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p-ADIC HODGE THEORY AND VALUES OF
ZETA FUNCTIONS OF MODULAR FORMS

by

Kazuya Kato

Abstract. — 1If f is a modular form, we construct an Euler system attached to f
from which we deduce bounds for the Selmer groups of f. An explicit reciprocity law
links this Euler system to the p-adic zeta function of f which allows us to prove a
divisibility statement towards Iwasawa’s main conjecture for f and to obtain lower
bounds for the order of vanishing of this p-adic zeta function. In particular, if f is
associated to an elliptic curve E defined over Q, we prove that the p-adic zeta function
of f has a zero at s = 1 of order at least the rank of the group of rational points
on E.
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Introduction

One of the most fascinating subjects in number theory is the study of mysterious
relations between zeta functions and “arithmetic groups”. Here “arithmetic groups”
include ideal class groups of number fields, Mordell-Weil groups of abelian varieties
over number fields, Selmer groups associated to Galois representations of number
fields, etc., which play important roles in number theory. Among such relations,
we have Iwasawa theory (relation between zeta functions and ideal class groups)
which is a refinement in 20th century of the class number formula in 19th century,
Birch Swinnerton-Dyer conjectures (relation between zeta functions and Mordell-Weil
groups), etc., and much of such relations are still conjectural. When we study such
relations, a big difficulty is that zeta functions and arithmetic groups are too much
different in nature; zeta functions are analytic and arithmetic groups are algebraic
and it is very difficult to understand why they are closely related.

After Kolygavin, it was recognized that zeta functions have not only the usual
analytic shapes (Euler products), but also arithmetic shapes (Euler systems), and that
it is useful to consider these arithmetic shapes for the study of relations between zeta
functions and arithmetic groups; it is more easy to understand the relation between
the arithmetic shapes of zeta functions and arithmetic groups which are not far in
nature, than the relation of analytic shapes and arithmetic groups.

zeta function «——13% arithmetic groups

(analytic) (algebraic)
Euler systems — 2, arithmetic groups
(= arithmetic shapes (algebraic)

of zeta functions)
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p-ADIC ZETA FUNCTIONS OF MODULAR FORMS 119

In this paper, by considering the Euler systems of Beilinson elements in Kg of
modular curves, which are regarded as “arithmetic shapes” of zeta functions of elliptic
modular forms, and by using p-adic Hodge theory, we obtain results on the relations
between zeta functions of elliptic modular forms and Selmer groups associated to
modular forms, and results in Iwasawa theory of modular forms.

Since it is now known that all elliptic curves over Q are modular ((Wi] [BCDT]),
this gives also results on Birch Swinnerton-Dyer conjectures for elliptic curves over Q.

The main results of this paper are the following. (Please see the text for the precise
statements.)

Theorem. — Let f be an eigen cusp form for T'1(N) of weight k > 2.

(1) (Thm. 14.2) Letr € Z, 1 < v < k — 1, and assume v # k/2. Then for any
finite abelian extension K of Q, the Selmer group Sel(K, f,r) of f over K with r twist
is a finite group.

(2) (Thm. 14.2) Assume k is even. Let K be a finite abelian extension of Q. Let
x : Gal(K/Q) — C* be a character, and assume L(f,x,k/2) # 0. Then the x-part
Sel(K, f, k/2)(X) of Sel(K, f,k/2) is a finite group.

(3) (Thm. 18.4) Assume k is even. Then

p-adic corank of Sel (K, f,k/2) < ord,_x/2 (p-adic zeta function of f).
(4) (Thm. 17.4) Assume f is good ordinary at p. Then
% = Hom(lim Sel(Q(Gp), /), (Qp/Z,)(r))

for1 < r < k—1 is independent of r and the characteristic ideal of X divides p™ times
the p-adic zeta function of f for some n = 0.

In some cases, we can drop p” in (4) (Thm 17.4 (3)). This (4) is a partial answer
to a conjecture of Greenberg ([Grl], the case of elliptic curves was conjectured by
Mazur [Mal]) who predicts the equality in place of divisibility in (4). We also obtain
results on “Iwasawa main conjecture for modular forms without p-adic zeta functions”
(Thm. 12.5) and results on Tamagawa number conjectures ([BK2]) for modular forms
(Thm. 14.5).

There are already many results on these subjects (for example, [BD], [CW], [Ru2],
[Ko], [Ne],...). Most of former works use elliptic units and Heegner points as “arith-
metic shapes of zeta functions”, whereas we use Beilinson elements instead. The part
of the above Theorem concerning eigen cusp forms f with complex multiplication
depends on results of [Ru2] on main conjectures of imaginary quadratic fields.

The plan of this paper is as follows. In Chapter I, we define Euler systems of
Beilinson elements in K3 of modular curves (§2) and also Euler systems in the spaces
of modular forms (§4). The former Euler systems are related to lims_o s~ L(f,s)
for cusp forms f of weight 2 by the theory of Beilinson, and the latter Euler systems
are related to the zeta values L(f,r) (r € Z,1 < r < k— 1) of cusp forms f of weight
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120 K. KATO

k > 2 by the theory of Shimura. In Chapter 2, by using the above Euler systems
in K2 of modular forms, we define p-adic Euler systems in the Galois cohomology of
p-adic Galois representations associated to eigen cusp forms of weight > 2 (§8). We
prove that via p-adic Hodge theory, these p-adic Euler systems are closely related to
the Euler systems in the space of modular forms (§9), and hence closely related to
the zeta values L(f,r) (r € Z, 1 < r < k — 1) for cusp forms of weight £ > 2. In
chapter III and Chapter IV, by using this relation of our p-adic Euler systems with
zeta values, and by using the general theory of Euler systems in Galois cohomology,
we obtain our main results.

A large part of results of this paper in the case of modular forms of weight 2 were
introduced in Scholl [Sc2] and Rubin [Ru3].

This work is a continuation of my joint work with S. Bloch on Tamagawa numbers
of motives ([BK2]), and I am very thankful to him for his great influences. I express
my sincere gratitude to J. Coates, M. Kurihara, and T. Saito for their constant en-
couragements in my writing this paper. I am thankful to N. Kurokawa for teaching me
modular forms and Rankin convolutions. I am also thankful to J. Coates, G. Faltings,
M. Flach, H. Hida, N. Katz, M. Kurihara, B. Mazur, T. Shioda, T. Tsuji, A. Wiles,
for advice, and to P. Colmez for corrections on the manuscript.

Some part of this work was done during the author was a visitor of Japan-US.
Math. Inst. in the Johns Hopkins Univ. in 1990, and some improvements in this
work were obtained during the author was a visitor of Newton Institute in 1993 and
of the Institute for Advanced Study in 1995. I express my sincere gratitude to their
hospitalities.

CHAPTER 1

EULER SYSTEMS IN K; OF MODULAR CURVES AND EULER
SYSTEMS IN THE SPACES OF MODULAR FORMS

In this Chapter I, we consider Euler systems in K of modular curves (§2) and
Euler systems in the spaces of modular forms (§4). The former (resp. latter) come
from the work of Beilinson [Be] (resp. Shimura [Sh]) and are related to the zeta values
lim—0 s71L(f, s) (resp. L(f,r) (1 < r < k—1)) for cusp forms f of weight 2 (resp. k),
by the theory in [Be] (resp. [Sh]).

§1 is a review on Siegel units (resp. Eisenstein series) and is a preparation for §2
(resp. §4).
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p-ADIC ZETA FUNCTIONS OF MODULAR FORMS 121

1. Siegel units

We review the theory of Siegel units which are functions on modular curves having
zeros and poles only on cusps. Cf. [KL].

1.1. For N > 3, let Y(NN) be the modular curve over Q of level N without cusps,
which represents the functor

the set of isomorphism classes of triples (F,e;,ez) where E is an elliptic
S +—— ¢ curve over S and (e, ez2) is a pair of sections of E over S which forms a
Z/N-basis of yF =Ker(N : E — E).

Cf. [DR].

Y (N) is a smooth irreducible affine curve. The total constant field of Y/(IV) (the
field of all algebraic numbers in the affine ring O(Y (IV)) is not Q, but is generated
over Q by a primitive N-th root of 1. Let X (IN) be the smooth compactification of
Y (N).

If N, N’ > 3and N | N’, we have a finite étale surjective morphism Y (N’) — Y (N)
which represents (E, ey, ez) — (E,(N'/N)ey,(N'/N)ez). We regard O(Y(N)) as a
subring of O(Y (N')) via the pull back.

1.2. The aim of §1 is to review basic facts about the Siegel units

cYa,B € LIJO(Y(N))X, Ya,8 € EVJO(Y(N))X ®Q

where (a, 8) € (Q/Z)? < {(0,0)} and c is an integer which is prime to 6 and to the
orders of a, 3. These elements satisfy

cga,8 € O(Y(N))*, gap€OY(N)*®Q if Na=Np=0,
cYa,B = (ga,,[i)C2 (gccn,cﬁ)-_1 in O(Y(N))X ® Q.

We introduce Siegel units by using the following proposition.

Proposition 1.3. — Let E be an elliptic curve over a scheme S. Let c be an integer
which is prime to 6. Then:

(1) There ezists a unique element .0g of O(E \ .E)™ satisfying the following con-
ditions (i) (ii).
(i) <0r has the divisor c2(0) — .E on E, where (0) denotes the zero section of
E regarded as a Cartier divisor on E and .E = Ker(c: E — E) is also regarded
as a Cartier divisor on E.
(ii) No(c.0r) = O for any integer a which is prime to ¢, where N, is the
norm map O(E N 4.E)* — O(E \ .E)™ associated to the pull back homomor-
phism O(E \ ;E) — O(E \ 4.F) by the multiplication a : E \ ,cF — E \ E.
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122 K. KATO

(2) If d is also an integer which is prime to 6, we have an equality in O(E \ 4 E)*

(a9)°" (¢"(a08)) ™" = (c08)" (d*(c05)) "

where c* (resp. d*) denotes the pull back by the multiplication ¢ (resp. d): E — E.

(3) Let % = {r € C; Im(r) > 0} be the upper half plane. For 7 € $ and z €
C~c Y Zr + Z), let .6(T, z) be the value at z of .0 of the elliptic curve C/(Z7 + Z)
over C. Then,

H(r,2) = gD (=)D L (1), (1)
where ¢ = €2™7, t = 2™ and
7@ =[[a-at) [T -a"¢).
n>20 n>1

(4) If h : E — E’ is an isogeny of elliptic curves over S whose degree is prime to c,

then the norm map h, sends .0 to Og:.

The proof of Prop. 1.3 is given in 1.10 later.

1.4. We define Siegel units.

In 1.3, consider the case where F is the universal elliptic curve over Y (N), N > 3.
We define .go,3. Take N > 1 such that Na = NG = 0, and write (a,8) =
(a/N,b/N) € (£Z/Z)* < {(0,0)} (a,b € Z), and define

c9a,8 = La,p(cfE) € O(Y (N))*
where
ta,g =ae1 +beg : Y(N) — E\ E.
Here L;’ 5(095‘) is defined since the image of ae; + bes does not intersect with the
divisor . E by the assumptions that c is prime to the orders of «, 8 and («, 8) # (0, 0).
By taking ¢ such that (¢,6) =1, ¢c=1 mod N and ¢ # %1, let
Jap = c9ap @ (* = 1) € OY (N)* ®Q.

Then it is seen from 1.3 (2) that g4 g is independent of the choice of such ¢, and

c9a,8 = (90,0)° (geacs) ™ in O(Y(N))* ®Q
for any integer c such that (¢,6N) = 1.
As elements of UNyO(Y (IN))* (resp. UNO(Y (N))* ® Q), ca,s (resp. ga,s) do not
depend on the choice of N above.

Remark 1.5. — To have a perspective view on Siegel units, a good way would be to
find some “truth” in the following wrong statement.

“If F is an elliptic curve over a scheme S, there exists an element g of O(E ~ (0))*
which has the divisor (0) on E and N4(0g) = 0g for any non-zero integer a. We have
OE = (013)62 -(c*(8g))”". In the case F is the universal elliptic curve over Y (N), we
have ga, = 15, 5(05).
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p-ADIC ZETA FUNCTIONS OF MODULAR FORMS 123

Though the existence of such g would nicely explain properties of .0 and of
Siegel units, 0 does not exist in fact since the degree of a principal divisor should
be 0 but (0) has degree 1.

1.6. The group GL2(Z/N) acts on Y(N) from the left in the following way. An
element o = (§ §) € GL2(Z/N) sends (E, ey, e2) to (E, e}, e5) where

e} _ (e b\ [e1
€eh c d) \ex/) "’
The induced action by o on the total constant field sends a primitive N-th root o of 1

to adet(a) X

Lemma 1.7
(1) For o € GL2(Z/N) and for (a,f3) € (-IIVZ/Z)2 ~ {(0,0)}, we have

0" (c9a,8) = cGa,p
0"(9a,8) = 9o B
where c is any integer which is prime to N and (¢, 3') is defined by (¢, ') = (o, B)o.
(2) (Distribution property.) Let (a, ) € (Q/Z)* ~ {(0,0)}, and let a be a non-zero
integer. Then
cdap =[] cgarp in YOV (N)*
al’ﬂ/ N
9ap = I[ garpr in YO (N)* @ Q

a/ ’ﬁl N
where c is any integer which is prime to a and to the orders of a, 3, and o' (resp. ')
ranges over all elements of Q/Z such that ac = o (resp. a8’ = ).

1.7 (1) is proved easily. 1.7 (2) is deduced from N,(.0g) = .0E.

1.8. Let Y (IV)(C) be the set of C-valued points of the Q-scheme Y (N). We have a
canonical map

v:H — YN)C); 7+— (C/(ZT + Z),7/N,1/N).

Via v, we often regard elements of O(Y (N)) as functions on §). The standard action
of SLz(Z) on $ and the above action of GLz(Z/N) on Y (N)(C) are compatible via
v. We have an isomorphism of analytic spaces

@IN)* XN = YW)(©)s (@r)— (§ 7))

where I'(N) = Ker(SL2(Z) — SL2(Z/N)).
The C-valued points v(7) of Y/(N) for 7 € § give a common homomorphism from
the total constant field of Y (V) into C. We always regard the total constant field of
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124 K. KATO

Y (N) as a subfield of C via this homomorphism. In this paper, (x denotes e2™/N
which generates this total constant field.

1.9. The pull back of ¢ ga,s ((o, B) € (-IIVZ/Z)2 ~{(0,0)}) under v : $ — Y(N)(C) is
the function .0c(zr+zy(aT + 8 mod Z7 + Z) in 7 € $. From 1.3 (3), we can deduce
that the pull back of g,/n,p/v on 9 fora, b€ Z,0< a < N, (a mod N,b mod N) #
(0,0) is equal to

- [Ta-a ") T](1—q*aN¢RY)

n>0 n>0

where w =1/12 — a/2N + (1/2)(a/N?). Here ¢* for a € Q means 277,

1.10. We prove Prop. 1.3. (See [Sc2, §1.2] for another proof.)

We prove 1.3 (1). We first prove the uniqueness of .0g. Let f and g be elements
of O(E \ .E)™ having the properties (i) (ii) of ;0. Then g = uf for some invertible
constant u € O(S)™. For an integer a which is prime to ¢, we have g = N,(g) =
Ng(uf) = u* f (since a : E — E is of degree a?) and hence u®°~! = 1. By taking
a =2 (resp. a = 3), we have u® = 1 (resp. u® = 1). Hence u = 1.

Next we prove the existence of .0g. Since we have already the uniqueness, we can
work locally on S. First we show that locally on S, ¢?(0)—.E is a principal divisor. For
this, by “Abel’s theorem” it is sufficient to prove that the image of c?(0) — .F under the
isomorpism of Abel Pic(E)%®=° — E(S) is zero. For any integer a which is prime to
¢, the image of the divisor ¢2(0) — .E under the multiplication a : E — E is ¢2(0) — .E
itself. Since the map a. on Pic(E)9°8=0 is compatible with the multiplication by a
on E(S) via the isomorphism of Abel, the image of c?(0) — .E in E(S) is invariant
under the multiplication by a. By taking a = 2, we see that the image of c2(0) — .E
in E(S) is zero. Now by what we have proved, there exists locally on S a function
f € O(E \ .E)* having the divisor ¢?(0) — .E. If a is an integer which is prime to c,
the divisor of N,(f), which is the image of c2(0) — .E under the multiplication by a,
is equal to ¢%(0) — .E. Hence N,(f) has the same divisor as f and so Ny (f) = ugf for
some invertible constant u,. If b is also an integer which is prime to ¢, Ny Ny = NN,

2 2_ . -
shows that v —1 = up ! Hence if we put g = Uy 3usf we have

—3a? a2 —3(a?-1) a%2-1 —3(2%-1),,3%2-1
No(g9) = u3°* u§ ugf = uy ( )u‘; Ueg = U, ( )ua Ugg = g.

Hence g has the properties (i) (ii) of 0. Since we have already the uniqueness, this
local existence of .0g proves the global existence of ..

We prove 1.3 (2). As is easily seen, both (dé‘E)cz(c* (40g)) " and (CQ9E)"lz(d*(00E))_1
have the same divisor c2d?(0) — 24 E — d?.E + .4F. Let u € O(S)* be the ratio
of these two elements. Since these two elements are invariant under Ny and N3, we
have by applying N» (resp. N3) that u* = u (resp. u® = u). Hence u = 1.
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p-ADIC ZETA FUNCTIONS OF MODULAR FORMS 125

We prove 1.3 (3). Let
f(Z) = qﬁ(cz_l)(_t)%(c—(ﬁ) . ’)’q(t)CQ’)/q(tc)_l where t — 627”;2‘

Then it is directly checked that as a function of ¢, f(z) is invariant under the trans-
formation ¢ — qt. Hence f(z) depends only on z mod Z7 + Z. Hence f(z) is a
meromorphic function on E = C/(Z1 + Z). It is seen easily that this function has the
characterizing properties (i) (ii) of .0g in (1).

We prove 1.3 (4). For any integer a which is prime to ¢, we have

Nah*(coE) = h*Na(caE‘) = h*(ceE)

Since the degree of h is prime to ¢, h«(.0g) has the divisor ¢?(0) —. E’. Hence by the
uniqueness of ;0g:, we have h.(.0g) =c 0E’.

2. Euler systems in K; of modular curves

2.1. In this section, we consider “zeta elements (elements which are related to zeta
functions)” in K3 of the modular curves Y (M, N).

For M, N > 1, the modular curves Y (M, N) are defined as follows.

Take L > 3 such that M | L, N | L. Define

Y(M,N) = G\Y (L)

b
G:{(‘c1 d)eGLg(Z/L);
a=1mod M, b=0mod M, ¢=0 mod N, dzlmodN}

Then Y (M, N) is independent of the choice of L.
We have Y(N,N) =Y (N)if N > 3.
Let X (M, N) be the smooth compactification of Y (M, N).
If M + N > 5, the Q-scheme Y (M, N) represents the functor

the set of isomorphism classes of triples (E,e;,e2) where E is an elliptic
S — curve over S and e; and es are sections of E over S such that Me; =
Ney =0and Z/M x Z/N — E; (a,b) — ae; + bes is injective.

The canonical morphism Y (L) — Y(M,N) (M | L, N | L) represents (F,e1,ez) —
(B, (L/M)e1,(L/N)es).
In the rest of this section, except in 2.8, we always assume

M, N>22, M+N 25
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126 K. KATO

2.2. For integers ¢, d such that (¢,6M) = 1 and (d,6N) = 1, we define elements
¢,d2M,N, Which we call “zeta elements” by

¢,d?M,N = {c91/M,0,490,1/n } € K2(Y (M, N)).
Note cg1/m,0 € OY(M,1))” and ago,1/8 € O(Y(1,N))* by 1.7 (1). We define an
element z7, 5, which we call also a zeta element, by
zm,N = {91/M,0,90,1/n} € K2(Y (M, N)) ® Q.
We have

cazmn = (@ = (69" ) (€= (§9)7) -2mn in Ka(Y(M,N) ®Q.

Here, for a € (Z/M)* and b € (Z/N)*, (&9)" denotes the pull back by the action of
(&9) on Y(M, N) which represents (E, e1,e2) — (E, aer, bez).

In 2.3 and 2.4 below, we consider the behavior of zeta elements under norm ho-
momorphisms, and in 2.6, we consider the relation between zeta elements and zeta
functions.

Proposition 2.3. — Let M’, N’ > 2, and assume M | M', N | N'. Assume further
that

prime(M) = prime(M’), prime(N) = prime(N’),

where for an integer a > 1, prime(a) denotes the set of all prime divisors of a. Then,
the norm homomorphism

Ka2(Y (M’,N')) — Ko (Y (M, N))

sends ¢ gzZm' N’ 10 c,aZm,N for any integers ¢, d such that (¢,6 M) =1 and (d,6N) = 1.
After ® Q, it sends zp N+ to zam,N -

Proposition 2.4. — Let ¢ be a prime number which does not divide M. Let ¢, d be
integers such that (c,6M¥¢) =1 and (d,6N¥) = 1.
Then the norm homomorphism

sends ¢,dzme,Ne O
* 1/ 0 \*
(1=T'@O )" + (0 )" ) - cazarn
in the case £ does not divide N, and to
(1 —T'(8) () (1))*) ‘e, dZM,N

in the case ¢ divides N. Here T'(¢) is the “dual Hecke operator” explained in 2.9 below.
The similar statement holds for zpye ne and zm N (after ® Q).

The proofs of 2.3 and 2.4 are given in 2.11-2.13 below.
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p-ADIC ZETA FUNCTIONS OF MODULAR FORMS 127

2.5. We next describe how zeta elements are related to zeta functions.
We consider the operator-valued zeta function

Zun(s) = > T -n
(n,M)=1

(T'(n) is the dual Hecke operator explained in 2.9 below), acting on H! (Y (M, N)(C), C).
(Here Y (M, N)(C) denotes the set of C-valued points of Y (M, N) as a Q-scheme.)
This converges absolutely when Re(s) > 2. This function Zas, n(s) has a presentation
as an Euler product whose Euler factor at a prime number £ is

* * -1
(=T @OC)" o+ (10,) - 47%) it (LMN)=1,

. -1
(1—T'(e)(1(/)“1’) -e-S) if ((,M)=1 and £|N,
1if €| M.

The function Zas n(s) has an analytic continuation to the whole C as an opera-
tor valued meromorphic function in s, and is holomorphic at s # 2. Furthermore,
Z M, N(O) =0.

As is reviewed in 2.10 below, we have the regulator map

regy n - Ko(Y (M, N)) — HY(Y (M, N)(C),R -1).
As is explained in 2.7 below, we have a special element
du.n € HY(Y (M, N)(C), Z).
Let
(Gaaw)® = 3 - (Baaw £ 0u,x)) € H (Y (M, N)(€), Q)

where ¢ denotes the pull back by the complex conjugation on Y (M, N)(C).
The following Thm. 2.6 is deduced from the work of Beilinson in [Be, §5]. We will
give the proof of Thm. 2.6 in §7.

Theorem 2.6. — Assume prime(M) C prime(N). Then we have

.1 . -

regyr n(ZM,N) = sh_rg 3 Zp,n(s)-2mi- (6pm,N)” -
2.7. The definition of the special cohomology class dps,n is as follows.
By Poincaré duality, the canonical pairing

(H! means the compact support cohomology) induces isomorphisms
(2.7.1) HY(Y (M, N)(C),Z) = Hom (Hé(Y(M, N)((C),Z),Z)

~ H, (X (M, N)(C), {cusps}, Z),

where
{cusps} = X (M, N)(C) \ Y (M, N)(C)
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We define 6y, v € HY(Y (M, N)(C),Z) to be the image of
class(p) € H1(X (M, N)(C), {cusps}, Z)
under (2.7.1), where ¢ is the continuous map
(0,00) — X(N)(C); (y) =v(yi) for 0 <y < oo,
which is a route from a cusp to a cusp.
2.8. (In 2.8, we do not make the assumptions M, N > 2, M + N > 5.) We give a

preliminary to introduce Hecke operators.
For A > 1, define Q-schemes

Y(M,N(A)), Y(M(A),N)

as follows. Take L > 3 such that M | L and AN | L (resp. AM | L and N | L).
Define Y (M, N(A)) (resp. Y(M(A),N)) to be the quotient of Y(L) by the action of
the subgroup of GLy(Z/L) consisting of (2 Y) such that

a=1mod M, b=0mod M (resp. AM),

¢c=0mod AN (resp. N), d=1 mod N.
We have canonical projections

Y(M,AN) — Y(M,N(A)) — Y (M, N),

Y(AM,N) — Y (M(A),N) — Y (M, N).
Now assume M + N > 5. Then the Q-scheme Y (M, N(A)) (resp. Y(M(A),N))
represents the functor

the set of isomorphism classes of (E, e, e2,C) where (F, e1, e2) gives an S-
S —— { valued point of Y(M, N) and C is a cyclic subgroup scheme of E of order
AN (resp. AM) satisfying the following condition.

The condition is that C' contains the section ey (resp. e1) and the homomorphism
ZIM x C — E; (z,y) — ze1+y
(resp. CXZ/N — E; (z,y)— x+yez)
is injective.

The canonical projections Y(M,N(A)) — Y(M,N) and Y(M(A),N) —
Y(M,N) are given by (E,e;,e2,C) — (E,e1,ez), and the canonical projec-
tion Y(M,AN) — Y(M,N(A)) (resp. Y(AM,N) — Y(M(A),N)) is given by
(E,e1,e2) — (E, Ae1, ez, Zey) (resp. (E,e1,e2) — (E, Ae1, ez, Zey)).

We have an isomorphism

(E’ €1, €2, C) Land (E,, eaa 6127 C,)
where E' = E/NC, € is the image of e; in E’, €} is the image of A~'e; N C in E’,
and C' is the image of A™'Ze, in E’. Here A~le; (resp. A™'Ze;) denotes the inverse
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image of ey (resp. Ze;) under the multiplication by A. (A~lex N C is just a closed
subscheme of E, but the image of A~le; N C in E’ becomes a section of E’ over S.)
The inverse morphism of ¢4 is given by

1y (M(A), N) > Y (M, N(A))
(E, 61,62,0) — (Elaellvel2a Cl)

where E' = E/MC, ¢} is the image of A=le; N C in E’, €} is the image of e; in E’,
and C' is the image of A~1Zey in E'.
If we denote the canonical morphisms

H— Y(M,AN))(C) and $H—Y(M(A),N)(C)
(induced by v : $§ — Y(AM N)(C)) both by v, ¢4 is the unique morphism satisfying
wa(v(r)) =v(AT) for any T € 5.
2.9. The Hecke operators T'(n) and the dual Hecke operators T'(n) (n > 1,
(n, M) =1) on K3(Y (M, N)) and on H (Y (M, N)(C), Z) are defined as follows.
First, T(1) =T'(1) = 1.

Next, we give the definitions of T'(¢) and T"(¢) for a prime number ¢ which does
not divide M. Let

pr:Y(M,N({)) — Y(M,N) and pr’: Y(M(¢),N) — Y (M,N)
be the canonical projections. We define
T () = (pr')e o (") o pr, T'(€) =pr, oo (pr')".

Here ( )* means the pull back and ( ). means the norm (or trace) homomorphism.
If ¢ does not divide NV, we have

T'(0) =T(0)(§19¢) "
In the case n is a power £° (e > 0) of a prime number ¢ which does not divide M,
T'(n) and T'(n) are defined as follows. If £ | N, T'(¢¢) = T'(£)®, T'(¢¢) = T'(£)°. If £
does not divide N, T'(¢¢) and T"(¢¢) are defined inductively, by

T(€e+2) T(e)T(ee-H)_l_T(ee)(l/Z 0) f,
T'(e%2) = T'(O)T' (=) + T () (114 9)" - .

Finally, for n = [], ¢4 (e(£) > 0) where ¢ ranges over all prime numbers which
do not divide M, T'(n) and T'(n) are defined by

— I_J:T(Ke(l))7 T/ HT/(ee(E))
¢

Then, for any m, n > 1 such that (mn,M) = 1 and for any a € (Z/M)*, b €
(Z/N)*, the operators T(m), T(n), T"(m), T'(n), (&9)" commute with each other.

SOCIETE MATHEMATIQUE DE FRANCE 2004



130 K. KATO

In the Poincaré duality
H'(Y (M, N)(C),Z) x Hy(Y (M, N)(C),Z) — Z,

T'(n) and T"(n) are transposes of each other.

2.10. Let Y be a smooth algebraic curve over C. We review the definition of the
regulator map ([Be])

Ka(Y) — HY(Y(C),R - 4).

(In our application, Y is taken to be Y (M, N) ®g C.) Since Y is a disjoint union of
smooth connected curves, the definition is reduced to the case Y is connected. Now
assuming Y is connected, let K be the function field of Y. First, we define

Ka(K) — liy H'(U(C),R - )
U

where U ranges over all non-empty Zariski open set of Y. For f, g € K*, let U be a
Zariski open set of Y such that f, g € O(U)™. Define a C*®-differential form 7y , on
U(C) by

ns.g = log(|f) - dlog(glg|™") — log(lg|) - dlog(f|f]™").

Then dny,y = 0, and hence class(ny,4) € H (U(C),R - i) is defined. It can be shown
that the map

K*® K* — limH'(U(C),R-i); f® g+ class(ny,g)
U

factors through the canonical surjection
K*® K* — Ko(K); f@g9+—{f, g}
We have a commutative diagram of exact sequences

Ka(Y)  Ka(K) —2—— @yev(c) C*

| 1

0 —— HY(Y(C),R - i) — lim, H'(U(C),R - 4) ~9, Dyevo R

where the right vertical arrow is z +— log(|z|), the y-component of the upper 9 for
y € Y(C) is the tame symbol map

{fig = (=)™ g7} (y) (m=ordy(f), n=ordy(g))

and the y-component of the lower 0 is (27rz')_I times the evaluation at the homology
class of a small loop around y with the standard orientation. This diagram defines
the regulator map K(Y) — H}(Y(C),R - ).
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2.11. We prove Prop. 2.3.

In general, if f : U — V is a morphism of schemes which is finite and locally free,
and if u € O(U)* and v € O(V)*, the norm map f. : Ko(U) — Ko(V) satisfies the
projection formula

fel{u,v}) = {fi(u),v}, ful{v,u}) = {v, fu(u)}

where f,(u) denotes the image of u under the norm map O(U)* — O(V)

Hence, it is enough to prove the case M’ = M and the case N’ = N. Since the both
cases are proved similarly, we assume N = N’. In this case, our task is to prove that if
M | M’ and prime(M) = prime(M’), the norm map O(Y (M’, N))* — O(Y (M, N))*
sends ¢g1/m,0 t0 cg1/Mm.0-

Take an integer L > 3 such that M’ | L and N | L. Let a = M'/M, let G be
the subgroup of GL2(Z/L) corresponding to Y (M, N), and let H be the subgroup
of G corresponding to Y (M’, N). For each (z,y) € (Z/a)?, fix an element Sg,y of
GL2(Z/L) of the form (1+}* Mv) such that v = z mod a and v = y mod a. (This
is possible because prime(M’) = prime(M).) Then s, for (z,y) € (Z/a)? form a
system of representatives of H\G. Hence the norm homomorphism O(Y (M’, N))* —
O(Y (M, N))™ sends c9g1/m 0 to

X

H Sz,y(c.(h/M',o) = H c9(1/M")+(z/a),y/a = c91/M,0
(z,y)€(Z/a)? (z,y)€(Z/a)?

where the first equation follows from 1.7 (1) and the second follows from 1.7 (2).

We give a preliminary lemma for the proof of Prop 2.4.

Lemma 2.12. — Let (o, 3) € (Q/Z)* ~ {(0,0)}. Let A > 1, and let ¢ be an integer
which is prime to 6A and to the orders of a, 3. Then we have

©alcYa,p) = Hcga,ﬁ’
ﬂl

(i.e. c9a,6(AT) =1lp c9a,s (1) as functions on $)) where 3' ranges over all elements
of Q/Z such that AB' = f.

This is proved by using the analytic presentation 1.3 (3) of Siegel units.

2.13. We prove Prop. 2.4.
Take L > 3 such that M | L, N | L.
The morphism Y (M¥¢, N¢) — Y (M, N) factors as

Y(M¢,N¢) — Y (M, Nt) — Y (M, N(¢)) — Y (M, N).

Let Go, G1, G2, G3 be the subgroups of GL2(Z/L#¢) corresponding to Y (M¢, N?),
Y(M,N¢),Y(M,N(¢)), Y(M,N), respectively. (So, Go C G; C G2 C G3.)
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Step 1.— First we show that the norm map Ko (Y (M¢, N¢)) — Ko(Y (M, N¢)) sends
c.dzme,Ne 40 {cgi/nm0 go;(cg;})),dgo,l /ne} where o denotes the unique element of
37Z/Z such that o= 1/M.

In fact, since 4go,1/n¢ € O(Y (M, N ¢))*, it is enough to show that the norm map
O(Y(M{,N£))* — O(Y (M, N£))™ sends ¢g1/ame,0 t0 cg1/me,0 w}(cg;})). For each
(z,y) € (Z/£)* x Z/¢, fix an element s, of GL2(Z/L¢) of the form (§ 7) such that
u=1mod M, v=0mod M, u =Mz mod ¢, v = My mod ¢. Then s,, for
(z,y) € (Z/€)* x Z/f form a system of representatives of Go\G;. Hence the norm
map O(Y (M£,N£))* — O(Y (M, N¢£))* sends c91/Me,0 tO

H s;,y(cgl/MZ,O) = H cYa+t(x/0),y/L
(z,y)€(Z/8)* <2/t (z.y)E(Z/0)* <2/t
-1
= H c9a+(z/f),y/f) : ( H c{la,y/e)
(z,y)E(Z/£)? y€eZ/L

= cg1/m,0 " i (c9q0) by 1.7 (2) and 2.12.
Step 2.— We show that the norm map K (Y (M, N{)) — Kao(Y(M,N(£))) sends
{c91/M0 - 0} (c92.0)s d90,1/Ne} tO

{co1/m,0 - 07 (c920)> €% (ag0,1/n)}
(resp.  {cg1/nm,0 - i (c9a0)s Pi(a90,1/N) - a0} )
in the case £ divides N (resp. does not divide N, where 3 is the unique element of
+Z/Z such that £8 = 1/N).
For each = € Z/{ (resp. (Z/£)™), fix an element s, of GL2(Z/L¥) of the form (§ 9)
such that u = 1+ Nz mod N¥ (resp. u = 1 mod N and v = Nz mod ¢). Then s, for

x € Z/L (resp. (Z/£)™) form a system of representatives of G;\G2. Hence the norm
map O(Y (M, N¢))* — O(Y (M, N(¢)))™ sends 4go,1/n¢ to

HS;dgo,uNz = Hdgo,(l/NZ)+(z/€) (resp. Hdgo,ﬂ+(z/l) )
x x T
= @;(ago1/n) (resp. i(ago1/n) - age ) by 2.12.
Since ¢g1/m.,0 - ¢4 (cga,0) € O(Y (M, N(£)))*, this proves the above statement on the

Kz-norm map K (Y (M, N¢)) — Ko (Y (M, N(0))).
It remains to consider what happens in K5 (Y (M, N(¢£))) — Ko(Y (M, N)).

Step 3.— We will prove the following (2.13.1) and (2.13.2) in Step 4. Let pr :
Y(M,N(¢)) —» Y(M, N) be the canonical projection.

(2.13.1) In the case £ | N, pr,o;(ago,1/N) = d90,1/N-
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(2.13.2) In the case ¢ does not divide N, we have
pr*<P;(cga 0) =c91/M,0 " (cga 0)2
pr. (ag0,1/n) = ago,/n - (c90,6)"

We prove Prop. 2.4 by using these (2.13.1), (2.13.2).
First assume £ | N. Then, the norm map K2(Y (M4, N{)) — K2(Y (M, N)) sends

c,dZMe,N¢ to
pr{cg1/0,0°0% (c9a ), ¥ (a90,1/8)} (by Step 1 and Step 2)
= {c91/0,0, 7.} (a90,1/N)} — T' (D) {c g0, d90,1/N }
= cazmn —T'(0) (Y4 9) (cazmn) (by (2.13.1)).

Next assume ¢ does not divide N. Then the norm map Kz(Y(M¢,N?)) —
K2(Y (M, N)) sends ¢,qzme,ne tO

pro{c91/m0 - 0i(c9a0)> 2 (ado1/n) - (ag5 5)} (by Step 1 and Step 2)
= {c91/Mm,0, Pr. % (a90,1/N)} — T’ (€){c9a,0,d90,1/N }
— ¢+ D{cg1/m0,a90,8} + {Pr. ¢t (cga,0), ag0,6}
(here £ + 1 appears because Y (M, N({)) is of degree £ + 1 over Y (M, N) in the case
¢ does not divide N)

= cazmn — T (O (Y 0) cazmn + &5 1(/)2) - cazm,N by (2.13.2).

Step 4.— We prove the statements (2.13.1), (2.13.2). Since the three equalities
in (2.13.1), (2.13.2) are proved in the similar way, we give here only the proof of
pPr.¢;(dgo,1/N) = dJo,1/N - (Cgo,g)e in the case ¢ does not divide N. For each x € Z/¢,
fix an element s, of GL2(Z/¢) of the form (% 9) such that u = 0 mod N, v = z mod .
Let o be an element of GL2(Z/L¥) whose image in GL2(Z/N) is (§ {) and whose im-
age in GL2(Z/¢) is (9 §). Then s, for € Z/£ and o form a system of representatives
of G2\G3. Hence

pr.p;(ago,1/N) = ( H S;@?(dgo,wv)) 0" pz(ago,1/N)-
c€Z/L

Since ¢ (ag0,1/n) = [1yez/e 490,6+(y/2), We have
*, £
I1 sieitagonm) = TI agewressn=( TI a9eressarn)- (ag0p)’

z€Z/L z,yeZ/? x,ye€Z/L
y#0

On the other hand,

o*gi(agosn) = [] aguses-
vez/e
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Hence

pr.v;(ago,1/N) ( H d9z/e, ﬂ+(y/£)) (290.8)" = 4901/~ - (ag90,8)" by 1.7 (2).
z,y€Z/L

3. Eisenstein series

The aim of this section is to review the basic facts about Eisenstein series. See
Weil [We], Katz [KN], Katz-Mazur [KM] for the proofs of the results introduced
here.

Let N > 3, let X(N) be the smooth compactification of Y (N), and let My (X(N))
(k € Z) be the space of modular forms on X (V) of weight k. (We review the definition
of Mi(X(N)) in 3.1.) In this section, we introduce the following modular forms
indexed by (a, 8) € (Q/Z)?, called Eisenstein series.

(i) EL) € Uy Mu(X(N)) (k> 1, k #2).

(i) B, € Uy Ma(X(N))

(E'C(fﬁ is something like “Eg) E(()zg”, but the modular forms Eg)ﬂ do not exist.)

(iii) Fi’?, € Uy Mi(X(N)) (k = 1; we assume (a, 8) # (0,0) in the case k = 2).

If Na = N@ = 0, the elements (i) (iii) belong to Mk (X (NN)), and the elements (ii)
belong to M2(X (N)).

We define these elements algebraically in 3.2-3.6 first, and then give the analytic
presentations of them in 3.8.

Eisenstein series are additive analogues of Siegel units (which are multiplicative
elements).

3.1. We introduce algebraic definitions of M}, (X (/N)) and of the subspace Sk (X (N))
of M (X (N)) consisting of cusp forms.
Let A : E — Y(N) be the universal elliptic curve, and let

be the smooth Néron model of E over X (N). Let

coLie(E) = A, (QE/X(N))

Then coLie(E) is an invertible O x(n)-module, and

QIE/X(N) = X" coLie(E).
Define
(3.1.1) Mi(X(N)) = T(X(N), coLie(E)®").

We have another equivalent definition

(312)  Mip(X(N)) = T(X(IV), coLie(E) "™ ®o(x(ny) Yk vy olog(cusps)))

ASTERISQUE 295



p-ADIC ZETA FUNCTIONS OF MODULAR FORMS 135

where Q}( ~)/g(log(cusps)) denotes the sheaf of differential forms on X (N) with log
poles at cusps.

The equivalence of the two definitions (3.1.1) and (3.1.2) is given by the isomor-
phism (3.1.4) below. Denote A, (2} /yv)) by coLie(FE). We have a canonical homo-
morphism

(3.1.3) coLie(E) — Qy(yy/q ®o(v(v)) R'Ae(OF)
on Y (NNV) as the connecting map of the exact sequence
0 — A (Qyvyze) — e — ey — 0

By composing (3.1.3) with the Serre duality

R'A\(OF) ®o(v(v)) coLie(E) = R'A(OF) ®o(yv)) MR,y (v)) — Oy,
we obtain the composite map

coLie(E)®% — Q;(N)/Q Ro(Y(N)) R, (OF) ®o(y(n)) coLie(E) — Q%,(N)/Q.
It is known ([KM, 10.13]) that this composite map induces an isomorphism
(3.1.4) coLie(E)®? = X(N)/Q(log(cusps)).

The space Sk(X (INV)) of cusp forms on X (N) of weight k is defined by

S(X(N)) = D(X(N), coLie (B)*" ™ @0, V(ry0) € Mi(X(N)).

3.2. We define elements
EP) € My(X(N)) for k>1 and (o, B) € (§2/2)°,

where c is an integer which is prime to 6/N. Once the elements Eg% fork>1, k#2,
and the elements E(z) are defined, CE(k) is expressed as

EL) = PEXL — FER o for k>1, k#2,
@) _ 2 (2) 2E®
CEa’ﬁ c‘E, c“E 8"

But it is convenient to define E( ) first, by using the theta function .0 in Prop. 1.3.
Let the notation be as in 1.3.
Let ¢ be an integer which is prime to 6, and consider the element

dlog(.05) € T(E \ cE, QL y(n)) = T(E \ cE, \* coLie(E)).

For r € Z, let
D : A*coLie(E)®" — A*coLie(E)®+Y
be the map defined locally by

fRWE — (—iwi ®wBr+),
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where f € O, w is a local basis of coLie(E), and df /w € O is determined by
df = (dz)i) ‘w in QlE'/Y(N)'
For k > 1, we have an element
D*~!dlog(.0g) € T(E ~ .E, \*coLie(E)®¥).
Now for (a, ) € (%Z/Z)2 ~ {(0,0)}, assuming (c,6N) = 1, we define
EF) = 1%, 5(D* 1 dlog(.05)) € T(Y (N), coLie(E)®*)

where to,3 : Y(N) — E \ .E is as in 1.4. Then CES% belongs to Mi(X(N)) C
I'(Y (N), coLie( E)®¥).

We next define CE(% for £ > 1 and for an integer c such that (¢,6) = 1. The
following is deduced from N, (.0g) = .0k :

If (o, 8) € (Q/Z)* ~ {(0,0)}, a, ¢ € Z ~ {0}, and if ¢ is prime to 6a and to the

orders of a, (3, then
k (k) _ (k)
a Canﬁ - Z CEalyﬂl
a/,ﬁl
where o’ (resp. §’) ranges over all of Q/Z such that aad’ = a (resp. a8’ = B3).

This shows that the following element CE((fO) is independent of the choice of a # +1
which is prime to c:

(k) _ (. k - —
ch,o dof (a® = 1) ! Z; CEa,L)i’
()

where 3~ is the sum over all non-zero elements (a, 3) of (%Z/Z)z.

3.3. We define E*) € My(X(IV)) for k > 1, k # 2 and for (, 8) € (4Z/Z)°. From
Prop. 1.3 (2), we obtain
C2dEg% — deE'(k)

ca,c

o= By — d By

for any integers ¢, d which are prime to 6 N. This shows that if we take ¢ which is
prime to 6N such that c=1 mod N and ¢ # %1, then

(k) _ (02

Ky~ (k)
a, d:f ) E

—-¢ Ha,pB

is independent of the choice of such ¢. We have

ELL = 2EP), — FEX | for k#2 and (e, f) € (Q/2)°

a,B ca,cf3

where c is any integer which is prime to 6 and to the orders of «, 8.
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3.4. We define EC) € Mx(X(N)) for (e, B) € (42/2?).

In general, if f : E — S is an elliptic curve over a scheme S on which 6 is invertible,
there exists locally on S a pair (w, z) satisfying the following conditions; w is a basis of
the invertible Og-module coLie(E), x is a section of I =2 where I denotes the invertible
ideal of O defining the origin of E, the image of z in f.(I72)/f.(I7!) is a basis of
the invertible @g-module f.(I72)/f«(I"!), and there exist sections a, b of Og such
that

(%)2 =423 + az + b.
Here 92 is defined by dz = (9)w in I_3Q}3/S. Furthermore, z ® w? € 172 -
f* coLie(E)®2 is independent of the choice of such pair (z,w), and hence is defined
globally on S. Take Y(IN) as S and the universal elliptic curve as E, and let

p e T(E,I7%. f*coLie(E)®?)

be the section which is locally z ® w®? for a pair (z,w) as above.
Now let (o, 8) € (%Z/Z)z ~ {(0,0)}. We define

E@ —»

o, T T

5(p) € T(Y(N), coLie(E)®?).

Then Ec(nga belongs to My (X (N)) C ['(Y(N), coLie(E)®?).
We define

E% =0.

3.5. The constructions in 3.2-3.3 and those in 3.4 are related as follows. We have
(3.5.1) Ddlog(.0g) = c*p —c*p

(E is the universal elliptic curve) where c* denotes the pull back by the multiplication
by ¢: E — E. (This can be proved for example, by using the analytic descriptions of
p and D dlog(.0g) given in 3.8 below.) From this we have for any k£ > 2,

(3.5.2) D*~1dlog(.0g) = ¢2D*2p — ¢* D* 2.
From (3.5.1) and (3.5.2), we have for (a, 8) € (Q/Z)* ~ {(0,0)}
B, = 20, - 2,
(this formula holds also in the case («a, 8) = (0,0)) and
E((fz, = L;ﬁ(Dk'zp) for k>3

(this formula presents another algebraic definition of E,(xkzj for k > 3).
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3.6. Next we define the elements Fékg € Mi(X(N)) for k > 1 (we assume (a, 3) #
(0,0) in the case k = 2).
For (o, B) € (-I{,—Z/Z)z), writing @ = a/N, 3 = b/N, define

Foy =N 37 BUy G5 € M(X(N) (here k #2),

z,y€Z/N
FO =N Y EO w7 e My(X(N) (here (o, ) # (0,0)).
z,yEZ/N

By the “distribution property” (i) (ii) of 3.7 (2) below, F® is independent of the
o,
choices of N, a, b such that @ = a/N and 8 = b/N. We have
(k) _ ark— (k) br— .
Egnpn =NF2 3" Fon w -G if k#2.
z,y€Z/N
In the case k = 2, we have the formula for Eﬁ}v b/N of the same form, except that

(@,y) ranges in this case over all elements of (Z/N)? \ {(0,0)}.
The following 3.7 is an additive analogue of 1.7.

Lemma 3.7. — Let k > 1.
(1) Let o € GLy(Z/N), (a,B8) € (42/2)*, («/,8') = (@, B) - 5. Then we have:
(i) o*(EYY) = ESy, if ki #2.
(ii) o*(EC)) = EQ,..
iit) o*(F®)) = pk) , ; here, we assume (a, 3) # (0,0) in the case k = 2.
o, a’,B
(2) (Distribution property.) Let (a,f) € (Q/Z)?, a € Z, a # 0. Then we have
the following equalities where o' (resp. B') ranges over all elements of Q/Z such that
ad = a and af’ = .
(i) a*ESY =3 5 BNy, if k # 2.
(11) a?EC(Z% = Za’,ﬂ’ Eizl?ﬁl
. (iii) a2_kFo(f}3 = Za,’ﬂ, F‘i’f,)ﬂ,; here, we assume (o, B) # (0,0) in the case
= 2.

(1) is proved easily. (2) is deduced from the analytic descriptions of Eisenstein
series given in 3.8 below.

3.8. We review the analytic theory of Eisenstein series.
Let A : E — Y(N) be the universal elliptic curve. Then we have a cartesian
diagram
$»xC)/ ~—— E(C)

| |

H————Y(N)(C)
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where ~ is the equivalence relation defined as follows. For (7,2z), (7/,2') €  x C,
(r,2) ~ (r',2') if and only if 7 = 7/ and z — 2’ € Z7 + Z.

Let (7,2) be the standard coordinate of $ x C. Then the pull back of F €
M(X(N)) to $ is written in the form

dt ®k

F=f(1)® (T)

where f(7) is a holomorphic function on $) satisfying

(t = e2™%) = f(1) ® (2midz)®*

b

9T Dy _ (er + d) f(r) for al (‘; d) € T(N).

et +d

£(

Classically, this f was called a modular form. We will identify an element F' of
M (X (N)) with the above holomorphic function f(7).
It is known ([KM, 10.13]) that the isomorphism (3.1.4)

. e ®2
coLie(E)"™ = Q}(N)/Q(log(cusps))

sends (dt/t) ®2 to dq/q (g = €2™7).

We now describe the pull backs on $) x C or on ), of the objects which appeared
in this section.

First, g in 3.4 is described as

p=p(T2)& (27ridz)®2

where p(7, 2) is Weierstrass’ p-function defined by

p(r,2) = (271'1')_2 (z_2 + Z {(z+m1 + n)_2 — (m7 + n)_z}).
(m,n)€z?
(m,n)#(0,0)

Define functions E)(7,z) on $ x C and functions Eg% on 9 (k =20, (o, ) €
(Q/Z)z; we assume (a,8) # (0,0) in the case k = 0) as follows. (If £ # 0, 2, as
in (3.8.4) below, this notation Eik[), is compatible with the notation for the modular
forms ES%) If k > 3, the definitions are simply

EW(r,2) = ()" (k—1)!-@2r)™" Y (z+mr+n)7".
(m,n)ez?

E®) (1) = E® (r,G7 + B) for (o, B) # (0,0)

where (&, 3) is a lifting of (, 8) to Q.

E(((,)c,)O)(T) =(-1)F - (k—1)!- (2mi)F Z (mr +n)~*.
(m,n)€Z?
(m,n)#(0,0)
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To include the cases k =0, 1, 2, define for k > 0

E(k,T,2,8) = Z (z+mr+n)_k|z+m7+n|_s.
(m,n)ez?

E,0)(k,T,8) = Z (m7r +n) " *|mr +n| 5.

(m,n)€z?
(m,n)#(0,0)

These series converge absolutely when k + Re(z) > 2. When k, 7, z are fixed,
these functions in s have analytic continuations as meromorphic functions on the
whole s-plane. These functions for £ > 1 are holomorphic on the whole s-plane, and
E(0,T,z,s) has a zero at s = 0. Let

E®(r,2) = (-1)* - (k — 1)!- (2mi) ¥ E(k,T,2,0) for k>1,
EO(r,2) = i{% sT1E(0,7,2,s),
EX) (1) = E®(r,ar + §) for k>0 and (a,B) # (0,0)
where (@, ﬁ) is a lifting of (a, B) to Q?,
ER (1) = (=1)% - (k = 1)!- (2m3) *E(0,0)(k,7,0) for k> 1.

We have:

®k
(3.8.1) For k>1, D*1dlog(.0r) = (C2E(k)(T, z) — c*FEW®)(1,c2)) ® (51;) .

(3.8.2) log(|c0r|) = E©(r1,2) — EO(r,cz).

p = (B (r,2) - BR()  (4)°
D2y = E®(r2)® (gt—t)(g’k for k > 3.
(3.8.4)  Let (o, 8) € (Q/Z)%. Then:

(3.8.3)

(i) Ifk > 1, k # 2, the modular form ES% coincides with the function Eékzg defined
analytically above.

R 2 2
(i) E?), = E®) — ES3.
(iil) og |ga,s] = ES for (a, 8) # (0,0).
(iv) The functions Eg)z; ((a, B) # (0,0)) and E((fi, are C*°-functions on ) but not
holomorphic.

3.9. We next consider g-expansions. It is known that the pull back of an element of
M (X(N)) on $ has a presentation

S g™V (an € QW)

ne€zZ,n>20

(g™N = e2™nT/N) called g-expansion. We give g-expansions of Eisenstein series.
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For o € Q/Z, define (e, s) and ¢*(a, s) by

=)
C(ay 8) = Z n—s’ C* (a7 S) = Z e27'rian “nTE
neQ,n>0 n=1
nmodZ=«a

Note ¢(0,s) = ¢*(0,5) = ((s).

Proposition 3.10. — Letk > 1 and o, B € Q/Z
(1) Assume k # 2. Write
B S a

neQ,n=>0

Then a, for n > 0 are given by
Z ann_s = C*(avs)c*(ﬁas —k+ 1) + (—1)kC(_a’ S)C*(—B78 —k+ 1)
n€Q,n>0

In the case k #1, a0 =0 if a #0, and ap = (*(8,1 — k) if = 0.
In the case k =1, ap = {(a,0) if « # 0, and

1 « .
a0 = 3(C*(8,0) ¢ (=6,0)) if a=0.
(2) Write
B= T
neQ,n>0
Then an for n > 0 are given by
> aanT* = (@, 8)C* (B, 5 — 1) + ((—a, 8)¢* (=B, — 1) = 2((s)¢(s — 1).
neQ,n>0
We have ag = 0 if a # 0, and ap = ¢*(8,—1) — ((—1) if a = 0.
(3) Here, we assume (o, 3) # (0,0) in the case k = 2. Write
B Y o
n€eQ,n=>0
Then a,, for n > 0 are given by
Z ann ™ = (o, s — k+ 1)C* (8, 8) + (=1)°¢(—a, s — k + 1)¢* (=0, 5).
neQ,n>0

In the case k # 1, ap = {(a,1 — k).
In the case k =1, ap = ((a,0) if @ # 0, and

a0 = 3(¢*(8,0) = ¢*(=5,0)) if a=0.

By Prop. 3.10 and by the “g-presentation” of go g in 1.9 (note that the number
1/12 — a/2N + (1/2)(a/N?) (0 € a < N) which appeared in 1.9 coincides with
—(¢(a/N, —1)), we have
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Proposition 3.11
(1) By = F{) for any (a, 8) € (Q/2)".
(2) dlog(ga,s) = -—Fg}, in T(X(N), % vy ollog(cusps))) for any (o,B) €

(Q/Z)* < {(0,0)}.

4. Euler systems in the space of modular forms

4.1. For k € Z and a curve X over Q of the form G\X(N) with N > 3 and
G a subgroup of GLy(Z/N), we define the space M(X) (resp. Sk(X)) of modu-
lar forms (resp. cusp forms) of weight k on X to be the G-fixed part of My (X (N))
(resp. Sk(X(N))). (This definition makes sense since in the case N, N’ > 3 and
N | N, Mp(X(N)) (resp. Sk(X(N))) coincides with the Gal(X(N')/X(N))-fixed
part of Mg (X (N')) (resp. Sk(X(N"))).)

In the rest of this section, fix £ > 2, M, N > 1, such that M + N > 5.

4.2. We define elements
c,dZM,N(k, T, r') S Mk(X(M, N))

which we call “zeta elements” or “zeta modular forms”, for integers r, 7', ¢, d under
the following assumptions (4.2.1) (4.2.2).

1<r<k-1,1<r"<k-1, atleast oneof r, ' is k — 1.

2.1
(4.2.1) If r=k—2and v =k—1, then M > 2.

(4.2.2) (e,M)=1, (d,N)=1.
We also define elements

ZM,N(k, T, ’f") (S Mk(X(M, N))

which we call also zeta elements, for integer r, v’ under the following assump-
tion (4.2.3).

(4.2.3) (r,r') areasin (4.2.1),and (r,7') # (2,k—1),(k—1,2),(k—1,k —2).
Under the assumption (4.2.3), we define zp, n(k,7,7’) to be
(=) (r =)\ MmN pOED B i =k,

’ _ ’_ ! k—r' r .
(-)" - (k=2 MU RN B BT i =k — 1.

In the case r = r’ = k — 1, these definitions are compatible because F W — g )
a,B a,B

Under the assumptions (4.2.1) and (4.2.2), we define . gzpm n(k,7,7’) by f)utting c, d
to the above definitions. That is, we define . qzm,n(k,7,7’) to be

(—l)r . (7’ _ 1)!—1 . Mk—r—2N—r . CFI(;CI\—:IT(Z . dE(?,?/N if 7" —k— 1,
(_1)7‘/ X (k _ 2)!—1 . Mr'_kN—r’ . CEY;;/[T,:)) . dE((),Tll)/N if r=k—1.
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Here

FUY=PFl) - FL, (h2 1, (a8) #(0,0) if h=2),
AEM, —hEW o (h>1, h#2),

(h) _
E, A=

2 (2 (2
Ec(x,)ﬁ - 2 Ec(z,,gi C2 Eca),cﬂ

(c is an integer which is prime to the orders of «, §).
Under the assumptions (4.2.2) and (4.2.3), we have

cazsn (k') = (= (59)°) (¢ =" (39)") -z hrr)

where

(4.2.4) (u,) = {(T+2—k,r) i =k—1,

(k—=7',1") ifr=k-1.
Proposition 4.3. — Let M’', N’ > 1 and assume M | M’, N | N'. Assume further that
prime(M) = prime(M’), prime(N) = prime(N').

Then the trace map

Mi(X(M',N")) — My(X (M, N))

sends c.azm N (k,r,7") (resp. zae N (K, 7, 1")) to cazm N (K, 7, r") (resp. za N (K, r,7"))
for anyr, v, c, d (resp. v, v') satisfying (4.2.1) and (4.2.2) (resp. (4.2.3)).

Proposition 4.4. — Let ¢ be a prime number which does not divide M. Then the trace
map

M (X (ME,N€)) — Mi(X(M,N))
sends c.azne ne(k, T, ') to
(1 - Tl(e)( 162 (1))* 7T+ (16L’ 1(/)5)* ) ek_l_%) : c,dZM,N(kv T, T")
in the case £ does not divide N, and to
(1 — Tl(‘e)( 162 (1))* : 8—7‘) . c,dZM,N(k> T, T/)

in the case £ divides N, for any r, v’, ¢, d satisfying (4.2.1), (4.2.2) and (cd,€) = 1.
Here T'(£) is the “dual Hecke operator” explained in 4.9 below. We have the result of
the same form for zpye ne(k, 7, 7') and zp, N (k,7,7") for any r, v’ satisfying (4.2.3).

The proofs of Prop. 4.3 and Prop. 4.4 will be given in 4.11-4.13.
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4.5. We describe how these zeta elements are related to zeta functions.
Let A: E — Y (M, N) be the universal elliptic curve, and define a local system H!
on Y (M, N)(C) by
H' = R'\\(Z).
Then H! is locally isomorphism to Z2. The cohomology group
H' (Y (M, N)(C), Symy *(H"))
will be important for us. For any commutative ring A, let
(4.5.1) Ve,a(Y (M, N)) = H' (Y(M, N)(C), Sym§%(H') ®z A),
Vi,a(X (M, N)) = H' (X (M, N)(C), j. SymE=2(H') @7 A).
where j is the inclusion map Y (M, N) — X (M, N). We consider the operator-valued
zeta function

zm,N(k,s) = Z T'(n) (" 0)" - n7*
(n,M)=1
(T'(n) is the dual Hecke operator explained in 4.9 below), acting on Vi c(Y (M, N)).
(In the case k = 2, Zy n(k,s) coincides with Zps n(s) in 2.5.) This converges ab-
solutely when Re(s) > k. The function Zp n(k, s) has a presentation as an Euler
product whose Euler factor at a prime number £ is

(1=TOC§ D) e+ (4 50 ) i MMy =1,

. -1
(=T @4t ) if ((,M)=1 and £|N,
1 if €] M.

The function Zps n(k, s) has an analytic continuation to the whole C as an operator-
valued meromorphic function in s and is holomorphic at s # k.
As is reviewed in 4.10 below, we have the period map

Pery N : M(X(M,N)) — Vi c(Y (M, N)).
As is explained in 4.7 below, we have special elements
om,n(k,j) € Viz(Y(M,N)) 1<j<k-1).
(The element dpr, v € HY (Y (M, N)(C),Z) defined in 2.7 coincides with das,n(2,1).)
Let ¢ : Vi z(Y(M,N)) — Vi z(Y (M, N)) be the map induced by the complex con-
jugation on Y (M, N)(C) and on E(C), and we denote the C-linear automorphism of
Vi,c(Y (M, N)) induced by ¢ by the same letter ¢. For an element x of Vi c(Y (M, N)),
let 1
zt = 5(1 + 1) (x).
The following Thm. 4.6, which relates zeta elements to zeta values Zs n(k,7)

(1 <r < k-—1),is deduced from the work of Shimura [Sh|. We give the proof of
Thm. 4.6 in §7.
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Theorem 4.6. — Assume prime(M) C prime(N). Then we have
+ Nk—r—
(Perne,(zae (b, ) = Zaa (k) - 2d)* ™0 a (k)™

for any v, v’ satisfying (4.2.3) and for + = (—l)k_r_l, and

(perps n(cazar v (kyry ™)) = Zag (k) - (2m0)F 770y E

for any 7, ', ¢, d satisfying (4.2.1) and (4.2.2) and for + = (—1)¥~""1, where
v = (C2 - (§ (1))*) (d2 —dv-(} g)*)dM,N(k,r’)

with u, v as in 4.2.

4.7. The definition of the special cohomology class da,n(k,j) (1 < j<k—1)is as
follows.
We have canonical isomorphisms

H'(Y (M, N)(C), Symg >(H")) (= Viz(Y(M,N)))
= Hy (X (M, N)(C), {cusps}, Sym§~2(H"))
= Hy(X (M, N)(C), {cusps}, Sym§%(H,))

where H; = Hom(H?!,Z), the first isomorphism is by Poincaré duality and the second
isomorphism comes from the canonical isomorphism H! = ;. Here we used the
relative homology with coefficients which may be not a well known object. The
definition is explained below.

We define 3, N (k,j) € Vi,z(Y (M, N)) to be the image of

class(yp, @) € Hi (X (M, N)(C), {cusps}, Symj%(H1))
under the above composite isomorphism, where ¢ is the continuous map
(0,00) — X (M, N)(C); ¢(y) =v(yi) for 0 <y < oo,

which is a route from a cusp to a cusp, and « is the following element of
I'((0,00), o~ (SymE~2(H;)). The stalk of p~!(H;) at y € (0,00) is identified
with Hy(C/(Zyi + Z),Z) = Zyi + Z. The sheaf ¢~!(H;) on (0,00) is a constant
sheaf of rank 2 with basis e;, ey, where the stalk of e; (resp. e2) at y € (0,00) is yi
(resp. 1) € Zyi + Z. We define

_ i1 k—j—1
a=-e; e, .

If M, N > 1and M | M', N | N, the trace map Viyz(Y(M',N')) —
Vie,z(Y (M, N)) sends pr N7 (K, 5) to SN (K, ).

In the above, the relative homology with coefficients is defined as follows. If X is a
topological space, C is a closed subset of X, and F is a locally constant sheaf of finitely
generated Z-modules on U = X \C, H,,(X, C, F) is the cohomology in degree —m of
the complex RHom(RT(X, jiHom(F,Z)),Z), where j is the inclusion map U — X.
If we have a pair (¢, o) of a continuous map ¢ : [0,1] — X such that ¢=1(U) = (0,1)
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and an element o of I'((0, 1), p*F), we have class(p, a) € H1(X, C, F) to be the image
of a under the composition

I'((0,1), ¢*F) ~ H1([0,1],{0,1}, »*F) — Hy(X,C, F).

4.8. We give a preliminary to introduce Hecke operators.
Let A > 1. We define isomorphisms

¢h = (¥a'), : Mk(X(M(A), N)) = My(X(M,N(A)))
(pa). = (92")" : Mk (X (M, N(A))) —> My(X(M(A),N))
and homomorphisms
¢a = (92", Vez(Y(M(A),N)) 5 Viz (Y (M, N(A)))
(a), = (9a")" : Vez (Y (M, N(A))) = Viz(Y(M(A), N)).

Here X(M,N(A)) (resp. X(M(A),N)) denotes the smooth compactification
of the curve Y(M,N(A)) (resp. Y(M(A),N)) in 2.8. V,z(Y(M(A),N)) and
Vie,z(Y (M, N(A))) are defined in the evident way.

Let E; be the universal elliptic curve over Y (M, N(A)) and let E5 be the universal
elliptic curve over Y (M (A), N). Then we have canonical homomorphism

(4.8.1) E1 — ¢5(E2), Bz — (p3") (E1)

which are isogenies of degree A. Hence the pull back by ¢4 followed by the pull back
by E1 — ¢%(E2) (resp. the push down by E; — (w;l)*El followed by the push down
by cpzl) gives homomorphisms

Mi(X (M(A),N)) — Mi(X(M,N(A)))

and
Vi,z(Y (M(A), N)) — Viz(Y (M, N(A)))

which we denote by ¢% (resp. (w;l)*). We have ¢% = ((pzl)*. Similarly, the pull
back by ¢ followed by the pull back by E; — (p;')*(E1) (resp. the push down by
E, — ¢% E, followed by the push down by ¢4) gives homomorphisms

M. (X (M, N(A))) — Mi(X(M(A),N))

and
Viz(Y(M,N(4))) — Viz(Y (M(A),N))

which we denote by (<p;1)* (resp. (¢a),)- We have (cpzl)* = (¢a),- Here for the pull
back and push down for on the spaces My by

Ey — ¢4(B;) and By — (93") (B1),
we use the definitions (3.1.2) of My, not the definition (3.1.1) of M.
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‘We have also
eho(@ah) = (pah), o (pa), = A¥2
(pa") ol = (va), o (p), = A2,

We have
(4.8.2) (@af)(r) = A* 1 f(A7) for any f e My(X(M(A),N)),
(4.8.3) (a1 f)(r) = A f(A™17) for any f € My(X(M,N(A))).

4.9. The Hecke operators T'(n) and the dual Hecke operators 7" (n) on My (X (M, N))
and on Vi z(Y (M, N)) are defined for integers n > 1 which are prime to M as follows.
(In the case k = 2, these operators on V5 z(Y (M, N)) were already given in 2.9.)
First, T(1) =T'(1) = 1.
Next we give the definitions of T'(¢) and T”({) for a prime number ¢ which does
not divide M. Let pr : X(M,N({)) - X(M,N) and pr' : X(M({),N) - X(M,N)
be the canonical projections. We define

T(¢) = (pr')x o (¢ ")* opr*, T'(£) =pr, 0, opr’”.

If £ does not divide N, we have T"(¢) = T(€) (£ %)

In the case n is a power £¢ (e > 0) of a prime number ¢ which does not divide M,
T(n) and T'(n) are defined as follows. If £ | N, T(¢¢) = T'(€)°, T'(¢¢) = T'(£)°. If £
does not divide IV, T'(¢¢) and T”(¢¢) are defined inductively, by

T(¢=2) = T(OT(eHY) + (1 9) T (ee) - 652,
Tl(£e+2) — Tl(e)Tl(ee+1) + (1(/)2 2) Tl(ee) i gk—l.

Finally, for n = [],£5® (e(¢) > 0) where £ ranges over all prime numbers which
do not divide M, T'(n), T'(n) are defined by

T(n)= HT(ZC(D), T'(n) = HT'([G(Z)).
£ ¢

For any m, n > 1 which are prime to M, and for any a € (Z/M)*, b € (Z/N)*,
the operators T(m), T(n), T'(m), T'(n), (¢9)" commute with each other.
The similar definition gives Hecke operators on the compact support cohomology

group
Vi,ae(Y (M, N)) = HL(Y (M, N)(C), Sym}~*(H') ®z A)

(A a commutative ring). In the Poincaré duality
Via(Y (M, N)) x Vige(Y(M,N)) — Q

induced by the canonical pairing H! x H! — Z, T'(n) and T’(n) are transposes of
each other.
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The operators T'(n) ((n, M) = 1) on Mg(X(M,N)) are described also by us-
ing g-expansions. Let £ be a prime number which does not divide M. Let f €
Mi(X(M,N)) ® C. Then the pull back of f on $ has the form

f= > ang"™ (an€Q).
ne€zZ,n=>0
Write
TOf= 3 bag/™

nezZ,n=>0
Then:

(4.9.1) by, = ane if £ divides N or if £ does not divide n.
(4.9.2) Assume £ does not divide N and ¢ divides n, and assume (}* 0) =e()f
for some (£) € C*. Then by, = ane + €(€)€ tay, ;.

In the case M > 2, the definitions of the operators T'(n) and T'(n) in this paper
differ from the definitions in some literatures. In the case M = N, the operators
T(n)(29)" = T'n)(32)" ((n,N) = 1) in our notation are the Hecke operators in
Deligne [Del]. The advantages and the disadvantages of the operators T'(n), T"(n),
T(n)(g (1’)*, T(n)( 1{)" (1))* ((n,M) =1) are:

(4.9.3) In the case M = N, T(n)(%9)" and T'(n)($ )" commute with the action
of GL2(Z/N). But they do not preserve the direct summands of H* (Y (M, N)(C),Z)
corresponding to connected components of Y (M, N)(C).

(4.9.4) T(n) and T'(n) preserve the direct summands of H (Y (M, N)(C),Z) corre-
sponding to connected components. But in the case M = N, they do not commute
with the action of GL2(Z/N).

4.10. We review the definition of the period map
Mp(X(M,N)) — Vic(Y(M, N)).
We also review the period map
Se(X(M,N)) — Vic,(Y (M, N))

which we will use in §7. We denote X = X(M,N),Y =Y (M, N). Let j : Y(C) —

X (C) be the inclusion map. Let X : E — X be the smooth Néron model of the
universal elliptic curve A : E — Y. We denote by ( )*" the analytic objects associated
to algebraic objects. For example, O% denotes the sheaf of holomorphic functions on
X (C). We have a homomorphism

(4.10.1) coLie(E)™ — 0% ®z j.(H')
on X (C), as the connecting homomorphism of the exact sequence

van, 1 an an
00— (\") (0%) — 0% — (9

E/X) —0
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on E(C). (4.10.1) induces
(4.10.2) (coLie(®)°* ™)™ — 03 @7 ju(Symb2(HY)).

On the other hand, consider the exact sequence

an

0 — jiC — O5(—cusps) 4, (Qﬁ(/Q) —0

on X (C) where O3 (—cusps) denotes the subsheaf of O% consisting of functions which
have zero at all cusps. This exact sequence tensored with j, Sym’i_z('Hl) gives the
connecting maps

(4.10.3) H°(X(C), (Qk/0)"" ®z ju Sym* 2(H"))
— H'Y(X(C), ji Sym* ?(H")) ®2 C = Vi,c,o(Y),

(4.10.4) HO(Y(C),(2}/q)"" ®z Sym*?(H'))
— HY(Y(C), Sym*?(H")) ®z C = Vi c(Y).
The period maps are defined as the composite maps

Sk(X (M, N)) = HO (X, (o) ®oy coLie(E)** )

4.10.2 an . -
192 go(x(c), (Y )™ ®2 . Symb—2(H1)) €2 C

4.10.3
_(—), Vk‘,C,c(Y).
My(X (M, N)) C H(Y, (Qyq) ®oy coLie(E)®(k_2))
4.10.2 on B
(4.102) | HO(Y/(C), (2),)™ @z Symk2(H1)) @7 C

(4.10.4) Vi o1).

4.11. We prove Prop. 4.3

It is enough to prove the case M’ = M and the case N’ = N. Since both cases are
proved similarly, we give only the proof of the case N = N’. In this case, our task is to
prove that if M | M’ and prime(M) = prime(M’), the trace map M,(Y(M’,N)) —
My(Y (M, N)) (h > 1) sends (M")"2F}),  to MP=2F}) | (we assume M > 2 in
the case h =2) and (M’)_hEIU/’])W,O to M‘th};J)VI’O (in the case h = 2, we replace E
by E). These are proved by the same arguments as in 2.11 (we use Lemma 3.7 in
place of Lemma 1.7.)

We give a preliminary lemma for the proof of prop. 4.4.

Lemma 4.12. — Let (o, B) € (Q/Z)?, and let A>1, h > 1. Then:

(1) goj,(ELhz;) =) p'eQ/z A_IE((:%,. Here in the case h = 2, we replace E by E.
Ap'=p
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(2) go*A(Fo(lhl;) = ZB/GQ/ZA"_2F$;,. Here in the case h = 2, we assume
(a, B) # (0,0).

Proof. — We prove (1). From the analytic descriptions of Eisenstein series in 3.8, we
obtain
3 - h
EMar)=A"" S EYL(1) (re ).
B'eQ/z
AB'=
(1) follows from this and from (4.8.2). (2) follows from (1). a

4.13. We prove Prop.4.4. Since the proof for zeta elements with ¢, d is similar to
that without ¢, d, we give here only the proof for zeta elements without ¢, d. Let
1< j<k—1. Assume that j # 2 and that M > 2 in the case j = k—2 (resp. Assume
that j # 2, j # k —2). By 4.12 and by similar arguments as in 2.13, we have that the
trace map Myg(M{, N€) — Mi(X(M¢, N)) sends

(k—3) [&)] (k—3) €)]
F l/M]Z,O'EO?I/Ne (resp. El/IVIJK,O'EO{l/NZ)
to
o (ki 3k ki .
) @2k p — 2 kG FOTD ) BS)

—j k—j * k—j j
(resp. (£F ’Ef/MJ}, - EWE(()‘,O 7 ) E(()fi/zve)'

Here o is the unique element of %Z/Z such that o = 1/M. The trace map
M (X (M, N¢)) — M (X (M, N(£))) sends the element (1) to

o —3 P, T * k—j * j
(2) (e+2 kFl(;cM{c)) — 02k UG ) AL
— k—j * k—j * j
(resp. (¢* JEi/M’}) - &peE(()’o Dy -&p[E(()Q/N)

in the case £ | N, and to
’ o . ok v (ki Y i .
(2) (R R = 0P R0 s ) (60 Egh i — Eolp)
(resp. (Ek_jEY;;,IJ,z) — €<pZE((:O_J) )- (&pZE(()Q/N —- E(g]ﬂ),)
in the case (¢, N) = 1 where 8 denotes the unique element of %Z/ Z such that ¢80 =
1/N. Concerning the trace map pr, : My (X(M,N(£))) — Mp(X(M,N)) (h > 1),
we have
(4.13.1) In the case £ | N, we have for h > 1
* ra(h) _ ph ()
epr*(pr(g,l/N =B /N
(we replace E® by E® in the case h = 2).
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(4.13.2) In the case ¢ does not divide N, we have for h > 1
_ w (R —h (R h
¢ hpr*cpﬁF‘i,g = e‘i "EO o :ZF;()’
tor i By = By o + €EQ)
(we replace E by E in the case h = 2),
* p(h h h
£pr,pp E((),l)/N = ZhE((,’l)/N + KE((M;
(we replace E by E in the case h = 2).

(These (4.13.1) and (4.13.2) are proved by the arguments similar to the proofs
of (2.13.1) and (2.13.2).) By (4.8.2), we have

(4.13.3) ©i(fg) = Loy (f) - vi(9)

for f € Mp(X(M(¢),N)), g € Mp(X(M(£),N)) (h, M > 1). By using (4.13.1)-
(4.13.3), we obtain the following: in the case £ | N, the trace map M (X (M, N(£))) —
M (X (M, N)) sends the element (2) to

_ £j+2_kT’(f)(F§fO_j) . E(i)

o (ki _
ek ka/M?())‘EPY*WE(]) O,l/N)

0,1/N
= (-1 - (G =Dt (MO?T7E - (Ney
(znn (K, G,k — 1) — €73T'(€) (14 0) " 2pr (K, K — 1, 5))

e . , s :
(resp. *TESD tpr, o EY)  — 0T (@)(ESS) - EY) )

= (=1) - (k — 2)!- (M&)*~7 . (N2
(zmn (kb —1,5) — 75T (0) (Y4 9) "z, n (K, k — 1,5)) ).

In the case £ does not divide N, the trace map My (X (M, N(£))) — My(X(M,N))
sends the element (2’) to

ORESA tor B — BT O(E B )
— (L+ )RR B + (072 Fpr, o FUG) - B
= (1) - (G — 1) (MR (o)
(z2nan (ks g, b — 1) = €797 (0) (Y2 0) " 2ar,n (K, G, k — 1)
+ (' 1(/)e)* T oy (R, G,k — 1)
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(resp. IEGD - tpr i EY) 0T (0)(BESS? - BS) )
(e DB B + (i) - )
= (=1 (k=2)!- (Me)*™7 . (Ney
(zmn (b, k= 1,5) = 75T (0) (Y4 0) 2w (b, b — 1, 5)
+ (% 19@)* Rz (R k- 1,5))

This proves Prop. 4.4.

5. Euler systems on X;(N) ® Q(¢m).
Let
Xi(N)=X(1,N), Yi(N)=Y(1,N).
The total constant fields of these curves are Q.

We will always identify X1 (N)® Q((n) (m > 1) with the quotient of X (L) (m | L,
N | L, L > 3) by the action of the group

{((cl Z)EGLz(Z/L); ¢c=0, d=1 mod N, ad—bczlmodm}.

Hence Y1(N) ® Q(¢m) is regarded as a quotient of Y (m, L) for any L > 1 such that
m|L, N | L.

Fix N,m > 1.

In this section, we define zeta elements in Ko(Y7 (N)®Q(¢n))®Q and zeta elements
in Mp(X1(N)) ® Q(¢m) (k> 2).

5.1. Let £ and S be as in the following (5.1.1).

(5.1.1) Either £ is a symbol a(A) where a, A € Z, A > 1 and S is a non-empty
finite set of primes containing prime(mA), or £ is an element of SLy(Z) and S is a
non-empty finite set of prime numbers containing prime(mN).

We define zeta elements

z1,Nm(€,8) € Ko(Y1(N) ® Q(ém)) ® Q

as follows.
First we define 21§, (&, S) in the case £ is a symbol a(A) fora, A € Z, A > 1.
Take M > 1, L > 4 such that

mA|M, N|L, M|L, prime(M)=S, prime(L)= S U prime(N).
As is explained below, there exists a unique morphism of schemes

(5.1.2) Y(M,L) — Y1(N) ® Q(¢m)
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which is compatible with $ — $; 7+— A7Y(7 +a). Let
tm,a(a) : K2(Y(M, L)) — K2(Y1(N) @ Q(¢m))
be the norm map associated to (5.1.2). We define

21,N,m(a(A), 8) = tm, aca)(2nm,L)-

By Prop. 2.3, z1,n,m(a(A), S) is independent of the choices of M, L.
The morphism (5.1.2) is obtained as the composition

la -1
vr,0) B0 v, 1) — v m(4), 1) A v (m, L(4)) — Va(V) @ Q(Gn)
where ((1, ‘1’) denotes the automorphism of Y (M, L) induced by the automorphism
(8%) of Y(L).
As we will see in 5.10, 2z1,§,m(a(A), S) does not change when we replace a(A) by

a’(A) for any integer a’ such that a = o’ mod A.
Next we define 2z1,N,m (£, S) in the case £ € SLy(Z). Take L > 3 such that
m|L, N|L, prime(L)=S.
We define 21, n,m(&, S) to be the image of £*(zr,r) under the norm map Kz (Y (L)) —
K2(Y1(N) ® Q(¢m)) associated to the canonical projection Y (L) — Y1(N) ® Q(¢m)-
By Prop. 2.3, z1,n,m(€, S) is independent of the choice of L.

We have also the “with ¢, d-version” of the above zeta elements, which belong to
K2 (Y1(N)®Q(¢m)) without ®Q, by replacing zas, 1, in the above definitions by ¢ g zm,z.
But we will not discuss about these elements, for we will not use them in this paper.
Zeta elements with £ = a(A) and zeta elements with £ € SLy(Z) will play different
roles; see the end of 8.1.

5.2. Let £k > 2. Let & S be as in (5.1.1). We define the following elements of
Mi(X1(N) @ Q(Gm)) = Mir(X1(N)) ® Q((m);
¢,d21,N,m(k, 7,7, £, 5)
for integers r, r’, ¢, d satisfying (5.2.1) and (5.2.2) below, and elements
z1,N,m(k, 77, &, S)
for integers r, r’ satisfying (5.2.3) below.
(5.2.1) 1<r<k-1, 1< <k-1, atleastoneofr, v isk — 1.
(5.2.2) prime(ed)NS =2, and (d,N)=1.
(5.2.3) 7 and ' are as in (5.2.1) and satisfy
(r,7)#(2,k-1), (k—-1,2), (k—1,k—2).

First we define these elements in the case £ = a(A4).
Take M > 1, L > 4 such that

mA|M, N|L, M|L, prime(M)=S, prime(L)=SU prime(N).
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Let
tma(a) : Me(X(M, L)) — Mi(X1(N) @ Q(¢m))
be the composite map

Muxor, £y 8- Mi(X (M, L)) £2ce,

M(X(m(A), 1) A 0, (xm, £AY) 222 by (X2 (M) © Q)

We define
e,d21,Nm(k,7,7",a(A), S) = tm o(a)(c,dzm,L(k, 7, 7)),
for r, 7', ¢, d as in (5.2.1) (5.2.2), and
21,Nm(k, 7,7, a(A),S) =ty aa)(Zm,L(k, 7, 7).

for r, 7’ as in (5.2.3). By Prop. 4.3, these elements are independent of the choices of
M, L, as above.

As we will see in 5.10, these zeta elements do not change if we replace a(A) by
a’(A) for any integer a’ such that a = o’ mod A.

Next we define the zeta elements in the case £ € SLy(Z). Take L > 3 such that

m|L, N|L, prime(L)=S_S.

We define ¢ q21,8m(k,r,7",€,S) for r, 7', ¢, d as in (5.2.1) (5.2.2) (resp.
z1,N,m(k, 71", £, S) for v, v as in (5.2.3)) to be the image of &*(c,q2r,r(k,7, 7))
(resp. £€*(zr,L(k,7,7'))) under the trace map

M (X (L)) — Mr(X1(N) ® Q(¢m))-

By Prop. 4.3, these elements are independent of the choice of L as above.
Let N’ > 1 be a multiple of N. In the case £ € SLy(Z), assume prime(N’) C S.
Then the trace map

Mi(X1(N) ® Q(6m)) — Mi(X1(N) ® Q(¢m))
sends ¢ q21,n',m(k, 7,7, &, S) with (d,N') = 1 (resp. z1,n'm(k,7,7,&S)) to
c,dzl,N,m(k7T7 T,’ 675) (resp. zl,N,m(kvrv ’I‘/,g,S)).

Proposition 5.3. — Let £ and S be as in (5.1.1), let m’ > 1, and let S’ be a finite set
of prime numbers such that S U prime(m’) C S'.

(1) The norm map
K2 (Y1(N) ® Q(6m)) @ Q — K2 (Y1(N) @ Q(¢m)) @ Q

sends z1,N,m'(€,S") to

[1 O-T'O0" +8©0;>0) - 218m(&,S),
Les’' -8
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where 0; € Gal(Q(¢m)/Q); 0e(m) = ¢y A/(€) denotes (§ 1(}8)* in the case £ does
not divide N, and A’(€) = 0 in the case £ divides N.

(2) Letk > 2, andletr, r', c, d be as in (5.2.1) (5.2.2), and assume prime(cd)NS’ =
@. Then the trace map

Mi(X1(N) ® Q(¢m)) — Mi(X1(N) @ Q(¢m))

sends ¢ gz1,N,m (k,r,7',§,8") to

H (]. — T’(Z)o[l a + A’(f)ge_z . ek—1—2'r)) : c,dzl,N,m(k7 T, Tl, §a S)
Les'—8
where A'(£) denotes (§ 1(}3)* in the case £ does not divide N, and A'(£) = 0 in the
case £ divides N. We have the result of the same form for z1 N m/(k,r,7',&,5’) and
z1,N,m(k,r,7',€,S) for any integers v, v’ satisfying (5.2.3).

For the proof, see 5.7.

5.4. In 4.5, we defined the space Vi, @(Y1(N)) (k = 2) in the case N > 4. We extend
the definition including the cases N = 1, 2, 3. In general, for a curve Y of the form
G\Y(N) with N > 3 and G a subgroup of GLy(Z/N), we define the space Vi o(Y') to
be the G-fixed part of Vi (Y (IV)). (This definition makes sense since in the case V,
N’ >23and N | N, Vi o(Y(N)) coincides with the Gal(Y (N’)/Y (IV))-fixed part of
Vi,0(Y(N')).) In the case k = 2, V5 o(Y) is simply H!(Y(C), Q). For a commutative
ring A over Q, let
Vk,A(Y) = Vk,Q(Y) ®q A.

We used dual Hecke operators in 5.3, but in fact we have explained them in §2, §4
only in the case N > 4. Including the cases N = 1, 2, 3, the operators T'(n), T'(n)
(n = 1) on Mi(X1(NV)) (k € Z), Vio(Y1(IV)) (k = 2), K2(Y1(IV) ® K)) ® Q for a field
K D Q are defined as follows. Take M, L > 1, such that M + L > 5, (n,M) =1,
N|L, M|L, L|MN. Then

X(M,L) — X(1,N) = X;(N)

is a Galois covering allowing ramification. The operators T'(n)(%9) and T"(n)( /" 9)

on Mi(X(M,L)), Vio(Y(M,L)), Ko(Y(M,L) ® K) ® Q are invariant under the
action of Gal(X (M, L)/X1(N)), and hence induce operators T(n) and T”(n) on the
Gal(X (M, L)/ X1(N))-invariant parts Mx(X1(N)), Vi,o(Y1(N)), K2(Y1(N)® K)®Q,
respectively. These last operators T'(n) and T'(n) are independent of the choices of
M, L. If N > 4, these T'(n), T'(n) coincide with the ones given in §2 and §4.

For a subfield K of C, the regulator map

reg; n - K2(Y1(N) ® K) ©® Q — H'(Y1(N)(C),R - i)
and the period map
pery , : Mp(X1(N)) ® K — Vic(Yi(N)) (k > 2)
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are defined also for any N > 1; They are induced from those of Y1(L), N | L, L > 4.
They commute with T'(n), T'(n) (n > 1).

5.5. We define special elements
51,N(k’ja a(A))a JI,N(ky j7 a) € ‘/k,Q(Yl (N))

(1<j<k-1,a,A€Z, A>1, acSLy(2)).
First we define 61 n(k,7,a(A)). Take L > 4 such that N | L. Consider the conti-
nuous map

Pa(a) : (0,00) — Y1(L)(C); y+— v(A™'(yi + a)).
Then ¢q(4) is a route from a cusp to a cusp. The stalk of <p;(1A)('H1) at y €
(0,00) is identified with Z - A=!(yi + a) + Z. Let 31 (resp. 32) be the element of
r'((o, oo),go;(lA)(Hl)) whose stalk at y € (0,00) is yi (resp. 1) € Z - A~ (yi + a) + Z.
Then 61,n(k, j, a(A)) is defined to be the image of the class(pq(4), ﬂ{_l , 5‘1‘1) under

H, (X1 (L)(C), {cusps}, Symy~%(H1)) = H' (X1(L)(C), Sym§~2(H'))

trace , v o(Yi(N)).

Then 01, n(k, j, a(A)) is independent of the choice of L. In particular, 1 n(2,1,a(4)) €
H'(Y1(N)(C),Q) is the image of the class of the route from a cusp to a cusp
(0,00) = Y1(N), (C); y+— v(A™(yi + a)) in Hi(X1(N)(C), {cusps}, Z).

For L > 4 such that A | L, N | L, é61,~(k,j,a(A)) coincides with the image of
0a4,0.(k,j) € Vi,z(Y (A, L)) under the composite map

la
(01 * Vk,Q(Y(A,L)) trace

(‘P;;l)*
—_—

Vi,o(Y (4, L))

trace
—_—

Vi(Y (1(A4), L)) Via (Y (1, L(4)))

Next we define 41, n(k, j, @) for o € SLa(Z). Take L 2 3 such that N | L. We define
01,n(k, j,c) to be the image of a*(d,1(k,7)) under the trace map Vi (Y (L)) —
Vi,o(Y1(N)). Then §; n(k,j, @) is independent of the choice of L.

In the following Thm. 5.6, for £ > 2 and a finite set S of prime numbers such that
prime(m) C S, and for a character x : (Z/m)* — C*, let

Zy,N,s(k, X, 8) = }: x(n)T'(n)n~*
(n,8)=1

Vio(Y1(N)).

which acts on Vi c(Y1(NV)), where (n,S) = 1 means that n ranges over all positive
integers such that prime(n) N S = &. Let

oy € Gal(Q(¢m)/Q) (b€ (Z/m)*)

be the element which sends ¢, to ¢5,.
As in §4, let 2% = (1/2)(1 £ ¢)(z) for = € Vi c(Y1(N)).
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Theorem 5.6. — Let £ and S be as in (5.1.1) and let x : (Z/m)* — C* be a character.
(1) Let + = —x(—1). Then we have
> x(®)regy n (o8(21,8,m( ) = éil)l})s_lzl,N,S(2aX7 s) - 2mi- 0y N(2,1,6)F
be(Z/m)*
(2) Let k > 2. Then

+
Z X(b) per; N (ab(zlyN,m(kaTv rl’g,s)))
be(Z/m)*
= Zl,N,S(ka XaT) ° (27ri)k_r—l : 51,N(k1 ,’,,/7 g)i
for any integers v, v’ satisfying (5.2.3) and for £ = (=1)*"""'x(=1). Nezt let T, 1/,
c, d be integers satisfying (5.2.1) (5.2.2). In the case & € SLa(Z), assume c = d =
1 mod N. Let + = (=1)*""'x(=1) and let u, v € Z be as in 4.2. Then

+ e
>~ x(b)per, y (0(c,azi,nm(k,1,€,9)T = Zi sk, x,7) - (2mi) T4 E
be(Z/m)*

where
v = c2d?8, n(k, 7", a(A)) — c*d*x(c)61,n (k, 7', ac(A))
— PR - (49) 51wk, 0/ (4))
~ c*d’x(cd) - (1/? 0) 81,8 (k, 7', “ac/d” (A))

in the case £ = a(A), where “e/d” for e € Z means any integer such that d - “e/d” =
e mod N, and

Y= (C —-c X( ))(d2 - dv?(d))dl,N(kv’r,’ 5)
in the case £ € SLo(Z).

5.7. Prop. 5.3 is deduced from the propositions 2.3, 2.4, 4.3, 4.4 and Thm. 5.6 is
deduced from the theorems 2.6, 4.6, by the following (5.7.1)-(5.7.3). (We use (5.7.1)
and (5.7.2) (resp. (5.7.1) and (5.7.3)) in the case & = a(A) (resp. & € SLz(Z)).)

(5.7.1)  On K3(Yi(N) ® Q(¢m)), Me(X1(N) ® Q(¢m)) (k € Z), and Vig(Y1(N) ®
Q(&m)) (k = 2), we have

(8 (1)) =op for be (Z/m)*.

(5.72) Leta€Z, A, M>21,L>24, mA|M, N|L, M|L. Let

tm,a(a) : K2(Y(M, L)) — Ka(Y1(N) ® Q(¢m))
(resp.  tm,a(a) : Mp(X(M, L)) — Mg(Y1(N)) ® Q(Gn)
Tesp.  tm,a(a) : Vk,Q(Y(M L)) — Vio(Y1(N)) ® Q(¢m))

SOCIETE MATHEMATIQUE DE FRANCE 2004



158 K. KATO

be the map defined in 5.1 (resp. defined in 5.2, resp. defined in the same way as t,, 4 A)
for My, in 5.2). Then we have

tm,an(a) © T(n) = T(n) 0t q(4), tm,a(a)©T'(n) =T'(n) oty an(a)
for any n > 1 such that (n, M) =1, and

u 0 u 0\
tm,av(A) © 0v) ~\ow O tm,au(A)

for any integers u, v such that (u, M) = 1, (v,L) = 1. In particular, T'(n)(*/" (1’)*
m>1, (n,M)=1) and (§9) (v € Z, (v,L) =1) commute with t,, 4(a).-

(5.7.3) Let L > 3. Then forn > 1 such that (n, L) = 1, the operator T'(n) (/" 0)
T(n)(o l/n)* on Ko(Y (L)) (resp. Mx(X (L)), resp. Vi z(Y(L))) commutes wzth the
action of GL2(Z/L).

The proofs of (5.7.1)-(5.7.3) are easy and hence omitted.
We give explicit presentations of the zeta elements of this section in some special
cases.

Proposition 5.8. — Leta € Z, A > 1, and assume
prime(A) C prime(m), N >4, mA| N,
Let S = prime(m).

(1) zl,N,m(a(A)as) = {Hzgl/m,zvgo,l/n}
where x ranges over all elements of Q/Z such that mx = —a/A.
(2) Let k > 2. Assume

prime(A) C prime(m), N >4, mA| N, S = prime(m).

Then for integersr, r', ¢, d as in (5.2.1) (5.2.2) (resp. for integersr, v’ as in (5.2.3)),
¢, d?1,Nm(k, 7,7, a(A),S) (resp. z1,n(k,7,7",a(A),S)) is equal to

AT (DT = DTN S R A B

/1 T - —_r— —r k—
(resp. A" 7' (=1)".(r— )T 'm* 2N 'EFf/mri <()T1)/N)
ifr' =k—1, and to

’I‘,— ’ - ’_ __T/ k——T’ r
AT () (k=2 T RN ST BT B
T

(resp. AT 1. (=1)" (k=2 'm7 AN ZEY/C;;) . ((,Tl)/N)

if r =k — 1, where x ranges over all elements of Q/Z such that mx = —a/A.
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Proof. — Concerning (2), the proof for zeta elements with ¢,d is similar to that
without ¢,d. So we give the proof of (2) for zeta elements without ¢, d.

By the arguments as in the proof of Prop. 2.3 (resp. 4.3), we can proceed as follows.
The element

{91/ma,0,90,1/n} € K2(Y(mA,N)) ®Q
(resp. ()7 - E) € My(X (mA, N))
where () =ForFand1<j<k—-1)
is sent to
{gl/mA,—a/mAng l/N} (S K2(Y(mA, N)) ® Q
(resp. (N 0) o /ma - BE N € Mi(X(mA, N)))

under (3¢), = (573%)7, and then to

{TL92—armas 90,15 } € Ka(¥ (m(4), N)) ® Q
(resp. > (W*7D, - ES) € My(X(m(A),N)))

by norm (resp. trace), where x ranges over all elements of Q/Z such that Az = 1/m.
By using 2.12 and then 2.7 (2) (resp. 4.12 and then 4.7 (2)), we see that this element

is sent by (p3'), = ¢% to
{91/m,-a/ma Hgo,y} € Ko (Y (m, N(4))) 8 Q

(resp. A°- (059 o /ma ZE(’) € My (X (m, N(A)))

(s——Olf(!)—F,ands:k——j~—1if(!)=E))

where y ranges over all elements of Q/Z such that Ay = 1/N. By using 2.7 (2)
(resp. 4.7 (2)), we see that that this element is sent by norm (resp. trace) to

{gl/m,-a/mAv 9o, l/N} € K?(Y(ma N)) ® Q
(resp. At~ ()7 4 ES) N € Mi(X (m, N))
t=jif ()=F,andt=k—1if () = E)).
This element is sent by norm (resp. trace) to

{ Hgl/m,zng,I/N} € K2(Y1(V) ® Q(Gm)) ® Q

(resp. A*- > ()9 E) € Mi(X1(NV) ® Q(Gm)) ).

where z ranges over all elements of Q/Z such that mz = —A/a. This proves 5.8 (1)
(resp. 5.8 (2) for zeta elements without ¢, d). O
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Remark 5.9. — Let k > 2, let £, S be as in (5.1.1) and assume & = a(A). Then
Prop. 5.8 shows that the zeta element ¢ 421, §,m(k,7,7',&,S) for r, 7', ¢, d as in (5.2.1)
(5.2.2) (resp. z1,n,m(k,r,7',&,S) for », 7 as in (5.2.3)) is defined also as follows
avoiding the strange map t,, ,(4). Take M > 4 such that prime(M) = S, and let
m' = mM, N' = AmMN. Then this zeta element is the image of the zeta element
e,d21,N',m’(k, 7,7, €, S) (resp. z1,N',m/(k,7,7,€&,S)) under the trace map

Mi(X1(N') ® Q(¢mr)) — Mi(X1(N) ® Q(Gm)),
and the latter zeta element is given by Prop. 5.8 since
prime(A) C prime(m’), N’'>4, m'A| N', S = prime(m’).

A similar remark works for elements z; n,m(a(4),S) in Ko @ Q.
By Prop. 5.8 and by Rem. 5.9, we have

Corollary 5.10. — Let a, A€ Z, A > 1, and let £ = a(A). Then the zeta elements
in 5.1 (resp. 5.2) including the symbol £ do not change when we replace £ by a’'(A)
for any integer o’ such that @’ = a mod A, and they do not change (resp. they are
multiplied by b” ~') when we replace € by ab(Ab) for a positive integer b.

6. Projections to eigen cusp forms
In this section, we consider zeta elements associated to each newform.

Fixk>2, N2>1.

6.1. We fix a normalized newform ([AL], [De2])
f=) ang" € Sk(X1(N))®C

n=1
of weight k£ and of level N. We have
ay = 1
T(n)f =anf, T'(n)f =a,f, forany n > 1.

6.2. The zeta function

L(f,s) = Z ann”?®

nx1

can be written in the form of the Euler product

[T - et +e(eyer—1-2)7"
4

where ¢ ranges over all prime numbers and

e:(Z/N)* — C*
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is a homomorphism characterized by

0 d
(If £ divides N, €(¢) means 0.)

For m > 1 and for a finite set S of prime numbers such that prime(m) C S, and
for a character x : (Z/m)™ — C*, let
Lg(f,x:8) = D anx(n)n™*

(n,8)=1

=TI @ - aex(9)e* + e(@)xP@)e*=1-%)
¢S

<1/d O)*f =¢(d)f for any d € (Z/N)™.

These zeta functions converge absolutely when Re(s) > (k + 1)/2, and are extended
as holomorphic functions to the whole s-plane.

6.3. Let

F=Q(an; n>=1)cCC.
Then F is a finite extension of Q and is stable under the complex conjugation. The
above ¢ has values in F'.

We will define a quotient Q-vector space S(f) of Mk(X1(N)) and a quotient Q-
vector space Vg (f) of Vi g(Y1(NN)), corresponding to f. These spaces will have struc-
tures of F-linear spaces, and dimp(S(f)) = 1, dimp(Vr(f)) = 2. In the case k = 2,
we will define a quotient Q-vector space Ka(f, K) of K2(Y1(N) ® K) ® Q for a field
K D Q, which also has a structure of an F-linear space.

Let m > 1 and let £, S be as in (5.1.1). For integers r, r', ¢, d satisfying (5.2.1)
(5.2.2) (resp. integers r, 7’ satisfying (5.2.3)) we define the zeta element

cazm(fir, 7', €,8) (resp. zm(f,m,7",€,9)) € S(f) ® Q(¢m)

as the image of the element .qz1,nm(k,7,7,€,S) (resp. zi,nm(k, 7, 7",€,S)) of
M(X1(N)) @ Q(¢m)- In the case k = 2, we define the zeta element

zm(f,§,9) € Ka(f,Q(¢m))

as the image of 21, ym(§,5).

We define S(f) to be the quotient of My (X1(N)) ®q F' by the F-submodule gen-
erated by the images of the operators T(n) ® 1 —1® a, for all n > 1. Hence as a
Q-vector space, S(f) is a quotient of My (X;(N)). Furthermore, S(f) is a one dimen-
sional F-vector space, and S(f) ® r C is generated as a C-vector space by the image
of f under the canonical map Si(X;(N)) ®y C — S(f) ®r C.

On S(f), T(n) acts by a, and T'(n) acts by ay.

We define Vg(f) to be the quotient of Vi r(Y1(INV)) by the F-submodule generated
by the images of T(n) ® 1 — 1 ® a, for all n > 1. As a Q-vector space, Vp(f) is a
quotient of Vi (Y1 (N)). On Vr(f), T(n) acts by a, and T'(n) acts by @,.
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For a commutative ring A over F', define

Va(f) = Vr(f) ®F A.
The complex conjugation ¢ on Vi o(Y1(N)) induces an A-linear map ¢ : Va(f) —
Va(f). Hence we obtained an A-linear action of Gal(C/R) on V4(f).
We have

dimp(Vr(f)) =2, dimp(Ve(f)*) =dimp(Ve(f)7) =1

where ( )* means the part on which ¢ acts as &1, respectively.
The period map per; y : Mg(X1(N)) — Vi c(Y1(N)) induces an F-linear map

pers : S(f) — Ve(f)
which we call the period map of f.
For 1 <j<k—1andfor {=a(A) withae€Z, A>1 (resp. for £ € SL2(Z)), let

6(f,3,8) € Ve(f)
be the image of 41 n(k, j,&).

In the case k = 2, we define Ko(f, K) for a field K D Q, to be the quotient of
K2(Y1(N)® K)®z F by the F-submodule generated by the images of T(n)®1—1R®a,
and T'(n) ® 1 —1®a, for all n > 1. As a Q-vector space, Ka(f, K) is a quotient of
K2(Y1(N) ® K) ® Q. On Kqo(f, K), T(n) acts by an, and T'(n) acts by @,. In the
case K C C, the regulator map reg; y : Ko(Y1(N) ® K) — Vi,c(Y1(NV)) induces an
F-linear map

reg; : Ko(f, K) — Ve(f)
which we call the regulator map of f.

Proposition 6.4. — Let &, S be as in (5.1:1). Let m' > 1, m | m/, and let S’ be a finite
set of prime numbers such that S U prime(m’) C S’.

(1) Let r, v, c, d be integers satisfying (5.2.1) (5.2.2) and prime(ed) N S’ = @.
Then the trace map
S(f) ® Q¢m) — S(f) @ Q(¢m)
sends c.qzm (f,r,7',€,S") to
H (1 - alazl LT + 5(8)02_2 : ek—1—2r)) : c,dzm(fv T, T,7€7 S)
Les’' -8
We have the result of the same form for z/(f,r,7',&,5") and z.,,(f,r, 7', €, S) for any
integers r,r’ satisfying (5.2.3).
(2) Assume k =2. Then the norm map
Ka(f, Q(Gm)) — Ka(f, Q(¢m))
sends zm/(f,€,S’) to
[T (-8 +50)0? L’)) - zm(£,€,5).

LeS'-S
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This follows from Prop. 5.3.

6.5. We introduce the dual cusp form f* of f. Let
= Z ang"”.
nx1
Then f* € M (X1(N)) ® C, and f* is an eigen newform of level N.

Theorem 6.6. — Let &, S be as in (5.1.1). Let x : (Z/m)™ — C* be a character.
(1) For integers r, v’ satisfying (5.2.3) and for £ = (=1)* " 1x(=1), we have
> x®)pers (ou(m(fir e, €.9)))F = Lo (£ xm) - (2r) 771 8(f 0", 6"
be(Z/m)*
Nextletr, r', ¢, d be integers satisfying (5.2.1) (5.2.2). In the case & € SLa(Z), assume
c=d=1mod N. Let + = (—1)* " x(=1) and let u, v € Z be as in (4.2.4). Then

3 x®)pers (ob(cazm(firr' 6, 8)))F = Lg(F*,x,m) - (2m0)* 779 E
be(zZ/m)*
where
v = 2d*5(f,r, 7", a(A)) — “d*x(c)é(f,r’, ac(A))
— d"x(d)e(d)d(f,r', “a/d’(A)) + c*d"X(cd)e(d)s(f, 7', &)
in the case £ = a(A), and
7= (c® = "X())(d® — d°%(d)8(f, 7", €)
in the case £ € SLy(Z).
(2) Assume k =2. Let + = —x(—1). Then we have
Yo x(b)regs (ob(z1,8.m(&, ) = lim 5™ L (£, x, 8) - 2mi - (£, 1,)*.
be(Z/m)*

This follows from Thm. 5.6

7. The proofs of the zeta value formulas

In this section, we give the proofs of Thm. 2.6 and Thm. 4.6.

In 7.1-7.17, we fix k > 2, N > 4, and m > 1 such that m | N, and consider
Y1(N) ® Q(¢n). Thm. 2.6 and Thm. 4.6 are statements for Y (M, N), but as is
explained in 7.18-7.20, we can reduce them to a result (Prop. 7.12) on Y1 (V) @Q(m)-

We will identify Y1 (N)(C) with I'1(N)\$ viav : § — Y(N)(C) — Y1(NV)(C) (1.8),
where

d

We will regard modular forms as functions on $ as in 3.8.
We start with the following result of Shimura.

mm:{(‘; b)eSLz(Z); ¢c=0, d=1mod N}.
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Proposition 7.1 ((Sh]). — Let0< j <k —1, and let
F=)_ang” € Si(Xi(N)®C, g=) bug" € Mi—;(X2(N)) @ C.

n>1 n>0

Assume f # 0, g # 0 and that f and g are eigen forms of T'(n) for any n > 1 such
that (n,N) = 1. Then

/ f(T)g(T) . N"j—2(8—k+1)E(]’, T, 1/N’ 2(8 —k + 1))ys—1 dz A dy
T (N)\H

= (4m)~°T(s)D(f, 9, 9)

(T=z+iyeH, z, y € R), where E(j,r, 1/N, s) is as in 3.8 and D(f,g,s) is a zeta
function defined as in 7.2 below.

7.2. For f, g as in Prop. 7.1, the function D(f, g, s) is defined as follows. Write

T(n)f =An)f, T(n)g=n(n)g ((n,N)=1, A(n), n(n) € C).
Then the Dirichlet series
Z A(n)n™° and Z n(n)n=*
(n,N)=1 (n,N)=1

are expressed as Euler products. For a prime number ¢ which does not divide N,
let {(1—0nl7%)(1 —-agf_s)}_l be the Euler factor of 3, xy_; A(n)n™° at £, let

{(1—-p167%)(1 - ﬂgf‘s)}—l be the Euler factor of 3, yy_, n(n)n™° at £, and define
a polynomial FP;(u) by

Pg(’u) = (1 - a‘lﬂlu)(l - 51,3211,)(1 - agﬂlu)(l — azﬁzu).
Define L(n)(A®7, s) by

L(N)(X ®n, S) = H Pz(e_s)_l
£

where ¢ ranges over all prime numbers which do not divide N. Let
S(N)={n>1; prime(n) C prime(N)}.
We define

D(f,9,8) = Livy(A®m, s) - Z Arban™°.
neS(N)

7.3. In 7.3-7.6, we fix some notation.
Let x : (Z/m)* — C* be a character. For h > 1, we define elements

(7.3.1) Fy‘) (here we assume m > 2 in the case h = 2),
(7.3.2) E)((h) (here we assume x # 1 in the case h = 2)
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of Mj(X1(N)) ® C as follows:

h) _ . h— (h)
F)E ) = m ? Z X(a)Fa/m,b/m
a,b
E;h) =m™h Zx(a)E((l';Zn’b/m for h # 2,
a,b

_ (2
E§<2) =m~? Z X(a)Et(z/)m,b/m
a,b

where a ranges over all elements of (Z/m)* and b ranges over all elements of Z/m.
. =(h

Since Y, Fa(77)n,b/m’ > El(l’;zn,b/m (h # 2), and 3, Et(l/zn,b/m (h = 2) belong to

Mp(X1(N) @ Q(¢m)) = Mp(X1(N)) ® Q(ém), (7.3.1), (7.3.2) are defined as ele-

ments of My (X;(N)) ® C. These elements are zero unless x(—1) = (=1)" because

F® _ = (~1)"F") and the similar formulas hold for ES' (h # 2) and E().

7.4. Let x : (Z/m)™ — C* be a character. Let r, r’ be integers satisfying the
following (7.4.1).

0<r<k-1, 1<r <k—1, and at least one of , 7’ is k — 1.

(7.4.1) Furthermore m > 2 in the case (r,r') = (k — 2,k — 1),
and x # 1 in the case (r,7') = (k — 1,k — 2).

We define a function z,(r,7’) on $) by

r — _ —r T) . ’
(1) - (r— 1"t N R LB if ' =k—1,
(74.2)  zy(r, ") = { i o

()" k=2 N EETT B ifr =k -1

For an integer d which is prime to N, we define a function 4z, (r,7’) on $ by

(=) (r =1yt N EE B ifr=k—1,
(T.4.3)  qzy(r,r') = { X O1/N

()" k=2 N EBETT BT e =k -1
X 0,1/N

These functions with ' = k — 1 (resp. r = k — 1) are zero unless x(—1) = (—l)k_r
(resp. x(—1) = (=1)*").

The functions in (7.4.2) with (r,7') # (0,k — 1), (2,k — 1), (k — 1,2), and the
elements (7.4.3) with r # 0 are elements of My(X1(N)) ® C. In general, functions
in (7.4.2) (7.4.3) are C*°-functions on §), but not necessarily holomorphic.

The following is clear from the definition.

Lemma 7.5. — Letr, v’ be as in (7.4.1) and assume r # 0. Assume m > 2. Then we
have

Z X(a’)aa (ZI,N,m(k’ T, ,’,/7 0(1)5 pnme(m))) = ZX(T, rl)a
a€(Z/m)*
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if(T,T/) :/£ (27k - 1)) (k - 172) (k - lvk - 2)) and
> x(a)oa(cazi,nm(k, 7,7, 0(1), prime(m))) = (¢ — c*X(c))azy(r, )
a€(Z/m)*
for any integers c,d such that (c,m) = (d,mN) =1, whereu=r+2—-k ifr' =k—1,
andu=k—r1" ifr=k—1.

7.6. Define zeta functions Z{ y(k,s) and Z] y(k, x, s), whose values are operators
acting on Vi c(Y1(NV)), by

Zin(k,s) =Y T(nn™°, Z{n(k,x,8) = Y x(m)T(n)n ™"

n>1 n>x1

(The letter T means that these zeta functions are defined by using T'(n) not 7”(n).)
For f = Zn>1 ang™ € Sk(X;(N)) ® C, define

[(fl1 = a1
We have
an = [T'(n)fy
for all n > 1. Define

L(f,s) =Y ann™® = [ZT n(k,s)f],.

n>x1

For an integer j > 1, define

Q(f, §) = (2mi)? / F(iy) - gy~ - d(iy),
Q(f,j) = the complex conjugate of Q(f, j).

Then we have
(7.6.1) Q(f,5) = @m)*F 71 (1) - (G — 1) LS, 5)

for any j > 1. (This follows from the well known fact
(o o]
| fww = em) T L))

Proposition 7.7. — Let x : (Z/m)™ — C* be a character, and let f € Sx(X1(N))®C.
Letr, v be as in (7.4.1), and assume x(—1) = (=1)*7" (resp. (=1)*" ) if r' =k —1
(resp. T =k —1). Then

(&n2) e [ T g ) ot e A dy
T1(N)\$
is equal to

(2m0)* Q2T p (kX m) )
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in the case r # 0, and to
2 mi)* ™ D((lim 5™ 2T (5 X, ) 7)
in the case r = 0.

7.8. The proof of Prop. 7.7 is given in 7.8-7.10. To prove Prop. 7.7 in the case
(r,r") = (4,k — 1) (resp. (r,7') = (k — 1,7)), we will apply Prop. 7.1 to the case
g =1/2- F( ) (vesp. 1/2 - B ) with x(~1) = (=1)F77 (we assume m > 2
(resp. x # 1) in the case j = k — 2). If we write

g= Z bnqn7

n2>0
we have by 3.10
(7.8.1) > ban =L(x,s —k+r+1)((s —k+7' +1)
n=1
(Here L(X,8) = >_,51,(n,n)=1 X(n)n"°.) From (7.8.1), we have
(7.8.2) T(n)g = b,g for all n>1 suchthat (n,N)=1.

Lemma7.9. — If f is as in Prop. 7.1 and g is as above, D(f,g,s) is equal to the
complex conjugate of

[ZIN(k, x5 —k+r+1)Z{ (K, S—k+7 +1)f],.
Proof. — By (7.8.1) and (7.8.2), we have
(791) LA ®@ns) =L x.s—k+r+1)-Lan(s—k+r' +1).

Here Livy(X, X, ) = X1 (n.n)=1 AnX(n)n 7%, On the other hand, 3=, c g(ny @nbnn~*
is the complex conjugate of [ZneS(N) T(n)l_)nn“sf] ,» and by the fact

T(nn') = T(n)T(n') for n,n’ € S(N),

this >, co(w) T(n)b,n~* is expressed as:

(7.9.2)
Y T(n)bun~ = ( > T(n)Y(n)n“(s"“““))( > T(n)n—(s“’““'“)).
neS(N) neS(N) n€S(N)
Now 7.9 follows from 7.9.1, 7.9.2, and the fact

T(nn') =T(n)T(n') if (n,N)=1 and n’ € S(N). O

7.10. We prove Prop. 7.7. We may assume that f is an eigen form of T'(n) for any
n > 1 such that (n, N) = 1, since Si(X1(NV)) ® C is generated over C by such forms.
For such f, by (7.6.1) and Lemma 7.9, the case r # 0 (resp. r = 0) of Prop. 7.7 is
obtained by putting s = k— 1 in 7.1 (resp. by taking lims_,x—1 of (s — k + 1)—:l times
the both sides of 7.1).
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7.11. For M, L > 1 such that M + L > 5, we defined in 4.5 a C-linear operator

t:Vee(Y(M,L)) — Vic(Y(M,L)).
Now we define another operator

Vi Viee(Y(M, L)) — Vic(Y (M, L)),
which is anti-C-linear, by

(z®y) =287 (z€ Vir(Y(M,L)),y € C).
Proposition 7.12. — Let x : (Z/m)* — C* be a character, and let
Zin(kyx,8) = 3 x()T (m)n~*

n>1
which is an operator-valued function acting on Vi c(Y1(N)).
(1) Assume x(=1) = (=1)*"" (resp. (—l)k_rl) ifr" =k—1 (resp.7 = k—1).
Then
(7.12.1) per, y (% 2z (")) + (—l)k_r_lL'(perl,N (% - 2x(r, 7))
= Zun(kyxor) - (2m0)* 70 By (K, )
in Vec(Yi(N)) of (r,7") # (0,k = 1), (2,k—1), (k—1,2), and

1 e 1
(7.12.2) per, n (§ “dzx(r, 7'/)) + (_l)k 1Ll(]?erl,N (5 - azx(m T’)))
= Zin(k, ) - @ri)* T (@ - (D) - (19)7) - b (k,r)
in Vi,c(Yi(N)) if r #0.
(2) Assume m =2 and x(—1) =1. Then

(712.3) > X(a)-regLN( H {ga/m,b/mng,l/N})

a€Z/m* beZ/m
= lir%s"lZLN(z,x, ) -2mi- 61 n(2,1)
8—>

n Vz’c(Yl (N))
The proof of Prop. 7.12 is given in 7.13-7.17.

7.13. In this 7.13, by using Poincaré duality, we reduce Prop. 7.12 to Prop. 7.7 and
to a statement (Prop. 7.14) concerning the “boundary” of zeta elements at cusps.
The canonical pairing (, ) : H! x H! — Z on Y;(N)(C) induces the pairing

Symlzf_z(Hl) X Sym%—Q('Hl) —Q;

k—2
1
(T1.. Th—2,91 - - Y—2) — __—_(k—2)' : E H(-"%%(j))
| 0€B,_3 j=1
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(1, -y Th—2,Y1,---,Yk—2 € H'). This induces a perfect duality of finite dimensional
Q-vector spaces
(7.13.1) () Vig(Yi(V)) X Vegeo(Yi (V) — @

and also a perfect self-duality of the finite dimensional QQ-vector space
Via(X1(N)) = HY(X1(N)(C), j. Syms (1)) © Q

where j denotes the inclusion map Y7 (N)(C) — X;(N)(C). (We regard Vi o(X1(V))
as a subspace of Vi q(Y1(/V)) and at the same time as a quotient of Vi g.(Y1(N)).)
Furthermore the period map (4.10)

per : Si(X1(N)) ® C — Vic,o(Y1(N))
induces the isomorphism of Shimura
(7.13.2) (Sk(X1(N)) ® C)? =5 Vi c(X1(N)) = VeeXi(N)) @ C
(f,9) ¥ per(f) + ¢ per(g).
Consider the exact sequence
(7.13.3) 0 — Vic(X1(N)) — Vic(Yi(N))
2 ©a(RY. SymE 2 (1)), @ C

where z ranges over all cusps in X;(/N)(C) and ( ), means the stalk at z.
By (7.13.2) and (7.13.3) and by the self-duality of Vi c(X:1(N)), we have

(7.13.4) Forz € Vi c(Y1(N)), z = 0 if and only if z satisfies the following conditions:
(z,per(f)) = {2,V per(f)) = 0 for all f € Sp(X1(N))®C, and d(z) = 0.
Concerning the Poincaré duality (7.13.1), the following (7.13.5)—(7.13.7) hold.
(7.13.5) For f € Sk (X1(N)) ®C, g € Mip(X1(N)) ® C, we have
(per(g), per(f)) =0, (' per(g), " per(f)) =0,
(per(g), ¢ per(f)) = (=87%1)" " [p (ny\ 5 F(Mg(T)y*2dz A dy
(r=xz+1y, z, y e R).
(V' per(g), per(f)) = the complex conjugate of (per(g),: per(f)).

(7.13.6) For z € Sk(X1(N))®C, and for 1 < j

<
(51,N(kaj)a per(f)) = Q(fa])a
<51,N(k7j)a v per(f)) = Q_(f’.])

k — 1, we have

(7.13.7) Let f € S2(X1(N)), and let w be a closed C*-differential form on Y1(N)(C)
which has at each cusp the growth O(r~!log(r)¢) (r — 0) for some ¢ > 0 where r
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denotes the distance from the cusp (the metric is defined by fizring an analytic isomor-
phism between an open neighbourhood of the cusp and an open set of C). Then

(class(w), per(f)) = /r‘ s w A f - dlog(q)

(class(w), ¢’ per(f)) =/ w A f - dlog(g).

L1 (N)\H
((—87r2i)k—1 in (7.13.5) comes from
dlog(q) A dlog(q) = —8n2 -dz A dy
and from
/ dlog(t) A dlog(t) = —8n2i - Im(7),
C/(Zr+1Z)
where t = e2"%%))

We reduce Prop. 7.12 (1) to Prop. 7.7 and Prop. 7.14 below. Let f € S,(X;(N)) ® C.
By (7.13.5)—(7.13.7), we have

(Lh.s. of (7.12.1),¢ per(f)) = (—87T2i)k_1/
Ti(N)\H

(rhs. of (7.12.1), per(f)) = (2m)* "' QZL N (K, X, 7) - fo7)

— 1
F) - 5 - 2xlry ') - y¥~2dz A dy,

(since T'(n) and T'(n) are the adjoints of each other in the Poincaré duality). Next
let d be an integer which is prime to N, and let h = (d? — d?x(d) - (g 1(/)d)*)f. Then
by (7.13.5)—(7.13.7), we have

(Lh.s. of (7.12.2), per(f)) = (—87T2i)k-1/ f(r)-
L1 (N)\$H
= (—8n%)" ! / R(T) - = - 2y (1, ) - y*2dz A dy,
1 (N)\$

(rhs. of (7.12.2), per(f)) = (2md)* "' QZL (K, X, 7) - by 7).

~azy(r, ') y*2dz A dy

N|= DN

Hence by 7.7, we have for e =1, 2,
(Lh.s. of (7.12.e),per(f)) = (r.h.s. of (7.12.e), (' per(f)).
By taking the complex conjugate, we have for e =1, 2,
(Lh.s. of (7.12.e), per(f))
= the complex conj. of (—1)* "' . (Lh.s. of (7.12.¢) for X, ¢’ per(f))

= the complex conj. of (—1)*"""' . (rh.s. of (7.12.e) for X, ¢/ per(f))
= (r.h.s. of (7.12.e), per(f)).

Hence by (7.13.4), Prop. 7.12 (1) is reduced to Prop. 7.7 and to Prop. 7.14 below.
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We reduce Prop. 7.12 (2) to Prop. 7.7 and to Prop. 7.14 below. For g, h €
O(Y1(N))* ® Q, the differential form

Ngn = log(lg) - dlog(h|h| ™) — log(|A]) - dlog(glg|™")

in 2.10 is written also as

flg,n = log(|g|) - dlog(h) + log(|R]) - dlog(g) — d{log(|gl) - log(|h])}
= —log(lgl) - dlog(h) — log(|h]) - dlog(g) + d{log(|g]) - log(|h])}-
Since class(d{log(|g|) - log(|h|)}) = 0, we have by (7.13.7)

(class(ng,n), ¢/ per(f)) = /F oy 8D - log() 17 - diog(@)

(class(1p), pex(1)) =~ [ ., Lol - dog(F) A - g

(N

= — complex conj. of {(class(ng,x), per(f))
for any f € S2(X1(N)) ® C. We have also
10g(|ga,s]) = —~EL%(7), dlog(ga,s) = —F.
((3.8.4) (iii), 3.11 (2)). These imply, for any f € S2(X1(N)) ®C,

(Lhs. of (7.12.3), / per(f)) = /

'y

F(7) - 2(0,1)(7) - dlog(q) A dlog(q)
NH

= (—87%) - F(1) - 24(0,1)(7) - dx A dy
T1(N)\H

(r.h.s. of (7.12.3), per(f)) = (2mi) ﬁ(lllr(l) s ZIN(2,%,8) - £, 1)

(since T7(n) and T'(n) are the adjoints of each other in the Poincaré duality). By the
case k = 2 and r = 0 of Prop. 7.7, we have

(Lh.s. of (7.12.3),/per(f)) = (r.h.s. of (7.12.3), /per(f)).
By taking the complex conjugate, we have

{Lh.s. of (7.12.3), per(f))
= — the complex conj. of (l.h.s of (7.12.3) for %, ¢’ per(f))
= — the complex conj. of (r.h.s of (7.12.3) for ¥, ¢ per(f))
= (r.h.s. of (7.12.3), per(f)).

Hence by (7.13.4), Prop. 7.12 (2) is reduced to Prop. 7.7 and Prop. 7.14.

Proposition 7.14. — O(L.h.s. of (7.12.€)) = 9(r.h.s. of (7.12.e)) for e =1, 2, 3, where
0 is as in (7.13.3) (we take k = 2 in the case e = 3).
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7.15. We give preliminaries for the proof of Prop. 7.14.

Let 0o € X1(IN)(C) (resp. 30 € X (IN)(C)) be the standard cusp, which is the limit
point of the image of yi € $ (y.-— 00).

The cusps of X;(IN)(C) are described as follows. Let ¥ be the set of pairs (v, w)
such that v € Z/N and w € ((Z/N)/(v))*. Let £/%1 be the quotient of ¥ by the
equivalence (v, w) ~ (—v, —w). Then there is a unique bijection

{cusps of X;(N)(C)} — Z/+1

which sends the image of (! %)oc € X (N)(C) in X;(N)(C) to the class of (v, w mod v)
in £/+1 for any (! %) € SL2(Z/N).
We define a canonical homomorphism

R: (RY SymE2(H))oo — Z

as follows. Take ¢>> 0, and let U = {7 € $; Im(7) > c}. Then the map (3§ %)\U —
I'1(N)\$ =2 Y1(N)(C) is an open immersion, and the image of this map has the form

(an open neibourhood of co in X;(N)(C)) — {oo}.
This map induces
(R Sym5—2(HY) o = H'((3%)\U, Sym§ ("))
= H(U, Sym§2(HY)) / (1 = (41)") H(U, Sym} (1)
=~ HO(U, Sym§ > (1)) / (1 - (31),) HO(U, Sym§ (1)),

The pull back of H; on U is a constant sheaf whose stalk at 7 € U is identified with
ZT+Z. Let eq (resp. e2) be the section of H; on U whose stalk at 7 € U is 7 (resp. 1).
Then ((1) })*(el) = e; + e2. From this we see that

HO(U, Symz™*(H1))/ (1~ (8 1),) H(U, Symz™*(H1)) ® Q

is a one dimensional Q-vector space generated by the class of e’f_z, and the classes
of efel (s > 0,t > 1, s+t =k — 2) in this space are zero. Hence there is a unique
homomorphism

HO(U,Symg2(H41))/(1 - (§1),) HO(U, Sym§ 2 (H1)) — Z

which sends the class of €¥~2 to 1 and the classes of efel (s > 0,t > 1, s+t =k —2)
to 0. This is the definition of R.
We define a homomorphism

R:(RY. Symi?(H))x ®Q — Q

(we use the same letter R) to be the composite

. _ ~ ol _ R
(R, Symf*(H'))ss ® Q < (R'j. Sym§*(H!))oe ®Q — Q
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We have a commutative diagram
My (X (N)) ——C
(7.15.1) perN,Nl x (2mi)k—1
Vie(v() — ¢
where the upper horizontal arrow is Zf:o ang™N — ag. We have also a commutative
diagram
Ko (Y(N))——R
(7.15.2) regN,Nl X 2mi
Ve (V) ¢
where the upper horizontal arrow is induced by
Ka2(C((¢"™))) — R; {g%au,q’bw} — B -log(|al) — alog(|b])

(a, B€ (1/N)Z, a, b€ CX, u, v € 1+ q/NC[[¢*/N])).
Let
B = @,(R'j. Symy~*(H')), ® Q
where z ranges over all cusps of X1(N)(C). For (! %) € SLy(Z/N), let
Ro(tu)":B®C—C

be the homomorphism induced by pulling back to X (N), then pulling back by (f, vy,
and then taking R of the co-component. This map depends only on (v, w mod v) € X.
For z € B®C, z =0 if and only if Ro (! ")*(z) =0 for all ({%) € SL2(Z/N).

v w

By this, Prop. 7.14 follows from Lemma 7.16, 7.17 below.

Lemma 7.16. — Let x : (Z/m)* — C* be a homomorphism, and let (! %) €
SLy(Z/N).

(1) Letr, r’ be as in (7.4.1), and assume x(—1) = (—=1)*"" (resp. (—l)k_r,) in the
case ' =k —1 (resp.r =k —1). Let

zy = 2y (1, 7")
assuming (r,7') # (0,k —1), (2,k—1), (k—1,2)
(resp. zy = a2y (r,7")

for an integer d such that (d, N) = 1 assuming r # 0), and let

* 1 I
BXZRO tu) anperl’N(Zx), P=§(BX+(—1)IC r=1, Y)

v w
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(i) Assumek >3, =k —1. Then, in the case v # 0,
P =0.
In the case v =0, if Q(w) denotes
LOGT + 1= k) - x(w) - {C(w/N,s) + (-1)¢(—w/N,s)} - (@mi) "N
(here ¢(a, s), (o € Q/Z) is as in 3.9), we have
P=Q(w) (resp. P=d*Q(w)~ d'x(d)Qdw)).
(ii) Assumek >3,2 <1 <k—2. Then,
P=0.
(iii) Let k >3, (r,r') = (k —1,1). Then if Q(v) denotes
~L06mINx() (¢(v/N,0) = ¢( - v/N,0)),
we have
P=Q() (resp. P = d*Q(v) — d'X(d)Q(dv)).
(iv) Assumek =2 (sor =1 =1). Then in the case v # 0, if Q(v) denotes
—L06 Dx() (¢(v/N,0) = ¢( = v/N,0)) - N7,
we have
P=Q() (resp. P = dQ(v) - d'X(d)Q(dv)).
In the case v =0, if Q(w) denotes
LO6 Ox(@){¢(w/N, s) = ¢(—w/N,s)} N7,
we have

P=Q(w) (resp. P=d?’Q(w) — &x(d)Q(dw)).
(2) Let m > 2, and assume x(—1) = 1. Let

P= 3 x(@Ro(L%) odoreg y ({ 11 ga/m,b/mago,l/N})-

a€(Z/m)* bEZ/m

Then, in the case v # 0,
P =—1lim s L(x,5)  X(v) (C(v/N, ~1) +¢( = v/N, —1)) - 2mi.
In the case v =0,

P =L(x, ~1)x(w) lim s~ (C(w/N, s) +¢(—w/N, s)) - 2mi.
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Proof. — By using the commutative diagram (7.15.1) (resp. (7.15.2)), 7.16 (1)
(resp. 7.16 (2)) follows from the expressions of the constant terms of Eisenstein series
in 3.10 (resp. from the “g-presentations” of Siegel units in 1.9) and the following well
known equalities (7.16.1) (resp. (7.16.2)) and (7.16.3) for ((a, s) and ¢*(a, s).

(7.16.1) For a € Q/Z and for any integer r > 1,

=y 1
(r—1)! 2

(C*(ay 1- 7‘) + (—1)TC*(—a, 1-— 'r)) =
(27i) " {¢(a, ) + (=1)"C(a, 8) }, .-

(7.16.2) For a € Q/Z ~ {0}, if we denote exp(2mic) by n, we have
log|l — 7| = ;i_r%s—l(g(a, s) +((—a, 8)).

(7.16.3)  For any integer r < —1, {(a,7) = (=1)"""¢(~a, 7). O
Lemma 7.17. — Let x : (Z/m)* — C* be a character, and let (£ %) € SLa(Z/N).
Let j be any integer such that 1 < j < k—1. Let
P(s)=Ro (4 1) 0 d(ZLn(k, x,5) - b1,n (K, 3))-
(1) Assume k >3, j =k — 1. Then, in the case v # 0,
P(s) =0.
In the case v =0,
P(s) = L(x,s — k + 1) (x(@)¢ (w/N, 5) + (~1)*x(~w)¢(~ w/N,s) ) - N™*.
(2) Assumek > 3,2< j< k—2. Then
P(s) =0.
(3) Assume k 23, j =1. Then
P(s) = —L(x,s) (x(v)((v/N, s—k+1)+ (—l)kx(—v)c(—v/N, s—k+ 1)) CNTstR=2
(4) Assume k =2 (so j =1). Then, in the case v # 0,
P(s) = - L(x,s) (x(v)((v/N, s—1)+x(-v)¢{(~v/N,s - 1)) -N7*,
In the case v =0 and m > 2,
P(s) =L(x,s — 1)(X(w)((w/N, s) + x(—w)¢( — w/N, s)) -N7*.
In the case v =0 and m =1,

P(s) = ((s — 1)(<(w/N, s) +¢(—w/N,s) — 2((3)) N-s
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Proof. — Let ¥ and B be as in 7.15. For (v,w) € I, let
b(v,w) € B

be the element characterized by the following properties: b(v, w) is supported on the
cusp corresponding to the element (v,w) mod + of ¥/+, and Ro (f, g)*b(v,w) =1
for any ¢, u € Z/N such that (! %) € SLy(Z/N). Then for any (! %) € SLy(Z/N)
and any (v, w’) € I, we have

1 ifv=1, w=w mod (v)
(7.17.1) Ro (L2)"b(v',w') =< (-1)* ifv=—v" and w= —w' mod (v)
0 otherwise.

For n > 1, let T'(n) : B — B be the dual Hecke operator. Let ¢ be a prime
number, let ord;(IN) be the £-adic order of N, and let ord,(N,v) be the £-adic order
of the order of the ring (Z/N)/(v). By considering the dual Hecke operators locally
at cusps, we have

T'(£)b(v, w) = b(v, fw) 4+ €57 1b(lv, w)
if ord,(N) =0,
T'(0)b(v, w) = b(v, w) + > _ ¥ (0w, w')

if ord¢(N) > orde(IN,v) = 0, where w' ranges over all elements of ((Z/N)/(¢v))™
whose image in ((Z/N)/(v))* coincides with w,

T'()b(v, w) = £ "b(fv,w’)
if ordg(N) > ord,(N,v) > 0, where w’ ranges over all elements of ((Z/N)/(fv))*
whose image in ((Z/N)/(v))™ coincides with w,
T’ (0)b(v, w) = £*~1b(lv, w)
if ordg(N) = ordy(N,v) > 0. From this we have
(7.17.2) Zy n(k,x,s)-b(0,1) =
Locs—k+1) > x@C(y/N,s)- N~ (5,9,)"-b(0,1)

yE€(Z/N)*

(7.17.3) ZI,N(k,X,s).b(LO)=L(X,s)zx(n)n—<s-k+1>-( 3 b(n,y)).

nz1 y&E(Z/(N,n))*
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On the other hand,

(7.17.4) 001, n(k,k—1)) =b(0,1) if k>3,

(7.17.5) O(01,n(k,7)) =0 if 2<j<k -2,

(7.17.6) (1, n(k,1)) = =N~1p(1,0) if k>3,

(7.17.7) d(61,n(2,1)) = b(0,1) — N1b(1,0).

Lemma 7.17 follows from these (7.17.2)—(7.17.7). O

7.18. In the rest of this section, we deduce Thm. 2.6 and Thm. 4.6 from Prop. 7.12.
Let M, N>1, M+ N =2 5.

First we remark that Thm. 2.6 and Thm. 4.6 can be formulated without using the
operator ¢, but using ¢’ instead.

The image of the period map

M (X (M,N)) — Vic(Y (M, N))
and the image of the regulator map
Ka(Y(M,N)) — Vo (Y (M, N))

are contained in the fixed part of the operator tot = ¢ o4.

Hence
(7.18.1) tpery n(x) = ¢/ perp n(z) for any x € Mi(X(M,N)),
(7.18.2) vregpr n(2) = U regy n(x) for any x € Ko(Y (M, N)) ® Q.

Thus, the left hand sides of Thm. 2.6 and Thm. 4.6 are rewritten in the forms using
' instead of ¢. On the other hand, the right hand sides of Thm. 2.6 and Thm. 4.6 can
be rewritten also in the form without using ¢ by the following lemma.

Lemma7.19. — (O (k,5) = (=1 7 (31 9)" - dmn(k,d) (1<i<k—1)
Proof. — For y > 0, let E, be the elliptic curve over R defined by the equation
7
Y2 =4X%-10- E§}(yi) - X — 5 - B§Q) (yi)-

(Since E(flo) for h > 1, h # 2 has a g-expansion with rational coefficients, and since
g =e?>"" e Rif 7 = yi, E(gflo) (yi) belongs to R.) We have an isomorphism

ey : C/(ZT +Z) = E,(C);

, d ,
eu(2) = (lvis 2), (5m5q) 93 2))

where p(7,2) (7 € $, 2 € C) is as in 3.8. The map ¢ : (0,00) — Y(M,N)(C) in 4.7
is written as

Y — (Ey,ey(yi/M),ey(l/N)).
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By the definition of p(7, z) in 3.8, we have

(7.19.1) t(ey(2)) = ey(—%) for z2€C

where ¢ denotes the complex conjugation E,(C) — E,(C). From (7.19.1), we have

ey (yi/M)) = e, (yi/M), 1(e,(1/N)) = e, (1/N).

Hence the complex conjugation ¢ : Y'(M, N)(C) — Y (M, N)(C) satisfies
we@) = (5 21) - e(w).

Furthermore (7.19.1) also shows that ¢ : H; (E,(C),Z) — H;(E,(C), Z) satisfies
ter) =e1, tle2) =—e

where e;, ex are as in 4.7, and hence we have

i—1 _k—j—1 k—j—1 i—1 _k—j—1
o(class(ip, €] Tk IT1)) = (~1)F I (3.9)) class(p, e} leh Y

where ¢ denotes the automorphism of Hy (X (M, N)(C), {cusps}, Sym~~2(H;)) induced
by the complex conjugation of X (M, N)(C) and that of E(C) with E the universal
elliptic curve over Y(M, N). Via the isomorphism

H'(Y (M, N)(C), Symj~?(H')) 2 H (X (M, N)(C), {cusps}, Sym§2(Hz1)),

the complex conjugation ¢ on the 1.h.s corresponds to (—l)k—lb of the r.h.s, and hence
we obtain

t(Barv(k, ) = (DFH (=DM (3 0) O (., 5)
= (=1 - (8 21) " dm,w (k. ).
Since (' % )" acts on (—1)* on Vi z(Y (M, N)), this implies
(S n (k. 7)) = (=17 (5 9) 0w (k. 5). o
7.20. Now we reduce Thm. 2.6 and Thm. 4.6 to Prop. 7.12.
We first prove Thm. 4.6. Let M, N > 1, M + N > 5, and assume prime(M) C
prime(N). The proof for zeta elements with ¢, d and that for those without ¢, d are

given in the same way, and so we give here the proof with ¢, d. We will apply Prop. 7.12
by taking (M N, M) as (N,m) of 7.12. Take M’ > 1 and L > 4 such that

M?|M', MN |L, prime(M’) = prime(M), prime(L) = prime(M N)
and let
(7.20.1) Y(M',L) — Y1(MN) ® Q({m)

be the composite

-1
Y(M', L) — Y(M(M), L) 22, ¥ (M, L(M)) — Yi(MN) ® Q((a)
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which is used to define ¢ 4z1,mn M (k,7,7',0(M), prime(M)) (5.2). Then it can be
shown that the canonical projection Y (M’, L) — Y (M, N) factors through (7.20.1).
Hence the trace maps

Mk(X(MI, L)) —_— Mk(X(M, N)) and Vk,Q(Y(M,, L)) —_— Vk,Q(Y(M, N))
factor through the surjections

tmom) @ Mi(X (M, L)) — M (X1 (MN) ® Q(¢m)),
taom) : V(Y (M, L)) — Vio(Yi(MN) ® Q(¢m)),

respectively.
The trace map Mp(X(M',L)) — Mi(X(M,N)) sends cqzm,r(k,7,7") to
e,d2m,N(k,7,7") by Prop. 4.3, and tar,0(ar) sends ¢.azm,n(k,7,7') to

z1,mn,m(k,r,7",0(M), prime(M)) = M" " 2y arwv,m(k, 7y, 0(1), prime(M))

(Prop. 5.10). The trace map Vi o(Y (M’, L)) — Vio(Y (M, N)) sends dn,1.(k,7") to
dm,n(k,7"), and tpr,0(ar) sends Onr L (k, ") to

61w (k, 7', 0(M)) = A” 7181 pn (k,7') € Vio(Yi(MN)) C Vig(Yi(MN) @ Q(¢m))-

(Here we regard Vi o(Y1(MN)) as a direct summand of Vi o(Y1(MN) ® Q({m)) in
the canonical way.) By these facts and by (7.18.1), 7.19, Thm. 4.6 is reduced to the
special case £ = 0(1), S = prime(m), m | N, N > 4 of Thm. 5.6 (2). By Lemma 7.5,
this case follows from Prop. 7.12 (1).

In the similar way, Thm. 2.6 is reduced to the special case £ = 0(1), S = prime(m),
m | N, N > 4 of Thm. 5.6 (1), and this case follows from Prop. 7.12 (2).

CHAPTER 11
p-ADIC EULER SYSTEMS

In this Chapter II, we define Euler systems in the Galois cohomology groups related
to cusp forms. We define them in § 8 by using Euler systems in K5 of modular curves.
A mysterious fact is that, via p-adic Hodge theroy, they are related to the Euler
systems in the spaces of modular forms (see §9) and hence to the zeta values L(f,r)
(1 <7 < k—1) for cusp forms f of weight k (§9). We will deduce this fact from a
generalized explicit reciprocity law in [KK3|.

In Chapter II, we fix a prime number p.

We denote by Q the algebraic closure of Q in C.
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8. Definitions of p-adic Euler systems

8.1. Fixk > 2.

In this section, we construct the following “p-adic zeta element” (8.1.1)—(8.1.3)
basing on zeta elements in K2 of modular curves constructed in §2. The right hand
sides of (8.1.1)—(8.1.3) are étale cohomology groups, and (k —r) means the Tate twist,
as explained in 8.1-8.3. Our method to define p-adic zeta elements by using Beilinson
elements is the “modular curve version” of the method of Soulé [So] in the cyclotomic
theory in which he defined various p-adic cyclotomic elements by using cylotomic
units. In the next section, these p-adic zeta elements will be related to zeta elements
in the spaces of modular forms considered in §4.

(8.1.1) caz )y (k') € HY(Z[1/p], Viz, (Y (M, N))(k — 7))
where M, N 21, M+ N > 5, and r, r, ¢, d are integers satisfying
1<r"<k-1, (¢,6pM)=1, (d,6pN)=1.

(8.1.2) a2 Py k7, €,8) € HY(Z[1/D, Gm], Va2, (Vi (N)) (k — 7))

where N,m > 1, ¢, S are as in (5.1.1), p€ S, and 7, 7/, ¢, d are integers satisfying

>
1< <k-1, prime(cd)NS =9, (cd,6)=1, (d,N)=1.

(8.1.3) o d 22 (f,r,7',€,8) € HY(Z[1/p, Cm)], Voo (f) (k — 7))

where m > 1, f = >, 5, a,q" is a normalized newform in My(X;(N))®C (N > 1),
& S, r, 7, ¢, d are as in (8.1.2), A is a finite place of F' = Q(an; m = 1), and O, is
the valuation ring of .

The p-adic zeta elements (8.1.1) (resp. (8.1.2), (8.1.3)) will be defined in 8.4
(resp. 8.9, resp. 8.11).

In this paper, the p-adic zeta elements in (8.1.2), (8.1.3) and zeta elements in §5
and §6 with £ = a(A) will take care of zeta values with bad Euler factors (Euler
factors at primes which divide N). Those with £ € SLy(Z) can not take care of bad
Euler factors, but will take care of delicate integrality.

8.2. We fix notation concerning étale cohomology.

We denote the étale cohomology group HY, just by H9. Furthermore, for a ring R,
we denote the étale cohomology group HY, (Spec(R), ) simply by H?(R, ). In the case
R is an integral domain with field of fractions K, we denote HY(R, j.(21)) simply by
HY(R, %) for a sheaf of abelian groups & on Spec(K )¢, where j : Spec(K) — Spec(R)
is the inclusion morphism.

For a field K with a fixed separable closure K, we identify a sheaf 2 on Spec(K )¢t
with the corresponding Gal(K /K )-set.

Let K be a finite extension of Q, for a prime number £ (resp. K be a finite extension
of Q). Let R = K (resp. R be a ring of the form Og[a~!] for some a € Og ~\ {0}

ASTERISQUE 295



p-ADIC ZETA FUNCTIONS OF MODULAR FORMS 181

such that p is invertible in R). For a finitely generated Z,-module T' endowed with
a continuous action of Gal(K/K) (resp. a continuous action of Gal(K/K) which is
unramified at almost all finite places of K), we denote

HI(R,T) = limHY(R,T/p").

It is known that H?(R,T) is a finitely generated Z,-module, and is zero if ¢ > 2
(resp. if ¢ > 2 and p is odd or if ¢ > 2 and K is totally imaginary). For a finite
dimensional Q,-vector space V endowed with a continuous action of Gal(K/K), we
denote

H(R,V) = H'(R,T) ®z, Q,

where T is a Gal(K/K)-stable Z,-lattice in V. (Such T exists, and the r.hs is
independent of the choice of T.)

If K is a finite extension of Q, for a prime number ¢, HY(K,T) and HI(K,V)
coincide with the continuous Galois cohomology groups H(Gal(K/K),T) and
H(Gal(K/K), V), respectively.

8.3. For M, N > 1such that M+ N > 5, define a smooth Z,-sheaf H, on Y (M, N )¢
as follows. Let A : E — Y (M, N) be the universal elliptic curve. We define

Hp =R'\(Zy).

The Z,-sheaf on Y (M, N)(C) associated to H, coincides with H' ® Z,, and the
étale cohomology group H' (Y (M, N) ® Q, Sym%j’(?‘(},) ®z, A) for A = Z,, Q, or
Z/p"™ (n > 1) is identified with Vi, 4(Y (M, N)) = H} (Y(M, N)(C), Symj *(H!) ® A)
(4.5.1). Thus, for such A, Vi a(Y(M,N)) is endowed with a canonical action of
Gal(Q/Q). This action is unramified at any prime number which does not divide
pM N. This explains the notation on the r.h.s of (8.1.1).

For any curve Y of the form G\Y (N) with N > 3 and G a subgroup of GL2(Z/N),
Vi,q, (Y) for k > 2 (5.4) is endowed with an action of Gal(Q/Q) which is induced
from the action of Gal(Q/Q) on Vi,q, (Y (V).

We have defined Vi z,(Y1(N)) for N > 4 (the case M = 1 of (4.5.1)). In the case
N =1, 2, 3, we define Vi z,(Y1(N)) as follows (in an ad hoc way). Let 1 < N <
3. Take L > 4 such that N | L, and let Vi z,(Y1(IN)) be the image of the trace
map Vi z,(Y1(L)) = Vi, (Y1(N)). Then Vi z,(Y1(N)) is independent of the choice
of L. The action of Gal(Q/Q) on Vi g, (Y1(N)) induces the actions of Gal(Q/Q) on
Vi,z,(Y1(N)). This explains the notations on the r.h.s of (8.1.2).

Finally the notation on the r.h.s of (8.1.3) is as follows. For a finite place A of
F =Q(an; n>1),let

Fy, Oy

be the local field of F' at A, and the valuation ring of Fj, respectively. Let Vo, (f)
be the Ox-submodule of Vi, (f) (6.3) generated by the image of Vi z,(Y1(N)). Then
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Vo, (f) is a free Ox-module of rank 2. The action of Gal(Q/Q) on Vg, (Y1(NV)) induces
an F)-linear action of Gal(Q/Q) on Vg, (f) and an Oy-linear action of Gal(Q/Q) on
VO,\ (f ) .

8.4. We define the p-adic zeta elements (8.1.1).
By 2.3, we have an element

(e.aZMpn,Npn) 51 € ImKo(Y (Mp™, Np™)).
n

where the inverse limit is taken with respect to the norm map. For r, ' € Z such
that 1 < 7' < k — 1, we define below a canonical homomorphism

Char,w (k, 7, ') : lim Ko (Y (Mp™, Np™)) — HY(Z[1/p], Vi,z, (Y (M, N))(k —1)).

We define

eaZpppn g (k7 7') = Chag v (b, 7,7') ((c.a 21pm Wpn D s)-
The definition of Chas,n(k,7,7') is as follows.
Let E be the universal elliptic curve over Y (M, N), and let T, E be the p-adic Tate
module of E regarded as a p-adic smooth sheaf on Y (M, N)s. Poincaré duality gives
a canonical isomorphism

(8.4.1) T,E = Hy(1)
where (1) means the Tate twist, and this induces
(8.4.2) Symg_?(Hp) = (Symy *(T,E))(2 — k).

Define Chas,n(k,7,7’) to be the composite map
(8.4.3)
lim K (Y (Mp", Np™)) — lim H?(Y (Mp™, Np™), (Z/p")(2))
n n

— lm B (Y (Mp", Np™), (Sym* (T, E/p™))(2 - 1))

n

— lim H*(Y (Mp™, Np™), (Symg_ *(Hp)/p™)(k — 1))

— lim H*(Y (M, N), (Symy_ (H,)/p™) (k — 1))

n

— im HY(Q, Vi z/pm (Y (M, N))(k — 1))

where:

The first arrow is the Chern character map. (For a scheme X on which p is invertible
and for f, g € O(X)™, the Chern character map K2(X) — H2(X, (Z/p™)(2)) sends
{f, g} to h(f) U h(g), where h is the connecting map O(X)™ — H(X, (Z/p")(1)) of
the Kummer sequence

0 — (Z/p")(1) — 0} L= 05 — 0,
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and U is the cup product.) The second arrow is the product with
eieif’lrf_l) ® eé@ji}c—r’_l) ® (Cpn)®(—r)

where (e1,n,€2,) is the basis of T,E/p™ over Y(Mp™, Np™). The third arrow is
by (8.4.2). The fourth arrow is the trace map. The last arrow is defined by the
spectral sequence

E3® = HY(QH*(Y(M,N)®Q, )) = H***(Y(M,N), )

and by the fact H*(Y (M, N)®Q, ) = 0 for b > 2. (The last fact is because Y (M, N)®
Q is an affine curve over an algebraically closed field.) By the following 8.5, 8.6, the
image of Chys v (k,r,7’) is contained in the image of the canonical injection

HI(Z[l/p], Vk,Zp (Y(Mv N))(k - T))
= lim HY(Z[1/p], Vi, z/pn (Y (M, N))(k — 1))

— Im HY(Q, Viz/pn (Y (M, N))(k — 1))

Lemma 8.5 ([Pe0, 2.2.4], [Rud, B3.3]). — Let K be a finite extension of Q, let Ok be
the ring of integers of K, and let T be a finite Z, module endowed with a continuous
action of Gal(K/K). Then:

(1) For any set S of finite places of K containing all places lying over p, the
canonical map H'(Og[S™1],T) — HY(K,T) is injective.
(2) The image of lim H'(K (), T) — HY(K,T) is contained in the image of

Proof. — We have an exact sequence
®.H, (Ok([S™1),T) — H'(Ok[S™'],T) — HY(K,T) — @, H2(Ok([S7'],T)

where v ranges over all maximal ideals of Ox[S~!] and H! means the cohomology
with support in v. For each v, we have an exact sequence

H°(0,,T) = H°(K,,T) — H(Ok[S™"],T)
— H'(0,,T) — HY(K,,T) — H2(0k[S™Y],T)

where K, is the local field of K at v and O, is the valuation ring of K,. It is
sufficient to prove that for each maximal ideal v of Ok [1/p], H'(0,,T) — H(K,,T)
is injective and that the image of lim HY(K,(¢m), T) — HY(K,,T) is contained in
the image of H'(O,,T). We have

H'(0,,T) = H'(Gal(K}"/K,), HO(K2, T))
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where KF denotes the maximal unramified extension of K,, and hence H'(O,,,T) —
H!(K,,T) is injective. The cokernel of H!(O,,T) — H!(K,,T) is isomorphic to

H°(Gal(K*/K,), H (KX, T))

< (H(Gal(K¥/K,), HOKS, T¥(1))) Y () = Hom( ,Qy/Z,))

= {H'(F,, HO(KY", TV (1)) }"
where F,, denotes the residue field of v, and the composite map

lim H' (K (Gpr), T) — H'(K,, T) — {H'(F,, H(K}", TV (1))) }*
n
factors through {lim H'(Fy(¢m), HO(KYY, T (1)) ))}’. Hence we are reduced to
showing lim H'(F,(Gpn), HO(K}",TV(1))) = 0 and hence to the fact that the
p-cohomological dimension of the field U, Fu({pn) is zero. a
8.6. The projections Y (Mp", Np™) — Y (M, N) factor canonically as
Y(Mpn7 an) — Y(Ma N) &® Q(Cp") — Y(M7 N)a

and hence the image of Chps n(k,r,7’) is contained in the image of

lim B! (Q, H! (Y (M, N) ® Q(¢pr) ® @, Syms; 2. (H)/o™)))

5§

3

L

= lﬂl H! (Q(Cp" )7 Vk,Z/p"‘ (Y(M7 N))) .

m,n
By this and by 8.5, we obtain the last comment in 8.4.
The following 8.7 is deduced from the norm properties 2.3, 2.4 of zeta elements
in Ko by Lemma 8.8 below.

Proposition 8.7. — Let the notation be as in (8.1.1).
(1) Let M’, N’ > 1 and assume
M|M', N|N', (¢, M')=(d,N')=1,
prime(Mp) = prime(M’p), prime(Np) = prime(N'p).
Then the norm map

H' (Z(1/p], iz, (Y (M, N)(k = 7)) — H' (Z[1/p], Vi, 2, (Y (M, N))(k = 1))

sends c,dz?,?,N,(k,r, ') t0 ¢,d zl(\','}?N(k,r, ).
(2) Let £ be a prime number which is prime to Mpcd. Then the norm map

B (Z[1/p), Vi, 2,(Y (M€, NO) (k = 1)) —> H'(Z[1/p], Va2, (¥ (M, N))(k — 7))

sends c‘dzﬁg)e’Ne(k,r, r') to (1=T"(£) (1 0) -7 +( 1 172)*.6’“1‘27) c dzM ) (k1)
in the case £ does not divide N, and to (1 —T'(¢)(/¢9)" - ¢7) - c,dzMyN(k',r,r) in
the case £ divides N.
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Lemma 8.8. — The homomorphism Chr v (k,r,7’) in 8.4 has the following properties.
(1) T'(n) o Chpg n(k,7,7") = "' ~1 Chps n (K, 7, 7) 0 T'(n) for any integer n which
is prime to Mp.
(2) (29)" o Char,n(k,r, ') = a” ~10F=""~1(ab) ™" Char,w(k,7,7") 0 (39)" for any
integers a, b such that (a, Mp) =1 and (b, Np) = 1.

This lemma is proved easily.
8.9. We define p-adic zeta elements (8.1.2).
Assume first £ = a(A). Take M > 1, L > 4 such that
mA|M, N|L, M|L, prime(M)=.S, prime(L)= S U prime(N).
Let
tma(a) : Vi@, (Y (M, L)) — Vi, (Y1(N) ® Q(¢m))
be the homomorphism defined in the same way as the map t,, q(a) : Mk (X (M, L)) —

Mi(Yi(N) ® Q(¢m)) in 5.2. Let Viz,(Y1(N) ® Q((m)) be the Z,-lattice of
Vi@, (Y1(N) ® Q(¢m)) defined to be the image of the canonical injection

Z[Gal(Q(¢m)/Q)] ® Vi,z, (Y1(N)) — Vi,q, (Y1(N) ® Q(¢m))-
Then t,, 4(4) induces a homomorphism
Vi,z, Y (M, L)) — Viz,(Y1(N) ® Q(¢m))-

Hence we have a homomorphism

tm,a(a) : HY(Z[1/p], Viz, (Y (M, L)) — H'(Z[1/p], Viz, ¥1(N) ® Q(¢m)))
= H'(2[1/p, (m], Viz, (Y1(N))).
We define
c dzl Nm(k 7,1',€,8) = tm,aa) (e, dzM ) (k,r, 7).

By Prop. 8.7 (1), zgf’])V’M(k, r,r',&,S) is independent of the choices of M, L.
Next assume £ € SLa(Z). Take L > 3 such that

m| L, N|L, prime(L)=
The trace map Vi, (Y (L)) — Vi,q, (Y1(N) ® Q(¢r)) induces a homomorphism
Vie,z, (Y (L)) — Vi,z,(Y1(N) ® Q(¢m))-
Hence we have a homomorphism
H'(Z[1/p], Ve, (Y (L)) — H'(Z[1/p], Viz, Vi (N) ® Q(Gm)))
= H' (Z[1/p, Cm] Viz, (Y1(N))).

We define c,dsz’j)v’m(k,r, /£, 58) to be the image of §*(cdz 7(k,r,7")) under this
homomorphism. By prop. 8.7 (1), this element is independent of the choice of L.
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Proposition 8.10. — Let the notation be as in (8.1.2). Let m' > 1, m | m/, and let S’
be a finite set of prime numbers such that SUprime(m’) C S’ and prime(cd)NS’ = &.
Then the norm map

HY(Z[¢ms,1/p), Vaz, Yi(N))) — HY(Z[¢m, 1/p], Viz, (Y1(N)))

sends c,d Zif,])\]’m/ (k, T, ,’,,I, 57 Sl) to

H 1-=T'(o; - "+ A ()0, ? 'ék_l_%)) . C:dz§z,,l)\7,m(k’ r,r & S)
£eS'—-S
where A'(£) denotes (§ 1(/’[)* in the case ¢ does not divide N and A’(€) = 0 in the
case £ divides N.

This follows from 8.7, in the same way as 5.3 followed from 4.3, 4.4.

8.11. We define p-adic zeta elements c,dz,(,’f)(f, r,7’,€,S) in (8.1.3) to be the image

of the p-adic zeta element . 4 z%’,’])\,,m(k, r, €, S).

Proposition 8.12. — Let the notation be as in (8.1.3). Let m’ > 1, m | m’, let S’ be
a finite set of prime numbers such that S U prime(m’) C S’ and prime(cd) N S’ = 2.
Then the norm map

Hl (Z [Cm’a 1/17] ) VOA (f)) — Hl (Z [Cmv l/p] ) VOA (f))
sends C,dz,(f:,)(f, r, 7', &,8") to
H (1 - Egae_l and + E(E)O’e_z . ek—»l—21‘)) ° c,dzy(yg)(fv T Tlv g’ S)’
Les’'—8
This follows from 8.10.

9. Relation with Euler systems in the spaces of modular forms

In this section, we state that the p-adic zeta elements in § 8 are related to the zeta
modular forms in §4, via the p-adic Hodge theory (Thm. 9.5, 9.6, 9.7). The proof of
Thm. 9.5 is given in §10, §11. Thm. 9.6 and Thm. 9.7 follow from Thm. 9.5 easily.

First in 9.1-9.3, we review necessary things from p-adic Hodge theory. See Falt-
ings [Fal] [Fa2] [Fa3], Fontaine [Fol] [Fo2| [Fo3], Fontaine-Messing [FM], Tsuji
[TTY,...

9.1. Let K be a complete discrete valuation field of characteristic 0 with perfect
residue field k of characteristic p. Let Bqr be the “field of p-adic periods” associated
to K, defined by Fontaine ([Fo2], [Fo3]). Bgr is a complete discrete valuation field
whose valuation ring contains the algebraic closure K of K. The action of Gal(K/K)
on K is extended to a canonical action of Gal(?/ K) on Bgg, and

H°(K,B4r) = K.

(HO(K, ) = HO(Gal(K/K), ) = the Gal(K/K)-fixed part.)

ASTERISQUE 295



p-ADIC ZETA FUNCTIONS OF MODULAR FORMS 187

9.2. We review de Rham representations.
For a finite dimensional Qp-vector space V endowed with a continuous action of
Gal(K/K), define a K-vector space Dar (V) by

D4r(V) =HY(K,Bar ® V).

(We denote Dgr(V) by Dgr(K, V) in the case we need to make K explicit.) Then
D4r(V) has a descending filtration (Djg(V)),c, defined by

Dir(V) =HK,Bijr®V)
where Bfm denotes the subset of Bgr consisting of elements whose normalized valu-
ation is > 1.

In general, dimg (Dgr(V)) < dimg, (V'), and we say V is a de Rham representation
of Gal(K /K ) when the equality holds here. De Rham representations are stable under
taking direct sum, tensor products, duals, and under taking subquotients. If L is a
finite extension of K in K, V is de Rham if and only if it is de Rham as a representation
of Gal(K /L), and we have L ® x Dar(K,V) — Dar(L,V) if V is de Rham.

The following (9.2.1) and (9.2.2) provide important examples of de Rham repre-
sentations ([Fa2], [Fa3|, [TT]).

(9.2.1) Let X be a proper smooth scheme over K, let m € Z, and let
V= Hm(X 02074 7, Qp)
Then V is a de Rham representation of Gal(K/K), and Dgr(V) is identified with

the de Rham cohomology H7% (X/K). The filtration on Dgr(V') coincides with the
Hodge filtration on HJy (X/K).

(9.2.2) LetY be a curve of the form G\Y (N) with N > 3 and with a subgroup G of
GL2(Z/N). Let k > 2, and let

V =Vig,(Y) (83).
Then V is a de Rham representation of Gal(@p /Q,), and
Dig(V) = Dgr(V) for i <0, Dig(V)=0 for i>k,
Dip(V) = Mi(X)®Q, for 1<i<k—1,

where X is a smooth compactification of Y. (See §11.)

9.3. For a de Rham representation V', we have a canonical homomorphism
exp* : H (K, V) — D3g(V)
called the dual exponential map ([BK2|, [KK2]). This is defined as the composite
HY(K,V) — HY(K,Bjgr ® V) < H°(K,BIr ® V) = DIr (V)
where the middle isomorphism is the product with the element

log(Xeyclo) € HY (K, Zp) = Homcont (Gal(K /K), Z,)
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defined as follows. Here H'(K, ) are the continuous Galois cohomology groups
H'(Gal(K/K), ). As a homomorphism Gal(K/K) — Zj,,10g(Xcyclo) is the composite
of the cyclotomic character xcyclo : Gal(K/K) — ZX and the logarithm Zy — Zyp.

9.4. Let Y and X DY be asin (9.2.2). For k > 2 and 1 <4 < k — 1, consider the
dual exponential maps
(9.4.1) exp® : HA (@, Vi, (Y)(0)) — Mi(X) ® Q.
Here to define (9.4.1), we used the fact
Dgr(Ve,, (Y)(9) = Dgr(Ve,e, (Y)) = Mk(X) ® Qp
(Tate twist shifts the filtration of Dyr).

Let f be a normalized newform in My (X;(NN)) ® C of weight k and of level N, and
let F, A\, F) be as in 8.3. Then by (9.2.2), Vg, (f) is a de Rham representation of

Gal(@p/@p),
Dir(Vr, (f)) = Dar(Vr, (f)) for i <0, Dir(Vr,(f)) =0 for i >k,
and as a quotient of Dig (Vk,q, (Y1(N))) = Mi(X1(N))®Q, (1 < i < k—1), we have
Dig(Ve (f)) = S(f) ®F F\ for 1<i<k—1.
Here S(f) is as in 6.3. We have the dual exponential map
exp} : HY(Q(Cm) ® Qp, VR, (f)(i)) — S(f) ®F Fr ® Q(Gm)
for1<i<k—1.

Theorem 9.5. — Let the notation be as in (8.1.1). Assume 1 <r < k—1, at least one
of r, " is k— 1, and prime(M) C prime(N). Assume further that M > 2 in the case
(r,r") = (k — 2,k —1). Then the dual exponential map (9.4.1) with Y = Y (M, N)
and i = k — r sends the image of C,dzgg?N(k, r,7') in HY(Qp, Vi,q, (Y (M, N))(k — 1))
to the following element of My(X(M,N)) C Mi(X(M,N)) Q) :

c,azm,N(k,r,7") if p divides M,

(1-T@ )" ) - cazmnlbr,r’) i (0,M)=1 and p| N,
(-T@Cr) p7+ (P 0,) P ) cazmn (ki) if (pN) = 1.
See §10, §11 for the proof of Thm. 9.5.

Theorem 9.6. — Let the notation be as in (8.1.2). Assume 1 < r < k—1 and
at least one of r, v’ is k — 1. Then the dual exponential map (9.4.1) with Y =
Y1(N)®Q(¢m) and i = k—r sends the image ofc,dzgf’l)v,m(k, rr', €, 8) in H (Q(¢m) ®
Qs Vieg, (Y1(N))) to

c,d21,N,m(k, 7,77, €, 8) € Mi(X1(N)) ® Q(¢m) C Mr(X1(N)) ® Q(¢m) ® Qp.

This follows from Thm. 9.5 and Prop. 4.4.
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Theorem 9.7. — Let the notation be as in (8.1.3). Assumel < r < k—1, and at least
one ofr, ™ isk—1. Let F, \, F) be as in 8.3. Then the map

exp} : HY(Q(¢m) ® Qp, VR, (f)(k — 1)) — S(f) ®F Fr ® Q(¢m)
sends the image of c,dz,(,’f)(f, r,r', & S) to
cdzm(fir,r' €,8) € S(f) ® Q(¢m) C S(f) ®F Fx ® Q((m)-
This follows from Thm. 9.6.

10. Generalized explicit reciprocity laws

In this section, we deduce Thm. 9.5 from a generalized explicit reciprocity law
proved in [KK3]. In this proof, we use the compatibility of two dual exponential
maps (10.9.5) and this compatibility is proved in § 11. Generalized explicit reciprocity
laws in [KK3] are related to generalized explicit reciprocity laws of Vostokov ([Vo]).

10.1. In 10.1-10.5, we review the theory of Byr not assuming the residue field is
perfect. The theory of Bggr in this general case was studied in the unpublished work
of Tsuzuki [TN] and is explained in [KK3, §2].

In 10.1-10.5, let K be a complete discrete valuation field of characteristic 0 with
residue field & of characteristic p. We assume [f : ] < oco. In our application, K
will be a p-adic completion of the function field of a modular curve.

We define the ring Bgr over K, and we define an action of Gal(X/K), a filtration,
and a connection on Bggr, as follows.

Let K be the algebraic closure of K. For a subfield K of K, and for n > 1, let

B..(O/Ox) = HO((Spec(Ox/p")/ Spec(Ox /1)) > Oerys)
where O is the discrete valuation ring Ox N K, ( )crys means the crystalline site with
respect to the standard divided power structure on the ideal (p) of Og/p™, and Ocrys
is the structure sheaf of the crystalline site. (The case K = K and the case K = Q,
will be important for us.) Let J,(Ox/Oxk) be the kernel of the canonical surjection
B,(Og/Ok) — Og/p™, and for ¢ > 0, let Jn(OE/OK)[q] be the ¢-th divided power
of J,(Ox/Ok). Define

Boo(0Og/Ok) = lim B, (Og/Ok),
Joo(Og/Ok) = lim J,(Og/Ok),

Joo(Ox/ O )1 = lim J,(Ox/Ox)1,

Bz = lim (Boo(Ox/Ok)/Joo(Ox/Ox) @ Q).
q
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+ . . . . .
Then B 4RE/Q, S 2 discrete valuation ring. Let Bde /Q, be the field of fractions of
+
B AR.K/Q, and define
_ Bt —
Barg/k = Bing/k ©Bl 2,0, BanE/Q,
We denote

Bar = BdR,E/)c'
The inclusion map O /p"™ — B, (Ox/Ok) induce

K— BdR-

In the case R is perfect, BdR,E /Q, AN 4R.K/K and this is the “usual” Bygr which
appeared in §9.

Gal(K/K) acts naturally on Biri/ K-

We define a filtration on Byrx /K 88 follows. Let

(Z/p™)(1) — Jn(Og/Zp)
be the homomorphism a +— log(y?") where a is a p™-th root of 1 and y € B,(Ox/Zy)
is a lifting of the image of o in Ox/p™. (Then y?" is independent of the choice of y,
and belongs to 1 + J,(Ox/Z,) so that log(y?") € J,(Ox/Z,) is defined.) We obtain
a homomorphism
Zp(1) — Jo(Ox/Zp)

by passing to the inverse limit. The image of a generator t of Z,(1) in the discrete
valuation ring B,y & /Qp is a prime element. Hence

Bsrx/k = B [t

dR,K/K
For i > 0, define

(2]
JdR,Tc‘/K

= lim (Joo (Ox/O0K)!" /Joo(Ox/0) ® Q) € By % -
q

We define the filtration on Byg & /K by

i i gl
BdR,IC/K jgot JdR,IC/K'

In the case K = Qy, this filtration coincides with the filtration given by the normalized
discrete valuation of BdeC- Q-

We denote B;R,E e simply by Big-

We discuss about the canonical connection on Bggr. Let
Qk = (im Q5 /2/p™) ® Q.
n

We have
dimg (Qk) = log,, ([8 : &P)).
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Let ﬁ;’c be the g-th exterior power of ﬁ,lc over K. Then there exists a unique Byg % /Q,”
linear map

d: Bgr — ﬁ,lc ®x Bar
satisfying the following conditions (i)—(iii).

(i) d(ab) =adb+bda for a,be€ K.
(ii) The restriction of d to K coincides with K — Qy; a — da.

5 -1
(iii) d(J(g"g,-ﬁ/’C) C Ok ®k Jgi%,f]/lc for any ¢ > 1.
Furthermore, for any i € Z, we have an exact sequence
(10.1.1) 0 — BSR,E/QP — B <, Ok ®x B! 4, 02 @k BiR? da,

where d : ﬁ;’c ®x Bar — ﬁ;’cﬂ ®x Bar is defined by d(z®y) = dzr @y + (—1)'z ® dy.

10.2. As in the perfect residue field case, we have the functor Dygr and the notion
“de Rham representation”, defined as follows.
For a finite dimensional Q,-vector space V endowed with a continuous action of
Gal(K/K), let
D4r(V) = H°(Gal(K/K), Bar ®q, V).
Then Dyg (V) is a K-vector space endowed with a filtration (DQR(V)) sz defined by
Dir(V) = H*(Gal(K/K), Bir ®q, V),
and with a connection
V : Dgr(V) — Qk ®x Dar(V)
induced by d : Bgr — ﬁ}c ®x Bar and by the identity map of V.
We have always
dimk (Dgr(V)) < dimg, (V).

We say V is a de Rham representation of Gal(KX/K) if the equality holds here. If V/
is a de Rham representation, we have an isomorphism

Bar ®k Dar(V) — Bar ®q, V

which sends >, ., Big ®x Dr(V) onto Bl ®q, V for each n € Z. De Rham
representations are stable under direct sums, tensor products, Tate twists, duals, and
under taking subquotients. For de Rham representations, the functor Dyr commutes
with the operations direct sum, tensor product, dual and Tate twists. If £ is a
finite extension of I, V is de Rham if and only if it is de Rham as a representation
of Gal(£/L), and we have £ ®x Dgr(V) — Dar(L,V) if V is de Rham where
Dgr(L,V) denotes Dyr of V as a representation of Gal(L/L).
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10.3. Let G be a p-divisible group over Ok, let T,G be the Tate module of G, and
let V,G = Q® T,G. Then V,G is a de Rham representation of Gal(X/K), and there
exists a canonical isomorphism

Dar(V,G) = K ®ox D(G)
preserving the filtrations and the connections, where D(QG) is the covariant Dieudonné
module of G (the Ox-dual of the contravariant Dieudonné module of G in [BBM]).
(As in [BBM], D(G) has a canonical filtration such that
D™Y(G) = D(G), D'(G)=0,
D°(G) = coLie(G*), D(G)/D°(G) = Lie(G),

where G* denotes the dual p-divisible group of G.)

10.4. For a de Rham representation V of Gal(K/K) and for any i, j € Z such that
it < j, we have (the meaning of the notation [ ] below is explained soon later):

(10.4.1) HY(K, [(Bir/Blr) ®q, V]) =0 for ¢ >2,

(10.4.2) [Djr(V)/Dip(V)] = HY(K, [(Bir/BlR) ®a, V1)
5 HY(K, [(Bin/Blr) ®g, V)
where the last isomorphism is given by the product with log(xcyclo) € H* (K, Zp).

The meanings of | | are as follows. Let (Ab,) be the category of abelian groups A
satisfying the following condition (i).

(i) A is killed by some power of p.

Let (Galk,p) be the category of Gal(K/K)-modules A satisfying (i) and the follow-
ing condition (ii).

(i) For any x € A, the stabilizer of z in Gal(KX/K) is open in Gal(K/K).

Then the functor

HY(K, ): (Galg,p,) — (Aby)
induces
HI(K, ) : ind(pro(Galg, p)) — ind(pro(Abp))
where pro( ) means the category of pro-objects and ind( ) means the category of
ind-objects. We define an object [D4r(V) /Dle(V)] of ind(pro(Ab,)) and an object
(Bir/Blr) ®q, V] of ind(pro(Galk p)), as follows. The equality (10.4.1) and the
isomorphisms in (10.4.2) are considered in the category ind(pro(Ab,)).

For a finitely generated Ox-module M, we denote by [M] the object “ lln’r’lM /p™
of pro(Ab,). For a finite dimensional K-vector space N, we denote by [N] the object
“lim” [M] of ind(pro(Ab,)) where M ranges over all finitely generated Ox-submodules
of N. This defines the object [D4r(V)/D)r (V)] of ind(pro(Ab,)).
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On the other hand, let M be a finitely generated B, (Ox/Zp)-module endowed
with an action of Gal(X/K), satisfying the following conditions (a) (b) (c).

(a) M is killed by Jo(Og/Zp)!9 for some ¢ > 0. (Then we have M —5
lim M/p™.)
«—n —_—

(b) o(az) = o(a)o(x) for any o € Gal(K/K), a € B(Ox/Zy), x € M.

(c) The action of Gal(X/K) on M is continuous with respect to the p-adic topology
on M.

Then we denote by [M] the object “lim”M/p™ of pro(Galk,p). Next let N be

a B:R % /g, module endowed with an action of Gal(K/K) satisfying the following
P
condition (x).

(%) N is the union of all finitely generated Boo(Ox/Zp)-submodules M of N which
are stable under the action of Gal(K/K) and which satisfy the above conditions (a)
(b) (c).

Then we denote by [N] the object “lim”[M] of ind(pro(Galk,p))-

For example, for a finite dimensional Q,-vector space V endowed with a continuous
action of Gal(K/K), and for i < 7, (Big/Br) ®q, V satisfies the condition (x). Hence
the object [(Big/Bir) ®q, V] of ind(pro(Galg p)) is defined.

10.5. Let e > 0 be the integer defined by [R : R”] = p°®. Then, for a de Rham
representation V of Gal(X/K), we define a homomorphism

exp™ : HOHL (K, [V]) —> Coker ([0 @k Din(V)] = [Q% @k D3(V)])

in ind(pro(Ab,)), called the dual exponential map. Here, [V] denotes the object of
ind(pro(Galk,p)) defined to be “lim” (7] in which T" ranges over all Gal(K/K)-stable
Zy-lattices in V and [T] = = “lim” T/ p™. Take a sufficiently large ¢ > 0 and consider

the exact sequence

0— [Bng/Qp/Bga,;c/@p XQ, V] — [BgR/BgR XQ, V] —

[k ©x Bal/ B’ ®q, V1 -1 (% @x By/ Bl 9o, V] -
(10.1.1). By (10.4.1) and (10.4.2), this exact sequence induces
0
H (K, [Byy %/0,/ Bir,k/0, B V)
= Coker (H! (K, [0 @« BiR*/Blft' ™ ®q, V))
— B (K, [0 ©x Byt/Bl' ©q, V1))

= Coker ([ ! @k Dir¢(V))] AN TR D (V).
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We define exp* to be the composite
HHY(K, [V]) — H*Y(K, [Bir ),/ Bir x /0, ®0 V])

~ oe— —e v ae —e
5 Coker (2% @k DiR(V)] — [Q% ®c D3 (V).

10.6. Now we apply the above general theory to the following field K related to a
modular curve.

Fix M, N > 1 such that M + N > 5, (M N,p) = 1. Take a prime ideal p of Z[{n]
lying over p, and let Z[(n], be the p-adic completion of Z[(n]. Let

K = (im(Z[¢w]plld*™]la™"1) /2™ [1/p))-

This field K is a complete discrete valuation field of mixed characteristics with valu-
ation ring

Ok = lim (Z[¢n]p(lg"™][g~]/P™)
and with residue field
£ =TFp(¢w)(@™)
which satisfies [R : 8P] = 1.
Fix an algebraic closure K of K and fix an embedding

U ZGmllle/™)] — K

m,n>1

(¢m = exp(2mi/m), ¢*/™ = exp(2miT/n) as before) over Z[(n][[¢"/M]].

10.7. Let € be the elliptic curve over Ox which is obtained from the Tate curve over
Z[[q))lg™!] of g-invariant ¢ ([DR, VIL1]) via the embedding Z[[g]][¢”!] — Ox. Let
E=€Q0, K.

Define a p-divisible group G over Ox by

G =JKer(p" : € — €).

By the theory of Tate curves, the torsion part of E(K) is identified with the torsion
part of (Og)* /¢% as a Gal(K/K)-module, and we have an exact sequence of p-divisible
groups over Ok

0 — (Qp/Zp)(1) — G — Qp/Zp — 0
whose K-valued points coincide with

0 — (Qp/Zy)(1) — L>J1 o ((08)/4%) 5 Qp/Zp — 0
where v sends ¢'/?" mod ¢% to 1/p™. We have canonical isomorphisms
(10.7.1) coLie(F) = K ®o, coLie(G).
(10.7.2) coLie(G) = coLie((Q,/Z,)(1)) = O,
where the first isomorphism in (10.7.2) is induced from the embedding (Qp/Z,)(1) — G.
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10.8. We introduce finite extensions K,, of K and schemes Y,, over K (m > 0).
For m > 0, let

Km = K(g"7", (om) = (Hm(Z[¢npm ]y, [[a/P" la 1) /p™) [1/p]

where p, is the unique prime ideal of Z[{npm] lying over p. We have a morphism
(10.8.1) Spec(Kp,) — Y (Mp™,Np™)

corresponding to the triple (E ®x Km,q*/™P" mod ¢,{npm) over Kp,. For k € Z, this
morphism induces

(10.8.2) M (X (Mp™, Np™)) — K., ®x coLie(E)®* = K,

where the last identification is by (10.7.1), (10.7.2). This map (10.8.2) coincides with
the g-expansion ([DR]). That is, the g-expansion

My(X (Mp™, Np™)) — Cllg"™*"]]
(4.9) has the image in Z[¢np=]([¢*/™P"]] ® Q, and the induced map
My (X (Mp™,Np™)) — Km

coincides with (10.8.2).
Let

Y =Y (Mp™, Np™) ®y(um,n) Spec(K) for m >0

where Spec(K) — Y (M, N) is the case m = 0 of (10.8.1). Then Y,, is a finite étale
Galois covering of Spec(K) with Galois group GL2(Z/p™). The morphism (10.8.1)
induces an open immersion

im : Spec(Km) — Yo,
and the image of the open immersion
(&2) 0tim : Spec(Kpm) — Yy for (&2) e GLo(Z/p™)
depends only on the pair (u,w). If we denote the image by U (u,w),

Y = H U(v,w)

(u,w)EA,
where

Am = {(u,w) € (Z/p™)*; uw and w generate Z/p™}.
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10.9. We will consider the de Rham representations
V = HII, ®Zp Qp

and Sym*~?V of Gal(K/K) for k > 2, where H, here denotes the pull back of the
H, on Y (M, N) via Spec(K) — Y(M, N). (So, H, = T,(E)(—1) = Tp(G)(—1).) For
1 < i<k —1, we have a homomorphism
(10.9.1) exp* : H?(Yim, [(Sym* 2 V) (4)]) — [O(Y)]-
induced from the dual exponential map for Sym*~2(V)(i) in 10.5 and from the iso-
morphism
(10.9.2) Coker([O(Yr) ®k Dir(Sym*~2V)]

— [k ®x O(Yn) ® Dig' (Sym* ? V) = [O(Yom)]
which is obtained as follows.

First we define a canonical element g of Boo(Ox/Zp)* as follows. For n > 1, let
gn =y € Bn(Og/Zy)* where y € Bn(Ox/Z,) is any lifting of the image of ¢!/?"
in Ox/p™. Then ¢, is independent of the choice of y. Let

Qoo = (qn)n>l € BOO(O-,C—/ZP)X
Next we define a canonical element
¢ € Dgr(V)
as follows. Let &1, {2 be the basis of T;,G defined by

& = (¢""" mod q)n, & = (Gpn)n-
By writing the group law of T,G additively, let

E=t®& ® (Gr)R Y +1og(a/g00) ® &2 ® (G )T
€ H(K, J (Og/Oxk) ®z TG ® Zy(—1))

where t is the element of Jo(O%/Oz,) C Joo(Ox/Ox) corresponding to the basis
(Cpn )n Of Zp(l)/SIO.l). Here, since the elements ¢ and g of Boo(Ox/Ox)* have the
same image in O, we can take log(¢/¢ew) € Joo(Ox/Ox).

Finally, for k > 2, let

€52 € DE=2(Sym*—2 V)

be the (k — 2)-fold product of £. We define
(10.9.3) O(Ym) — Ok &k O(Ym) @k Digl(SymF 2 V)

to be the K,,-linear map which sends 1 to dlog(g) ® £€¥~2. Then it can be shown
(IKK3, §4.2]) that (10.9.3) induces an isomorphism (10.9.2).
Form>0,k>2,r,7” €Zsuchthat 1 <7 <k—1,let

Chy (k, 7, 7') : im Ko(Yn,) — lim H? (Yo, (Symg % (H,)/p™) (k — 7))

n
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be the composite homomorphism

lim K5(Y,) — lim H?(Yx, (Z/p)(2))

— lim H?(Y,,, (Sym* (T, E)/p"™)(2 — 1))

n

5 lim H?(Ya, (Symy (M) /p")(k — 1))

n

— lim H? (Yon, (Symy *(H,) /p™) (k — 1))

n

where:
The first arrow is the Chern character map. The second arrow is the product with

- k—r'—1 -
e?g 1)®e§§l T )®(Cpn)®( r),
where €; ,,, €2, is the canonical basis of (T,E)/p™ over Y, (that is, the pull back
of the canonical basis of T,E/p™ over Y (p")), and the last arrow is the trace map
associated to Y, — Yp,.

As is easily seen, the following diagram is commutative

(10.9.4)
lim K»(Y (Mp", Np™)) —— lim H2(Y(Mp™, Np™), (Symyg, *(H)/p™)(k 1))

| |

lim K (Y;,) — lim H? (Y, (Symg, *(H})/p™)(k — 7))

Here the upper horizontal arrow is the composite of the first four arrows in the defini-
tion of Charpm, npm (K, 7,7') in 8.4, and the lower horizontal arrow is Chy, (k, 7, 7'). Fur-
thermore, as we will see in § 11, the following diagram is commutative if 1 < v’ < k—1.
(10.9.5)

lim H2(Y(Mp™, Np™), (Symy, *(Hp)/p™)(k — r)) — My(X (Mp™, Np™)) ® Q,

l |

lim H2(Yo, (Symg, (H})/p"™)(k — 1)) 5 O(Yoy)

Here the upper horizontal arrow is induced from the dual exponential map
exp” : H'(Qp, Vi,q, (Y (Mp™, Np™))(k — 1)) — Mi(X (Mp™, Np™)) ® Qp

in (9.4.1), and the lower horizontal arrow is the dual exponential map (10.9.1).
As is explained in 10.11 below, Thm. 9.5 is reduced to

Proposition 10.10. — Let the notation be as in (8.1.1). Assume 1 <r < k—1, at least
one of r, " isk—1, and (MN,p) =1. Then

exp* ° Chm(k, Ty T/)((C,dsz",Np" )n)l) = c,dszm,Npm(k’ra 7‘/)

form > 1.
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10.11. We show that Thm. 9.5 follows from Prop. 10.10 (assuming the commutativ-
ity of the diagram (10.9.5) which will be shown in §11). In this 10.11, we do not assume
(MN,p) =1. By 4.3, 4.4 and 8.7, we may replace (M, N) by (M’, N') for any M’,
N’ > 1 such that M | M’, N | N’ prime(M’) = prime(Mp), prime(N’) = prime(Np).
Hence we may assume the following: M = Myp™, N = Nyp™ for some My, Ny,
m > 1 such that (MyNp,p) = 1 and My + Ny > 5. Hence by taking My and Ny as
M and N in Prop. 10.10, Thm. 9.5 is reduced to Prop. 10.10 by the commutativity
of the diagrams (10.9.4) and (10.9.5) and by the injectivity of

Mi(X(Mp™, Np™) ® @, — [ O(¥in)®
p
where p ranges over all prime ideals of Z[(x] lying over p and O(Y;,)®) denotes O(Y;,,)
defined by using p as in 10.6-10.8.

In the rest of this section, we prove Prop. 10.10 by using the following result which
is a special case of the generalized explicit reciprocity law [KK3, Thm. 4.3.1].

Proposition 10.12. — Let O(G) =lim O(pn G). Let 61,n and 02, (n > 1) be elements
of O(G)*, and assume

Np(O1,n41) =01n, Np(O2,n41) =02, forall n>1

where Ny, is the norm map O(G)* — O(G)* associated to the pull back homomor-
phism O(G) — O(G) by the multiplication by p on G. Let

Un = {01,n(€1,n),02,n(e2.n)} € Ko (Yy) for n>1
where (e1,n,€2,n) is the canonical basis of pn G over Y,. Then

(Un)nz1 € @K2(Yn)-

Furthermore, for k 22,1 < j< k-1, m > 1, the homomorphism

exp* o Chm(k,k —1,7) : limK(Yn) — O(Ym)
sends (Un)n>1 to
—km
g (57 tosOrm) e1.m) - ((5) 108(B2.m)) (e2m)
where w is the canonical Ok -basis of coLie(G) (=2 coLie((Qp/Zp)(1))).

Here for f € O(G)* and i > (d)ilog(f ) means ( ) (df/fw ) with (%)1 Tt
(i — 1)-fold iteration of d. O(G) — O(G), and ((£)'log(f))(er,m) € O(Yr) means
the value of (w) log(f) at €h,m for h =1, 2.
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10.13. In this 10.13, we prove Prop. 10.10 in the case r = k — 1. In 10.14-10.17, we
will prove Prop. 10.10 in the case 7’ = k — 1. Assume r = k — 1. In 10.12, take

01;,,,, Bz,n (S O(G)X
as follows. Let a,, (resp. B,) be the unique M (resp. N)-torsion point of E(K) such
that p"a,, (resp. p"B,) is equal to ¢'/™ mod g% (resp. {y mod ¢%). Let 0, ,, (resp. 02,,)
be the unique element of O(G)* whose image under the pull back O(G) — O(G)
by the multiplication by M (resp. N) : G =~ G coincides with the pull back of .fe
(resp. 40¢) by the addition € — €; z +— z + oy, (resp. z + §,). Then

Np(ol,n+1) = ol,n, Np(02,n+1) = 02,11 forall n>1
by the characterizing properties of .0¢ and 40¢ in 1.3 (1). Furthermore,
01,n(e1,n) = c91/Mpn 0, O2,n(€2,n) = d90,1/Npn -

Hence for m > 1, Prop. 10.12 shows that the image of (c,q2zmpr,Npn)n>1 under
exp* o Ch,, (k,k — 1, j) coincides with

p——km d k—j d J ®k
—_(k o)1 : ((;) 10g(017m)) (1,m) - ((;) Ing?,m))(&,Tn) Qw
—km
p j— (k—j —j j
~(k—2) M kcEl/MJzz"',o N JdE((){l)/Npm

= ¢,dZMp™,Np™ (k,k—1,7).

10.14. We prove Prop. 10.10 in the case ' = k — 1. We reduce 10.10 for the triple
(k,r,7") = (k,7,k — 1) to 10.10 for the triple (r + 1,7,7).

Let (&;,&2) be the basis of T,G as in 10.9. Then there exists a unique Gal(K/K)-
homomorphism

(10.14.1) Sym*~*(T,G) — Sym™ Y(T,G) € Q ® Sym" ™ }(T,G)

1
(k—2)l
which sends ¢¥72 to ¢77!. This homomorphism is described as follows. Let
f(X,Y) be a homogeneous polynomial over Z, of degree k — 2, and let g(X,Y) =
(%)k_r—lf(X, Y). Then we define the image of f(£1,&2) under (10.14.1) to be
((r =11/ (k= 2)1) - 9(&1,&2)-

Since

Sym*~?(M,)(k — r) = {Sym"*(T,G)}(2 - )
and

Sym"™!(Mp)(1) = {Sym" " H(T,G)}(2 — )
as smooth Z,-sheaves over Spec(K), the homomorphism (10.14.1) induces a homo-
morphism

n: Symk'2(’H;)(k —-r) — UCTIW -Symr’l(H},)(l) over Spec(K).
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We have a commutative diagram
lim H2(Y,,, Sym* " 2(HL)(k —r)/p" __)xp* oy,

(10.14.2) nl
1

oy S W) /5m) 22 o)

lim  H? (Yo, (
Let O(Y,)™ be the subring of O(Y;,) consisting of all elements whose restrictions
to each point y of Y;,, belong to the valuation ring of the field O(y). Since

exp” s lim B2 (Yim, Sym™~ (HL)(1)/p") — O(Yim)

comes from the morphism
H? (Yo, [Sym”™ ™ () (1)]) — [O(Yn)]

in ind(pro(Ab,)), where [Sym”~'(H})(1)] is the object “ lim” Sym" ™' (H2)(1)/p"™ of
pro(Galk p), the image of lim H?(Yr, ((1/(k —2)!) - Sym” "' (H})(1))/p") in O(Y,)
under exp* is contained in C - O(Y,, )™ for some non-zero integer C.

For n > 0 and for (u,w) € A, (10.8), the restriction of n to U(u,w) C Y, sends
e?&k_z) to uk_r_le?g_l). Hence for n > m, the projection of n o Chy,(k,r,k — 1)
to H2(Yp, ((1/(k — 2)!) - Sym" ' (H})(1))/p") is induced from the composition of
Chp(r + 1,7, 7) with

H? (Yo, (Sym” (HL/p™) (1))~ B2 (¥, (Sym™ (+L/p™)) (1))

t - n
s B (Yo, (Sym™™ (H/p™) (1)
where (x) multiplies each U(u,w)-component by u*~"~!. Hence by (10.14.2), for any

n > m, exp* o Chy,(k, 7,k — 1) coincides modulo p"C - O(Y,, )™ with the composite
of exp* o Ch,(r + 1,r,r) with

(*)

(10.14.3) O(Yy) O(Y,) X2, o(v,,)

for any n > m, where (*) multiplies each U(u,w)-component by #*~"~! with % a
lifting of u to Z. Hence for the proof of 10.10 for the triple (k,r,r') = (k,r,k — 1),
since we have proved 10.10 for the triple (r + 1,7,7) in 10.13, it is sufficient to show

Lemma 10.15. — There exists a non-zero integer C such that the image of
c,dZMpn,an (7' + 1, r, 7')

under the map (10.14.3) is congruent to cazmpm npm(k,7,k — 1) modulo pnC~1 .
O(Ym)™* for any n > m.
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10.16. For (% 2) € GL2(Z/p™),

o (%2)" (the image of ¢,azapn,npn (r + 1,7,7) under (10.14.3))
=D @) i o (4 0) (cazmpn vpn (7 +1,7,7))

where (Z)’, :ﬁ) ranges over all elements of GL2(Z/p™) whose images in GL2(Z/p™)
coincide with (,‘f, g). Hence for the proof of Lemma 10.15, it is sufficient to show
that there exists a non-zero integer C' having the following property: For any (}j, Y ) €
GL2(Z/p™) and for any n > m,
(10.16.1) 4%, 0 (& ;)* dZMpm, Npm (k7 ke — 1)

=Y @) e (WY ) (e.azapn,Npn (T + 1,7,7)) mod p™ - C~ - O,

For each n > 0 and a € Z/p™, fix a lifting @ of a to Z such that a = 1 mod M, and
a lifting @ of a to Z such that a =0 mod N. For n > m, let

fn: Z( )k L IOZ O(Mpn) 1 ’/Mp ,UI/Np
(u’,v’)

where (u/,v’) ranges over all elements of (Z/p™)? whose images in (Z/p™)? coincide
with (u,v). Then by the distribution property 3.7 (2) of Eisenstein series, the right
hand side of (10.16.1) is equal to

r -1 % u v\*
e (F1 (=D i 0 (8 2) B
Since the left hand side of (10.16.1) is
* —r— k—r T - u v r
Ty © (Mpm)k -2, CF’TE/Mp)m,T;/Npm : (—1) ) (T - 1)' . (w 13) E(() I)/Npm’

we are reduced to

Lemma 10.17. — There exists a non-zero integer C such that
i © (1\4]7"!)k_r—2 Flsl/cM:,)m B/Npm = = fn mod pnC_I Ok,

for any n > m.

Proof. — In fact, we can take C = p™. This congruence is a consequence of the
theory of p-adic Eisenstein series in [KN].

It is sufficient to show that the g-expansions of both sides of 10.17 coincide
mod p" ™.

Let A (resp. B) be the “without ¢ version” of the left (resp. right) hand side of 10.17.

Write
> aq’, B= ) bq.

r€Q>0 r€Q>0
It is sufficient to prove the following (1) and (2).
(1) ar = b, mod p"~™ for any r € Q>p.
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(2) The constant terms of the g-expansions of both sides of 10.17 coincide
mod p"~™.

We prove (1). By 3.10, 3°, o, b-7~° is equal to
(Mp™)™" Y @)k (@ /Mp™, )¢ (@ [Np™, 8) — (=0 /Mp", 5)¢* (—7' /Np", 5)).
We have easily
> ¢t (@ /Np™, ) = p" ™ (3/Np™, )

and the formula with v’ (resp. v) relaced by —v’ (resp. —v). Hence Doreu, brr 0 is
equal to

(Mp™) ™' Y (@) (@ /Mp™, $)¢* (B/Np", 8) — ((— [Mp™, 5)¢* (—0/Np™, 5)).

u’

On the other hand, by 3.10,

= (Mp™)*"=2(¢(@/Mp™, 8)¢* (T/Np™, 8) — {(—u/Mp™, 5)¢* (—0/Np™, 5)).
Hence we are reduced to the elementary fact that the coefficients of the Dirichlet
series >, (@')*~""1¢ (4 /Mp™, s) and (Mp™)*k—"—1¢(u/Mp™, s) coincide mod p” and
the same holds when u’ (resp. u) is replaced by —u’ (resp. —u).

Next we prove (2). By 3.10, the constant term of the right hand side of 10.17 is
equal to

(Mp™)~1 >~ (@)*" (@ /Mp™, 0) — c (i’ /Mp™, 0))

u’ v’

= (Mp™)~1 Y _(@)* "N (P¢(@ /Mp™, 0) — c((ct /Mp™, 0)).

On the other hand, the constant term of the left hand side of 10.17 is
(Mp™)~1(A¢(a/Mp™,1 — k+7) — 2 7¢(ci/Mp™, 1 — k +1)).

That these are congruent mod p™~™ is a consequence of the theory of p-adic Riemann
zeta function of Kubota-Leopoldt. O

11. Modular forms and Bgr

In this section, we review p-adic Hodge theory of modular forms, and prove the
commutativity of the diagram (10.9.5) (the compatibility of the two dual exponential
maps, one is exp* for the Galois representations of the local field Q, associated to
modular forms, and the other is exp* of the big local field K which is a “local field of
the field of modular functions”).
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In p-adic Hodge theory, we follow the method of Tsuji in [TT] who uses the
syntomic cohomology (the method started by Fontaine-Messing [FM]). (In p-adic
Hodge theory, there is another method by Faltings who uses almost étale extensions
[Fal]-[Fad4].)

11.1. Following Scholl [Scl], we identify various cohomology groups associated to
modular forms with direct summands of cohomology groups of Kuga-Sato varieties.
We review Kuga-Sato varieties.

Let k > 2, N > 3.

Let E — Y (N) be the universal elliptic curve, and let E(*~2) (= “the open Kuga-
Sato variety” of weight k) be the (k — 2)-fold fiber product of E over Y (N).

Let E — X (N) be the universal generalized elliptic curve with level N structure
[DR]. Let E*=2) — X (N) be the (k — 2)-fold fiber product of E over X (N) and let
KSy = KSi (V) (the Kuga-Sato variety of weight k) be the canonical desingularization
of E*~2) constructed by Deligne in [Del, Lemma 5.4, Lemma 5.5].

Then E%*~2) is open in KS;, and the complement of E(*=2) in KSy, which coincides
with the inverse image of the set of cusps of X (IV), is a divisor with normal crossings
in KSk .

11.2. We review the relation of Kuga-Sato varieties with modular forms.

Define a finite group G which acts on E*~2) and a finite group G which acts on
KS; as follows.

Let &;_2 be the symmetric group of degree k—2. Let G be the semi-direct product
of the two groups &_» and {£1}*~2 in which {£1}*~2 is normal and the action of
Gg—2 on {£1}*~2 by inner automorphisms is given by the canonical action of Gi_2
on {£1}*=2 by permutations. Then G acts on E(*~2) as follows: {£1} acts on E
by multiplication, and hence {£1}*~2 acts on E*~2) and Gy_o acts on E*~2) by
permuting the factors of the fiber product.

On the other hand, let G be the semi-direct product of G and ((Z/N)?)*~2 defined
as follows. ((Z/N)2)*¥=2 is normal in G, the action of {+1}*=2 on ((Z/N)?)*~2 by
inner automorphisms is the one induced by the natural multiplicative action of {£1}
on (Z/N)?, and the action of Gx_z on ((Z/N)?)*~2 by inner automorphisms is by
permutations. Then G acts on K Sy, as follows: Sj_5 acts by permutation, the action
of {£1}*~2 is induced by the action of {+1} on E by multiplication, and the action
of ((Z/N)?)*¥~2 is induced by the translation on E by (Z/N)? ((Z/N)? is embedded
in the smooth part of E by the N-level structure of E)

Let e : G — {%1} be the homomorphism whose restriction to {£1}*~2 (resp. Gx_2)
is the product map (resp. the sign function).

Let & : G — {£1} be the composition G — G < {#1}. For a G-module (resp. G-
module) M, let

M(e) (resp. M(€) ) = {x € M ; oz = ¢(o)z (resp. €(o)z ) for all o € G}.
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Then we have the following (11.2.1)-(11.2.6). (11.2.1), (11.2.3), (11.2.5) are shown
in Scholl [Scl], and (11.2.2), (11.2.4), (11.2.6) are shown in the same way but more
easily.

We have canonical isomorphisms of Q[Gal(C/R)]-modules

(11.2.1) Vi,o(X(NV)) = H* 1 (KSk(C), Q)(&),
(11.2.2) Vio(Y (N)) = B*(E®=2(C), Q)(e),
which induce isomorphisms of Q,[Gal(Q/Q)]-modules

(11.2.3) ViQ, (X (IV)) = H* 1 (KSk ® Q, Q) (8),
(11.2.4) Vi, (Y (V) = H 1 (E®72 @0 Q, Qp)(e)-

(Gal(Q/Q) acts on Vi g, (X (N)) = Vi(X (N))®qQy, since it is identified with the étale
cohomology group H! (X (N) ®g Q, j« Symg:z('Hll,)) ®z, Qp where j is the inclusion
map Y(N) — X(N).)
Let Ok, o(log) be the de Rham complex on KSi with log pole outside E(k=2),
and denote for m > 0
HiGg—ar (KSk) = H™(KSk, Qks, o(l0g)),
A1'HG, _qp (KSk) = H™(KSk, Q75 /o(108))-

Then (Hjg denotes the usual de Rham cohomology),

HiR' (KSk)(8) if i <0,
(11.2.5) I'HgR " (KSk)(€) = { Sk(X (V) if1<i<k—1,
0 ifz > k.
Hi o r(KSk)(E)  if 4 <0,
(11.2.6) AI'HY L gg (KSk)(E) = { Mi(X(N)) if1<i<k—1,
0 ifi > k.

(The action of G on Hiog—ar(KSk) factors through G. This follows from (11.3.2)
below.)

11.3. By comparison theorems of Betti cohomology and de Rham cohomology over
C, we have for any m
(11.3.1) H™(KSk(C),Q) ® C ~ HR (KS;) ® C
(1132) Hm(E(k 2) ((C), Q) ® Cx~ Hlog-—dR(KSk) ®Q C
The homomorphism
Mi(X(N))®C — Vi (Y(N))®C
induced by (11.3.2) (we take m = k — 1) via (11.2.2) and (11.2.6) coincides with the
period map in 4.10.
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By Tsuji [TT], for any m, H™(KSx ®q Qp, Q,) is a de Rham representation of
Gal(Q,/Q,) and we have a canonical isomorphism preserving filtrations
(11.3.3) Dar(H™(KSk ® Qp, Qp)) = Hir (KSk) ® Qp

which is the p-adic version of (11.3.1). Form m = k — 1, this gives by (11.2.3) and
(11.2.5)

DdR(Vk,Qp (X(N))) ifi<0,
(113.4) in(Vig, XV = { SLX(V) @Q,  if1<i<h—-1
0 ifi >k

By [TT}, we have also a canonical homomorphism
(11.3.5) Dar (H" (E*~ ¢ @y, @p)) — Hize-ar(KSk) ® Qp

which is compatible with (11.3.3) and with filtrations, and which is the p-adic version
of (11.3.2). See 11.4 for the constructions of the isomorphism (11.3.3) and the ho-
momorphism (11.3.5). Unfortunately, [T'T]does not contain results which show that
(11.3.5) is an isomorphism. In (11.10), we will show that the homomorphism (11.3.5)
for m = k — 1 induces an isomorphism

(11.3.6) Dar(H* 1 (E*2) ©¢ Q,, Qp))(e) — Hfy,L 45 (KSk)(€) ® Qp
preserving filtrations. (Hence by comparing the dimensions by (11.3.2), we have
that Vi,q,(Y(N)) = H* 1 (E*=2 ®¢ Qp,Qp))(e) is a de Rham representation of
Gal(Q,/Qp).) The isomorphism (11.3.6) gives by (11.2.4) and (11.2.6)

Dyr(Vi,0, (Y (IV))) ifi <0,
(11.3.7) in(Veg,(Y(N) = A My(X(N))®Q,  if1<i<k~1
0 ife> k.

In [Fa2, Thm 8.1], Faltings has a result “Dgr of the p-adic étale cohomology of
an open variety is the de Rham cohomology with log poles” which gives a canonical
isomorphism between the two groups which appear in (11.3.5). He uses the method of
almost étale extensions. But we formulate in this section everything in the method of
syntomic cohomology by Fontaine-Messing-Tsuji (this is because the author is familiar
with syntomic cohomology and not so much with almost étale extensions). We use the
definition of the map (11.3.5) given by the method of syntomic cohomology, and prove
the bijectivity of (11.3.6) in 11.10 by the method of syntomic cohomology, and avoid
long arguments to check the relation between the method of Fontaine-Messing-Tsuji
and that of Faltings.

11.4. We review the methods in [T'T] and see how the isomorphism (11.3.3) and the

homomorphism (11.3.5) are constructed as special cases of general results in [T'T].
Let K be a complete discrete valuation field of mixed characteristic (0,p) with

perfect residue field, and let X be a proper semi-stable scheme over Ok (that is, X is
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regular, the generic fiber Xx of X is smooth over K, and the special fiber of X is a
divisor with normal crossings), and let U be a dense open subscheme of X g such that
(X N\ U)red is a divisor of X with normal crossings. (In the application, X will be an
integral model of a Kuga-Sato variety, and U will be a Kuga-Sato variety or an open
Kuga-Sato variety.)

For integers m,r such that 0 < m < r, we have a canonical isomorphism [TT,
Thm. 0.5]

(11.4.1) H™(X ®ox O, SpE(r)) = H™(U @k K, Q,)(r)

between the log syntomic cohomology of X ®o,. O (the left hand side) and the p-adic
étale cohomology of U ® ¢ K (the right hand side).
Here

H™(X @0, O, Sgr (1) = @ ®z, ImH™(X ®0, Og, Sa(r)x)

with :S’vn(r)y the syntomic complex on X = X ®0, O /p™ defined with respect to the
canonical log structure of X ®o, Og/p"™ which is induced by the log structure of X
associated to the divisor (X \U)req and the canonical log structures of Spec(O) and
Spec(Ogk). On the other hand, for integers m,r > 0, we have a canonical homomor-
phism [TT, 4.8]

(11.42) H™(X ®0x O, Sn(r)x)
— H™ (X @0y O/D™)/(OK /1) 10g —anger THiks)

where log-crys means the log crystalline site with respect to above log structure of
X ®oy Ox/p™ and the canonical log structure of the base Spec(Ok /p™), and Jé@s
denotes the r-th divided power of the ideal Ker(Ogys — Ox) of the structure sheaf
Ocrys of the log crystalline site. We have a canonical isomorphism [TT, 4.7.6]

(11.43) 1mQ®LimH™ (X ®ox Og/P™)/ (O /P™)) 0 —cayer Qervel b
S n

= BJ_R ®K Hrgg—dR(XK/K) (Bd B;_R K/K = B;—R K/Qp )
By (11.4.1), (11.4.2), (11.4.3), we have a canonical homomorphism
(11.44) H™(U ®k K,Qp) ~ H™(X ®0y O, Sg2(r))(—7)

— B4r ®k H{gg—dR(XK/K) (Bar = BdR,?/K = BdR,T(_/Q,,)'

for r > m, and this map is independent of the choice of r > m and commutes with
the action of Gal(K /K). By taking the Gal(K /K )-invariant part of the induced map

(11.4.5) Byr ®qg, H™(U ®k K,Qp) — Bar ®k Hip,_qr(Xk/K),
we have a canonical homomorphism
(11.4.6) Dar(H™(U @k K,Qp)) — Hig_ar(Xk/K)
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Tsuji proves in [T'T] that in the case of U = Xk, the maps (11.4.5) and (11.4.6)
are bijective and induce isomorphisms of filtrations.

The isomorphism (11.3.3) and the homomorphisms (11.3.5) are obtained from the
above general theory as follows (we follow [Sal]). Take a multiple N’ of N such
that the genus of X(N') as a curve over Q((n+) is > 2. Let X(N’') be the fine
moduli space over Z of generalized elliptic curves with N'-level structures [KM].
Then X(N’) is a proper flat curve over Z such that X(N') 2z Q = X(N’). Take
a finite extension K of Qp which is Galois over Q, such that X (N') ®q K has
semi-stable reduction. Let € be the minimal semi-stable model of X (N') ®¢g K over
Ogk. By the assumption on the genus, € is the minimal desingularization of the
normalization of X(N’) in X(N’) g K. Let € — € be the base change of the
universal generalized elliptic curve over X(IV), let X be the canonical desingularization
by Deligne of the k — 2 fold product of & over € (see [Sal, p.610]). Let U = Xk
(resp. U = E*:—2) Xy(n)Y(N') ®q K). Then, X is proper semi-stable over Ok, and
(X N\ U)red is a divisor of X with normal crossings. By applying the above general
theory to (X, U), and then taking the Gal(K/Q,) x Aut(X (N')/X (N))-invariant part
of (11.4.6), we obtain the isomorphism (11.3.3) (resp. the homomorphism (11.3.5)).

11.5. The theory of Tsuji can be generalized to the case the residue field k of K is
not necessarily perfect as follows, without essential changes.

Let K, X and U be as in 11.4 except that we do not assume here that the residue
field k of K is perfect, but we assume [k : kP] < oco.

For integers m, r such that 0 < m < r, we have a canonical isomorphism

(11.5.1) H™(X ®o, O, Sge(r)) —= H™(U ®x K, Qp)(r).

In fact, the canonical map from the left hand side to the right hand side is defined in
the same way as in [T'T], and the bijectivity of it is reduced to the perfect residue field
case, for we have an intermediate field K’ such that K ¢ K’ C K which is a henselian
discrete valuation field with perfect residue field. (In fact take a lifting (b;); of a p-
base of the residue field of K to Ok, and choose a p"-th root b; ,, of b; in K for each i
and n > 0 satisfying bf,n+1 =b;p for all i and n > 0. Then K’ = K(b; »;Vi, Vn > 0)
is such a field. The completion of a henselian discrete valuation field K’ does not
change the log syntomic cohomology and the p-adic cohomology for X,U over Ok

as above.)

Remark. — The log crystalline site which is used here for the definition of gn(r)7
is (X ®ox Ox/P™)/(Z/p"™))10g—crys With respect to the canonical log struc-
ture of X ®op, Og/p" and the trivial log structure on the base Spec(Z/p™).
In the perfect residue field case, Tsuji uses instead the log crystalline site
((X @0k Ox/p™)/Whn)iog—crys Where W, is the Witt ring of the residue field of
K with length n, with respect to the canonical log structure of X ®o, Ox/p" and
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the trivial log structure on the base Spec(W,,), but these two log crystalline sites give
the same S, (r)%-

‘We have canonical homomorphisms

(11.5.2) H™(X ®0, O Sn(r)x) — H™((X ®0, Ox/p")/(Z/D™))10g—crys, JLiks)

- Hm((X B0k O?/pn)/(OK/pn))log—crym J(E:;'s)

for integers m,r > 0, and an isomorphism

(115.3) ImQ®LmH" (((X ®0x Oxe/P")/ (O /P™) 05— cryas Oerys/ T}
k] n
~ Bl ®x Hps_ar(Xx/K)  (Big = BIR,?/K)'

which are obtained in the same way as in the perfect residue fields case.
By (11.5.1), (11.5.2), (11.5.3), we have a canonical homomorphism

(11.54) H™(U ®k K,Qp) ~ H™(X ®0, O, Sg5(r))(-T)
— Bar ®x Higg gr(Xk/K)  (Bar = Byr %/k)

for » > m, and this map is independent of the choice of r and commutes with the
action of Gal(K/K). By taking the Gal(K /K )-invariant part of the induced map

(11.5.5) Byr ®g, H™(U ®k K,Qp) — Bar ®x Hipz_gr(Xk/K),
we have a canonical homomorphism
(11.5.6) Dar(H™(U ®k K,Qp)) — Hin, _qr(Xk/K).
Via (11.5.6), the connection
V : Dar(H™(U ®k K, Qp)) — Ok @k Dar(H™(U ®k K, Qp))
in 10.2 commutes with the Gauss-Manin connection
Higg—ar(Xk/K) — Ok ok Hige—ar (XK /K).

This is because the image of HM(U®k K, Q) in Bar®x H, _ar (XK /K) is contained
in the kernel of V® 1+ 1 ® V as is seen from the factorization (11.5.2).

By the same method as in [T'T], we can prove that in the case U = Xk, the maps
(11.5.5) and (11.5.6) are bijective and induce isomorphisms of filtrations. (We will
use this fact only in the case X is a product of finite copies of an elliptic curve of good
reduction over Ox.)
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11.6. We consider an interaction of 11.4 (the perfect residue field case) and the case
[k : kP] = p in 11.5, which will be used for the proof of the commutativity of the
diagram (10.9.5).

Let K, X,U be as in 11.4. We assume here that the residue field of K is algebraically
closed. Let C be a proper normal curve over Ok, let X — C be a morphism over
Ok, and let v be a generic point of the special fiber of C. Then the local ring O¢,,
is a discrete valuation ring whose residue field £ satisfies [& : 2] = p. Let £ be the
field of fractions of the completion of O¢,. Assume that K is algebraically closed
in #, X ®c Ok is smooth over Ok, and that

XQ®c0x=U®cOx.

(In our application in 11.8, X will be an integral model of a Kuga-Sato variety,
U will be an open Kuga-Sato variety, and C will be an integral model of a modular
curve. In that case, X®cO.x = U®c O and this scheme is the (k—2)-fold product
over O_ of an elliptic curve over O of good reduction.)

For m > 0, let
H' =H™(U @k K,Qp), Higg—ar (XK /K),
HR = H™(U ®c X, Qp), H’B/x = Hgp (X ®c X | K).

By 11.5, H? is a de Rham representation of Gal(.# /.%¢'), and Dar(HR) = Do

Fix an integer £ > 0. Assume we are given a de Rham representation Hﬁ, of
Gal(K/K) contained in Ker(H¢ — H%). Let H = Dygr(HY). (In our application
in 11.8, we will take £ = k — 1, H5™* = Hf~1(e), H5 ! = HE1(e), where (¢) is as in
11.2)

In the following, we express by [ ] an object of ind(pro(Ab,)) or of ind(pro(Galy p))
as in 10.4. In Prop 11.7 below, we will compare the two dual exponential maps :

exp* : H!(K, [HY, ()]) — [A7HY),
exp* s H2(, [Hy () — [ @ 7' HG L,/ VIAIHS L

for r € Z.
Proposition 11.7. — For any r € Z, the following diagram is commutative.
exp*
HY (K, [H (1)) 2 » 1617 HY )

g * I

ex ~
H2(¢, [HY () D [0 @ AITHY L 1/ VIAITHS L,

Here the maps a and 3 are defined as follows.
First we define . Since £ is the completion of a henselian discrete valuation
field which is of transcendence degree 1 over K, the composite field K¢ in £ is of
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cohomological dimension 1 [Sel, Chap.IL,§3.3]. Hence we have an exact sequence

Since the image of Hf;, in HY is zero by our assumption, we have a map
[HY] — [HY (K¢, HS )], and hence a map

H'(K, [Hg]) — H'(K,H' (KX, [HE ().

Since the residue field of K is algebraically closed, the cohomological dimension of K
is 1 [Sel, Chap.II, §3.3] as well as that of K.#", and hence we have for any m

H' (K, B (K¢, Mg~ () — B2 (¢, [HE ™ (r)]).

Hence we have the map a.
The map [ is defined as follows. For any m, let

Dk = K ®o, ImH™(X ®c Ou, Uxgc0.)/0x (108)/P™),

I'HE) ¢ = K ®0y ImH™(X ®c Oxs Wit gn0.)/0x 108)/P),

(note that the base of the differential here is Ox and not Oy ). Then we have long
exact sequences

m m V O m
. — Hp ) — Hp )y — Q% ®x Hp 5
V. 5
— Hpf —HpL Y 0h ox HRTL — ...

and

. — fI'HEE — AIPHE L Vo Ol @ S HE L

s M H] e — AIHE  — o By @ 67 HE o — ..
Since the composition HY, — Hj — Hf, . — HY, . is zero (for it is the Dar of the

Zero map Hf;, — H%), the last long exact sequence gives the map f.

11.8. Let K,X,U = (E*~2 xy(y) Y(N')) ®g K be as at the end of 11.4, and let
C be the scheme € at the end of 11.4. Let £ = k — 1, HY, = HY(U ®k K,Q,)(¢) ~
Vi,@, (Y(N')). Then Prop.11.7 in this case proves the commutativity of the diagram
(10.9.5).

11.9. We prove Prop.11.7.
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For an integer s > r and for m > 0, let
= AI"H7/AI°HT
HY = fil"HY, /A1I°HY,,
5 = fl"(Byr %,k ®k Hg')/Al°(Byr %/x ®k HY')
= lim Q@ lim H™ (((X ®ox O/P™)/(Ok/P™)) 0g—cryss Tt 1 T53) (=),

7 n
¢ ¢
sHy =Bgp, K/K/BZR,?/K ®q, He,

=fil"(Byr %/ ®K HY)/ fil*(Byr, %/ x ®K HY),
Hp x = fl"HT  /AIPHT
JHD = fl"HE, 5 /AI°HT
Hp/k = ﬁ_fr,lQ ® !i_@Hm(((X ®c Oz /P™)/(OK/P™)) 10g—crys Jc[:;'s]]/‘]t!:;]]) (=7),

THB/X BdR .)t//.)t//BdR x/x H%’,

= fil"(Byr 77/ 0 ®x H /Jt/)/ﬁl (Bar,7z/0 ®x Hp/x ),

=i Q® lm H™ (X ® O5/p")/ (0t /1")) 0 —cayer Hes? 17532 ) (=3).
J n

For s > 0, the upper (resp. lower) exp* in 11.7 is the composition of the upper
(resp. lower) rows of the following diagram.

H(K, [H. (r))) » HY(K, [THY ) «— [JHS ]
(11.9.1) aJv l Jg
H2(, (15 (r)]) — B3 FHG ) «—— Pe————Q

Here
= H'(K, [ ®x [Z1HE, %))/ VH (X, [[HE L),
= QY% ®@x " }Hf)/lx]/v([sHD/x])

the map ¢ is the connecting map of the exact sequence

— v
(11.9.2) 00— [THB/K] — [THB/}%,] LN [Q.)i’ Qo o T IHZB/%)(] — 0,

the middle vertical arrow is induced by 3, and the two horizontal isomorphisms on
the extreme right are cup products with log(Xcycio). For the proof of Prop.11.7, it is
sufficient to prove the commutativity of the two squares in (11.9.1). The commuta-
tivity of the right square is clear. The left square is divided into three squares as in
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the following diagram.

(11.9.3)
HY(K, lﬂﬁf Q) » H'(K, [{Hy])
! (K, H' (R, [0 (r)]) ) — B (K B (R, [THY, /K])) H(K, R)
| 5

H2 (¢, [0 (r)]) ——————— B2, [HG 4 ]) ¢————— P
Here P and the lower é are as above,
R =H (KX, [Q @ [Z1HE L)) /V (KA, [HS L, D),

the upper 9 is induced by the connecting map of (11.9.2), and the lower vertical arrow
on the right hand side is defined as

HY(K,R) = H' (K, H' (K%, [ ®x }HB/,C]))/VHI( JHO(KK, [THE xl) — P.
The commutativities of the lower two squares in (11.9.3) are clear. It remains to

prove the commutativity of the upper square of (11.9.3). This square is H' (K, ) of
the following square

(HE (r)] > [(HE

(11.9.4) l l
)

HY (K¢, [HE ™ (r)]) — HY (K, [[HE x]) «—— R
Let f,g: [H?(r)] » H (K%, [THB/K]) be the two morphisms defined by (11.9.4); f
is the composntlon of the left vertical arrow and the lower horizontal arrow on the left
hand side, and g is th composition of the other arrows. Let
h:HY (K, [(HE x]) — H™ (KX, (Rl ])

be the canonical injection, where

(11.9.5) [[RTp,x]
- “Q ®” “lim” “lim” RP(((X ®c %/pn)/(oK/pn))]og_crys’ J(E;‘;;J]/Jci;'sﬂl) (_])’

J n
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(“Q®” means “ lim ~ M~'Z ® -) The composite h o f (h o g) coincides with dobo i
(= coaoi) of the following commutative diagram

[HY, ()] —— [HL(r)] e » [THY)

S

| |
[HYK ¢ ,RTE)] AN [H¢(K, Rl g/K)]
where RI'g = “Q®” “lim”RI'(U®c A", Z/p"). Hence ho f = hog and we have f =g
by the injectivity of h.
11.10. We give the proof of the bijectivity of (11.3.6). Let
Di(X(N)) = Hg" (KSk)(E),  Driog(X (V) = Hf L 4 (KSk)(e)-

Our task is to prove that the canonical map
(11.10.1) Dar (Vk,q, (Y (N))) — Di,log(X(N)) ® Qp
is bijective. By (11.3.3), we have

Dyr(Vig, (X (N))) — Dr(X(N)) ® Qp.

By comparing the dimensions by (11.3.2), we see that it is sufficient to show that
(11.10.1) is an injection.
We define a homomorphism of Gal(Q/Q(¢{x))-modules

R: Vk,QP(Y‘(N)) ®Q — Qp(l —k)

and a homomorphism
Res : D 1og(X(N)) — Q(¢n)

as follows. First, R is the composition
H'(Y(N) ® Q,Sym*~*(H,)) — (R'jx Symg *(H,))s ® Qp — Qp(1 — k)

where the last isomorphism is defined as follows. Let L = Q(¢n)(¢*/")). Since the
pull back E’ of the universal elliptic curve over Y (N) to Spec(L) is the pull back of
the g-Tate curve over Z[[q]][g™!], we have an exact sequence

0—Qp(1) mTLEE®Q — Q, —0

of Gal(L/L)-modules in which T,E’ ® Q — Q, sends (¢*/?" mod ¢%),, to 1. This
induces a homomorphism of Gal(L/L)-modules

Symé~%(T, ) — Q,
and hence a homomorphism of Gal(L/L)-modules

Sym§~2(Hp) — Qp(2 — k).
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This induces isomorphisms of Gal(Q/Q(¢x))-modules
(R'j. Symy2(H,))s ® Q = H' (L™, Symj*(H})) © Q
= HY(L™, Qp(2 — k) > Qp(1 — k)
where the last map comes from the isomorphism of Gal(Q/Q(¢x))-modules
Qp — H'(L™,Qp(1))

which sends 1 to the image of ¢ under the symbol map (Kummer theory) (L")* —
H(L"",Qp(1)). This gives the desired map

(R'j. Symy~2(Hy))as — Qp(1 — k).
Next Res is the composition
Di,og (X (N))/Di(X (N)) «— Mi(X (N))/Sk(X(N)) — Q(¢n)

where the last arrow is defined by ano ang™'N — ag.
We will show that the following diagram is commutative.

Vi, Y (V) —B— @, (1 — k)

(11.10.2) l
Bar ®qQ Dk,log(X(N)) ﬂ) Bar

(This is a p-adic analogue of the commutative diagram (7.15.1).) We prove the bi-
jectivity of (11.3.6) admitting the commutativity of (11.10.2). We have an exact
sequence of Gal(Q,/Q({n))-modules

(11.10.3) 0 — Vi g, (X(V)) — Vig, (Y (V) — @ Qy(1 — k)

where o ranges over all elements of GL2(Z/N) and the last arrow is (R o ¢*),, and
an exact sequence

(11.10.4) 0 — B4r ® Di(X(N)) — Bar ® Di 10g(X(N)) — @D Bar
where o ranges over all elements of GL2(Z/N) and the last arrow is (Res 00*),. By the

commutativity of (11.10.2), we have a homomorphism Bgr ®q, (11.10.3) — (11.10.4).
By taking H°(Q({n) ® Qp, ?) of this, we obtain a commutative diagram

00— Q(¢n) ®q (1) — QUN) ®g (2) — B, QAUN) @ Qp

| | |

0 —— Q(Cv) ®q (1)) — Q(¢n) ®g (2) — D, Q¢n) ® Qp
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where
(1) = Dar(Vk,q, (X (N))), (2) = Ddr(Vi,q, Y (N))),
(1)’ = Di(X(N)) ® Qp, (2)' = Dg10g(X(N)) ® Qp.

Since (1) — (1)/, this diagram proves the injectivity of (2) — (2)’ as desired.

Now we prove the commutativity of (11.10.2).

Let C, be the completion over Q,. Since Gal(Q/Q({n)) acts trivially on
(Vk,Qp (Y(N)))/(Vk,Qp (X(N)))(k — 1) and since Res : B4r Qg Dk,log(X(N)) — Bgr
kills the image of V4 g, (X (N)), the image of the composition

Vi@, (Y (IN))(k — 1) — Bar ®q Dk log(X (N)) — Bar

is contained in H%(Q,(¢{n), Bar) = Qp({n). Since Bar — C, induces an injection
Qp(¢n) — C,, it is sufficient to prove that the diagram

(11.10.5) (Veo, Y(N)E-1) —— B L@,

| [

ﬁlk—l (B;:—R ® Dk,log(X(N))) —R'e.s__.__..) Cp

is commutative. The lower horizontal arrow factors as
fil* ! (Big ® Di,tog(X (V) — gr* ™' (B ® Di,tog(X (NV)))
= C, 8 Mi(X(N)) 225 ¢,
where the last map Res is Z ang™N — ag.
We will define certain grnozuops V,V',D, D’ with commutative diagrams
Veo, Y(N))(k—1) — V — V"
(11.10.6) l Dlogl lDlog
Cp ®q My(X(N)) —— D —— D'

Qp 'L) \%4
(cp __’l_U___) D/

such that the composition of the upper horizontal rows of (11.10.6) coincides with the
composition

Vi, Y (V) (k —1) £ @, 25 v,
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the composition of the lower horizontal row of (11.10.6) coincides with the composition

Cp ®@ Mi(X(N)) Res, C, 4 D,

and w is injective. This will prove the commutativity of (11.10.5).

The groups V, V’, D and D’ are defined as follows. Let N’, K, X,U = E*~1) Xy (N)
Y(N') ®g K, and € be as at the end of 11.4. Let Spec(Ox) — € be the standard
cusp. Then the completion of the local ring of € at the image of the closed point
of Spec(Ok) under this map is identified with Og[[¢'/V']]. For any n > 1, the
smooth part of the irreducible component of X x ¢ Spec(Oxk[[¢*/"']]/(¢™)) containing

.. . . . . . k—2
the origin of X is canonically identified with Gm,ox[[ql/N’]]/(q")' Let (t;)1<jgk—2 be

the standard coordinates of G¥2, and let R be the completion of the local ring of
Ok [tli, e t,f_z] at the prime ideal generated by the maximal ideal mg of Og. Then
fn_,éx Jmx and regard v
as a point of codimension two of X. Then the completion of the local ring Ox , is

identified with R[[¢*/N']]. Let O% , be the henselization of Ox,,. We define

R is a discrete valuation ring. Let v be the generic point of G

V= Qp ®ZP !i_l_nHk_l(of;(,u[l/q] ok ?’ (Z/P")(k - 1)),
V' = Q, ®z, lim B (frac(R)(¢"/"")) ®ox K, (2/p")(k — 1)),
D = Q, ®z, lim(Ox ®o, Rlld*/N'))/p"

D' = Qp ®z, lim(Of ®ox R)/pP",

where frac(R) denotes the field of fractions of R.
By [TT, § 3], there is a unique homomorphism

Dlog:V — D
satisfying
Dlog({f1, ..., fk-1})-dlog(t1) A- - - Adlog(tx—2) Adlog(q) = dlog(f1)A- - - Adlog(fk-1)
in
Qy ®2, lim ((Or ®oi ™ Uty 0, /77)

= Q, ®z, lim ((Og ®ox Rllg/N]) /o) ® dlog(t1) A+~ A dlog(t-2) A dlog(q)
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for any f1,...,fk—1 € (O},U ®ox K)*, where {fi1,..., fr—1} is the image of /1 ®---®
fx—1 under the symbol map [TT, §3.2]. The diagram

Ve, Y(N)(k—1) —V
‘[ lDlog
Cp ® My(X(N)) —— D
is commutative. On the other hand, let
Dlog: V' — D’
be the homomorphism characterized by
Dlog({f1,-- ., fk—2, fe-1q}) - dlog(t1) A - - - A dlog(tk—2) = dlog(f1) A - - - A dlog(fr—2)
in
Qp ®z, im((Ox ®ox U0, )/P")
= Qp ®z, lim(Ox ®o, R/p") ® dlog(t1) A --- A dlog(tk-2)

for any fi,..., fe—1 € (frac(R) ®o, K)*. (The existence of this map Dlog follows
from the bijectivity of the symbol map

(11.10.8) /
K, (frac(R)(¢"/N") ®k K)/p™ = H* (frac(R)(¢"/"") ®k K, (Z/p")(k — 1))

which follows from
(11.10.9) KM (frac(R) ®k K)/p™ — H"(frac(R) ®k K, (Z/p")(r))

for all » [BK1] because (11.10.8) is isomorphic to the direct sum of (11.10.9) for
r =k — 1,k — 2. From the constructions of the maps Dlog, the diagram

V—V
Dlogl lDlog
D——D

is commutative, where D — D’ is given by ano ang™'N "+ ag. We define the map
v:Qp — V' by sending 1 to {¢1,...,tk—2,q} and the map w : C, — D’ to be the
inclusion map. The diagram

QpL)V/

l lDlog

C, — p/

is clearly commutative.
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It remains to show that the compositions
‘/k,QP(Y(N))(k — 1) —V -V
Vig, (Y (M) (k — 1) 5 @, 2 v

coincide. This follows from the fact that if E’ is the pull back of the g-Tate elliptic
curve over Q((q)), the following two compositions

~

=W a
T,E' = H'(E' ®q(q) Q(9)Z,(1)) — H'(G,, 5, Z,(1)),
TPE, L’ Zp - Hl(Gm,@r Zp(l))
coincide. Here a is the restriction to the smooth part of the irreducible component of
the special fiber of E’ containing the origin (this part is isomorphic to G,,), b is the
homomorphism which kills Z,(1) and sends (¢*/?" mod ¢%), to 1, and ¢ is the map
which sends 1 to the symbol {t} where ¢ is the standard coordinate of Gy,.

CHAPTER III

IWASAWA THEORY OF MODULAR FORMS
(WITHOUT p-ADIC ZETA FUNCTIONS)

In this chapter (§12-§15), we study the following subjects:

(1) Analogue of Iwasawa main conjecture for modular forms (§12).

(2) The finiteness of Selmer groups (§14).

(3) The Tamagawa number conjecture [BK2] for modular forms (§ 14).

The “main conjecture” which we study in this chapter is not concerned with p-adic zeta
functions of modular forms. In the next chapter, we will study the main conjecture
involving p-adic zeta functions [Mal, Grl] for modular forms which are ordinary
at p.

It has been known that once p-adic Euler systems as in Chapter II are constructed
and the result in §12 is obtained, then the rest of Chapter III and Chapter IV can
be proved (see [Pel], [Pe3d], [Rud]). The author gives in this paper all necessary
arguments, for he thinks that is convenient for the reader, but many arguments in
Chapter III and Chapter IV are already given in literatures. The author is thankful
to the referee for pointing out the existence of several literatures.

In Chap.III, we fix £ > 2, N > 1, and a normalized newform

f=2nz10nq" € S5k(X1(N)) ®C.
We denote by Q the algebraic closure of Q in C.
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12. The main conjecture, I

In this section, we state results concerning “the main conjecture without p-adic
zeta functions” (Conj. 12.10) for modular forms. The proofs of the results are given
in §13,§15.

We fix a prime number p.

12.1. Let p be a prime number, and let

G = Gal(Q((pe)/Q)  forn >0,
G = !i_n_lGn = Gal(Q({p=)/Q) where Q({p=) = UnQ({pn)-

Then the cyclotomic character gives an isomorphism
K = Xcyclo * G = Z:

For c € Z,, let 0. € G be the unique element such that k(o) = c.
For a finite extension L of Qp, the ring

OL[[Gx]] = im OL[G,].

has the following structure, as is well known. Let A be the torsion part of G, and
let
Gl — {{0’ € Goo; k(o) =1 mod p} in the case p # 2,
< {0 € Go; k(o) =1 mod 4} in the case p =2.
Then
Goo =Gl x A, G ~17, A:{Z/(”_l) ifp#2,
Z/2 if p=2.
We have

OL[[Goo]] = OL[|A x GL]] = OL[A[[GL.]] =~ OL[A][[Z,)]
= lim OL[A][Z/p"] = lim O [A][X]/(X?" — 1) = OL[A][[T]]

(T =X —1). Hence we have:

(12.1.1)  OL[[Gw]] is a two dimensional complete semi-local ring.

(12.1.2) In the case p # 2 (resp.p = 2), for j € Z/(p—1) (resp. j € Z/2), let

OL[[G); be the quotient of OL[[Gwo]] divided by the ideal (0 — k(o)?;0 € A). Then
OL([Gecll; «— OL[[Gll = OL[[T]).

We have
OullGx] =TI OuliGuslly 7 #2
JEZ/(p—1)
If p = 2, the canonical map OL[[G]] = [ljecz/2 OLl[G)l; is injective and the cok-
ernel is killed by 2.

SOCIETE MATHEMATIQUE DE FRANCE 2004



220 K. KATO

(12.1.3)  OL[[G]] ® Q is the product of the principal ideal domains OL[[G]]; ® Q.

(12.1.4)  Ifp is a prime ideal of height one in OL[[G]], the local ring OL[[Gool]p is
a discrete valuation ring except in the case p =2 € p.

12.2. Let T be a finitely generated Z,-module endowed with a continuous action of
Gal(Q/Q) which is unramified at almost all prime numbers. We denote for ¢ € Z

HY(T) = im HY(Z[Cpr, 1/p], T))

where HY is the étale cohomology as in 8.2, and the inverse limit is taken with respect
to trace maps. The following are known:

(12.2.1) HYT) = 0 if ¢ # 1,2 and HY(T) and H2(T) are finitely generated
Zy([Goo]]-modules.

(12.2.2)  For any prime ideal q of Z,[[Go]| of height 0 (so Zp|[Guo)lq is a field),
dim(H(T)q) — dim(H?(T')q) = rankgz, (T~) where T is the part of T on which the
complez conjugation acts by +£1. ([Ta2, Thm. 2.2], [Pe3, §1.3]).

It is conjectured that H?(T') is always a torsion Z,[[Go]]-module ([Pe3] Ap-
pendix 3: conjecture de Leopoldt faible), and hence (by (12.2.2)) that dim(H(T),) =
rankz, (T'~) for any prime ideal q of Z,[[G]] of height 0.

On the other hand, for a finitely generated Z,-module T endowed with a continuous
action of Gal(Q,/Q,), let

H;Ioc(T) = lin H? (QP(CP" )? T)

Then the following are known:
(12.23) HL(T) = 0 if ¢ # 1,2, HL (T) and HZ (T) are finitely generated
Zp (|G o)]-modules, and
dim(Hi,(T)q) = rankg, (T), dim(Hf, (T)q) =0

for any prime ideal q of Z,[[G]] of height 0.

The structure of HZ (7)) is well understood: By local Tate duality [Sel, Chap.II,
§5.2],

H,(T) ~ Hom (H®(Qp(Cp=), Homg, (T, Q/2)), Q/Z)(~1).

Finally, for a finite dimensional QQ,,-vector space V endowed with a continuous action

of Gal(Q/Q) which is unramified at almost all prime numbers (resp. endowed with a
continuous action of Gal(Q,/Qy)), let

HY(V)=HYT)®Q (resp. HL (V) = HL (T) ® Q)

loc

where T is a Gal(Q/Q) (resp. Gal(Q,/Q,))-stable Z,-lattice of V. Then HI(V)
(resp. H{ (V) is independent of the choice of T

loc

ASTERISQUE 295



p-ADIC ZETA FUNCTIONS OF MODULAR FORMS 221

12.3. Let k,N and f = > -, ang" be as in the beginning of Chap.IIl, and let
F =Q(an; n = 1) be as before. Let A be a place of F' lying over p, F the local field
of F at A\, O, the valuation ring of F), m) the maximal ideal of O,, and let

A = Ox[[Geo])-
Consider the two dimensional representation Vi, (f) of Gal(Q/Q) over F) associated

to f (8.3).
We will prove the following results Thm. 12.4, 12.5, 12.6.

Theorem 12.4. — Take any Gal(Q/Q)-stable Ox-lattice T of Vi, . Then:

(1) H%(T) is a torsion A-module.

(2) HY(T) is a torsion free A-module, and HY(T) ® Q = H'(Vp,(f)) is a free
A ® Q-module of rank 1.

(3) If p # 2 and if T/m\T is irreducible as a two dimensional representation of
Gal(Q/Q) over Ox/mx, HY(T) is a free A-module of rank 1.

Theorem 12.5

(1) There exists a unique Fx-linear map
VF,\(f) _’HI(VF,\(f)); Vi_’z'(yp)

having the following property : Letr € Z,1 <r < k—1, let n > 0, and let v € Vr(f).

Then the image of z.(,p ) under the composite map

H'(Vr, (f)) >~ B (VR (f)(k = ) — HY(Qp(Gr), Viu (f)(k — 1))
P, 5(f) @ F @0 Q)
(the first isomorphism is the product with ((pn )Sékl_r)) belongs to S(f) ®eQ({r), and
the map

S(f) ®q Qépr) — Ve(f)™;

z@yr— Y x(o)o(y)pers(z)*,
oc€Gp
where x is any character G, — C* and £ = (—=1)k=""1x(-1), sends the image of
2P 1o
g
@mi)* 7 Ly (%) -
We have

2()) = ~o-1(z)

where v : Vi, (f) — Vi, (f) is the action of the complex conjugation.
(2) Let Z(f) be the A ® Q-submodule of H! (Vr, (f)) generated by zﬁ,”) for all v €
Vr, (f). Then HY(Vg, (£))/Z(f) is a torsion A ® Q-module.
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(3) Let p be a prime ideal of A of height one which does not contain p. Then

length,, (H?(VE, (£))p)
< lengthy (H' (Vr, (£))s/Z(f)p) + lengthy, (HY,(VF, (£))p)-
IfHZ (Vi (f))p # 0, then f and p satisfy the following

(12.5.1) k=2, f is not potentially of good reduction at p (12.7), p is the kernel of the
ring homomorphism A — F induced by K72x : Goo — FY* for some homomorphism
X : Goo — FY of finite order, and

length, HL (Ve (£))p) = 1.

(4) Let T be a Gal(Q/Q)-stable Ox-lattice of Vi, (f), and let Z(f,T) be the A-
submodule of HY(T) ® Q generated by zg,p) for ally € T. Assume p # 2, and assume
that the following (12.5.2) is satisfied.

(12.5.2)  There exists an Ox-basis of T for which the image of the homomorphism

Gal(Q/Q(¢p=)) — GLo, (T) =~ GL2(0»)

contains SLa(Z,). Here the last isomorphism is given by this basis of T'.

Then,

Z(f,T)cH{(T) = HY(T)®Q.
Furthermore,
lengthy, (H?(Vr, (f))p) < lengthy, (H' (Ve (£))p/Z(£)p)

for any prime ideal of A of height one unless f and p satisfy (12.5.1) in (3).
Theorem 12.6. — Let T = Vo, (f) (8.3). Let Z be the A-submodule of H'(Vo, (£))
generated by the following elements (see (8.1.3), (8.11)).

(1) cdz"f?(f,k j:a(A), prime(pA))nz1 € H'(T)

1< k—1,a,A€Z, A>21, ¢,d€Z, (c,6pA) = (d,6pN) =1).
(2) ¢ dzpn (f,k,j, a, prime(pN))n>1 € HY(T)
1< k—1, a €SLy(Z), ¢,d € Z, (cd,6pN)=1, c=d=1 mod N).

Then Z C Z(f,T) and Z(f,T)/Z is a finite group.

Remark 12.7. — In Thm. 12.5 (3), “f is potentially of good reduction at p” means
that one of the following equivalent conditions (1), (2) is (hence both of them are)
satisfied.

(1) There exists a finite extension K of Q, having the following properties. For
any finite place v of F' which does not lie over p, the representation of Gal(K/K) on

VE, (f) is unramified. For any finite place v of F' which lies over p, the representation
of Gal(K/K) on Vg, (f) is crystalline.
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(2) There exist at least one finite place v of F' and a finite extension K of Q,
having the following property : Either v does not lie over p and the representation
of Gal(K/K) on Vg, (f) is unramified, or v lies over p and the representation of
Gal(K/K) on Vg, (f) is crystalline.

The equivalence between these conditions follows from the works [Ca, Sal]. These
conditions are satisfied if p does not divide N.

Remark 12.8. — We say that f has complex multiplication (f has CM) if there is an
imaginary quadratic field K of Q and a Hecke character ¢ of K (that is, a continuous
homomorphism v : Cx — C* where Cx denotes the idele class group of K) such
that

L(f,s) = L(¢, s).
Here,

L(y,s) = [[(Q — ()N (v)~*)™!

where v ranges over all finite places of K at which 9 is unramified, ¥ (v) is the image
of prime elements of K, under 1, and N(v) is the norm of v.
By Ribet [Ril, Ri3] (generalization of Serre [Se3]), we have the following.

(12.8.1) If f has no CM, then, for almost all finite places A of F, there exist
a Gal(Q/Q)-stable Ox-lattice T of Vi, (f) which satisfies the condition (12.5.2)
at Thm 12.5 (4).

Note that if the condition (12.5.2) at Thm 12.5 (4) is satisfied for one Gal(Q/Q)-
stable Oy-lattice T of Vg, (f), all Gal(Q/Q)-stable Oy-lattices of Vi, (f) have the
form aT for some a € FY* (see the proof of 14.7), and hence the condition (12.5.2) at
Thm 12.5 (4) is satisfied for any Gal(Q/Q)-stable Ox-lattice of Vg, (f).

(12.8.2) If f has no CM, then, for any finite place A of F, there erist a Gal(Q/Q)-
stable Ox-lattice T of Vp, (f) and an Ox-basis of T such that the image of the action
Gal(Q/Q({p=)) — GL2(O,) with respect to this basis contains an open subgroup of
SL2(Zyp).

The proofs of Thm. 12.4, 12.5, 12.6 are given in §13 in the case f has no CM and
in §15 in the case f has CM. The proof in the case f has CM heavily depends on the
work of Rubin [Rul] on the main conjecture for imaginary quadratic fields.

12.9. Let p # 2.
We recall the classical Iwasawa theory. We have for n > 0,

H! (Z[Cp"? 1/P], Zp(l)) = Z[CPTW l/p]x ® ZIH
H?(Z[Cpn, 1/p), Zp(1)) = CUQ(Gpr)) ® Zyy
where Cl(Q({pn)) denotes the ideal class group of Q({pn). Let
Zp[[Gooll+ = Zp[[Go]l/ (-1 — 1),
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and let Z be the Zp[[G]]+-submodule of H!(Z,(1))* generated by the image of
(1= &)1 = Gzt € Um(Z[Gor, 1/p])
n

Then H?*(Z,(1))* and H'(Z,(1))*/Z are torsion Z,[[Gw]]+-modules. The classical
Iwasawa main conjecture proved by Mazur-Wiles [MW] states

length(z, (1..11.), (H*(Zp(1))) = lengthz, 6.1, B (Z,(1)) /Z)

for any prime ideal p of A of height one.

This Iwasawa main conjecture is generalized to “main conjectures of motives” as in
[KK2, Chap.I, §3.2] and [Pe3, §4.4]. These main conjectures are specialized to the
following “main conjecture for modular forms”.

Conjecture 12.10 (main conjecture). — Let T be a Gal(Q/Q)-stable Ox-lattice of
Ve, (f) and let p be a prime ideal of A of height one. In the case p = 2, assume p
does not contain 2. Then Z(f,T), C H(T), and

length, (H*(T),) = lengthy, (H'(T)y/Z(f,T)s).-

13. The method of Euler systems

In this section, we give the proof of the theorems in §12 by using the method of
Euler systems in the case f has no CM. The proof of the CM case will be completed
in §15.

In this section, we fix a prime number p.

13.1. The method of Euler systems started by Kolyvagin bounds arithmetic groups
by using a system of “zeta elements”. (See [Ko]|; a similar idea was found by Thaine
independently [Th].) We use results on Euler systems in Perrin-Riou [Pe4], Rubin
[Ru4], and [KK4].

Let L be a finite extension of Q, and let T be a free Op-module of finite rank
endowed with a continuous Op-linear action of Gal(Q/Q) which is unramified at
almost all prime numbers. Let ¥ be a finite set of prime numbers containing p and
all prime numbers at which the action of Gal(Q/Q) on T ramifies, and let

E={m>1; prime(m)NX = {p}}.
For a prime number ¢ which is not contained in X, let
Py(ty =deto, (1 —Frp-t: T - T) € OL[t]

where Fr, is the arithmetic Frobenius at £.
By an Euler system for (7,L,¥), we mean a system of elements z, €
HY(Z(¢m, 1/p), T) defined for m € Z, satisfying the following condition.
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(13.1.1) For m,m’ € E such that m | m’, the norm map
B (2[Gw, /81, T) — H' (Z[Gn, 1/p),T)

sends zpy,: to (He VAU 1)) - Zm, where £ ranges over all prime numbers which

divide m' but do not divide m, o, is the arithmetic Frobenius of £ in Gal(Q(¢m)/Q),
and we regard Py(£='a, ') as an element of the group ring OL[Gal(Q(¢m)/Q)] which
acts naturally on H (Z[¢m,1/p), T).

Example 13.2 (classical example). — Let L = Q,,, T = Z,(1), £ = {p}. For m € E
(that is, for any m > 1 such that p|m), let z,,, € H(Z[{m, 1/p), Z,(1)) be the image
of (1 —¢m)(1 —¢t) € Z[¢m, 1/p]* under the isomorphism

2, 1) © Zp = B (Z[Gm, /], Zp(1) )
Then (zm)m is an Euler system for (Z,(1), Qp, X). In fact,
Po(t)=1—0t, P 'o;Y)=1-0;",
and (13.1.1) follows from the fact that for any m > 2 and for any prime number ¢,
the norm map
Q(Gme)* — Q(¢m)™
sends 1 — Gme t0 1 — G if £ divides m, and to (1 — Gn)(1 — 07 (¢m)) ™ if £ does not
divide m.
Example 13.3 (the crucial example for this paper). — Let A be a place of F lying
over p, let r € Z, and let T' = Vo, (f)(k —r). Fix an integer j such that 1 < j < k—1,
and fix non-zero integers c¢,d. Let £ be either a symbol of the form a(A) (a, A € Z,
A > 1) or an element of SLy(Z). In the case, £ = a(A4), we assume (c,6pA) =1 and
(d,6pN) = 1. In the case £ € SL2(Z), we assume (cd, 6pN) = 1.
By fixing these, let ¥ = prime(cdpAN) in the case & = a(A), and let
Y. = prime(cdpN) in the case £ € SLy(Z). For m € =, define z,,, € H(Z[¢m, 1/p), T)
by
cazin (f,,5,€, prime(mA)) if € = a(A),
Zm =
cazin (f,7,4,€, prime(mN)) if £ € SLy(2).
Then (2m)m is an Euler system for (T, Fy, X).
In fact, for a prime number £ which does not divide Np, we have
deto, (1 — Fr; ! - t; Vi, (f)) = 1 — agt + e(£)F 142,
and this polynomial has the form (1 — at)(1 — 8t), o, 3 € C, |a| = |B] = £*k-1D/2,
Hence
Py(t) =deto, (1 —Fry - ;,T)=1— Tl "t + §(£)€k+1_2rt2,
Pt o) =1—al "o, +EQ)FTI0 2,

Hence (zm)m is an Euler System for (T, F, X) by Prop.8.12.
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By [Pe4, Ru4, KK4], we have

Theorem 13.4. — Let (T, L,X) be as in 13.1, and let (2m)m be an Euler system for
(T,L,X). Let A = Or[[Gwo)], let Z be the A-submodule of H'(T') generated by (zpn)n,
and let J be the ideal of A generated by h(Z) for all A-homomorphisms h : HY(T) — A.
On the other hand, let

H*(T)o = Ker(H*(T) — Hf,(T)).
€:
Assume the following

(i) Zq # 0 for any prime ideal q of A of height 0.

(ii) ranko, (') = ranko, (T~) = 1.

(iii) There exists an integer w such that for any prime number ¢ which is not
contained in X, all eigenvalues of Fr[1 on the L-vector space T ®o,, L are algebraic
numbers whose all complex conjugates have absolute value £*/2.

(iv) T ®o, L is irreducible as a representation of Gal(Q/Q) over L.

(v) There ezists an element o of Gal(Q/Q({p=)) such that

dimy, (Ker(1 —0;7 ®0, L - T ®o, L)) = 1.
Then we have:

(1) H*(T) is a torsion A-module.

(2) Let p be a prime ideal of A of height one which does not contain p. Then

lengthy, (H?(T)o,) < lengthy, (Ap/Jp).

(3) Assume that there exists an element o of Gal(Q/Q((p=)) such that

Coker(l1 —0:T —T)

is a free Or-module of rank 1, and assume that T ®c, Or/my, is irreducible as a
representation of Gal(Q/Q) over Op/my. Assume further p # 2. Then

length, (H*(T)o,p) < lengthy (Ap/Jp)-

for any prime ideal p of A of height one.

In the case of 13.3, the conditions (ii), (iii), (iv) in Thm. 13.4 are satisfied ((iii)
is due to Deligne [Del], and (iv) is due to Ribet [Ril]). However if f has CM, this
theorem is not applied because the condition (v) is not satisfied in the CM case. So
the CM case will be discussed separately in §15. Concerning the condition (i) in
Thm. 13.4, we use the following 13.5 and 13.6.

Theorem 13.5
(1) (Jacquet-Shalika [JS]). L(f,s) has no zero on Re(s) > &tL.
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(2) (Rohrlich [Ro2]). Assume k is even. Let S be a finite set of prime numbers.
Then the set
{xe U Hom(@/my.CLs(six k2 =0}

m21
prime(m)CS

is finite.
(When m|m’, we regard Hom((Z/m)*,C*) C Hom((Z/m')*,C*).)

Theorem 13.6 (Ash-Stevens [AS]). — Let L > 3. Then Vi z(Y (L)) is generated over Z
by the elements

a*Spp(k,7) (o € GLy(Z/L),1<j<k—1).

Proposition 13.7. — Define Z C H'(Vo, (f)) as in Thm. 12.6. Then Zq # 0 for any
prime ideal q of A of height 0.

Proof. — Let & be + (resp. —) if the image of —o_1 in A4 is 1 (resp. —1). By 13.6, for
some a € SLy(Z) and some integer j such that 1 < j < k— 1, we have 6(f, j,@)* # 0.
Take such «,j and take integers ¢, d such that (cd,6p) = 1,c = d =1 mod N, and
c¢® # 1,d> # 1. Then by Thm. 6.6, Thm. 9.7, and by Thm. 13.5, for almost all
homomorphisms x : Geo — F—; of finite order such that x(—1) = =+, the element
(C,dzz(,ﬁ)(f,k,j, a,prime(pN)))n>1 € Z C HY(Vo, (f)) (12.6) is sent to a non-zero
element by the homomorphism

(13.7.1)  H'(Vo,(f)) =~ H'(Vo, (f)(1)) — HY(Qp(Gr), VR, (f)(1))
exp* —
2, s(f) or B 25 S(f) @ Fa
where n > 0 is an integer such that x factors through Goc — G,,, and the last arrow
in (13.7.1) is a — }_, . o(a) ® x(0). The composite map (13.7.1) factors through
H!(Vr, (f))/pHY(VE, (f)) where p is the kernel of the ring homomorphism A — F'y
which sends 0 € G, to k(o) 1x(c)~!. Hence for infinitely many prime ideals p of
A of height one such that p D q, the image of Z in H(Vg, (f))/pH(VF, (f)) is not
zero. This proves Zg # 0. O

In the rest of § 13, we assume f has no CM and we prove Thm. 12.4, 12.5, 12.6
under this assumption. The proofs of these theorems in the case f has CM are given
in §15.

13.8. We prove Thm. 12.4

To prove 12.4 (1), we may assume T = Vo, (f). In this case, the fact H3(T) is a
torsion A-module follows from (12.8.2), Thm. 13.4 (1), and 13.7.

We prove 12.4 (2). By (12.2.2) and by 12.4 (1), it is sufficient to prove that H'(T')
is a torsion free A-module. (This torsion free property is deduced also from a general
result [Pe3, Lemme p. 27].)
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Let = be a non-zero-divisor of A. We prove that x : H(T') — H(T) is injective.
There exists a multiple of x of the form p™y where n > 0 and y is a non-zero-divisor
of A such that A/yA is p-torsion free. (In fact, the image of x under the norm map

A = Ox[[Geo]] — OAl[G]] = OA[[X]]

has the form p™y for n > 0 and y as above, and x divides p™y in A.) Hence we may
assume z = p or A/xA is p-torsion free.
Let

j + Spec(Z[1/p]) ~ prime(N) —> Spec(Z[1/p])
be the inclusion map.
First consider the case £ = p. By the exact sequence

0 — 5.7 £ 4.7 — j.(T/p),
the injectivity of p : H'(T') — H'(T) is reduced to lim H°(Q({pn),T/p) = 0. Take
m > 1 such that H*(Q(¢yn), T/p) = H°(Q({p),T/p). Then, for n > m, the norm
map
H°(Q(Cpr+1), T/p) — H(Q(Gpr), T/p)
is the multiplication by [Q({yn+1) : Q(¢pn)] = p, and hence is the zero map. Hence
lim HO(Q((n ), T/p) = 0.
Next we consider the case A/xA is p-torsion free. For n > 0,
H(Z[Cn,1/p), T) ~ HY(Z[1/p], T ®0, OAGn])

where Gal(Q/Q) acts on the tensor product as follows : ¢ € Gal(Q/Q) acts by c®0o; !

where o, denotes the canonical image of o in G,,. We have

HY(T) ~ lim HY(Z[1/p], T ®0, OA[Gr]).

n

Hence we have an exact sequence

H°(Q,T ®o, A/zA) — HY(T) 2 HY(T).
where Gal(Q/Q) act on the tensor product as follows : o € Gal(Q/Q) acts by c @ o3}
where 0 denotes the canonical image of ¢ in Go,. We prove

H(Q,T ®0, A/zA) = 0.

The set H(Q,T ®o, A/zA) is identified with the set of all O,[Gal(Q/Q)-
homomorphism Homop, (A/zA, Oy) — T (Gal(Q/Q) acts on A/zA here via o — o3}).
Since the action of Gal(Q/Q) on Homgp, (A/xA, O,) is abelian and the representation
of Gal(Q/Q) on Vg, (f) is irreducible and is not abelian, there is no such non-trivial
homomorphism.

We prove 12.4 (3). Let z,y be elements of A such that (x,y) is a maximal ideal
of A. Tt is sufficient to prove that z and y form a regular sequence for H*(T'), that is

z:HY(T) — HYT) and y:HY(T)/zHY(T) — HYT)/sHY(T)
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are injective. The former is already proved. We prove the latter. By
HY(T)/zHY(T) c HY(Z[1/p], T ®0, A/zA)
and by the exact sequence
0 — 4T ®0, A/ah) < ju(T ®0, Afzh) — 4. (T @0, A/(=,9)),

it is sufficient to prove H°(Z[1/p],T ®0, A/(z,y)) = 0. Here Gal(Q/Q) acts on
A/(z,y) via o — oz, and hence A/(z,y) =~ (Ox/m)(r) for some r € Z as Gal(Q/Q)-
module over Oy ((r) means the Tate twist). By the assumption of irreducibility, the
Gal(Q/Q)-fixed part of (T//m,T')(r) is trivial. a

13.9. In 13.9-13.11, we give preliminaries for the proofs of Thm. 12.5 and Thm. 12.6.
For a commutative ring R, let Q(R) be the total quotient ring of R. That is,

Q(R) = {ab™'; a,b € R,b is a non-zero-divisor}.

In this 13.9, we define the p-adic zeta element zfyp ) for v € Vp, (f), which appears in

Thm. 12.5, first as an element of H!(Vg, (f)) ®a Q(A). We will see in 13.12 that z(f)
belongs to H!(Vg, (f)).

Fix elements o, a2 of SL2(Z) and integers j1,j2 such that 1 < 5, < k—1 (i = 1,2)
and such that §(f,j1,01)% # 0, 6(f, j2,a2)” # 0. (13.6).

Let v € Vi, (f). We have

v = b18(f, j1,00)t + b28(f, ja, a2)”

for some by,by € Fy. Fix ¢,d € Z such that (cd,6p) =1, c=d =1 mod N, ¢ # 1,
d? # 1. Define 27 € H (Vi (f)) ®a Q(A) by

zfyP) = {p(c, d,j1)"" by - <C,dz§f,’) (f, k,jl,al,prime(pN)))n>l}

+
+ {/_L(C, d,jQ)_l . b2 . (c,dzz()ﬁ) (f7 k7j27a27prime(pN)))n>l}
where
u(e,d, j) = (& = F1 o) (& — & o) - [[(1 —@et 07 ) € A
)

for j € Z in which £ ranges over all prime numbers # p which divide N. It is easy to
see that u(c,d,7) is a non-zero-divisor of A for any j € Z.

By Thm. 6.6 and Thm. 9.7, if v € Vg(f) C Vg, (f) and x is a homomorphism
Goo — @x of finite order such that ¢2—c*~7x(c) # 0, d?—d’x(d) # 0 for j = j1, j» and
1 —a@el ~*x(€) # 0 for any prime number £ # p which divides N, the homomorphism

HI(VF,\ (f)) @A A[ru’_l] - S(f) F F)\ (:U' = /I’(c7 d?jl)/"(c’ d, .72))
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induced by (13.7.1) sends zsyp ) to an element of S (f) ® Q whose image under per IE
S(f) ®F Q — Vr(f) ®F C coincides with Ls(f*,x, k — 1) - v* where S = prime(pN)
and £ = x(-1).

Since H(VF, (f)) is a free A[1/p]-module of rank 1 (Thm.12.4 (2)), this shows that

zﬁ," ) is independent of the choices of a3, j1, a2, j2, ¢, d as above. This also shows

7)) = —o-1(z).

since the action of 0_; on H!(VF, ) commutes with the action of —x(—1) on S(f)®rFx
via the map (13.7.1).
We express the elements

(C,dz,(,’f.) (f,k,3,a(A), prime(pA))) and (c,d z(® (f. k4,0, prime(pN)))

n=1 n2=1

(a € SLy(Z)) by using 2.

Lemma 13.10. — We have the following equalities in H(VE, (f)) ®a Q(A).

(1) Let 1< j<k—1,a,A€Z, A>1, and c,d be integers such that (c,6pA) =
(d,6pN) =1. Then

(c,dz;,@ (f, k. d, a(A),prime(pA)))n>l - {H(l N +g(e)e—k_1%—z)}.
i 4

(2P — F1 T d?0.2P) — Fdi M e(d)ogz®) + FH At e(d)oeaz )
where £ ranges over all prime numbers # p which divide A, and
"= 6(f7.77a(A))7 2 :6(f,]’ ac(A)),
73 = 6(f,J, “a/d” (4)), 74 = 0(f, 4, “ac/d” (A)),

Here “a/d” means any integer b such that bd = a mod A, and “ac/d” means any
integer b such that bd = ac mod A.

(2) Let 1 € j < k—1, a € SLy(Z), and let c,d be integers such that (cd,6p) = 1
andc=d=1mod N. Then

(13.10.1) (c,dz;,a?(f,k, j,a,prime(pN))) =

n>1

(¢ = FF1700)(d - o) { TT(1 - @t %07 )} -2} o)
where £ ranges over all prime numbers # p which divide N.

Proof. — By Thm. 12.4 (2), this is obtained by computing the images of the elements
in problem under the map (13.7.1) by using Thm. 6.6 and Thm. 9.7. O

Lemma 13.11. — Let A > 1 and let v be a homomorphism (Z/A)* — @x.

ASTERISQUE 295



p-ADIC ZETA FUNCTIONS OF MODULAR FORMS 231

(1) For integers c,d such that (c,6Ap) = (d,6ANp) = 1, we have

Z v(a) - (c,dzgf,) (f, k, k—1,a(A), prime(pA)))

>1 -
ae(Z/A)* "z

{H(l —al Fo; + E(e)e—k—laﬁ)}-

4

(2 — Au(e) toe)(d? — dre(du(d)oa) Y v(@)2F) 4 1 acay
a€(Z/A)*
in H (Vg (f)) ®A Q(A) ®0, Fa, where £ ranges over all prime numbers # p which
divide A.
(2) The element 3 ,c(z/a)x ¥(@)0(f,k — 1,a(A)) of Vr(f) ® Q is not zero if
Lyrime(a)(f*,v™ 1,k — 1) # 0 and if the conductor of v is A.

Proof. — (1) follows from Lemma 13.10 (1). We prove (2). The canonical pairing
(7.13.1)
()1 Ve(Y1(N)) X Vi,e(11(N)) — Q
induces
(,per(f*)): Vr(f) — C.
We have for A> 1 and a € Z,

(6(f, k —1,a(A)), f*) = (—2m)F1. AF-2. /0 f*(yi+a/A)yF2dy
From this, we obtain

S v(@)(8(f,k —1,a(4)), f*)
a€(Z/A)*
= (_1)k_1Ak_2 ) (k - 2)! : G(”v CA) . Lprime(A)(f*vV—lak - 1)'

where G(v,(4) is the Gauss sum. This proves 13.11 (2). 0O

13.12. In this 13.12, we prove Thm. 12.5 (1) and Thm. 12.6.

Let T = Vo, (f). Define Z(f,T) to be the A-submodule of H'(T") ®4 Q(A) gener-
ated by z,(,” ) for all v € T. On the other hand, let Z C H*(T) be the A-submodule in
Thm. 12.6.

By Lemma 13.10, we have Z C Z(f,T). We prove that Z(f,T)/Z is a finite group.
This will show that

Z(f,T) c H(T) ® Q = H' (V& (f)).

By 13.6 and by 13.10 (2), there is a non-zero-divisor u of A such that p- Z(f,T) C Z
and such that A/uA is p-torsion free. Hence it is sufficient to show Z(f,T), = Z,
for any prime ideal p of height one which does not contain p. Let p be such a prime
ideal, and let h be the map A — A/p, and embed A/p into Fy over O). Fix an
embedding Q — Fy over F. Take integers c,d such that (c,6p) = (d,6Np) = 1 and
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2 # 1, d?> # 1. By Thm. 13.5, there exist a power A of p and a homomorphism
v:(ZJA)* - Q" C _F_: of conductor A satisfying the following (13.12.1)-(13.12.4).

(13.12.1) Lipy(f*5v 1 k—1)#0
(13.12.2) 2 —cv(c) th(oe) #0
(13.12.3) d? — d*e(d)v(d)h(cq) # 0

(13.12.4)  Let £ be + (resp. —) if the image of —o—1 in A/p is 1 (resp. —1). Then
v(—1) = +.

Let L be the subfield of F5 generated over A/p by the values of v, and let p’
be the kernel of the homomorphism OL[[G]] — L induced by the canonical map
A — A/p C L by Op-linearity.

Let v € Vp(f). Let &+ be as in (13.12.4). Then the image of z(f) in HY(Vg, (f)) ®

Q(Ay) coincides with that of z.). By 13.11 (2), (13.12.1), (13.12.4),

vE=b- > v(a)s(f,k—1,a(4)) inVr(f)®rQ
a€(Z/A)*
for some b € Q. We have
zgp) =b- Z V(a)zgzz},k~1,a(A)) in H' (VE, (f)) @ Q(Ap) ®F, L.
a€(z/A)*

By 13.11 (1), (13.12.2), (13.12.3),

Z v(a) - (c,dzz(ﬁ) (f kb — 1,a(A),prime(pA))) it Z V(a‘)z((il()_)f,k-l,a(A))
a€(z/A)* "z a€(Z/A)x
for some p € (OL[[Goollpr)™, and hence 3,c(z/4)x V(a)zg’(’)f’k_l’a(A)) belongs to
Z ®A OL[[Goollpr in HY(VE, (f)) ®a Q(OL[[Go)lpr). Hence 2" also belongs to
Z ® OL[[Goellyr in H' (Vi (f)) ®4 Q(O[[Geolly)- This proves =" € Z,.

It remains to prove that zs,p ) (v € VF, (f)) has the property stated in Thm. 12.5 (1).

LetreZ, 1<r<k—-1let x: Gy — @X be a homomorphism of finite order, and
consider the composite map

(13.12.5) H'(Vr, (f)) = H' (Ve (f)(k — 1)) — HY(Qp(Gn), VR (F) (k = 7))

X S(F) @ F ®0 Q(Gpr) X S(f) @5 Fa

where the last arrow is

wRa®br— Z o(b)w ® ax(o).
OEGn
Let h : A — Fy be the ring homomorphism induced by k™ *x~! : Goo — F;\( , and let
p be the kernel of h. Then the map (13.12.5) is a A-homomorphism with respect to the
action of A on S(f) ®r F via h. Take integers c, d such that (c,6p) = (d,6Np) = 1
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and ¢® # 1, d?> # 1. By Thm. 13.5, there exist a power A of p and a homomorphism
v (Z/A)* - Q" C ?j\( satisfying (13.12.1)-(13.12.4). Let v € Vr(f). Let £ be
as in (13.12.4). Then the image of 2" in HY(Vg, (f)), coincides with that of z,(ypi).
By 13.11 (2), (13.12.1), (13.12.4), v£ =b- >ac@/ayx v(@)8(f, k —1,a(A)) for some
b € Q. We have

®) :
2P =b- Y v(@)zg) g1 aa)
a€(Z/A)X

> wl@) - (caz® (f, kb = 1,0(4),prime(pA)) ) _ = p- Y V(@)1 aa)
ae(zZ/A)x - a€(Z/A)*

where p = (¢* — ?v(c)"to.)(d? — d*e(d)v(d)os). Hence the image of A

(13.12.5) coincides with the image of

Z v(a) - (C,dzgfl) (f, k, k— l,a(A),prime(pA)))

a€(Z/A)*

under

n>=1
b (¢ = Av(e) T x(e) T THE® — de(d)u(d)x(d) T T

By Thm. 6.6 and Thm. 9.7, this image is an element of S(f) ® » Q whose image under
per; coincides with (mi)k=r = L (F* x, 1) - vE. O

13.13. We prove Thm. 12.5 (2) (3).

Thm. 12.5 (2) follows from Thm. 12.4 (2) and the fact that Z(f), # 0 for prime
ideals g of height 0 (13.7).

The inequality in Thm. 12.5 (3) is a consequence of the inequality in Thm. 13.4 (2).

It remains to prove the statement about the vanishing of HZ (Vg (f))p in
Thm. 12.5 (3). Assume H _(Vr, (f))p # 0. Let T be a Gal(Q,/Qy)-stable Ox-lattice

loc

of Vr, (f). By Tate’s local duality, the Pontrjagin dual of H2 (T') is isomorphic to

HO(QP(CP‘X’ )7 HomO,\ (Tv F)\/Oz\)(l))
Denote this Ox-module by C. If HZ (Vr, (f))p # 0, HZ (T) is not finite, and hence
C contains an Oy-submodule which is isomorphic to Fy/Oy. Since

Homo, (FA/Ox, C) € B®(Qp(¢pe=), Homp, (Vi (f), Fa)(1)),

this means that the last space is not zero. Hence Vp, (f) has a non-zero quotient repre-
sentation of Gal(Q,/Qp) over Fy on which the action of Gal(Q,/Q,) factors through
the canonical projection Gal(Q,/Q,) — Goo. Since Vg, (f) is of Hodge-Tate as a
representation of Gal(Q,/Q,) [Fal], it follows from [Se2, Chap.III, Appendix] that
this quotient representation has a non-zero quotient representation U of Gal(Q,/Qj)
over F) such that for some n > 0, the action of Gal(Q,/Q,((p)) on U is given by k"
for some 7 € Z. (x denotes the cyclotomic character as before.) Let C, be the p-adic
completion of Fy. Then

(13.13.1) Vi, (f) ®F, Cp ~Cp@®Cp(1—k)  [Fall.
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If U = Vg, , we have U Qp, Cp ~ Cp(r)®? which is a contradiction. Hence
dimp, (U) =1 and U ®p, Cp, ~ Cpy(r).

By (13.13.1), we have r € {0,1 — k}. On the other hand, the Frobenius operator
on Derys(Qp(¢pn), U) (Derys(Qp(Cpn ), ) means the Derys for the local field Qp(¢pn)) is
the multiplication by p~2", but by [Sa2], the eigenvalues of the Frobenius operator
on Derys(Qp(¢pn ), U) must have complex absolute value p(*=1)/2 (resp. p*/2) if f is
(resp. is not) potentially of good reduction at p. Hence —2r € {k — 1,k}. Since
r € {0,1 — k} and k > 2, this means k = 2 and r = —1 and that f is not potentially
of good reduction at p. Furthermore, the Ox-module C has Ox-corank 1. (If it has
corank 2, the action of Gal(Q,/Q,) on Vg, (f) factors through G, and then by Serre
[Se2, Chap.III, Appendix|, V&, (f) should be potentially of good reduction at p.)
By duality, HZ (VF, (f)) is a one-dimensional Fj-vector space, and is isomorphic to
U(-1) as a A-module. O

13.14. We prove Thm. 12.5 (4). Since T' = a - Vp, (f) for some a € FY under the
assumption of Thm. 12.5 (4) (see 12.8), we may assume T = Vp, (f). In this case,
since Z(f,T)/Z is a finite group, Z(f,T), C H}(T), for any prime ideal p of A of
height one. Since H'(T) is a free A-module under the assumption of 12.5 (4) by
12.4 (2), this means Z(f,T) C H(T). The inequality in Thm. 12.5 (4) follows from
Thm. 13.4 (3). O

14. Finiteness of Selmer groups and Tamagawa number conjectures

In this section, we prove results on finiteness of Selmer groups associated to modular
forms (Thm. 14.2). The proof is given completely in this section in the case f has no
CM and the proof for the CM case will be completed in §15. Thm. 14.2 in the CM
case has been proved in many cases (Rubin [Ru2), Guo [Gu], Han [Ha], Dee [DJ],...).
We also consider in this section the Tamagawa number conjecture for modular forms
(Thm. 14.5).

14.1. We define the Selmer groups of p-adic Galois representations of number fields
by the method of [BK2], as follows.

Let K be a finite extension of Q, let p be a prime number, and let T' be a free
Z,-module of finite rank endowed with a continuous actions of Gal(K/K). We define
the Selmer group Sel(K,T) Cc HY(K,T ® Q/Z) by

Sel(K,T) = Ker(H'(K,T ® Q/Z) — @H'(K,, T ® Q/Z)/ Image(H}(K,,T ® Q)))

where v ranges over all places of K, and H} is as in [BK2, §3]. (The notation f in H}
has nothing to do with our cusp form f.) We review the definition of H} For a finite
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dimensional Qp-vector space V endowed with a continuous action of Gal(K,/K,),
the subspace H} (K, V) of H'(K,, V) is defined by

HY(K,,V)=0 if v is archimedian,
Ker(H!(K,,V) — HY(K2,V)) if v is a finite place not lying over p,
Ker(H!(K,, V) — H (Ky, Berys ®q, V))

if v is a finite place lying over p.

H(K,, V) =

Here K* denotes the maximal unramified extension of F,.

If A is an abelian variety over K, the usual Selmer group Sel(K, A) of A coincides
with @, Sel(K, T;,(A)) where p ranges over all prime numbers.

In the case K = Q, we denote Sel(Q, T) simply by Sel(T).

In this section, we prove

Theorem 14.2. — Let K be a finite abelian extension of Q.

(1) Let r be an integer such that 1 < v < k— 1 and r # k/2. Then for any finite
place A of F and any Gal(Q/Q)-stable O-lattice T of Vr, (f)(r), Sel(K,T) is finite.
For almost all finite places \ of F, Sel(K,T) = 0 for any Gal(Q/Q)-stable Oj-lattice
T of Vi, ()(r).

(2) Assume k is even. Let x : Gal(K/Q) — C* be a character, and assume
L(f,x,k/2) # 0. Then for any finite place X\ of F and any Gal(Q/Q)-stable Oj-
lattice T of Vi, (f)(k/2), the “x-part” Sel(K,T)X) of Sel(K,T) is finite. For almost
all finite places \ of F, Sel(K,T)X) = 0 for any Gal(Q/Q)-stable Ox-lattice T of
Ve, (£)(k/2).

The above “x-part” is defined as follows. Let G = Gal(K/Q), and let I, C Z[G]
be the kernel of the ring homomorphism Z[G] — Q induced by x. Then, for a G-
module M, the x-part M) of M is defined by

M ={ze M; I, -z =0}
In 14.2 (2), L(f, x, s) means Lg(f,x,s) in which we identify x with the composite
homomorphism
(Z/m)* = Gal(Q(¢m)/Q) — Gal(K/Q) - C*
for the smallest integer m > 1 such that K C Q((w), and § = prime(m) =
{primes which ramify in K/Q}.

Corollary 14.3. — Let A be an abelian variety over Q such that there is a surjective
homomorphism J1(N) — A for some N > 1, where J1(N) denotes the Jacobian
variety of X1(N). Let K be a finite abelian extension of Q, let x : Gal(K/Q) — C*
be a character, and assume L(A,x,1) # 0. Then:

(1) The x-part Sel(K, A ®g K)X) of Sel(K, A ®q K) is finite.

(2) The x-part of A(K)X) is finite.
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In the case J1(IN) is replaced by Jo(N) and K = Q, this result is contained in the
work of Kolyvagin-Logachov [KoL]. In the case A is an elliptic curve with complex
multiplication, this result is contained in the work of Rubin [Rul] which generalized
the work of Coates-Wiles [CW].

We can replace the “x-parts” Sel(K, T)X), Sel(K, A ®qg K)X) and A(K)X) in 14.2
and 14.3 by the “x-quotients” Sel(K, T')(y), Sel(K, A ®q K)() and A(K)(,, respec-
tively, where M(,, = M /I, M for a G-module M. This is because the kernel and the
cokernel of the canonical map M®) — M, are killed by some non-zero integer, and
because for M = Sel(K,T'), Sel(K, A ®g K) or A(K), the kernel and the cokernel of
n: M — M are finite for any non-zero integer n.

I learned from Professor John Coates that the following result is deduced from
Cor. 14.3 by using the theorem of Rohrlich introduced in 13.5 (2).

Theorem 14.4. — Let A be an abelian variety over Q such that there is a surjective
homomorphism J,(N) — A for some N > 1. Then for any m > 1, UJ,, A(Q(¢imn)) s
finitely generated as an abelian group.

The argument to deduce 14.4 from 14.2 is given in Rohrlich [Rol, § 3] where he
considered the case A is an elliptic curve with complex multiplication by using the
result of Rubin [Rul].

The “anti-cyclotomic” analogues of Thm. 14.3, Thm. 14.4 were obtained by
Bertolini and Darmon [BD].

The following theorem is related to the Tamagawa number conjecture in [BK2].

Theorem 14.5. — Letr € Z, 1 <r <k — 1. Let p be a prime number, A a place of F
lying over p, and let T be a Gal(Q/Q)-stable Oy-lattice of Vi, (f)(r). In (1) (resp. (2)
and (3)) below, we assume L(f,k/2) # 0 in the case r = k/2 (resp. Lipy(f,k—1) #0
in the case r > k/2).

(1) H2(Z[1/p),T) is finite and ranko, (H(Z[1/p],T)) = 1.

(2) Let v be an element of Vg, (f), and let z be the image of zg,p) under

H' (VE, (f)) = H' (VR (£)(r)) — H'(Z[1/p], Vi, (£)(r)).

Let + = (=1)"~'. Then, if v* #0, z is an Fx-basis of H*(Z[1/p], Vr, (f)(r)).

(3) Assume p # 2. Assume either k > 3 or f is potentially of good reduction at p,
and assume further that the condition (12.5.1) in Thm. 12.5 (4) is satisfied. Let vy, z,
and £ be as in (2), and assume that vt is an Ox-basis of T(—r)*. Then we have

#(H*(Z[1/p),T)) < [H'(Z[1/p], T) : 2.

Here, [H(Z[1/p),T) : 2] is defined as follows. Let L be a finite extension of Q,
(we take Fy as L in the above), let M be a finitely generated Or-module such that
dimz, (M ® Q) = 1, and let z be a non-zero element of M ® Q. Take y € M and a
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non-zero integer ¢ such that z = ¢ 1y in M ® Q. We define
[M:z]=[M:0ry] O : COL]—l

(then this is independent of the choices of y and c).
The Tamagawa number conjecture in [BK2] generalized by [FP], [KK2] predicts

#(H(Z[1/p), T) = [H'(2[1/p],T) : 2]

in 14.5 (3).
The rest of §14 is devoted to the proofs of Thm 14.2 and Thm 14.5.

14.6. In this 14.6, we show that for the proof of Thm. 14.2, we may assume K = Q.
Let the notation be as in Thm. 14.2. Let G = Gal(K/Q). Then the following is

proved without difficulty:
Sel(K,T) = Sel(T ®z Z|G)) (dff Sel(Q, T ®z Z[G)))

where the action of Gal(Q/Q) on Z[G] is as follows:

(14.6.1) For o € Gal(Q/Q), o acts on Z[G) as the multiplication by the image of
o~ under the canonical map Gal(Q/Q) — G.

The normalization of Or[G] has the form [];c; Or, where (L;)cs is a finite family
of finite extensions of Q. Let ¢ be a non-zero integer which kills ([[;c; Or,)/Or[G].
Then the kernel and the cokernel of

Sel(T ®z Z|G]) —> Sel (T ®0r [lics oLi) = @ P Sel(T ®0, O,)
i€l v
are killed by ¢, where for each i, v ranges over all places of L; lying over A and O,
denotes the valuation ring of v, and where Gal(Q/Q) acts on Or, and on O, via
(14.6.1). Hence Sel(K,T) is finite if each Sel(T ®o, O,) is finite, and Sel(K,T) =0
if each Sel(T ®o, O,) is zero and A does not divide c. Let m > 1 and S be as in the
remark after Thm.14.2, and for ¢ € I, let

v : (Z/m)* — C*
be the composite map:
(Z/m)* — G — Z[G)* — (Or,)* c Q" c C¥,

and let f; = Zn>1 an;q" be the normalized newform such that Lg(fi,s) =
Ls(f,vi,s). (Hence an,; = apvi(n) if n is prime to m.) Let F; = Q(an,;n > 1) C L;.
Let v be a place of L; lying over A, and let w be the place of F; lying over v. Then by
comparing the action of Frobenius substitutions of prime numbers which are prime
to Nm, we see that Vi, (f) ®r, Li» with the action (14.6.1) of Gal(Q/Q) on L;,
is isomorphic to Vg, , (f;) ®F,. Liw» with the trivial action of Gal(Q/Q) on L.,
as a representation of Gal(Q/Q) over L;,. Take any Gal(Q/Q)-stable O,,-lattice
T" of Vg, ,(fi). Then both T ®o, O, (here Gal(Q/Q) acts on O, via (14.6.1))
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and T’ ®o,, O, (here Gal(Q/Q) acts on O, trivially) are regarded as Gal(Q/Q)-
stable O,-lattice of Vg, (f) ®F, Li . Since Sel(T' ®o,, Oy) = Sel(T’) ®o,, O, (here
Gal(Q/Q) acts on O, trivially), the finiteness (resp. the vanishing) of Sel(T ®o, O.,)
(here Gal(Q/Q) acts on O, via (14.6.1)) is reduced (resp. reduced for almost all A
by Lemma 14.7 below) to the finiteness (resp. the vanishing) of Sel(7'). Concerning
the x-part, Sel(K,T)X) = Sel(T ®z Z[G])*X). The image of x : Q[G] — C is some of
the number fields L; which appeared when we took the normalization of Z|G] in the
above argument. The kernel and the cokernel of

Sel(T ®z(¢) OLi)(X) — Sel(T ®z(¢) OL,)

are killed by the non-zero integer ¢ which appeared in the above argument. Hence
the finiteness of Sel(K,T)X) (resp. the vanishing of Sel(K,T)™) for almost all \) is
reduced by the above argument to the finiteness (resp. vanishing) of Sel(T") where T’
is as above.

Lemma 14.7. — Almost all finite places A of F satisfy the following condition: For
any finite extension P of F) and for any two Gal(Q/Q)-stable Op-lattices T, T' of
Ve, (f) ®F, P, there exists a € P* such that T' = aT'.

Proof. — Here we give the proof in the case f has no CM. The proof for the CM case
will be given in 15.19.

Assume f has no CM. Then as in (12.8.1), for almost A, there exists an F-basis
(e1,€e2) of Vg, (f) such that Oxe; + Ojxeq is stable under Gal(Q/Q) and the image of
the homomorphism Gal(Q/Q) — GL2(O,) associated to this basis contains SLy(Z,).
We show that such X satisfies the condition stated in 14.7. Let T be a Gal(Q/Q)-
stable Op-lattice of Vg, (f) ®F, P. Let a1e1 + azez € T(a; € Op). Then by applying

§1),(19) € SLa(Zyp) to arer + azez, we obtain azey,arez € T. By applying (9
to agze1, aiez, we obtain aje;, azez € T. This shows that T = a(Ope; + Opey) where
a is a generator of the fractional Op-ideal generated by all a;,a2 € P such that
aje; + agzeq € T. O

14.8. In general, for a finite extension K of Q and for a free Zy-module T of finite
rank endowed with a continuous action of Gal(K/K), let

S(K,T) = Ker(H'(Ok([1/p], T ® Q/Z) —
@D H (K., T ® Q/Z)/ Image(H} (K., T ® Q))).

v|p

where v ranges over all places of K lying over p. Then Sel(K,T) C S(K,T) and
S(K,T)/Sel(K,T) is a finite group which is embedded into the direct sum of

H'(F,, H*(K,", T®Q/Z))/Image(H} (K., T®Q))) = H' (Fv, H* (K", T®Q/Z))/(div)

where v ranges over all finite places of K not lying over p and div denotes the divisible
part. (The last group is zero if T is unramified at v.).
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In the case K = Q, we denote S(Q,T) by S(T)).

For the proof of Thm 14.2, it is sufficient to prove the following : Assume 1 < r <
k— 1. If k is even and r = k/2, assume L(f,r) # 0. Then S(T') is finite for any
Gal(Q/Q)-stable Ox-lattice T of Vg, (f)(r), and for almost all A\, S(T') = 0 for any
Gal(Q/Q)-stable Ox-lattice T of Vg, (f)(r).

14.9. We give preliminaries on the duality theory of étale cohomology for global and
local fields ([FL], [FP], [KK1]).

Let K be a finite extension of Q, let L be a finite extension of Qp, and let T
be a finitely generated Op-module endowed with a continuous Op-linear action of
Gal(K/K) which is unramified at almost all finite places of K.

By the duality theory of Poitou-Tate [Tal, Ma2|, we have sequences of Or-modules

(14.9.1) 0 — H°(Ok[1/p],T) — HY(K ® Q,, T)
— {H?(Ok[1/p], T*(1) ® Q/Z)}* — H'(Ok(1/p],T) — H'(K ® Q,,T)
— {H'(Ok[1/p], T*(1) ® Q/Z)}* — H*(Ok[1/p),T) — H*(K ® Q,,T)
— {H°(Ok([1/p],T*(1) ® Q/Z)}" — 0

(14.9.2) 0 — H°(Ok[1/p], T ® Q/Z) — H*(K ® Qp, T ® Q/Z)
— {H*(Ok[1/p], T*(1))}" — H'(Ok(1/p], T ® Q/Z)
— HY(K ® Q,, T® Q/Z) — {H'(Ok[1/p], T*(1))}"
— H*(Ok[1/p), T © Q/Z) — H*(K ® Qp, T ® Q/Z)
— {H°(Ok[1/p], T* (1))} — 0
(T* = Homo, (T,0r) endowed with the dual action of Gal(K/K), and { }¥ =

Homo, ( ,L/OL)), which are exact in the case p # 2, and exact upto X2 in the
case p = 2. Here we say that a sequence of abelian groups

fi Sit1

Ci+1

is exact upto x2 if 2 - Image(f;) C Ker(fi+1) and 2 - Ker(fi+1) C Image(f;) for all 4.
We have the local Tate duality

{H(K®Q,, T*(1)®Q/2)} =B (K ®Qy,T)  (¢€Z).

If v is a place of K lying over p and V = T ® Q is de Rham as a representation of
Gal(K,/K,), we have the duality ([BK2], §3)

{HY(K,,T*(1) ® Q/Z)/Image(H}(Kv, V*(1)} ~ H}(Kv, T)
where H} (K, T) C H' (K, V) denotes the inverse image of H}(K,, V) C H'(Ky, V).

Hence, if V is de Rham as a representation of Gal(K,/K,) for any place v of K lying
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over p, we obtain from (14.9.1) a sequence of Op-modules
(14.9.3) 0 — H'(Ok[1/p],T)/H}(Ok[1/p), T)
~ HY(K © Qp, T)/H}(K ® @y, T) — {S(K,T"(1))}
— H?(Ok[1/p],T) — H*(K @ Qp, T)
— {H(Ok[1/p], T*(1) ® Q/Z)}* — 0
(here we define H}(K ®Qp, ) to be the direct sum of H}(K,, ) for places v of K lying
over p, and H} (Ok([1/p], T) to be the inverse image of H} (K ®Qy, V) C H'(K®Qp, V)
in HY(Ok[1/p],T)), and from (14.9.2) a sequence of Op-modules
(14.9.4) 0 — S(K,T) — HYOk[1/p], T ® Q/Z)

L, HY (K ® Qp T © Q/Z)/ Image(H: (K © Q,, V)

— {H}(K ® Qp, T* (1))} — H?*(Ok[1/p], T ©® Q/Z)
— HX(K ®Q,, T ® Q/Z) — {H%(Ok[1/p], T*(1))}Y — 0
which are exact in the case p # 2, and exact upto x2 in the case p = 2.

We will use also the following results of Euler-Poincaré characteristics which are
deduced from Tate [Ta2, Thm. 2.2]. Assume K = Q (we will need only this case).

(14.9.5) Z(—l)qrankoL (HY(Z[1/p),T)) = —ranko, (T7).
qEZ
(14.9.6) > (—1)%ranko, (HY(Qp, T)) = —ranko, (T).
qEZ

14.10. We review some basic properties of the Galois representation Vg, (f). The
following are known (see [Ca, Sal, Sa2]):

(14.10.1) Vg, (f*) is isomorphic to Homp, (Vr, (f), F))(1 — k) as a representation
of Gal(Q/Q) over Fx. Hence for r € Z and for a Gal(Q/Q)-stable lattice T of
Vi, (£)(r), T*(1) is isomorphic to a Gal(Q/Q)-stable Oy -lattice of Vi, (f*)(k —7) as
a representation of Gal(Q/Q) over Oy.

(14.10.2) The action of Gal(Q/Q) on detr, (Vr, (f)) is given by k'~ e~ where & is
the cyclotomic character and € is regarded as the character of Gal(Q/Q) by

Gal(Q/Q) — Gal(Q(¢n)/Q) ~ (Z/N)* - F*.
(14.10.3) For any prime number £ which is not divided by X,
detr, (1 — Fry u; HO(QY, Ve, () = 1 — agu + ()¢5 1.

Here Fry is the arithmetic Frobenius of £. (H°(QY*, ) means the fized part by the
inertia subgroup of Gal(Q,/Qy).)
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(14.10.4) For the prime number p lying under X,
detr, (1 — ¢t ; Derys(Qp, Vi (£))) = 1 — apu +e(p)p*~1u®.
where ¢ is the Frobenius operator.

(14.10.5) Let £ be a prime number and let a be an element of Q such that 1 — au
divides 1 — agu + e(£)0F~u2. Then |a| = £*-~D/2 or |a| = £*=2/2_ [f ¢ does not
divide N, then |a| = £*~V/2, In particular, Thm. 18.5 (1) implies that Lg(f,s) has
no zero on {s € C; Re(s) > ££L} for any finite set of primes S.

Proposition 14.11. — Let r € Z.

(1) For any finite place A of F and for any Gal(Q/Q)-stable Ox-lattice T of
Ve, ()(r), HYQ, T ® Q/Z) is finite.

(2) For almost all finite places A\ of F, we have H(Q,T ® Q/Z) = 0 for any
Gal(Q/Q)-stable Ox-lattice T of Vi, (f)(r).

Proof. — (1) follows from H(Q, VF, (f)(r)) = 0. We prove (2). Let ¢ be a prime
number which does not divide N and which A does not divide. Then by (14.10.3),
the action of 1 — a¢Fry + 6(€)€k_1Fr§ is zero on Vg, (f), and hence 1 — az¢~"Fr, +
e(€)f*~1=2"Fr2 = 0 on T ® Q/Z. Since Fr, acts trivially on HY(Q,T ® Q/Z), we
have that 1 — agl™" + e(£)¢*~1~%" = 0 on H°(Q,T ® Q/Z). If we can prove there
exists a prime number £ which does not divide N and which satisfies 1 — agl™" +
e(£)€k—1=27 +£ 0, then we have that H*(Q,T ® Q/Z) = 0 in the case A does not divide
L(1—ael~"4e(£)fF1727). Assume 1—apl™"+¢(£)€*~1=2" = 0 for all prime numbers ¢
which do not divide N. Then

L= ael™ +e(O0 7175 = (1 - £7*)(1 = £(O)*1777)
for all prime numbers ¢ which do not divide N, and hence we have
LS(fyS) = (S(S — T)LS(E,S —k+1+ ,’.)

where S = prime(N), which is absurd. O

Proposition 14.12. — Assume 1 < r < k—1. Let p be the prime number lying under .
Then:

(1) dimp, (H(Qp, Vr, (£)(r))) = 2.
(2) dimp, (H}(Qp, Vi ()(r))) = 1.
(3) HY(Qp, VR, (f)(r)) = 0 for ¢ # 1.

Proof. — By the result on lim H2(Qp(Cpn), Ta(f)) in Thm. 12.5 (3), we have
H(Qy, Vi, (£)(1) = 0 for g # 1.
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By (14.9.6), we have dimp, (H'(Qp, Vi, (f)(r))) = 2. From the exact sequence

0 — H%(Qp, Vi, (f)(r)) — Derys(Vey (1))
— Derys(Vr, (f)) @ Dar(Vr, (£))/Dar (Vr (f))
— H}(Qp, VE, (f)(r)) — 0
[BK2, §3], we have

dimp, (H}(Qp, Vi, (£)(r))) = dimp, (Dar (Vr, ())/Dar(Vr, (f))) = L. O

14.13. Let r € Z,1 < r < k— 1. In the case r = k/2, assume L(f,k/2) # 0. In
this 14.13, we prove (1)(2) of Thm. 14.5 and the finiteness of S(T') for any Gal(Q/Q)-
stable Oy-lattice T of Vg, (f)(r), by using Thm. 12.5 (3) (the proof of Thm. 12.5 (3)
in the CM case will be given in §15).

Let + = (—1)"7!, let -y be an element of Vx(f) such that y* # 0, and let z be the

image of z,(,,p ) under the composition

(14.13.1) H' (VE, () — B (Vr, ())(r) — HY(Z[1/p], VF, ()(r)).

Then the image of z under

exp*

H' (Z[1/p], Ve, (N)(r) — H'Qp, Ve (N (r)/HH (@, Vi, (£ (1) —2— S(f) ©r Fy
is an element of S(f) whose image under per; : S(f) — Ve(f)* coincides with
Lpy(f, k—7)-~vE. (exp* kills H}(Qyp, ); [BK2, §3]). This shows that if L{,}(f,k—r) #
0, the image of 2 in H'(Qp, Vi, (f)(r))/H}(Qp, Viry (£)(r)) is not zero.

We prove the finiteness of H?(Z[1/p], T) in the case r < k/2. Let p be the kernel
of the Ox-homomorphism

A — Oy

which sends o, (¢ € Zp,*) to ¢". Then the map (14.13.1) factors through
H' (Ve (£))p/pPH(VE, (f))p- Since Lypy(f,k —r) # 0 by 13.5 (1) and 14.10.5,
we see that the image of " in H'(Vg, (f)) is a Ap-basis of H(Vi, (f))p. Hence
H?(VE, (f))p = 0 by Thm. 12.5 (3). Since

H2(Z[1/p], Vi, (£)(r)) = H?(V, (£))p/pH? (Vi () (7),

we have H2(Z[1/p], Vr, (f)(r)) = 0. This proves the finiteness of H?(Z[1/p], T).

We prove ranko, (H!(Z[1/p],T)) = 1 in the case r < k/2. This follows from the
finiteness of H%(Z[1/p], T) and H°(Z[1/p],T) = 0 by (14.9.5).

We prove the finiteness of S(T') in the case r > k/2. By the duality (14.10.1),
it is sufficient to prove the finiteness of S(7*(1)) in the case r < k/2. Consider the
sequence (14.9.3) (we put K = Q). Since the image of z € H'(Z[1/p], Vr, (f)(r)) in
the one dimensional Fy-vector space H'(Qp, Vi, (f)(r))/H}(Qp, VF, (f)) is not zero,
the cokernel of

H'(Z[1/p), T) — H'(Qy, T)/H}(Qy, T))
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is finite. Furthermore, H2(Z[1/p],T) is finite as we have already seen. Hence by the
sequence (14.9.3), we obtain the finiteness of S(T*(1)).
We prove the finiteness of S(T") in the case r < k/2. Consider the part

(14.13.2) 0 — S(T) — H'(Z[1/p], T ® Q/Z)
— H'(Qp, T ® Q/Z)/ Image(H}(Qp, V))
of (14.9.4) (we put K = Q). Since H!(Z[1/p],T) has Oj-rank 1 as we have seen,

H'(Z[1/p), T ® Q/Z) has Ox-corank 1. The last group in (14.13.2) also has Ox-
corank 1 by 14.12 (1) (2). By the fact that the image of z in

HY(Qp, VE, (£)())/HE(Qp, Vi, (H)(1))

is not zero, the last arrow in (14.13.2) has finite cokernel. Hence we have the finiteness
of S(T).
We prove the finiteness of H2(Z[1/p],T) in the case 7 > k/2. By the sequence
(14.9.3), this follows from the finiteness of S(7*(1)) and the finiteness of H2(Q,, T').
We prove ranko, (H'(Z[1/p],T)) = 1 in the case r > k/2. This follows from the
finiteness of H2(Z[1/p], T') and H°(Z[1/p],T) = 0 by (14.9.5). O

14.14. We prove Thm. 14.5 (3).

Let p be the kernel of the O\-homomorphism A — O, which sends G to 1. Since
A is a finite product of regular local rings, p is a principal ideal. Let a be a generator
of p. By the argument as in 13.8, we have an exact sequence

(14.14.1) 0 — HY(T)/aHY(T) — HY(Z[1/p),T) — H*(T) — 0
and an isomorphism
(14.14.2) H*(T)/aH*(T) ~ H*(Z[1/p),T).

By Lemma 14.15 below which we apply by taking A as A and H?(T) and
HY(T)/Z(f,T) as M, we obtain from 12.5 (4)

#(H*(T)/aB*(T)) - #(H*(T))™" < [H'(T)/aH'(T) : 2]

where ,( ) denotes Ker(a) and z is the image of sz’ ) under (14.13.1) for an Oy-basis
~ of T(—r)~. Hence

#(H2(Z[1/p],T)) = #(H*(T)/aH?*(T)) (14.14.2)
< #(H*(T)) - [HY(T)/aH(T) : 2]
= [HYZ[1/p],T): 2] (14.14.1).

Lemma 14.15. — Let A be a Noetherian commutative ring, let C be the category of
finitely generated A-modules M such that the support of M in Spec(A) is of codimen-
sion = 2, and let G(C) be the Grothendieck group of the abelian category C. Let M
be a finitely generated A-module whose support is of codimension > 1, let a € A, and
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assume that My = 0 for any prime ideal p of height one which contains a. Then
M/aM and ;M = Ker(a: M — M) belongs to C, and we have

[M/aM] — [.M] =) lengthy,, (Mq)-[A/(q + ad)]
q

in G(C), where q ranges over all prime ideals of A of height one which do not contain
a, and where [] denotes the class in G(C).

Proof. — The A-module M has a finite filtration whose graded quotients satisfy the
following (i) or (ii) :

(i) It belongs to C.

(ii) It is isomorphic to A/q for a prime ideal q of A of height one which does not
contain a.

Hence we are reduced to the case M itself satisfies (i) or (ii). O
Proposition 14.16 (See Flach [Fla] for a more general study). — Let r € Z, 1 < r <

k — 1. In the case r = k/2, assume L(f,k/2) # 0. Let T be a Gal(Q/Q)-stable
Ox-lattice of Vi, (f)(r). Then

(1) #(8(T)) = #(5(T*(1)))

(2) Assume r < k/2, let v € Vg, (f), and let + = (—1)""1, and assume y* is an
Ox-basis of T(—r)% = T~ (—r) and let z € HY(Z[1/p), Vi, (f)(r)) be the image of z{P
under (14.13.1). Then

#(S@T) =p~! v #HY(QT ®Q/Z)) - #(H°(Q, T*(1) ® Q/Z))

where
p=[HY(Z[1/p),T): 2] - #(H*(Z[1/p), T)) ",
v=[H(Qp, T)/H}(Qp, T) : 2] - #(H*(Qp, T)) "
Here in the definition of v, we denote the image of z in HI(QP,T)/H}(QP,T) by the

same letter z.

Proof. — By the duality (14.10.1), we may assume r < k/2 in the proof of (1). Hence
we assume 7 < k/2.

Consider the exact sequence (14.9.3) (we put K = Q). Since H!(Z[1/p],T) and
H'(Z[1/p], T)/H}(Z[1/p],T) are of rank 1 over O, and the latter is torsion free,
we have that H}(Z[1/p],T) coincides with the torsion part H(Q,T ® Q/Z) of
H(Z[1/p],T). Hence by the exact sequence (14.9.3), we obtain

#(S(T* (1) =p~ ' -v- #(HY(Q, T ®Q/2)) - #(H°(Q, T*(1) ® Q/Z))
For a homomorphism h of abelian groups whose kernel and the cokernel are finite, let

[h] = #(Coker(h)) - #(Ker(k))™".
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Let a,b be the arrows as in (14.9.3), (14.9.4). Then the kernels and the cokernels of
a,b are finite as we have seen. By the exact sequences

0 — H'(Z[1/p], T)/H}(Z[1/p],T) ® Q/Z
— H'(Z[1/p),T) ® Q/Z — B*(Z[1/p],T) — 0,

0— H' (QP’T)/H}(QP’ T)®Q/Z
— HY(Q,, T ® Q/Z)/ Image(H}(Qp, V) — H*(Qp, T) — 0,
we have
(14.16.1) [a] - [B] = #(H*(Qy, T)) - #(H*(Z[1/p), T)) .

Consider the sequence (14.9.4). Since H%(Z[1/p],T) is finite, and since the p-
cohomological dimension of Spec(Z[1/p]) is 2, we have

H2(2[1/p], T ® Q/Z) ~ HA(Z[1/p], T) ® Q/Z = 0.
By the finiteness of S(T*(1)), we have that H}(Z[l/p], T*(1)) is finite and hence
H}(Z[1/p), T*(1)) = H(Z[1/p], T* (1) ® Q/2Z).

Hence by the exact sequence (14.9.4), we obtain

(14.16.2) #(S(T)) = [b]7' - #H(2[1/p), T*(1) ® Q/Z)).
On the other hand, by the exact sequence (14.9.3), we have
(14.16.3)

#(S(T*(1)) = la] - #(H*(Z[1/p], T)) - #(H*(Qp, T)) ! - #(H(Z[1/p], T* (1) ® Q/2)).
By (14.16.1), (14.16.2) and (14.16.3), we have
#(S(T)) = #(5(T*(1))). o

14.17. We next relate the number v in Prop.14.16 to the A-adic absolute value of
(zeta value)/(period), by the method in [BK2, § 4] basing on the theory of Fontaine-
Lafaille in [FL].

We review necessary things in [FL].

A filtered Dieudonné module D (called simply “filtered module” by Fontaine, and
called “Fontaine module” by Ogus) over Z,, is a Z,-module of finite type endowed with

— a decreasing filtration (D%);cz where the D are direct summands of D,

— a family of homomorphisms ¢; : D' — D,
satisfying the following (i)-(iii).

(i) D' = D for i < 0 and D = 0 for i > 0.

(i) pilpi+r = PPit+1-

(il)) D =3 ez 9:(D").
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The category of filtered Dieudonné modules over Z, is abelian.
The condition (ii) shows that there is a unique homomorphism

¢»:D®Q—D®Q
over Q, such that ¢; on D! ® Q coincides with the restriction of p~*¢. This map ¢
is bijective.
To a filtered Dieudonné module D satisfying the condition
(14.17.1) D! = D and DI = 0 for some integers i,j such that j —i < p,
Fontaine and Lafaille [FL| associated a finitely generated Z,-module T'(D) endowed

with a continuous action of Gal(Q,/Qy), as follows. Take r € Z such that D™t! =0
and D™+2P = D. Define

T(D) = Ker(1 — ¢, : il"(Boo(Zp/Zyp) ®z, D) — Boo(Zp/Zy) ®z, D) ®z, Zp(—1)
where Z,, is the integral closure of Z, in Q,,
f1"(Boo(Zp/Zp) ®2, D) = Y J(Z/Zp)") ® D"~* C Boo(Zp/Zp) ®2, D
i>0

(with notation as in 10.1) and ¢, is the unique homomorphism which coincides with
P ® pr_i on J(Zp/Zp) ® D"  for 0 < i < p—2. (For 0 < i < p-—1,
since p(J(Zp/Zp) ) C p'Boo(Zyp/Zy) and Boo(Zyp/Zy) is torsion free [FM], p~ip :
J(Zy/2,) ") — Boo(Z,/Z,) is defined.) Then T(D) is independent of the choice of =
as above; for two choices 7,7’ such that » < 7/, the canonical map z — trrr @t
with t a basis of Z,(1) is an isomorphism from T'(D) defined by using r onto T'(D)

defined by using 7’
By [FL], we have:

(14.17.2) The functor D — T(D) for D satisfying (14.17.1) with fized i and j is
ezact and fully faithful. If D satisfies (14.17.1) for (i,j) and D’ satisfies (14.17.1) for

(@,5") (=i <p,j' =3 <p), and if (j+35') = (i+i') <p (resp. (' —i)—(+j—1) <p),
then

T(D ®z, DI) ~ T(D) ®z, T(D’)
T(Homgz, (D, D'")) ~ Homg, (T'(D),T(D"))

Here the filtered Dieudonné module D ®z, D' is defined in the evident way and
the filtered Dieudonné module Homgz, (D, D’) is defined by

Homgz, (D, D’)* = {h € Homgz, (D, D’); h(D?) C D**7 for all 5}
@i(h) (h € Homg, (D, D')} Z% (z;) (z; € DI) —> Z(p,ﬂh(w])

(We will use these for Tate twists (a spemal case of tensor products) and for the dual
Homgz, (,Zy).)
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(14.17.3) T(D) ® Q is a de Rham representation of Gal(Q,/Qp) and the canonical
map T (D) — Bar ® D induces an isomorphism

D4r(T(D)®Q) — D®Q

which gives an isomorphism of filtrations.

In the following 14.18, for finitely generated Z,-modules M;, M; and for an iso-
morphism of Q,-modules

h:M1®Q_>M2®Q7

let [h] (denoted also by [h: M; -+ Mz ]) be the number defined as follows. Take a
Zy-lattice M3 in My ® Q such that the image of M; in M; ® Q and the canonical
image of My in My ® Q are contained in M3. Define

[h) = #(Coker(h : M1 — M3)) - #(Ker(h : M1 — M3))™!
- (Coker(My — M3))™ ! - #(Ker(My — M3)).
Then [h] is independent of the choice of M3. In the case h comes from a Q-

homomorphism EN: M; — M, whose kernel and cokernel are finite, [h] = #(Coker(h))-
#(Ker(h))~! = [h] with [h] as in the proof of Prop.14.16.

Lemma 14.18. — Let D be a torsion free filtered Dieudonné module over Z,, and
let D' be the filtered Dieudonné module Homz,(D,Zy)(1). Assume the following (i)
and (ii).

(i) There are integers i,j such that i <0< j, D' =D,D =0 and j —i < p.

(ii) The map 1 —p: D' @ Q — D’ ® Q is bijective
Then

exp® : H(Q,, T(D) ® Q)/H}(Qp, T(D) ® Q) — D’ @ Q

is bijective, H2(Q,, T'(D)) is finite, and

[exp* : HY(Qp, T(D))/H}(Qp, T(D)) --» D°] - #(H?*(Qyp, T(D)))
=[l—¢: D »D].

(The condition on 1—¢ of D’®Q in Lemma 14.18 (ii) is equivalent to the bijectivity
of 1 —p7lp 1 : D®Q — D ®Q. We have

[I_SD:D/ ..... >Dl]=[1—P_1<P_13D .... >D])

Proof. — Lemma 14.18 is the dual formulation of [BK2, Thm 4.1] ; the map exp* in
14.18 is the Qp-dual of

exp: D'/(D')° ® Q — H}(Q,, T(D)) ® Q,
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and hence is bijective by [BK2, Thm 4.1], and H?(Q,, T'(D)) ® Q is the Q,-dual of
H°(Q,, T(D")) ® Q = 0. Furthermore [BK2, Thm 4.1 (iii)] shows

lexp: D'/(D")° - H}(Q,,,T(D’))] =[1-¢: D' +D].
Let

P =HY(Qp, T(D) ® Q/Z)/ Image(H' (Qy, T(D) ® Q)).
Then we have an exact sequence
0 — H'(Qp, T(D))/H}(Qp, T(D)) ® Q/Z — P — H*(Qy, T(D)) — 0.
By taking Hom(,Q/Z) of this exact sequence and by using the duality
H}(Qp, T(D")) ~ Hom(P, Q/Z)

[BK2, Prop. 3.8], we obtain an exact sequence
0 — Hom(H*(Q,, T(D)), Q/Z) — H}(Q,, T(D"))
— Hom(H'(Q,, T(D))/H}(Qp, T(D)), Zp) — 0.
From this, we have
[exp* : H'(Qp, T(D))/H}(Qp, T(D)) --» DO

=[D'/(D")° > Hom(H'(Qp, T(D))/H}(Qp, T(D)), Zy)]
= [exp* : D'/(D")? > H}(Qp, T(D"))] - #(H?*(Qp, T(D)))™*
=[1—¢: D D' - #H*(Qp, T(D))) " =

Correction 14.19. — In this opportunity, we correct a mistake in [BK2, §4] : All H!
in Lemma 4.5 should be corrected as H}

14.20. Let p be a prime number which does not divide N. Then for any place A of

F lying over p, VF, (f) is a crystalline representation of Gal(Q,/Q,). Hence by [LG],

there exists an Oy-lattice D of Derys(Vr, (f)) = Dar (Vr, (f)) which satisfies ¢(D*) C

p'D? for all i € Z (D* = D N Dig (Ve (f))) and (D, (D%);, (p~*won D%);) is filtered
€

Dieudonné module (Such D is called a strongly divisible Oy-lattice in Derys(VE, (f)))-

If furthermore p > k, then T'(D) C Vg, (f) is defined.

Proposition 14.21. — Let r € Z, 1 < r < k/2. In the case r = k/2, assume
L(f,k/2) # 0. Let p be a prime number which does not divide N satisfying p > k,
and let \ be a place of F lying over p. Let D C Derys(Vr, (f)) be a strongly divisible
Ox-lattice, and let T = T(D)(r) C Vg, (f)(r). Let + = (—=1)"!, take w € Sr(f)
and v € Ve (f) such that w is an Ox-basis of D'(= D*~') and v* is an Oy-basis of
T(—r)t = T~(~-r), and define Q € C* by pelrf(cu)i =Q -yt Let u and v be as in
Prop. 14.16 (2) (defined with respect to T and ). Then
(1) v =[Oy : (2mi)""LL(f*, k — 7)/9).
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(2) #(S(T(r)) = p=' - [Ox + @mi)"'L(f*,k —r)/Q] - #(H(Q, T ® Q/Z)) -
#H(Q,T*(1) ® Q/Z)).
Proof. — (2) follows from (1) and Prop. 14.16. We prove (1). We apply Lemma 14.18
to the filtered Dieudonné module D(r). Let m = k — r. Then the filtered Dieudonné
module D(r)" = Homgz, (D(r),Z,)(1) has the property that D(r)’ ® Q is isomorphic
t0 Derys (Vi (f*)(m)) as a Qp-vector space with an operator . Hence we have
[L—¢: D> D'] =[Ox:det, (1 =P~ " Derys(VFa (f*)))]
= [Ox: 1 =app™ ™ +E(P)p" 172"
By this and by
[H'(Qp, T)/H}(Qp, T) : 2] - [exp* : HY(Qp, T)/H}(Qp, T) > D] = [D" : exp*(2)].
we have
[D7 : exp*(2)] = v - [Ox: 1 —Gpp~ ™ +E(p)p"~172™].

On the other hand, since

per(exp® (2))* = (1~ Tpp™ ™ + E()p*~1 M) - L(f*,m) - (2mi) I,
we have

exp*(2) = (1 = @pp~ ™ +E(p)* 1 72™) - (((2m) "' L(f*,m))/Q) - w.
This shows

[D7 : exp®(2)] = [Ox : (1 = @pp™™ +E(p)P" 1 72™) - (((20)" ' L(f*,m))/Q)).

By comparing those two expressions of [D” : exp*(z)], we obtain Prop.14.21 (1). O

14.22. We complete the proof of Thm. 14.2. Let r be an integer such that 1 < r <
k — 1. In the case r = k/2, assume L(f, k/2) # 0. We have already shown that S(T’)
is finite for any finite place A of F' and any Gal(Q/Q)-stable Ox-lattice of Vg, (f)(r).
It remains to show that S(T") is zero for almost all finite places A of F' and for any
Gal(Q/Q)-stable Oy-lattice T' of Vg, (f)(r).

By 14.16 (1) and by the duality (14.10.1), we may assume r < k/2. Let + =
(=1)""!, take a non-zero element w of Sr(f) and an element v of Vz(f) such that
~% £ 0 and define Q € C* by perf(w):t =Q-~*,

Take a multiple N’ of N such that N’ > 3, and let X be a proper smooth scheme
over Z[1/N'] such that X ® Q ~ KSi(N").

By Fontaine-Messing [FM], if p does not divide N’ and p > k, H*~!(X, Q}/Z) ®
Z, has a structure of a filtered Dieudonné module whose filtration is given
by (H*1(X,0%);) ® Zp)i, and HF"1(KSk(N') ®q Qp,Zp) is identified with
T(H*1(X, Q% /z) ® Zp) as a finitely generated Zp-module with an action of
Gal(Q,/Qy,). For such p and for a place A lying over p, let Dy be the image of

(H* (X, Q%/2) ® Ox)(€) — Derys(Vr, (£))-
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( (¢) is as in §11) Then D, is a strongly divisible Ox-lattice, D} = D¥~! is generated
over O, by the image of

H (X, 0301 @) — S(f).
and T(D,) coincides with image of
(H* 1 (KSk(N')(C), Z) ® Ox)(€) = (H* " (KSk(N') ®q Qp, Zp) ®z, Ox)(€) — Vi, (f)-

Hence for almost all A, w is an Ox-basis of D} = Df\_l, and v* is an Ox-basis of
T(Dy)*. For such ), we have

#(ST(DA)(r) = p~t - [Ox : (2md)" ™1 - L(f*, k — 1) /9]
HH(Q T(F)(r) ®Q/Z)) - #(H(Q, T(F)*(1 - r) ® Q/Z))
by Prop. 14.21, where u is the number in Prop. 14.16 defined with respect to T'(D,)(r)
and v and 2 is defined with respect to w and y. We have
[Ox: 2mi)" - L(f* k—1)/Q =1
for almost all A\. We have
H(Q, T(F)(r) ® Q/Z) = HY(Q,T(FA)* (1 —r) ® Q/Z) = 0

for almost all A by 14.11 (2), and we have p > 1 for almost all A by 14.5 (3) in the
non-CM case (see 15.23 for the CM-case). Hence S(T'(Dy)) = 0 for almost all . By

14.7, this shows that S(T") = 0 for almost all A and for all Gal(Q/Q)-stable O,-lattices
T of Vg, (f)(r). O

15. The case of complex multiplication

In this section, we prove the theorems 12.4, 12.5, 12.6, 14.2, 14.5 in the case f
has complex multiplication. We deduce them from the work of Rubin on the main
conjecture for quadratic imaginary fields.

In this section, we fix an imaginary quadratic field K. We fix also an embedding
K — C.

15.1. We first review the work of Rubin on the main conjecture of imaginary
quadratic fields.

By the fixed embedding K ¢ C, Q becomes the algebraic closure of K in C. Let
K9 be the maximal abelian extension of K in C, and for a non-zero ideal f of Ok,
let K(f) C K2 be the ray class field of conductor f. Fix a prime number p and a
non-zero ideal f of Ok, and let

K(p™f) = LJK(p"f), Gps = Gal(K (p™f)/ K).

Then
Gpes = Zp X Ly % (a finite abelian group).
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Let
b =1im O (1/p]* ® Zp, b7 = lim CI(K"){p}
K’ K'
where K’ ranges over all finite extensions of K contained in K (p*°f), CI(K'){p}
denotes the p-primary part of the ideal class group Cl(K’) of K’, and the inverse
limits are taken with respect to norm maps. Then §? (¢ = 1, 2) are finitely generated
modules over the three dimensional semi-local ring Z,[[Gpej]], h! is a torsion free
Zy[[Gp=i]]-module having the property that (h')q is of dimension one for any prime
ideals q of Z,[[Gpes]] of height 0 (Z,[[Gpeei]lq is a field for such q), and h? is a torsion
Zp[[Gpes]]-module (that is, it is killed by a non-zero-divisor of Z[[Gpes]]). Let 3 C b*
be the “part of elliptic units” whose definition is reviewed in 15.5 below. Then h!/3 is
a torsion Zp[[Gpees|]-module.
The following Theorem is contained in the works of Rubin in [Ru2, Ru4].

Theorem 15.2 (Rubin). — Let p be a prime ideal of Zp[[Gpos]] of height one. Consider
the following conditions (a) (b) (c).

(a) p does not contain p.

(b) p does not divide the order of the group of all the roots of 1 in the Hilbert class
field of K, and p does not divide the order of the torsion part of Gpoos.

(c) p splits in K.
We have:

(1) If either the condition (a) or (b) is satisfied, we have

lengthy_ (G, 11, (h%)p) < lengthy (. (5! /3)p)-
(2) If both the conditions (b) and (c) are satisfied, then

lengthz (G, w51, (17)p) = lengthy (g, 1((B'/3)p)-

In [Ru2], Rubin has an equality (not only inequality) even in the case p does not
split in K under a certain condition, but we do not use it in this paper.

15.3. We review here the theory of complex multiplication.

Let § be a non-zero ideal of Ok such that O — (Ok /f)* is injective.

For a field K’ over K, by a CM-pair with modulus f over K’, we mean a pair (F, a)
where E is an elliptic curve over K’ endowed with an isomorphism Ox — End(E)
such that the composite map

Ox — End(E) — Endg (Lie(E)) = K’

coincides with the inclusion map, and « is a torsion point in E(K') such that the
annihilator of « in Ok coincides with f.

Note that if (E,a) and (E’,a’) are CM-pairs of modulus { over K’ and if they
are isomorphic, the isomorphism (F,a) — (E’,o’) is unique by the injectivity of
0% — (Ox /D).
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The following (15.3.1)-(15.3.3) summarize a central part of the theory of complex
multiplication.

(15.3.1) There exist a CM-pair of modulus §f over K(f) which is isomorphic to
(C/f,1 mod f) over C. This CM-pair of modulus f over K(f) is unique upto
isomorphism (and hence unique upto unique isomorphism by the above remark).

We call the above CM-pair of modulus f over K(f) the canonical CM-pair over
K(f)-
(15.3.2) Let K’ be a field over K and let (E, ) be a CM-pair of modulus f over K'.

Then there exist a unique homomorphism K(f) — K’ for which (F,a) is obtained
from the canonical CM-pair over K(f) by the base change.

(15.3.3) (relation with class field theory) Let K' be a finite abelian extension of K,
let a be a non-zero ideal of Ox whose all prime divisors are unramified in K', and
let 0 = (a,K'/K) € Gal(K'/K) be the Artin symbol. On the other hand, let (E, )
be a CM-pair of modulus f over K' and let (E®),o(a)) be the CM-pair of modulus
over K’ obtained form (E,a) by the base change o : K' — K'. Then (E(®),o(a)) is
isomorphic to (E/.E,a mod 4F) where o F is the part of E annihilated by a.

We will denote the unique isomorphism in (15.3.3) as

Na : (E/eE,a mod (E) = (E©) o(a)).

15.4. We give a refinement of Prop. 1.3 in the case of complex multiplication. Let
K’ be a field over K and let E be an elliptic curve over K’ such that End(E) ~ Og.
We normalize this isomorphism in the way that the composite map

Ok — End(F) — Endg(Lie(E)) = K’

is the inclusion map.

Then for an ideal a of Ok which is prime to 6, there is a unique element 40 of
O(E \ 4E)* having the following properties (i) (ii).

(i) The divisor of 40 is N(a) - (0) — E.

(ii) Nu(abE) = obE for any integer a which is prime to a.
The unique existence of 46 and the following properties (15.4.1)-(15.4.3) of 40 are
proved in the same way as the proof of Prop.1.3.
(15.4.1) If a= (c) for an integer c, .0 = 0.
(15.4.2) IfE — E’ is an isogeny between elliptic curves over K’ such that End(E) ~
Ok and End(E’) ~ Ok, the norm map sends 40 to 40g.
(15.4.3) If a and b are ideals of Ok which are prime to 6,

(608)V ) - (pr} (605,)) ™" = (08)"® - (pr5(abE,))

where E1 = E/.E,E; = E/yE, and for j = 1,2, pr; is the canonical projection
E g E]‘.
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Now let f be a non-zero ideal of Ok such that Oy — (Og /f)* is injective, and let
(E, @) be a CM-pair of modulus f over K(f). Then for ideals a,b of Ok which are
prime to 6f, we have (denote (a, K(f)/K) by 74 and (b, K(f)/K) by 76)

(15.4.4) (605(a)) N O 7 (405(@) ™ = (abr(a))N 7 (ubp(x) ™

In fact, in (15.4.3), we have (pri(s0g,))(@) = 608, (pri(a)) = T(s0r(a)) because
(E1,pri(a)) =~ (E©), o(a)) with 0 = 7, (15.3.3), and the similar thing holds when we
replace pri, b, E1 by pra, a, Es, respectively. Hence we obtain (15.4.4) from (15.4.3).

15.5. We review the definition of the “part of elliptic units” 3 C h* in 15.1

Let f be an ideal of Ok such that O — (Ok/f)* is injective, let (E,a) be the
canonical CM-pair over K(f), and a be an ideal of Og which is prime to 6f. Then the
element

a?f = uoE(O‘)_l € K(f)x

(the standard elliptic unit of modulus f and of twist a) has the following relation with
L-functions (Kronecker’s limit formula): For any homomorphism x : Gal(K(f)/K) —
C*, we have

(15.5.1) > x(0)loglo(azp)| = (N(a) = x(a)™") - lim s~ L 5(x; 5)

where L ;(x,s) denotes >, x(b)N(b)~* in which b ranges all ideals of O which are
prime to f and x(b) denotes x((b, K(f)/K)). (This (15.5.1) is deduced from (3.8.2)
by taking a suitable element of K as 7 in (3.8.2).)

The element 40g(a) is a p-unit for any prime ideal p of Ok which is prime to f,
and is a unit if f has at least two prime divisors.

Now we define 3 € H!. Let f be a non-zero ideal of Ok. Then for n > 1 such
that O — (Ok/p™f)* is injective and for an ideal a of Ox which is prime to 6pf,
the norm map of K (p"*'f)/K (p"f) sends azyn+15 t0 a2zpnj. (This is deduced from
(15.4.2).) We define 3 to be the Z,[[Gpes]]-module of h' generated by the elements
(a2pr§)n>1 Where a ranges over all ideals of O which are prime to 6pf.

15.6. We rewrite Thm. 15.2 in the form using Galois cohomology.
For a finitely generated Zp-module T endowed with a continuous action of
Gal(K/K) which is unramified at almost all finite places of K, let

H}oos(T) = EI}HTIH"(OW[I/P],T) (¢€Z)
where K’ ranges over all finite extensions of K contained in K (p°f). Then HZ“T(T)

is a finitely generated Zj[[Gpeg]]-module, and H]..((T) = 0 if ¢ # 1, 2.
In the case T = Zy(1), we have:

(15.6.1) b! ~ Hywof(Zp(1)).
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(15.6.2) There exists a homomorphism of Zy|[Gpes)]-modules
h? — Hyw((Zy(1))
whose kernel and cokernel are finitely generated Z,-modules. In particular,
(6?)p = He(Zp(1))p
for any prime ideal p in Zp||Gpeos]] of height one.

((15.6.2) is proved as follows. From the Kummer sequence

Y03
0 — Z/p"Z(1) — G 2 G — 0,
we obtain exact sequences

0 — Pic(Ok, [1/p)){p} — H*(Ok[1/p], Zp(1)) — lim Ker(p"; Br(Ox-[1/p])) — 0

for extensions K’ of Q. We have an isomorphism

lim Ker(p™; Br(Ok[1/p])) = Ker(sum : ZE — Zp)
where ¥ is the set of prime ideals of Ok lying over p, and we have a surjection
CI(K'){p} — Pic(Oxk-,[1/p]) whose kernel is generated by the classes of elements in
¥. By taking lim , for finite extensions K’ of K contained in K (p*f), and by the
finiteness of the number of places of K (p°°f) lying over p, we obtain (15.6.2).)
Let Q(Zp[[Gp=s]]) be the total quotient ring of Z,[[Gp~s]]. We define an element

Zpoet € Hyoof(Zp(1)) ®2,[1Gyoe (] @(Zp[[Gpei]])
(without 4( )) by

zpeot = (N(a) = (a, K(p™f)/K)) ™' - (azpn)n
€ B! ®z,((Gpoo ) R(Zpl[Gpoefl]) 2 Hpoo((Zp(1)) ®2z,(1Gpoo ) @ (Zp[[Gpoesl])
where a is any ideal of Og which is prime to 6pf such that a # Ok (then N(a) —

(a, K (p°°f)/K) is a non-zero-divisor of Zp[[Gpj]]). Then zp; is independent of the
choice of a, for

(N(b) = (b, K(p™f)/K)) - (azpn)n = (N(a) — (a, K(p*)/ K)) - (62pn)n

for any ideals a, b of Ok which are prime to 6pf by (15.4.4).

We have :
(15.6.3) (N(a) — (a, K(p°°f)/K)) - zpeos € szf(Zp(l)) for any ideal a of Ok which
is prime to 6pf.

The ideal I of Zp[[Gpes]] generated by N(a) — (a, K (p°°f)/K) for all ideals a of Og
which are prime to 6pf satisfies I, = Z,[[Gpes]]p for any prime ideal p of Z,[[Gpeos]]
of height one. Hence we have

(15.6.4) 3p = Zyp[[Gpoillp - 2py for any prime ideal p of Zy[[Gps]] of height one.
By (15.5.1), we have
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(15.6.5) Let K’ be a finite extension of K contained in K(p*™f), and let zx+ be the
image of zpeos under ST'HL((Zy(1)) — H (Ok:(1/p], Qy(1)) where S denotes the
multiplicative subset of Zp[[Gpes]] consisting of non-zero-divisors whose images in
Q,[Gal(K'/K)] are invertible. (Note N(a) — (a, K(p™f)/K) € S for any ideal a of
Ogx which is prime to pf such that a # Ok.) Then zk+ belongs to the image of the
canonical injection

(Ox[1/p])* ® Q — H'(Ox-[1/p], Qp(1))-
If we regard zx+ as an element of (Ok[1/p])* ® Q, we have
S (@) log(lo(ex)]) = lim s~ Licpy(x. 5)
o€Gal(K'/K)
for any non-trivial homomorphism x : Gal(K'/K) — C*.
Now Thm. 15.2 is reformulated as follows: For a prime ideal p of Z,[[Gpes]] of
height one, let

f;l, = lengtth[[Gpoof]]p (H111°°f(ZP(l))P/(ZP[[Gme]]P 'zp°°f))
= leﬂgthz,,[[c,,m,]],,(ngf(Zp(l))p)-
Then, if either the conditions (a) or (b) in 15.2 is satisfied, we have
<L,
If both the conditions (b) and (c) in 15.2 are satisfied, then
0 =4,

15.7. We review basic facts about Hecke characters of K.

Let 5; = lgl_l . Ok /I where I ranges over all non-zero ideals of Ok, and let K=
6; ® Q. Then the adele ring of K is C x K , and the idele class group Ck of K is
(C* x KX)/KX*.

If 1 is a Hecke character of K (i.e. a continuous homomorphism Cx — C*), the
homomorphism 5;)( — C* induced by v factors through the projection 5; L
(O /I)* for some non-zero ideal I of Ok, and there is a non-zero ideal which is the
largest among such ideals I, called the conductor of ¥. If a is an ideal of Og which is
prime to the conductor of ¢, we define ¥(a) to be 1/)(1 a) where 1 is the unit element
of C* and a an element of KX OOK such that OKa = OK a and such that the image
of a under Ox — Ok /f is 1 (then (1, a) is independent of the choice of a). The
L-function L(%, s) of 1 is expressed as

L(y,s) = Zw a)N(a

where a ranges over all ideals of Ok whlch are prime to the conductor of 1.
For integers m, n and for a Hecke character ¢ of K, we say that v is of type (m,n)
if the restriction of 1 to the archimedian part C* of the idele group of K has the
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form z +— 2™ - Z". It is known that if ¢ is a Hecke character of type (m,n) for some
integers m, n then the subfield of C generated by ¥(K*) is a finite extension of Q.

15.8. Let r > 1, and let ¥ be a Hecke character of K of type (—7,0). We review the
Galois representation, the period map, etc. associated to .

Let L be the subfield of C generated by z/)(I? *) over K, which is a finite extension
of K. In this 15.8, we define a one dimensional L-vector spaces V1 (v) and S(¢), and
a continuous Ly-linear action of Gal(K*®/K) on Vy, (v) = VL(¥)® L) for each finite
place A of L. We define also an L-linear map

pery : S(¢) — Ve(¥) = Vi (¥) ®L C,

called the period map, and an isomorphism

(15.8.1) S(¥) ®1 Ly ~ Dir(K ® Qp, Vi, () = Dir(K ® Qp, Vi, (¥))

for each finite place A of L where p is the prime number lying under \.
Take a non-zero ideal f of Ok contained in the conductor of ¢ such that O} —
(Ok /f)* is injective, and let (E, ) be the canonical CM-pair over K (f) (15.3).
We define
Vi(y) =HY(E(C),Q)® ®x L
where ®r is taken over K.
For a finite place A of L, we have a canonical identification

Vi, (%) = HY(E ®k 5y Q, Qp)®” ®Keq, L
where Vi, (¢) = VL(¥) ®L Ly, p is the prime number lying under A and ®r is taken
over K ® Q,. Hence we have an Ly-linear action of Gal(Q/K (f)) on Vi, (v). We
extend this action to an Ly-linear action of Gal(Q/K) on Vi, (¢) as follows. For
o € Gal(Q/K), we define the action of o on Vi, (¢) to be the composite

o Ui
VL, () = HL (B @k ;) Q, Qp)®" ®Kke0, L ‘Ni* Vi, ()

where 7, is the following isomorphism. Take an ideal a of O which is prime to f
such that (a, K(f)/K) coincides with the restriction of o to K(f). We define 7y =
¥(a)~1(n2)®" in which 7} denotes the pull back on H, by

E—E/,E-1, B® (153.3).

Then 7, is independent of the choice of a.

This action of Gal(Q/K) on Vg, (w) is abelian, and described by class field theory
as follows. Via the reciprocity map K> /K> ~ Gal(K®/K) of class field theory, the
image of a € K* in Gal(K%/K) acts on V, (1) as multiplication by a7 (a)~!, where
v is the place of K lying under A and a, denotes the v-component of a. Another class
field theoretic description of this action by using Artin symbols is the following. The
action of Gal(K%/K) on Vy, (¥) factors through Gal(K (p>°f)/K), and for an ideal a
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of Ok which is prime to pf, (a, K(p®°f)/K) acts on Vi, (1) as the multiplication by
P(a)~h.

Next we define S(¢/) as an L-subspace of coLie(E)®"® L such that S(¥)®x K (f) =
coLie(E)®" @k L, in the following way, where ®r is taken over K(f).

We define an L-linear action of Gal(K(f)/K) on coLie(E)®" ®k L such that
o(az) = o(a)o(z) for a € K(f) and = € coLie(E)®" ®x L by the following rule :
o € Gal(K(f)/K) acts as the composite

coLie(E)®" @k L o®1, coLie(E”)) @k L LN coLie(F) ®k L

where 7y is the following isomorphism. Take an ideal a of Ok which is prime to f
such that o = (a, K(f)/K). We define
e = ¥(a) " ()% : coLie(E)® @k L — coLie(E/E)® @k L = coLie(E)® @k L

where the last identification is by the canonical isogeny E — E/E. Then 7y is inde-
pendent of the choice of a. Now we define S(%) to be the fixed part in coLie(E)®"®k L
under this action of Gal(K (f)/K).

We define the period map

pery, : S(¢) — Ve (¥)

as the map induced by the period map coLie(E) — H!(E(C),C).

Finally we define the isomorphism (15.8.1). For any finite place v of K lying
under ), Vi, (v) is de Rham as a representation of Gal(K,/K,) because it is de
Rham as a representation of Gal(K(f),,/K (f)w) for any finite place w of K (f) lying
over v. We have

Dar(K (f) ® Qp, Het (B ®x (1) K () Qo)) > Har (B/K(f) © Qp
and this induces
Dar (K (f) ® Qp, VL, (%)) = Har(E/K()®" ®x La
where ®r is the r-fold tensor power as an invertible module over K ® K (f) (K acts
via K ~ End(E) ® Q and K(f) acts because it is the base field). This induces
DIr(K(f) ® Qp, Vi, (%)) ~ coLie(E)®" ®k Ly for 1< j<r

(the left hand side does not depend on j such that 1 < j < r) where ®r is taken over
K (f) and coLie(E) is regarded as an K (f)-subspace of Hiz (E/K(f)). By taking the
Gal(K (f)/ K)-invariant part of the both sides of the last isomorphism, we have

Dl (K @ Qp, Vi, (1)) ~ S() @ Ly for 1<j<r

In the above constructions of Vr,(v), S(¢), etc., we fixed f. However every construc-
tion does not depend of the choice of § in the following sense. If ' is another ideal
of Ok which is contained in the conductor ¥ and (E',a’) (resp. (E”,a’)) denotes
the canonical CM-pair over K (f') (resp. K(ff')), E is identified with E” /¢ E" and E'
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is identified with E”/;E”. Via the isomorphisms induced by the canonical isogenies
E” — E and E"” — E’, we can identify constructions using f and constructions f'.

Proposition 15.9. — Let v > 1 and let ¢ be a Hecke character of K of type (—r,0).
Let p be a prime number, let f be a non-zero ideal of Ok contained in the conductor
of ¥, let K’ be a finite extension of K contained in K (p™f), and let v € Vi (). Then
the image of zpos under

He (Zp(1)) = Hpo(Zp(1) @ Vi, (%) = Hpeoy (Vi, ($)(1) —
H! (O [1/0) Ver (D)(1) -2 Dl (K'9Q, Vi (8)) 5% | (S) 1 L) Bic K
is an element of S(¢) ®x K’ whose image under

Z x(o) pery 00 : S(¢) ®x K' — Ve(¢)
o€eGal(K'/K)

coincides with Lyi (¥, x,T) - v for any homomorphism x : Gal(K'/K) — C*. Here
Lpi(¥, x, 8) denotes 3", ¥ (a)x(a)N(a)~* in which a ranges over all ideals of Ok which
are prime to pf.

Proof. — This 15.9 is proved in [KK2, Chap.III, § 1] under certain assumptions. The
proof of 15.9 here follows the method there.

By using the trace maps, we see that we may replace K’ by any finite extension
of K’ contained in K (p>°f). Hence we may assume K’ = K(g), where g is an ideal
of Ok having the form p™fo, where m > 1 and fo is the smallest ideal of Ok which
divides f and which is prime to p, and such that g C f and O — (Ok/g)* is injective.

Let (E,a) be the canonical CM-pair over K’ = K(g). Let 8 € H;(E(C),Q) be
the image of 1 € K under the canonical K-isomorphism K ~ H;(C/g,Q) which is
induced from the canonical isomorphism g ~ H;(C/g,Z). By the K-linearity, it is
sufficient to prove 15.9 in the case v = 3®(-7),

The image of p™ @ in H, (E(C), Qp) = T,E®Q is an Ok ® Zp-basis of T, E which we
denote by € = (&n)n>0 (€n is the Ok /p™-basis of ,» E corresponding to £). We define
torsion points ay, and v, (n = 0) on E as follows. For n > 0, let a, € E(K(p™fo))
be the image of p™~ " in H;(E(C),Q/Z) ~ E(C)tor- So, & = ayy. For n > 0, let
Un = &n — an. Then v, is killed by fo and belongs to E(K'). Let 6,(2) = 10(2z + vp).
We have 0,,(§,) = o0(ey,). Furthermore Np(6p41) = 0, for n > 1.

By the assumption g C f, the action of Gal(K%/K’) on T,E for any prime ¢
is unramified at any finite place of K’ not lying over £. Hence [ST], E is of good
reduction at any finite place of K'.

We apply the generalized explicit reciprocity law [KK3, Thm. 4.3.1]. (We apply
the case of height h = 1 of this theorem, though we applied the case h = 2 of this
theorem in §10.) For a place v of K’ lying over p and for a prime ideal p of Ok
lying over p, let G(v,p) be the part of the Néron model of E over O, killed by some
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power of p. Then G(v, p) is a p-divisible group over O,, and the triple (K, G(v, p), Op)
satisfies the assumption of the triple (K, G, A) of [KK3, Thm. 4.3.1] with h = 1. By
applying this theorem to (K,G(v,p),0,) for all v and p as above, we obtain the
following result: The image of

€57 ® (On(&n))n € (TE)®") @ im H' Ok [1/7), Z5(1))
under the map

(T,E)2C") @ lim H' (Ok () [1/p], Zp(1)) — Hm H' (O ry) [1/2], (T, E)®7(1))

— HY(K' ® Qp, (T,E)® (1)) 22, coLie(E)®" ® Q,
coincides with
—mr -1 dyr ®r
P =) ((5) 1og(6m)) (6m) ®w

where w is a K'-basis of coLie(FE). This means that the image of £2(-") ® (6,,(£x))n
under

Vi, (%) © Hyoof (Zp(1)) — Hpoo (Vi (¥)(1)) — HY Ok [1/p], Vi, (¥)(1))
P, D (K’ ©Qp, Vi (1)) = (S®) @1 Ly) @ K’
coincides with p~™" - (r — 1)I=1 - ((£)" log(6m))(&m) ® w®. Hence the image of
B2 @ (ab(an))n = ™ - €277 ® (Bn(én))nz
in (S() @K K') ®1, Ly is equal

(r = 1 () Tog(0m)) (Em) 0"
—(r—1)"1. ((g)’"log(ua))(am) ®we” € S(y) ®x K'.
Hence we are reduced to the following (15.9.1). (]
(15.9.1) Let
w2 = (=01 ((2) 108(06) ) (am) @ w® € S(8) Bk K.

Then
3 X(0) pery (0(a2)) = (N(a) — 9(a)x(@) ™) Lyt (B, x, 1) B2

(o ranges over Gal(K'/K)).
(This (15.9.1) shows

(159.2) For z = (N(a) = %(a)oa) ez, 5, X(0) pery(0(2)) = Ly (P, x,7)8%).)
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Proof of (15.9.1). — Let o € Gal(K’/K) and fix an ideal b of Ok which is prime to
g such that (b, K'/K) = 0. Then

_1fAyr
o(az) = P(b)™* ((;) log o0, bE) (¢ mod pE) ® w®".
By the analytic theory of Eisenstein series in 3.8, this is equal to
N@w®)™ 3 (@)™ _ —p@wee) Y (@)
ceP(b) - ceP(ab) =

where P(J) = {c€ K; c=1 mod J~!g}. Let Q(J) be the set of ideals I of Ox such
that I is prime to g and such that (I, K'/K) = (J,K’/K). Then as is easily seen, we
have a bijection ¢ — ¢J from P(J) to Q(J), and ¢(cJ) = c"¢(J) for c € P(J). Hence

o(az) =N(a) > »(I)'N(I)~*pe"

1€Q(b) =0
—¥(@) Y w()TINDTET|
I€eQ(ab)

= N@ Y BONDn|

1€Q(b) =
—w(@) Yo BINDTED|

IeQ(ab)
(since ¥(I)(I) = N(I)"). This proves (15.9.1). O

15.10. In the rest of §15, assume f has CM. Then L(f,s) = L(3,s) for a Hecke
character ¢ of an imaginary quadratic field K of type (1 — k,0) whose conductor
divides N. We denote the conductor of i by f.

The field FF = Q(an;n > 1) is contained in L = K(¢(K*)) as is seen from
L(f,5) = L(t,3). B

Let X be a finite place of L. Then, as a representation of Gal(Q/Q) over Ly, Vi, (f)
is isomorphic to the representation

Vi, (W) = Vi, (%) & VL, (¥)

induced from the representation Vz,, (1) of the subgroup Gal(Q/K) of Gal(Q/Q). Here
¢ € Gal(Q/Q) denotes the complex conjugation, and the action of o € Gal(Q/Q) on
Vi (¥) sends (z,w) (z,y € Vi,(¥)) to (o(z),t(tot)(y)) if o belongs to Gal(Q/K),
and to ((¢7¢)(y), t7(z)) if 0 = ¢7 with 7 € Gal(Q/K). This can be seen by comparing
the eigenpolynomial of Frobenius of each prime number which is prime to N. (See
[Ri2].)

Lemma 15.11. — Fix an isomorphism of one dimensional L-vector spaces

(15.11.1) S(¥) =5 S(f) ®F L.
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Then:

(1) For each finite place A of L, there exists a unique isomorphism of representa-
tions of Gal(Q/Q) over Ly

(15.11.2) Vi () = Vi, (f)
such that the composition
15.8.1
s@) @x L ~ 222 Dy (K ©.0,, Vi, () = Dhn(VE ()

~

w Dir(VL,(f)) =~ S(f) ®F La

coincides with the isomorphism induced by (15.11.1).
(2) Let
Vi (¥) = Vi (¥) & Vi (¥) (¢ = the complex conjugation)

be the representation of Gal(C/R) over L induced from the trivial representation Vi (1)
of the subgroup {1} of Gal(C/R), and denote the composite S(¢) — Vi (¢) — V()
also by per,,. Then there exists a unique isomorphism of representations of Gal(C/R)
over L

(15.11.3) Vi (@) — VL(f)

for which the diagram

per,,
S(y) »VEW) =V (@)@, C
(15.11.1)l l(15.11.3)
per,,
S(f)®r L + Ve(f)

18 commutative

Proof.
(1) Take any isomorphism h : V7 () = V1, (f) of representations of Gal(Q/Q)
over Ly. Then h induces

Dir (VE; (%)) — Dagr(Vi, (f))
and hence
S() ®L Lx — S(f) ®F La

which is ¢ times the isomorphism induced by (15.11.1) for some ¢ € L5. The iso-
morphism ¢~k is the desired one. The uniqueness follows from the irreducibility of
Vi, () as a representation of Gal(Q/Q) over Ly.

(2) Fix a sign +. Identify S(v) with S(f) ® p L via (15.11.1). It is sufficient to
show that there exists an isomorphism of one dimensional L-vector spaces

he VE ()* = Ve(y)*
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such that h o perf:f = per:ft. Here

+.

1 L
perf‘; = O pery, per}t = opery.

By 6.6, 13.5 and (15.9.2), there exist m > 1, elements
z € S(¥) ®e Q(¢m), 2’ € S(f) ® Q(¢m),

and non-zero elements
TEVD (W), v €Vr(H)*,
satisfying the following (i) (ii).
(i) For any character x : Gal(Q({m)/Q) — C* such that x(—1) = &,

> " x(0) pery (o(2)) = Ls(w, x, k — 1),
> x(o)perf(o(2') = Ls(f, x, k — 1)7,

where o ranges over Gal(Q(¢{m)/Q) and S = prime(mN).
(ii) There exists a character x : Gal(Q({m)/Q) — C* such that x(—1) = + and
such that Lg(v, x,k — 1) = Ls(f, x, k — 1) is not zero.

By (ii), there exists og € Gal(Q(¢»)/Q) such that the image of go(z) under
S(¥) ® Q(¢m) — S(¥) ®L L(¢m)

is not zero. Let b be the element of L((,,) such that the image of g¢(2’) in

S(f) ®F L(Cm) = S('l/’) L L(Cm)

is b times the image of o¢(z). We will show that b is a non-zero element of L. The
L-linear map

h:VE (@)* — Vi(f)*
which sends v to b1+’ satisfies h o peri = perf. Now we prove b € L*. From (i) (by
taking ZX x(7)™! ((i) for x) where x ranges over all characters Gal(Q((,)/Q) — C*
such that x(—1) = %), we see that for each o € Gal(Q({n)/Q), there exists ¢, € C
such that

peri (0(2) £ ou(2)) = com, per:ft (0(2") £ 0u(2")) = co/,
where ¢ is the complex conjugation. For o = 10o with 7 € Gal(L((,)/L), we have
¢s 7 0 and
7(b) - per}: (0(2) £ ouf(2)) = co'.
Hence b # 0, and 7(b) is independent of 7 € Gal(L(¢m)/L). This shows be L*. 0O
In the rest of §15, we fix an isomorphism (15.11.1). In what follows, we identify

S(¢) and S(f) ®F L via (15.11.1). We also identify the representations V[ () and
Vi, (f) of Gal(Q/Q) via (15.11.2) for any finite place ) of L.
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The “philosophy of motif” tells that the isomorphism (15.11.3) should be compat-
ible with our identification (15.11.2), but I can not prove it. (The problem is that in
the case k > 3, it is not known that the motif associated to f [Scl] and the motif
associated to 1) coincide. Here, the former motif is a direct summand of the motif as-
sociated to the Kuga-Sato variety, and the latter motif is obtained from the (k—1)-fold
tensor power of the motif associated to an elliptic curve with complex multiplication.)
So to avoid the confusion, we will never use (15.11.3) as identification.

15.12. Let ) be a finite place of L. Then we have a canonical homomorphism of
O [[Gpoes]]-modules

(15.12.1) Hpoos (Vi, (v)) — H' (VL, (f))
since
H' (Vi (f)) = HY(VE; (¥)) = (lim H' (Okeq,m[1/p,T)) @ Q

where T is any Gal(Q/K)-stable Oy-lattice of V7, (), and since we have a canonical
homomorphism

K ® Q(G=) — K(p™F).
By 15.9, we have:

(15.12.2) Lety € VL (¥) and let v' € VL(f) be the image of v under the isomorphism
(15.11.3). For n > 0, consider the composite map

(312D ey, ()

— H! (Qp((p")? VL,\ (f)(l))

P D (Ver () © Q)

>~ 5(f) ®r Lx ® Q(¢pr)-

Let S be the set of non-zero-divisors of Zy[[Gpes]] whose images in Q,[Gal(Q({pn)/Q)]
are invertible. Then the induced map

ST Hpeo (VL. (¥)(1)) — S(f) ®F La ® Q(Gp)

sends zpo; ® 7y to an element of

S(f)®r L @ Q(Gpn)

whose image under ), x(o) per; oo, where x is any homomorphism

Gal(Q(¢pn)/Q) — C*
and o ranges over Gal(Q({pn)/Q), coincides with

Ly (fxk—=1)-()5  £=x(-1).

Hpoo (VL (%)(1))
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Lemma 15.13. — Let p be a prime number and assume K is not contained in Q((p).
Let f be the conductor of 1, A the torsion part of Gpeos, A a finite place of L lying over
P, p a prime ideal of Ox[[Go]], and q the inverse image of p in Ox[[Gpei]], under the
surjection Ox[[Gpwi]] = OA[[Gwo]]- Assume that 2 and the order of A are invertible
in the residue field of p. Then:

(1) OA[[Gollp and OA[[Gp=illq are regular rings, and the kernel of Ox[[Gpe=s]]q —
OA[[Gllp is a principal ideal.

(2) Let a be a generator of the principal ideal in (1). Let T be a Gal(Q/K)-stable
Ox-lattice of VL, (¢) and let T~ =T & T C V[, (¢).

Then we have
(15.13.1) H2oo((T)q/aH2((T)q ~ HA(T™),
and an eract sequence
(15.13.2) 0 — Hpoo((T)q/aHpoet(T)q — HY(T™)p, — Ker(a; H2oo((T))q — 0.
Proof. — Consider the exact sequence of representations of Gal(Q/K)
0 — T ®0, OA[[Gpeil] == T ®0, O[[Gpesl] — T ®0, Ox[[Gocl] — 0

where 0 € Gal(Q/K) acts on O,[[Gpes]] (resp. Or[[Go]]) by the multiplication by
the image of 0~! in Gpeof (resp. Go). Let v be a finite place of K which does not lie
over p, and let I, ¢ Gal(K,/K,) be the inertia subgroup. Then the cokernel of

HO(Iva X0, O/\[[Gpwf]]) B HO(Ivv T ®o0, OA[[GOO]])

is killed by the order of A. This is because the action of I, on T' ®p, Ox[[Gpeei]]
factors through a homomorphism I, - A C Gp~s. Hence if j denotes the inclusion
map Spec(Ok[1/pf]) — Spec(Ok([1/p]), the cokernel of the last arrow of the exact
sequence

0 — Ju(OA[[Gp=fll) == ju(OA[[Gro=ill) — 5+(T ®0, OA[[Cuxll)
is killed by the order of A. Hence this exact sequence induces an exact sequence
a ~
0— H;;wf(T)q - H:;wf(T)q — HY(T™),
a ~
- H?;wf(T)q - szwof(T)q — HX(T™), — 0. t
15.14. In the case K C Q((p~), Lemma 15.13 is modified as follows. Let G, =
Gal(Q(Cp=)/K) C Goo, and let HY(T') = lim H¥(Z[(pn,1/p],T). Then HY(T™) ~

HY(T) ®o, (¢} Or[[G]]: Lemma 15.13 holds when we replace Goo by G, and
HY(T~) by HY(T).
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15.15. We prove Thm. 12.4 for f.

Once we prove Thm. 12.4 (1) (that H?(Vg, (f)) is a torsion O [[Goo]]-module), we
can deduce Thm. 12.4 (2) (3) from it by the argument in 13.8. We prove Thm. 12.4 (1).
Let v be a place of L lying over A. Since H?(Vg, (f)) ®o, O, ~ HA(V[ (¢)), it is
sufficient to prove that H?(V7? (¢)) is a torsion O,[[Geo]]-module. Now by writing v
as A, let )\ be a place of L lying over a prime number p.

We first assume K is not contained in Q((pe). In lemma 15.13, let p be a prime
ideal of height 0 of Ox[[Goo]]. Then q is a prime ideal of height 1 of Oy\[[Gp=s]]. By
13.5 and (15.12.2), the image of zpos ® Vi, (¥)(—1) under

Hyoo (Vi (¥))g — H (Ve (¥))s

is not zero. Since H}u((VL, (¢))q is a free Ox[[Gpeoj]q-module of rank 1, this shows

that the Ox[[Gpeef]lq-module H) oot (VL, (¥))q is generated by the image of zj0f ®

Vi, (¥). Hence by the theorem 15.2 by Rubin, we have H2.((Vz, (¥)))q = 0. Hence

by (15.13.1), H2(V[ (¥)), = 0. This shows that H?(V; () is a torsion O)[[Goo]]-
module.

The proof for the case K C Q((p) goes similarly by using 15.14 instead of 15.13.

O

15.16. We prove Thm. 12.5 and Thm. 12.6 for f in the case K is not contained
in Q(¢p-). Since we have already proved Thm. 12.4 for f, Thm. 12.5 (1) (2) and
Thm. 12.6 are proved by the same arguments in 13.9-13.13.

Next we prove Thm. 12.5 (3) (Thm. 12.5 (4) does not exist in the case with complex
multiplication). By (15.12.2) and Thm. 12.4 (2), we have

(15.16.1) Let~y € VL(¢) and let v be the image of v in VL(f) under (15.11.3). Then
the homomorphism (15.12.1) sends zpe @ 7 ® (gpn)ﬁ(‘” to zg’,’).

Hence 12.5 (3) is reduced to

Proposition 15.17. — Let A be a finite place of L lying over a prime number p, let p
be a prime ideal of OA[[Gwo]] of height 1, and assume either (a) or (b) in Thm. 15.2
is satisfied. Let T be a Gal(Q/K)-stable Oy-lattice in Vi, (1) and let Z(,T), be
the Zp[[Goo)]p-submodule of H(T™), generated by the image of zpe; ® T(—1) under
H(T) — H (T™)p. Then

lengtho, (jg..p1, H*(T™)p) < lengtho, (g, (B (T™)p/Z (1, T)).

Proof. — Assume first K is not contained in Q({p=). Let q be the inverse image
of p in O,[[Gpi]]. We apply Lemma 14.12 to A = O,[[Gpi]]q and to the A-
modules H2o((T')q and H}oo((T)q/A-(2p=5s®T(—1)). Then by (15.13.1) and (15.13.2),
Prop. 15.17 follows from theorem 15.2 of Rubin.

The proof for the case K C Q((p) goes similarly by using 15.14 instead of 15.13.

O
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15.18. We can prove Thm. 14.5 (1)(2) for f by using Thm. 12.5 (3) in the same way
as in §14. (Thm. 14.5 (3) does not exist in the case with complex multiplication.)

15.19. Here we give the proof of Lemma 14.7 in the case f has complex multiplica-
tion.

The following fact is proved easily : For a finite dimensional vector space V over a
complete discrete valuation field P and for a finite extension P’ of P, the canonical
map

{Op-lattices in V}/ ~ — {Op:-lattices in P’ ®p V}/ ~

is injective, where the first ~ (resp. the second ~) is the equivalence by multiplications
by P* (resp. (P')*).

Take an ideal a of Ok which is prime to N such that ¥(a) # ¥(a). We show
that the condition in 14.7 is satisfied by all finite places A of F' which do not divide
(¥(a) —1(@))N(a). By the above remark, we may assume P O L, for some place v of
L lying over \. Let e be a P-basis of Vp(1), and let T be a Gal(Q/Q)-stable Op-lattice
of V5'(¥) (=~ Vi, (f) ®F, P). We show that T' = a - (Ope + Opte) for some a € P*.
Let a1e + azte € T (a; € P). Let p be the prime number lying under A\. By applying
(a, K(p°°f)/K) to aie + agte and by using t(a, K(p>f)/K)t = (4, K(p™f)/K), we
have ¥(a)"tare + ¥(@)"taze € T. (Note ¥(a),®(d@) € OF as is easily seen.) By
Y(a) — ¢(@) € Op, we have aje € T. By applying ¢, we have ajte € T. Similarly we
have age, aste € T. This shows that T' = a - (Ope + Opte) where a is a generator of
the fractional Op-ideal generated by all a;,az € P such that aje + azte € T'.

Lemma 15.20. — Almost all finite places A of F' have the following property: For any
Gal(Q/Q)-stable Oy-lattice T of Vg, (f), T/maT is irreducible as a representation of
Gal(Q/Q).

Proof. — By 14.7, it is sufficient to prove that for almost all finite places A of L and for
any Gal(Q/K)-stable lattice T of Vi, (1), T~ /msT" is irreducible as a representation
of Gal(Q/Q). Take an ideal a of O which is prime to N such that v(a) # v (@). By
the similar argument as in 15.19, we can see that any finite place A of L which does
not divide (¢(a) — 9(a))N(a) has this property. a

Proposition 15.21. — Almost all finite places A of F have the following property: For
any Gal(Q/Q)-stable Oy lattice T of Vr, (f),

Z(f,T)cHY(T) nH'(T)®Q,

and
length,, (H?*(T),) < lengthy, (H'(T)y/Z(f,T)p)
for any prime ideal p of A of height one.

ASTERISQUE 295



p-ADIC ZETA FUNCTIONS OF MODULAR FORMS 267

Proof. — The first part is proved in the same way as in the non-CM case in 13.14 by
12.4 (1), 12.6, 14.7, 15.20.

We prove the second part (the property about length). If p is an odd prime number
which does not divide the order of Gal(K (f)/K) and which is unramified in K, then
p does not divide the order of the torsion part of Gpe; as is easily seen. Hence by
Prop.15.17 and lemma 14.7, we are reduced to

Lemma 15.22. — Let v be a non-zero element of Vi, (v) and let v be an element of
VL(f) such that (v')* # 0,(v')~ # 0. Then for almost all finite places A\ of L,
Yt =uyt and " = vy~ in Vp (¢) = Vi, (f) for some u,v € O5.

Proof. — Fix an L-basis w of S(v) = S(f) ® L. For almost all finite places A of L,
the O, lattices

T = OYT +0x\y~ and Ty = Ox-()T+0x-()~

of Vi, (¥) = Vi, (f) are Gal(Q/Q)-stable. For almost all A\, T = T(Dy) and T} =
T (D)) for strongly divisible lattices Dy and D of Derys(V[) (%)) = Derys(VL, (f))
such that w is an Oy-basis of D! = D’;_l and also is an Ox-basis of (D})! = (D})*~1.
For almost all A\, T} = ay - T for some ay € Ly (14.7) and this implies D} = axD)
and hence (D})! = ay - D). For almost all A, since w is an Ox-basis of D} and also
an Oy-basis of (D’A)l, we have ay € O and hence T = T). This proves Lemma
15.22. O

15.23. From 15.22, we can deduce the following result by the argument in §14:
Letr € Z,1 < r < k/2. In the case r = k/2, assume L(f,k/2) # 0. Then for almost
all places \ of F and for all Gal(Q/Q)-stable Ox-lattices T of Vi, (f)(r), the number
w in Prop. 14.16 (2) satisfies

p=l
By this, the proof of Thm. 14.2 goes in the same way as in the non-CM-case.

CHAPTER IV

IWASAWA THEORY FOR MODULAR FORMS
(WITH p-ADIC ZETA FUNCTIONS)

In this chapter, we study the Iwasawa theory concerning p-adic zeta functions of
modular forms, and p-adic Birch and Swinnerton-Dyer conjectures for modular forms.
As in Chap.III, we fix k£ > 2, N > 1, and a normalized newform

f=>ang" € Sk(X1(N)) ®C.

n>=1
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We also fix a prime number p and a place A of F' = Q(an; n > 1) lying over p.
We denote by Q the algebraic closure of Q in C. We fix an algebraic closure F'y of
F, and an embedding Q — F'y over F).

16. The p-adic zeta function

In this section, we review the theory of p-adic zeta function of f, and then show
(Thm. 16.6) that the p-adic zeta function of f is the image of the p-adic zeta element
of f*=73,5,@ng" under a homomorphism of Perrin-Riou. This in fact provides a
new construction of the p-adic zeta function of f.

16.1. We assume that there exists a € (F)* such that
1 — au|l — apu + e(p)pF~1u? in Fy[u]

and
ordy(a) < k—1

where ord, is the additive valuation of F normalized by ord,(p) = 1. The p-adic
zeta function of f is defined after we fix such a.

The p-adic zeta function of f corresponding to « lives in a certain ring J% 1 with
L = F»(a) which contains Or[[G]] as a subring. We introduce the ring % .

Let Gn = Gal(Q((pr)/Q), Goo = lim Gy, and let Goo = A X G, be the decompo-
sition in 12.1. Let u be a topological generator of G._. Then, for a finite extension L
of Qp, OL[[G)] is identified with the ring Ox[A]{[u — 1]] of formal power series over
the group ring O»[A] in one variable u — 1.

For h > 1, let

A, = {Z no -0 (u—1)" € L[A][[u — 1]]; lim |cpolp-n " =0forall o € A}

n>0
cEA

where | |, denotes the multiplicative valuation of L normalized by |p|, = 1. Then

p
OL(G]] CHA,L C Ho, C A3 C -+
Define
Hoo, L = UL
1

Then %1 is a ring since & - 5 1 C 4,1 for any i,j > 1. We defined 54, 1, and
Fo, 1 by fixing u, but they are in fact independent of the choice of u in the following
sense.

Let

(16.1.1) X(Goo) = Homeont(Goo, L ).
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For x € X(Gw), we have a ring homomorphism

Hoo, L, — )
p— p(x)
S enoo (u—1)"— Y o x(0) - (x(u) = 1",
n>0 n>0
oEA ocEA

The homomorphism %, 1, — Map(X(Ge),L); p — (x = p(x)) is injective, and
H. 1, is identified with a subring of Map(X(Gwo), L). This subring is independent
of the choice of u, and for h > 1, 5%, 1, regarded as a subset of Map(X (G ), L) is
independent of the choice of u.

Theorem 16.2 (Amice-Vélu [AV], Vishik [Vi]). — Fiz o € (F)* as above. Fiz also a
non-zero element w of S(f*), and a non-zero element v € Vp(f*) such that vt # 0,
~~ # 0. Define Q4,Q2_ € C* by

per(w) = 2yt + Q7.

Then there exist a unique element

Lp—adiC,a,w,'y(f) € %c—l,F,\ (@)
(which we denote Ly adic,a(f) for simplicity) having the following properties (i) (ii)
for any integer r such that 1 <r <k —1.

(i) Letn>1, let x : G, — 77'_: be a homomorphism which does not factor through
Gn—1, and regard k" x as an element of X(G) (16.1.1). Then

Lp—adic,a(f)(’(‘:rx—l) = (7' - 1)' ) pnra—n : G(Xa CP")_l : (zﬂi)k_r_l : 61:; : L{p} (fv X T)

(both sides belong to Q, and the equality holds in Q) where + = (—1)k=""1x(-1), x is
regarded here as a character of (Z/p™)> wvia the cyclotomic character G, ~ (Z/p™)*,
and G(x, (pn) means the Gauss sum Y, x(b)an where b ranges over all elements of

(Z/p™)*.

(ii)
Lp-adic,a(f)(K7) = (r—1)!-(2mi)* =71 %'(1—Pr_la_l)(l—S(P)Pk._r_la_l)'L(fa r)
where £ = (—1)k—"~1,

Remark 16.3

(1) Let » > 1 and let p,p' € 54, . Let r(1),...,r(h) be distinct h integers, and
assume
p(e™Dx) = u'(x"Px)
for any ¢ = 1,...,h and for almost all elements x € X(G) of finite orders. Then
p = p'. Hence the property (i) in Thm. 16.2 characterizes the element Lj.adic,a(f) of
H—1,F\ ()"

(2) For a,b € F*, we have Ly adic,a,aw,by(f) = @710+ Ly adic,a,w,y (f)-
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The following theorems follows from the work of Perrin-Riou [Pe2].

Theorem 16.4 (Perrin-Riou). — Let L be a finite extension of Q, and let V be a finite
dimensional L-vector space endowed with a continuous L-linear action of Gal(Q,/Qp).
Assume V is a de Rham representation of Gal(Q,/Q,), and assume

(16.4.1) Derys(V*(1)) € D§r(V*(1))  in Dar(V*(1))

where V* = Homp(V,L) endowed with the dual action of Gal(L/L). Let n €
Derys(V*(1)). Then there ezists a unique homomorphism

£"7 : Hlloc(V) - ‘;fOO,L
having the following properties (i) (ii) for any integer r > 1.
(i) Let n 2 1, and let x : G, — I  bea homomorphism which does not factor
through Gr—1. Then for any x € HL _(V), we have
Lo@) ("X ) = (r =) Gx, &)t Y x(0)(o(exp*(z_rn)), (PT") (1))
oeG,

Here x_, , denotes the image of x under the composite

HL (V) 5 HL (V(=r)) 222, B (Qy(¢pn), V(=1))

where the first arrow is the product with (({ps )®(="));51 and the second arrow is
the canonical projection (so exp*(x—_rn) is an element of Q(¢pr) ® Dar(V(—7)) =
Qp(Cpn) ® Dar(V)), (, ) is the canonical pairing

(Q(Cp’) ® DdR(V)) x DcryS(V*(l)) i Z

induced by Dar (V) X Derys(V*(1)) — L, and ¢ is the Frobenius.

(ii) Assume n = (1 —p~"p)n with 7’ € Derys(Vr, (f)). Then for any z € H}, (V),

Ly(z)(k7) = (r — 1)! - (exp*(z—r,0), (1 =P ™)),

This map £, is A-linear, and the map n — £, is L-linear. Furthermore, if r > 1 and
if n belongs to an L-subspace of Derys(V*(1)) on which the slope of the Frobenius is
< h, then Image(L,) C 54, 1.
Remark 16.5

(1) In the paper [Pe2], Perrin-Riou in fact defined a canonical homomorphism

Hoo. 1, — Koo, L OA (}_ir_nHl (Z[¢pm, l/p],T*(l)))/(some small thing),

associated to 7 € De¢rys(V*(1)). The homomorphism in 16.4 is obtained from this
homomorphism by taking Homye_ , ( , 5%%,L).

(2) In the paper [Pe2], the assumption V is crystalline appears to have a map in
the above (1) for 17 € Derys(V*(1)). Kurihara,Tsuji and I checked that this assumption
is not necessary [KKT)]. See also [CP], [Pe5].
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We apply 16.4 by taking Vg, (f*)(k) as V in 16.4. Since (Vr, (f*)(k))*(1) =
Ve, (f*)*(1 — k) is isomorphic to Vg, (f) as a representation of Gal(Q/Q) (14.10.1),
the condition (16.4.1) is satisfied.

Theorem 16.6. — Let a,w,y be as in 16.2, and let
2P (f*)(k) € Hioo(Vr (f*)(K))

be the image of the p-adic zeta element
2P (f*) € H' (Ve (7))

12.5 (1)) under the product with ((p»)®%,. Then:
P Jn>1
(1) There exists an element 11 of Fi () ®F, Derys(Vr, (f*)*(1 — k)) such that

p(n)=an and (w,n) =1
(2) Form as in (1), we have

Ly-adic,aw (f) = £ (2P (£7)(K)).

Here w is regarded as an element of Dar(VF,(f*)) via the embedding S(f*) C
DdR(VFA (f*))

Proof. — We prove (1). Since Vg, (f*)*(1 — k) ~ Vg, (f) and
1 — apu + e(p)p*'u? = detr, (1 — pu on Derys(Vr, (£)))

by [Sal], there exists a non-zero element 1 of F)(c&) ®F, Derys(Vr, (f*)*(1 — k))
such that ¢(n) = an. It is sufficient to prove (w,n) # 0. Since the annihilator of
S(f*) in Fa() ®r, Dar(Ve, (f*)*(1 — k)) is Fa(a) ®r, Dig' (VR (f*)*(1 — k), it
is sufficient to prove that in F)(a) ®f, Dar(VF, (f*)*(1 — k)), n does not belong
to Fa(a) ®r, Dljf_{l(VpA (f*)*(1 — k)). Hence it is sufficient to show that a non-
zero element 1 in Fy(a) ®F, Derys(Vr, (F*)*(1 — k)) such that ¢(n) = an does not
belong to Fi(a) ®F, DX (VE, (f*)*(1 — k)). Consider the F(a)-subspace Fi(c) - n
of F\(a) ®F, Derys(Vr, (f*)*(1 — k)). This subspace is stable under the action of the
Frobenius ¢. The Newton polygon of this subspace has slope ord,(a) < k — 1, and if
n € Fi(a) ®F, D’;ﬁl(VFA (f*)*(1 — k)), the Hodge polygon of this subspace has slope
k — 1 [Fo3, §4.4]. By [Fo3, §4.4], this contradicts the result of Tsuji and Faltings
that Vg, (f) is potentially semi-stable (as explained in 11.4).

Next we prove (2). Let r € Z, 1 < r < k— 1 and let n and x be as in 16.4 (i).
Write

exp*(zﬁr”)(f*)(k)_r,n) = CorpWw with ¢c_rpn € Q((pn) @ F.
Then by 16.4

La (2P (F)R)(E"X ) = (r = D)1 p"a™ - G, Gm) T Y X(0)a(Cryn)-
o€Gn
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Let + = (—1)*~"~1x(—1). By the characterizing property of the p-adic zeta element
zgp)(f*) in 12.5, the image of }°_ ., Xx(0)o(c—rn) - w under

Q(¢pr) ® S(f*) — C®r Vr(f*) — C®r Ve(f*)*
is (2m8)* ="~ Ly (f, x,7) - ¥E. This shows
(X x(@)o(emrm)) - Qa = @Ti)* " Ly (f.7)-

oc€G,

This proves £,(z" (£*)(k)) = Lp-adic.aw~(f) by 16.3 (1). O

17. The main conjecture, II

In §17 and §18, we consider the relation between the p-adic zeta function of f
and the Selmer groups associated to f. In this section, we consider the analogue of
Iwasawa main conjecture in the case f is of good ordinary reduction.

The following is known:

Proposition 17.1. — The following three conditions (i)-(%ii) are equivalent.

(i) p does not divide N and ap € OF .

(i) p does not divide N and there exists an element o of O such that 1 — au
divides the polynomial 1 — apu + e(p)pF~1u?.

(iii) Vi, (f) is crystalline as a representation of Gal(Qp/Qp), and there exists a
one dimensional Fy-subspace Vi, (f) of Vi, (f) which is stable under the action of
Gal(Qp/Qp) and is unramified as a representation of Gal(Qp/Qp).

Furthermore, if these equivalent conditions are satisfied, the element o in (ii)
is unique, and the subspace Vi (f) in (iii) is unique, and if we put Vg (f) =
Ve, (£)/ Ve, (f), Vi, (f)(k — 1) is unramified as a representation of Gal(Q,/Qp).

We give the proof of 17.1 in 17.7.

We say that f has good ordinary reduction at A if the equivalent conditions in 17.1
are satisfied.

If f has good ordinary reduction at A, f* also has good ordinary reduction at .
This follows from Vg, (f*) ~ Hompg, (Vg (f), FA)(1 — k) by using the above condition
(i)

Proposition 17.2. — Assume f has good ordinary reduction at \. Let Vg, (f) and
Vi (f) be as in 17.1, let T be a Gal(Q/Q)-stable O-lattice in Vg, (f), and let
0—T —T—T'—0

be the ezact sequence defined by T' = T N Vg, (f),T" = T/T" C Vi, (f). Then for
1< r<k-—1, the subgroup

lim Sel(Q(Cpr ), T'(r))(—7)
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of lim HY(Z[(pn,1/p), T ® Q/Z) coincides with the kernel of
lim H' (Z[¢pn, 1/p), T ® Q/Z) — lim H' (Qp(Gpn), T © Q/Z)

and hence is independent of r.

The proof of 17.2 is given in 17.10.

17.3. Assume f has good ordinary reduction at . For a Gal(Q/Q)-stable Ox-lattice
T of Vg, (f), let

Seloo (T) = lim Sel(Q(Gr ), T(r)(—r) (1 <7 <k—1)

which is independent of r, and let
X(T) = Homop, (Seloo(T"), Fr/Oy).

We regard X(T') as a module over A = O»[[G)] in the natural way. It is easily seen
that X(7T) is a finitely generated A-module.
The aim of this section is to prove the following Thm. 17.4.

Theorem 17.4. — Assume f has good ordinary reduction at \. Let T be a Gal(Q/Q)-
stable Oy-lattice of Vi, (f).

(1) X(T) is a torsion A-module.

(2) Let o be as in 17.1, let w be a non-zero element of S(f*), and let v be an
element of Vi (f*) such that v* # 0 and v~ # 0. Then, Lp adic,a,w~(f) € AQQ, and
we have

length,, (X(T)p) < ordp(Lp-adic,a,w,y(f))
for any prime ideal p in A of height one which does not contain p.

(3) Let a,w,~v be as in (2), and assume that both w and v are good for some
Gal(Q/Q)-stable Ox-lattice of Vr, (f) in the sense of 17.5 below. Assume further
p # 2 and that the condition 12.5.2 in 12.5 (4) is satisfied. Then Ly adic,a,w,~(f)
belongs to A and

lengthy  (X(T)p) < ordy (Lyp-adic,a,w,v(f))
for any prime ideal p of A of height one.

17.5. Assume f has good ordinary reduction at A\. Then as we will see in 17.8, the
composite map

(17.5.1) S(f) ®F Fx = Dar(VF, (f)) — Dar(VE, (f))
is an isomorphism. (Here Vy; (f) is as in 17.1.)

Let T be a Gal(Q/Q)-stable Oy-lattice of Vi, (f). Then H(Q,, 2;' ®z, T"(k—1))
is an Oj-lattice of the one dimensional Fx-vector space Dar(Vy, (f)), where T" is
the image of T in Vi, (f) and Zy" denotes the p-adic completion of the valuation
ring of Q.
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We say an element w of S(f) is good for T if the image of w in Dar (Vy, (f)) under
the map (17.5.1) is an Ox-basis of H(Q,, 2‘,}‘ ®z, T"(k —1)). Note that a good w for
T exists. In the case f of weight 2 and T' = (T, E)(—1) for an elliptic curve E over Q,
w is good for T if and only if w is a Z,-basis of coLie(E) ® Z, where E is the Néron
model of E.

Recall 14.18 that we say an element v of Vg, (f) is good for T if v is an Oy-basis
of Tt and v~ is an Ox-basis of T—.

The following is an old conjecture due to Mazur and Greenberg.

Conjecture 17.6 (main conjecture). — Assume f has good ordinary reduction at \, and
let T, X(T),,w,~ be as in Thm. 17.4 (2). Then

length, | (X(T)p) = ordy (Lp-adic,a,w,~(f))

for any prime ideal p of height one of A which does not contain p. If furthermore p # 2
and if w and y are good in the sense of 17.5 for some Gal(Q/Q)-stable Oy -lattice of
Vi, (f*) which is isomorphic to T*(1 — k) as a representation of Gal(Q/Q) over Oy,
then

lengthy (X(T)p) = ordp (Lp-adic,aw,v(f))

for any prime ideal p of height one.

See Greenberg [Grl], [Gr2], Schneider [Scp] for more general aspects for motives.

As we will see in 17.13, the main conjecture 12.10 implies the main conjecture
17.6. The arguments to do this are similar to the arguments in deducing the classical
Iwasawa main conjecture for the p-adic Riemann zeta function from the Iwasawa main
conjecture of the form 12.9, and are well known to experts.

17.7. We prove 17.1.

Assume (i). We prove (ii). Write 1 —apu+e(p)p*~1u? in the form (1 — au)(1 - Bu)
with a,3 € F,. If a does not belong to Fy, we have ord,(a) = ord,(B) because «
and 3 are conjugate over Fy. Since a8 = e(p)p*~!, ordy(a) = ord,(B) = &2 > 0
and this contradicts a + 8 = a, € OX. Hence a € F). This shows a, 8 € Oy. By
a+ 3 € O3, one of a, 3 belongs to Oy . Hence (i) implies (ii).

Assume (ii). We prove (iii). Since p does not divide N, Vp, (f) is a crystalline
representation of Gal(Q,/Q,). The space Derys(Vr, (f)) has a Frobenius ¢ and a
filtration (DYg (Vi (f)))iez via the identification Derys(Vry (f)) = Dar(Vr, (f)). We
have

Dar(Vr, (f)) fori<o,
Dir (Ve (£) = S(f) ®r Fx  for 1 <i< k-1,
0 fori> k.

Let a be as in condition (ii). Since

detr, (1 = ¢u; Darys(VE, (f))) = 1 = apu + e(p)p* ' u?
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[Sal], Derys(Vry (f))a = { € Derys(Vr, (f)); ¢(x) = ax} is a one dimensional F-
vector space.

Let U be a one dimensional F)-vector space which is endowed with an unramified
action of Gal(Q,/Qp) such that the arithmetic Frobenius acts by a~!. Then the
Frobenius on Derys(U) coincides with the multiplication by «;, QR(U ) = D4r(U) for
i < 0,and Dig(U) =0fori > 1. Let h : Derys(U) — Derys(Vr, (f)) be an injective Fi-
linear map whose image is Derys(Vr, (f))a- Then h preserves the Frobenius operators
and the filtrations, and hence comes from an Fj[Gal(Q,/Qp)]-homomorphism U —
Vi, (f) [Fol]. Let Vg (f) be the image of this homomorphism. Then Vg, (f) is
unramified.

It is easy to see that (ii) implies (i).

We prove that (iii) implies (ii). Since Vp, (f) is crystalline as a representation of
Gal(Q,/Q,), p does not divide N by [Ca] and [Sal]. Since

1 — @pu + e(p)u? = det(l — pu; Derys(Vry (f)))  (14.10.4)

and since the slope of the unramified representation Vi, (f) is zero, we have (ii).
Thus we have proved that the conditions (i)-(iii) are equivalent. Assume now that
these equivalent conditions are satisfied. Then « in (ii) is unique as is easily seen. Let

VE (f) = Vi, (£)/ Vi, (f)- Since
Vi, () ®r, Vi (H)(k = 1) = (detr, (Vi () (k — 1)

is unramified (14.10.2), we have that Vi (f)(k —1) is unramified. Since Vf, (f) is not
isomorphic to Vg, (f), we see that Vi, (f) is unique.
This completes the proof of Prop.17.1. O

17.8. We prove the bijectivity of the composite map (17.5.1). For i € Z, we have an
exact sequence

0 — Dir(VE, (f)) — Dar(Vr, (f)) — Dér(VE, (f)) — 0.
For i such that 1 <i <k —1,
ar(V, (£)) = 0, Dir(Vr, (£)) = Sr(f) ®F Fx and Dig(VE, (f)) = Dir (Ve (f))-
Hence Sr(f) ®r Fx — Dig(V, (f)) is an isomorphism.
Lemma 17.9. — Assume f has good ordinary reduction at X\, let T,T',T" be as

in 17.2, and let v be an integer such that 1 < r < k — 1. Then the image of
lim H}(Qp(Cpr), T(r)) in Hi, (T(r)) coincides with the image of HY, (T"(r)).

loc
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Proof. — By Prop. 14.12, we have
HY(Qp, V) = H*(Q,, V) =0 for V = Vi, (f)(r), Ve, () (), VE, () (r),
dimp, H' (Qp, Vi, (£)(r) = 2,
dimp, H(Qp, Vr, (f)(r)) = 1,
dimp, H'(Qp, V) =1 for V = Vg, (£)(r), Vs, (£)(r),
H} (Qp, Vi, (£)(r) = HY(Qp, Vi, ()()),
H}(Qp, Vi, (£)(r)) = 0.

We have also H™(Qp(¢pn ), Vi, (£)(1)) = &:H™(Qp, Vi, (f ® x:)(r)) and similar facts
for Vi, (f)(r), Vi, (f)(r), where L; are finite extensions of Q, satisfying F[(Z/p™)*] =
Il; L: and where x; : (Z/p™)* — L} are induced homomorphisms. These show
that H}(Qp(Cpn), Ve, (f)(r)) coincides with the image of H'(Qp(Cpn), Vi, (£)(r)) in
H' (Qp(¢pn), Vi, (£)(7))- Hence H}(Qp(¢pn ), T'(r)) contains the image of the injection
HY(Qy(Gm), T7(1) — HY(Qp(Gpn), T(£)(1)), and

H} (Qp(&pn), T(T))/Hl (QP(CP" )s T’(T))

is a finite group and is embedded into the torsion part of H'(Q,((pr), T”(r)). Since
the torsion part of H' (Q,(¢pn ), T”(r)) is the image of HO(Q, (o), T (r) ® Q/Z), it is
sufficient to prove that lim HO(Qp(¢pn ), T"(r) ® Q/Z) is zero. But this follows from
the finiteness of H®(Qp({p= ), T"(r) ® Q/Z) (13.13). O

17.10. We prove Prop.17.2. Let 1 <7 < kK — 1. For each prime number ¢, let
A7 = H'(Qe ® Q(G), T(r) ® Q/2),
By = Image (H}(Qe ® Q(¢pn), T(r) ® Q) — A7).
For each prime number £ # p, let
Cy =HY(Zy ® Z[Gpn), T(r) ® Q/Z) C Ay.

Then for any prime number £ # p, By coincides with the biggest divisible subgroup
of C}. We have

Sel(Q(Gyr), T() = Ker (H'(Q(Gn), T(r) Q/2) — 43/B} © (@ 47/B7))
S(QG), TA((r) = Ker (@), T() © Q/2) — 43/B; @ ( @ AF/CF))
B (2[Gn, 1/7, T() © Q/2) = Ker (H}(Q(Gn), T(r) ©Q/Z) — @ 43/CF).

We have lim C7 = 0 since
—_—n

HY(Ze ® Z[Cpr], ) = H' (Fe ® Z[Gpn], )
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and the p-cohomological dimension of |J, Fe¢((pn) is zero. Hence we have also
lim By =0, and

lim Sel(Q(Gpe), T(r)) = lim S(QGpn), T(r)

n n

(17.10.1) — lim Ker (H'(Z[¢m, 1/p], T(r) ® Q/Z) — AZ/BY).

Hence it is sufficient to prove that By is equal to the kernel of
lim A7 — lim HY(Qp(Gpn), T (r) ® Q/Z).
n n

But this follows from Lemma 17.9 by duality [BK2, Prop. 3.8].
The following Prop.17.11 and Lemma 17.12 are preliminaries for the proof of
Thm. 17.4.

Proposition 17.11. — Assume f has good ordinary reduction at A, let T be a
Gal(Q/Q)-stable Ox-lattice of Vp, (f*), let T' = T NV (f*), T" =T/T' C Vg, (f*).
Let n be a basis of the invertible Ox-module

H°(Qy, Z3" ®z, Homo, (T",04)(1 = k)) C Derys(Vi, ()" (1 — k).
Then the homomorphism
Ly Higo(T(k)) — Hoop,  (16.4)

induces an injection
Hlloc(T(k))/Hlloc(T’(k)) — A7

whose cokernel is a finite group.

Proof. — Since 11 € Derys(Vg, (£*)*(1—k)), the map £, factors through H! (T(k)) —

loc

H} (T"(k)). Since HZ (T"(k)) is a finite group, the cokernel of the injective homo-

morphism e
Hi, (T (k))/Hjoe(T' (k) — Hio (T" (k)

is a finite group. It remains to prove that £, induces an injective homomorphism
H] .(T"(k)) — A with finite cokernel. Hence we are reduced to the following lemma

17.12 which we apply by taking T”(k — 1) as T in Lemma 17.12. O

Lemma 17.12. — Let L be a finite extension of Qp, and let T be an invertible Op -
module endowed with a continuous unramified Oy -linear action of Gal(Q,/Q,) such
that H°(Q,,T) = 0. Let n be an Of-basis of the invertible Or,-module

H(Qp, Zy" ®2, T").
Then £ : HL (T(1)) — %, induces an injection Hi. (T(1)) — OL[[Goo]] whose

loc
cokernel is a finite group.
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Proof. — In this case, the homomorphism £, is expressed by using the theory of
Coleman power series.

Let Fp be the residue field of Q,F, which is an algebraic closure of F,. Since T is
unramified, T is regarded as Gal(F,/Fp)-module. The map £, is written as

HL,(T(1)) -2 H°(Fy, lim H' (@3 (Gpn), Z(1)) ©2, T)

L H(Qy, 2 @2, T) ®0, OL([Gool] ~ O [[Gocl]

where a is the evident map and b is defined as follows. Let
P =1m(Q}(¢r)*), @ =lm(Zy (Gr]*)
where ()~ denotes the p-adic completion lim ()/p"(). Then
P zinng‘(@;’(cpn),Zp(l)),
P/IQ = Z, by the additive valuation.
By Coleman [CR1, CR2], we have an exact sequence of Gal(F,/F,)-modules
(17.12.1) 0— Zp, — Q -5 Z¥[[Goo]] — O,

where the map Z, — Q sends 1 € Z, to (—{pn)n>1 € Q and c is defined as follows.
Let t be an indeterminate, and let

¢ (resp. §) : Z7([t — 1] — Zy*[[t - 1]]

be the unique continuous ring homomorphism such that ¢(t) = t* (¢(t) = t) and such
that the restriction of ¢ (resp @) to Z‘" is the Frobenius automorphism of Z“' Since
G acts on Z;’,'[[t —1]] as Z;‘,'—hnear continuous ring automorphisms in the way that
0 € G sends t to t*(?) we can regard Z;’[[t —1]] as a i;r[[Gm]]-module. For each
u = (un)n € lim Z;7[(pn]* C Q, by the theory of Coleman, there exists a unique
element u = u(t) of Z,[[t — 1]]* (the Coleman power series associated to u) such that

Un = ¢ "(@)(¢pn) for all n > 1. Furthermore, there exists a unique element pu, of
Z, [[Goo)] such that

- Tog(@Pp(@) ™) = -t in Z([t — 1),

Here i, - t is defined by the above Z:‘[[Gw]]-module structure of Z;'[[t —1]]. The
map c is defined by c(u) = p,. Now the definition of b is as follows. Since

H(F,, P/Q ®z, T) ~ H°(Q,,T) =0,
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we have H*(F,, P®z,T) = H°(F,, Q®z,T). The map b is defined to be the composite

HO(F,, P ®z, T) = H(Fp, Q ®z, T) > HO(F,, Z¥[[Goo)] ®2z, T)
= H'(Qp, Zy’ ®2, T) ®0, O[[Gooll-
It remains to prove that the map a is bijective and that the map b is injective and

the cokernel of b is finite. The bijectivity of a follows from H! (@;‘(Cpn),Zp(l)) =
H'(QS"(¢pr ), Zp(1)) and from the spectral sequence

Byl =B (Fp, B (@) (Gr), ) = E? = HH(Qp(Gpn), ).
Next by the exact sequence (17.12.1), Ker(b) = HO(F,,T) and Coker(b)
H!(F,,T). Hence the injectivity of b follows from the vanishing of H(F,,T) =

H°(Q,,T), and the finiteness of the cokernel of b is reduced to the finiteness of
H!(F,,T) = Coker(Frob,—1; T'),which follows Ker(Frob,—1;T) = HO(F,,T) = 0. O

N

17.13. We prove Thm. 17.4.

First the property Lp adic,a,w,y(f) € A ® Q (resp. Lp adic,a,w,y(f) € A) in 17.4 (2)
(resp. 17.4 (3)) is known but follows also from 17.11 and 16.6 (resp. 17.11, 12.5 (4)
and 16.6).

Let T be a Gal(Q/Q)-stable Oy-lattice of Vi, (f*). Take any integer r such that
1 < r < k-1 By taking lim of the sequence (14.9.3) for K = Q(¢p~) and for
T(r) (we use T(r) as T in (14.9.3)), and by using (17.10.1), we obtain a sequence of
A-modules

(17.13.1) 0 — HY(T(k))/(lim H}(Z[¢pn, 1/p], T(r)) (k — 1))

— Hioo(T(k))/(lim Hy (Qp(Gpn ), T(r)) (k — 1))

— X(T*(1 - k)) — H*(T(k)) — Hi,(T'(k))

loc
(T* = Homo, (T, 0,)) which is exact if p # 2, and is exact upto x2 in the case p = 2.
We show first
(17.13.2) @H}(Z[Cpn, 1/p],T(r)) = 0.

For this, since H!(T'(k)) has no A-torsion and is of A-rank 1 (12.4), it is sufficient
to show that the image of H'(T'(k)) in Hj, (T'(k))/(lim H}(Qp(Cpm), T(r))(k — 1)) is
of A-rank 1. This fact is shown by observing that the image of Z(f)(k) (12.5 (2)) is
already of A-rank 1.

Next by 17.9, we have
(17.13.3)  Hioo(T)/(imH}(Qp(Gorn), T(1))(k — 7)) = Hioo(T (k) /Hioo(T" (k)
where T' = T'N Vg, (f*). Furthermore by the latter half of Thm. 12.5 (3),
(17.13.4) HZ _(T(k)) is a finite group.

loc
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Let p be a prime ideal of A of height one. In the case p contains p, we assume
p # 2 and that the condition (12.5.2) in 12.5 (4) is satisfied. By (17.13.2)-(17.13.4),
we obtain from (17.13.1) an exact sequence

0 — HY(T(k))p — Hioe(T(k))p/Hioe(T" (K))p
— X(T*(1 - k))p — HA(T(k)), — 0
Let w be an element of S(f*) which is good for T, and let v be an element of Vg(f*)
which is good for T, in the sense of 17.5. By 17.11 and by 12.5, 16.6, we have an
isomorphism Hj, (T'(k))p/Hi,.(T"(k))p ~ A, which sends the image of Z(f,T)(k),
(12.5 (4)) onto Ay - Ly adic,e,w,+(f). Hence we obtain an exact sequence

0 — HY(T(k)p/Z(f,T)(k)p — Ap/(Ap * Lp-adic,aw,(f))
— X(T"(1 - k))p — H*(T(k)), — 0
Hence X(T™(1 — k)), is a torsion Ay-module, and

length, (X(T™(1 — k))p) — lengthy  (Ap/(Lp-adic,aw,v))
= length,, (H*(T'(k))) — lengthy, (H'(T'(k))p /Z(f, T)(k)p).

Hence Thm. 17.4 (resp. Conj.17.6) becomes a consequence of Thm. 12.5 (resp.
Conj. 12.10).

18. p-adic Birch Swinnerton-Dyer conjectures

In this section, we assume k is even.

Let T be a Gal(Q/Q)-stable Oy-lattice of Vg, (f)(k/2). We consider the relation
between the corank of the Selmer group Sel(7) and the order of the p-adic zeta
function of f at s = k/2.

18.1. For the order of the complex zeta function L(f, s), the “modular form version”
of the Birch Swinnerton-Dyer conjecture says

coranko, (Sel(T")) = ord,—k/2(L(f, 5)).

A p-adic analogue of this is formulated in [MTT)].

Assume that there is a € F) such that 1 — au divides 1 — a,u + £(p)p*~1u? and
such that ord,(a) < k — 1. Let w be a non-zero element of S(f*), and let v be an
element of Vg (f*) such that v* # 0 and v~ # 0. Write Ly adic,a,w,(f) simply as
Ly adic,o(f) (the choices of w.and v are not important in the following). We denote
o, Fi(a) Simply by 5.

For an element u of 5%, and for r € Z, we define the order of u at s = r, denoted
by ords—r(u), as follows. Let p be the kernel of the ring homomorphism He, —
Fy(a);u — u(s") induced by the group homomorphism k" : Goo — Zp™ C f:.
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Then as we will see in 18.6, the local ring S, is a discrete valuation ring. We define
ords—r(u) = length y,_  (Ho,p/1Ho0,p)-
Conjecture 18.2 ((IMTT]). — If o # p*=2/2 we have
coranko, (Sel(T)) = ords=k /2 (Lp-adic,a(f))-
If a = p*=2/2 we have
coranko, (Sel(T")) = ords—/2(Lp-adic,a(f)) — 1.
Remark 18.3. — If o = p*=2)/2_ then Ly agic,o(f, k/2) = 0 (16.2 (ii)) and hence
ord—k/2(Lp-adic,a(f)) 2 1.

If o = p*=2)/2 then p divides N. In the case k = 2 and f corresponds to an elliptic
curve E over Q, o = 1 if and only if E ® Q, is a Tate curve.

Theorem 18.4. — Let T be Gal(Q/Q)-stable Ox-lattice of Vg, (f)(k/2). Then we have
< in place of = in Conj. 18.2. That 1is,

ords=x/2(Lp-adic,a(f)) if a # p*=2/2,
ords—g/2(Lp-adic,a(f)) =1 ifa= p=2/2,

In particular, if k = 2, F = Q, and f corresponds to an elliptic curve E over Q, we
have

coranko, (Sel(T")) < {

rank(E(Q)) < ords=1(Lyp-adic,a(f))
if E is not a Tate curve, and

rank(E(Q)) < ords=1(Lp-adic,a(f)) — 1

if E is a Tate curve.

The arguments in the proof below for the case o # p(*=2)/2 is given in Perrin-Riou
[Pel], [Pe3]. The proof for the case a = p*~2)/2 will be given in [KKT], and we
give below the outline of it.

18.5. We prove that for p as in 18.1, the local ring %% , is a discrete valuation ring.
This is reduced to the case r = 0, and then to the following fact. Let L be a complete
discrete valuation field of mixed characteristic (0, p), and let

A= {anoaan; |an|p-n~" — 0 for some h > 1} C L[[X]].

Here | |, denotes the multiplicative valuation of L normalized by |p|, = p~. Let p be
the prime ideal {3°, 5,a,X™ € A; ap = 0} of A. Then the local ring Ay is a discrete
valuation ring. We prove this. If y = En>0 anX™ € A, p # 0, and m = min{n >
0; an # 0}, then pX ™™ =37~ antmX™ belongs to A. (In fact, |anl, - n™" — 0
for some h > 1, and hence lim, o0 |@ntmlp - 77" = limy o0 |anlp - (R — m)™" = 0.)
Hence any non-zero element of A can be written in the form X™u for some m > 0
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and for some p € A \ p. This shows that all ideals of A, are given by (X™") (n > 0)
and (0). Hence A, is a discrete valuation ring.

Proposition 18.6. — Let T be a Gal(Q/Q)-stable Ox-lattice of Vi, (f)(k/2), and let j
be the canonical map

HY(Z[1/p], T*(1)) — H'(Qp, T*(1))/H}(Qp, T*(1)).
Then
dimp, H?(Z[1/p), Vr, (f*)(k/2)) ifi®Q+#0,
dimp, H*(Z[1/p], Vr, (f*)(k/2)) -1 i j®Q=0.

This follows from the exact sequence in the category {abelian groups}/{finite groups}

coranko, (Sel(T)) = {

H'(Z[1/p], T* (1)) Lo HY(Qp, T*(1))/H(Qp, T*(1))
— Sel(T)Y — H%*(Z[1/p), T*(1)) — 0

where ( )V = Homo, (, Kx/0)). (see (14.9.4). Here we used the fact H2(Q,, T*(1)) is
finite (14.12), and the fact that 7*(1) is isomorphic to a Gal(Q/Q)-stable Ox-lattice
of Vg, (f*)(k/2) as a representation of Gal(Q/Q) over Oj.

Lemma 18.7. — Let p be the ring homomorphism A — Oy which sends G, to 1.
Then we have

dimp, (H?(Z[1/p), Ve, (f*)(k/2))) < length, (H'(Vi, (f*))(k/2)p/Z(£*)(k/2)p).
Proof. — By
H?(Vr, (f*))(k/2) /pH? (Vr, (f*))(k/2)p = B*(Z[1/p), VE, (f*)(k/2)),
we have
dimp, (H*(Z[1/p], VF, (f*)(k/2)))
= length,, (H?(Vr, (f*))(k/2) /pH? (VE, (f*)) (k/2)p)
< lengthy, (H?(Vi, (%) (k/2),)
< lengthy, (H' (Vi (f*)(k/2)/Z(f*)(k/2)s),
where the last < follows from Thm. 12.5 (3). O

18.8. Let p be as in Lemma 18.7. Then the kernel of the ring homomorphism
triv : %, — Fa(a)

which sends G, to 1 coincides with ps#2,.
For r € Z, let 1, : 5, — % be the ring isomorphism induced by

Goo — Ho, o+ k(o) 0.
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Let n be as in Thm. 16.6. Then the A-homomorphism
Ly : Hioe (Ve (F) () — Hoo
induces a A-homomorphism
Loksz - Hioe (VR (F)(k/2)) — Hoo
T Ti2Ln(z ® (Cp”)fgcl/2))~

Let I be the ideal of 5% p, generated by the image of Z(f*)(k/2) under £,y /2.
Then I coincides with the ideal generated by 7y /2 Lp-adic,«(f)- Hence

(18.8.1) lengthyg, | . (H#oo,p st /1) = 0rds=0(Tk/2Lp-adic,a(f))
= OI‘dS:k/z (Lp—adic,a(f))'

Lemma 18.9
(1) We have

lengthy, (H' (Vi, (f*))(k/2)s/Z(£*)(k/2)p) < 0ords=r/2(Lp-adic,a(f))-
(2) Ifj®Q =0,
lengthy, (H' (Vi (f*))(k/2)p/Z(f*)(k/2)p) < 0rdsi/2(Lp-adic,a(f)) — 1.
Proof. — (1) is clear from (18.8.1). Assume j ® Q = 0. Since the composite

n,k/2 triv

£
(18.9.1) H! (Vr, (f*))(k/2) > Hoo Fi(a)
coincides with (1 — pv=2)/2q~1)(1 — p(*=2)/2¢)=1 times the composite

H! (Vi (/) (k/2) — H(Z[1/p], Vie, () 222
H (Qp, Vi, () (k/2))/HY (@, Viey (1) (k/2)) 22 S(£*) @ Fr L Fy(a)
(16.4 (ii)), the map (18.9.1) is the zero map. Hence the image of
Suksa B (Viey () (k/2) —> Hoe i,

is contained in p.#%,. Hence we have the < in

length, (H'(Vr, (f*))(k/2)p/Z(f*)(k/2)p) < lengthye, . (P50 pst /1)
=lengthy, . (Hops,/I)—1. O

18.10. Now the case a # p*=2)/2 of Thm. 18.4 follows from Lemma 18.6, 18.7, 18.9.
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18.11. Finally we give the outline of the proof of the case a = p(*=2)/2 of Thm. 18.4.
In the case, by [KKT)], the image of

Losz * Hioe(Ve, (f*) (k/2)) — Hoopite,
is contained in p.#%%,, and the composite map
Loks2 : Hige (Ve (F*)(k/2)) — pHoopit, — 9o p it |92 H o0 p 00,
factors through the canonical projection
Hioe (Vi (F7)(k/2)) — B (Qp, Vi, (F*)(k/2)) /H}(Qp, Vs (f7) (k/2)).
Hence in the case o = p(*=2)/2 and j ® Q = 0, the image of
Loksz B (Ve (F*)(k/2)) — Hiopre,
is contained in p23#%, p s, . These show that
length,, (H' (Vr, (£))(k/2)p/Z(f*)(k/2)p) < 0rds=i/a(Lp-adic,a(f)) — 1
in the case o = p*=2)/2 and j ® Q # 0, and
length,, (H' (Vi, (£))(k/2)p/Z(f*)(k/2)p) < 0rdsmka(Lp-adic,a(f)) — 2

in the case o = p*=2)/2 and j ® Q = 0. This and Lemma 18.6, 18.7 prove the case
a = p*=2/2 of Thm. 18.4.

Table of special Notation

Zeta elements

c,d2m,N (a zeta element in K, of a modular curve Y(M,N)) ............... 2.2
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cdzm,N(k,r,7"), z2m,n(k,7,7") (zeta modular forms of weight k on X (M, N)) 4.2
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