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SKEW DIFFERENTIAL FIELDS, DIFFERENTIAL AND
DIFFERENCE EQUATIONS
by

Marius van der Put

Dedicated to Jean-Pierre Ramis on the occasion of his 60th birthday

Abstract. — The central question is: Let a differential or difference equation over a
field K be isomorphic to all its Galois twists w.r.t. the group Gal(K/k). Does the
equation descend to A7 For a number of categories of equations an answer is given.

Résumé (Corps différentiels non commutatifs, équations différentielles et équations aux dif-
férences)

On étudie la descente sur un corps b d’une équation différentielle ou aux différences
donnée sur un corps K et qui est isomorphe & toutes ses conjugudées sous 'action
du groupe de Galois Gal(K/k) de K sur k. On traite le cas de plusieurs classes
d’équations.

Introduction

Rationality questions for differential modules and differential operators are strongly
related to skew differential fields. This theme has been developed in [H-P]. An open
question in [H-P] has found an answer, namely the existence and unicity of the
differentiation on a skew field of finite dimension over its center. that is. a differential
ficld in the usual sense. The present paper. written in honour of Jean-Picrre Ramis,
reviews these descent problems but now in the context of meromorphic differential
equations. A remarkable family of examples is the result. Equally surprising is that
descent does hold for meromorphic g-difference equations. This is shown using recent
work of J.-P. Ramis and .J. Sauloy on moduli for these equations. Finally, it is shown
that descent does not hold for meromorphic ordinary difference equations.

2000 Mathematics Subject Classification. — Primary 12H, 34M35, 34M40, 39A11, 39A13; Secondary
12G05, 14F22.
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192 M. VAN DER PUT

1. The construction of skew differential fields

Let £ denote a differential field having characteristic 0. The skew fields, or more
generally the algebras F. that we consider here are central. simple. finite dimensional
over their center k. A differentiation on F, extending the differentiation of k, is an
additive map 9 : F' — F such that d(ab) = d(a)b+ ad(b) holds for all a. b € F. More-
over, we require that d(a) = ' for every a € k. For special cases, such differentiations
arce constructed in [H-P]. Herc we prove a general result on differentiations.

Theorem 1.1. — Let k be a differential field of characteristic 0. Let I be a central,
simple algebra over k of finite dimension. Suppose that F contains a marimal com-
mutative subfield KN which is Galois over k. There exists a differentiation Oy on F
extending the differentiation of k and having the property OoK C K.

Moreover, for any differentiation 0 on F cxtending the differentiation of k, there
is an element ¢ € F' (unique up to an element in k) such that d(a) = do(a) + ac — ca
foralla e F.

Proof. - The asumptions on I imply that F is a crossed product algebra (see [Bl].
Chapitre IV). The structure of F is the following:

The elements of [ are uniquely given by expressions Y . dy[o]. where G is the
Galois group of A/k and all d, € K. The multiplication is given by the rules [¢]d =
o(d)lo] (for o € G, d € K) and [o][r] = ¢(o,7)[o7]. Here (0.7) — ¢(o,7) is a
2-cocycle representing an clement of H?(G. K*).

Let ” denote the unique differentiation on /', extending the one of k. Then (o, 7) —
(o, 1) /e(o,7) is a 2-cocycle for H(G. K). Since the latter group is trivial (sce [Se]),
there are elements {a(o)} in A such that a(o) + “a(r) — a(o7) = c(o,7) /c(o,T).
Now, define dy by the formula

« /
D (X dylo]) =3 (d, + dya(o))[o].
The verification that dy has the required properties is straightforward.
o
Let 0 be another derivation on F' extending the one of k. Then 0 — 0y is a k-linear
derivation on F'. It is known that these derivations are given by a +— [a. ] := ac — ca

for ¢ € F. (See [Ren], Corollaire 3 on p. 111). O

We note that the differentiation 9 on F', extending the differentiation of &, is almost
unique if one prescribes that d is the usual differentiation on the maximal commutative
subficld K of F. Indeed, d(a) = dy(a) + [a.c] for some ¢ € F. For a € K one has
[(L. ¢] = 0. Further, K is a maximal commutative subfield of F' and, thus, ¢ € K.

2. Skew differential fields over R({z})

Notations. — k:= R({x}). K := C({x}) arc the fields of convergent Laurent series
over R and C. The differentiation on these fields is given by f — f':= adf /dx.
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SKEW DIFFERENTIAL FIELDS. DIFFERENTIAL AND DIFFERENCE EQUATIONS 193

Hamilton's quaternion field is denoted by H := R1 + Ri + Rj + RA. Then F =
H 9gr & is a quaternion field with center k. Let || || denote the usual norm on H.
The differentiation on F is defined by (h 0 f) = h = f' for all h € H and f € k.
The elements of I are represented by convergent Laurent series with coefficients in H.
Thus, an element of F has the form Y a,2" with all ¢, € H and such that only finitely
many negative powers of - are present and, morcover, there are positive constants
C, R with [la,|| < CR" for all n > 0. One observes that (3" a,x™) =3 na,a".

Consider the 1-dimensional differential module A = Fe over F. defined by the
formula de = de. After identifying F with A, via v + ve, one has d(v) = o' + vd.
For d we make the choice d = i 4+ .7 'j. One can consider A as a differential module
over A of dimension 2. by the obvious inclusion &' C F. Further. A is also a
differential module over £ of dimension 1.

Proposition 2.1. Endy. (M), the R-algebra of the endomorphisms of the k-differ-
ential module M., is equal to H.

Proof. Every k-linear map L : M — M has uniquely the form L(v) = vag+iva; +
Jjras + kvaz with agp. .. .. ay € F. A calculation shows that
(OL — L) (v) = v(ag + [ag.d)) +iv(ay + [ar.d]) + jolah + [az.d]) + ko(al + as. d]).
Hence L € Endy (M) if and only if ai + faj.d] =0 for i =0..... 3. Therefore. the
proposition follows from the statement:

The only solutions a € F of ' + [a.d] =0 are a € R.

The proof of this statement is as follows. Write a = > a,2" with all ¢, € H.
Then. o' + [a.d] = 0 translates into

> (nan + lan. ] + laysr. j)a" = 0,
For n > 0and t =1ty +ti +toj + tsh € H one has

nt+ [ti] = ntg 4+ ntyi 4+ (nta + 2t3)j + (nty — 2t2)k.

It follows that ||nt + [t, ]| = n]|t]].

For s = sg+s1i4s2j+s3k € Hone has [s.j] = 25,k —2s3i and thus ||[s. j]]| < 2|/s]].
One concludes that for n > 0 one has |[a, || = %Hu,,,H. If some a,, # 0 with m > 0,
then a,, # 0 for all n = m. Moreover, for a suitable constant €' > 0 one has
lanll = C27"n! for all n > m. This contradicts the assunption that the Laurent
series a is convergent. The conclusion is that a,, = 0 for all n > 1.

0-ag+ |ap. ] +[ar. j] = 0 implies that ay € R+ Ri. After subtracting from a a real
number, one has ap € Ri. In the sequel we will write * for a non-zero real number.
Suppose that ay = */. Then —a_y + [a—1.i] + [ag. j] = 0 implies that a_; = *j + k.
The equation —2a_y + [a—z, i] + [a—1, j] = 0 implies a_y = *i. By induction, one finds
that a o, =%l and a_»,,—1 = *j + *k. This contradicts the fact that a is a Laurent
series. One concludes that ag = 0. O
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194 M. VAN DER PUT

In the proof of the following corollary we will use some ideas and results of [H-P].
For any differential fields £ C K, one says that a differential module M over K
descends to k, if there exists a differential module N over k such that A = K« N.
Suppose that K/k is a Galois extension with group G. For a differential module Af
over i and for o € G, one defines the twisted differential module 7AM by:

M is equal to M as an additive group.
For f € K and m € “AM one puts fimn = o '(f)m.

- The 0 on A coincides with d on Af.

If M descends to k, then clearly 2M = M for all ¢ € ;. The descent problem of
[H-P] asks whether the converse is true. In general. there is an obstruction given by
the class of a 2-cocycle.

Corollary 2.2. We keep the above notations.

(a) M = Fe is an irreducible differential module over k.

(b) Let o denote the non-trivial element of the Galois group of K/k. Then the
twisted differential module M over K is isomorphic to M.

(¢) The K-differential module M does not descend to k.

(d) Let k= R((x)) and K = C((x)). The ]:'-(l'zljj"ff'r(i'n,t'llal module K M descends
to k.

Proof

(a) Suppose that A is reducible as a K-differential module. Let N C A be a
I-dimensional K-submodule. Then jN is also a 1-dimensional K-submodule and
M = N + jN. In particular. Al is semi-simple as A -differential module. If A is
irreducible as K -differential module, then M is semi-simple. too. According to [H-P].
proposition 2.7, M is also semi-simple as k-differential module. Since Endy. (M) is
a skew field, one has that A/ is irreducible as A-differential module.

(b) The map ®(o) : M — M, given by fe — jfe,is a o-lincar bijection commuting
with 0. This proves the statement.

(¢) Since ®(a)®(a) = —1. the 2-cocycle class in H?({1,0}, C*), associated to M,
is not trivial. It follows from [H-P], thecorem 2.8, that the K-differential module Af
does not descend to k.

(d) Put M=K i M. The twisted K-module 77 is isomorphic to M. According
to [H-P], theorem 2.4, M descends to k. d

Explicit calculations. — The element e of the K-differential module M = Fe is a
cyclic vector. The minimal monic operator Ly € K[9] with Lye = 0 can be caleulated
to be

o+ (L +a i)
Here, we prefer to write 6 = xd/dx instead of 0, since the latter may be confusing.
Note that dx = 20 + x. The corollary translates into the following:
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SKEW DIFFERENTIAL FIELDS, DIFFERENTIAL AND DIFFERENCE EQUATIONS 195

Lo is equivalent to its conjugate o(Ly) = 62 + 6 4 (1 + .72 +4). In fact, one has
o(Lo)a(d —i) = (6 —i—2)Ly.

Furthermore, Ly is not equivalent over K to an operator in k[0].
Finally, L is over K, equivalent to the operator 6 + 6 + a2 in k[d].

Now. we apply the methods of [M-R] (see also [P-S2]) in order to obtain the
formal classification. the formal differential Galois group Giopmal. the monodromy
group and the differential Galois group G of the 2-dimensional differential module M
over K = C({x}).

(i) M= K @ M has a basis ey, ¢y such that de; = qje; for j = 1.2 and with
¢ =da ', go = —ix ', Thisis the formal classification. One observes that o(q;) = ¢o.
This implies what we know alrecady, namely that M descends to k = R((x)).

(ii)ATh(‘ formal differential Galois group. i.e.. the differential Galois group of M

over A, is the group
20 *\ A
(:f'()r11|;1| = {(E) ol ) 1 ceC } = G,,,,

The formal monodromy is the identity.
(iii) The topological monodromy group of §% + 4+ (14272 —i) can be calculated at
the point ~c. The local exponents are —i, i — 1 and the eigenvalues of the topological

2m 2w

monodromy are ¢

(iv) The differential Galois group G is contained in SLy, since the second exterior
power of M corresponds to the equation § — 1. Since Al is irreducible. the group G
is an irreducible subgroup of SLs. According to [M-R], the group G is generated,
as an algebraic group, by Giommar and the Stokes matrices. There are two singular
directions +7/2 and two Stokes matrices () ¢) and (} ). Since G is irreducible both
Stokes matrices are different from 1. One concludes that G = SLo.

(v) The two Stokes matrices correspond to the singular directions for ¢; — g2 and
q2 — q1. From these one sces that the formal solutions involve Gevrey-1 functions.
This is explicitly seen in the calculation of proposition 2.1, where the factor n! occurs
as measure for the divergence.

(vi) According to [M-R] and [P-S2]. the product of the two Stokes matrices is
conjugated to the topological monodromy. In particular, 2 + ab = €27 + ¢~ 27 This
confirms again that a # 0 # b.

Morecover, one can convince oneself that the Stokes matrices of the twisted differ-

ential module M are ((1) —15) and (J; (,’) (where @,b are the complex conjugates of
a.b). The statement “A = A is equivalent to b = —a.

(vii) We have shown that the above condition b = —@ on the Stokes matrices does
not imply that A descends to R({x}). The ‘explanation’ is rather deep. We will use

differential modules. Let the differential module N over K be given by the matrix
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196 M. VAN DER PUT

equation

. 0 —a ! d
0+ <;r‘1 0 > with § = 1;1—1

Babbitt and Varadarajan have considered the moduli set BV consisting of equiva-
lence classes of pairs (M. ¢) consisting of a differential module Al over K and an
isomorphism ¢ : K © M — i e N. This moduli set has the structure of an
algebraic variety over C. In this special case BV = Aé. This is a coarse moduli
space. An element (a.b) € BV corresponds to the two Stokes matrices (¢ ). (V)
that multisummation associates with (M, ¢).

There is also a fine moduli space M, again = Aé. with a universal family on it,
namely

- (v 7.1.71 +/); .
0+ <<l'l L4 B ) with ((Lﬂ) c M(C)

(¥

M has an obvious natural structure over R.. In this special case, the analytic morphism
St : M — BV is explicitly known. namely

sin /1
7
Take € € M(C). Suppose that £ is isomorphic to €. Is there a 1y € M(R) with &
equivalent to 1?7 This question translates into: Suppose that St(€) = St(€). Is there
an 1 € St~ 1(St(€)) with 7 € M(R). One sees that the answer is negative in general.
(viil) The element e is also a cyclic element for Af considered as differential module
over k. The minimal monic operator Ly € k[0] with Lye = 0 is calculated to be:

St(a.8) =if(a* +3*) - (a +if.a—i3). where f(t) =2

Ly=0"+284+ (342070 + (2 —20 )6+ (2+4a 2 +a ).

Clearly, Lo is an irreducible right hand factor of Ly in the operator ring K[d]. Also
o(Ly) is an irreducible right hand factor of L. Since Ly and o(Ly) commute, one
has in fact Ly = o(La)Lo. By the above, Ly is irreducible in k[d]. However L, has a
right hand factor in k[d)].

Remarks. The above example can be largely extended as follows. Let F' be the
skew differential field considered above. On the left vector space M = F® over F
one considers a structure d of F-differential module given by d(v) = v’ + vD, where
o= (v, va) = (0] v/ ) and where D € Matr(a. F'). As in [H-P], proposition
2.14, for a suitable choice of D. one has:

(a) Endg (M) = C.

(b) The twist M s isomorphic to the K -differential module M.

(c) Endyo)(M) = H and M is an irreducible k-differential module.

(d) The K-differential module M does not descend to k.

(e)

) The I - differential module Ko x M descends to k.
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SKEW DIFFERENTIAL FIELDS. DIFFERENTIAL AND DIFFERENCE EQUATIONS 197

Other skew fields over k = R({x}). — It is known that K = C({x}) is a C';-field.
It follows that the Brauer group of K is trivial. As a consequence, K is a splitting field
for any skew field F, of finite dimension over its center k. Thus the Brauer group of &
is equal to the cohomology group H?({1.0}, K*). The map C* x Z x +C{ur} — K*,
given by (c.n, f) — ca” exp(f) is an isomorphism of {1.c}-modules. One calculates
that H2({1.0}.C*) and H?*({l.0}.Z) are both isomorphic to Z/2Z. The {1.0}-
module #C{r} is an induced module and its 2 is 0. Thercfore the Brauer group
of k is isomorphic to Z/2Z x Z/2Z. The three non-zero elements of this Brauer group
correspond to the three distinet skew fields of finite dimension over their center k.
One can give them explicitly as follows.

A quaternion algebra with center & is given by a basis bg. by. by. b3 over k and rules

of multiplication: by = 1; /)f = A; € kfori=1,2,3: 01by = —byb; = by and thus
AlAy = —Aj.

For suitable choices of 4. A one obtains the three skew fields mentioned above,
namely:

(1) Ay = —1, Ay = —1. This is the skew field H ¢og A that we have used.

(2) Al =-1. /12 = &x.
(3) Ay =1, Ay = —u.
The cases (2) and (3) lead to other examples of differential equations over & having

interesting descent properties.

Another family of examples. — F denotes the quaternion field over & = R({x})
with basis bg, ..., b3 and multiplication given by by = 1, b1y, = —byb; = b3 and
b = —1, b3 = r. The differentiation ” on F. extending wd/dr on k. is defined by

by =0y =0and by = 1/2-05. 0, = 1/2-by. The field K = C({x}) is seen as a subficld
of F' by the identification of i with by.

One considers the differential module A = Fe over F. defined by de = de. Later on
we will choose d = by + a7 'by. Now M is a differential module over K of dimension 2.
with basis ¢, boe. The twisted module A7 is isomorphic to M@ L, where L = K with
Jr = 1/2-r. Indeed. the o-lincar bijection A(o) : M — M. defined by A(o)m = bym.
Lias the property QA(o) = A(e)(0+1/2). The second symmetric power N := Symf\— M
is a differential module of dimension 3 with basis ¢ & ¢, bae ¢ e, bye ¢ bye. The o-lincar
bijection B : N — N. with formula B(o)m, ¢ my = 7 oy 0 bamny commutes
with . Further B(o)B(o) is the identity on N. Put N° = {n € N | B(o)n = n}.
Then one calculates that N is a vector space over k with basis

. ~1 - 0 . - . .
n{=coe+a by @ bye, nY =bie e — b hye ¢ by, ng = boe @ e.

~

Clearly N? is a differential module over k& and A @y, N° = N. In other words.
N descends to k. For the choice d = by + 27 by, the minimal monic operator Ls with
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198 M. VAN DER PUT

Lsng = 0 can be calculated:
Ly=0"—1/2-0 + (4 —de o+ 40 —2.

Here one has written d instead of d in order to emphasize that § is the operator x:d/dx.
The main interesting propertics of the 3-dimensional differential module N over k
are:

Proposition 2.3 (Properties of A/ and N°)

(i) N is not the second symmetric power of a differential module over k.

(ii) For a finite field extension L Dk, which is a splitting ficld of F. the module
L ¢ N? is a second symmetric power. This holds in particular for L = K and
L = k(7).

(i) k ¢k N? is a second sz/nl/nffl/( power.

(iv) M=K @ M descends to k.

Again with d = by + 27 'hy. one computes that the monic minimal operator Lo for
the cyclic element e of A (over the differential field K7):

Lo =062 4+1/2-0 —o 41 —i/2.

In this formula we have again written ¢ := wd/dr. in order to emphasize that the
differentiation on K is given by [+ wdf/dr. By construction Ly is equivalent, but
not equal (!). to the sccond symmetric power of Ly.

(i) states that Ly is not cquivalent over A to the second symmetric power of an
operator in k[0].

(ii) states that Ly is equivalent to a second symmetric power in L[6] if L Dk is a
splitting field for F'.

(iii) states that Ly is equivalent over F to the second symmetric power of an element
in k[0].

(iv) states that Ly is equivalent over I to an operator in k[0].

Proof. For the proof of (i) and (ii). we use methods of [M-R] and [P-S2]. In
particular we determine the formal differential Galois group Gyommal, the topological
monodromy group, the differential Galois G, et cetera of 112.

(a) G and Giopmal are contained in {A € GLy | det(A)* = 1}. (because of the term
1/2-0 in Ly).

(b) The cigenvalues of the operator Ly are 40~ /2. (follows from a computation
with the Riccati equation o/ + u? + 1/2-u+ (—a7' 4+ 1 - i/2 =0).

(¢) Grormar is the dihedral group generated by {(’ ) | ¢ € C*} and ( L)

0 ¢
172

(follows fromn the explicit f(n m 1\( exp(207172)) of the Picard-Vessiot field).

(d) G ={A € GLy | det(A)? = 1}.
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SKEW DIFFERENTIAL FIELDS. DIFFERENTIAL AND DIFFERENCE EQUATIONS 199

(The topological monodromy can be calculated at oo. The formal monodromy is easy
to calculate. The product of the formal monodromy and the Stokes matrices is con-
jugated to the topological monodromy. Hence there are non-trivial Stokes matrices.
Finally G, as algebraic group, is gencrated by Giopa and the Stokes matrices. Thus
G is the above group).

The test for a differential module Z of dimension 3 to be a second symmetric
power, is the existence of a l-dimensional submodule of Sym? Z. which corresponds
to non-singular quadratic form having a rational point over the differential field. We
refer to [H-P] for a proof of this and for the statement that the only candidate in
case N is the quadratic form corresponding to F. Here one uses that sym’y M has
no I-dimensional submodules, which is a consequence of the above calculation of G.
Now (i) and (ii) follow.

Let F denote the quaternion field over k. given by the same formulas as . Then
M=K S M = Fe is a differential module over F with the same formula de =
(b1 + 2~ "by)e. We will show that there exists an clement / =ue. withu e F. u £ 0.
such that df = 2~ 'byf. Assuming this, one considers M dg,dm as a K -differential
module with (')'('11(* vector f. The mimimal monic operator L2 er [0] with sz =0
is casily calculated, namely

Ly=0241/2-6 0
This proves (iv). Part (iii) follows at once from (iv), since Lz is equivalent over E to
the second symmetric power of Ly.

The clement v € F' that we are looking for must be a non-zero solution of the
equation d(ue) = & 'byue. This translates into

u' + [u, 0 by + uby = 0.

Consider the operator L : 7 — F. given by L(u) := o/ +[u, 7 ba] +uby. One observes
that:

L(1) = b, Lbia) = 2by + (b — D
Liby) = 1/2-by + by L(bs) = 1/2 by + 20 — by
and for n > 1 one has the formulas
L(x") = (n+by)a" L(bya" ™) = 2bga™ + ((n + 1)by — 1)a" ™!
L(bya™) = ((n+1/2)by + bz)a” Lbsa™) = ((n + 1/2)bs + 20y — by)a"

Let wp be a non-trivial R-lincar combination of 1. by, by, bs such that L(ug) lies in

~—

R/[[x]]-module W spanned by a1, xby, xbo, 2bs. Let V be the R[[x]]-module spanned by
v, 2?by. xby, wbsy. The formulas show that L : V — W is bijective. Let u; € V satisfy
L(uy) = —L(up). Then w = up + uy is a non-zero element of £ and L(u) = 0. 0

The method of proposition 2.3 extends and produces a large class of differential
equations over k. having interesting descent properties.
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200 M. VAN DER PUT

3. Descent for ¢-difference equations

In this section we compare g¢-difference equations over the fields R({x}) and
C({x}). For this purpose one supposes that ¢ € R and 0 < |¢| < 1. Let o denote
the complex conjugation of C and its natural extension to an automorphism of
C({x}) over R({w}). The automorphismm ¢ on both fields C({x}) and R({x}) is
defined by or = qr. A g-difference module A = (M. ®) over R({x}) or C({x}) is a
finite dimensional vector space over that field together with a bijective additive map
® M — M satisfying ®(fm) = o(f)P(m) for m € M and f in the field. For a
g-difference module M over C({u}) one defines the twist “M = (70, 7®) as follows:

(1) M is equal to M as additive group. 7@ is equal to ¢ and

(ii) 7M has a new structure as C({a})-vector space given by the formula f m =

a(fym.

Theorem 3.1 (Descent for ¢-difference modules). - Let g-difference module M over
C({r}) satisfy °M = M. There cxists a q-difference module N over R({a}) such
that M = C @r N.

Proof. — We sketch here the proof which is based on the work of J.-P. Ramis and
J. Sauloy ([D-R-S-Z] and a preprint in preparation) concerning moduli spaces for
convergent g-difference equations (i.e.. g-difference modules over C({x})).

We consider first the case of a regular singular ¢-difference module M over C({x}).
The classification of regular singular modules can be formulated as follows. There is
a unique C-vector space W C A with the following properties:

(a) the natural map C({x}) wc W — Al is a bijection.

(h) ®(W) = W and all cigenvalues A of the restriction ¢ of @ to W satisfy |¢| <
A < L.

We write W(AM) and (M) for the W and ¢ above. A morphism f : M — N
between regular singular modules induces a linear map ;T W(M) — W(N) satisfying
fo (M) = ¢(N)o /~ One obtains in this way a C-linear bijection (with obvious
notations):

Hom(M, N) — How ((W(A). (M) (W(N). ¢(N))).

The pair (W, ) associated to M is cqual to (TW (M), ¢ (A)), where W (M) is
the twist of W(Al). More precisely. W (Al) coincides with W(Al) as an additive
group. The new scalar multiplication on W (M) is given by a % w = aw (with a € C,
w € W(M) and @ the complex conjugate of ). If A7 = Al. then there exists
an additive bijective A : W(M) — W(AM), commuting with »(Al) and such that
Alaw) = aA(w) for all « € C and w € W(M). It is not dificult to verify that there
exists a real vector space V' together with an R-linear automorphism 7 such that
Cor (V.7) = (W(M).)(M)). Morcover N := R({«}) @r (V.7), with its obvious

~

structure of a g-difference module over R({r}). satisties C =g N = M.
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One associates. in a canonical way, to a general ¢-difference module M a Newton
polygon and a decreasing slope filtration {A/Z#} of M by submodules. Each non zero
quotient AIZH/A=H is a pure g-difference module. The latter means that the Newton
polygon of this quotient has only one slope, namely p.

A pure g-difference module such that its slope is an integer has the form N & E(n)
with N a regular singular module and E(n) = C({x})e with ®e = x"¢ (for a suitable
integer n).

In the case of non-integer slopes p one has to make a few modifications to describe
the pure difference modules with slope p. Let d > 1 denote the denominator of .
First of all. one extends o to an antomorphism of C({a'/4}) by o(a!/4) = ¢!/d /4
for a suitable choice of ¢'/7. A coherent choice can be made as follows. Choose an
clement 7 in the upper half plane with 27 = ¢. Then ¢'/¢ := ¢?77/4_ One defines
the module F(;0)* := C({"/*})e over C({x'/1}) by ®e = af'e. Let E(y) denote
E(p)", considered as a ¢-difference module of dimension d over the field C({x}). One

Ld  Norcover, one can show

can show that F(u) does not depend on the choice of ¢
that any pure ¢g-difference module with slope p has uniquely the form F(p) @ N where
N is a regular singular module.

Oue associates to A the graded module gr(A) = e]A,1]\1>“/]\[>/’. This is a direct
sum of pure modules. If one works over the field of formal Laurent series, i.e.. the field
C((x)). then A is isomorphic to gr(Al). In the convergent situation one can only say
that M is a multiple extension of the pure modules ocurring in gr(M) (and taken in
the correct order). The equivalence classes of the multiple extension are the C-valued
points of a finite dimensional moduli variety over C, which we will call Ext(gr(M)).
In fact, Ext(gr(M)) is an affine space over C. In the simplest situation. one considers
extensions of two pure modules AL Ay, Then Ext(gr(M)) is just Ext' (A, AL)
(where M. My are interpreted as left modules over C({a})[®. ®~1]). This is a vector
space of finite dimension over C. In short. the g-difference module Al corresponds to
a pair (gr(M), &) with € a (closed) point of Ext(gr(M)).

Now we return to the proof of the theorem. Let M be given and suppose that
M = M. This isomorphism is provided by an additive bijective map A : M — M,
which commutes with ® and is semi-linear, i.e.. A(fm) = o(f)A(m) for all m € M
and f € C({x}). The map A preserves the canonical filtration and induces a semi-
linear bijection gr(A) : gr(AM) — gr(M). commuting with ®. Each E(y), as defined
above, is obviously of the form C @wgr Er(i), where Er(p) is a g-difference module
over R({.r}). Using the above results for regular singular ¢-difference modules one
concludes that gr(A7) is equal to Cog gr(M)gr, where gr(M)g is a direct sum of pure
modules over R({«x}). The moduli variety Ext(gr(M)) is the complexification of a
real affine variety Ext(gr(A/)r). The closed point € of Ext(gr(A/)) is invariant under
complex conjugation and comes therefore from a real point 7 of Ext(gr(M)r). The ¢-
difference module N over R({xr}). given by the pair (gr(A)r.n), has by construction
the property C g N = M. |
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Remarks 3.2

(1) Descent of g-difference modules over the field C(z) (again with ¢ € R and
0 < |q| < 1) does not hold. Indeed, one introduces the skew difference field F =
H ©gr R(x) provided with the operator ¢ given by ¢(x) = gx and ¢ is the identity
on H. One considers the one dimensional skew ¢-difference module Fe given by
®(e) = (i + ja)e. Let N = Fe, viewed as a 4-dimensional ¢-difference module over
R(xr). The essential step is to verify that Endg,)e.e 1)(N) = H. Assuming this,
one defines M = Fe, viewed as a ¢-difference module over C(x) of dimension 2.
A variation on the proof of corollary 2.2 will show that M is irreducible, “M = M
and M does not descend to R(x). The element ¢ is a cyclic vector for A, The scalar
q-difference equation corresponding to ¢ can be calculated to be

y(*x) +i(q — Dylgr) + (1 + ¢*x® + ¢ — 1)y(r) = 0 with ¢ € R.0 < |g| < 1.

This equation is irreducible and equivalent to its complex conjugate. However, the
cquation is not equivalent to an cquation over R(xx).

For the verification of Endg a0 1)(N) = H. one takes an R(x)-lincar map
L : N — N. which has the form L(v) = vag +ivay + jeas + kvas (where v € Fe = F
and ag, . ..,a3 € F). The cquation L = L& implies that cach a; satisfies the equation
o(a)(i+ju) = (i+ jr)a. The real vector space V' i= {a € F|o(a)(i+ jx) = (i + ja)a}
has dimension < 4, since it is the set of solutions of a 4-dimensional g-difference
equation. Moreover, V' is a subalgebra of F'. Take a non zero a € V and let P € Rlx]
be the monic polynomial of minimal degree such that P-a € H® R[z]. The equality
¢(a)d = da implies that (14+22)o(P)-a € HR[r]. A small computation shows that
P must be a power of x. Therefore a € H = Rle. '], Write a = Zgzs a;r’ with
s.t € 4, s <t and all a; € H. Observing that all powers of a lic in V' and that V'
is finite dimensional, one concludes that @ € H. Now a commutes with (i + jr) and
this leads to @ € R. The conclusion is that L € H, as required.

(2) The reason for the rather striking difference between theorem 3.1 and the ex-
amples in section 2 lies in the structure of the moduli space. In the first case, this
moduli space has (in the situation that we are interested in) a natural real structure.
In the second case, the moduli space is a coarse one.

4. Descent for ordinary difference equations
We consider the difference fields F({x=1}) and F((x~')), where F is either R
or C and with the automorphism ¢ given by ¢(x) = @ + 1. Let Al be a difference
module over C({a~'}) such that its twist “A/. where o is the complex conjugation
extended to C({a~'}) in the obvious way. is isomorphic to M. The descent problem
is to determine whether M is isomorphic to C «r N for some difference module over

R({r1}).
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The meromorphic classification of ordinary difference modules is rather compli-
cated. We will restrict oursclves to the class of the regular difference modules. We
recall from [P-S1] some definitions and results. A difference module Al = (M. P)
is called regular singular if there is a C{ua™}-lattice A € M that is invariant under
® and morcover @ is the identity on A/a='A. Equivalently. A is represented by a
matrix difference equation y(r+ 1) = Ay(x) with A a convergent matrix of the form
L4+ Asr=2 4+ -+ Furthermore, M is regular if and only if C((r ")) @0 M is a trivial
difference module over C((e")). The class of all regular difference modules forms a

Tannakian category.

Theorem 4.1. Descent does not hold for the category of the reqular difference mod-
ules over C({w -1 1.

For the construction of an example showing that descent does not hold, we replace
the category of the regular difference modules by an equivalent Tannakian category.
An object of this Tannakian category is a triple (V. 1 pper- Tiower) where:

(a) V' is a complex vector space of finite dimension,

(b) Tupper = Tupper(u) is a C{u}-lincar automorphism of C{u} «c V' such that
Tipper(0) = 1 and.

(¢) Tiower = Tower (v 1) is a C{u~ -lincar automorphism of C{u '} ¢ V such
that Tiower(0) = 1.

We note that the svmbol « stands for ¢2™

A morphism fo (V. Toppers Tiower) — (VT o Tioge) 15 @ lincar map f 0V — V7
satistving f o Thypper = Tl’lm)‘,], o fand foTower =T} yop 0 f-

There is a sunmation method for regular difference modules. The right summation
Fligne and the left summation Fiope of a formal fundamental matrix F for M are
comparced by considering Fl_'mlll1 Flepe. This matrix exists on an upper half plane and on
a lower half plane and vields convergent matrices in the variables « and v~ Thesc
two matrices arc the T e and Tigwer above. The term Voof the triple is the formal
solution space of M (or of the matrix equation y(a 4+ 1) = Ay(x)). This describes the
functor AL — (V. T per- Tiower) from the category of the regular difference equations
to the category of the triples. In subscections 8.5 and 10.1 of [P-S1] details and explicit
calculations are given.

For a vector space V' over C. we write (as before) 7V for the twisted vector space.
This means that °V = V as additive group and the new scalar multiplication * on
“V is given by A x 0 = a(A)e (with A € C. o(A) = X = the complex conjugate of A
and v € V). A linear map F': V. — W can also be considered as a map 7V — W,
This map is again lincar and will be denoted by 7F. A linear map A : V), — V)
can also be considered as a semi-linear map A : Vi — V5, d.e., A is additive and
A(Av) = Mo for A € C and ¢ € Vi. A real structure for a complex vector space V is
a real subspace 17 C V osuch that the natural map C &g W — V' is an isomorphism.
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Suppose that a real structure for V' is given. Then one defines complex conjugation
on V by wy + 1wy = wy — 1wy for all wy,wy € W. Let F' @V — V be a lincar map
and suppose that a real structure for V is given. Then one defines a linear map F.
called the complex conjugate of F. by the formula F'(w) = m for all w e W.

Let A correspond to the triple (V. Typper(u). Tiower (™ 1)), Using the explicit for-
mulation of subsection 10.1 of [P-S1], one can see that the triple corresponding to
M is

(O-V- nTvlowvr(“’)a 0711[)])(‘1'(“'A : ))
We will write Tyypper = 1 + 2“21 Toppernt™ and Tower = 1+ Z,@l Tower.ntt ™"

Suppose that M descends to R({z71}) and so M = Cor N for some regular differ-
ence module N over R({x'}). Then the solution space V has a natural real structure,
namely V. = C @r W, where W is the real vector space ker(® — 1. R((x ")) @ N).
For this real structure one has that Typern = Tlower.n, for all n = 1. Equivalently. for
each n > 1, the maps Typpern + Dower.n and iTypper, — iTower.n ave real (d.e., they
are invariant under conjugation).

On the other hand let be given a triple (V. Typper- Tiower) together with a real
structure for V' such that Ti,pern + Tiower.n and Ty pern — i Tiower.n are real for all
n > 1, then the corresponding regular difference module A descends to R({x~1}).

By the above considerations. theorem 4.1 will be proven if we can produce an
example of a triple (V, Tupper. Tiower) and an isomorphism

A (O—vv (TTlowor(“')- Ujjuppm‘(uil )) B (V r]wuppor(“f)a 7—‘10\\/01'(“7] ))

such that V' does not have a real structure for which all maps Ty,per + Tiower, and
Tipper.n — tDower.n are real.

We prefer to see the map A as a semi-lincar isomorphism satisfying AT, per.
TiowernA and ATiower,n = TuppernA for all n > 1. Since Ai = —iA. the lat-
ter conditions can also be formulated as A commutes with T\ ppern + Dower.n and
iTypper.n — {Tower,n for all n > 1. The example is now constructed as follows:

H denotes the skew field of the Hamilton quaternions over R. Let V. = He be
a 1-dimensional left vector space over H. In particular. V' is a 2-dimensional vector
space over C. The semi-lincar map A : V- — V is given by A(he) = jhe. Consider two
sequences {A,}us1 and {B,},>1 of H-linear maps from V' to itself, with bounded
norms. Define the C-lincar maps Tupper.n- Tower,n by the formulas A, = Tuppern +
Tower.n and B, = iTypper.n — i Tiowern - Put Typper = I+Z”>I Tuppernt” and Tiower =
1+ Z”% Tower.ntt~"". Then A is an isomorphism

(”‘/. Ur[i()\&'(‘l*(ll)- (T]jn[)])vr(“m : )) I (‘/ Tnppvr(“)~ ,T]uwvr(”» : ))

Suppose that W C V is a real structure such that all A,,, B,, are real. We may suppose
that W contains ¢. Then W contains R[S]e for S = A,, and S = B,,. We note that
R[S] is a commutative subfield of H. We may have chosen the A, 3, such that the
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fields R[S] with § = A, or S = B,, are distinct maximal commutative subfields of H.
We conclude that W does not exist.

From the construction of this example for theorem 4.1 one can guess the explicit
form of the difference module. Let F:= H &g R({x~'}) denote the skew difference
ficld with ¢-action defined by ¢(x) = @ + 1. The left vector space Fe is made into
a skew difference module by ®e = de for a suitable d € F. One takes a d of the
form d = 1 + dow™2 + dya™> + ---. Then M := Fe, viewed as a difference module
over C({x~'}) of dimension 2. is regular and moreover "M = M. We follow the
method explained in Remarks 3.2 part (1). In order to show that M does not descend
to R({x '}). one has to consider N := Fe as a difference module over R({x1})
of dimension 4. The essential step is to show that the R-algebra of endomorphism
of the difference module N is equal to H. This amounts to showing that the only
solutions a € F of the equation ¢(a)d = da are the a« € R. We note that there are
more solutions in H g R((a~")). For a specific example, say d = 1+ ix ™2 + ja =3,
one has to verify that the only convergent solutions a of ¢(a)d = da arc the a € R.
[t scems rather difficult to prove this by direct computation.
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