# Alcides Lins Neto <br> <br> Curvature of pencils of foliations 

 <br> <br> Curvature of pencils of foliations}

Astérisque, tome 296 (2004), p. 167-190<br>[http://www.numdam.org/item?id=AST_2004__296__167_0](http://www.numdam.org/item?id=AST_2004__296__167_0)

© Société mathématique de France, 2004, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

## $\mathcal{N u m d a m}^{\prime}$

Article numérisé dans le cadre du programme

# CURVATURE OF PENCILS OF FOLIATIONS 

by

Alcides Lins Neto

Dedicated to J.-P. Ramis in his $60^{\text {th }}$ birthday


#### Abstract

Let $\mathcal{F}$ and $\mathcal{G}$ be two distinct singular holomorphic foliations on a compact complex surface $M$, in the same class, that is $N_{\mathcal{F}}=N_{\mathcal{G}}$. In this case, we can define the pencil $\mathcal{P}=\mathcal{P}(\mathcal{F}, \mathcal{G})$ of foliations generated by $\mathcal{F}$ and $\mathcal{G}$. We can associate to a pencil $\mathcal{P}$ a meromorphic 2 -form $\Theta=\Theta(\mathcal{P})$, the form of curvature of the pencil, which is in fact the Chern curvature ( $c f .[\mathbf{C h}]$ ). When $\Theta(\mathcal{P}) \equiv 0$ we will say that the pencil is flat. In this paper we give some sufficient conditions for a pencil to be flat. (Theorem 2). We will see also how the flatness reflects in the pseudo-group of holonomy of the foliations of $\mathcal{P}$. In particular, we will study the set $\{\mathcal{H} \in \mathcal{P} \mid \mathcal{H}$ has a first integral $\}$ in some cases (Theorem 1).


Résumé (Courbure de pinceaux de feuilletages). - Nous nous intéressons an pinceau de feuilletages $\mathcal{P}=\mathcal{P}(\mathcal{F}, \mathcal{G})$ engendré par deux feuilletages $\mathcal{F}$ et $\mathcal{G}$ holomorphes singuliers distincts sur une surface complexe compacte $M$ et appartenant à la même classe, i.e., $N_{\mathcal{F}}=N_{\mathcal{G}}$. La forme de courbure du pinceau $\mathcal{P}$ est une 2-forme $\Theta=\Theta(\mathcal{P})$ qui coïncide avec la courbure de Chern (cf. [Ch]); lorsque $\Theta(\mathcal{P}) \equiv 0$ on dit que le pinceau est plat. Dans cet article, nous donnons des conditions suffisantes de platitude d’un pincean (Théorème 2). Nous regardons comment se traduit la platitude dans le pseudo-groupe d'holonomie des feulletages de $\mathcal{P}$ et, en particulier, nous étudions dans certains cas l'ensemble $\{\mathcal{H} \in \mathcal{P} \mid \mathcal{H}$ admet une intégrale première $\}$ (Théorème 1).

## 1. Introduction

Let $\mathcal{F}$ and $\mathcal{G}$ be two distinct singular holomorphic foliations on a compact complex surface $M$, with isolated singularities, in the same class, that is $N_{\mathcal{F}}=N_{\mathcal{G}}$. This means that there exists a Leray covering $\left(U_{\alpha}\right)_{\alpha \in A}$ of $M$ by open sets, and collections $\left(\omega_{\alpha}\right)_{\alpha \in A},\left(\eta_{\alpha}\right)_{\alpha \in A}$ and $\left(g_{\alpha \beta}\right)_{U_{\alpha \beta \beta} \neq \varnothing}, U_{\alpha \beta}=U_{\alpha} \cap U_{\beta}$, such that

2000 Mathematics Subject Classification. - Primary 37F75; Secondary 32S65. Key words and phrases. - Holomorphic foliations, curvature, flat pencils.

This research was partially supported by Pronex.
(I) $\omega_{\alpha}$ and $\eta_{\alpha}$ are holomorphic 1-forms on $U_{\alpha}$ which represent the foliations $\mathcal{F}$ and $\mathcal{G}$, respectively. This means that $\left.\mathcal{F}\right|_{U_{n}}$ and $\left.\mathcal{G}\right|_{U_{n}}$ are defined by the differential equations $\omega_{\alpha}=0$ and $\eta_{\alpha}=0$, respectively. Since the singularities of $\mathcal{F}$ and $\mathcal{G}$ are isolated, we have $\operatorname{cod}_{\mathbb{C}}\left(\omega_{\alpha}=0\right) \geqslant 2$ and $\operatorname{cod}_{己}\left(\eta_{\alpha}=0\right) \geqslant 2$ for every $\alpha \in A$.
(II) If $U_{\alpha \beta} \neq \varnothing$ then $g_{\alpha \beta} \in \mathcal{O}^{*}\left(U_{\alpha \beta}\right) \cdot \omega_{\alpha}=g_{\alpha \cdot 3} \cdot \omega_{\beta}$ and $\eta_{\alpha}=g_{\alpha \beta} \cdot \eta_{\beta}$ on $U_{\alpha \beta}$.

The class of the multiplicative cocycle $\left(g_{\alpha, 3}\right)_{U_{n, 3} \neq \varnothing}$ in $\operatorname{Pic}(M)$ defines $N_{\mathcal{F}}$ and $N_{\mathcal{G}}$, so that $N_{\mathcal{F}}=N_{\mathcal{G}}$. The pencil generated by $\mathcal{F}$ and $\mathcal{G}$ is the family $\mathcal{P}=\left(\mathcal{F}_{T}\right)_{T \in \overline{\mathbb{C}}}$, where
(III) $\mathcal{F}_{\infty}=\mathcal{G}$ and if $T \in \mathbb{C}$, then $\mathcal{F}_{T}$ is represented on $U_{\alpha}$ by the form $\omega_{\alpha}^{T}:=$ $\omega_{\alpha}+T \cdot \eta_{\alpha}$.

The singular set of $\mathcal{F}_{T}$ is defined by $\operatorname{sing}\left(\mathcal{F}_{T}\right) \cap U_{\alpha}=\left\{\omega_{\alpha}^{T}=0\right\}$. The tangency divisor of $\mathcal{F}$ and $\mathcal{G}$ is defined by $\operatorname{Tang}(\mathcal{F} . \mathcal{G}) \cap U_{n}=\left\{\omega_{\alpha} \wedge \eta_{o}=0\right\}$. Note that $\operatorname{sing}\left(\mathcal{F}_{T}\right)$ and $\operatorname{Tang}(\mathcal{F}, \mathcal{G})$ are analytic subsets of $M$ and that $\operatorname{sing}\left(\mathcal{F}_{T}\right) \subset|\operatorname{Tang}(\mathcal{F}, \mathcal{G})|$ for all $T \in \overline{\mathbb{C}}$. Since $\mathcal{F} \neq \mathcal{G},|\operatorname{Tang}(\mathcal{F}, \mathcal{G})|$ is a proper analytic subset of pure dimension one. Let $W=M \backslash|\operatorname{Tang}(\mathcal{F}, \mathcal{G})|$ and $W_{\alpha}=W \cap U_{\alpha}$. Since $\omega_{\alpha} \wedge \eta_{\alpha}(p) \neq 0$ for all $p \in W_{\alpha}$, there exists an unique holomorphic 1 -form $\theta_{\alpha}$ on $W_{\alpha}$ such that

$$
\begin{equation*}
d \omega_{\alpha}=\theta_{\alpha} \wedge \omega_{\alpha} \quad \text { and } \quad d \eta_{\alpha}=\theta_{\alpha} \wedge \eta_{\alpha} \tag{*}
\end{equation*}
$$

for all $\alpha \in A$. It follows from (*), (II) and $\omega_{\alpha} \wedge \eta_{\alpha} \not \equiv 0$ that, if $W_{\alpha \beta}:=W_{\alpha} \cap W_{\beta} \neq \varnothing$ then, $\theta_{\alpha}=\theta_{\beta}+d g_{\alpha \beta} / g_{\alpha, \beta}$ on $W_{\alpha \beta \beta}$. Hence $d \theta_{\alpha}=d \theta_{\beta}$ on $W_{\alpha \beta}$ and we can define a holomorphic 2-form $\Theta$ on $W$ by

$$
\begin{equation*}
\left.\Theta\right|_{U_{n}}:=d \theta_{n} \tag{**}
\end{equation*}
$$

It can be proved that the form $\Theta$ can be extended meromorphically to $\operatorname{Tang}(\mathcal{F}, \mathcal{G})$ (see $\S 2$ ). This extension will be called the curvature of the pencil $\mathcal{P}(\mathcal{F}, \mathcal{G})$. We will say that the pencil is flat if $\Theta=0$. Let us see some examples of flat pencils.

Example 1. Let $\omega$ and $\eta$ be two meromorphic closed 1-forms on some compact complex surface $M$, such that $\omega \wedge \eta \not \equiv 0$ and the divisors of poles and zeroes of $\omega$ and $\eta$ coincide. Let $\mathcal{F}$ and $\mathcal{G}$ be the foliations generated by $\omega$ and $\eta$, respectively. It is known that $N_{\mathcal{F}}=N_{\mathcal{G}}$ in this case (cf. $\left.[\mathbf{B r}]\right)$. Moreover, the pencil generated by $\mathcal{F}$ and $\mathcal{G}$, say $\mathcal{P}(\mathcal{F}, \mathcal{G})$, is defined by the pencil of forms $\omega_{T}=\eta+T \cdot \omega$. Therefore, it is flat. We will call a pencil like this a pencil of closed forms.

A particular case is given by some families of logarithmic forms in $\mathbb{C} P(2)$. Let $f_{1}, \ldots, f_{k}, k \geqslant 3$, be irreducible homogeneous polynomials of three variables such that $d f_{i} \wedge d f_{j} \neq 0$ if $i \neq j$. Given $\lambda=\left(\lambda_{1}, \ldots . \lambda_{k}\right) \in \mathbb{C}^{k}$, such that $\sum_{j=1}^{k} \lambda_{j} \cdot d g\left(f_{j}\right)=0$, set $\omega_{\lambda}=\sum_{j=1}^{k} \lambda_{j} \cdot d f_{j} / f_{j}$. The closed form $\omega_{\lambda}$ can be considered as meromorphic form on $\mathbb{C} P(2)$, so that the family $\left(\omega_{\lambda}\right)_{\lambda}$ generates a family of foliations $\left(\mathcal{F}_{\lambda}\right)_{\lambda}$ on $\mathbb{C} P(2)$. It can be checked that any pencil contained in this family is flat.

Another particular case, is the following: let $M$ be the complex two torus $\mathbb{C}^{2} / \Gamma$, where $\Gamma=\mathbb{Z} \cdot v_{1} \oplus \mathbb{Z} \cdot v_{2} \oplus \mathbb{Z} \cdot v_{3} \oplus \mathbb{Z} \cdot v_{4}$ is some lattice in $\mathbb{C}^{2}$, and $\pi: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2} / \Gamma$ be
the canonical projection. Consider an affine coordinate system $(z, w)$ on $\mathbb{C}^{2}$ and let $\mathcal{F}$ and $\mathcal{G}$ be the foliations generated by the closed forms $\omega$ and $\eta$ such that $\pi^{*}(\omega)=d z$ and $\pi^{*}(\eta)=d w$, respectively.

Example 2. - The pull-back of a flat pencil is a flat pencil. More precisely, let $M$ and $N$ be complex surfaces and $f: M-\rightarrow N$ be a meromorphic map. If $\mathcal{P}:=\mathcal{P}(\mathcal{F}, \mathcal{G})$ is a pencil of foliations on $N$, then we can define the pencil $f^{*}(\mathcal{P})=\mathcal{P}\left(f^{*}(\mathcal{F}), f^{*}(\mathcal{G})\right)$ on $M$. It is not difficult to prove that, if $\mathcal{P}$ is flat then $f^{*}(\mathcal{P})$ is also flat.

Example 3. Suppose that the pencil $\mathcal{P}(\mathcal{F}, \mathcal{G})$ is defined by $\omega+T \cdot \eta$, where $\omega$ and $\eta$ are meromorphic 1 -forms. and there exists a closed meromorphic 1 -form $\theta$ such that $d \omega=\theta \wedge \omega$ and $d \eta=\theta \wedge \eta$. Then the pencil $\mathcal{P}(\mathcal{F}, \mathcal{G})$ is flat. Of course, the pencils of Example 1 are of this kind, because the forms $\omega$ and $\eta$ are closed. However, the reader can find some examples in $[\mathbf{L N}]$ or $[\mathbf{L N}-\mathbf{1}]$ which are not generated by closed forms. One example of this kind is the pencil $\mathcal{P}_{1}$ of foliations of degree two on $\mathbb{C} P(2)$ defined in some affine coordinate system $(x, y) \in \mathbb{C}^{2} \subset \mathbb{C} P(2)$ by the the forms (see §2.4 of $[\mathbf{L N}])$ :

$$
\left\{\begin{array}{l}
\omega_{1}=\left(4 x-9 x^{2}+y^{2}\right) d y-6 y(1-2 x) d x  \tag{1}\\
\eta_{1}=2 y(1-2 x) d y-3\left(x^{2}-y^{2}\right) d x
\end{array}\right.
$$

A straightforward computation gives $d \omega_{1}=\frac{5}{6} \frac{d P}{P} \wedge \omega_{1}$ and $d \eta_{1}=\frac{5}{6} \frac{d P}{P} \wedge \eta_{1}$, where $P(x, y)=-4 y^{2}+4 x^{3}+12 x y^{2}-9 x^{4}-6 x^{2} y^{2}-y^{4}$. The other examples of $[\mathbf{L N}]$ can be obtained from the above one by pulling-back $\mathcal{P}_{1}$ by a meromorphic map $f: \mathbb{C} P(2)-\rightarrow$ $\mathbb{C} P(2)$.

Another example is the pencil $\mathcal{P}_{2}$ of degree three generated by

$$
\left\{\begin{array}{l}
\omega_{2}=y\left(x^{2}-y^{2}\right) d y-2 x\left(y^{2}-1\right) d x  \tag{2}\\
t_{2}=\left(4 x-x^{3}-x^{2} y-3 x y^{2}+y^{3}\right) d y+2(x+y)\left(y^{2}-1\right) d x
\end{array}\right.
$$

In this case, we have $d \omega_{2}=\frac{3}{4} \frac{d Q}{Q} \wedge \omega_{2}$ and $d \eta_{2}=\frac{3}{4} \frac{d Q}{Q} \wedge \eta_{2}$. where $Q(x, y)=\left(y^{2}-1\right)$ $\left(x^{2}+y^{2}-2 x\right)\left(x^{2}+y^{2}+2 x\right)$.

We would like to observe that both pencils $\mathcal{P}_{1}$ and $\mathcal{P}_{2}$ are exceptional families of foliations in the sense of $[\mathbf{L N}-\mathbf{1}]$. This means the folowing: Let $\mathcal{F}_{T}^{j}, T \in \overline{\mathbb{C}}$, be the foliation defined in $\mathbb{C}^{2} \subset \mathbb{C} P(2)$ by the form $\omega_{j}+T \cdot \eta_{j}\left(\mathcal{F}_{\propto}^{j}\right.$ defined by $\left.\eta_{j}\right)$, where $\omega_{j}$ and $\eta_{j}$ are as in $(j), j=1.2$, of example 3 . Then, for $j=1,2$, we have:
(a) The singularities of $\mathcal{F}_{T}^{j}$ are of constant analytic type. In other words, there is a finite subset $F_{j} \subset \overline{\mathbb{C}}$ such that if $T_{1}, T_{2} \in \overline{\mathbb{C}} \backslash F_{j}$ then every singularity of $\mathcal{F}_{T_{1}}^{j}$ is locally analytically equivalent to some singularity of $\mathcal{F}_{T_{2}}^{j}$.
(b) If we set

$$
E_{j}=\left\{T \in \overline{\mathbb{C}} \mid \mathcal{F}_{T}^{j} \text { has a meromorphic first integral }\right\}
$$

then $E_{j}$ is countable and dense in $\overline{\mathbb{C}}$.
(c) Given $T \in E_{j}$ denote by $d_{j}(T)$ the degree of the generic level of the first integral of $\mathcal{F}_{T}^{j}$. Then, for any $m \in \mathbb{N}$ the set $\left\{T \in E_{j} \mid d_{j}(T) \leqslant m\right\}$ is finite. In particular, in both families, there are foliations with first integrals of arbitrarily large degrees.

Concerning the exceptional pencils above, we have the following result:
Theorem 1. Let $E_{j}, j=1,2$, be as in (b). Then

$$
\left\{\begin{array}{l}
E_{1}=\mathbb{Q} \cdot\left\langle 1, e^{2 \pi i / 3}\right\rangle \cup\{\infty\} \\
E_{2}=\mathbb{Q} \cdot\langle 1, i\rangle \cup\{\infty\}
\end{array}\right.
$$

where $\mathbb{Q} \cdot\langle a, b\rangle=\left\{q_{1} \cdot a+q_{2} \cdot b \mid q_{1}, q_{2} \in \mathbb{Q}\right\}$.
In our last result we will give some sufficient condictions for the flatness of a pencil $\mathcal{P}=\mathcal{P}(\mathcal{F}, \mathcal{G})$ in terms of the singularities of the foliations in $\mathcal{P}$ and the components of the divisor of tangencies. In order to state it, let us consider the singularities of $\mathcal{F}_{T}$, $T \in \overline{\mathbb{C}}$. Without lost of generality, we will suppose that $\mathcal{F}$ and $\mathcal{G}$ have isolated singularities. This implies that the set $N I:=\left\{T \in \overline{\mathbb{C}} \mid \mathcal{F}_{T}\right.$ has non-isolated singularities $\}$ is finite. Set $I S:=\overline{\mathbb{C}} \backslash N I$ and for each $T \in I S$, set $n(T):=\#\left(\operatorname{sing}\left(\mathcal{F}_{T}\right)\right)$. Note that, if $T \in I S$ then $N_{\mathcal{F}_{T}}=N_{\mathcal{F}}$. It is well known that the number of singularities of $\mathcal{F}_{T}$, counted with multiplicities, is given by $(c f .[\mathbf{B r}])$ :

$$
m(\mathcal{F})=m\left(\mathcal{F}_{T}\right)=N_{\mathcal{F}}^{2}+N_{\mathcal{F}} \cdot K_{M I}+c_{2}(M)
$$

where $K_{M I}$ is the canonical bundle of $M$. Hence $n(T) \leqslant m(\mathcal{F})$ for all $T \in I S$. Let $n_{0}=\max \{n(T) \mid T \in I S\}$ and $G P=\left\{T \in I S \mid n(T)=n_{0}\right\}$. We need a fact.

Lemma 1. $\overline{\mathbb{C}} \backslash G P$ is finite. Moreover, there exist holomorphic maps $p_{j}: G P \rightarrow M$, $j=1, \ldots, n_{0}$, such that $\operatorname{sing}\left(\mathcal{F}_{T}\right)=\left\{p_{1}(T), \ldots, p_{n_{1}}(T)\right\}$ for all $T \in G P$.

The proof of Lemma 1 is left for the reader.
Definition 1. We say that the singularity $p_{j}$ is fixed if the map $p_{j}: G P \rightarrow M I$ is constant. Otherwise, we say that $p_{j}$ is movable. For instance, if $p$ is a singularity of the curve $\operatorname{Tang}(\mathcal{F}, \mathcal{G})$ then $p$ is a singularity of all foliations of the pencil and it is a fixed singularity of the pencil.

Note that, for any movable singularity $p_{j}$ of the pencil, the image $p_{j}(G P)$ is contained in some irreducible component $C$ of $\operatorname{Tang}(\mathcal{F}, \mathcal{G})$. In this case we will say that $p_{j}$ is contained in $C$.

Let $C \subset \operatorname{Tang}(\mathcal{F}, \mathcal{G})$ be an irreducible component. We have two possibilities:
(A) $C$ is invariant for both foliations $\mathcal{F}$ and $\mathcal{G}$. In this case, $C$ is invariant for all foliations $\mathcal{F}_{T}$ in the pencil and we will say that $C$ is invariant for the pencil.
(B) $C$ is not invariant for the pencil. In this case, the set $I N(C)=\{T \in \overline{\mathbb{C}} \mid$ $C$ is invariant for $\left.\mathcal{F}_{T}\right\}$ is finite.

Remark 1. Given an irreducible component $C$ of $\operatorname{Tang}(\mathcal{F}, \mathcal{G})$, we have two possibilities: either $C$ contains a movable singularity, or $C$ does not contain movable singularities. In the second case, we will call $C$ a $N I$-component. The reason is the following: let $\left(U_{\alpha}\right)_{\alpha \in A}$ be a covering of $M$ by open sets and $\left(\omega_{\alpha}\right)_{\alpha \in A},\left(\eta_{\alpha}\right)_{\alpha \in A}$ be collections of holomorphic 1 -forms such that the foliations in the pencil are defined on $U_{\alpha}$ by $\omega_{\alpha}^{T}:=\omega_{\alpha}+T \cdot \eta_{\alpha}, T \in \overline{\mathbb{C}}$. Given $p \in U_{\alpha} \cap C \backslash(\operatorname{sing}(\mathcal{F}) \cup \operatorname{sing}(\mathcal{G}))$, there exists an unique $T_{o}$ such that $\omega_{\alpha}(p)+T_{o} \cdot \eta_{\alpha}(p)=0$, because $\omega_{\alpha}(p)$ and $\eta_{\alpha}(p)$ are linearly dependent. However, since $C$ does not contain movable singularities and $p \notin \operatorname{sing}(\mathcal{F}) \cup \operatorname{sing}(\mathcal{G})$, the unique possibility is that $\omega_{\alpha}(q)+T_{o} \cdot \eta_{\alpha}(q)=0$ for all $q \in C \cap U_{\alpha}$. Hence, $T_{o} \in N I$ and the component $C$ is contained in $\operatorname{sing}\left(\mathcal{F}_{T_{o}}\right)$. Note that $T_{o}$ depends only on $C$. We will use the notation $T_{o}=T(C)$. This happens for instance in the case of the Logarithmic forms (see Example 1).

The divided foliation associated to $T(C)$ is defined as follows: for each $\alpha \in A$, let $\left(f_{\alpha}=0\right)$ be a reduced equation of $C \cap U_{\alpha}$. Since $\left.\omega_{\alpha}^{T(C)}\right|_{C \cap U_{n}} \equiv 0$, we can write $\omega_{\alpha}^{T(C)}=f_{\alpha}^{\ell} \cdot \widetilde{\omega}_{\alpha}$, where $\widetilde{\omega}_{\alpha}$ has isolated singularities and $\ell \in \mathbb{N}$, does not depend on $\alpha$. The divided foliation, denoted by $\widetilde{\mathcal{F}}_{T(C)}$, is defined by the collection $\left(\widetilde{\omega}_{\alpha}\right)_{\alpha \in A}$. Note that $N_{\tilde{\mathcal{F}}_{T(C)}}=N_{\mathcal{F}_{T(C)}} \otimes C^{-\epsilon}$.

Definition 2. We say that an irreducible component $C$ of $\operatorname{Tang}(\mathcal{F}, \mathcal{G})$ is nice, if one of the following condictions hold:
(a) $C$ is invariant for the pencil and contains a movable singularity $p_{j}(T)$ such that the function $T \in G P \mapsto B B\left(p_{j}(T), \mathcal{F}_{T}\right)$ is constant, where $B B\left(p_{j}(T), \mathcal{F}_{T}\right)$ denotes the Baum-Bott index of the singularity (cf. $[\mathrm{Br}]$ ).
(b) $C$ is an NI-component, invariant for the pencil.
(c) $C$ is non-invariant for the pencil and $C$ contains a movable singularity, say $p_{j}(T)$, such that $B B\left(p_{j}(T), \mathcal{F}_{T}\right)=0$ for all $T \in G P$.
(d) $C$ is an $N I$-component, non-invariant for the pencil. In this case, we ask that $C$ is invariant for the divided foliation associated to $T(C)$.

The last result, characterizes when the pencil is flat, if we assume that the components of the divisor of tangencies have multiplicity one.

Theorem 2. - Let $\mathcal{F}$ and $\mathcal{G}$ by two holomorphic foliations on a compact complex surface, such that $N_{\mathcal{F}}=N_{\mathcal{G}}$, and let $\Theta$ be the curvature of the pencil generated by them. Suppose that all components of $\operatorname{Tang}(\mathcal{F}, \mathcal{G})$ have multiplicity one. Then the following condictions are equivalent:
(a) The pencil is flat.
(b) All components of $\operatorname{Tang}(\mathcal{F}, \mathcal{G})$ are nice.
(c) $\Theta$ is holomorphic.

Let us state one consequence.

Corollary. Let $\mathcal{F}$ and $\mathcal{G}$ by two holomorphic foliations on a compact complex surface $M$. Suppose that $N_{\mathcal{F}}=N_{\mathcal{G}}$ and $\operatorname{Tang}(\mathcal{F}, \mathcal{G})=\varnothing$. Then the pencil generated by them is flat. Moreover, $M$ is a complex 2-torus and $\mathcal{F} . \mathcal{G}$ are linear foliations.

We observe that this corollary is a consequence of Theorem 2 and the classification of complex compact surfaces (see [BPV]). We would like to pose the following problems:

Problem 1.- Given a flat pencil $\mathcal{P}=\mathcal{P}(\mathcal{F}, \mathcal{G})$. describe the set

$$
E(\mathcal{P})=\left\{\alpha \in \overline{\mathbb{C}} \mid \mathcal{F}_{\alpha} \text { has a first integral }\right\}
$$

Problem 2. - Give necessary and sufficient conditions for a pencil to be flat, like in Theorem 2. Recall that Theorem 2 is true only in the case that all components of $\operatorname{Tang}(\mathcal{F}, \mathcal{G})$ have multiplicity one.

Problem 3. - Give necessary and sufficient conditions for a flat pencil to be a pencil of closed 1 -forms. We observe that the pencils defined by logarithmic forms satisfy the following properties, when all components of $\operatorname{Tang}(\mathcal{F}, \mathcal{G})$ have multiplicity one:
(a) All invariant components of $\operatorname{Tang}(\mathcal{F}, \mathcal{G})$ are $N I$-components.
(b) All non-invariant components of $\operatorname{Tang}(\mathcal{F}, \mathcal{G})$ are nice.

We note that the above conditions are necessary in the case that all components of $\operatorname{Tang}(\mathcal{F}, \mathcal{G})$ have multiplicity one. It seems that they are also sufficient in some cases.

## 2. Proofs

2.1. Proof of Theorem 1. - We will use the notation $\mathcal{F}_{T}^{j}$ (resp. $\mathcal{F}_{\propto}^{j}$ ) to denote the foliation defined by $\omega_{j}+T \cdot \eta_{j}, T \in \mathbb{C}$ (resp. $\eta_{j}$ ), where $\omega_{j}$ and $\eta_{j}$ are as in $(j)$ of example $3, j=1,2$. First of all, we observe that. in both cases, it is easy to see that some foliations in the foliations in the pencils have first integrals. Given $\alpha \in E_{j}$ we will call $g_{\alpha}^{j}$ the first integral of $\mathcal{F}_{\alpha}^{j}$. For the pencil $\mathcal{P}_{1}$ we have:

$$
\left\{\begin{array}{l}
g_{\infty}^{1}(x, y)=P(x, y) /(2 x-1)^{3}  \tag{3}\\
g_{1}^{1}(x, y)=P(x, y) /(y-x)^{3} \\
g_{-1}^{1}(x, y)=P(x, y) /(y+x)^{3}
\end{array}\right.
$$

where, $P(x, y)=-4 y^{2}+4 x^{3}+12 x y^{2}-9 x^{4}-6 x^{2} y^{2}-y^{4}$.
In particular, $1,-1, \infty \in E_{1}$. On the other hand, for the pencil $\mathcal{P}_{2}$ we have

$$
\left\{\begin{array}{l}
g_{0}^{2}(x, y)=C_{1}(x, y) \cdot C_{-1}(x \cdot y) / 4 L_{1}(y) \cdot L_{-1}(y)  \tag{4}\\
g_{\infty}^{2}(x, y)=L_{-1}(y) \cdot C_{1}(x, y) / L_{1}(y) \cdot C_{-1}(x, y) \\
g_{1 / 2}^{2}(x, y)=L_{1}(y) \cdot C_{1}(x, y) / L_{-1}(y) \cdot C_{-1}(x, y)
\end{array}\right.
$$

where

$$
\left\{\begin{array}{l}
C_{1}(x, y)=x^{2}+y^{2}-2 x \\
C_{-1}(x, y)=x^{2}+y^{2}+2 x \\
L_{1}(y)=y-1 \\
L_{-1}(y)=y+1
\end{array}\right.
$$

In particular, $0, \infty, 1 / 2 \in E_{2}$.
Note that, in all above cases, the generic level curves of $g_{\alpha}^{j}$ are elliptic curves. There is a difference between the two cases: for $j=1$ the level curves, after normalization, are of the form $\mathbb{C} /\left\langle 1, e^{2 \pi i / 3}\right\rangle$, whereas for $j=2$ they are of the form $\mathbb{C} /\langle 1, i\rangle$. In the case $j=1$, the proof can be found in $\S 2.4$ of $[\mathbf{L N}]$. In the case $j=2$, the fact that the level curves are elliptic can be proved by using the genus formula. For instance, in the case of $g_{\infty}^{2}$, the level curve $L_{c}:=\left(g_{\infty}^{2}=c\right)$, for generic $c \in \mathbb{C}$, has degree three and no singularities. Hence. $g\left(L_{c}\right)=(3-1)(3-2) / 2=1$. The proof that the normalization $L_{c}$ is $\mathbb{C} /\langle 1, i\rangle$ will be sketched next.

Let us give an idea of the proof that the pencil $\mathcal{P}_{2}$ is exceptional. This proof was done in $\S 2.2$ of $[\mathbf{L N}]$ for another pencil (of degree four). but the idea is the same. First of all, the divisor of tangency of $\mathcal{F}_{0}^{2}$ and $\mathcal{F}_{\infty}^{2}$ is

$$
T g:=\operatorname{Tang}\left(\mathcal{F}_{0}^{2}, \mathcal{F}_{\infty}^{2}\right)=C_{1}+C_{-1}+L_{1}+L_{-1}+L_{\infty}
$$

where $L_{\infty}$ is the line at infinity of $\mathbb{C}^{2} \subset \mathbb{C} P(2)$. The singular set of $T g$, which are the fixed singularities of the pencil, is (in homogeneous coordinates)
(I) Fix: $=\{O:=(0: 0: 1), A:=(-1: 1: 1), B:=(1: 1: 1), C:=(1:-1:$ 1). $D:=(-1:-1: 1), E:=(1: i: 0), F:=(1:-i: 0), G:=(1: 0: 0)\}$. For $T \notin\{1 .-1, i,-i, \infty\}$ the points $E . F . G$ are radial singularities for the foliation $\mathcal{F}_{T}^{2}$ (of type 1:1), whereas the points $A, B, C, D$ and $O$ are singularitics of type $2: 1$. We say that a singularity is of type $p: q$ if the foliation has a local first integral of the form $u^{p} / v^{q}$. in some local coordinate system $(u, v)$.

On the other hand. each component of $T g$ contains exactly one movable singularity of $\mathcal{F}_{\alpha}^{2}, \alpha \in \overline{\mathbb{C}}$ :
(II) The points $P_{-1}(\alpha):=(\alpha,-1) \in L_{-1}, P_{1}(\alpha):=(-\alpha, 1) \in L_{1}, Q_{-1}(\alpha):=$ $\left(-2 /\left(1+\alpha^{2}\right) \cdot 2 \alpha /\left(1+\alpha^{2}\right)\right) \in C_{-1}$ and $Q_{1}(\alpha):=\left(2 /\left(1+\alpha^{2}\right) .-2 \alpha /\left(1+\alpha^{2}\right)\right) \in C_{1}$. These singularities are of the type 1: -4 (with local first integral of the type $u \cdot v^{4}$ ).
(III) The point $P_{\varnothing}(\alpha):=[\alpha: 1: 0] \in L_{\varnothing}$. This singularity is of the type $1:-2$.

The next step is to reduce the fixed singularities (which are dicritical) by blowingups. This can be done for all foliations in the pencil simultancously by doing one blowing-up at each radial singularity and two at each singularity of the type $2: 1$. After this procedure. we find a rational surface $M$ and a bimeromorphism $\pi: M \rightarrow$ $\mathbb{C} P(2)$. We will use the notation $\mathcal{F}_{\alpha}=\pi^{*}\left(\mathcal{F}_{\alpha}^{2}\right), \alpha \in \overline{\mathbb{C}}$, and $\mathcal{P}$ for the pencil in $M$ so obtained. The pencil $\mathcal{P}$ has ten invariant curves (rational): five of them are the strict
transforms of the components of $T g$ and the other five are the divisors introduced in the first blowing-up at the singularities of the type $2: 1(A, B, C, D, O)$. For each $\alpha \in E_{2}$, the foliation $\mathcal{F}_{\alpha}$, which corresponds to the first integral $g_{\alpha}^{2}$, has also a first integral $g_{\alpha}:=g_{\alpha}^{2} \circ \pi$. We observe that $g_{\alpha}$ is holomorphic, because the foliation $\mathcal{F}_{\alpha}$ has no dicritical singularities. In fact, for any $a \in \overline{\mathbb{C}} . \mathcal{F}_{n}$ has ten singularities, one in each invariant curve, which are the folowing: four of the type 1:-4, which come from the singularities $P_{1}(\alpha), P_{-1}(\alpha), Q_{1}(\alpha)$ and $Q_{-1}(\alpha)$, and six of the type $1:-2$. One of these six singularities come from $P_{\chi}(\alpha)$ and the other five are contained in the five invariant divisors introduced in the blowing-up procedure. We leave the details of the proof of these facts for the reader.

Let us describe briefly the (singular) fibration $g_{x}$. We will denote by $T_{c}$ the level curve $g_{\infty}^{-1}(c) \subset M$. It has three critical levels: $T_{0} . T_{1}$ and $T_{\infty}$. If we call $U=M \backslash\left(T_{0} \cup T_{1} \cup T_{\infty}\right)$, then $f:=g_{\infty} \mid \sigma: U \rightarrow \overline{\mathbb{C}} \backslash\{0,1, \infty\}:=W$ is a (regular) elliptic fibration. The main fact is the following

Lemma 2.1.1. If $a \neq x$ then $\mathcal{F}_{a}$ is tranverse to the fibers of $f$ in all points of the set $U$.

Proof. Since the divisors introduced by $\pi$ are contained in $T_{0} \cup T_{1} \cup T_{\infty}$. it is sufficient to prove that the foliations $\mathcal{F}_{\infty}^{2}$ and $\mathcal{F}_{\alpha}^{2}$ are transverse outside $T g$, becanse $\left.\pi\right|_{U}: U \rightarrow \pi(U)=\mathbb{C} P(2) \backslash T!$ is a biholomorphism. On the other hand, we have:

$$
\begin{aligned}
\left(\omega_{2}+a \cdot \eta_{2}\right) \wedge \eta_{2} & =2\left(x^{2}+y^{2}-2 x\right)\left(x^{2}+y^{2}+2 . x\right)(y-1)(y+1) d x \wedge d y \\
& =2 C_{1} \cdot C_{-1} \cdot L_{1} \cdot L_{-1} d x^{\prime} \wedge d y
\end{aligned}
$$

Hence $\mathcal{F}_{\alpha}^{2}$ and $\mathcal{F}_{x}^{2}$ are transverse ontside $T$ g. which implies the lemma.
Now, we use Ehresmamis theory of foliations tranverse to a fibration (cf. [E-R]). According to this theory, if $L$ is a leaf of $\left.\mathcal{F}_{\alpha}\right|_{0}$ then $\left.f\right|_{L}: L \rightarrow W$ is a covering map). Moreover. if we fix a (regular) fiber $T_{c}$ and a closed curve $\gamma:[0.1] \rightarrow W=\overline{\mathbb{C}} \backslash\{0.1 . \infty\}$ with $\gamma(0)=\gamma(1)=c$. then we can define an antomorphism $H_{\gamma .0}: T_{c} \rightarrow T_{c}$. as follows: given $p \in T_{c}$, let $L_{\sigma}(p)$ be the leaf of $\mathcal{F}_{\sigma}$ through $p$. Since $\left.f\right|_{L_{n}(p)}: L_{\sigma}(p) \rightarrow W$ is a covering map. there exists an mique curve $\widehat{\gamma}$ on $L_{0}(p)$ such that $f \circ \hat{\gamma}=\gamma$ and $\widehat{\gamma}(0)=p$. The automorphism is defined by $H_{\gamma, \ldots}(p)=\widehat{\gamma}(1)$. It is called the global holonomy transformation associated to $\gamma$. We will use the following facts:
(i) For every $a \in \mathbb{C}$ the antomorphism $H_{\gamma, \ldots}$ is holomorphic and depends only of the the class of $\gamma$ in $\Pi_{1}(W . c)$. This follows from Ehresmamis theory and the fact that the foliations are holomorphice.
(ii) If $\gamma_{1}, \gamma_{2} \in \Pi_{1}(\mathbb{I} . c)$ and $a \in \mathbb{C}$ then $H_{\gamma_{11} * \gamma_{2}, \alpha}=H_{\gamma_{1}, 0} \circ H_{\gamma_{2}, \ldots}$. In particular. for each $\alpha \in \mathbb{C}$. we can define an action $H_{n}: \mathrm{I}_{1}(W . c) \rightarrow \operatorname{Ant}\left(T_{c}\right)$ by $H_{n}(\gamma)=H_{\gamma, n}$. called the holonomy representation. The image $H_{n}\left(\Pi_{1}(W, c)\right):=G(\kappa, c)$ is called the global holonomy group of $\mathcal{F}_{1}$.
(iii) For each fixed $\gamma \in \Pi_{1}(W, c)$, the map $H_{\gamma}: \mathbb{C} \times T_{c} \rightarrow T_{c}$ defined by $H_{\gamma}(\alpha, p)=$ $H_{\gamma, \alpha}(p)$ is holomorphic. This follows from the theorem of holomorphic dependency of the solutions with respect to initial conditions and parameters and the fact that $H_{\gamma, \alpha}$ can be found by integrating the equation $\omega_{2}+\alpha \cdot \eta_{2}=0$.
(iv) For any $p \in T_{C}$, the orbit of $p$ by $H_{\alpha}$ coincides with the intersection of the leaf $L_{\alpha}(p)$ with the fiber $T_{c}$.
(v) If $c_{1}$ is another point of $W$ and $\gamma_{1}$ is a curve in $W$ connecting $c_{1}$ to $c$, then, for each $\alpha \in \mathbb{C}$ it can be defined a biholomorphism $F_{\alpha}: T_{c_{1}} \rightarrow T_{c}$ (by lifting $\gamma_{1}$ to leaves of $\mathcal{F}_{\alpha}$ ) such that

$$
H_{\alpha}\left(\gamma_{1}^{-1} * \gamma * \gamma_{1}\right)=F^{-1} \circ H_{\alpha}(\gamma) \circ F .
$$

In particular, the holonomy representations are conjugated and the fibration $f$ is isotrivial, that is, all regular fibers are biholomorphic.

Now, consider the two closed curves $\gamma_{0}, \gamma_{1}:[0,1] \rightarrow W$, where $\gamma_{k}(0)=\gamma_{k}(1)=c$, $k=0,1, \gamma_{0}$ goes around 0 once and $\gamma_{1}$ goes around $\infty$ once. It is known that $\gamma_{0}, \gamma_{1}$ generate $\Pi_{1}(W, c)$. We will call $f_{1, \alpha}=H_{\alpha}\left(\gamma_{0}\right)$ and $g_{1, \alpha}=H_{\alpha}\left(\gamma_{1}\right)$. Fix a holomorphic universal covering $P: \mathbb{C} \rightarrow T_{c}$ and let $f_{\alpha}, g_{\alpha} \in \operatorname{Aut}(\mathbb{C})$ be coverings of $f_{1, \alpha}$ and $g_{1, \alpha}$, respectively $\left(P \circ f_{\alpha}=f_{1, \alpha} \circ P\right.$ and $\left.P \circ g_{\alpha}=g_{1, \alpha} \circ P\right)$.

Lemma 2.1.2. If we choose well the orientation of the curves $\gamma_{0}$ and $\gamma_{1}$, then for any $\alpha \in \mathbb{C}$ we have $f_{\alpha}(z)=i \cdot z+A(\alpha)$ and $g_{\alpha}(z)=i \cdot z+B(\alpha)$, where $A, B: \mathbb{C} \rightarrow \mathbb{C}$ are holomorphic.

Idea of the proof. - The proof is analogous to the proof of Proposition 4 of $\S 2.2$ of $[\mathbf{L N}]$, and so we will give only an idea. Let us consider the case of $f_{\alpha}$. The critical fiber $T_{0}:=f^{-1}(0)$ of the fibration $f$ contains the strict transforms, by $\pi: M \rightarrow \mathbb{C} P(2)$, of the curves $C_{1}$ and $L_{-1}$, which we call $C$ and $L$, respectively. On the other hand, $C_{1}$ and $L_{-1}$ contain the movable singularities $Q_{1}(\alpha)$ and $P_{-1}(\alpha)$ of $\mathcal{F}_{\alpha}^{2}$, which are of the type $1:-4$. These singularities give origin to movable singularities of the pencil $\mathcal{P}, Q(\alpha):=\pi^{-1}\left(Q_{1}(\alpha)\right) \in C$ and $P(\alpha)=\pi^{-1}\left(P_{-1}(\alpha)\right) \in L$, which are also of the type 1:-4. Since $Q(\alpha)$ is the unique singularity of $\mathcal{F}_{\alpha}$ on $C$ and $C$ is a rational curve, $Q(\alpha)$ is linearizable for the foliation $\mathcal{F}_{\alpha}$ (because the holonomy of $C$ is trivial, and so linearizable). The same argument applies to $P(\alpha)$. which is the unique singularity of $\mathcal{F}_{\alpha x}$ on $L$. On the other hand, the foliation $\mathcal{F}_{\alpha}$ has an unique local smooth separatrix, say $S(\alpha)$, which is transversal to $C$. Since the quotient of the eigenvalues is $-1 / 4$, the holonomy of $S(\alpha)$, in a suitable coordinate system $u$ of a transversal $\Sigma$, is linear of the form $u \mapsto e^{-2 \pi i / 4} \cdot u=-i \cdot u$. If we choose $c$ near 0 then the separatrix $S(\alpha)$ cuts the fiber $T_{c}$ in an unique point, say $p(\alpha)$. It can be checked that $\left.f\right|_{S(\alpha)}: S(\alpha) \rightarrow D:=f(S(\alpha))$ is a bijection. If we choose the curve $\gamma_{0}$ as a small circle sorrounding () contained in $D$, then when we go around $\gamma_{0}$ in order to evaluate $f_{1, \alpha}$ we see that $p(\alpha)$ is a fixed point of $f_{1, \alpha}$. Moreover, the section $\Sigma$ can be choosed to be contained in $T_{c}$. This implies that $f_{1, \alpha}$ is locally conjugated to $u \mapsto \pm i \cdot u$. The
$\operatorname{sign} \pm$ depends on the orientation of $\gamma_{0}$. We choose this orientation in such a way that $f_{1, \alpha}$ is locally conjugated to $u \mapsto i \cdot u$. This implies that $f_{1, \alpha}$ has period four and that $f_{\alpha}(z)=i \cdot z+A(\alpha)$. Analogously, we can choose the orientation of $\gamma_{1}$ in such a way that $g_{\alpha}(z)=i \cdot z+B(\alpha)$. The maps $\alpha \in \mathbb{C} \mapsto A(\alpha), B(\alpha)$ are holomorphic by (iii).

As a consequence of Lemma 2.1.2, we obtain that $T_{c}$ is biholomorphic to $\mathbb{C} /\langle 1, i\rangle$. This implies that all regular fibers of $f$ are biholomorphic to $\mathbb{C} /\langle 1, i\rangle$, because the fibration is isotrivial. We will fix an universal covering $P: \mathbb{C} \rightarrow T_{c}$ such that the associated lattice is $\langle 1, i\rangle$. The crucial result is the following:

Lemma 2.1.3. $-A(\alpha)$ and $B(\alpha)$ are affine, that is, $A(\alpha)=a_{1} \cdot \alpha+a_{0}$ and $B(\alpha)=$ $b_{1} \cdot \alpha+b_{0}$, where $a_{0}, a_{1}, b_{0}, b_{1} \in \mathbb{C}$.

Proof. We need another lemma.
Lemma 2.1.4. - Let $\mathcal{P}(\mathcal{F}, \mathcal{G})$ be a flat pencil on a surface $M$. Given $p \in M$ $\operatorname{Tang}(\mathcal{F}, \mathcal{G})$, there exists a local coordinate system $(U,(x, y)), p \in U,(x, y): U \rightarrow \mathbb{C}^{2}$, such that the foliation $\mathcal{F}_{\alpha}$ of the pencil, $\alpha \in \overline{\mathbb{C}}$, is defined on $U$ by $d y+\alpha \cdot d x=0$. Moreover, if $(V,(u, v))$ is another coordinate system such that $U \cap V \neq \varnothing$ is connected and $\left.\mathcal{F}_{\alpha}\right|_{V}$ is defined by $d v+\alpha \cdot d u=0, \alpha \in \overline{\mathbb{C}}$, then $d u=\lambda \cdot d x$ and $d v=\lambda \cdot d y$ on $U \cap V$, where $\lambda \in \mathbb{C}^{*}$.

Proof. Let $W \subset M \backslash \operatorname{Tang}(\mathcal{F}, \mathcal{G})$ be a small simply connected open neighborhood of $p$ and $\omega, \eta$ be holomorphic 1 -forms such that the foliation $\left.\mathcal{F}_{\alpha}\right|_{W}$ is defined by $\omega+\alpha \cdot \eta=0$. Note that $\mathcal{F}_{0}=\mathcal{F}$ and $\mathcal{F}_{x}=\mathcal{G}$ are defined on $W$ by $\omega=0$ and $\eta=0$, respectively. Since $W \cap \operatorname{Tang}(\mathcal{F}, \mathcal{G})=\varnothing$, we have $\omega \wedge \eta \neq 0$ on $W$. Hence, we can write $d \omega=\theta \wedge \omega$ and $d \eta=\theta \wedge \eta$, where $\theta$ is holomorphic on $W$. Since the pencil is flat, $\theta$ is closed. Therefore, there exists $h \in \mathcal{O}(W)$ such that $\theta=d h$. If we set $f=\exp (h)$ then we get

$$
d \omega=\frac{d f}{f} \wedge \omega \quad \text { and } \quad d \eta=\frac{d f}{f} \wedge \eta \quad \Longrightarrow \quad d\left(\frac{\omega}{f}\right)=d\left(\frac{\eta}{f}\right)=0 .
$$

Again, since $W$ is simply connected, there exist $x, y \in \mathcal{O}(W)$ such that $d y=\omega / f$ and $d x=\eta / f$. The foliation $\mathcal{F}_{\alpha}$ is defined on $W$ by $d y+\alpha \cdot d x=\frac{1}{f}(\omega+\alpha \cdot \eta)=0$. Note that $d x \wedge d y \neq 0$ on $W$. It follows that $(x, y): W \rightarrow \mathbb{C}^{2}$ is an immersion. This implies that we can take a smaller neighborhood $U \subset W$ of $p$ such that $\left.(x, y)\right|_{U}$ is a biholomorphism from $U$ to an open set of $\mathbb{C}^{2}$.

Let $(V,(u, v))$ be another coordinate system such that $U \cap V \neq \varnothing$ is connected and $\left.\mathcal{F}_{\alpha}\right|_{V}$ is defined by $d v+\alpha \cdot d u=0$. Note that $\left.\mathcal{F}\right|_{V}$ and $\left.\mathcal{G}\right|_{V}$ are defined by $d v=0$ and $d u=0$, respectively. Since $\left.\mathcal{F}_{\alpha}\right|_{U \cap V}$ is defined by $d y+\alpha \cdot d x$ and $d u+\alpha \cdot d v=0$, we get

$$
\begin{equation*}
d v+\alpha \cdot d u=h(x, y \cdot \alpha)(d y+\alpha \cdot d x) \tag{*}
\end{equation*}
$$

where $h$ is holomorphic. Differenciating both members of $(*)$ with respect to $\alpha$, we get

$$
d u=\frac{\partial h}{\partial \alpha}(d y+\alpha \cdot d x)+h \cdot d x \quad \Longrightarrow \quad \frac{\partial h}{\partial \alpha} \equiv 0
$$

because $d u$ is a multiple of $d x$ on $U \cap V$. Hence, $h(x, y, \alpha)=h(x, y)$, does not depend on $\alpha$. Therefore, $d u=h \cdot d x$ and $d v=h \cdot d y$ on $U \cap V$. This implies that $d h \wedge d y=d h \wedge d x=0$ and $h \in \mathbb{C}^{*}$, is a constant. This finishes the proof of lemma 2.1.4.

Let us finish the proof of Lemma 2.1.3. Fix $\alpha_{0} \in \mathbb{C}$ and $p \in T_{c}$. Set $q=f_{1, \alpha_{0}}(p) \in$ $T_{c}$. Denote by $L_{\alpha}(p)$ the leaf of $\mathcal{F}_{\alpha}$ through $p$. Let $\gamma_{p}:[0.1] \rightarrow L_{\alpha_{0}}(p)$ be the lifting of $\gamma_{0}$ on the leaf $L_{\alpha_{0}}(p)$ through the fibration $f$. Note that $\gamma_{p}(0)=p$ and $\gamma_{p}(1)=q$. Let $\left(U_{n}\right)_{1 \leqslant n \leqslant m}$ be a covering of $\gamma_{p}[0,1]$ by open sets as in Lemma 2.1.4. For each $n=1, \ldots, m$ there exists a coordinate system $\left(x_{n}, y_{n}\right)$ on $U_{n}$ such $\left.\mathcal{F}_{n}\right|_{U_{n}}$ is defined by $d y_{n}+\alpha \cdot d x_{n}=0$. We can choose the enumeration in such a way that there is a partition $0=t_{0}<t_{1}<\cdots<t_{m}=1$ of $[0,1]$ such that $\gamma_{p}\left[t_{n-1}, t_{n}\right] \subset U_{n}$, for all $n=1, \ldots, m$. We can suppose that $U_{n} \cap U_{n+1}$ is comected for every $n=1, \ldots, m-1$. It follows from Lema 2.1.4 that there exist constants $\lambda_{n} \in \mathbb{C}^{*}$ such that $d x_{n+1}=\lambda_{n} \cdot d x_{n}$ and $d y_{n+1}=\lambda_{n} \cdot d y_{n}, n=1, \ldots, m-1$. Hence,
(i) $y_{n+1}=\lambda_{n} \cdot y_{n}+a_{n}$, where $a_{n} \in \mathbb{C}, n=1, \ldots m-1$.

Fix transversal sections to the foliation $\mathcal{F}_{0}, \Sigma_{0}, \ldots, \Sigma_{m}$, such that:
(ii) $\gamma_{p}\left(t_{n}\right) \in \Sigma_{n}, n=0,1, \ldots, m$.
(iii) $\Sigma_{n} \subset\left(x_{n}=c \cdot t\right)$, that is $\Sigma_{n}$ is contained in a leaf of $\mathcal{F}_{x}$. Note that $\Sigma_{0}, \Sigma_{m} \subset T_{c}$.

Since $\mathcal{F}_{a}$ is defined by $d y_{n}+\alpha \cdot d x_{n}=0$ on $U_{n}$, the holonomy transformation of $\mathcal{F}_{\alpha}, \alpha$ near $\alpha_{0}$, from the section $\Sigma_{n-1} \subset\left(x_{n}=c_{1}\right)$ to the section $\Sigma_{n} \subset\left(x_{n}=c_{2}\right)$, in terms of the parameter $y_{n}$ is of the form $y_{n} \mapsto H_{n}\left(y_{n}, \alpha\right)=y_{n}-\alpha \cdot b_{n}, b_{n}=c_{2}-c_{1}$. It follows from (i) that. in the section $\Sigma_{n}$, we have $y_{n+1}=\lambda_{n} \cdot y_{n}+a_{n}$. and so the holonomy transformation $H_{n}$, can be written in terms of the parameter $y_{n+1}$ (in the immage) as $y_{n+1}\left(y_{n} \cdot \alpha\right)=\lambda_{n} \cdot H_{n}\left(y_{n}\right)+a_{n}=\lambda_{n} \cdot y_{n}-\alpha \cdot \lambda_{n} \cdot b_{n}+a_{n}$. As the reader can check, this implies that the holonomy transformation from the section $\Sigma_{0} \subset U_{1} \cap T_{c}$ to the section $\Sigma_{m} \subset U_{M I} \cap T_{c}$, which is the composition of the intermediate holonomies, is of the form

$$
y_{m}=H\left(y_{1}, \alpha\right)=\mu \cdot y_{1}+\alpha \cdot b+c, \quad \text { where } \mu \in \mathbb{C}^{*}, b, c \in \mathbb{C} .
$$

Now, let us relate the parameters $y_{1} \in \Sigma_{1}$ and $y_{m} \in \Sigma_{m}$ with the parametrization which comes from the universal covering $P: \mathbb{C} \rightarrow T_{c}$. Since $\mathcal{F}_{0}$ is transverse to $T_{c}$, there exists a neighborhood $V$ of $T_{c}$ such that
(iv) $\left.f\right|_{V}: V \rightarrow D:=f(V)$ is a trivial fibration. In particular, $V \simeq D \times T_{c}$, where $\left.f\right|_{V}=\pi_{1}$, the first projection, and the fibers of the second projection $\pi_{2}: V \rightarrow T_{c}$ are the leaves of $\left.\mathcal{F}_{0}\right|_{V}$.

Let $\tau$ be a non-vanishing 1 -form on $T_{c}$ such that $P^{*}(\tau)=d z$.

Claim. - There exist constants $k_{1}, k_{m} \in \mathbb{C}^{*}$ such that $\left.d y_{1}\right|_{\Sigma_{1}}=\left.k_{1} \cdot \tau\right|_{\Sigma_{1}}$ and $d y_{m}\left|\Sigma_{m}=k_{m} \cdot \tau\right|_{\Sigma_{m}}$.

Proof. Set $\omega=\pi_{2}^{*}(\tau)$. Note that $\omega(p) \neq 0$, for all $p \in V$, and that the foliation $\left.\mathcal{F}_{0}\right|_{V}$ is defined by $\omega=0$. We can suppose that $D \subset \mathbb{C}$ and consider $x:=\left.f\right|_{V}: V \rightarrow \mathbb{C}$. This implies that $\left.\mathcal{F}_{\infty}\right|_{V}$ is defined by $d x=0$. We assert that there exists $g \in \mathcal{O}^{*}(D)$ such that the foliation $\left.\mathcal{F}_{\alpha}\right|_{V}$ is defined by $\omega+\alpha \cdot g(x) \cdot d x=0$.

In fact, since $\omega$ and $d x$ are linearly independent on $V$, the foliation $\left.\mathcal{F}_{\alpha}\right|_{V}$ is defined by a 1 -form of the type $\omega_{\alpha}=\omega+g_{\alpha} \cdot d x$, where $g_{\alpha} \in \mathcal{O}^{*}(V)$. Since the fiber $T_{x}=$ $f^{-1}(x)$ is compact, the function $\left.g_{\alpha}\right|_{T_{x}}$ is constant. Hence, we can write $g_{\alpha}=g_{\alpha}(x)$ and $\omega_{\alpha}=\omega+g_{\alpha}(x) \cdot d x$. Fix a point $q \in V$ and a coordinate system $\left(U_{q},\left(x_{q}, y_{q}\right)\right)$ such that $U_{q} \subset V$ and $\left.\mathcal{F}_{\alpha}\right|_{U_{q}}$ is defined by $d y_{q}+\alpha \cdot d x_{q}=0$. It follows that $d y_{q}+\alpha \cdot d x_{q}=$ $h_{\alpha}\left(\omega+g_{\alpha}(x) \cdot d x\right)$ on $U_{q}$, where $h_{\alpha} \in \mathcal{O}^{*}\left(U_{q}\right)$. Differentiating twice both members with respect to $\alpha$ and by an argument similar to the proof of Lemma 2.1.4, we get $\partial h_{\alpha} / \partial \alpha=0$ and $\partial^{2} g_{\alpha} / \partial \alpha^{2}=0$. This implies that $g_{\alpha}(x)=\alpha \cdot g(x)$, where $g \in \mathcal{O}^{*}(V)$.

Since $\omega$ and $g(x) d x$ are closed, they are locally exact and we can apply Lemma 2.1.4 to them and the forms $d y_{1}$ and $d x_{1}$. It follows that $d y_{1}=\left.k_{1} \cdot \omega\right|_{U_{1}}, k_{1} \in \mathbb{C}^{*}$. Similarly, $d y_{m}=\left.k_{m} \cdot \omega\right|_{U_{m}}, k_{m} \in \mathbb{C}^{*}$. Hence, $\left.d y_{j}\right|_{\Sigma_{j}}=\left.k_{j} \cdot \tau\right|_{\Sigma_{j}}, j=1, m$.

Now, fix a disk $D_{1} \subset \mathbb{C}$ such that $\phi_{1}:=\left.P\right|_{D_{1}}: D_{1} \rightarrow \Sigma_{1}$ is a biholomorphism. The claim implies that $\phi_{1}^{*}\left(d y_{1}\right)=k_{1} \cdot d z$. Therefore, $y_{1} \circ \phi_{1}(z)=k_{1} \cdot z+d_{1}, d_{1} \in \mathbb{C}$. Similarly, $y_{m} \circ \phi_{m}(z)=k_{m} \cdot z+d_{m}, d_{m} \in \mathbb{C}\left(\phi_{m}=\left.P\right|_{D_{m}}\right)$. It follows that the holonomy transformation $f_{\alpha}$ can be written, in terms of the parameter $z \in \mathbb{C}$, as

$$
f_{\alpha}(z)=k_{m}^{-1} \cdot H\left(y_{1} \circ \phi_{1}(z), \alpha\right)-k_{m}^{-1} \cdot d_{m}=i \cdot z+a_{1} \cdot \alpha+a_{0}
$$

where $a_{1}=k_{m}^{-1} \cdot b$ and $a_{0}=k_{m}^{-1}\left(c-d_{m}\right)+\mu \cdot d_{1}$. Hence, $A(\alpha)=a_{1} \cdot \alpha+a_{0}$, where $a_{1}, a_{0} \in \mathbb{C}$. Similarly, $B(\alpha)=b_{1} \cdot \alpha+b_{0}$.

Now, the point $z_{0}=A(\alpha) /(1-i)$ is a fixed point of $f_{\alpha}$. Let $Q_{\alpha}(z)=z-z_{0}$. The global holonomy group $G(\alpha, c)$ (viewed in the universal covering) is conjugated to the group generated by $F_{\alpha}(z)=Q_{\alpha} \circ f_{\alpha} \circ Q_{\alpha}^{-1}(z)=i \cdot z$ and $G_{\alpha}(z)=Q_{\alpha} \circ g_{\alpha} \circ Q_{\alpha}^{-1}(z)=$ $i \cdot z+C(\alpha)$, where $C(\alpha)=B(\alpha)-A(\alpha)=a \cdot \alpha+b, a=b_{1}-a_{1}$ and $b=b_{0}-a_{0}$. Let us finish the proof of Theorem 1. We need two more results. We will give only an idea of the proof of these results (see Proposition 5 and its corollary in $[\mathbf{L N}]$ ).

Lemma 2.1.5. - The following assertions are equivalent:
(a) The group $G(\alpha, c)$ is finite.
(b) $G(\alpha, c)$ has a finite orbit in $T_{c}$.
(c) There exists $m \in \mathbb{N}$ such that $m \cdot C(\alpha) \in\langle 1, i\rangle$.
(d) $\mathcal{F}_{\alpha}$ has a first integral. In particular, $\alpha \in E_{2}$.

Idea of the proof. - The proof of the equivalences (a) $\Longleftrightarrow(\mathrm{b}) \Longleftrightarrow(\mathrm{c})$ is based in the fact that the group generated by $F_{\gamma}$ and $G_{\alpha}$ is

$$
G=\{z \mapsto \cdots \cdot z+d \cdot C(\alpha) \mid \odot \in\{1,-1, i,-i\} \text { and } d \in\langle 1 . i\rangle\} .
$$

This is done in Proposition 5 of $[\mathbf{L N}]$ in another case, but the proof is similar for the above case. On the other hand, if $\mathcal{F}_{\alpha}$ has a first integral, then all leaves of $\mathcal{F}_{a}$ are algebraic and cut $T_{c}$ in a finite number of points. Hence, $(\mathrm{d}) \Longrightarrow(\mathrm{b})$. Finally, if the group $G(\alpha, c)$ is finite, say $\# G(\alpha, c)=m$, then each leaf of $\mathcal{F}_{\alpha}$ cut each fiber $T_{x}=f^{-1}(x)$ in $m$ points. This implies that all leaves $\mathcal{F}_{\alpha}$ are algebraic. There is a delicate point here. which involves the fact that the leaves of $\mathcal{F}_{0}$ cut transversely the components of the critical fibers of $f$ which are not invariant for $\mathcal{F}_{1 r}$. We have not proved this fact here. but the proof can be done by studing carefully the blowing-up process $\pi$. We leave the details for the reader. Now, we can use Darboux's theorem which asserts that if all leaves of a foliation are algebraic then the foliation has a first integral. Therefore. $(\mathrm{a}) \Longrightarrow(\mathrm{d})$.

Lemma 2.1.6. The map $\propto \mapsto C(a)$ is non-constant. In particular: $a \neq 0$.
Idea of the proof. If $\cap \mapsto C(\alpha)$ were constant then all holonomy groups $G(\alpha, \cdot)$ would be isomorphic. Therefore, it is sufficient to prove that there are $\alpha_{0} . \alpha_{1} \in E_{2}$ such that $\#\left(G\left(\sigma_{0} \cdot c\right)\right) \neq \#\left(G\left(\sigma_{1} \cdot c\right)\right)$. In the case of this pencil. we have $0,1 / 2 \in E_{2}$ and the first integrals $g_{0}^{2}$ and $!_{1 / 2}^{2}$ given in (4). It can be checked by using Bézout's theorem and the explicit expressions for $g_{\infty}^{2}, g_{0}^{2}$ and $g_{1 / 2}^{2}$ that the generic leaf of $\mathcal{F}_{0}$ cuts $T_{6}$ in eight points, whereas the generic leaf of $\mathcal{F}_{1 / 2}$ cuts $T_{6}$ in four points. This implies that $\#(G(0 . c \cdot))=8$ and $\#(G(1 / 2 . c))=4$. Therefore. $a \mapsto C(\alpha)$ is not constant.

End of the proof of Theorem 1. We have seen that $C(a)=a \cdot a+b$, where $a \neq 0$. On the other hand. $0.1 / 2 \in E_{2}$, which implies that there exist $m . n \in \mathbb{N}$ and $m_{0}, n_{0} \cdot m_{1} \cdot n_{1} \in \mathbb{N}$ such that

$$
m \cdot b=m_{0}+n_{0} \cdot i \quad \text { and } \quad n\left(\frac{a}{2}+b\right)=m_{1}+n_{1} \cdot i \quad \Longrightarrow \quad a \cdot b \in \mathbb{Q} \cdot\langle 1 \cdot i\rangle
$$

Since $\mathbb{Q} \cdot\langle 1 . i\rangle$ is a field. we get

$$
m(a \cdot a+b) \in \mathbb{Q} \cdot\langle 1, i\rangle . m \in \mathbb{N} \quad \Longleftrightarrow \quad \alpha \in \mathbb{Q} \cdot\langle 1 . i\rangle
$$

This finishes the proof in the case of the pencil $\mathcal{P}_{2}$.
In the case of the pencil $\mathcal{P}_{1}$ the proof is similar. In this case, the non-singular fibers of $f$ are biholomorphic to $\mathbb{C} /\langle 1 . k\rangle\left(k=e^{\pi i / 3}\right)$ and the holonomy group of $\mathcal{F}_{a}$ is isomorphic to the group generated by the transformations $F_{n}(z)=k \cdot z$ and $G_{a}(z)=k^{2} \cdot z+C(a)$ (in the miversal covering). where and $C(a)=a \cdot a+b, a \neq 0$. This group is

$$
G=\left\{z \mapsto c \cdot z+d \cdot C(\alpha) \mid c \in\left\{1, k \cdot k^{2} \cdot k^{3} \cdot k^{4} \cdot k^{5}\right\} \text { and } d \in\langle 1, k\rangle\right\} .
$$

By the analogous of Lemma 2.1.5 we have that $\alpha \in E_{1}$ if, and only if, there exists $m \in \mathbb{N}$ such that $m \cdot C(\alpha) \in\langle 1 . k\rangle$. On the other hand, we know that $1,-1 \in E_{1}$, because we have the explicit first integrals, $g_{1}^{1}$ and $g_{-1}^{1}$ (see (3)). Therefore, there exist $m, n \in \mathbb{N}$ and $m_{0}, n_{0}, m_{1}, n_{1} \in \mathbb{Z}$ such that

$$
m(a+b)=m_{0}+n_{0} \cdot k \text { and } n(-a+b)=m_{1}+n_{1} \cdot k \quad \Longrightarrow \quad a, b \in \mathbb{Q} \cdot\langle 1 . k\rangle .
$$

Since $\mathbb{Q} \cdot\langle 1, k\rangle$ is a ficld, we get

$$
m(a \cdot \alpha+b) \in\langle 1 \cdot k\rangle . m \in \mathbb{N} \Longleftrightarrow \alpha \in \mathbb{Q} \cdot\langle 1, k\rangle
$$

This finishes the proof of the theorem.
2.2. Proof of Theorem 2. - Let $\mathcal{P}(\mathcal{F} . \mathcal{G})$ be a pencil of foliations on the compact complex surface $M$.

Definition 3.- Suppose that $\mathcal{F}$ and $\mathcal{G}$ are defined on an open set $U \subset M$ by $\omega=0$ and $\eta=0$, where $\omega$ and $\eta$ are holomorphic 1-forms on $U$. We will say that $(U, \omega, \eta)$ are compatible with the pencil if the foliation $\mathcal{F}_{\alpha}$ is defined on $U$ by $\omega+\alpha \cdot \eta=0$, $\alpha \in \mathbb{C}$.

We need a Lemma.
Lemma 2.2.1. - Let $C$ be an irreducible component of $\operatorname{Tang}(\mathcal{F}, \mathcal{G})$ of multiplicity $k \geqslant 1$. There exists a finite set $F \subset|C|$ such that if $p \in|C| \backslash F$ then there is a holomorphic coordinate system $(U .(x, y))$ with $p \in U, x(p)=y(p)=0,|C| \cap U=(y=0)$, and holomorphic 1 -forms $\omega$ and $»$. representing $\left.\mathcal{F}\right|_{U}$ and $\left.\mathcal{G}\right|_{U}$ respectively. such that $(U, \omega, \eta)$ is compatible with the pencil and
(a) If $C$ is invariant for the pencil then

$$
\left\{\begin{array}{l}
\omega=d y \\
\eta=P(x . y) d y-y^{k} d x
\end{array}\right.
$$

where $P \in \mathcal{O}(U)$. If $\theta$ is such that $d \omega=\theta \wedge \omega$ and $d \eta=\theta \wedge \eta$, then

$$
\theta=\left(\frac{P_{. r}}{y^{k}}+\frac{k}{y}\right) d y
$$

In particular, $\left.\Theta\right|_{U}=y^{-k} P_{r x x}(x, y) d x \wedge d y$ in these coordinates.
(b) If $C$ is non-invariant for $\mathcal{F}$ (and so for the pencil) then

$$
\left\{\begin{array}{l}
\omega=d x \\
\eta=y^{k} d y-Q(x, y) d x
\end{array}\right.
$$

where $Q \in \mathcal{O}(U)$. If $\theta$ is such that $d \omega=\theta \wedge \omega$ and $d \eta=\theta \wedge \eta$, then

$$
\theta=\frac{Q_{y}}{y^{k}} d x
$$

In particular $\left.\Theta\right|_{U}=-\frac{\partial}{\partial y}\left(y^{-k} Q_{y}\right) d x \wedge d y$ in these coordinates.

Proof. -- Consider a covering $\mathcal{U}=\left(U_{\alpha}\right)_{\alpha \in A}$ of $M$ by open sets and collections $\Omega=$ $\left(\omega_{\alpha}\right)_{\alpha \in A} . \Xi=\left(\eta_{\alpha}\right)_{\alpha \in A}$ and $\Lambda=\left(g_{\alpha \beta}\right)_{U_{\alpha, \beta} \neq \varnothing}$, such that $\left(U_{\alpha}, \omega_{\alpha}, \eta_{\alpha}\right)$ is compatible with the pencil for every $\alpha \in A$ and, if $U_{\alpha \beta} \neq \varnothing$ then $\omega_{\alpha}=g_{\alpha \beta} \cdot \omega_{\beta}$ and $\eta_{\alpha}=g_{\alpha \beta} \cdot \eta_{\beta}$ on $U_{\alpha \beta}=U_{\alpha} \cap U_{\beta}$. Let $F_{1}=|C| \cap \operatorname{sing}(\mathcal{F})$. Given $p \in|C| \backslash F_{1}$, let $(V,(u, v))$ be a holomorphic coordinate system around $p$ such that $u(p)=v(p)=0$ and $V \cap|C|=$ $(v=0)$. We can suppose that $V \subset U_{\alpha}$, for some $\alpha \in A$. Suppose first that $C$ is invariant for the pencil. Since $p \notin \operatorname{sing}(\mathcal{F})$ and $C$ is invariant for $\mathcal{F}$, by taking a smaller $V$ if necessary, we can suppose that the leaves of $\left.\mathcal{F}\right|_{C}$ are the level curves of $v$, so that $\left.\omega_{\alpha}\right|_{V}=f \cdot d v$, where $f \in \mathcal{O}^{*}(V)$. Set $\omega=f^{-1} \cdot \omega_{\alpha}=d v$ and $\eta=f^{-1} \cdot \eta_{\alpha}$. Note that $(V, \omega, \eta)$ is compatible with the pencil. Let $\eta=A(u, v) d v-B(u . v) d u$. Since $\omega \wedge \eta=B(u, v) d u \wedge d v$ and the multiplicity of $C$ in $\operatorname{Tang}(\mathcal{F}, \mathcal{G})$ is $k$, then $B(u, v)=$ $v^{k} \cdot b(u, v)$, where $b \in \mathcal{O}(V)$ and $b(u, 0) \not \equiv 0$. Let $F_{V}=\{(u, 0) \in|C| \cap V: b(u, 0)=0\}$ and $F=\cup_{V} F_{V} \cup F_{1}$. We leave for the reader the proof that $F$ is finite. If $p \in|C| \backslash F$ then, in the above coordinate system we have $b(0,0) \neq 0$. Therefore, there exists a neighborhood $U$ of $p$, with $U \subset \subset V$, and a function $x \in \mathcal{O}(U)$ such that $x(p)=0$. $\partial x / \partial u=b$ and $\Phi(u, v)=(x(u, v), v)$ is biholomorphism onto $\Phi(U) \subset \mathbb{C}^{2}$. In the coordinate system $(x, y):=(x, v)$, we have $\omega=d y$ and
$\eta=A d v-v^{k} b d u=A d y-y^{k}\left(d x-\frac{\partial x}{\partial v} d y\right)=\left(A+y^{k} \frac{\partial x}{\partial v}\right) d y-y^{k} d x:=P d y-y^{k} d x$ Let us compute $\left.\Theta\right|_{U}$. If $\theta$ is such that $d \omega=\theta \wedge \omega$ and $d \eta=\theta \wedge \eta$ then $\theta=\phi \cdot d y$, because $\omega=d y$ and $d \omega=0$. Since

$$
d \eta=\left(P_{x}+k y^{k-1}\right) d x \wedge d y=\left(\frac{P_{. x}}{y^{k}}+\frac{k}{y}\right) d y \wedge \eta
$$

we get that

$$
\theta=\left.\left(\frac{P_{. r}}{y^{k}}+\frac{k^{2}}{y}\right) d y \quad \Longrightarrow \quad \Theta\right|_{U}=d \theta=\frac{P_{r, x}}{y^{k}} d x \wedge d y
$$

Now. suppose that $C$ is non-invariant for $\mathcal{F}$. Let

$$
F_{1}=\{p \in|C|: \mathcal{F} \text { is tangent to }|C| \text { at } p\} .
$$

Clearly $F_{1}$ is finite and if $p \in|C| \backslash F_{1}$ then there exists a holomorphic coordinate system $(V,(u, v))$ around $p$ such that $V \subset U_{a}$ for some $a \in A, u(p)=v(p)=0$, $|C| \cap V=(0=0)$ and the leaves of $\left.\mathcal{F}\right|_{V}$ are the level curves of $u$. In this case. $\left.\omega_{\alpha}\right|_{V}=f \cdot d u$ where $f \in \mathcal{O}^{*}(V)$. Set $\omega:=d u=\left.f^{-1} \omega_{\alpha}\right|_{V}$ and $\eta=\left.f^{-1} \cdot \eta_{\alpha}\right|_{V}$. Note that $(V, \omega, \eta)$ is compatible with the pencil. Let $\eta=A d v-B d u$, where $A . B \in \mathcal{O}(U)$. Since $\omega \wedge \eta=A d u \wedge d v$ and $C$ is a component of multiplicity $k$, we can write $A=r^{k} \cdot(l$. where $a(u, 0) \not \equiv 0$. Let $F_{V}=\{(u, 0) \in|C| \cap V ; a(u, 0)=0\}$ and set $F=\cup_{V} F_{V} \cup F_{1}$. We leave for the reader the proof that $F$ is finite. If $p \in|C| \backslash F$ then in the above coordinate system we have $a(0.0) \neq 0$. We assert that there exists a coordinate system $(U .(x, y))$ around $p$ such that $U \subset V, u=x, y=v \cdot \phi(u, v)$ and

$$
\begin{equation*}
\frac{\partial y^{k+1}}{\partial v}=(k+1) v^{k} a\left(u \cdot v^{\prime}\right) \tag{*}
\end{equation*}
$$

In fact, in a neighborhood of $p=(0,0) \in V$, we can write $(k+1) v^{k} a(u, v)=$ $\sum_{j=k}^{\infty} a_{j}(u) v^{j}$, where $a_{k}(0)=(k+1) a(0.0) \neq 0$. Let

$$
\phi(u, v)=\sum_{j=k+1}^{\infty} \frac{1}{j} a_{j-1}(u) v^{j}:=v^{k+1} \cdot b(u, v) .
$$

Note that $b(0,0)=a(0,0) \neq 0$ and $\partial \phi / \partial v=(k+1) v^{k} a(u, v)$. Let $U_{1} \subset V$ be a simply connected open neighborhood of (0.0) such that $b \in \mathcal{O}^{*}\left(U_{1}\right)$. Let $c \in \mathcal{O}^{*}\left(U_{1}\right)$ be such that $c^{k+1}=b$ and $y \in \mathcal{O}\left(U_{1}\right)$ be defined by $y(u, v)=v \cdot c(u, v)$. Note that $y^{k+1}=\phi$ and the map $\Phi(u, v)=(u, y(u, v))=(x, y)$ is a biholomorphism from some open neighborhood $U \subset U_{1}$ onto an open subset of $\mathbb{C}^{2}$. Clearly, the coordinate system $(U .(x, y))$ satisfies $(*)$. In these coordinates. we have $\omega=d x$ and

$$
\begin{aligned}
& \eta=v^{k} a(u, v) d v-B(u, v) d u=\frac{1}{k+1} \frac{\partial y^{k+1}}{\partial v} d v-B(u, v) d u \\
& =y^{k} d y-\left(\frac{1}{k+1} \frac{\partial y^{k+1}}{\partial u}+B(u, v)\right) d u:=y^{k} d y-Q(x, y) d x
\end{aligned}
$$

If $\theta$ is such that $d \omega=\theta \wedge \omega$ and $d \eta=\theta \wedge \eta$ then $\theta=\psi \cdot d x$. because $\omega=d x$ and $d \omega=0$. Since

$$
d \eta=Q_{y y} d x \wedge d y=\frac{Q_{y}}{y^{k}} d x \wedge \eta
$$

we get that

$$
\theta=\frac{Q_{y}}{y^{k}} d x \quad \Longrightarrow \quad \Theta=d \theta=-\frac{\partial}{\partial y}\left(\frac{Q_{y}}{y^{k}}\right) d x \wedge d y
$$

This finishes the proof of Lemma 2.2.1.
From now on. in this section. we will suppose that all irreducible components of $\operatorname{Tang}(\mathcal{F}, \mathcal{G})$ have multiplicity one.
2.2.2. $(\mathrm{b}) \Longrightarrow(\mathrm{c})$. Denote by $D_{x}$ the divisor of poles of $(-$. Let $C$ be a component of $\operatorname{Tang}(\mathcal{F}, \mathcal{G})$. Suppose first that $C$ is invariant for the pencil. Since the multiplicity of $C$ in $\operatorname{Tang}(\mathcal{F}, \mathcal{G})$ is one, by Lemma 2.2.1. we can choose a coordinate system $(U,(x, y))$ such that $U \cap C=(y=0) \cdot p=(0.0) \in U$ and

$$
\left\{\begin{array}{l}
\omega=d y  \tag{5}\\
\eta=P(x \cdot y) d y-y d x
\end{array}\right.
$$

Let $P(x, y)=p_{0}(x)+y p(x . y)$. where $p \in \mathcal{O}(U)$ and $p_{0}(x)=\sum_{j=0}^{x} a_{j} x^{j}$. Since $\Theta=h \cdot d x \wedge d y$, where $h=y^{-1} P_{x, r}=y^{-1} p_{0}^{\prime \prime}(x)+p_{r \cdot x}(x, y)$, then $C \not \subset D_{x}$ if, and only if, $p_{0}(x)=a_{0}+a_{1} x$. Note that the foliation $\mathcal{F}_{T}$ associated to $\eta_{T}=\eta+T \cdot \omega=$ $(T+P(x . y)) d y-y d x$. is defined on $U$ by the vector field

$$
X_{T}(x \cdot y)=\left(T+p_{0}(x)+y p(x \cdot y)\right) \frac{\dot{\partial}}{\partial x}+y \frac{\dot{\partial}}{\partial y}
$$

Hence the singularities of $\mathcal{F}_{T}$ on $U$ are given by $!=T+p_{0}(x)=0$.

We have two possibilities: either $p_{0}$ is a constant $\left(p_{0}(x)=a_{0}\right)$, or $p_{0}$ is not a constant. In the first case, we get that $\eta_{-a_{0}}=y(p d y-d x)$. In this case, $-a_{0} \in N I$ and there is no movable singularity on $C$. Moreover $\Theta=p_{x x} d x \wedge d y$, which implies that $C \not \subset D_{\infty}$. In the second case, there is a movable singularity on $C$ : if $x(T)$ is such that $T+p_{0}(x(T))=0$ and $-T$ is a regular value of $p_{0}$ then $x(T)$ is a movable singularity of $\mathcal{P}$ and $T \in G P=\left\{T \in I S \mid n(T)=n_{0}\right\}$. Without lost of generality, we can suppose that this singularity satisfies (a) of Definition 2. This singularity is non-degenerate, in the sense that zero is not an eigenvalue of $D X_{T}(q(T))$, where $q(T)=(x(T), 0)$. In this case, the Baum-Bott index of $\mathcal{F}_{T}$ at $p(T)$ is given by (cf. $[\mathbf{B r}]$ ):

$$
\begin{align*}
B(T):=B B\left(q(T), \mathcal{F}_{T}\right) & =\frac{\operatorname{tr}^{2}\left(D X_{T}(q(T))\right.}{\operatorname{det}\left(D X_{T}(q(T))\right.}=\frac{\left(p_{0}^{\prime}(x(T))+1\right)^{2}}{p_{0}^{\prime}(x(T))} \\
& =p_{0}^{\prime}(x(T))+\frac{1}{p_{0}^{\prime}(x(T))}+2 \tag{6}
\end{align*}
$$

Since $C$ is nice, we have $B^{\prime}(T) \equiv 0$. As the reader can check, this condiction is equivalent to

$$
p_{0}^{\prime \prime}(x(T))\left(1-\frac{1}{\left(p_{0}^{\prime}(x(T))\right)^{2}}\right) x^{\prime}(T) \equiv 0
$$

Since $q(T)$ is a movable singularity, we have $x^{\prime}(T) \not \equiv 0$. Therefore, $p_{0}^{\prime \prime}(x(T)) \equiv 0$, which implies that $p_{0}^{\prime \prime} \equiv 0$ and $p_{0}(x)=a_{0}+a_{1} x$ (note that $p_{0}^{\prime}(x(T))= \pm 1$ implies also that $\left.p_{0}^{\prime \prime}=0\right)$. Therefore, $C \not \subset D_{\infty}$.

Suppose now that $C$ is non-invariant for $\mathcal{P}$. Consider a coordinate system $(U,(x, y))$ such that $U \cap C=(y=0), p=(0,0) \in U$ and

$$
\left\{\begin{array}{l}
\omega=d x  \tag{7}\\
\eta=y d y-Q(x, y) d x
\end{array}\right.
$$

where $Q(x, y)=q_{0}(x)+q_{1}(x) y+y^{2} q(x, y)$, where $q_{0}, q_{1}$ and $q$ are holomorphic. Since $\Theta=-\left(y^{-1} Q_{y}\right)_{y} d x \wedge d y$, then $C \not \subset D_{\infty}$ if, and only if, $q_{1}(x) \equiv 0$. Note that the foliation $\mathcal{F}_{T}$ associated to $\eta_{T}=\eta+T \cdot \omega=y d y+(T-Q(x, y) d x$, is defined on $U$ by the vector field

$$
X_{T}(x, y)=y \frac{\partial}{\partial x}+\left(q_{0}(x)+q_{1}(x) y+y^{2} q(x, y)-T\right) \frac{\partial}{\partial y}
$$

Hence, the singularities of $\mathcal{F}_{T}$ on $U$ are given by $y=q_{0}(x)-T=0$.
We have two possilities: either $q_{0}$ is a constant, or $q_{0}$ is not a constant. In the first case, we get $\eta_{q_{0}}=y\left[d y-\left(q_{1}(x)+y q(x, y)\right) d x\right]$, and so $q_{0} \in N I$ and there is no movable singularity on $C$. Since $C$ is nice, the curve $C$ is invariant for the divided foliation associated to $q_{0}$, which is defined by $\widetilde{\omega}=d y-\left(q_{1}(x)+y q(x, y)\right) d x$ on $U$. But, $C \cap U=(y=0)$ and this curve is invariant for $\widetilde{\omega}=0$ if, and only if, $q_{1} \equiv 0$. Therefore, $C \not \subset D_{\infty}$. In the second case, there is a movable singularity: $p(T)=(x(T), 0) \in U \cap C$, where $x(T)$ is such that $q_{0}(x(T))-T=0$. Set $q_{0}(0)=T_{0}$. If $T$ is a regular value
of $q_{0}$ near $T_{0}$, then $T \in G P$. Without lost of generality, we can suppose that this singularity satisfies (c) of Definition 2. This singularity is non-degenerate, and so:

$$
\begin{equation*}
B(T):=B B\left(p(T) \cdot \mathcal{F}_{T}\right)=\frac{\operatorname{tr}^{2}\left(D X_{T}(p(T))\right.}{\operatorname{det}\left(D X_{T}(p(T))\right.}=\frac{q_{1}^{2}(x(T))}{q_{0}^{\prime}(x(T))} \tag{8}
\end{equation*}
$$

Since $C$ is nice, we get $B \equiv 0$, and so $q_{1} \equiv 0$. which implies that $C \not \subset D_{\infty}$.
2.2.3. $(\mathrm{a}) \Longrightarrow(\mathrm{b})$. $\quad$ Suppose first that $C$ is invariant for $\mathcal{P}(\mathcal{F}, \mathcal{G})$. Let $(U,(x, y))$ be a coordinate system like in (5), around a point $p=(0.0) \in U \cap C$. Since $\Theta \equiv 0$, by Lemma 2.2.1, we have $P_{x x}=0$. This implies that $P(x, y)=p_{0}(y)+p_{1}(y) x$, where $p_{0}, p_{1}$ are holomorphic. Hence. the singularities of $\mathcal{F}_{T}$ on $C \cap U$ are the solutions of $y=T+p_{0}(0)+p_{1}(0) x=0$. We have two possibilities: either $p_{1}(0) \neq 0$, or $p_{1}(0)=0$. If $p_{1}(0)=0$, then $T=-p_{0}(0) \in N I$ and we are in the situation of (b) of Definition 2 . Therefore, $C$ is nice. If $p_{1}(0) \neq 0$, then $C$ contains an unique movable singularity: $q(T)=(x(T), 0)$, where $x(T)=-\left(T+p_{0}(0)\right) / p_{1}(0)\left(\right.$ clearly $q(T) \in U$ for $\left|T+p_{0}(0)\right|$ small enough). This singularity is non-degenerate and so by (6) we get:

$$
B B\left(p(T), \mathcal{F}_{T}\right)=\frac{\operatorname{tr}^{2}\left(D X_{T}(p(T))\right.}{\operatorname{det}\left(D X_{T}(p(T))\right.}=\frac{\left(p_{1}(0)+1\right)^{2}}{p_{1}(0)}
$$

Hence, $C$ is nice in this case.
Suppose now that $C$ is non-invariant for the pencil. Consider a coordinate system $(U,(x, y))$ around $p=(0,0) \in U$ as in (7). Since $\Theta \equiv 0$. Lemma 2.2.1 implies that

$$
\frac{\partial}{\partial y}\left(y^{-1} Q_{y}\right)=0 \quad \Longrightarrow \quad Q(x, y)=q_{0}(x)+q_{2}(x) y^{2}
$$

This implies that $C$ is nice, as the reader can check by using (8).
2.2.4. (c) $\Longrightarrow$ (a). $\quad$ Suppose that $\Theta$ is holomorphic. The idea is to use the wellknown fact that

$$
\Theta \equiv 0 \quad \Longleftrightarrow \quad \int_{M} \Theta \wedge \bar{\Theta}=0 \quad \Longleftrightarrow \quad[\Theta]=0 \text { in } H_{D R}^{2}(M)
$$

The proof will be based in the following:
Claim 1. $\quad \int_{M} \Theta \wedge \bar{\Theta}=-2 \pi i \int_{M} c_{1}\left(N_{\mathcal{F}}\right) \wedge \bar{\Theta}$, where $c_{1}\left(N_{\mathcal{F}}\right)$ is any representative of the first Chern class of $N_{\mathcal{F}}$ in $H_{D R}^{2}(M)$.

Proof. Let $\mathcal{U}=\left(U_{\alpha}\right)_{\alpha \in A}$ be a covering of $M$ by open sets, $\Omega=\left(\omega_{\alpha}\right)_{\alpha \in A}, \Xi=$ $\left(\eta_{\alpha}\right)_{\alpha \in A}$ and $\Lambda=\left(g_{\alpha \beta}\right)_{U_{n}, \beta \neq \varnothing}$ be as in (I), (II) and (III) of $\S 1$. Let $\left(\theta_{\alpha}\right)_{\alpha \in A}$ be a collection of 1-forms, where $\theta_{\alpha}$ is meromorphic on $U_{\alpha}$, $d \omega_{\alpha}=\theta_{\alpha} \wedge \omega_{\alpha}$ and $d \eta_{\alpha}=\theta_{\alpha} \wedge \eta_{\alpha}$. Recall that, if $U_{\alpha \beta} \neq \varnothing$ then $\theta_{\alpha}-\theta_{\beta}=d g_{\alpha \beta} / g_{\alpha \beta}$. On the other hand, by taking a $C^{\infty}$ resolution of the additive cocycle $\left(d g_{\alpha \beta} / g_{\alpha \beta}\right)_{U_{n, \beta} \neq \varnothing}$, we can write $d g_{\alpha \beta} / g_{\alpha \beta}=\mu_{\alpha}-\mu_{\beta}$, where the closed 2 -form $\Lambda$ defined by $\left.\Lambda\right|_{U_{n}}=\frac{i}{2 \pi} d \mu_{c_{c}}$, represents $c_{1}\left(N_{\mathcal{F}}\right)$ on $H_{D R}^{2}(\Lambda I)$ (cf. [G-H], p. 141). If $U_{\alpha, \beta} \neq \varnothing$. then $d g_{\alpha, \beta} / g_{\alpha, \beta}=\theta_{\alpha}-\theta_{\beta}=\mu_{\alpha}-\mu_{\beta}$. Hence, we can
define a $C^{\infty} 1$-form $\varphi$ on $W:=M \backslash \operatorname{Tang}(\mathcal{F}, \mathcal{G})$ by $\left.\varphi\right|_{U_{\kappa} \cap W}=\frac{i}{2 \pi}\left(\theta_{\alpha}-\mu_{\alpha}\right)$. Note that $d \varphi=\frac{i}{2 \pi} \Theta-\Lambda$. This implies that $d \varphi$ extends to a $C^{\infty}$ form in $M$. Moreover,

$$
\begin{equation*}
\int_{M I}\left(\frac{i}{2 \pi} \Theta-\Lambda\right) \wedge \bar{\Theta}=\int_{M I} d \varphi \wedge \bar{\Theta} \tag{9}
\end{equation*}
$$

The idea is to prove that $\int_{M I} d \varphi \wedge \bar{\Theta}=0$. Let us study the behavior of $\varphi$ near an irreducible component of $\operatorname{Tang}(\mathcal{F}, \mathcal{G})$. Set $\operatorname{Tang}(\mathcal{F}, \mathcal{G})=\sum_{j=1}^{k} C_{j}+\sum_{i=1}^{\ell} D_{i}$. where $C_{j}$ is invariant for the pencil, $j=1, \ldots, k$, and $D_{i}$ is non-invariant, $i=1, \ldots, \ell$. Consider first the non-invariant case. Let $p \in\left|D_{i}\right| \cap U_{\alpha}$ be a point such that we have a normal form like in (b) of Lemma 2.2.1, in a coordinate system $(U,(x, y))$, where $U \subset U_{\alpha}$. As we have seen, $\left.\omega_{\alpha}\right|_{U}=f \omega$ and $\left.\eta_{\alpha}\right|_{U}=f \eta$, where $f \in \mathcal{O}^{*}(U), \omega=d x$ and $\eta=y d y-Q(x, y) d x, Q(x, y)=q_{0}(x)+q_{1}(x) y+y^{2} q(x, y)$. This implies that $\theta_{\alpha}=\theta+d f / f$, where $\theta=\frac{Q_{y}}{y} d x$. Note that $\Theta$ is holomorphic in $U$ if, and only if, $Q_{y} / y$ is holomorphic, which implies that $\theta_{a}$ is holomorphic in $U$ and $\varphi$ is $C^{\infty}$ in $U$. This implies that $\varphi$ is $C^{\infty}$ on $M \backslash|C|$, where $C=\sum_{j} C_{j}$ and $|C|=\cup_{j}\left|C_{j}\right|$.

Consider now a point $p \in|C|$. Let $\left(f_{1} \cdots f_{k}=0\right)$ be a (reduced) equation of $C$ in a small Stein neighborhood $U$ of $p$. We assert that there exist $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{C}$ and a $C^{\infty}$ 1-form $\nu$ such that

$$
\begin{equation*}
\left.\varphi\right|_{U}=\sum_{j=1}^{r} \lambda_{j} \frac{d f_{j}}{f_{j}}+\nu \tag{10}
\end{equation*}
$$

In fact, suppose first that $p$ belongs to an invariant component $C_{j}$ and we have a normal form like in (a) of Lemma 2.2 .1 on a coordinate system $(U,(x, y))$. where $U \subset U_{c}$, for some $\alpha \in A$. As before, we have $\left.\omega_{\alpha}\right|_{U}=f \cdot \omega=f \cdot d y$ and $\left.\eta_{\alpha}\right|_{U}=f \cdot \eta$, where $f \in \mathcal{O}^{*}(U)$ and $\eta=P(x, y) d y-y d x$. From the first part of the proof and the fact that $\Theta$ is holomorphic. we get

$$
\begin{equation*}
\theta_{\alpha}=\theta+\frac{d f}{f}=\frac{1+P_{x}}{y} d y+\frac{d f}{f}=\frac{1}{2 \pi i} \lambda_{U} \frac{d y}{y}+\varsigma_{U} \tag{}
\end{equation*}
$$

where $\lambda_{U} \in \mathbb{C}$ and $\varsigma_{U}$ is a holomorphic 1-form. This implies that $\left.\varphi\right|_{U}=\lambda_{U} \frac{d y}{y}+\nu_{U}$, where $\nu_{U}$ is a $C^{\perp} 1$-form.

Let us prove that $\lambda_{U}$ depends only of $C_{j}$. It follows from $\left(^{*}\right)$ that

$$
\frac{1}{2 \pi i} \lambda_{U}=\operatorname{Res}\left(\theta_{\alpha}, C_{j}\right)=\frac{1}{2 \pi i} \int_{\gamma} \theta_{\alpha},
$$

where $\gamma$ is a small cicle surrounding $C_{j}$. If $\beta \in A$ is such that $U_{\alpha} \cap U_{\beta} \cap C_{j} \neq \varnothing$ then $\theta_{\alpha}-\theta_{\beta}=d g_{\alpha \beta} / g_{\alpha \beta}$. Hence.

$$
\frac{1}{2 \pi i} \int_{\gamma} \theta_{\alpha}=\frac{1}{2 \pi i} \int_{\gamma} \theta_{\beta} .
$$

if $\gamma \subset U_{\alpha} \cap U_{\beta}$. This proves that $\lambda_{U}$ depends only of $C_{j}$. Set $\lambda_{U}=\lambda_{j}$.
Note that $\lambda_{j}$ satisfies the following property
(A) Let $\left(f_{j \alpha}=0\right)$ be a reduced equation of $C_{j} \cap U_{\alpha}$. Then $\theta_{\alpha}-\frac{1}{2 \pi i} \lambda_{j} d f_{j \alpha} / f_{j \alpha}$ has no poles along $C_{j} \cap U_{\alpha}$.

We leave the proof of (A) for the reader. Let $p \in|C| \cap U_{\alpha}$ and $\left(f_{j \alpha}=0\right)$ be a reduced equation of $C_{j}$ on $U_{\alpha}$. It follows from (A) that $\theta_{\alpha}-\sum_{j=1}^{k} \frac{1}{2 \pi i} \lambda_{j} d f_{j \alpha} / f_{j \alpha}$ is holomorphic on $U_{\alpha}$. Hence, $\nu=\left.\varphi\right|_{U_{\mu}}-\sum_{j=1}^{k} \lambda_{j} d f_{j \alpha} / f_{j \alpha}$ is $C^{\infty}$. This proves (10).

Let us prove that $\int_{\Lambda I} d \varphi \wedge \bar{\Theta}=0$. We will consider two cases:
First case. .- All the singularities of $C$ are nodes. In this case, we can find a finite open covering $\mathcal{V}=\left(V_{\alpha}\right)_{\alpha \in A}$ of $M$ with the following properties:
(i) For every $\alpha \in A, V_{\alpha}$ is a domain of a coordinate system $\psi_{\alpha}=\left(x_{\alpha}, y_{\alpha}\right): U_{\alpha} \rightarrow \mathbb{C}^{2}$ such that $\psi_{\alpha}\left(U_{\alpha}\right)=D_{2} \times D_{2}$, where $D_{r}=\{z \in \mathbb{C}| | z \mid<r\}$.
(ii) If $U_{\alpha}=\psi_{\alpha}^{-1}\left(D_{1} \times D_{1}\right)$ then $\cup_{\alpha} U_{\alpha}=M$.
(iii) If $|C| \cap V_{\alpha} \neq \varnothing$ is smooth then $\left(y_{\alpha}=0\right)$ is an equation of $C \cap V_{\alpha}$. In particular, $\left.\varphi\right|_{V_{c}}=\lambda \frac{d y_{c}}{y_{c}}+\nu$, where $\lambda \in \mathbb{C}$ and $\nu$ is $C^{\infty}$.
(iv) If $|C| \cap V_{\alpha}$ has a singularity in $V_{\alpha}$ then $\left(x_{\alpha} \cdot y_{\alpha}=0\right)$ is an equation of $C \cap V_{\alpha}$. In particular, $\left.\varphi\right|_{V_{n}}=\lambda_{a} \frac{d x_{n}}{x_{n}}+\lambda_{b} \frac{d y_{\infty}}{y_{n}}+\nu$, where $\lambda_{a}, \lambda_{b} \in \mathbb{C}$ and $\nu$ is $C^{\infty}$.

In general, let $\left(f_{\alpha}=0\right)$ be an equation of $C \cap V_{\alpha}$. Let $\left(\varphi_{\alpha}\right)_{\alpha \in A}$ be a $C^{\infty}$ partition of the unity such that $\operatorname{supp}\left(\varphi_{\alpha}\right) \subset V_{\alpha}$ for all $\alpha \in A$ and set $f=\exp \left(\sum_{\alpha} \varphi_{\alpha} \cdot \ln \left|f_{\alpha}\right|\right)$. If $\beta \in A$ is fixed, then

$$
\begin{aligned}
\left.f\right|_{V_{\beta \beta}} & =\exp \left(\sum_{\alpha, V_{\alpha, \beta \beta} \neq \varnothing} \varphi_{\alpha} \cdot \ln \left|f_{\alpha}\right|\right) \cdot \exp \left(\sum_{\alpha, V_{\alpha, \beta, j}=\varnothing} \varphi_{\alpha} \cdot \ln \left|f_{\alpha}\right|\right) \\
& =\exp \left(\sum_{\alpha, V_{\alpha, \beta ; \beta} \neq \varnothing} \varphi_{\alpha} \cdot \ln \left|g_{\alpha \beta} f_{\beta}\right|\right) \cdot \exp \left(\sum_{\alpha, V_{\alpha, \beta}=\varnothing} \varphi_{\alpha} \cdot \ln \left|f_{\alpha}\right|\right)=\left|f_{\beta}\right| \cdot g_{\beta}
\end{aligned}
$$

where $g_{\beta}: V_{\beta} \rightarrow(0,+\infty)$ is $C^{\infty}$.
(v) $\left.f\right|_{V_{\alpha}}=\left|f_{\alpha}\right| \cdot g_{\alpha}$, where $g_{\alpha} \in C^{\infty}\left(V_{\alpha}\right)$. In particular, $f$ can be extended continually to $M$ as $\left.f\right|_{|C|} \equiv 0$.
(vi) $f>0$ on $M \backslash|C|$ and $f^{-1}(0)=|C|$.

Set $M_{\varepsilon}=\{p \in M \mid f(p) \geqslant \varepsilon\}$ and $C_{\varepsilon}=\{p \in M \mid f(p) \leqslant \varepsilon\}$. For all $\varepsilon>0$ we have

$$
\begin{aligned}
\int_{M} d \varphi \wedge \bar{\Theta} & =\int_{M_{\varepsilon}} d \varphi \wedge \bar{\Theta}+\int_{C_{\varepsilon}} d \varphi \wedge \bar{\Theta}=\int_{M_{s}} d(\varphi \wedge \bar{\Theta})+\int_{C_{\varepsilon}} d \varphi \wedge \bar{\Theta} \\
& =\int_{\partial I_{s}} \varphi \wedge \bar{\Theta}+\int_{C_{\varepsilon}} d \varphi \wedge \bar{\Theta} .
\end{aligned}
$$

Since $\lim _{\varepsilon \rightarrow 0}\left(\int_{C_{\varepsilon}} d \varphi \wedge \bar{\Theta}\right)$, we get
(vii) $\int_{\Lambda I} d \varphi \wedge \bar{\Theta}=\lim _{\varepsilon \rightarrow 0}\left(\int_{\partial M_{\varepsilon}} \varphi \wedge \bar{\Theta}\right)$.

It is enough to prove that $\lim _{\varepsilon \rightarrow 0}\left(\int_{\partial I_{\varepsilon}} \varphi \wedge \bar{\Theta}\right)=0$. In order to prove this fact, consider a covering $\left\{V_{1}:=V_{\alpha_{1}}, \ldots, V_{n}:=V_{\alpha_{n}}\right\}$ of $|C|$ by sets of $\mathcal{V}$, such that $\left\{U_{j}:=U_{\alpha_{j}} \mid 1 \leqslant j \leqslant n\right\}$ is still a covering of $|C|$. If $U=\cup_{j=1}^{n} U_{j}$ then there
exists $\varepsilon_{0}$ such that, if $\varepsilon<\varepsilon_{0}$ then $\partial M_{\varepsilon} \subset V$. Hence, if $S_{j}(\varepsilon)=\partial M_{\varepsilon} \cap \bar{U}_{\varepsilon}$ and $I_{j}(\varepsilon)=\int_{S_{j}(\varepsilon)}|\varphi \wedge \bar{\Theta}|$, we get that

$$
\left|\int_{\partial I_{\xi}} \varphi \wedge \bar{\Theta}\right| \leqslant \sum_{j=1}^{n} I_{j}(\varepsilon), \quad \text { if } \varepsilon<\varepsilon_{0}
$$

It follows that, it is sufficient to prove that $\lim _{\varepsilon \rightarrow 0} I_{j}(\varepsilon)=0$ for all $j=1 \ldots . . n$. We will prove this fact in the case where $V_{j}$ is like in (iv) and leave the other case for the reader.

Consider a coordinate system $(x, y)$ on $V_{j}$ as in (iv), that is $|C| \cap V_{j}=(x \cdot y=0)$. As we have seen before, $\left.\Theta\right|_{r_{i}}=g(x, y) d x \wedge d y$ and $\left.\varphi\right|_{V_{j}}=\lambda_{a} \frac{d x}{x}+\lambda_{b} \frac{d y}{y}+\nu$. where $g \in \mathcal{O}\left(V_{j}\right), \lambda_{a}, \lambda_{b} \in \mathbb{C}$ and $\nu$ is $C^{\infty}$. Therefore, there exists a constant $c>0$ such that on $\bar{U}_{j}$ we have

$$
|\varphi \wedge \bar{\Theta}| \leqslant c\left(\left|\frac{d x}{x} \wedge d \bar{x} \wedge d \bar{y}\right|+\left|\frac{d y}{y} \wedge d \bar{x} \wedge d \bar{y}\right|+|\nu \wedge d \bar{x} \wedge d \bar{y}|\right)
$$

If we set

$$
\begin{aligned}
A_{j}(\varepsilon) & =\int_{S_{j}(\varepsilon)}\left|\frac{d x}{x} \wedge d \bar{x} \wedge d \bar{y}\right| . \\
B_{j}(\varepsilon) & =\int_{S_{j}(\varepsilon)}\left|\frac{d y}{y} \wedge d \bar{x} \wedge d \bar{y}\right| \\
C_{j}(\varepsilon) & =\int_{S_{j}(\varepsilon)}|\nu \wedge d \bar{x} \wedge d \bar{y}| .
\end{aligned}
$$

then $I_{j}(\varepsilon) \leqslant c \cdot\left(A_{j}(\varepsilon)+B_{j}(\varepsilon)+C_{j}(\varepsilon)\right)$. Hence, it is sufficient to prove that $\lim _{\varepsilon \rightarrow 0} A_{j}(\varepsilon)=\lim _{\varepsilon \rightarrow 0} B_{j}(\varepsilon)=\lim _{\varepsilon \rightarrow 0} C_{j}(\varepsilon)=0$. We will prove that $\lim _{\varepsilon \rightarrow 0} A_{j}(\varepsilon)=0$ and leave the proof that $\lim _{\varepsilon \rightarrow 0} B_{j}(\varepsilon)=\lim _{\varepsilon \rightarrow 0} C_{j}(\varepsilon)=0$ for the reader (note that $\lim _{\varepsilon \rightarrow 0} C_{j}(\varepsilon)=0$ becaluse $\nu$ is $\left.C^{x}\right)$. Given $0<a<1$, define
$J(a, \varepsilon)=\int_{S_{j}(\xi) \cap(|x| \geqslant a)}\left|\frac{d x}{x} \wedge d \bar{x} \wedge d \bar{y}\right| \quad$ and $\quad K(a, \varepsilon)=\int_{S_{j}(\xi) \cap(|\cdot x| \leqslant a)}\left|\frac{d x}{x} \wedge d \bar{x} \wedge d \bar{y}\right|$ so that $A_{j}(\varepsilon)=J(a, \varepsilon)+K(a, \varepsilon)$. Since $\left|\frac{d \cdot r}{x} \wedge d \bar{x} \wedge d \bar{y}\right|$ is $C^{\infty}$ on $(|\cdot r| \geqslant a)$, we get that $\lim _{z \rightarrow 0} J(a, \varepsilon)=0$ for all $a>0$. Therefore it is sufficient to prove that there exists $0<a<1$ such that $\lim _{\varepsilon \rightarrow 0} h^{\prime}(a, \varepsilon)=0$.

Set $x=r e^{i n}$ and $y=s e^{i \beta}$. so that $\left|\frac{d \cdot r}{r} \wedge d \bar{x} \wedge d \bar{y}\right|=2|d r \wedge d e \wedge d \bar{y}|$. In the coordinateststem (r.a.y) we have $f(r \cdot a . y)=r \cdot s \cdot g(r . a . y)$ (by (iv)). where $g \in C^{x}$ and $g>0$. Since $\partial r \cdot g / \partial r(0 . \kappa, y)=g(0, \alpha, y)>0$, there exist.s $0<a<1$ such that the map $\ell(r \cdot a \cdot y)=(r \cdot g(r \cdot a \cdot y) \cdot a \cdot y)=(R \cdot a \cdot y)$ is diffeomorphism from a neighborhood $W$ of $(r=0) \cap(|y| \leqslant 1)$ onto $W_{1}=(R<\delta) \cap(|y|<1+\delta)$, where $\|^{\prime} \sup (r \leqslant a) \cap(|y| \leqslant 1)$. Note that $\|^{-1}(R, a \cdot y)=(R \cdot h(R \cdot a \cdot y) \cdot \alpha \cdot y)$. where $h$ is ( ${ }^{\infty}$. In the coordinate system ( $R . a . y$ ) we have
$S_{j}(\varepsilon) \cap W_{i}=(R \cdot|y|=R \cdot s=\varepsilon) \cap(s \leqslant 1):=T(\varepsilon) \Longrightarrow K^{\prime}(a \cdot \varepsilon)=\int_{T(\varepsilon)} 2|d(R \cdot h) \wedge d \Omega \wedge d \bar{y}|$
if $\varepsilon>0$ is small. We assert that there exists a constant $c>0$ such that $2|d(R \cdot h) \wedge d \alpha \wedge d \bar{y}| \leqslant c \cdot R|d s \wedge d \alpha \wedge d \beta|$ on $T(\varepsilon)$, if $\varepsilon$ is small (the restriction to $T(\varepsilon))$. In fact,

$$
\begin{aligned}
2|d(R \cdot h) \wedge d \alpha \wedge d \bar{y}| \leqslant & 2 R \mid d h \wedge d \alpha \\
\leqslant & \wedge d \bar{y}|+2| h||d R \wedge d \alpha \wedge d \bar{y}| \\
& +2|h||d R \wedge d \alpha \wedge d \bar{y}|+2 R\left|h_{y}\right||d \alpha \wedge d y \wedge d \bar{y}| \\
& \wedge d \bar{y} \mid
\end{aligned}
$$

Since $K:=\psi((r \leqslant a) \cap(|y| \leqslant 1))$ is compact. $2|h|, 2\left|h_{R}\right|, 2\left|h_{y}\right|, R$ are bounded in $K$, so that there exists a constants $c_{1}>0$ such that

$$
\begin{aligned}
2|d(R \cdot h) \wedge d \alpha \wedge d \bar{y}| & \leqslant c_{1}(R|d \alpha \wedge d y \wedge d \bar{y}|+|d R \wedge d \alpha \wedge d \bar{y}|) \\
& \leqslant c_{1}(2 R|d s \wedge d \alpha \wedge d \beta|+|d R \wedge d \alpha \wedge d \bar{y}|)
\end{aligned}
$$

on $K$, because $|d \alpha \wedge d y \wedge d \bar{y}|=2|d s \wedge d \alpha \wedge d \beta|$. On the other hand, $\bar{y}=s \cdot e^{-i \beta}$ and $R \cdot s=\varepsilon$ on $T(\varepsilon)$. Hence, if $\varepsilon>0$ is small, we get

$$
\begin{aligned}
|d R \wedge d \alpha \wedge d \bar{y}| & =|d(R d \bar{y}) \wedge d \alpha|=\left|d\left(-R s i e^{-i, 3} d \beta\right) \wedge d \alpha+d\left(R e^{-i \beta} d s\right) \wedge d \alpha\right| \\
& =\left|d\left(-\varepsilon i e^{-i, s} d \beta\right) \wedge d \alpha+d\left(R e^{-i \beta} d s\right) \wedge d \alpha\right| \\
& =\left|d\left(R e^{-i, \beta} d s\right) \wedge d \alpha\right| \leqslant R|d s \wedge d \alpha \wedge d \beta|+|d R \wedge d s \wedge d \alpha| \\
& =R|d s \wedge d \alpha \wedge d \beta|
\end{aligned}
$$

because $d R \wedge d s=0$ on $T(\varepsilon)$. Therefore, on $T(\varepsilon)$ we have $2|d(R \cdot h) \wedge d \alpha \wedge d \bar{y}| \leqslant$ $c \cdot R|d s \wedge d \alpha \wedge d \beta|$. where $c=3 c_{1}$. From this. we get that

$$
K(a, \varepsilon) \leqslant c \int_{T(\varepsilon)} R|d s \wedge d \alpha \wedge d \beta|=c \varepsilon \int_{T(\xi)}\left|\frac{d s}{s} \wedge d \alpha \wedge d \beta\right|
$$

On the other hand, the region $T(\varepsilon)$ in the real hypersurface $R \cdot s=\varepsilon$, is contained in a region of the form

$$
T_{1}(\varepsilon):=\left\{(R, s, \alpha, \beta) \mid R \cdot s=\varepsilon, \alpha, \beta \in[0,2 \pi], 1 \geqslant s \geqslant \varepsilon / R_{0}\right\}
$$

where $R_{0}=\sup \left\{R(r, \alpha, y) \mid(r, \alpha, y) \in S_{j}(\varepsilon)\right\}$. This implies that

$$
K(a . \varepsilon) \leqslant c \varepsilon \int_{T_{1}(\varepsilon)}\left|\frac{d s}{s} \wedge d \alpha \wedge d \beta\right|=4 \pi^{2} c \varepsilon \cdot\left|\log \left(\varepsilon / R_{0}\right)\right| \Longrightarrow \lim _{\varepsilon \rightarrow 0} K(a \cdot \varepsilon)=0
$$

This finishes the proof of Claim 1 in the first case.
Second case: general case. Consider a resolution of the curve $C$ by blowing-ups $\pi: \widehat{M I} \rightarrow M$ and let $C^{*}=\pi^{-1}(C), \Theta^{*}=\pi^{*}(\Theta)$ and $\varphi^{*}=\pi^{*}(\varphi)$. Then $\int_{\Lambda I} d \varphi \wedge \bar{\Theta}=0$ if, and only if. $\int_{\widehat{M I}} d \varphi^{*} \wedge \bar{\Theta}^{*}=0$. Note that the singularities of $C^{*}$ are of nodal type. It is sufficient to prove that $\left|C^{*}\right|$ admits an open covering satisfying (i), (ii), (iii) and (iv). Let $p \in \operatorname{sing}(C)$ (which is not a node) and $q \in \pi^{-1}(p)$. Since the singularities of $C^{*}$ are nodes, we have two possibilities: either $q$ is a smooth point of $C^{*}$, or $q$ is in the normal crossing of two local components, say $D_{1}$ and $D_{2}$ of $C^{*}$. Let us consider, for instance, the second case. Let ( $W^{\prime} .(x, y)$ ) be a coordinate system
around $p$, where $C \cap U$ has a reduced equation $\left(f_{1} \cdots f_{k}=0\right)$. As we have seen, we can write $\left.\varphi\right|_{W}=\sum_{j=1}^{k} \lambda_{j} \frac{d f_{j}}{f_{j}}+\nu$, where $\lambda_{1}, \ldots, \lambda_{k} \in \mathbb{C}$ and $\nu$ is $C^{\infty}$. Consider a coordinate system $(V, \phi=(u, v))$ around $q=(0,0)$ such that $\pi(V) \subset W, \phi(V)=$ $\left\{(u, v) \in \mathbb{C}^{2}| | u|,|v| \leqslant 2\}, D_{1} \cap V=(u=0)\right.$ and $D_{2} \cap V=(v=0)$. We have still two possibilities: either $\pi\left(D_{1}\right)=\pi\left(D_{2}\right)=\{p\}$, or $\pi\left(D_{j}\right)=\{p\}$ for just one $j \in\{1,2\}$. Let us consider, for instance, the first case. In this case, if $\widehat{f}_{j}$ is the strict transform of $f_{j}$, then $F_{j}:=\left.\widehat{f}_{j}\right|_{V} \in \mathcal{O}^{*}(V)$. On the other hand, $f_{j} \circ \pi(u, v)=u^{m_{j}} \cdot v^{n_{j}} \cdot F_{j}$. Hence, in the coordinates $(u, v)$ we have. $\pi^{*}(\varphi)=\lambda_{a} \frac{d u}{u}+\lambda_{b} \frac{d v}{v}+\nu^{*}$. where $\lambda_{a}=\sum_{j} m_{j} \cdot \lambda_{j}$, $\lambda_{b}=\sum_{j} n_{j} \cdot \lambda_{j}$ and $\nu^{*}=\pi^{*}(\nu)+\sum_{j} \lambda_{j} d F_{j} / F_{j}$. Since $F_{j} \in \mathcal{O}^{*}(V)$ for all $j$, we get that $\nu^{*}$ is $C^{\infty}$. We leave the proof of the other cases for the reader. This finishes the proof of Claim 1 .

Let us finish the proof of $(c) \Longrightarrow$ (a). Suppose by contradiction that $\Theta$ is holomorphic and $\Theta \not \equiv 0$. Let $Z:=(\Theta)_{0}$ be the divisor of zeroes of $\Theta$. Given a divisor $D$ on $M$ we will denote by $[D]$ its class in $\operatorname{Pic}(M)$. Since $\Theta$ is a non-vanishing section of $\Omega^{2}(A I)$. we have $K_{M I}=[Z]$. On the other hand, it is known that $\operatorname{Tang}(\mathcal{F}, \mathcal{G})=K_{M I}+N_{\mathcal{F}}+N_{\mathcal{G}}$ $(c f .[\mathbf{B r}])$. Since $N_{\mathcal{F}}=N_{\mathcal{G}}$ we get that $2 N_{\mathcal{F}}=\operatorname{Tang}(\mathcal{F}, \mathcal{G})-[Z]=\sum_{j=1}^{m} n_{j}\left[D_{j}\right]$, where $n_{j} \in \mathbb{Z}$ and $D_{j}$ is an irreducible component of $\operatorname{Tang}(\mathcal{F}: \mathcal{G}) \cup Z, 1 \leqslant j \leqslant m$. It follows from Claim 1 that

$$
\int_{M} \Theta \wedge \bar{\Theta}=\sum_{j=1}^{m}-i \pi m_{j} \int_{M} c_{1}\left(D_{j}\right) \wedge \bar{\Theta}
$$

On the other hand, it is known that (cf. [G-H])

$$
\int_{M I} c_{1}\left(D_{j}\right) \wedge \bar{\Theta}=\int_{D_{j}} \bar{\Theta}=0
$$

because $\bar{\Theta}$ is a (0.2)-form. This finishes the proof of Theorem 2.

## References

[BPV] W. Barth, C. Peters \& A. van de Ven - Complex Compact Surfaces, Springer Verlag, 1984.
[Br] M. Brunella Birational geometry of foliations, IMPA, 2000, text book for a course in the First Latin American Congress of Mathematics.
[Ch] S.S. Chern - "Web Geometry", Bull. Amer. Math. Soc. 6 (1982), p. 1-8.
[E-R] C. Ehresmann - "Les connexions infinitésimales dans un espace fibré différentiable", in Colloque de topologie (Bruxelles, 1950). Georges Thone, Liège, 1951, p. 2955.
[G-H] P.A. Griffiths \& J. Harris Principles of Algebraic Geometry, John-Wiley and Sons, 1994.
[LN-1] A. Lins Neto "Exceptional families of foliations and the Poincaré problem", Preprint IMPA, 2000.
[LN] $\qquad$ , "Some examples for the Poincaré and Painlevé problems", Ann. scient. Éc. Norm. Sup. 4 série 35 (2002), p. 231-266.
[Sc2] B. Sc'ÁrDUA "Transversely affine and transversely projective holomorphic foliations", Ann. scient. Éc. Norm. Sup. $4^{\text {e }}$ série 30 (1997), p. 169-204.
[S] M.F. Singer - "Liouvillian first integrals of differential equations", Trans. Amer. Math. Soc. 333 (1992), no. 2, p. 673-687.
A. Lins Nhto, Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina, 110, Horto, Rio de Janeiro, Brasil - E-mail : alcides@impa.br

