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CURVATURE OF PENCILS OF FOLIATIONS
by

Alcides Lins Neto

Dedicated to J.-P. Ramis in his 60" birthday

Abstract. — Let F and G be two distinet singular holomorphic foliations on a compact
complex surface M, in the same class, that is Nz = Ng. In this case. we can define the
pencil P = P(F.G) of foliations generated by F and G. We can associate to a pencil
P a meromorphic 2-form © = ©(P), the form of curvature of the pencil, which is in
fact the Chern curvature (¢f. [Ch]). When ©(P) = 0 we will say that the pencil is flat.
In this paper we give some sufficient conditions for a pencil to be flat. (Thceorem 2).
We will see also how the flatness reflects in the pseudo-group of holonomy of the
foliations of P. In particular, we will study the set {H € P | H has a first integral}
in some cases (Theorem 1).

Résumé (Courbure de pinceaux de feuilletages). —  Nous nous intéressons au pinceau
de feuilletages P = P(F,G) engendré par deux feuilletages F et G holomorphes
singuliers distincts sur une surface complexe compacte M et appartenant a la méme
classe. i.e., Nr = Ng. La forme de courbure du pinceaun P est une 2-forme © = O(P)
qui coincide avee la courbure de Chern (¢f. [Ch]): lorsque ©(P) = 0 on dit que le
pinceau est plat. Dans cet article, nous donnons des conditions suffisantes de platitude
d'un pincean (Théorcme 2). Nous regardons comment se traduit la platitude dans le
pscudo-groupe d’holonomie des feuilletages de P et, en particulier, nous étudions dans
certains cas U'ensemble {H € P | H admet une intégrale premiere} (Théoréme 1).

1. Introduction

Let F and G be two distincet singular holomorphic foliations on a compact complex
surface A, with isolated singularities, in the same class, that is Nyg = Ng. This
means that there exists a Leray covering (U )aea of M by open sets, and collections
(Wa)acas (Na)aea and (gas)u, 22, Uap = Us N U3, such that
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168 A. LINS NETO

(I) wy and 1), are holomorphic 1-forms on U, which represent the foliations F
and G, respectively. This means that F|y, and G|y, are defined by the differential
equations w, = 0 and 7, = 0. respectively. Since the singularities of F and G are
isolated, we have codg(w, = 0) = 2 and cod (5, = 0) = 2 for every a € A.

(I1) If Unp # @ then gos € O (Ups). wWo = Gos - ws and 1), = gas - 03 on Uy s.

The class of the multiplicative cocycle (ga.g)i, ,2e in Pic(M) defines Ny and Ng,
so that Ny = Ng. The pencil generated by F and G is the family P = (Fr)pez.
where

(II) Foo = G and if T' € C, then Fr is represented on U, by the form w! =
wo 1 -1

The singular set of Fp is defined by sing(Fp) N U, = {wl = 0}. The tangency
divisor of F and G is defined by Tang(F.G)NU,, = {w,An, = 0}. Note that sing(Fr)
and Tang(F,G) arc analytic subscts of M and that sing(Fp) C |Tang(F, G)| for all
T € C. Since F # G. |Tang(F.G)| is a proper analytic subset of pure dimension one.
Let W = M~ |Tang(F.G)| and W, = W NU,. Since w, Ao (p) # 0 for all p € TV,
there exists an unique holomorphic 1-form 6,, on W,, such that

(%) dwo =0, Nwy and  dn,, =60, Nijg

for all & € A. It follows from (). (1I) and w, A1, # O that. if W5 =W, NW;3 # @
then, 0, = 03 + dgas/gas on Wi, Hence df, = dfz; on W, 3 and we can define a
holomorphic 2-form © on W by

(%) Ol = db,

It can be proved that the form © can be extended meromorphically to Tang(F.G)
(see §2). This extension will be called the curvature of the pencil P(F.G). We will
say that the pencil is flat if © = 0. Let us sce some examples of flat pencils.

Example 1. - lLet w and n be two meromorphic closed 1-forms on some compact
complex surface M. such that w A7 #Z 0 and the divisors of poles and zeroes of w
and 1) coincide. Let F and G be the foliations generated by w and 1), respectively. Tt
is known that Nz = Ng in this case (¢f. [Br]). Morcover, the pencil generated by F
and G. say P(F.G). is defined by the pencil of forms wp = 1) + T - w. Therefore, it is
flat. We will call a pencil like this a pencil of closed forms.

A particular case is given by some families of logarithmic forms in CP(2). Let
fiyooo, fr. k=3, be irreducible homogencous polynomials of three variables such that
dfi Ndf; #0if i # j. Given A = (Ay..... M) € CF. such that Zﬁ-‘:l Aj-dg(fj) =0, set
wy = Zé':l Aj -dfj/fj. The closed form wy can be considered as meromorphic form
on CP(2), so that the family (wy)y gencrates a family of foliations (Fy ), on CP(2).
It can be checked that any pencil contained in this family is flat.

Another particular casc. is the following: let Al be the complex two torus C?/T,
where I' = Z -0y B Z-va B 7 - vy B 7 - vy is some lattice in C?, and 7: C* — C?/T be
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CURVATURE OF PENCILS OF FOLIATIONS 169

the canonical projection. Consider an affine coordinate system (z, w) on C? and let F
and G be the foliations generated by the closed forms w and 7 such that 7*(w) = dz
and 77 (n) = dw, respectively.

Example 2. — - The pull-back of a flat pencil is a flat pencil. More precisely, let AL
and N be complex surfaces and f: M — — N be a meromorphic map. If P := P(F.QG)
is a pencil of foliations on N, then we can define the pencil f*(P) = P(f*(F), [*(G))
on M. It is not difficult to prove that. if P is flat then f*(P) is also flat.

Example 3. Suppose that the pencil P(F.G) is defined by w+ T -1, where w and #
are meromorphic 1-forms. and there exists a closed meromorphic 1-form 6 such that
dw = 0 ANw and dn = 0 A n. Then the pencil P(F,G) is flat. Of course, the pencils
of Example 1 are of this kind., because the forms w and 7 are closed. However, the
reader can find some examples in [LN] or [LN-1] which are not generated by closed
forms. One example of this kind is the pencil Py of foliations of degree two on CP(2)
defined in some affine coordinate system (., y) € C* C CP(2) by the the forms (see
2.4 of [LN]):

() wi = (dr =902 + y?)dy — Gy(1 — 22)de
o= 2y(1 —20)dy — 3(a® — y?)du.
A straightforward computation gives dw, = g% Awy and diyy = :—;‘[[# A 11, where

Plry) = —4y? + 40 + 1220y% = 90' — 622y — y*. The other examples of [LN] can be
obtained from the above one by pulling-back Py by a meromorphic map f: CP(2)— —

CP(2).

Another example is the pencil Py of degree three generated by

@) wo = y(a? — y?)dy — 220(y? = D)do
B 2 = (4o — 2% — 2%y — 3wy + y¥)dy + 2(a + y)(y? — 1)da.
In this case, we have dw, = —:% Awy and diy = —f%‘) A . where Q. y) = (y? — 1)

(0% + y? = 20) (2% + y? + 2u0).

We would like to observe that both pencils Py and P, are exceptional families of
foliations in the sense of [LIN-1]. This means the folowing: Let ]:1’ T € C. be the
foliation defined in C* € CP(2) by the form w; + 71, (FZL defined by 15), where w;
and 7; are as in (j), j = 1.2, of example 3. Then, for j = 1,2, we have:

(a) The singularitics of f[ are of constant analytic type. In other words, there is
a finite subset I; € C such that if 77,7, € C ~\ F; then every singularity of _’/’::fl is
locally analytically equivalent to some singularity of ]—7}_).

(b) If we sct

E;={TeC| .7-'; has a meromorphic first integral},

then E; is countable and dense in C.
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170 A. LINS NETO

(¢) Given T € E; denote by d;(T’) the degree of the generic level of the first integral
of F2.. Then, for any m € N the set {T" € E; | d;(T) < m} is finite. In particular, in
both families. there are foliations with first integrals of arbitrarily large degrees.

Concerning the exceptional pencils above. we have the following result:
Theorem 1.  Let Ij, j = 1.2, be as in (b). Then

E; = Q- (L3 U {x}
Ey=Q- (1) U{x}.
where Q- {a,. by ={q1-a+q2-b| q1.q2 € Q}.

In our last result we will give some suflicient condictions for the flatness of a pencil
P =P(F,G) in terms of the singularities of the foliations in P and the components of
the divisor of tangencies. In order to state it, let us consider the singularities of Frp,
T € C. Without lost of generality. we will suppose that F and G have isolated singu-
larities. This implics that the set NT := {T € C | Fp has non-isolated singularitics}
is finite. Set 1.5 := C ~ NT and for cach T € IS. sct n(T) := #(sing(Fr)). Note
that, if '€ 1.9 then Nz, = Nz 1t is well known that the number of singularities of
Fr, counted with multiplicities, is given by (¢f. [Br]):

m(F) =m(Fr) = N7+ Nr.Ky + co( M)

where K7 is the canonical bundle of M. Hence n(T) < m(F) for all T € I1S. Let
no = max{n(T) | T € IS} and GP ={T € IS | n(T) = np}. We need a fact.

Lemmal. — C~.GP is finite. Morcover, there erist holomorphic maps pj: GP — M.,
j=1,....n9, such that simg(Fr) = {p:1(T), ..., Puo (1)} for all T € GP.

The proof of Lemima 1 s left for the reader.

Definition 1. We say that the singularity p; is fived if the map p;: GP — M is
constant. Otherwise, we say that p; is movable. For instance, if p is a singularity of
the curve Tang(F.G) then p is a singularity of all foliations of the pencil and it is a
fixed singularity of the pencil.

Note that, for any movable singularity p; of the pencil, the image p; (GP) is con-
tained in some irreducible component C' of Tang(F,G). In this case we will say that
pj is contained in C.

Let C € Tang(F.G) be an irreducible component. We have two possibilities:

(A) C is invariant for both foliations F and G. In this case. C' is invariant for all
foliations Fp in the pencil and we will say that C'is invariant for the pencil.

(B) C is not invariant for the pencil. In this case, the set IN(C') = {T" € C |
C'is invariant for Fr} is finite.
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CURVATURE OF PENCILS OF FOLIATIONS 171

Remark 1. -~ Given an irreducible component €' of Tang(F.G). we have two pos-
sibilities: either C' contains a movable singularity, or €' does not contain movable
singularities. In the sccond case, we will call C'" a NT-component. The reason is the
following: let (Un)aea be a covering of M by open sets and (wa)aeas (a)aca be
collections of holomorphic 1-forms such that the foliations in the pencil are defined
on Uy by wl' := w, +T -1, T € C. Given p € U, N C ~ (sing(F) U sing(G)).
there exists an unique T, such that wa(p) + Ty - 14 (p) = 0, because w, (p) and 1), (p)
are linearly dependent. However, since C' does not contain movable singularities and
p & sing(F) Using(G), the unique possibility is that wa(q) + T, - n4(q) = 0 for all
q € CNU,. Hence. T, € NI and the component (' is contained in sing(Fr,). Note
that T, depends only on €. We will use the notation T, = T°(C"). This happens for
instance in the case of the Logarithmic forms (see Example 1).

The divided foliation associated to T(C') is defined as follows: for cach o € A,
let (fo = 0) be a reduced equation of C'N U, . Since w(’ly‘((")|('mla‘ = 0. we can write
w;{y((") = f! &, where @, has isolated singularities and ¢ € N, does not depend on a.
The divided foliation. denoted by ]?T((-). is defined by the collection (@, )aea. Note
that Nf;"m'; =Ng, ., ©C "

Definition 2. We say that an irreducible component C' of Tang(F. G) is nice. if one
of the following condictions hold:

(a) C'is invariant for the pencil and contains a movable singularity p;(7") such that
the function T € GP — BDB(p;(T).Fr) is constant, where BB(p;(T). Fr) denotes
the Bawm-Bott index of the singularity (c¢f. [Br]).

(b) Cis an N I-component, invariant for the pencil.

(¢) C' is non-invariant for the pencil and C' contains a movable singularity. say
pj(T). such that BB (p;(1"). Fp) =0 for al T € G

(d) C' is an NI-component, non-invariant for the pencil. In this case, we ask that
C' is invariant for the divided foliation associated to T'(C).

The last result, characterizes when the pencil is flat, if we assume that the compo-

nents of the divisor of tangencies have multiplicity one.

Theorem 2. Let F and G by two holomorphic foliations on a compact complea: sur-
face, such that Ny = Ng, and let © be the curvature of the pencil generated by them.

Suppose that all components of Tang(F, G) have multiplicity one. Then the following
condictions are equivalent:

(a) The pencil is flat.

(b) All components of Tang(F.G) are nice.

(¢) © s holomorphic.

Let us state one consequence.
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172 A. LINS NETO

Corollary. Let F and G by two holomorphic foliations on a compact complex sur-
face M. Suppose that Ny = Ng and Tang(F.G) = @. Then the pencil generated by
them is flat. Moreover, M is a complex 2-torus and F. G are linear foliations.

We observe that this corollary is a consequence of Theorem 2 and the classifica-
tion of complex compact surfaces (see [BPV]). We would like to pose the following
problems:

Problem 1. - Given a flat pencil P = P(F.G). describe the set
E(P) ={a € C| F, has a first integral}.

Problem 2. Give necessary and sufficient conditions for a pencil to be flat, like in
Theorem 2. Recall that Theorem 2 is true only in the case that all components of
Tang(F, G) have multiplicity one.

Problem 3. Give necessary and sufficient conditions for a flat pencil to be a pencil
of closed 1-forms. We observe that the pencils defined by logarithmic forms satisfy
the following properties, when all components of Taug(F.G) have multiplicity one:

(a) All invariant components of Tang(F, G) are N I-components.
(b) All non-invariant components of Tang(F.G) are nice.

We note that the above conditions are necessary in the case that all components of
Tang(F.G) have multiplicity one. It seems that they are also sufficient in some cases.

2. Proofs

2.1. Proof of Theorem 1. — We will use the notation .7::} (resp. FZ_) to denote
the foliation defined by w; +T - n;, T € C (resp. n;). where w; and 1); are as in (j) of
example 3, j = 1,2. First of all, we observe that. in both cases, it is easy to see that
some foliations in the foliations in the pencils have first integrals. Given o € E; we
will call g/ the first integral of FZ. For the pencil Py we have:

gr . y) = Ple.y)/(20 = 1)°
(3) gi(x.y) = Plr.y)/(y —x)*
ghi(eoy) = Plr.y)/(y + o)
where, P(x.y) = —4y? + 4% + 120y° — 9ot — 602y — ¢t
In particular, 1, —1,00 € E}. On the other hand, for the pencil P, we have
go(x.y) = Cr(ry) - Coaay)ALi(y) - Loa(y)
(4) 9ol y) = Loa(y) - Cilay)/La(y) - Coa(ey)
9t (. y) = Liy) - Cila.y)/La(y) - Coa (. y)
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CURVATURE OF PENCILS OF FOLIATIONS 173

where
Ci(wcy) =22 +y% -2
Ci(a.y) =a% +y> + 22
Li(y) =y —1
Loa(y)=y+1

In particular, 0.>c, 1/2 € Es.

Note that, in all above cases. the generic level curves of g/ are elliptic curves. There
is a difference between the two cases: for 7 = 1 the level curves, after normalization,
are of the form C/(1,¢?7/3), whercas for j = 2 they are of the form C/(1,4). In the
case j = 1. the proof can be found in §2.4 of [LIN]. In the case j = 2. the fact that the
level curves are elliptic can be proved by using the genus formula. For instance. in the
case of g2 ., the level curve L. := (g2 = ¢), for generic ¢ € C, has degree three and no
singularitics. Hence. g(L,.) = (3 — 1)(3 — 2)/2 = 1. The proof that the normalization
L. is C/{1,i) will be sketched next.

Let us give an idca of the proof that the pencil P, is exceptional. This proof was
done in §2.2 of [LN] for another pencil (of degree four). but the idea is the same.

First of all. the divisor of tangency of Fg and F2 is
Tg:=Tang(F.F2)=Ci+C |+ L +L |+ L.

where Lo is the line at infinity of C2 € CP(2). The singular set of T'g, which are the
fixed singularities of the peneil. is (in homogencous coordinates)

() Fixe={O = (0:0:1),A:=(=1:1:1).B:=(1:1:1).C:=(1:-1:
).D:=(-1:-1:1D).E:=(1:9i:0LF:=(1:—i:0).,G:=(1:0:0)}. For
T ¢ {1.—1.i.—i.x} the points E.F. G are radial singularitics for the foliation F#
(of type 1 : 1), whereas the points A, B. (', D and O arce singularitics of type 2 : 1. We
say that a singularity is of type p : ¢ if the foliation has a local first integral of the
form u”/v?. in some local coordinate system (u. v).

On the other hand. each component of T'g contains exactly one movable singularity
of F2, a € C:

(ITI) The points P_j(a) = (a.—1) € L_y, Pi(a) = (—a,1) € L. Q () =
(=2/(L+a?).20/(1+a?) € C_y and Qi(a) == (2/(1 +a?). —2a/(1 +a?)) € .
These singularitics are of the type 1: —4 (with local first integral of the type u - o).

(IIT) The point Py («) :=[ov: 1:0] € L. This singularity is of the type 1 : —2.

The next step is to reduce the fixed singularitics (which are dicritical) by blowing-
ups. This can be doune for all foliations in the pencil simultancously by doing one
blowing-up at cach radial singularity and two at cach singularity of the type 2 : 1.
After this procedure. we find a rational surface M and a bimeromorphism 7: M —
CP(2). We will use the notation F,, = 7*(F2), o € C, and P for the pencil in M so
obtained. The pencil P hias ten invariant curves (rational): five of them are the strict
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174 A. LINS NETO

transforms of the components of Tg and the other five are the divisors introduced in
the first blowing-up at the singularities of the type 2 : 1 (A, B.C. D.0O). For each
a € Ey. the foliation F,, which corresponds to the first integral g2. has also a first
integral g, 1= g2 om. We observe that g, is holomorphic, because the foliation F,, has
no dicritical singularities. In fact. for any a € C. F,, has ten singularities. one in each
invariant curve. which are the folowing: four of the type 1: —4, which come from the
singularities Py (o), P q(«v), Qi() and Q (). and six of the type 1 : =2, One of
these six singularities come from Py (o) and the other five are contained in the five
invariant divisors introduced in the blowing-up procedure. We leave the details of the
proof of these facts for the reader.

Let us deseribe briefly the (singular) fibration ¢g~. We will denote by T, the
level curve g '(¢) © M. Tt has three critical levels: Ty. Ty and T, If we call
U=M-~(ToUTyUTy). then f = gy |2 U — C~{0. 1.5} := W is a (regular)
elliptic fibration. The main fact is the following

Lemma 2.1.1. — If o # > then F,, is tranverse to the fibers of fin all points of the
set U.

Proof. Since the divisors introduced by 7 are contained in Ty U T} U Ty . it is
sufficient to prove that the foliations F2 and F2 are transverse outside T'g, because

4

7wl U — w(U) =CP(2)~ Ty is a biholomorphism. On the other hand. we have:

(wo 4+ ) Aapy = 2002 + y* = 20) (a2 + 2+ 20)(y — D)y + )da Ady
=2C-C - Ly-L_ ydrNdy.

Henee F2 and F2 are transverse outside T'g. which implies the lenima. J

Now. we use Ehresmann’s theory of foliations tranverse to a fibration (¢f. [E-R]).
According to this theory, il L is a leal of F, | then fl: L — W is a covering map.
Morcover. if we fix a (regular) fiber 7, and a closed curve : [0.1] — 117 = C~{0. 1. < }
with 7 (0) =~ (1) = ¢. then we can define an antomorphism H, @ T, — T, as follows:
given p € T, let Lo (p) be the leal of F, through p. Since fl, ) La(p) — W is
a covering map. there exists an unigue curve 3 on L, (p) such that f o3 = v and
7(0) = p. The automorphism is defined by . (p) = 7(1). It is called the global
holonomy transformation associated to 4. We will use the following facts:

(i) For every a € C the antomorphism H- , is holomorphic and depends only of
the the class of A in T (. ¢). This follows from Ehresmann’s theory and the fact
that the foliations arc holomorphic.

(it) If 4170 € TL(1.¢) and o € C then Hy ury o = Hy o 0 Hy, . In particular.
for cach o € C. we can define an action H,,: 1L (W.e) — Aut(T,) by H.,(v) = H, .
called the holonomy representation. The image H,, (11 (W.¢)) := G (o, ¢) is called the
global holonomy group of F.,.

ASTERISQUE 206



CURVATURE OF PENCILS OF FOLIATIONS 175

(iil) For each fixed v € TI, (W, ¢), the map H,: C x T. — T. defined by H,(a.,p) =
H, o(p) is holomorphic. This follows from the theorem of holomorphic dependency
of the solutions with respect to initial conditions and parameters and the fact that
H, o can be found by integrating the equation wy + - 12 = 0.

(iv) For any p € T, the orbit of p by H,, coincides with the intersection of the leaf
Lo (p) with the fiber T..

(v) If ¢q is another point of W and v is a curve in W connecting ¢; to ¢, then, for
each « € C it can be defined a biholomorphism F,: T., — T, (by lifting v to leaves
of F,) such that

H,,(’y,_l Yk y) = Flo H,(v)o F.

In particular, the holonomy representations are conjugated and the fibration f is
isotrivial, that is, all regular fibers are biholomorphic.

Now, consider the two closed curves o, v1: [0, 1] — W, where 74 (0) = v, (1) = ¢,
k= 0.1. v goes around 0 once and 7, goes around oc once. It is known that vy. v
generate I (W, ¢). We will call 1, = Ho(v0) and g1 o = Ha(71). Fix a holomorphic
universal covering P: C — T, and let f,, g, € Aut(C) be coverings of f) o and ¢ 4,

respectively (Po f, = fiao P and Po g, = g1.o 0 P).

Lemma 2.1.2. If we choose well the orientation of the curves vy and vy, then for
any o € C we have fo(z) =i-z+ Ala) and go(z) =i 2+ B(«), where A,B: C — C
are holomorphic.

Idea of the proof. -~ The proof is analogous to the proof of Proposition 4 of §2.2 of
[LN]. and so we will give only an idea. Let us consider the case of f,,. The critical fiber
To := f~1(0) of the fibration f contains the strict transforms, by 7: M — CP(2),
of the curves €'y and L_, which we call C" and L, respectively. On the other hand,
Oy and L | contain the movable singularities Q1 (a) and P_;(«) of F2. which are

(a3

of the type 1 : —4. These singularities give origin to movable singularities of the
pencil P, Qo) := 7 Q1 () € C and P(a) = 77 '(P_(a)) € L, which are also
of the type 1 : —=4. Since Q(«) is the unique singularity of F, on ' and C' is a

rational curve, Q(«) is linearizable for the foliation F,, (because the holonomy of €
is trivial, and so linearizable). The same argument applies to P(«). which is the
unique singularity of F,, on L. On the other hand, the foliation F, has an unique
local smooth separatrix, say S(«), which is transversal to C'. Since the quotient of
the eigenvalues is —1/4. the holonomy of S(«), in a suitable coordinate system u of a

=2mi/d Ly = . If we choose ¢ near 0 then

transversal ¥, is linear of the form u — e
the separatrix S(«) cuts the fiber T, in an unique point, say p(«). It can be checked
that flg): S(a) — D := f(S(«)) is a bijection. If we choose the curve 4y as a small
circle sorrounding 0 contained in D, then when we go around vy in order to evaluate
Jf1.a we see that p(«) is a fixed point of f1 . Moreover, the section Y can be choosed
to be contained in T,.. This implies that f . is locally conjugated to u + =i -u. The
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sign £ depends on the orientation of vy. We choose this orientation in such a way
that fi . is locally conjugated to w ~— i-u. This implies that fi ., has period four and
that fo(z) =iz + A(a). Analogously, we can choose the orientation of v, in such
a way that g,(z) =1z + B(a). The maps o € C +— A(a), B(«) are holomorphic by
(iii). O

As a consequence of Lemma 2.1.2. we obtain that T, is biholomorphic to C/(1.7).
This implies that all regular fibers of f are biholomorphic to C/(1,i), because the
fibration is isotrivial. We will fix an universal covering P: C — T, such that the
associated lattice is (1.4). The crucial result is the following:

Lemma 2.1.3. A(a) and B(«v) are affine, that is, A(«) = a1 -« + ag and B(a) =
by - ov + by, where ag.ay,by, by € C.

Proof. We need another lemma.

Lemma 2.1.4. — Let P(F,G) be a flat pencil on a surface M. Given p € M ~
Tang(F,G), there exists a local coordinate system (U, (x.y)), pe U, (v, y): U — C2,
such that the foliation F,, of the pencil. o € C. is defined on U by dy + « - da = 0.
Moreover, if (V, (u,v)) is another coordinate system such that UNV # & is connected
and Fulv is defined by dv + - du =0, « € C. then du = X - dx and dv = X - dy on
UNV, where A € C*.

Proof. Let W C M N\ Tang(F.G) be a small simply connected open neighborhood
of p and w, n be holomorphic 1-forms such that the foliation F,|w is defined by
w+ « -1 =0. Note that Fp = F and F = G are defined on W by w = 0 and 7 = 0,
respectively. Since W N Tang(F.G) = @, we have w Ay # 0 on W. Hence, we can
write dw = 6 Aw and dn = 0 A 1. where 8 is holomorphic on W. Since the pencil
is flat, 6 is closed. Therefore, there exists i € O(W) such that 6 = dh. If we set
f = exp(h) then we get
dw = ﬂ/\w and  dny = ﬂ/\n == ([(i) :(l('—}_) =0.
f f S f

Again, since W is simply connected, there exist @,y € O(W) such that dy = w/ f
and dx = n/f. The foliation F,, is defined on W by dy + « - da = %(w +a-n)=0.
Note that de A dy # 0 on W. It follows that (x.y): W — C? is an immersion. This
implies that we can take a smaller neighborhood U € W of p such that (x.y)|y is a
biholomorphism from U to an open sct of C2.

Let (V. (u, v)) be another coordinate system such that UNV # @ is connected and
Faolv is defined by dv + « - du = 0. Note that F
du = 0, respectively. Since Fi,|pny is defined by dy + o - de and du + o - dv = 0, we

v and Gly are defined by dv = 0 and

get

() dv+ o du = h(r.y.o)(dy + « - dr)
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where A is holomorphic. Differenciating both members of (x) with respect to a. we

get
oh oh
du = %(dy +a-dr)+h-dv = 0 = 0
because du is a multiple of dr on U N'V. Hence, h(x,y,.a) = h(x,y), does not

depend on «. Therefore, du = h - dr and dv = h -dy on U NV. This implies that
dh Ndy = dh AN de = 0 and h € C*, is a constant. This finishes the proof of lemma
2.1.4. |

Let us finish the proof of Lemma 2.1.3. Fix ag € C and p € T... Set ¢ = f1.0,(p) €
T.. Denote by L,(p) the leaf of F,, through p. Let ~,: [0.1] — L, (p) be the lifting
of 7o on the leaf L, (p) through the fibration f. Note that v,(0) = p and 7,(1) = ¢.
Let (Un)1<n<m be a covering of 7,[0, 1] by open sets as in Lemma 2.1.4. For each
n = 1.....m there exists a coordinate system (x,,,y,) on U, such F, |, is defined by
dy, +a-dx,, = 0. We can choose the enumeration in such a way that there is a partition
0=ty <ty <--<t, =10f[0.1] such that yp[t,—1.t,] C U, foralln=1,.... m.
We can suppose that U, N U, 4 is connected for every n = 1..... m — 1. It follows
from Lema 2.1.4 that there exist constants A,, € C* such that dw,, 4 = A, - d,, and
dyps1 = Ay -dy,, n=1..... m — 1. Hence,

(1) Ynt1 = Ay - yn +a,. wherea,, e C,n=1..... m— 1.

Fix transversal sections to the foliation Fy, Xp..... Y. such that:

(i) p(t,) € X, n=0,1,...,m.

(i) 3, C (1, = ct), thatis ¥,, is contained in a leaf of . Note that ¥y, %,, C T..

Since F,, is defined by dy,, + « - dxr,, = 0 on U,,. the holonomy transformation of
Fao, v near «p, from the section ¥, C (2, = ¢1) to the section ¥,, C (@, = ¢2). in
terms of the parameter y,, is of the form y,, — H,, (yn. ) = yn —a - by, by, = o — ¢y
It follows from (i) that. in the section %,,. we have gy, 1 = A\, - yn + a,. and so the
holonomy transformation H,,, can be written in terms of the parameter y,, 4 (in the
immage) as Y41 (Yn-) = XN Hy(yn) +an = Ny — oAy by 4 a0 As the reader can
check. this implies that the holonomy transformation from the section 3y € Uy N7, to
the section X, C Upr N'T,., which is the composition of the intermediate holonomies,
is of the form

Yym =H@pn. o) =p-y1+a-b+c¢. where pe C*. b.ceC.

Now, let us relate the paramcters y; € ¥y and y,, € ¥,, with the parametrization
which comes from the universal covering P: C — T,.. Since Fy is transverse to T,
there exists a neighborhood Voof T, such that

(iv) flv:V — D:= f(V)is a trivial fibration. In particular. V ~ D x T.. where
flv = m. the first projection. and the fibers of the second projection mo: V. — T, are
the leaves of Fyly-.

Let 7 be a non-vanishing 1-form on T, such that P*(7) = d=.
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Claim. — There exist constants ky, k, € C* such that dy;

w, = k1 Tly, and
Ay S0, = km - Tls,, -
Proof. Set w = w3 (7). Note that w(p) # 0, for all p € V, and that the foliation
Folv is defined by w = 0. We can suppose that D C C and consider 2 := f|: V — C.
v is defined by do = 0. We assert that there exists g € O*(D)
such that the foliation F, |y is defined by w + a - g(a) - da = 0.

This implies that Fo

In fact, since w and da are linearly independent on V| the foliation F,, |y is defined
by a 1-form of the type w, = w + g, - dx, where g, € O*(V). Since the fiber T, =
f~H(a) is compact, the function Jolr, is constant. Hence, we can write g, = gq (1)
and w, = w+ga(x)-dr. Fix a point ¢ € V and a coordinate system (Uy, (x,, y,)) such
that U, C V and fu|{/q is defined by dy, +« - dx, = 0. It follows that dy, + a-dx, =
ho(w + ga(x) - dx) on U,. where h, € O*(U,). Differentiating twice both members
with respect to «v and by an argument similar to the proof of Lemma 2.1.4, we get
Ohy /O = 0 and 9?%g,,/da? = 0. This implies that g, (1) = «-g(r), where g € O* (V).

Since w and g(x)dr are closed, they are locally exact and we can apply Lemma
2.1.4 to them and the forms dy; and dxy. It follows that dy; = ki - wly,, k1 € C*.

m

Similarly, dy,, = ky, - wlv,,. ki, € C*. Hence. dy,ls, = k; - 7ls,. j = Lm. O

Now, fix a disk D; C C such that ¢, := P|p,: D; — %; is a biholomorphism.
The claim implies that ¢} (dy)) = k1 - dz. Therefore, y; 0o ¢1(2) = ki - 2+ dy, dy € C.
Similarly, ¢, © ¢ (2) = ki - 2 + diyy dyy € C (dy = Plp,,). It follows that the

holonomy transformation f, can be written, in terms of the parameter z € C, as
) — .1 b o 1 i~
fa(z) =4k, Hyiop1(z), ) = k" ~dpy =1+ 2+ ay -+ ag,

where a1 = k.t - b and ag = k' (¢ — d,,) + p - dy. Hence, A(a) = ay - o + ap, where

ay,ap € C. Similarly, B(«) = by -« + bg. O

Now, the point zg = A(«a)/(1 =) is a fixed point of f,. Let Qa(z) = 2z — zo. The
global holonomy group G(«. ¢) (viewed in the universal covering) is conjugated to the
group generated by £, (2) = Qn 0 fooQ  (2) =iz and Gy (2) = Quogao Q. (2) =
iz + C(«), where C(a) = B(a) — A(v) = a-«a+ b, a =0 —a; and b = by — ap.
Let us finish the proof of Theorem 1. We need two more results. We will give only
an idea of the proof of these results (see Proposition 5 and its corollary in [LN]).

Lemma 2.1.5. The following assertions are equivalent:
(a) The group G(«,c) is finite.
(b) G(«,¢) has a finite orbit in T,.
(¢) There exists m € N such that m - C(«) € (1.4).
(d) Fo has a first integral. In particular. « € Ey.
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Idea of the proof. The proof of the equivalences (a) < (b) <= (¢) is based in
the fact that the group generated by F,, and G, is

G={z—c-z+d-Cla)|ce{l,~=1li.—i}and d € (1.7)}.

This is done in Proposition 5 of [LN] in another case, but the proof is similar for the
above case. On the other hand, if F, has a first integral, then all leaves of F,, are
algebraic and cut T, in a finite number of points. Hence. (d) = (b). Finally, if
the group G(a,¢) is finite. say # G(«v, ¢) = m, then cach leaf of F,, cut each fiber
T, = f~'(xr) in m points. This implies that all leaves F,, are algebraic. There is a
delicate point here. which involves the fact that the leaves of F,, cut transversely the
components of the critical fibers of f which are not invariant for F,,. We have not
proved this fact here. but the proof can be done by studing carefully the blowing-up
process m. We leave the details for the reader. Now. we can use Darboux’s theorem
which asserts that if all leaves of a foliation are algebraic then the foliation has a first

integral. Therefore. (a) = (d). O
Lemma 2.1.6. The map o — C'(a) is non-constant. In particular. a # 0.
Idea of the proof. If o — ('(a) were constant then all holonomy groups G(av. ¢)

would be isomorphic. Therefore. it is sufficient to prove that there are ag.a) € Iy
such that #(G(ag.¢)) # #(G(ay.¢)). In the case of this pencil. we have 0.1/2 € Fy
and the first integrals g2 and ~’/f/2 given in (4). It can be checked by using Bézout's
theorem and the explicit expressions for g2 . g8 and y/f/._) that the generie leaf of Fy
cuts T in cight points, whereas the generie leaf of Fy /o cuts Tiin four points. This
huplies that #(G(0.0)) = 8 and #(G(1/2.¢)) = 4. Therefore. a — ('(a) is not
constant. 0
End of the proof of Theorem 1. We have seen that C'(a) =a - o + b, where a#0.
On the other hand. 0.1/2 € FE,. which implies that there exist m.on € N and
mq.ng.myp.nyp € N such that

m-b=my+ny-i and n(%—l»b):mlJrul-i —  a.beQ-(1.7).
Since Q- (1.7) is a field. we get
mio-a+b)yeQ-(L.iy.meN <= aecQ-(1.4).
This finishes the proof in the case of the pencil Po.

In the case of the pencil Py the proof is similar. In this case. the non-singular

fibers of f are biholomorphic to C/(1. k) (k = ™3 and the holonomy group of
Fo is isomorphic to the group generated by the transformations F,(z) = A -z and

Go(2) =k 2+ C(a) (in the universal covering). where and C(o) = a-a 4+ b, a # 0.

This group is

G={crcz4d - Cla)ee LR DY and d € (1R}
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By the analogous of Lemma 2.1.5 we have that o € Ey if, and only if, there exists
m € N such that m - C(«) € (1.k). On the other hand, we know that 1. -1 € £},
because we have the explicit first integrals g and ¢'; (see (3)). Therefore, there exist
m.n € N and mg.ng.my.n € Z such that
m(a+0b)=mo+ng-kand n(—a+0)=m +n, -k = abecQ- (1.k).
Since Q- (1. k) is a field, we get
m(a-a+b)e(l.k).meN «— aecQ- (l.k).

This finishes the proof of the theorem. O

2.2. Proof of Theorem 2. — Lect P(F.G) be a pencil of foliations on the compact
complex surface M.

Definition 3. Suppose that F and G are defined on an open set U C M by w = ()
and n = 0. where w and 7 are holomorphic 1-forms on U. We will say that (U.w. )
are compatible with the penci if the foliation F,, is defined on U by w + a -1 = 0,
a e C.

We need a Lemma.

Lemma 2.2.1. — Let C" be an irreducible component of Tang(F.G) of multiplicity
k>=1. There exists a finite set F C |C'| such that if p € |C] ~ F then there is a holo-
morphic coordinate system (U. (. y)) with p € U, x(p) = y(p) =0, |C|NU = (y = 0),
and holomorphic 1-forms w and 1. representing F|o and Gl respectively. such that
(U.w.n) is compatible with the pencil and

(a) If C'is invariant for the pencil then

w =dy
= Plr.y)dy — y"dr
where P € OWU). If 6§ is such that de = 0 AN w and dy = 60 N, then
r. k
0 = (T —)(l,{/
Y Y
In particular, Ol =y Po. (. y) do A dy in these coordinates.
(b) If C'is non-invariant for F (and so for the pencil) then

w = dr
n=y"dy — Q(r.y)dr
where Q € OU). If 0 is such that dw = 0 ANw and dy =6 N, then

(
0= LL’ du
Y
In particular O = —%(;1/“/“' Q) da A dy in these coordinates.
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Proof. — Consider a covering U = (U, )aea of M Dby open sets and collections 2 =
(Wa)aea: = = (Ma)aca and A = (gas)u,, ,£2. such that (Us,wa.1)q) Is compatible
with the pencil for every a € A and, if U, 3 # @ then wo, = gos-ws and 14 = gag - 13
onU,; = U, NU;. Let Fy = |C|Nsing(F). Given p € |C]~ Fi. let (Vi(w.v)) be a
holomorphic coordinate system around p such that w(p) = v(p) = 0 and V N |C| =
(v = 0). We can suppose that V. C U,, for some o € A. Suppose first that C is
invariant for the pencil. Since p € sing(F) and C is invariant for F. by taking a
smaller V' if necessary. we can suppose that the leaves of F|¢c are the level curves of v,
so that we |y = f-de, where f € O*(V). Setw = f~'w, =dvand = f'-,. Note
that (V.w.n) is compatible with the pencil. Let n = A(u.v)de — B(u. v)du. Since
w A1 = Blu,v)du A dv and the multiplicity of C' in Tang(F.G) is k. then B(u,v) =
vFb(u. v). where b€ O(V) and b(u,0) £ 0. Let Fyv = {(u.0) € |[C|NV: b(u.0) = 0}
and F' = Uy Fyy U Fy. We leave for the reader the proof that F'is finite. If p € |C| N F
then. in the above coordinate system we have b(0,0) # 0. Therefore, there exists a
ncighborhood U of p. with U cC V. and a function » € O(U) such that x(p) = 0.
D /Ou = b and ®(u.v) = (r(u.v).v) is biholomorphism onto ®(U/) ¢ C?. In the

coordinate system (@, y) = (@, v), we have w = dy and

. . o SO . i .

= Adv—v"bdu= Ady— y (([;I‘ - Td{/) = (/1 + (,)—I>(ly — ¥ dr = Pdy—y*dr

v v

Let us compute O, If 0 is such that dw = 8 Aw and diy = 0 A1y then 0 = ¢ - dy,
because w = dy and dw = 0. Since

_ P. k
dy = (P, + k y’“’l)(l.r Ady = (—L + —)(]!/ A1)
Y Y

we get that
[)" r

v=db = —=dr Ndy
Y

yk
Now. supposc that (" is non-invariant for F. Let

Fy ={pe|C]: Fis tangent to |C'| at p}.

Pk
0 = ( + —>(l,1/ = 0
Y

Clearly Fy is finite and if p € |[C'| ~ Fy then there exists a holomorphic coordinate
system (V. (u, 0)) around p such that V' C U, for some o € A, u(p) = v(p) = 0.
[NV = (0 = 0) and the leaves of Fly- are the level curves of w. In this case.
walvy = f+du where f e OF(V). Set w = du = f_lw(,{\» and = ! “1a|v. Note
that (V.w, n) is compatible with the pencil. Let p = Adv— B du, where A. B € O(U).
Since wAy = Adundr and C'is a component of multiplicity A. we can write A = o¥-q.
where a(u.0) Z 0. Let Fyo={(«.0) € |[C]|NV: a(u.0) =0} and set F'= Uy Fy- UL,
We leave for the reader the proof that F'is finite. If p € |~ F then in the above

coordinate system we have «(0.0) # 0. We assert that there exists a coordinate
system (U. (i, y)) around p such that U CV, u=w, y = v - o(u.v) and

O yht!

- = (k+ 1) o™ alu.v)
v

(*)
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In fact, in a neighborhood of p = (0,0) € V. we can write (k + 1)oFa(u,v) =
Z:ik aj(u) vl where ag(0) = (k + 1) a(0.0) # 0. Let

> 1 . ]

olu.v) = Z —aj g (u)v) = oM b)),
Jkt1

Note that b(0.0) = a(0.0) # 0 and 0p/Ov = (k + 1)v* a(u.v). Let Uy C V be a
simply connected open neighborhood of (0.0) such that b € O*(Uy). Let ¢ € O*(Uy)
be such that A+ = b and y € O(U)) be defined by y(u.0) = ¢ - ¢(u.v). Note that

T

open neighborhood U € Uy onto an open subset of C2. Clearly, the coordinate system

= ¢ and the map ®(u.v) = (v, y(u.v)) = (r.y) is a biholomorphism from some

(U. (r.y)) satisfies (x). In these coordinates. we have w = dar and

: 1oyrt!
= o"alu.o)de — Blu. o) du = T ‘ !:)[‘ de — B(u.v)du
. 1 gyh! .
=¥ dy — (m( 'l({)“ + B(u. 1:))(/;1[ =" dy — Q(a.y) da

If ¢ is such that dw = 0 A w and dy = 0 Ay then 8 = ¢ - da. because w = da and
dw = 0. Since

dip = QydeNdy = %/‘ dae N
Y

we get that

( Jd Q,
0= LL” dr = O =di = - —(#) da Ndy
y dy - yh
This finishes the proof of Lemma 2.2.1. O

From now on. in this scetion. we will suppose that all irreducible components of
Tang(F.G) have multiplicity one.

2.2.2. (b) = (¢). Denote by D the divisor of poles of ©. Let €7 be a component
of Tang(F.G). Suppose first that (" is invariant for the pencil. Since the multiplicity of
C'in Tang(F.G) is one, by Lenima 2.2.1. we can choose a coordinate system (U, (. y))
such that UNC = (y =0). p = (0.0) € U and

. w =y
(5)
n=P"Plr.oy)dy —ydr

Let Pa.y) = po(a) + yple.y). where p € O(U) and py(a) = Z.;&:“ aja’. Since
O = h-deANdy. where h =y " Poo= y ' pi(r) + pea(ecy), then O ¢ Do if. and
only if. po(r) = ag + «ay . Note that the foliation Fyp associated to pp =n+ T -w =
(T + P(r.y))dy — yde.is defined on U by the veetor field
XNLW:%T+MWU+UM%UD£-+WQ
dr Ay

Hence. the singularitics of Fpoon U ave given by y =T + po(a) = 0.
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We have two possibilities: either pg is a constant (po(r) = ag), or po is not a
constant. In the first case, we get that 1_,, = y(pdy — da). In this casc, —ag € NI
and there is no movable singularity on C'. Morcover © = p,, dax A dy, which implies
that C ¢ D... In the sccond case, there is a movable singularity on C: if x(T') is
such that T + po(x(T)) = 0 and —T is a regular value of py then (7" is a movable
singularity of P and T € GP = {T € IS5 | n(T) = no}. Without lost of generality,
we can suppose that this singularity satisfies (a) of Definition 2. This singularity
is non-degenerate, in the sense that zero is not an eigenvalue of DXp(q(T)), where
q(T) = (x(T),0). In this case, the Baum-Bott index of Fr at p(T') is given by
(cf. [Br]):

WADXr(g(T) _ (pyla(T)) + 1)?

B(T) := BB(q(T), Fr)

~ det(DX1(¢(T)) pi(a(T))
1
6) = p(T)) + e 42
| " P (D))
Since €' is nice, we have B/(T) = 0. As the reader can check, this condiction is
cquivalent to
1
" /i
po(x(T))(1 = ————= )2 (T) =0
! ( (po(x(T)))? )

Since ¢(T') is a movable singularity, we have 2/(T) # 0. Thercfore, p{j(z(T)) = 0,
which implies that pj = 0 and po(x) = ag + a; 2 (note that py(x(7T)) = +1 implies
also that pj = 0). Therefore, C' ¢ D.

Suppose now that €' is non-invariant for P. Consider a coordinate system (U. (. y))
such that UNC = (y =0), p = (0,0) € U and

{w = dux

(7)

n=ydy —Q(x,y)dx

where Q(x,y) = qo(x) + q1(x)y + y?q(x.y), where qo. q; and ¢ are holomorphic.
Since © = —(y ' Q,), dr Ady, then C ¢ D if, and only if, ¢ () = 0. Note that
the foliation Fp associated to np =n+ T -w = ydy + (T — Q(x, y)dz, is defined on
U by the vector field

0

Ay

Hence, the singularities of Fp on U are given by y = qo(2) =T = 0.

. ) .
Xp(r.y) = .f/j + (qolx) + qu(x)y +y*qlay) = T)

We have two possilities: either ¢go is a constant, or ¢p is not a constant. In the
first case, we get 1y, = yldy — (g1 () + yq(x,y))dr]. and so gy € NI and there is no
movable singularity on C'. Since ' is nice, the curve C' is invariant for the divided
foliation associated to gg, which is defined by @ = dy—(q; (x) +y q(x.y))d2r on U. But,
CNU = (y = 0) and this curve is invariant for o = 0 if, and only if, ¢; = 0. Therefore,
C' ¢ D+ . Inthe second case. there is a movable singularity: p(17') = (¢(7).0) € UNC,
where x(T) is such that ¢o(x(T)) — T = 0. Set qo(0) = Ty. If T is a regular value
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of gy near Ty, then 7' € GP. Without lost of generality. we can suppose that this
singularity satisfies (¢) of Definition 2. This singularity is non-degenerate. and so:
(DX (p(T)) g (x(T))
(8 B(T):= BB(p(T). Fy) = - =
) ) 0] = QDX (7))~ ag(rT))

Since C' is nice, we get B = 0, and so ¢; = 0. which implies that C' ¢ D...

2.2.3. (a) = (b). Suppose first that C' is invariant for P(F.G). Let (U, (x.y))
be a coordinate system like in (5). around a point p = (0.0) € U N . Since © = 0,
by Lemma 2.2.1, we have P, = 0. This implics that P(x,y) = po(y) + p1(y)x, where
po.p1 are holomorphic. Hence. the singularities of Fp on ' N U are the solutions of
y =T+ po(0) +p1(0)x = 0. We have two possibilities: cither py(0) # 0. or p1(0) = 0.
If p1(0) =0, then T'= —py(0) € NI and we are in the situation of (b) of Definition 2.
Therefore, C' is nice. If p;(0) # 0. then C' contains an unique movable singularity:
q(T) = ((T).0), where 2(T) = —(T" + py(0))/p1(0) (clearly ¢(T") € U for |T + po(0)]

small enough). This singularity is non-degencrate. and so by (6) we get:

tr*(DX7(p(T))  (p1(0)+1)?

BB(p(T),Fr) = det(DX1(p(T)) — p1(0)

Hence, C' is nice in this case.
Suppose now that C' is non-invariant for the pencil. Consider a coordinate system
(U, (z,y)) around p = (0.0) € U as in (7). Since © = 0. Lemma 2.2.1 implies that
0
dy

This implies that C' is nice, as the reader can check by using (8).

(v 'Qy) =0 = Qr.y)=qolr)+ q(r)y’

2.2.4. (¢) == (a). — Supposc that © is holomorphic. The idea is to usc the well-
known fact that

O=0 < / ONO =0 <= [0]=0in H? (M)
JAN

The proof will be based in the following:

&)

Claim1. — [,, O©NO = =27 [, ¢i(Nx)NO. where ¢ (Ng) is any representative
the first Chern class of Nx in H3,,(M).

/

Proof. Let U = (Un)aea be a covering of M by open sets, 0 = (wa)aea. = =
(Na)aca and A = (gap)u., 22 be as in (I), (II) and (III) of §1. Let (A )aca be a
collection of 1-forms, where 6, is meromorphic on Uy, dw, =0, Aw, and dijg =60, A1),
Recall that, if U,3 # @ then 0, —03 = dga3/ga 3. On the other hand, by taking a ¢
resolution of the additive cocycle (dgas/gas)u, ,22- we can write Agos/gos = fa— s,
where the closed 2-form A defined by Ay, = #(1/1{,. represents ¢ (Nx) on Hy (M)
(¢f. [G-H]. p. 141). If Uy # @. then dgas/gas = 0o — 03 = j1a — 3. Hence, we can
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define a C> 1-form ¢ on W := M ~ Tang(F.G) by ¢
that dp = 2’%(—) — A. This implies that de extends to a C*° form in M. Moreover.

(9) ./ﬂ.[(i@—/\)/\(_):/ do A 6.

N

U,ow = 5=(0a — pta). Note

The idea is to prove that fM de A© = 0. Let us study the behavior of ¢ near an
irreducible component of Tang(F, G). Set Tang(F,G) = 2,71 C+ Z , Di. where
C; is invariant for the pencil, j = 1,... &k, and D; is non-invariant, ¢ = 1,..., (.
Consider first the non-invariant case. Let p € |D;] N U, be a point such that we have
a normal form like in (b) of Lemma 2.2.1, in a coordinate system (U. (. y)). where
U C U,. As we have seen, w,|v = fw and |y = fn, where f € O(U), w = dx
and 1 = ydy — Q(x.y)dr. Q(r.y) = qo(x) + q1(x)y + y? q(a.y). This implies that
O, =0 +df/f, where § = Q” dx. Note that © is holomorphic in U if, and ouly if.
Q,/y is holomorphic. which 11111)110s that 6, is holomorphic in U and ¢ is C™ in U.
This implies that ¢ is C> on M~ [C], where C' =37, € and |[C] = U; [(')].

Consider now a point p € |C]. Let (fy -+ fr = 0) be a (reduced) equation of C' in
a small Stein neighborhood U of p. We assert that there exist Aj, ..., A € C and a
'™ 1-form v such that

(10) plu = Z YA
J=1 f]

In fact, suppose first that p belongs to an invariant component C; and we have a
normal form like in (a) of Lemma 2.2.1 on a coordinate system (U. (. y)). where
U c U,. for some o € A. As before, we have wy |y = f-w = f-dy and na|lv = f -1
where f € O*(U) and n = P(x,y)dy — y da. From the first part of the proof and the
fact that © is holomorphic. we get

df 1+ P, df 1 dy

* (}(\:04'_4 { —_— = — A\ — R
® / y T 2m[!/+w

. . . .. . dy
where Ay € C and ¢ is a holomorphic 1-form. This implies that |y = Ay —= + vy,
Y

where v is a C 1-form.
Let us prove that A;r depends only of €. It follows from (*) that
1
—/\1 = Res(0,.C)) = — ()(,
271 pr Js
where 5 is a small cicle swrrounding Cy. If 3 € A is such that U, NU; N # @ then

On — 03 =dgas/gas. Hence.
1 ' 1 '
H(\ - T H, .
2mi A 2mi ,/7 !

if v C U, NUz. This proves that A depends only of (. Set Ay = Aj.

Note that A; satisfies the following property
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(A) Let (fjo = 0) be a reduced equation of C; NU,. Then 0, — 5=Xjdfjo/ fja has
no poles along C; N U,.

We leave the proof of (A) for the reader. Let ( fi ,(, =0) be a

reduced equation of C'; on U,. It follows from (A) that 6, — Zl]‘ ] 2m N dfja/fjais

¥

holomorphic on U,,. Hence, v = ¢l — Zﬁ’,l Xjdfja/fja is C™. This proves (10).
Let us prove that [M do A O = 0. We will cousider two cases:

First case. All the singularities of ' are nodes. In this case, we can find a finite
open covering V = (Vi )aea of M with the following properties:

(i) For every a € A, V,, is a domain of a coordinate system ¢, = (4,9a): Uy — C?
such that ¢, (Uy) = Dy x Do, where D, = {z € C||z| <r}.

(i) If U, = o, Y (D, x Dy) then U, U, = M.

(iii) If [NV, # @ is smooth then (y, = 0) is an equation of C'NV,,. In particular,
olv, = A 'IU‘ + v, where A € C and v is C*.

(iv) If |( | NV, has a singularity in V,, then (x, -y, = 0) is an equation of C'N'V,
In particular, |y, = A, &= 4+ )y ']’/‘ + v, where A\,. Ay € C and v is O,

In general, let (f, =0) be an equdtlon of C'NV,. Let (¢4)aea be a C°° partition
of the unity such that supp(¢.) C Vi, for all v € A and set f = exp(d_,, ¢a - In|fa]).
If 3 € A is fixed, then

fvo=esp (Y eamlfal) e (Y g lnlfal)

oV, 3 #D oV, 4=0
= CeXpP < Z Peov * In |.(/(v/f./‘/i|) - CXpP ( Z Peov " In |.f«~|) = |.f/’l‘ “9s
Vi, 3 #Q a Vi, =0

where gg: Vi — (0, +2¢0) is C™.

(v) flv, = |fal" ga. where g, € C>(V,,). In particular, f can be extended contin-
ually to M as f|jc) = 0.

(vi) f>0o0n M~ |C|and f~1(0) = |C].

Set M. ={pe M| f(p)=e}and Cc = {pe M| f(p) <c}. Forall e >0 we have

/(ip/\@z/ (A;A@Jr/ dp N O / (1((,9/\?))—1-/ dp A O
J M J . Je. J AL Je.

:/ L,QA@+/ do N ©.
Jon. Je.

Since lime o ([ do A ). we get
(vii) '['M dp A O = lim. _q ( fonr. @A @)

I

It is enough to prove that lim._¢ <ﬁ)[\[_ A (—)) = 0. In order to prove this
fact, consider a covering {Vy = V,,,....V, := V., } of |C] by sets of V., such
that {U; := U,, | 1 <j < njis still a covering of [C]. 1f U = U}, U; then there
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exists gy such that, if ¢ < g then M. C V. Hence, if Sj(e) = M. NU. and
I;(e) = ./:‘;"(5) lo A O], we get that

. n
’/ %) gZI,(a) if e < g
Joar =

It follows that, it is sufficient to prove that lim._ I;(e) = 0 for all j = 1..... n. We
will prove this fact in the case where Vj is like in (iv) and leave the other case for the

reader.

Consider a coordinate system (@, y) on V; as in (iv), that is |[C]NV; = (v -y = 0).
As we have seen before, )y = g y) do A dy v, = /\(,'f’,‘_i + /\1,'%/ + v. where
g€ O(V;). Ay. Ay € € and v is €. Therefore, there exists a constant ¢ > 0 such
that on U, we have

lo A O] (’——A(lz/\(l—‘—i—’—/\d—/\d(/{

v Adr A (]I/D

If we set
dr

;1{,‘(5) = / — A (].I_'/\(]ﬁ .
JSi()

€T

1,
Bi(c) = Y dF A dy
J
Jsie) 'Y

() = / I/A(I;T'/\{ly‘.
J55(=)

then 7;(e) < c.(Aj(e) + Bj(e) + ().  Hence, it is sufficient to prove that
lime—g Aj(2) =lim._y Bj(s) = lim._, () = 0. We will prove that lim._y A;(c)=0
and leave the proof that lim. o B;(z) = lim._y Cj(e) = 0 for the reader (note that
lim-—o ('j(g) = 0 because v is (7). Given (0 < a < 1. define

J(a.g) = /
JS (0l za)

so that A;(g) = J(a.2) + N (a.2). Since |dT' AdTNdg|is O on (o] = a). we get that
lim-_—y J(a.2) = 0 for all @ > 0. Therefore. it is suflicient to prove that there exists
0 < a < I such that lim: .o KN(a.g) = 0.

Set = re™ and y = s so that [L5 A dF A dy) = 2]dr A da A dyl. T the
coordinate system (r.a. {/) we have f(roacy) = r-s-g(r.a.y) (by (iv)). where g € O
and g > 0. Since dr-g/dr(0.a.y) = g(0.a,y) > 0, there exists 0 < a < 1 such
that the map v(r.a.y) = ('~(/(r Q. (/) a.y) = (Roacy) is (llﬁ(‘()111()]'])1]1\'111 from a
neighborhood Woof (r = 0) N (ly] < 1) onto Wy = (R < 8) N (Jy] < |+ 9). where
Wsup(r <a)n(lyl < 1). N)i( that o "(R.a.y) = (R-h(R.a.y).a.y). where I is
", In the coordinate system (R.a.y) we have

L
LNdTA dy
X

dr - ‘
— ANdT A dyl and  K(a,e) = /
1 )] <a

S )y = (Reyl = Res = 9)N(s < 1) i=T(2) = K(a.2) = / 2/d(R-h)Ada Ad]
ST (=)
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if ¢ > 0 is small.  We assert that there exists a constant ¢ > 0 such that
21d(R-h) Nda ANdy| < ¢ Rlds Ada ANdj3| on T(eg), if £ is small (the restriction
to T'(=)). In fact,
21d(R - h) Ada Ady| < 2R|dh A do A dgl + 2|h] |dR A da A dy|
< 2R |hg||dR AN doa Adyl + 2R |h,| [do A dy A dy|
+ 2|h| |[dR A dee A dF]

Since K = ((r < a) N (Jy] < 1)) is compact. 2|h|. 2|hgl].2]h,]. R are bounded in K,
so that there exists a constants ¢; > 0 such that

21d(R - h) Ada Ady| < e (R]da Ady A dyl+ [dR A da A d))
< (2R |ds Ada AdB| + [dR A da A (I;T/l)
on K. because |da A dy A dy| = 2|ds A da A di3]. On the other hand. 7 = s - ¢~ and
R-s==¢onT(g). Hence, if £ > () is small, we get
|dR A da Ady| = [d(Rdg) Adal = |d(=Rsie”"ds) Ada + d(Re™Pds) Adal

= |d(—cie”"7d3) Nda + d(Re " ds) A dal

= |d(Re ds) ndal < Rlds Ada Ad3] + [dR A ds A do

= Rlds Nda A dj3)

because dR A ds = 0 on T'(e). Therefore, on T'(g) we have 2|d(R - h) A do A dy| <
¢ Rlds A da A d3|. where ¢ = 3¢p. From this. we get that

ds
— Nda AN df3.
S

K(a.e)<e / Rids Ndo Nd3| = ce /
JT() J7(=)

On the other hand, the region T'(2) in the real hypersurface R - s = ¢, is contained in
a region of the form

Ti(e):={(R.s.a.3) | R-s=2z,a,7€[0.2r], 1 25 >¢/Ry},
where Ry = sup{R(r.a.y)| (r.a.y) € S;(=)}. This implics that

K(a.e) < ¢

o

' Is .
/ ’(—: Ada AN d3| = dr?ce - |log(s/Ry)| = lin()] K(a.g)=10
IO T
This finishes the proof of Claim 1 in the first case.

Second case: general case. Consider a resolution of the curve €' by blowing-ups
7o M — M and let C* = 771(C), ©° = 7°(0) and »* = 7% (). Then [ dpn© =0
if. and only if. [ de* A ©" = 0. Note that the singularities of € are of nodal
type. Tt is sufficient to prove that |C] adwmits an open covering satisfying (i), (ii),
(iii) and (iv). Let p € sing(C) (which is not a node) and ¢ € 7 '(p). Since the
singularitics of C* are nodes, we have two possibilities: either ¢ is a smooth point of
C*. or ¢ is in the normal crossing of two local components. say Dy and Do of €.
Let us consider, for instance, the second case. Let (11 (i, y)) be a coordinate system
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around p. where C'N U has a reduced equation (f -+ fi = 0). As we have seen, we
can write ply = ZLI Aj % + v, where A,....A\p € C and v is C>. Consider a
coordinate system (V ¢ = (u.v)) around ¢ = (0.0) such that =(V) C W, ¢(V) =
{(u,v) € C?| |ul, Jv| <2}, DNV = (u=0) and DoNV = (v = 0). We have still two
possibilities: either (D) = m(D2) = {p}. or 7(D;) = {p} for just one j € {1.2}. Let
us consider, for instance, the first case. In this case, if J‘AJ is the strict transform of f;.
then Fj = fA]|\ € O*(V). On the other hand, f; om(u,v) ="/ - 0" - I;. Hence, in
the coordinates (u,v) we have, 7*(p) = A, ’% + A ’[‘—‘ +v*. where A\, = Z‘j mj - Aj.

A= 30 g Ay and vt =77 (v) + 305 AjdE;/Fy. Since Fy € O7(V) for all j. we get

that v* is C>. We leave the proof of the other cases for the reader. This finishes the

proof of Claim 1. O

Let us finish the proof of (¢) = (a). Suppose by contradiction that © is holomor-
phic and © # 0. Let Z := (©)g be the divisor of zeroes of ©. Given a divisor D on M
we will denote by [D] its class in Pic(A7). Since © is a non-vanishing section of Q% (A[1).
we have Ky = [Z]. On the other hand, it is known that Tang(F.G) = KNy + Nr+ Ng
(¢f. [Br]). Since Ny = Ng we get that 2Nz = Tang(F.G)—[Z] = Z"}";l n;[D;]. where
nj € Z and Dj is an irreducible component of Tang(F.G) U Z. 1 < j < m. It follows
from Claim 1 that

m

/ (—)/\(_—):me'mj/ ci(Dj)N©
J M

= M

On the other hand, it is known that (¢f. [G-H])

/ aDj)ne=[ 6=0

Jar D,

because O is a (0.2)-form. This finishes the proof of Theorem 2. OJ
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