quotient has only one slope, namely //. 

A pure (/-difference module such that its slope is an integer has the form TV 0 E(n) 
with N a regular singular module and E(n) = C({x'})e with <f>(j = xne (for a suitable 
integer n). 

In the case of non-integer slopes // one has to make a few modifications to describe 
the pure difference modules with slope / 1 . Let d ^ 1 denote the denominator of / 1 . 
First of all, one extends o to an automorphism of C({.i' 1 / ( i}) by o(xl x/d'') — (q1/i(ldx.r[;<l 

for a suitable choice of qvl(l. A coherent choice can be made as follows. Choose an 
element r in the upper half plane with e2ntT — q. Then ql^d := c

2jTZT/d. One defines 
the module £(//) + : = C{{x^d})e over C({x^d}) by $c = x>Le. Let E(p) denote 
E(fi) + , considered as a (/-difference module of dimension d, over the field C({:/:}). One 
can show that E(p) does not depend on the choice of ql^d. Moreover, one can show 
that any pure (/-difference module with slope /1 has uniquely the form E(/.i)®N where 
Àr is a regular singular module. 

One associates to AI the graded module gr(A/) : = Q) f lAI^ f l/M> µ - This is a direct 
sum of pure modules. If one works over the field of formal Laurent series, i.e., the field 
C((x*)), then AI is isomorphic to gr(A/). In the convergent situation one can only say 
that 71/ is a multiple extension of the pure modules ocurring in gr(Af) (and taken in 
the correct order). The equivalence classes of the multiple extension are the C-valued 
points of a finite dimensional moduli variety over C, which we will call Ext(gr(A/)). 
In fact, Ext(gr(A/)) is an affine space over C. In the simplest situation, one considers 
extensions of two pure modules A/], A/2. Then Ext(gr(A/)) is just Ext 1 (AI\. A/2) 
(where AI\. AI2 are interpreted as left modules over C({./'})[$, 4> - 1]). This is a vector 
space of finite dimension over C. In short, the (/-difference module AI corresponds to 
a pair (gr(A/) ,0 with £ a (closed) point of Ext(gr(A/)). 

Now we return to the proof of the theorem. Let AI be given and suppose that 
aAI = AI. This isomorphism is provided by an additive bijective map A : AI —» A/, 
which commutes with <£> and is semi-linear, i.e., A(frn) = a(f)A(m) for all m. G AI 
and / G C({.;:}). The map A preserves the canonical filtration and induces a semi-
linear bijection gr(A) : gr(AZ) —> gr(AZ). commuting with <f>. Each /?(//), as defined 
above, is obviously of the form C &)R £R( / I ) , where En(ji) is a (/-difference module 
over R({./*}). Using the above results for regular singular (/-difference modules one 
concludes that gr(AZ) is equal to C 0 R g r ( A / ) R , where gr(A/)R is a direct sum of pure 
modules over R({i;}). The moduli variety Ext(gr(A/)) is the complexification of a 
real affine variety Ext(gr(A/)R). The closed point £ of Ext(gr(A/)) is invariant under 
complex conjugation and comes therefore from a real point rj of Ext(gr(A/)R). The q-
difference module Ar over R({.r}), given by the pair (gr(A/)R, ?/), has by construction 

the property C ® R N ^ AI. • 
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Remarks 3.2 

(1) Descent of ^-difference modules over the field C(x) (again with q G R and 
0 < \q\ < 1) does not hold. Indeed, one introduces the skew difference held F : = 
H (g)R R(x) provided with the operator e/> given by (j)(x) = qx and qb is the identity 
on H. One considers the one dimensional skew ^-difference module Fe given by 
<f>(e) = (i -f jx)(. Let TV — Fe, viewed as a 4-dimensional ^-difference module over 
R(x). The essential step is to verify that EndR(<T)[<j> <j>-q(TV) = H. Assuming this, 
one defines 71/ = Fe, viewed as a ^-difference module over C(x) of dimension 2. 
A variation on the proof of corollary 2.2 will show that M is irreducible, aM = M 
and 71/ does not descend to R(x). The element e is a cyclic vector for 71/. The scalar 
^-difference equation corresponding to e can be calculated to be 

y(q2x) + i(q - l)y(qx) + (1 + q2x2 + g - l)y(x) = 0 with q G R. ( X \q\ < 1. 

This equation is irreducible and equivalent to its complex conjugate. However, the 
equation is not equivalent to an equation over R(x). 

For the verification of EndR(r)[<f> <f> q (TV) = H. one takes an R(x)-linear map 
L : TV —> TV, which has the form L(v) = /v/() + iveii \ jeu-i + kva^ (where v G Fe — F 
and do,.. . , a,\ G F). The equation <J>L = L<l> implies that each a? satisfies the equation 
o(<i)(i : ././') = (i+jx)a. The real vector space V := {a G F\(j)(a)(i + jx) — (i+jx)a} 
has dimension ^ 4, since it is the set of solutions of a 4-dimensional ^-difference 
equation. Moreover, V is a subalgebra of F. Take a non zero a G V and let P G R[x] 
be the nionic polynomial of minimal degree such that P • a G H (g) R[x]. The equality 
(f)(a)d — da implies that (1 -\- x2)(f){P) - a G H O R / 1 A small computation shows that 
P must be a power of x. Therefore a G H S R[x. x " 1 ] . Write a — X^!=s

 a ?- r ? with 
s,t G Z, s ^ t and all a7; G H. Observing that all powers of a lie in V and that V 
is finite dimensional, one concludes that a G H. Now a commutes with (i + jx) and 
this leads to a, G R. The conclusion is that L G H, as required. 

(2) The reason for the rather striking difference between theorem 3.1 and the ex
amples in section 2 lies in the structure of the moduli space. In the first case, this 
moduli space has (in the situation that we are interested in) a natural real structure. 
In the second case, the moduli space is a coarse one. 

4. Descent for ordinary difference equat ions 

We consider the difference fields F ( { x - 1 } ) and F((x~ ! ) ) , where F is either E 
or C and with the automorphism <fi given by qb(x) = x + 1. Let 71/ be a difference 
module over C ( { x - 1 } ) such that its twist aAL where a is the complex conjugatioi 
extended to C({x '}) in the obvious way, is isomorphic to AL The descent problen 
is to determine whether 71/ is isomorphic to C 0 R TV for some difference module ovei 
R({ x - 1}). 
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The meromorplric classification of ordinary difference modules is rather compli
cated. We will restrict ourselves to the class of the regular difference' modules. We 
recall from [P-Sl] some definitions and results. A difference module 71/ = (71/. <£>) 
is called regular singular if there is a C{./:~1 }-latfice A C 71/ that is invariant under 
<f> and moreover $ is the identity on A/.r~LA. Equivalent ly. 71/ is represented by a 
matrix difference equation y(x + 1) = Ay(x) with A a convergent matrix of the form 
f + A2x~2 + • • • . Furthermore, 71/ is regular if and only if C((;/' 1)) 0 71/ is a trivial 
difference module over C((.r-1)). The class of all regular difference modules forms a 
Tannakian category. 

Theorem 4.1. Descent does not hold for the category of the régulai' difference mod
ules overC({x-1}\). 

For the construction of an example showing that descent does not hold, we replace 
the category of the regular difference modules by an equivalent Tannakian category. 
An object of this Tannakian category is a triple (V. Tuppor. Xiowcr) where: 

(a) V is a complex vector space of finite dimension. 
(b) ûppcr = Tupvvr(u) is ft C{f/.}-linear automorphism of C{u} S c ^ such that 

Fuppcr(0) = f and. 
(c) Tiower = T\owvr(u- l) is a C{u H-linear automorphism of C \ u - l \ } ®c V snch 

that Tlowor(0) = 1. 

We note that the symbol •//. stands for c"71"'-*'. 
A morphism / : (V, Tuppor, Tiowor) -> (V^ T/ippor, T/OWOI.) is a linear map / : V -> V 

satisfying / O Tuppc- = r;ipp(M. O / and / o T,ower = r/owor o / . 
There is a summation method for regular difference modules. The right summation 

Fright ftnd the left summation F\v{{ of a formal fundamental matrix F for 71/ are 
compared by considering F ^ . ^ iqeft. This matrix exists on an upper half plane and on 
a lower half plane and yields convergent matrices in the variables a and u~[. These 
two matrices are the Tuppor and Tiowrr above. The term V of the triple is the formal 
solution space of 71/ (or of the matrix equation y(x + f) = Ay(x)). This describes the 
functor 71/ h—> (V. Tuppor. TiOW(M.) from the category of the regular difference equations 
to the category of the triples. In subsections 8.5 and 10.1 of [P-Sl] details and explicit 
calculations are given. 

For a vector space V over C. we write (as before) °V for the twisted vector space. 
This means that °V — V as additive group and the new scalar multiplication * on 
a"V is given by A * v = a(X)c (with X e C. a(X) = X = the complex conjugate of A 
and v G V). A linear map F : V —> W can also be considered as a map aV —» aW. 
This map is again linear and will be denoted by aF. A linear map A : °Vi —>• V<2 
can also be considered as a semi-linear map A : \\ —> V2, i.e., A is additive and 
A(Xv) = Xv for A G C and v G V\. A real struct/are for a complex vector space V is 
a real subspace W C V such that the natural map C ®R W —> V is an isomorphism. 
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Suppose that a real structure for V is given. Then one defines complex conjugation 
on V by w\ + 1W2 = w\ — iu)2 for all w\ ,W2 G W. Let F : V —> V be a linear map 
and suppose that a real structure for V is given. Then one defines a linear map F, 
called the complex conjugate of F, by the formula F(w) = F(w) for all w G LF. 

Let Af correspond to the triple (V, TuppCT(u). T\owvr(u~l)). Using the explicit for
mulation of subsection 10.1 of [P-Sl], one can see that the triple corresponding to 
aAI is 

(^^owerC^^Tnpper^-1)). 

We Will Write Tlipper = 1 + Yln^l /'upper./,"" aild T\owvr = 1 + J2n^\ Slower,n'M 

Suppose that M descends to R({x,_1}) and so Al = C 0 R ] V for some regular differ
ence module TV over R({.7:_1}). Then the solution space V has a natural real structure, 
namely V = C 0 R W, where W is the real vector space ker(<l> - l ,R((x ])) (g) N). 
For this real structure one has that Fupporvri = XiOWCIV„. for all n ^ 1. Equivalently, for 
each n ^ 1, the maps Tuppcr,r, + XiOW(,lv/, and /Fuppor.„ - iTiowolvn are real (i.e., they 
are invariant under conjugation). 

On the other hand let be given a triple (V. Fuppor. Tiowrr) together with a real 
structure for V such that TuppcTV/, + Fiowor?n and zTupporin — /Xiowclv„. are real for all 
n ^ 1, then the corresponding regular difference module AI descends to R({.r-1}). 

By the above considerations, theorem 4.1 will be proven if we can produce an 
example of a triple (V, Tupper, Ziowcr) and an isomorphism 

A : (<V, 'TTlowe l . (« ) : ,Truppe l . («r1 ) )—V^^T^riu-1 ) )T lower(u-1 

such that V does not have a real structure for which all maps Fupp(MV„ + 1 lower,™ and 
iTupper^n — iT\owerill are real. 

We prefer to see the map A as a semi-linear isomorphism satisfying j4Tuppeiv„, = 
Fiowor,7iA and AXioweiv/l = TnppvYJlA for all n ^ 1. Since At = —i.A, the lat
ter conditions can also be formulated as A commutes with Tnppvvjl + Fioweivn and 
zFuppor,n — ¿Fiower</, for all n ^ 1. The example is now constructed as follows: 

H denotes the skew field of the Hamilton quaternions over R. Let V = He be 
a 1-dirnensional left vector space over H. In particular. V is a 2-dimensional vector 
space over C . The semi-linear map A : V —> V is given by A(Jie) — jhe. Consider two 
sequences {Ari}n^\>1 and {Fn}n^i of H-linear maps from V to itself, with bounded 
norms. Define the C-linear maps Tuppor,n, T\OWQY,n by the formulas An = Tuppei%n + 
l̂ower.n and Bn — iTuppevn iT\OWVT^n. Put Fupper — 1 ~\~ n^^ Tnppovnii and Xiower 

1 + Xln>i l̂ower,nW~n- Then A is an isomorphism 

(V,"TiowerCíz), aFupiKir(iF 1 )) —+ (U. Fupper(u). Tiower (W"1 )). 

Suppose that W C V is a real structure such that all An, Bn are real. We may suppose 
that W contains e. Then W contains R[5]e for S = An and S = Bn. We note that 
R[5] is a commutative subfield of H. We may have chosen the An, Bn such that the 
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fields R[5] with S — AN or S = BN are distinct maximal commutative subfields of H. 
We conclude that W does not exist. 

From the construction of this example for theorem 4.1 one can guess the explicit 
form of the difference module. Let F := H 0 R R( {.r 1 } ) denote the skew difference 
field with o-aet ion defined by <P(x) = x + 1. The left vector space Fe is made into 
a skew difference module by <f>e = de for a suitable d G F . One takes a d of the 
form d — 1 -f d-2X ~ + di)x~~'1> + • • • . Then Al := Fe, viewed as a difference module 
over C({.;; - 1}) of dimension 2. is regular and moreover aM = AL We follow the 
method explained in Remarks 3.2 part (1). In order to show that 71/ does not descend 
to R({./* - 1}). one has to consider TV := Fe as a difference module over R ( { x - 1 } ) 
of dimension 4. The essential step is to show that the R-algebra of endomorphism 
of the difference module N is equal to H. This amounts to showing that the only 
solutions a £ F of the equation o(a)d = eia are the a E R. We note that there are 
more solutions in H ©R R((./'~1 )). For a specific example, say d = 1 + ix~2 + jx~A, 
one has to verify that the only convergent solutions a of (P(a)d = da are the a G R. 
It seems rather difficult to prove this by direct computation. 
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