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REGULAR NEIGHBOURHOODS AND 
CANONICAL DECOMPOSITIONS FOR GROUPS 

Peter Scott, Gadde A. Swarup 

Abstract. — We find canonical decompositions for (almost) finitely presented groups 
which essentially specialise to the classical JSJ-decomposition when restricted to the 
fundamental groups of Haken manifolds. The decompositions that we obtain are 
invariant under automorphisms of the group. A crucial new ingredient is the concept 
of a regular neighbourhood of a family of almost invariant subsets of a group. An 
almost invariant set is an analogue of an immersion. 

Resume (Voisinages reguliers et decompositions canoniques pour les groupes) 
Nous definissons une decomposition canonique pour les groupes presque finiment 

presentes qui correspond a la decomposition JSJ classique dans le cas du groupe fon-
damental d'une variete de Haken. Les automorphismes du groupe laissent invariante 
cette decomposition. Un element crucial et nouveau est le concept de voisinage regulier 
d'une famille de sous-ensembles du groupe qui sont presque invariants. Un ensemble 
presque invariant est un analogue d'une immersion. 

© Asterisque 289, S M F 2003 
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INTRODUCTION 

This article is devoted to the study of analogues for groups of the classical JSJ-
decomposition (see Jaco and Shalen [25], Johannson [26] and Waldhausen [56]) for 
orient able Haken 3-manifolds. The orient ability restriction is not essential but it will 
simplify our discussions. An announcement of our results is in [46]. This field was 
initiated by Kropholler [27] who studied analogous decompositions for Poincare du
ality groups of any dimension greater than 2. But the current interest in this kind of 
decomposition started with the work of Sela [49] on one-ended torsion-free hyperbolic 
groups. His results were generalised by Rips and Sela [36], Bowditch [5] [8], Dunwoody 
and Sageev [14], Dunwoody and Swenson [15], and Fujiwara and Papasoglu [20], but 
none of these results yields the classical JSJ-decomposition when restricted to the 
fundamental group of an orient able Haken manifold. In this paper, we give a new 
approach to this subject, and we give decompositions for finitely presented groups 
which essentially specialise to the classical JSJ-decomposition when restricted to the 
fundamental groups of Haken manifolds. An important feature of our approach is that 
the decompositions we obtain are unique and are invariant under automorphisms of 
the group. In previous work such strong uniqueness results were only found for de
compositions of word hyperbolic groups. Most of the results of these previous authors 
for virtually polycyclic groups can be deduced from our work. But our arguments 
use some of the results of these authors, particularly those of Bowditch. In addition, 
we use the important work of Dunwoody and Roller in [13]. Our work also yields 
some extensions of the results on the Algebraic Annulus and Torus Theorems in [43], 
[5] and [15]. It should be remarked that even though we obtain canonical decompo
sitions for all finitely presented groups, these decompositions are often trivial. This 
is analogous to the fact that any finitely generated group possesses a free product 
decomposition, but this decomposition is trivial whenever the given group is freely 
indecomposable. We should also remark that many of the ideas in this paper and the 
above mentioned papers can be traced back to the groundbreaking work of Stallings 
on groups with infinitely many ends [52] [53]. 



2 INTRODUCTION 

We focus on what we consider to be the most important aspects of the topological 
JSJ-decomposition. Our choice of the crucial property of this decomposition is the 
Enclosing Property of the characteristic submanifold, and we use an algebraic gener
alisation of this property. The topological Enclosing Property can be described briefly 
as follows. See chapter 1 for a more detailed discussion. For an orientable Haken 3-
manifold M, Jaco and Shalen [25] and Johannson [26] proved that there is a family 
T of disjoint essential annuli and tori embedded in M, unique up to isotopy, and with 
the following properties. The manifolds obtained by cutting M along T are simple or 
are Seifert fibre spaces or /-bundles over surfaces. The Seifert and /-bundle pieces 
of M are said to be characteristic, and any essential map of the annulus or torus 
into M can be properly homotoped to lie in a characteristic piece. This is called 
the Enclosing Property of T. The characteristic submanifold V(M) of M consists 
essentially (see chapter 1 for details) of the union of the characteristic pieces of the 
manifold obtained from M by cutting along T. The fundamental group G of M is 
the fundamental group of a graph Y of groups, whose underlying graph is dual to 
the frontier of V(M). Thus the edge groups of Y are all isomorphic to Z or Z x Z, 
and the vertex groups are the fundamental groups of simple manifolds or of Seifert 
fibre spaces or of surfaces. The uniqueness up to isotopy of the splitting family T 
implies that Y is unique. Further, the Enclosing Property implies that any subgroup 
of G which is represented by an essential annulus or torus in M is conjugate into a 
characteristic vertex group. 

All the previous algebraic analogues of the topological JSJ-decomposition consist of 
producing a graph of groups structure Y for a given group G with the edge groups of Y 
being of some specified type and with some "characteristic" vertices. The algebraic 
analogue of the topological Enclosing Property which was used is the property that 
certain "essential" subgroups of G must be conjugate into one of the characteristic 
vertex groups of Y. Note that the word "essential" was not used by any of these 
authors, and they considered several different classes of subgroups. We use the term 
as a convenience to allow us to compare their differing results. 

Our results also yield a graph of groups structure Y for a given group G with some 
"characteristic" vertices, but our algebraic generalisation of the topological Enclosing 
Property corresponds more closely to the topological situation. 

Here is a more detailed discussion of the previous algebraic analogues of the topo
logical JSJ-decomposition. In all of these cases, G is a finitely presented one-ended 
group, and an essential subgroup of G is of the same abstract type as the edge groups 
of T. For example, when trying to describe all splittings of a group G over infinite 
cyclic subgroups, previous authors produced a decomposition with infinite cyclic edge 
groups, such that if G splits over an infinite cyclic subgroup H, then H is conjugate 
into a characteristic vertex group. The first such result was by Kropholler [27], who 
considered the special case when G is a Poincare duality group of dimension n and 
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INTRODUCTION 3 

the edge groups of F are virtually polycyclic (VPC) groups of Hirsch length n — 1. 
For brevity, we will refer to the length rather than the Hirsch length of a VPC group 
throughout this paper. We will also say that a VPC group of length n is VPCn. In 
his case, any VPC(n — 1) subgroup H is essential. Such a subgroup H will have a 
subgroup K of index at most 2 such that e(G, K) ^ 2. This corresponds to consider
ing all 7Ti-injective maps of closed (n — l)-dimensional manifolds into a n-manifold 
rather than considering just embeddings of such manifolds. Note that a VPC group 
of length at most 2 is virtually abelian, so that when n = 3 his result is closely related 
to the topology of 3-manifolds. In fact, Kropholler [28] used his results in [27] to 
give a new proof of the existence of the JSJ-decomposition for closed 3-manifolds. 

In most of the papers which came after [27], a subgroup H of G is essential if G 
possesses a splitting over H. Such subgroups correspond to embedded codimension-1 
manifolds in a manifold. Sela [48] considered the case when G is a torsion-free word 
hyperbolic group, the essential subgroups are infinite cyclic and the edge groups of F 
are also infinite cyclic. Rips and Sela [36] generalised this to the case where G is a 
torsion-free finitely presented group. The essential subgroups and the edge groups 
are again infinite cyclic. Dunwoody and Sageev [14] considered the case when G is 
a finitely presented group and the essential subgroups and the edge groups of F are 
slender groups (i.e. groups in which every subgroup is finitely generated), subject to 
the constraint that if H is an edge group, then G admits no splitting over a subgroup 
of infinite index in H. Fujiwara and Papasoglu [20] considered the case when G is 
a finitely presented group and the essential subgroups and the edge groups of F are 
finitely generated small groups (i.e. groups which do not admit a hyperbolic action on 
a tree), subject to the weaker constraint that if H is an edge group, then no splitting 
of G over H can cross strongly a splitting of G over a subgroup of H of infinite 
index. (See chapter 2 for a discussion of crossing and strong crossing.) Dunwoody 
and Swenson [15] considered the case when G is a finitely presented group and the 
essential subgroups and the edge groups of F are VPC groups of a fixed length n, 
subject to the constraint that G admits no splitting over a VPC subgroup of length 
less than n. In their work, a VPCn subgroup H of G is essential if e(G, H) ^ 2. This 
corresponds to considering singular codimension-1 manifolds in a manifold rather 
than just embedded ones. Finally, Bowditch [5] considered the case when G is a 
word hyperbolic group and the essential subgroups of G and the edge groups of F are 
two-ended (which is equivalent to being virtually infinite cyclic). In his work, a two-
ended subgroup H of G is essential if e(G, H) ^ 2. This corresponds to considering 
all essential annuli in a 3-manifold rather than just embedded ones. In this case, 
Bowditch proved an existence and uniqueness result, precisely analogous to the 3-
manifold theory in the atoroidal case. 

The above results are often referred to vaguely but collectively as the JSJ-
decomposition of a finitely presented group. While these results are commonly 
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4 INTRODUCTION 

regarded as being an algebraic analogue of the topological JSJ theory, none of them 
recovers the topological result when applied to the fundamental group of an orientable 
Haken 3-manifold. We list some reasons for this. 

- None of them has as strong a uniqueness property as the topological JSJ-
decomposition, apart from Bowditch's work [5] for word hyperbolic groups. In 
particular, there is no invariance under automorphisms of the group G except when 
G is word hyperbolic. 

- The topological JSJ-decomposition involves both annuli and tori. Apart from 
[20], none of the algebraic theories can simultaneously handle splittings over free 
abelian groups H and K of different ranks, and [20] can only handle this in certain 
cases. 

- In all the previous work apart from that of Bowditch [5], of Dunwoody and 
Swenson [15], and of Kropholler [27] only splittings are considered, whereas in the 
topological JSJ theory, singular annuli and tori play a crucial role. 

- The algebraic theories only consider strong crossing of splittings, whereas weak 
crossing is a key ingredient in the topology. 

- The Enclosing Property of the characteristic submanifold V(M) is stronger than 
the condition stated earlier that any subgroup of G = TTI (M) which is represented by 
an essential annulus or torus in M is conjugate into a characteristic vertex group. For 
tori there is no difference, but there are many examples where a Haken 3-manifold 
M contains two essential annuli A and A! which carry the same subgroup of G, and 
V(M) has a component W such that A is properly homotopic into W but A! is not. 

Now we will discuss the above points in more detail. 
A feature one would expect from any canonical decomposition of a group G is some 

sort of invariance under automorphisms of G, but in previous work this was present 
only in the case when G is word hyperbolic. This invariance has been exploited by 
Sela in the case of word hyperbolic groups [49], and by Johannson in the classical 
case [26], for several striking applications. 

The characteristic pieces of a 3-manifold M are of three types, namely /-bundles 
(which must meet <9M), Seifert fibre spaces which meet <9M, and Seifert fibre spaces 
which are in the interior of M. We refer to the two types which meet dM as peripheral. 
For the discussion in this paragraph, we restrict our attention to essential annuli in M. 
Then the collection of all peripheral characteristic pieces of M has the Enclosing 
Property for all such annuli and, except for a few special cases, no subcollection 
has this property. But if one applies any of the above algebraic results to splittings 
of G = 7Ti(M) over infinite cyclic subgroups, one obtains only analogues of the I-
bundle pieces, and the peripheral Seifert fibre spaces are split up in an arbitrary 
fashion. Note that by splitting a peripheral Seifert fibre space, one loses the structure 
of this piece and hence loses the topological Enclosing Property. A further point 
to note is that the above algebraic splittings may not even yield all the /-bundle 

ASTERISQUE 289 



INTRODUCTION 5 

pieces of M. For suppose that M has an /-bundle piece homeomorphic to F x 7, 
where F is homeomorphic to the thrice punctured sphere. Thus the only embedded 
incompressible annuli in F x I are the three boundary components. Now all the 
relevant algebraic results, apart from those of Dunwoody and Swenson [15] and of 
Bowditch [5], consider only infinite cyclic subgroups of G over which G splits, and this 
corresponds to restricting attention to embedded annuli. Thus these results will yield a 
graph of groups structure for G with three edges corresponding to the three boundary 
components of F, but the vertex with associated group TTI(F) will not be regarded 
as characteristic. One defect of this is that the structure of the characteristic vertex 
groups of such decompositions cannot be a quasi-isometry invariant. More precisely, 
the property of having a characteristic vertex group which is not two-ended is not 
an invariant of the quasi-isometry type of G. For suppose that the characteristic 
submanifold of a 3-manifold M consists of an /-bundle X homeomorphic to F x / , 
where F is homeomorphic to the thrice punctured sphere. Let M' be a finite cover 
of M in which a component X' of the pre-image of X is homeomorphic to F ' x / , where 
F ' is not homeomorphic to F , and let G' denote m (Mr). Then the decomposition of G' 
will have a characteristic vertex group which is not two-ended, but the corresponding 
decomposition of G will not. 

There are two important special cases of the topological JSJ-decomposition of an 
orientable Haken 3-manifold M. One occurs when M is closed, in which case T con
sists of tori only and the Enclosing Property applies only to maps of tori into M. The 
other occurs when M is atoroidal, meaning that TTI(M) contains no non-peripheral 
(Z x Z)-subgroup, in which case T consists of annuli only and the Enclosing Property 
applies only to maps of annuli into M. These two special cases seem to have guided the 
development of all previous algebraic analogues of the topological JSJ-decomposition. 
In particular, when trying to describe all splittings of a group over subgroups of a 
given type, for example infinite cyclic, previous authors looked for a decomposition 
described by splittings over subgroups of the same type. However, if we return to the 
general topological situation and consider only essential annuli, we observe that the 
collection of peripheral characteristic pieces of M may well have some frontier tori. 
(See the end of chapter 1 for some relevant examples.) This means that even if one 
wishes initially to consider only splittings of a group over infinite cyclic subgroups, 
one is naturally led to consider splittings over more complicated subgroups as well. 
Surprisingly, we will see that, in general, these more complicated groups need not 
even be finitely generated. 

We believe that our ideas in this paper handle all the above problems. We ob
tain decompositions of all finitely presented groups which are unique, and hence in
variant under automorphisms, and which essentially specialise to the classical JSJ-
decomposition. In particular, our ideas can handle simultaneously splittings over free 
abelian groups of many different ranks. Our decompositions arise in a simple and nat
ural way, whereas the previous constructions were all rather indirect. We obtain more 
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6 INTRODUCTION 

than one such decomposition and there seems to be a number of further questions 
about finding refinements and properties of these decompositions. We are preparing 
two further papers on such questions. In one, we consider a relative version of much 
of the theory in this paper. This involves developing a theory of relative almost 
invariant subsets. In another paper, we consider the case of Poincare duality pairs in 
more detail, and discuss an analogue of the full topological JSJ decomposition. 

Here is an introduction to our ideas. As mentioned before, our choice of the cru
cial feature of the classical JSJ-decomposition is the Enclosing Property for immer
sions. This property implies that the characteristic submanifold V(M) of an orientable 
Haken 3-manifold M contains a representative of every homotopy class of an essential 
annulus or torus in M. We will say that it encloses every essential annulus and torus 
in M. In this paper, we introduce a natural algebraic analogue of enclosing. If we 
restrict attention to embedded surfaces, this analogue is simple to explain. First recall 
the graph of groups structure r for G = 7Ti(M), whose underlying graph is dual to 
the frontier fr(V(M)) of V(M). Let F be an essential annulus or torus embedded in 
a component W of V(M), so that F determines a splitting of G, and let Tp denote 
the graph of groups structure for G, whose underlying graph is dual to fr(V(M)) UF. 
Thus TF has one more edge than T, and this extra edge / corresponds to F. Collaps
ing / yields T again, and the image of / in T is the vertex which corresponds to W. 
Now let G be any group, let T be a graph of groups structure for G, and let a be 
a splitting of G. We say that a is enclosed by a vertex v of T, if there is a graph 
of groups structure Ta for G, with an edge e which determines the splitting a, such 
that collapsing the edge e yields T, and v is the image of e. We emphasise that the 
condition that a is enclosed by the vertex v is in general stronger than the condition 
that the edge group of a is conjugate into the vertex group of v. This is particularly 
clear if a is a free product decomposition of G, as then the edge group of a is trivial. 

An important observation is that V(M) is closely related to a regular neighbour
hood of some (finite) union of essential annuli and tori in M. In some cases, one can 
choose a finite family of essential annuli and tori in V(M) so that V(M) is a regular 
neighbourhood of their union. More usually, V(M) can be obtained from such a reg
ular neighbourhood by adding solid tori to compressible torus boundary components. 
In particular, except for a few special cases, V(M) is minimal (up to isotopy) among 
incompressible submanifolds of M which enclose every essential annulus and torus 
in M. Thus it seems natural to think of V(M) as a regular neighbourhood of all the 
essential annuli and tori in M. The peripheral pieces of the characteristic submanifold 
can be thought of as a regular neighbourhood of all the essential annuli only. Our 
main results can be thought of as algebraic versions of these statements. In order 
to explain our ideas further, we need to discuss the algebraic analogues of immersed 
annuli and tori and the algebraic analogue of a regular neighbourhood. 
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INTRODUCTION 7 

An analogue of a two-sided 7Ti-injective immersion in codimension 1 has been stud
ied by group theorists for some time. If H denotes the image in G of the fundamental 
group of the codimension-1 manifold, this analogue is a subset of G called a 17-almost 
invariant set or an almost invariant set over H. Any two-sided 7Ti-injective immer
sion in codimension 1 has a iJ-almost invariant set associated to it in a natural way. 
In particular, this applies to any splitting of G. Further, there is a natural idea of 
what it means for an almost invariant subset of a group G to be enclosed by a vertex 
of a graph of groups decomposition for G, which generalises the idea of enclosing a 
splitting. We should mention that almost invariant subsets of a group G can appear 
disconnected in the Cayley graph of G so that the analogy with immersions may 
seem a little forced. However, this is an artifact of the particular choice of generators 
made when constructing the Cayley graph. So long as H is finitely generated, one 
can always change generators to make any given if-almost invariant set connected. 
The appropriate notions of intersection and disjointness for almost invariant sets were 
introduced by Scott in [42]. These notions were further developed in [44] and the 
necessary definitions and results will be recalled in chapter 2. For the convenience of 
the reader, the full texts of [42] and [44] are included as appendices in this paper. 
In [42], Scott defined the intersection number of two nontrivial almost invariant sub
sets of a group and showed it was symmetric. Further his definition generalises the 
natural idea of intersection number of curves on a surface, and the intersection num
ber of closed surfaces in a 3-manifold introduced in [19]. In [44], the main results, 
Theorems 2.5 and 2.8, were algebraic analogues of the facts that curves on a surface 
with intersection number zero can be homotoped to be disjoint, and that a curve 
with self-intersection number zero can be homotoped to cover an embedding. These 
results do strongly suggest that an almost invariant set is the appropriate analogue 
of an immersion. 

The key new idea of this paper is an algebraic version of regular neighbourhood 
theory. We describe an algebraic regular neighbourhood of a family of almost invari
ant subsets of a group G. This is a graph of groups structure for G, with the property 
that certain vertices enclose the given almost invariant sets. As splittings have almost 
invariant sets naturally associated, this also yields an idea of an algebraic regular 
neighbourhood of a family of splittings. In [20], Fujiwara and Papasoglu developed 
an idea of a regular neighbourhood of two splittings in special cases. However, their 
idea is not the same as ours as they concentrate on enclosing subgroups rather than 
splittings. In our algebraic construction of regular neighbourhoods, as well as several 
other techniques, we have greatly benefited from the two papers of Bowditch [5] [8]. 
Bowditch's use of pretrees showed us how to enclose almost invariant sets under very 
general conditions. See our construction in chapter 3. In the case of word hyperbolic 
groups, Bowditch [5] was effectively the first to enclose such sets although he does 
not use this terminology. He also showed that the characteristic vertex groups of his 
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8 INTRODUCTION 

graph of groups have the structure of finite-by-Fuchsian groups. Bowditch's tech
niques were further developed by Dunwoody and Swenson in [15] and Swenson [54]. 
Finally in [8], Bowditch extended these techniques still further to study simultane
ously splittings of finitely presented groups over two-ended subgroups and enclosing 
groups for such subgroups. This paper is closest to our approach but there are some 
important differences. It turns out that the decompositions obtained by Bowditch in 
[8] differ from those which we obtain in this paper in chapters 9 and 10. We really 
want to enclose almost invariant sets (which are the algebraic analogue of immersions 
of codimension-1 manifolds) whereas Bowditch does not have a clear analogue of an 
immersion. Bowditch uses what he calls an 'axis' and this can be taken as an analogue 
of an immersion in some cases (see chapter 2 for more details). Secondly, the intersec
tion number we studied in [42] and [44] seems to involve the right notion of crossing 
for almost invariant sets, whereas the notion of crossing used by Bowditch does not 
recognise what we call weak crossings. Taking care of these difficulties seems to make 
our decompositions more canonical and also corresponds better with the topological 
situation. 

In order to explain the idea of an algebraic regular neighbourhood, we return to the 
characteristic submanifold V(M) of a 3-manifold M and the graph of groups decom
position r of G = 7Ti(M), whose underlying graph is dual to the frontier fr(V(M)) 
of V(M). Note that T is naturally a bipartite graph, because its vertices correspond 
to components of V(M) or of M — V(M), and each edge of T joins vertices of dis
tinct types. The vertices which correspond to V(M) will be called Vb-vertices and 
the vertices which correspond to M — V(M) will be called Vi—vertices. Here are two 
properties of V(M), which have algebraic analogues. The first is the Enclosing Prop
erty, which says that any essential annulus or torus in M is enclosed by V(M). The 
second is that if F is any embedded essential closed surface in M, not necessarily a 
torus, and if F has intersection number zero with every essential annulus and torus 
in M, then F is homotopic into M — V(M). These conditions are not sufficient to 
characterise V(M) up to isotopy, but they do contain much of the information needed 
for such a characterisation. The algebraic analogue of the Enclosing Property is that 
the almost invariant subsets of G which correspond to essential annuli or tori are 
enclosed by the Vb-vertices of V. The algebraic analogue of the second property is 
that the splitting associated to F is enclosed by a V\ vertex of T. 

Now let G be a finitely generated group with a family of subgroups {H\}\e\. 
For each A £ A, let X\ denote a nontrivial H\-almost invariant subset of G. Then 
our algebraic regular neighbourhood of the X\s in G is a bipartite graph of groups 
structure T for G such that the Vb-vertices of T enclose the AA'S, and splittings of G 
which have intersection number zero with each X\ are enclosed by the V\-vertices 
of T. In addition, we need to insist that V is minimal in order to have any uniqueness 
results. There are two further technical conditions which we need to impose, and we 
discuss the details in chapter 6. 
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INTRODUCTION 9 

This paper is organised as follows. In chapter 1, we recall the basic properties of 
the characteristic submanifold of a Haken 3-manifold. In chapter 2, we recall some of 
the algebraic concepts and results that we need from our paper [44]. In chapters 3, 4, 
5 and 6, we develop our general theory of regular neighbourhoods of families of almost 
invariant subsets of a group. We give a precise definition of a regular neighbourhood, 
and prove that if one exists then it is unique. We show that regular neighbourhoods 
exist for any finite family of almost invariant subsets each of which is over a finitely 
generated group, although they need not exist in general. This theory seems to be 
useful for studying splittings under more general conditions than those we consider 
for JSJ-decompositions. In chapter 6, we note a strengthening of a theorem of Niblo. 
The results of chapters 2-6 are very general and apply to almost invariant subsets of 
any finitely generated group. 

In chapters 7 up to 10, we construct our first canonical decomposition. We restrict 
our attention to a one-ended, finitely presented group G and almost invariant subsets 
over two-ended subgroups of G. Our decomposition is a graph of groups structure for 
G which is a regular neighbourhood of all such almost invariant subsets of G. The 
restriction to finitely presented groups is natural because we use certain accessibility 
results. However it is now standard that the accessibility results that we use extend 
to almost finitely presented groups. Thus all the results of this paper which are 
stated under the assumption that G is finitely presented are valid when G is almost 
finitely presented (see [4]). In particular, the results are valid for Poincare duality 
groups as these are known to be almost finitely presented. These results for almost 
finitely presented groups will be used in subsequent papers on the analogues of JSJ-
decompositions for Poincare duality pairs. 

In chapter 7, we consider two-ended subgroups of G whose commensuriser in G is 
"small". We discuss the properties of a regular neighbourhood of finitely many almost 
invariant subsets over such subgroups of G. This means that we consider a graph of 
groups structure for G with certain vertices which enclose all these almost invariant 
subsets. When such almost invariant subsets cross strongly, the enclosing groups can 
be identified as finite-by-Fuchsian groups by the work of Bowditch and others. For 
weak crossings, it follows from our general theory of regular neighbourhoods that 
the enclosing groups themselves are two-ended. We formulate a slightly nonstandard 
accessibility result that we need for this argument. 

In chapter 8, we consider two-ended subgroups of G whose commensuriser in G may 
be "large", and prove the following technical result. Let H be such a subgroup of G, 
and let B(H) denote the Boolean algebra of all almost invariant subsets of G which 
are over subgroups commensurable with H. We show that B(H) is finitely generated 
over the commensuriser of H in G. The proof depends on standard accessibility results 
and on techniques of Dunwoody and Roller [13]. 

Using the results of chapters 7 and 8, we obtain, in chapters 9 and 10, a regular 
neighbourhood of all the nontrivial almost invariant subsets of G which are over two-
ended subgroups, i.e. a natural decomposition of any one-ended, finitely presented 
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group G which encloses all such almost invariant subsets. Our uniqueness result for 
regular neighbourhoods implies that this decomposition is unique and also is invariant 
under automorphisms of G. The most remarkable point about this decomposition is 
that although the graph of groups structure obtained is finite, in general not all the 
vertex and edge groups will be finitely generated. We end chapter 10 by deducing 
the existence of a regular neighbourhood of all the splittings of G which are over two-
ended subgroups. This may seem a more natural object, but it only seems possible to 
prove its existence by first considering the above regular neighbourhood of all almost 
invariant subsets of G which are over two-ended subgroups. 

In chapter 11, we discuss several examples of this decomposition and compare it 
with the topological JSJ-decomposition for a 3-manifold and with Bowditch's de
composition in [8]. We show that when G is the fundamental group of a Haken 
manifold M, the enclosing groups obtained in chapter 10 essentially correspond to 
the peripheral characteristic submanifold. In particular, the decomposition of G es
sentially corresponds to the full characteristic submanifold when M is atoroidal. 

In chapter 12, we generalise all the preceding results as follows. If G is a one-ended, 
finitely presented group which does not split over any VPC subgroup of length less 
than n, we construct a regular neighbourhood Tn of all the nontrivial almost invariant 
subsets of G which are over VPCn subgroups of G, i.e. a natural decomposition of G 
which encloses all such almost invariant subsets. As a group is VPCl if and only 
if it is two-ended, Ti is exactly the decomposition of G constructed in chapter 10. 
For n = 2, if G is the fundamental group of a closed Haken 3-manifold M, then T2 
essentially yields the JSJ-decomposition of M. For n ^ 2, if G is a Poincare duality 
group of dimension n + 1, our construction of Tn recovers the results of Kropholler in 
[27]. Our results are slightly more general because they apply to all Poincare duality 
groups, whereas Kropholler's results apply only to Poincare duality groups such that 
any VPC subgroup has finitely generated centraliser. An example due to Mess [33] 
shows that this condition is not always satisfied. The results of this chapter also 
imply the existence of a regular neighbourhood of all the splittings of G which are 
over VPCn subgroups. 

In chapter 13, we use all the preceding ideas to construct an algebraic analogue 
of the whole characteristic submanifold of a 3-manifold. Given a one-ended, finitely 
presented group G, let Ek denote the collection of all the nontrivial almost invariant 
subsets of G over VPCk subgroups of G. We start with the graph of groups structure 
Ti for G which we gave in chapter 10. This is a regular neighbourhood of all the 
elements of E\. Next we consider how to enclose elements of E2. The closest analogue 
to the topology is obtained by considering only those elements of E2 which do not 
cross any element of E\. These are called 1-canonical. We show that Y\ can be 
refined to a graph of groups structure for G by adding new vertices which enclose 
all the 1-canonical elements of E2. In the case when G is the fundamental group 
of an orient able Haken 3-manifold M, our work in [45] shows that this essentially 
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corresponds to the topological decomposition of M. It may seem unsatisfactory that 
we do not find a decomposition of G with vertex groups which enclose all elements 
of Ei and E2, but our work in [45] shows that if such a decomposition exists it cannot 
be a refinement of Ti. We discuss this at the end of chapter 11. If G does not split over 
any VPC subgroups of length less than n, as in chapter 12, then we start with the 
graph of groups structure Tn for G which we gave in that chapter. This is a regular 
neighbourhood of all the elements of En. We say that an element of Ek is n-canonical 
if it crosses no element of Ei, for i ^ n. As in the case when n = 1, we show that 
Tn can be refined to a graph of groups structure Tn?n+i for G by adding new vertices 
which enclose all the n-canonical elements of En+\. As in previous chapters, these 
results also imply the existence of a regular neighbourhood of all the splittings of G 
which are over VPCn subgroups, and of all the n-canonical splittings of G which are 
over VPC{n -f 1) subgroups. 

In chapter 14, we discuss the natural question of whether one can continue in the 
same way. We want to refine to Ti?2,3 by adding new vertices which enclose 
all the 2-canonical elements of E$. We show that this can be done if we restrict 
attention to virtually abelian subgroups of G. Letting denote the corresponding 
subset of Ek, we show that this procedure can be repeated to obtain, for every n, 
a decomposition IY2,...,n of G with vertices which enclose all the (k — l)-canonical 
elements of Ak, 1 ^ k ^ n. In some cases, this sequence stabilises at some finite 
stage, so that we obtain a decomposition of G with vertices which enclose all the 
(k — l)-canonical elements of Ak, for all k ^ 1. Surprisingly, this procedure does not 
work for VPC subgroups. We give a simple example to show that in general there 
is no decomposition analogous to I \2,3 for VPC subgroups of G. As in previous 
chapters, for each n, these results also imply the existence of a regular neighbourhood 
of all the {k — l)-canonical splittings of G which are over virtually abelian subgroups 
of length k ^ n. 

In chapter 15, we discuss how the algebraic JSJ-decompositions of previous authors 
can be related to ours, and in chapter 16, we briefly discuss possible extensions of our 
results to more general classes of groups. 

In Appendices A and B, at the suggestion of the referee, we include the complete 
text of our papers [42] and [44]. For the convenience of the reader, references to 
results in these papers will be made directly to the appropriate appendix. 
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CHAPTER 1 

THE CHARACTERISTIC SUBMANIFOLD 

In this chapter, we will give a brief summary of the theory, emphasising those 
points which are closely related to the algebraic theory in this paper. 

Let M be an orient able Haken 3-manifold, let F be a compact orient able surface, 
not S2 or L>2, and let / : F M be a map. Then / is proper if it sends dF into 
<9M, and is incompressible if it is 7Ti-injective. A proper and incompressible map / 
is essential if it is not properly homotopic into dM. A codimension-0 submanifold 
of M is incompressible if each frontier component is incompressible in M. Finally, an 
incompressible codimension-0 submanifold W of M is simple in M if any essential 
map of the annulus or torus into M which has image in W can be properly homotoped 
into the frontier of W. 

From now on we need to assume that M has incompressible boundary. Jaco and 
Shalen [25] and Johannson [26] proved that there is a family T of disjoint essential 
annuli and tori embedded in M, unique up to isotopy, and with the following prop
erties. The manifolds obtained by cutting M along T are simple in M or are Seifert 
fibre spaces or / bundles over surfaces. In fact, T can be characterised as the minimal 
family of annuli and tori with this property. The Seifert and /-bundle pieces of M are 
said to be characteristic, and any essential map of the annulus or torus into M can 
be properly homotoped to lie in a characteristic piece. This is called the Enclosing 
Property of T. The characteristic submanifold V(M) of M consists essentially of the 
union of the characteristic pieces of the manifold obtained from M by cutting along 
T. However, if two characteristic pieces of M have a component S of T in common, 
we add a second copy of S to the family T, thus separating the two characteristic 
pieces by a copy of S x / , which we regard as a non-characteristic piece of M. Simi
larly, if two non-characteristic pieces of M have a component S of T in common, we 
add a second copy of 5 to the family T, thus separating the two non-characteristic 
pieces by a copy of S x / , which we regard as a characteristic piece of M. This is 
clearly needed if V(M) is to have the Enclosing Property. Thus the frontier of V(M) 
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is usually not equal to T. Some annuli or tori in T may appear twice in the frontier 
of V(M). This discussion brings out a somewhat confusing fact about the character
istic submanifold, which is that both V(M) and its complement can have components 
which are homeomorphic to S x / , where S is an annulus or torus. One other basic 
point to note is that it is quite possible that T is empty. In this case, either V(M) 
is equal to M or it is empty, so that either M is a Seifert fibre space or an /-bundle 
over a closed surface, or M admits no essential annuli and tori. 

In order to complete this description of V(M), we need to say a little more about 
its frontier. If W is a component of V(M) which is an /-bundle over a compact 
surface F, then the frontier of W in M is the restriction of the bundle to <9F, which 
is homeomorphic to dF x / . If W is a Seifert fibre space component of V(M), then 
there is a Seifert fibration on W such that the frontier of W in M consists of vertical 
annuli and tori. 

An important point to make is that any such manifold can occur as a characteristic 
submanifold. More precisely, let W denote a compact 3-manifold such that each 
component is either an /-bundle or a Seifert fibre space over a compact surface with 
non-empty boundary. If V is a component of W which is an /-bundle over a surface 
F, let Ey denote the restriction of the bundle to dF. If V is a component of W 
which is a Seifert fibre space, let Ey denote a finite collection of disjoint vertical 
annuli and tori in dV. Let E denote the union of all the Ey's, and assume that E 
is incompressible in W. Then there is a Haken 3 manifold M with incompressible 
boundary whose characteristic submanifold V(M) is homeomorphic to W and has 
frontier in M equal to E. Such a manifold M can be constructed by starting with W 
and gluing manifolds to E, but it is not trivial to prove that this can be done in the 
required way. 

We emphasise that the Enclosing Property applies to any essential map of the 
annulus or torus into M and not just to essential embeddings. A related concept 
which is important for our approach to JSJ-decompositions is the idea of a canonical 
surface in M. The concept of canonical surface is not discussed in the original memoirs 
[25] and [26]. It emerged from [32] and [34] and is further developed in [45]. In [45], 
an embedded essential annulus or torus S in M is called canonical if any essential 
map of the annulus or torus into M can be properly homotoped to be disjoint from S. 
The Enclosing Property clearly implies that any annulus or torus in T is canonical. In 
[45], we showed that the family of isotopy classes of all canonical annuli and tori in M 
is equal to T. In [34], Neumann and Swarup considered a slightly different version of 
this idea. They defined an embedded essential annulus or torus in M to be canonical 
if every embedded essential annulus or torus in M can be properly homotoped to be 
disjoint from it. We let Te denote the family of isotopy classes of essential annuli 
and tori in M which are canonical in this sense. Clearly T is contained in Te. They 
showed that their family Te is not, in general, the same as the family T, but they 
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were able to describe the differences and thereby give a new derivation of the classical 
JSJ-decomposition. Thus Te determines a canonical decomposition of M which is 
finer than that determined by T. Neumann and Swarup showed that Te — T consists 
of annuli only, which they call matched annuli. They list the possibilities for such 
annuli in Lemma 3.4 of [34]. However, their list is not quite correct. One case which 
they give occurs when M is the Seifert fibre space WVA which is constructed by gluing 
two solid tori together along an annulus A which has degree p in one solid torus and 
degree q in the other solid torus, where q ^ 2. Thus V{M) equals M in this case. 
They assert that A lies in Te. But this is not true when p = q = 2, although it is 
true for all other values of p and q. To see this, we start by showing that Wi,2 can 
also be viewed as the twisted /-bundle over the Klein bottle K. (Note that this is 
the unique /-bundle over K with orientable total space.) For recall that K contains 
a circle C which cuts K into two Moebius bands. The restriction of the /-bundle to 
each Moebius band is a solid torus, and the restriction of the /-bundle to C is an 
annulus which has degree 2 in each solid torus. Thus the twisted /-bundle over K 
is homeomorphic to 1^2,2- Now K also has a non-separating two-sided simple closed 
curve D, and C and D cannot be homotoped apart. The restriction of the /-bundle 
to D is an annulus B in W2,25 and it follows that A and B cannot be homotoped 
apart. Thus A does not lie in Te in the case p — q = 2. 

As discussed in the introduction, the guiding idea behind this paper is that V(M) 
should be thought of as a regular neighbourhood of the family of all essential annuli 
and tori in M. By this we mean that every such map is properly homotopic into V(M) 
and that V(M) is minimal, up to isotopy, among all incompressible submanifolds 
of M with this property. It will be convenient to say that the collection of all such 
maps fills V(M) when V(M) has this minimality property. The word "fill" is used 
in the same way to describe certain curves on a surface. A subtle point which arises 
here is that there are exceptional cases where V(M), as defined by Jaco-Shalen and 
Johannson, is not filled by the collection of all essential annuli and tori in M. In 
these cases our algebraic decomposition does not quite correspond to the topological 
JSJ-decomposition. 

Let V'{M) denote the incompressible submanifold of M which encloses every es
sential annulus and torus in M and is filled by them. We will see that V'{M) is only 
slightly different from V(M). The algebraic decomposition which we produce in this 
paper corresponds to V'(M) rather than to V(M). Clearly V'{M) is a submanifold 
of V(M), so that its frontier in M must also consist of essential annuli and tori in M. 
It follows that, as for V(M), the isotopy classes of the frontier components of V'(M) 
are precisely those of the canonical annuli and tori in M. Hence the difference be
tween V'(M) and V(M) is essentially that certain exceptional components of V(M) 
are discarded. Here is a description of the exceptional components, most of which are 
solid tori. A solid torus component W of V(M) will fail to be filled by annuli essential 
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in M when its frontier consists of 3 annuli each of degree 1 in W, or when its frontier 
consists of 1 annulus of degree 2 in I f , or when its frontier consists of 1 annulus of 
degree 3 in I f . Another exceptional case occurs when a component W of V(M) lies 
in the interior of M and is homeomorphic to the manifold W"2,2 which, as discussed 
above, can also be viewed as the twisted /-bundle over the Klein bottle. Then any 
incompressible torus in W is homotopic into the boundary, so that W is not filled by 
tori which are essential in M. In all these cases, one obtains V'{M) from V(M) by 
first replacing W by a regular neighbourhood of its frontier in M , and then removing 
any redundant product components from the resulting submanifold. 

We end this chapter by giving two examples, the first of which was mentioned in 
the introduction. These examples show that when enclosing one type of surface, the 
frontier of the enclosing submanifold may be of a different type. Let W be a connected 
Seifert fibre space with at least two boundary components, and choose E to consist 
of a single boundary component of W. Let M be a 3-manifold with characteristic 
submanifold W such that W has frontier in M equal to E . As W meets <9M, it is the 
minimal submanifold of M which encloses all the essential annuli in M , but it has a 
frontier torus. 

A different, but related, example can be constructed if we allow M to be non-
orient able. Let F denote the compact surface obtained from a disc by removing the 
interiors of two disjoint discs. Let a and b denote the generators of TTI(F) carried 
by two boundary components of F , oriented so that the third component carries ab. 
Thus ab~x is carried by a figure eight loop 7 in F. Let W denote the S1 -bundle 
over F with fundamental group the extension of Z by 7Ti(F) in which a and b act 
on Z by inversion, and let E be the restriction of this bundle to OF. Then there is 
a 3-manifold M with characteristic submanifold W such that W has frontier in M 
equal to E . As F is a (topological) regular neighbourhood of the figure eight loop 
7, it follows that W is a (topological) regular neighbourhood of the torus which lies 
above 7. Thus W is the minimal submanifold of M which encloses all the essential 
tori in M , but it has two frontier Klein bottles. 
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CHAPTER 2 

PRELIMINARIES 

We start by introducing the idea of an almost invariant subset of a finitely generated 
group G. Throughout this paper, we will always assume that G is finitely generated, 
but we will sometimes need to consider subgroups which are not finitely generated. We 
emphasise here that all the results of this chapter apply to the case when subgroups are 
not finitely generated, unless it is specifically stated that subgroups must be finitely 
generated. We will need several definitions which we take from [44]. See Appendix 
B, and see Appendix A for a discussion. 

Definition 2.1. — Two sets P and Q are almost equal if their symmetric difference 
P-QUQ-Pis finite. We write P = Q. 

Definition 2.2. — If a group G acts on the right on a set Z, a subset P of Z is almost 
invariant if Pg = P for all g in G. An almost invariant subset P of Z is nontrivial 
if P and its complement Z — P are both infinite. The complement Z — P will be 
denoted simply by P*, when Z is clear from the context. 

This idea is connected with the theory of ends of groups via the Cayley graph T 
of G with respect to some finite generating set of G. (Note that in this paper groups 
act on the left on covering spaces and, in particular, G acts on its Cayley graph on 
the left.) Using Z2 as coefficients, we can identify 0-cochains and 1-cochains on T 
with sets of vertices or edges. A subset P of G represents a set of vertices of V which 
we also denote by P, and it is a beautiful fact, due to Cohen [9], that P is an almost 
invariant subset of G if and only if SP is finite, where S is the coboundary operator 
in T. Thus G has a nontrivial almost invariant subset if and only if the number of ends 
e(G) of G is at least 2. Further e(G) can be identified with the number of nontrivial 
almost invariant subsets of G, when this count is made correctly. If H is a subgroup 
of G, we let H\G denote the set of cosets Hg of H in G, i.e. the quotient of G by 
the left action of H. Of course, G will no longer act on the left on this quotient, 
but it will still act on the right. Thus we have the idea of an almost invariant subset 
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of H\G. Further, P is an almost invariant subset of H\G if and only if SP is finite, 
where S is the coboundary operator in the graph H\T. Thus H\G has a nontrivial 
almost invariant subset if and only if the number of ends e(G, H) of the pair (G, H) is 
at least 2. Considering the pre-image X in G of an almost invariant subset P of H\G 
leads to the following definitions. 

Definition 2.3. — If G is a finitely generated group and H is a subgroup, then a 
subset X of G is H-almost invariant if X is invariant under the left action of H, and 
simultaneously H\X is an almost invariant subset of H\G. We may also say that X 
is almost invariant over H. In addition, X is a nontrivial H-almost invariant subset 
of G, if the quotient sets H\X and H\X* are both infinite. 

Remark 2.4. — Note that if X is a nontrivial //-almost invariant subset of G, then 
e(G, iJ) is at least 2, as H\X is a nontrivial almost invariant subset of H\G. In fact 
e(G, / / ) can be identified with the number of nontrivial //-almost invariant subsets 
of G, when this count is made correctly. See [47] for details. 

In [30], Kropholler and Roller gave a different definition of a //"-almost invariant 
subset of a group, which they used in several later papers. We will discuss this at the 
end of this chapter. 

Definition 2.5. — If G is a group and H is a subgroup, then a subset W of G is 
H-finite if it is contained in the union of finitely many left cosets Hg of H in G. 

Definition 2.6. — If G is a group and H is a subgroup, then two subsets V and W 
of G are H-almost equal if their symmetric difference is //-finite. 

It will also be convenient to avoid this rather clumsy terminology sometimes, par
ticularly when the group H is not fixed, so we make the following definitions. 

Definition 2.7. — Two subgroups H and K of a group G are commensurable if HnK 
has finite index in both H and K. 

Definition 2.8. — If X is a //-almost invariant subset of G and Y is a Zf-almost 
invariant subset of G, and if X and Y are //-almost equal, then we will say that X 
and Y are equivalent and write X ~ Y. 

Remark 2.9. — Note that H and K must be commensurable, so that X and Y are 
also AT-almost equal and [H fl /Q-almost equal. 

A more elegant and equivalent formulation is that X is equivalent to Y if and only 
if each is contained in a bounded neighbourhood of the other. 

Equivalence is important because usually one is interested in an equivalence class 
of almost invariant subsets of a group rather than a specific such subset. 

A splitting of a group G is an expression of G as an amalgamated free product 
A*c B, where A ^ C ^ B, or as a HNN extension A*c- Thus a splitting of G always 
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describes a nontrivial decomposition. If one thinks of a splitting of a group as an alge
braic analogue of the topological notion of an embedded 7Ti-injective, codimension-1 
and two-sided submanifold, then almost invariant sets should be thought of as ana
logues of immersions of such manifolds. We can describe the connection between these 
ideas as follows. Let M be a closed manifold with fundamental group G and consider 
a codimension-1 two-sided manifold S immersed in M such that the induced map of 
fundamental groups is injective. Let if denote the image of iri(S) in G, and let MH 
denote the cover of M such that TC\{MH) = H. For simplicity, we will assume that 
the lift of S to MH is an embedding, whose image we will also denote by S. Then 
S must separate MH, and we let A denote the closure of one side of S in MH- Let 
M denote the universal cover of M, and let S and A denote the pre-images in M of 
the submanifolds S and A of Ms. Thus S is a copy of the universal cover of S. Next 
pick a generating set for G and represent it by a bouquet of circles embedded in M. 
We will assume that the wedge point of the bouquet does not lie on the image of S. 
The pre-image of this bouquet in M will be a copy of the Cayley graph T of G with 
respect to the chosen generating set. The pre-image in MH of the bouquet will be a 
copy of the graph H\T. Let P denote the set of all vertices of H \ T which lie in A . 
Then P has finite coboundary, as SP equals exactly those edges of H \ F which cross 
S. Hence P is an almost invariant subset of H \ G . If X denotes the set of vertices in T 
which lie in A , then X is the pre-image of P and so is a if-almost invariant subset 
of G. Note that if we replace A by its complement, then P is replaced by P*. If 
we choose a different generating set for G or a different embedding of the bouquet of 
circles in M, the if-almost invariant subsets P and P* will change, but the new sets 
will be equivalent to P or to P*. Thus we have associated a if-almost invariant set to 
the given immersion S and this set is unique up to equivalence and complementation. 

If one has a splitting of a group G over a subgroup if, the above discussion leads 
to a natural way to associate to this splitting a standard if-almost invariant subset 
of G which is essentially unique (up to complementation). But it is simpler and 
clearer to work in a more combinatorial setting. For this we recall the basic result of 
Bass-Serre theory [50]. (See [51] for an English translation.) This tells us that an 
expression of a group G as A *H B or as A*H is equivalent to an action of G on a 
tree T without inversions so that G\T has a single edge and the edge stabilisers are 
conjugates of if. (Throughout this paper, we will only consider G-trees on which G 
acts without inversions, i.e. if an element of G preserves an edge, it also fixes that 
edge pointwise. This is only a very minor restriction. For if G acts on a tree T with 
inversions, let T' denote the tree obtained from T by dividing each edge into two 
edges. There is a natural action of G induced on T' which clearly has no inversions.) 

First we consider a general action without inversions of a group G on a tree T. 
Recall that there is a natural partial order on the oriented edges of a tree T, given 
by saying that if s and t are oriented edges of T, then s ^ t if and only if there is 
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an oriented path in T which starts with s and ends with t. For any action without 
inversions of a group G on a tree T, and any edge s of T, we have a natural partition 
of G into two sets Xs = {g : gs ^ s or ^ 5 } and X* = {g : gs < 5 or gs < s} . 
We will show below that if S denotes the stabiliser of s, then Xs and X* are both 
S-almost invariant. Although this partition of G is natural, it is not quite right for 
our purposes, because it is not equivaAriant under the action of G on T. In fact, 
if t denotes the edge ks of T, then Xt is equal to A:Xs/c_1, whereas we would like 
it to be equal to kXs. We resolve this problem in the following way. We choose 
a vertex w of T to be a basepoint. Next we define (fi : G —• V(T) by the formula 
(f(g) = gw. Clearly (f is (7-equivariant, by which we mean that kip(g) — tp(kg), for all 
elements g and k of G. Note that ip(e) — w. Now an oriented edge s of T determines 
a natural partition of V(T) into two sets, namely the vertices of the two subtrees 
obtained by removing the interior of s from T. Let Ys denote the collection of all the 
vertices of the subtree which contains the terminal vertex v of s, and let Y* denote 
the complementary collection of vertices. Then s determines a natural (in terms of 
our choice of the basepoint w) partition of G into two sets, namely Zs = (p^1(Ys) 
and Z* = (p~1(Y*). Clearly, these sets are equivariant, i.e. if t denotes the edge ks 
of T, then Zt is equal to kZs. We will show that if 5 denotes the stabiliser of s, then 
Zs and Z* are both S-almost invariant. Further, Zs is 5-almost equal to the set Xs 
defined above. It follows that although Zs depends on our choice of basepoint, the 
equivalence class of Zs is independent of this choice. 

Lemma 2.10. — Let T be a G-tree, and let s be an oriented edge ofT with stabiliser S. 

(1) Then the subset Xs = {g : gs ^ s or gs ^ s} of G is S-almost invariant. 
(2) Let w be a basepoint for T, and define Zs as above. Then Zs is S-almost 

invariant and is S-almost equal to Xs. If w equals the terminal vertex v of s, then 
Zs = Xs. 

Remark 2.11. — Note that this result does not require that G be finitely generated. 

Proof. — 1) We need to show that hXs = Xs, for all h in 5, and that Xsh and Xs 
are S-almost equal for all h in G. 

If gs ^ s, then hgs ^ hs which equals s, for all h in S. Similarly if gs ^ s, then 
hgs ^ hs = 5 , for all h in S. Thus hXs c Xs, for all h in S. Hence h~lXs C Xs, for 
all h in S, so that hXs = Xs, for all h in 5, as required. 

Now consider an element k of Xsh — Xs. Thus there is g in Xs such that k = gh 
does not lie in Xs. This means that the edge s lies between the edges gs and ks — ghs. 
Applying g~l, we see that the edge g~ls lies between s and hs. Thus g~~1s is one of 
the finitely many edges of T between s and hs, so that g~l lies in some finite union 
of cosets giS of S in G. Hence g lies in the union of cosets Sg^1 and so fc also lies in 
some finite union of cosets Ski. 
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Next consider an element k of Xs — Xsh. Thus k lies in Xs and kh^1 does not. 
Hence 5 lies between ks and kh~1s so that k_1s lies between s and h~1s. As in the 
preceding paragraph, it follows that k lies in some finite union of cosets Skj of S. 

It follows from the previous two paragraphs that Xsh and Xs are S-almost equal 
for all h in G, as required. 

2) Recall that <p : G —• V(T) is defined by the formula = gw, and that Zs 
denotes cp~1(Ys). It follows that Zs = {g £ G : gw <E Ys}. Now recall that v denotes 
the terminal vertex of 5 . It is easy to check that Xs — {g G G : gv G Ys}, so that 
Zs = ATS when io equals v. 

Let k be an element of Zs — Xs. Thus few; G Fs and kv ^Ys. Hence s lies between 
kv and few, so that k~~1s lies between i> and w. As in part 1), it follows that k lies in 
some finite union of cosets Ski of S. Similarly, Xs — Zs is contained in a finite union 
of cosets of S, so that Zs is S-almost equal to Xs, as required. • 

In terms of the above discussion, there is now an easy and natural way to associate 
a if-almost invariant subset of G to a splitting a of G over if. Given cr, let T be the 
associated G-tree, and let s denote an oriented edge of T with stabiliser if. Choose 
the basepoint w of T to be an endpoint of s, and then take the if-almost invariant 
subset Zs or its complement. This description involves three choices, namely the 
choices of the edge s, its orientation and the choice of an endpoint of s. The choice 
of s will alter the almost invariant sets obtained by a translation, which corresponds to 
a conjugation of the splitting. Once this choice is made, we end up with precisely four 
if-almost invariant subsets of G which are naturally associated to the given splitting 
over if. In [44], we gave a different, but equivalent, description of these four sets and 
called them the standard if-almost invariant subsets of G associated to a. Each of 
these sets has a particularly nice property, which will play an important role later on. 
If X denotes any one of these four sets, then X — {g G G : gX^ C X}. Here we 
use X^ to denote a set which might be X or X*, so that gX^ C X is shorthand 
for gX C X or gX* C X. To see why this is true, consider the case when w is the 
terminal vertex of s and X = Zs. Note that it is never possible to have the equation 
gs = s, as G acts on T without inversions. Thus 

X = Zs = tp-^Y.) = {geG:gw€Ys} 

= {g£G:gs>SOTgs>s} = {geG: gX™ c X}. 

An interesting special case occurs when the given splitting of G is not a HNN 
extension, and one of the vertex groups, say J5, contains if with index 2. This implies 
that the vertex of s with stabiliser B has valence 2. If we choose the other vertex of 5 
as our basepoint, and let b denote any element of B — if, then the resulting ff-almost 
invariant subset Zs satisfies the equation bZs — Z*. This is a situation which we will 
want to avoid for reasons which will become clear later. We will show that it is a 
fairly unusual phenomenon. The following introduces the terminology we want. 
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Definition 2.12. — If X is an ii-almost invariant subset of a group G associated to 
a splitting of G over i f , then X is invertible if there is an element g in G such that 
gX = X\ 

In order to understand when such sets can be invertible, we first need the following 
result. 

Lemma 2.13. — Let G be a group with subgroups if and K. Suppose that Xg is K-
almost equal to X for all g in G, and that X is H-finite. Then either X is K-finite 
or if has finite index in G. 

Remark 2.14. — We do not assume that KX = X, so that X need not be If-almost 
invariant. 

Proof. — Suppose that X is if-infinite. As X is if-finite, it is contained in a finite 
union of left cosets Hg. Hence there must be a coset HI such that X meets HI in a K-
infinite set. Now, for any element g of G, it follows that Xl~lg meets Hl(l~1g) = Hg 
in a if-infinite set. As Xl~xg is if-almost equal to X , it follows that X itself meets 
every coset Hg in a if-infinite set. As we are assuming that X is contained in a finite 
union of such cosets, it follows that this finite collection of cosets contains every coset 
Hg, and so H has finite index in G, as required. • 

Using this result, we can now show that it is very unusual for almost invariant sets 
to be invertible. In fact, we show the stronger result that if X is a if-almost invariant 
set associated to a splitting of a group G over i f , then it is very unusual for there to 
be an element g in G such that gX is equivalent to X*. 

Lemma 2.15. — Let a denote a splitting of a group G over a subgroup H. Let X 
denote a H-almost invariant subset of G associated to cr and suppose there is an 
element g in G such that gX is equivalent to X*. Then a is not a HNN extension, g 
must lie in a conjugate of a vertex group B of a, and B must contain H with index 2. 

Remark 2.16. — A proof of this result could be disentangled from the proof of Lemma 
B.2.3, but the argument we give here seems clearer. 

Proof — The splitting a of G determines an action of G on a tree T with quotient 
a graph T with a single edge. Let s be an edge of T with stabiliser H. As gX is 
equivalent to X*, it follows that gZs is equivalent to Z*. In particular, as gZs is not 
equal to ZS1 it follows that g cannot preserve s. 

We claim that every interior vertex of the path A which joins s and gs must have 
valence 2. For suppose that v is a vertex of the interior of A of valence at least 3, let 
I and m denote the two edges of A which are incident to v and let n denote a third 
edge incident to v. We will obtain a contradiction. By reversing the orientation of s 
if needed, we can assume that s is oriented into A. It follows that gs is also oriented 
into A, for otherwise we would have gZs C Zs which contradicts the fact that gZs is 
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equivalent to Z*. We now choose /, m and n to be oriented towards v, and choose 
our notation for / and m so that the path from s to u contains /. Thus Z* C Zf, 
Zm C Zgs, and Z m D Zf U Z*. Hence Zs* C Z\ C Z\ U Z* C Z m C Z^s = <?ZS. As 
gZ s is equivalent to Z*, each of the preceding inclusions is an equivalence. As Z\ and 
Z* are disjoint, it follows that Z* is infinite. But n is a translate of s, so that Z* 
is if-infinite where X denotes the stabiliser of n. Now Lemma 2.13 implies that i f 
must have finite index in G, which is the required contradiction. 

If every vertex of T has valence 2, then T is a line which must be fixed by if. Thus 
i f is normal in G and the quotient G/H acts on T by translations and reflections. As 
gZs is equivalent to Z*, the action of g cannot be a translation. It follows that G/H 
is isomorphic to Z2 * Z2, and that a is of the form G = A*H B , where both A and 
B contain H with index 2. Further, as g acts on T by a reflection, it must lie in a 
conjugate of A or B . 

If T has vertices of valence greater than 2, then every edge of T must have such a 
vertex. Let v denote the vertex of s of valence greater than 2, and let w denote the 
vertex of s of valence 2. Then gs must intersect s in ^, and g must stabilise w. As 
the valences of v and w are distinct, it follows that T has two vertices, so that a is 
not a HNN extension. As Stab(w) contains H with index at most 2, and as a is a 
splitting of G, it follows that the index must be exactly 2. The result follows. • 

This lemma shows that invertible almost invariant sets can only occur in the situa
tion when G = A*HB, and B contains H with index 2, which is the case we discussed 
just before Definition 2.12. In particular, invertible almost invariant sets do exist for 
any splitting of this type. However, even in this situation it is clear that "most" of the 
if-almost invariant subsets of G associated to the splitting are not invertible. For if 
X is such a set which is invertible, and if y denotes any element of A*, then the set 
X U Hy is if-almost invariant, is equivalent to X and is clearly not invertible. Note 
that if H has index greater than 2 in A, the other pair of standard if-almost invariant 
subsets of G associated to the given splitting are not invertible. But if H has index 2 
in both A and i?, then all four of the standard JET-almost invariant subsets of G are 
invertible. In topological terms, the non-invertible case corresponds to considering a 
two-sided simple closed curve G on a surface, and the invertible case can arise only 
when G bounds a Moebius band and it corresponds to replacing G by the core of that 
Moebius band. 

The next definition makes precise the notion of crossing of almost invariant sets. 
This is an algebraic analogue of crossing of codimension-1 manifolds, but it ignores 
"inessential" crossings. 

Definition 2.17. — Let A be a if-almost invariant subset of G and let Y be a K-
almost invariant subset of G. We will say that Y crosses X if each of the four sets 
X H Y, A* n Y, X n F * and X* n Y * is if-infinite. Thus each of the four sets projects 
to an infinite subset of i f \G. 
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The motivation for the above definition is that when one of the four sets is empty, 
we clearly have no crossing, and if one of the four sets is "small" (see Definition 2.19 
below), then we have "inessential crossing". Note that Y may be a translate of X in 
which case such crossing corresponds to the self-intersection of a single immersion. 

Remark 2.18. — It is shown in Lemma A.2.3 that if X and Y are nontrivial, then 
X n Y is if-finite if and only if it is if finite. It follows that crossing of nontrivial 
almost invariant subsets of G is symmetric, i.e. that X crosses Y if and only if Y 
crosses X. We will often write X^ n Y^ instead of listing the four sets IflF, 
rny, i n r a n drnr. 
Definition 2.19. — Let U be a nontrivial if-almost invariant subset of G and let V 
be a nontrivial if-almost invariant subset of G. We will say that U H V is small if it 
is if-finite. 

Remark 2.20. — This terminology will be extremely convenient, particularly when we 
want to discuss translates U and V of X and Y, as we do not need to mention the 
stabilisers ofU or of V. However, the terminology is symmetric in U and V and makes 
no reference to if or if, whereas the definition is not symmetric and does refer to if, 
so some justification is required. If U is also if'-almost invariant for a subgroup H' 
of G, then H' must be commensurable with H. Thus U fl V is if finite if and only if 
it is if'-finite. In addition, Remark 2.18 tells us that U O V is if-finite if and only if 
it is if-finite. This provides the needed justification of our terminology. 

The term crossing has often been used in the literature for a somewhat different 
concept which we call strong crossing. As the name suggests, strong crossing implies 
crossing but the converse need not be true. We will now define this notion. Let G be 
a finitely generated group and let if and K be subgroups of G. Let X be a nontrivial 
if-almost invariant subset of G and let Y be a nontrivial if-almost invariant subset 
of G. It will be convenient to think of SX as a set of edges in T or as a set of points 
in G, where the set of points will simply be the collection of endpoints of all the edges 
of SX. 

Definition 2.21. — We say that Y crosses X strongly if both SY H X and SY n X* 
project to infinite sets in if \G. If Y crosses X but not strongly, we say that Y crosses 
X weakly. 

Remark 2.22. — These definitions are independent of the choice of generators for G 
which is used to define T. Clearly, if Y crosses X strongly, then Y crosses X. Note that 
Y does not cross X strongly if and only if SY is contained in a bounded neighbourhood 
of X or X\ 

An interesting point about strong crossing of X and Y is that it depends only on 
the subgroups if and if. More precisely, we have the following result. 
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Lemma 2.23. — Let G be a finitely generated group and let H and K be subgroups 
of G. Let X be a nontrivial H-almost invariant subset of G and let Y' and Y' be 
nontrivial K -almost invariant subsets of G. Then Y crosses X strongly if and only 
if Y' crosses X strongly. 

Proof. — By Remark 2.22, Y does not cross X strongly if and only if SY is contained 
in a bounded neighbourhood of X or X*. As H\SY and H\SY' are both finite, it 
follows that SY is contained in a bounded neighbourhood of SY' and vice versa. Thus 
Y crosses X strongly if and only if Y' crosses X strongly. • 

Definition 2.24. — Let o\ and 0 2 be splittings of G over C\ and C2, and let Xi be 
one of the standard G^-almost invariant subsets of G associated to the splitting c^, 
for i — 1, 2. Then a\ crosses 02 (strongly) if there is g in G such that X\ crosses gX^ 
(strongly). 

Remark 2.25. — As the standard Q-almost invariant subsets of G associated to the 
splitting Gi are all G^-almost equal or G^-almost complementary, this definition does 
not depend on the choice of the X^s. 

Next we give a simple example to show that strong crossing is not symmetric, in 
general. 

Example 2.26. — Consider an essential two-sided simple closed curve S on a compact 
surface F which intersects a simple arc L transversely in a single point. Let G denote 
7Ti(F), and let H and K respectively denote the subgroups of G carried by S and L, 
so that H is infinite cyclic and K is trivial. Then S and L each define a splitting 
of G over H and K respectively. Let X and Y denote associated standard ff-almost 
invariant and if-almost invariant subsets of G. These correspond to submanifolds 
of the universal cover of F bounded respectively by a line S lying above S and by a 
compact interval L lying above L, such that S meets L transversely in a single point. 
Clearly, X crosses Y strongly but Y does not cross X strongly. 

If a\ and a 2 are splittings of G over finitely generated subgroups C\ and C2 re
spectively, Sela introduced in [49] the following notion of crossing of o\ and o~2- He 
says that o\ is hyperbolic with respect to 02 if C\ is not conjugate into a vertex group 
of the splitting o~2- It is easy to show that this idea is the same as strong crossing, 
and we give the proof below. 

Lemma 2.27. — Ifai ando2 are splittings of a finitely generated group G over finitely 
generated subgroups, then o\ is hyperbolic with respect to 02 if and only if o~\ crosses o~2 
strongly. 

Proof. — Consider the G-tree T2 corresponding to the splitting 02 and let the amal
gamating group of the splitting Oi be Hi. Consider the action of Hi on T 2 . It is 
immediate from the definition that o\ is hyperbolic with respect to 02 if and only 
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if Hi does not fix a vertex of T 2 . As we are assuming that H\ is finitely generated, 
it fixes some vertex of T2 if and only if every element of H\ fixes some vertex of T 2 . 
Thus a 1 is hyperbolic with respect to 0 2 if and only if there is an element h of Hi 
which fixes no vertex of T 2 , and thus has an axis I. We claim that this implies that 
a \ crosses 0 2 strongly. Let Xi denote a if^-almost invariant subset of G associated to 
the splitting 0^ as discussed just after Lemma 2.10. As the quotient Hi\SXz is finite, 
it follows that SXi must lie within a bounded distance of Hi. Now let s denote an 
oriented edge of T2 with stabiliser if2, and choose the terminal vertex w of s to be 
the basepoint of T, so that (p(g) = gw. Then if (8X2) = ds. Now some translate gs 
of s lies on the axis / of the element h of H\. It follows that <f(H\) contains points 
arbitrarily far from gs and on each side of gs. Hence X\ crosses gX2 strongly, so that 
a 1 crosses 0 2 strongly as claimed. On the other hand, if o \ is not hyperbolic with 
respect to 0 2 , then H\ fixes a vertex v of T2. It follows that (f(SXi) must lie within a 
bounded distance of v, and hence must lie within a bounded distance of gs, for every 
g in G. Thus 8X\ lies within a bounded distance of gX2 and #X£, for every g in G, 
so that G\ cannot cross a2 strongly. • 

Remark 2.28. — A key point in the above argument is that if every element of Hi fixes 
some vertex of T 2 , then Hi itself fixes some vertex. If Hi is not finitely generated, 
this can fail, but a result of Tits, Lemma 3.4 of [55], can be used instead to show that 
the above lemma holds for splittings over infinitely generated subgroups. 

Sela showed in [49] that if C\ and C2 are two-ended and if G does not split over a 
finite group, then his crossing, and hence our strong crossing, is symmetric. 

The following two technical results play an important role in the theory of almost 
invariant sets. They are well known to experts. We will need the following terminol
ogy. 

Definition 2.29. — Two subsets U and V of a set G are called nested if one of the four 
sets H is empty. 

Lemma 2.30. — Let G be a finitely generated group with finitely generated subgroups H 
and K, a nontrivial H-almost invariant subset X and a nontrivial K almost invariant 
subset Y. Then {g G G : gX and Y are not nested} consists of a finite number of 
double cosets KgH. 

Proof. — Let V denote the Cayley graph of G with respect to some finite generating 
set for G. Let P denote the almost invariant subset H\X of H\G and let Q denote 
the almost invariant subset K\Y of K\G. Recall from the start of this chapter, that 
if we identify P with the 0-cochain on if\r whose support is P, then P is an almost 
invariant subset of H\G if and only if 5P is finite. Thus 5P is a finite collection of 
edges in H\T and similarly SQ is a finite collection of edges in K\T. Now let G denote 
a finite connected subgraph of H\T such that G contains 5P and the natural map 
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7Ti(C) —̂  if is onto, and let E denote a finite connected subgraph of K\T such that 
E contains SQ and the natural map TTI(E) —> K is onto. Thus the pre-image D of G 
in T is connected and contains 5X, and the pre-image F of E1 in T is connected and 
contains SY. Let A denote a finite subgraph of D which projects onto G, and let 
denote a finite subgraph of F which projects onto E . If gD meets F , there must be 
elements h and k in if and K such that g/iA meets k$. Now {7 G G : 7A meets <£} 
is finite, as G acts freely on F. It follows that {g G G : meets F } consists of a 
finite number of double cosets KgH. 

The result would now be trivial if X and Y were each the vertex set of a connected 
subgraph of T. As this need not be the case, we need to make a careful argument as 
in the proof of Lemma 5.10 of [47]. Consider g in G such that gD and F are disjoint. 
We will show that gX and Y are nested. As D is connected, the vertex set of gD 
must lie entirely in Y or entirely in Y*. Suppose that the vertex set of gD lies in Y. 
For a set S of vertices of T, let S denote the maximal subgraph of V with vertex set 
equal to S. Each component W of X and X* contains a vertex of D. Hence gW 
contains a vertex of gD and so must meet Y. If gW also meets Y*, then it must 
meet F. But as F is connected and disjoint from gD, it lies in a single component 
gW. It follows that there is exactly one component gW of gX and gX* which meets 
y*, so that we must have gX C Y or gX* C Y. Similarly, if gD lies in F*, we will 
find that gX C F* or gX* c F . It follows that in either case gX and Y are nested 
as required. • 

A special case of the following result is proved in [44], but is not formulated as a 
separate statement, so we give here a brief description of the proof. 

Lemma 2.31. — Let G be a finitely generated group with finitely generated subgroups H 
and K, a nontrivial H-almost invariant subset A and a nontrivial K-almost invariant 
subset U. Then {g G G : gU^ $C A} is contained in a bounded neighbourhood of A 
in the Cayley graph of G. 

Proof. — Lemma 2.30 tells us that {g G G : gU and A are not nested} consists of 
a finite number of double cosets FLgK. Now suppose that gU ^ A but gU is not 
contained in A. As gU fl A* is small, i.e. it projects to a finite subset in i f \G, it 
follows that gU is contained in a bounded neighbourhood of A. The fact that g must 
lie in a finite number of double cosets HgK implies that there is a uniform bound 
on the size of this neighbourhood of A. This means that there is a number d such 
that for all g such that gU^ ^ A, we have gU^ is contained in a ^-neighbourhood 
of A. Now let W denote {g G G : gU^ $J A}. The preceding discussion shows that 
if g G W, then gSU lies in the (d -f l)-neighbourhood of A. If we let c denote the 
distance of the identity of G from SU, then g must lie in the (c+d+ l)-neighbourhood 
of A, so that W lies in the (c + d + l)-neighbourhood of A, as required. • 
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Now we come to the definition of the intersection number of two almost invariant 
sets. 

Definition 2.32. — Let if and K be subgroups of a finitely generated group G. Let 
P denote a nontrivial almost invariant subset of i f \G, let Q denote a nontrivial 
almost invariant subset of K\G and let X and Y denote the pre-images of P and 
Q respectively in G. Then the intersection number i(P,Q) of P and Q equals the 
number of double cosets KgH such that gX crosses Y. 

Remark 2.33. — The following facts about intersection numbers are proved in Lem
mas A.2.7 and A.2.8. 

(1) Intersection numbers are symmetric, i.e. i(P,Q) = i(Q,P). 
(2) i(P, Q) is finite when G, i f and K are all finitely generated. This follows 

immediately from Lemma 2.30. 
(3) If P' is an almost invariant subset of H\G which is almost equal to P or to P* 

and if Q' is an almost invariant subset of K\G which is almost equal to Q or to Q*, 
then i(P',Q') = i(P,Q). 

When [42] was written, we knew of no examples of almost invariant sets with 
infinite intersection number, so we are grateful to Vincent Guirardel for showing us 
the following example. This demonstrates that i(P, Q) may be infinite if one of if or 
K is not finitely generated. 

Example 2.34. — Let G denote the free group of rank 2 and let G denote any subgroup 
of G which is not finitely generated. It is easy to show that, as C has infinite index 
in G, the number of ends of the pair (G, G) is infinite. Let a denote any splitting of G 
over the trivial subgroup K. There are only two such splittings up to isomorphism 
of G. One is HNN, the other is not, and in both cases the vertex groups are infinite 
cyclic. This last fact is the key to the simple argument which follows. 

Let X denote any nontrivial C almost invariant subset of G, and let Y denote an 
almost invariant subset of G associated to the splitting a. Then i(X,Y) is infinite. 

To see this, let T denote the G-tree associated to the splitting a of G, pick a 
basepoint for T and let : G —» T be a G-equivariant map. Also let s denote an edge 
of T such that Zs is equivalent to Y. Now C\T naturally yields a graph of groups 
structure for C in which every edge group is trivial, and every vertex group is cyclic. 
As C is not finitely generated, it follows that there are infinitely many edges of C\T 
which determine a nontrivial splitting of C. If t denotes an edge of T which projects 
to such an edge of G\T, it immediately follows that ip(C) contains points arbitrarily 
far from t and on each side of t. lit = gs, this implies that X crosses gY strongly. If t 
and t' are two such edges, they have the same image in C\T if and only if ct = t'', for 
some c in C. It follows that the number of double cosets CgK such that X crosses gY 
is infinite. 
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One can also define the intersection number of two splittings to be the intersection 
number of the almost invariant sets associated to the splittings. Now if two curves on 
a surface have intersection number zero, they can be isotoped to be disjoint. There 
is a natural algebraic analogue of this fact. We define a collection of n splittings of a 
group G to be compatible if G can be expressed as the fundamental group of a graph 
of groups with n edges, such that the edge splittings of the graph are conjugate to 
the given splittings. The following result is a slight rewording of Theorem B.2.5. 

Theorem 2.35. — Let G be a finitely generated group with n splittings over finitely 
generated subgroups. Then the splittings are compatible if and only if each pair of 
splittings has intersection number zero. Further, in this situation, the graph of groups 
structure on G obtained from these splittings is unique up to isomorphism. 

In [2], Bass gives a discussion of isomorphisms of graphs of groups. In particular, 
if two graphs of groups structures on a group G are isomorphic, they have isomorphic 
underlying graph, and edges and vertices which correspond under the isomorphism 
carry conjugate subgroups of G. 

This discussion of intersection numbers leads naturally to the concept which we 
call a canonical splitting. Recall from chapter 1 that an embedded essential annulus 
or torus F in an orientable 3-manifold M is called canonical if any essential map 
of the annulus or torus into M can be properly homotoped to be disjoint from F. 
An equivalent formulation of this definition is that an embedded essential annulus 
or torus F in an orientable 3-manifold M is canonical if any essential map of the 
annulus or torus into M has intersection number zero with F (where the intersection 
number is defined as in [19]). In [45], we showed that the canonical annuli and tori 
in an orientable Haken 3-manifold M are the same (up to isotopy) as the frontier of 
the characteristic submanifold, thus yielding the classical JSJ-decomposition. There is 
another natural approach to this idea. As discussed at the end of chapter 1, Neumann 
and Swarup [34] defined annuli and tori embedded in a 3-manifold M to be canonical 
if they have intersection number zero with every embedded essential annulus or torus 
in M. 

Each of these approaches has natural algebraic generalisations. Generalising our 
idea of canonical would involve considering splittings of a group over subgroups iso
morphic to Z or Z x Z which have intersection number zero with many almost invariant 
sets. Generalising Neumann and Swarup's idea of canonical would involve considering 
splittings of a group over subgroups isomorphic to Z or Z x Z which have intersection 
number zero with many splittings. For our purposes, the first idea turns out to be 
most useful, but it seems to be important to consider a much larger class of subgroups. 
The following is the algebraic definition which we derive from the above discussion. 

Definition 2.36. — Let G be a one-ended finitely generated group and let X be a 
nontrivial almost invariant subset over a subgroup H of G. 
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For n > 1, we will say that X is n-canonical if X has zero intersection number with 
any nontrivial almost invariant subset of any K\G, for which K is VPC of length at 
most n. 

For n ^ 1, we will say that X is n-canonical with respect to abelian groups if X 
has zero intersection number with any nontrivial almost invariant subset of any K\G, 
for which K is virtually free abelian of rank at most n. 

If X is associated to a splitting a of G and X is n-canonical (with respect to 
abelian groups), we will say that a is n-canonical (with respect to abelian groups). 

If H is virtually infinite cyclic, and X is 1-canonical, we will often say simply that 
X is canonical. 

Remark 2.37. — If if is not finitely generated, we will only use these ideas when X 
is associated to a splitting over if. 

If n ^ 2, then X is n-canonical if and only if it is n-canonical with respect to 
abelian groups. 

The definitions above make perfectly good sense when G has more than one end, 
and when n = 0. However we show in Lemma 6.9 that if a group G has infinitely many 
ends, then nontrivial almost invariant subsets of G are never O-canonical. Of course, 
an almost invariant subset of G which is not O-canonical is certainly not n-canonical 
for any n. 

Many other related ideas can be defined by changing the class of groups in which K 
lies. For example, one could insist that K be free abelian, or that K be VPC of length 
equal to some fixed number k. In particular, in [45], we gave a similar definition, but 
restricted if to be infinite cyclic, K to be free abelian, X to be associated to a splitting, 
and n to equal 1 or 2. In this situation, almost invariant subsets of K\G correspond 
to (possibly singular) annuli or tori in a 3-manifold. One could also restrict attention 
to those almost invariant subsets of K\G which are associated to splittings. This is 
analogous, in the 3-manifold situation, to considering the Enclosing Property only for 
embedded annuli or tori, which is effectively what Neumann and Swarup were doing 
in [34]. 

In [45], we also considered the connection between the canonical annuli and tori 
in M and the 2-canonical splittings of G — ni(M) over subgroups isomorphic to Z or 
Z x Z. We showed that every such 2-canonical splitting of G arises from a canonical 
annulus or torus in M, and that every canonical annulus in M determines a 2-
canonical splitting of G. Further every canonical torus in M determines a 1 canonical 
splitting of G. However, we also showed that often M will have canonical tori which 
determine splittings of G which are not 2-canonical. See Example 11.7. 

In order to start developing our algebraic theory of regular neighbourhoods in the 
next chapter, we will need to consider collections of almost invariant subsets of a given 
group. The following generalisation of Definition 2.29 will be useful. 
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Definition 2.38. — A collection E of subsets of G which are closed under complemen
tation is called nested if any pair of sets in E is nested, i.e. if U and V are sets in E, 
then one of the four sets fl is empty. 

If each element U of E is a Hu-almost invariant subset of G for some subgroup 
Hu of G, we will say that E is almost nested if for any pair U and V of sets in the 
collection, one of the four sets fl is small. 

If one is given a if-almost invariant subset X of G, it is natural to ask whether 
there is a if-almost invariant set Y which is equivalent to X and is associated to a 
splitting of G over K. This is analogous to asking whether a given codimension-1 
immersion in a manifold can be homotoped to cover an embedding. We state below 
Theorem B.1.12, which we will need later. To prove this result, we used the almost 
nested assumption to construct a tree with G-action. There are more general results 
of this type in section 2 of Appendix B, which will be extended and used later on. 

Theorem 2.39 
(1) Let if be a finitely generated subgroup of a finitely generated group G. Let X 

be a nontrivial H-almost invariant subset of G such that E = {gX, gX* : g G G} is 
almost nested and if two of the four sets X^ fl gX^ are small, then at least one of 
them is empty. Then G splits over the stabiliser Hf of X and H' contains H as a 
subgroup of finite index. Further, one of the Hf-almost invariant sets Y determined 
by the splitting is equivalent to X. 

(2) Let Hi,..., Hk be finitely generated subgroups of a finitely generated group G. 
Let Xi be a nontrivial Hi-almost invariant subset of G such that E = {gXi,gX* : 
1 ^ i ^ k, g G G} is almost nested. Suppose further that, for any pair of elements U 
and V of E, if two of the four sets fl are small, then at least one of them is 
empty. Then G can be expressed as the fundamental group of a graph of groups whose 
i-the edge corresponds to a conjugate of a splitting of G over the stabiliser H[ of Xi, 
and H[ contains Hi as a subgroup of finite index. 

We end this chapter by discussing some closely related ideas which appear in the 
literature. Recall that, in this paper, G always denotes a finitely generated group. 

In [30], Kropholler and Roller gave a different definition of a if-almost invariant 
subset A of a group G, which they used in several later papers.' They omitted the 
condition that X be invariant under the left action of H. Thus they defined X to 
be if-almost invariant if X and Xg are if-almost equal for all g in G, and to be 
nontrivial if X and A* are not if-finite. Thus X is if-almost invariant in their sense 
if and only if its coboundary 5X is if-finite. They also introduced a way to count 
such subsets of G, which they called the number of relative ends e(G, if) of the pair 
(G,if). In particular, e(G, if) ^ 2 if and only if G possesses a nontrivial if-almost 
invariant subset in their sense. As a subset of G which is if-almost invariant in 
our sense is automatically if-almost invariant in their sense, we will always have the 
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inequality e(G, ff) ^ e(G, if). But this inequality is often strict. We will now discuss 
the connection between these two invariants in more detail. 

Suppose that if is a finitely generated subgroup of G and that X is a ff-almost 
invariant subset of G, in the sense of [30]. Since SX is if-finite, it has finite image 
in ff \r. Thus we can find a finite connected subcomplex of H\Y which contains the 
image of SX and carries if. Let L denote the pre-image of this subcomplex in T, so 
that L is a connected, ff-finite subcomplex of T which contains SX. Further HL = L. 
Now let Y denote the complement Y — L, so that HY — Y and each component of Y 
is contained in X or in X*. As the quotient H\L is a finite subcomplex of if\r, the 
complement of H\L in if \r has finitely many components. Thus the components 
of Y fall into finitely many orbits under the action of H. Let X' denote the union 
of all those components of Y which are contained in X and are not if-finite. Then 
X' is ff almost equal to X. It follows that G has a nontrivial ff-almost invariant 
subset, in the sense of [30], if and only if there is a connected ff-finite subcomplex 
L of r such that HL = L and T — L has at least two ii-infinite components. As 
mentioned above, this condition is equivalent to having e(G, if) ^ 2, but it does 
not imply that e(G,if) ^ 2. An easy but interesting example occurs when G is 
the fundamental group of a closed non-orientable surface F, not P2, and if is the 
subgroup of G carried by a simple but one-sided circle C on F. For then e(G, if) = 1, 
as the cover of F determined by if is an open Moebius band. But the pre-image 
of C in the universal cover F of F is a line L such that HL = L and L divides 
F into two if infinite components, so that e(G, ff) = 2. However this example is 
misleadingly simple. First note that if X is if almost invariant in the sense of [30], 
then X is automatically if-almost invariant in this sense for any subgroup ff of G 
which contains K. Surprisingly, if X is nontrivial over if, it must also be nontrivial 
over if, so long as ff has infinite index in G. This follows immediately from Lemma 
2.13. 

This enables us to give the following connection between ends and relative ends. 

Lemma 2.40. — Let if be a finitely generated subgroup of infinite index in a group G. 
Then e(G, if) ^ 2 if and only if there is a subgroup K of if such that e(G, K) ^ 2. 

Remark 2.41. — K may have infinite index in ff. 

Proof. — Suppose that e(G, H) ^ 2, so that G has a nontrivial if-almost invariant 
subset X in the sense of [30]. As if is finitely generated, the previous discussion 
shows that there is a connected if-finite subcomplex L of Y such that HL — L, and 
Y = T — L has at least two if infinite components. Let Z denote one of these if-
infinite components of Y, and let K denote the subgroup of H which stabilises Z. 
Then K must equal the subgroup of if which stabilises SZ or have index 2 in this 

ASTERISQUE 289 



CHAPTER 2. PRELIMINARIES 33 

subgroup. As 8Z is contained in L, it must be //"-finite and hence must also be in
finite. Further, as the quotients K\Z and K\Z* are both infinite and K\5Z is finite, 
it follows that e(G, K) > 2. 

Conversely, suppose that if has a subgroup K such that e(G, K) ^ 2. Thus there 
is a nontrivial K-almost invariant (in our sense) subset Z of G. Trivially, Z is also 
K-almost invariant, and hence if-almost invariant, in the sense of [30]. As if has 
infinite index in G, Lemma 2.13 shows that Z must be nontrivial over if, so that 
e(G, if) ^ 2, as required. • 

In [8], Bowditch considered a notion which he called 'coends'. In [21], Geoghegan 
independently considered the same notion which he called 'filtered coends'. In [8], 
Bowditch considers a pair (G, if) of finitely generated groups where G is one-ended 
and if is two-ended. Let G act properly discontinuously and cocompactly on a locally 
finite one-ended graph T, for example the Cayley graph of G. Let S(H) denote the 
set of if-invariant connected subgraphs of T with finite quotient. If A G S(H), let 
C(A) denote the collection of all complementary components of A and let Coo(A) 
denote those components which are not contained in any element of S(H). If A and 
B are elements of S(H) such that A C B , then there is a surjective map from Coc(B) 
to Goo (A). Let E(H) denote the inverse limit in the category of topological spaces, 
where A and B range over S(H). Then E(H) is a compact and totally disconnected 
space and an element of E(H) is called a coend of if. It is clear from this discussion 
that the concept of coends extends to any pair of finitely generated groups (G, if). It 
is also clear that there is a close connection between coends of if in G and if-almost 
invariant subsets of G in the sense of [30]. Geoghegan showed that the number of 
coends of a subgroup if of a group G is the same as the number e(G, if) of relative 
ends of if in G as defined by Kropholler and Roller in [30]. (See also the introduction 
of [8].) 

Bowditch calls an element of S(H) an axis of if if it satisfies some further technical 
conditions. An axis A is called proper if Coo (A) has at least two elements. If a proper 
axis corresponding to a subgroup K crosses A, then Bowditch shows that if and K 
both have two coends (see section 10 of [5]). If the number of coends of if is 2 and if 
does not interchange the coends, there is an essentially unique (up to equivalence and 
complementation) if-almost invariant subset. Thus in this case, crossing of axes is 
the same as strong crossing of the corresponding almost invariant sets. The arguments 
used by Bowditch in [8] are geared to the above case where G is one-ended and if is 
two-ended, but his ideas work just as well in the case where ff is VPC and G does 
not split over any subgroup of length less than that of if. 
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CHAPTER 3 

ALGEBRAIC REGULAR NEIGHBOURHOODS: 
CONSTRUCTION 

In this and the following three chapters, we will develop our algebraic analogue 
of the topological idea of a regular neighbourhood. It would be possible to start by 
giving an abstract definition of an algebraic regular neighbourhood, and then to prove 
existence and uniqueness results. But the precise definition is somewhat technical, so 
we will start with our construction of an algebraic regular neighbourhood. We will 
consider a finitely generated group G with finitely generated subgroups Hi,..., Hn. 
For i — l , . . . ,n, let Xi be a nontrivial if^-almost invariant subset of G. In this 
chapter, we will construct a finite graph of groups structure T(Xi,..., Xn : G) for G. 
In chapter 6, we will define abstractly what constitutes an algebraic regular neigh
bourhood of the XSs in G, and then will prove that . . . , Xn : G) satisfies the 
requirements of our definition. We will also prove that any algebraic regular neigh
bourhood of the Xis in G is naturally isomorphic to T(X\,... ,Xn : G). These 
results are the algebraic analogue of the existence and uniqueness results for regular 
neighbourhoods in topology. 

While the restriction to finite families of almost invariant sets is very natural, 
regular neighbourhoods of infinite families will play an important role in this paper. 
At the end of this chapter, we will briefly discuss how to modify our construction when 
the number of X^s is infinite. At the end of chapter 5, we also discuss what happens 
to our construction if some of the iiT '̂s are not finitely generated. It is a surprising 
fact that, even in this situation, our theory of algebraic regular neighbourhoods goes 
through in certain cases. 

In order to introduce our ideas, consider a connected manifold M and let T be a 
compact (possibly disconnected) codimension-1 two-sided manifold properly embed
ded in M. (The reader will not miss anything by thinking of M as a surface, and T 
as a collection of circles and arcs.) If each component of T is 7Ti-injective in M, then 
T determines a graph of groups structure T on G = TTI (M) whose underlying graph is 
dual to T. The edge groups of T are the fundamental groups of the components of T 
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and the vertex groups are the fundamental groups of the components of the comple
ment of T. If the components of T are not all TTI -injective, then T still determines a 
graph of groups structure for G, with the same underlying graph, but the edge and 
vertex groups are obtained from the above by replacing each group by its image in G. 

Now suppose that we consider a compact (possibly disconnected) codimension-0 
submanifold TV of M . We will associate to this the graph of groups decomposition T 
of G determined as above by the frontier of TV in M. (If M is closed, this frontier is 
the same as the boundary of TV.) The vertices of T correspond to components of TV 
and of M — TV and each edge of T joins a vertex of one type to a vertex of the other 
type. Thus T is naturally a bipartite graph. Throughout this paper, we will denote 
the collection of vertices of F which correspond to components of TV by Vb(T), or 
simply VQ if the context is clear. The remaining vertices will be denoted by Vi(r) or 
simply V\. If we consider the pre-image TV of TV in the universal cover M of M, the 
dual graph to <9TV is a tree T on which G acts with quotient T, and the vertex and 
edge groups of V are simply the vertex and edge stabilisers for the action of G on T. 
Again T is naturally bipartite with some vertices corresponding to components of TV 
and some vertices corresponding to components of M — TV. 

In the previous paragraph, we discussed how any codimension-0 submanifold TV 
of M corresponds to a bipartite graph of groups structure for TTI(M). In what follows, 
we will be interested in the situation where TV is a regular neighbourhood of the union 
of a finite collection of codimension-1 manifolds C\ properly immersed in a manifold 
M , and in general position. For simplicity, suppose that each C\ lifts to an embedding 
in MA, the cover of M whose fundamental group equals that of C\, and let S\ denote 
the pre-image in M of C\ in M\. Let E denote the collection of all the translates 
of all the S\s, and let |E| denote the union of all the elements of E. Thus |E| is 
the complete pre-image in M of the union of the images of all the CA'S and TV is a 
regular neighbourhood of |E|. The fact that TV is a regular neighbourhood of the CA'S 
implies that the inclusion of the union of the CA'S into TV induces a bijection between 
components, and an isomorphism between the fundamental groups of corresponding 
components. It follows that the inclusion of |E| into TV also induces a bijection between 
components. Thus the Vb-vertices of T correspond to the components of |E|, and the 
V\ vertices of T correspond to the components of M — |E|. If two elements S and 
S' of E belong to the same component of |E|, there must be a finite chain S = 
So, Si,..., Sn = Sf of elements of E such that Si intersects S^+i, for each i. Thus 
the elements of E which form a component of |E| are an equivalence class of the 
equivalence relation on E generated by saying that two elements of E are related if 
they intersect. This is what we want to encode in the algebraic setting, except that as 
we will be dealing with almost invariant sets, we will want to ignore all "inessential" 
intersections. 
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Now we return to our finitely generated group G with finitely generated subgroups 
Hi,... ,Hn and nontrivial i^-almost invariant subsets Xi of G, and will describe 
our construction of the finite graph of groups structure T(X\, ..., Xn : G) of G. Let 
E = {gXi, gX* : g G G, 1 ^ i ^ n}. Previously we said that the AYs are the algebraic 
analogue of the immersed C\s. However, it is neater to consider the pair {X, X*} as 
a single object, and regard this as the algebraic analogue of an immersion. We will 
denote the unordered pair {X, X*} by X, and will say that X crosses Y if X crosses Y. 
Then our algebraic analogue of the set E is the set E = {gXi : g G G, 1 ^ i ^ n}. 
Our analogue of the equivalence relation on E which described the components of |E| 
is the equivalence relation on E which is generated by saying that two elements A 
and B of E are related if they cross. We call an equivalence class a cross-connected 
component (CCC) of E, and denote the equivalence class of A by [A]. Note that 
this is a purely combinatorial definition. The use of the word component is simply 
to emphasise the analogies with the topological situation of the preceding paragraph. 
We will denote the collection of all CCC's in E by P. 

We want to construct in a natural way a bipartite G-tree T with P as its set 
of Vb-vertices. Then we will let T(Xi,..., Xn : G) be the quotient G\T. Note that if 
one has a tree, there is a natural idea of betweenness for vertices. We will reverse this 
process and construct the required tree T starting from an idea of betweenness on 
the set P. In order to define this idea of betweenness, we will first introduce a partial 
order on E using ideas from the proof of Theorem 2.39. There we defined a partial 
order on the set E, and constructed a G-tree whose edges were the elements of E 
by showing that the partial order satisfied certain conditions. Unlike the situation 
of Theorem 2.39, we cannot expect to construct a tree with the elements of E as its 
edges. For this would imply that each Xi determined a splitting of G. However, the 
partial order will still play a crucial role in our situation. 

If U and V are two elements of E such that U C V, then our partial order will 
have U ^ V. But we also want to define U ^ V when U is "nearly" contained in V. 
Precisely, we want U ^ V if U D "V* is small. However, an obvious difficulty arises 
when two of D are small, as we have no way of deciding between two possible 
inequalities. It turns out that we can avoid this difficulty if we know that whenever 
two oW^nvW are small, then one of them is empty. Thus we consider the following 
condition on E: 

Condition (*): If U and V are in E, and two of n are small, then one 
of H is empty. 

If E satisfies Condition (*), we will say that the family Xi,..., Xn is in good 
position. 

Assuming that this condition holds, we can define a relation < on E by saying that 
U ^ V if and only if U fl V* is empty or is the only small set among the four sets 
[/(*) n V^*\ Despite the seemingly artificial nature of this definition, one can show 
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that ^ is a partial order on E. This is not entirely trivial, but the proof is in Lemma 
2.4 of [41] and repeated more group theoretically in Lemma B.1.14. Condition (*) 
plays a key role in the proof. If U ^ V and V ^ U, it is easy to see that we must have 
U — V, using the fact that E satisfies Condition (*). Most of the proof of Lemma 
B.1.14 is devoted to showing that ^ is transitive. We note here that the argument 
that ^ is transitive does not require that the H^s be finitely generated. 

In general, the family X\,... ,Xn need not be in good position, but it turns out 
that this does not cause any problems. We will discuss this after Theorem 3.8. 

Before we go any further, we need to discuss the idea of a pretree. As already 
mentioned, the vertices of a tree possess a natural idea of betweenness. The idea of a 
pretree formalises this. A pretree consists of a set P together with a ternary relation 
on P denoted xyz which one should think of as meaning that y is strictly between x 
and z. The relation should satisfy the following four axioms: 

(TO) If xyz, then x^z. 
(Tl) xyz implies zyx. 
(T2) xyz implies not xzy. 
(T3) If xyz and w ^ y, then xyw or wyz. 

A pretree is said to be discrete, if, for any pair x and z of elements of P , the set 
{y G P : xyz} is finite. Clearly, the vertex set of any simplicial tree forms a discrete 
pretree with the induced idea of betweenness. It is a standard result that a discrete 
pretree P can be embedded in a natural way into the vertex set of a simplicial tree T 
so that the notion of betweenness is preserved. We briefly describe the construction 
of T following Bowditch's papers [5] and [8]. For the proofs, see section 2 of [5] and 
section 2 of [8]. These are discussed in more detail in [7] and [1]. For any pretree P , 
we say that two distinct elements of P are adjacent if there are no elements of P 
between them. We define a star in P to be a maximal subset of P which consists 
of mutually adjacent elements. (This means that any pair of elements of a star are 
adjacent. It also means that any star has at least 2 elements.) We now enlarge the 
set P by adding in all the stars of P to obtain a new set V. One can define a pretree 
structure on V which induces the original pretree structure on P. A star is adjacent 
in V to each element of P that it contains. Next we give V the discrete topology and 
add edges to V to obtain a graph T with V as its vertex set. For each pair of adjacent 
elements of V, we simply add an edge which joins them. If P is discrete, then it can 
be shown that T is a tree with vertex set V. It follows easily from this construction 
that if a group G acts on the original pretree P , this action extends naturally to an 
action of G on the simplicial tree T. Moreover, G will act without inversions on T. 
This will then give a graph of groups decomposition for G, though this decomposition 
would be trivial if G fixed a vertex of T. The tree T is clearly bipartite with vertex set 
V(T) expressed as the disjoint union of VQ(T) and V\(T), where Vo(T) equals P and 
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Vi(T) equals the collection of stars in P. Note that each V\-vertex of T has valence 
at least 2, because a star in P always has at least 2 elements. 

Note also that if we start with a tree T'let P denote its vertex set with the induced 
idea of betweenness and then construct the tree T as above, then T is not the same 
as T'. In fact, T is obtained from T' by subdividing every edge into two edges. 

Now we return to our discussion of the set E which we still assume satisfies Con
dition (*). We have the partial order ^ on E and we write U < V if U but U is 
not equal toV. IfU < Z < V, we will say that Z is between U and V. We summarise 
below some elementary facts about E. 

Lemma 3.1. — If E satisfies Condition (*), then E together with ^ satisfies the fol
lowing conditions. 

(1) IfU,V eE andU ^ V, then V* < U*, 
(2) If U, V G E, there are only finitely many Z G E such that Z is between U 

and V, 
(3) IfU,V G E, one cannot have U and U ^V*. 

Proof — As U* denotes the complement of U, the first part of this lemma is clear. 
Since E consists of translates of a finite number of almost invariant sets over finitely 

generated subgroups, it is a standard fact that there are only finitely many elements 
of E between U and V (See Lemma 2.6 in [41] or Lemma B.1.15). 

Finally, if U and V lie in E, one cannot have U ^ V and U ^ V*. For this 
would imply that U n V* and U fl V are each small, so that U itself would be small, 
contradicting the assumption that each Xi is a nontrivial ii^-almost invariant subset 
of G. • 

Condition 2) of the above lemma will play an important role in our later discussions, 
so we will give this condition a name. 

Definition 3.2. — Let E be a partially ordered set. We will say that E is discrete if 
for any elements U and V of E, there are only finitely many elements of E between 
U and V. 

Next we use these properties of our partial order on E to define a notion of be
tweenness on the set E. Recall that X denotes the unordered pair { X , X*} and that 
E denotes the set of all translates of all the X^s. 

Definition 3.3. — Let L, M, N G E. We say that M is between L and N if there exist 
U G L, V G M, and W G N such that U < V < W, and we write LMN or UVW 
with U, V, W chosen as above. 

Note that it is clear that if UVW holds, then WVU also holds. 
Recall that we say that X crosses Y if X crosses Y. This generates an equivalence 

relation on E, whose equivalence classes we call cross-connected components (CCC). 
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We denote the equivalence class of X by [X], and denote the collection of all CCC's 
in E by P. 

We extend the above idea of betweenness in E to one in P, as follows. 

Definition 3.4. — Let A, B and C be distinct cross-connected components of E. We 
say that B is between A and C and write ABC if there exist U G A, V G B and 
W G C such that V is between U and W, i.e. 77FTF. 

In order for this definition to be useful, we need to know that it is independent of 
the choices of U and W. This is what we prove in Corollary 3.7 below. We need two 
small results first. 

Lemma 3.5. — IfU,V and Z are elements of E such that U ^ V, and Z crosses U 
but Z does not cross V, then either Z ^ V or Z* ^ V. 

Proof. — As Z crosses U, none of Z<*> n £/(*) is small. Since U ^ V, it follows that 
Z H V and Z* n V are not small. As Z does not cross V, either Z HV* or Z* H V* is 
small. Hence either Z ^ V or Z* ^ V as claimed. • 

Lemma 3.6. — If U, V and Z are elements of E such that U < V, and Z crosses U 
but Z does not cross V, then either Z < V or Z* < V. 

Proof. — This follows from the preceding lemma, since if either Z or Z* were equal 
to y, we would have one of the inequalities U < Z or U < Z*, which would contradict 
the assumption that Z crosses U. • 

Corollary 3.7. — Let A, B and C be distinct cross-connected components of E, and 
suppose that U and U' lie in A, V lies in B, and W and W lie in C. IfUV W, then 
TPvW. 
Proof. — It is easy to reduce this to the case when U' crosses U and W = W. We 
can also assume that U < V < W. Now we write U' = Z and apply the preceding 
lemma. This tells us that either Z < V or Z* < V. By the definition of betweenness, 
this implies that V is between U' and W, as required. • 

Now we are ready to show that if P denotes the collection of all CCC's of E 
equipped with the relation of betweenness defined above, then P is a discrete pretree. 

Theorem 3.8. — Let G denote a finitely generated group, and let Hi,..., Hn be finitely 
generated subgroups of G. For each 1 ^ i ^ n, let Xi be a nontrivial Hi^almost 
invariant subset of G, and suppose that the Xx 7s are in good position, so that the set 
E of all translates of all the Xi's satisfies Condition (*). Form the set E as above, 
and consider the collection P of all cross-connected components of E equipped with 
the relation of betweenness introduced above. Then the following statements hold: 

(1) P is a pretree, and G acts on P in a natural way. 
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(2) The pretree P is discrete, and the quotient G\P is finite. Further, the stabilisers 
of elements of P under this G-action are finitely generated. 

(3) As P is discrete, it can be embedded in a natural way into the vertex set of a 
G-tree T so that the quotient G\T is a bipartite graph of groups 0 ( X i , . . . , Xn : G). 
This graph is finite, and the V^-vertex groups arp finitely generated. 

Remark 3.9. — In most cases, 6 ( X i , . . . , Xn : G) will be our algebraic regular neigh
bourhood of the Xis in G. The Vb-vertex groups of 6 ( X i , . . . , Xn : G) are called 
the enclosing groups of the X^s. We will formally define a regular neighbourhood 
in chapter 6, and will define enclosing in chapter 4. Recall that 0 ( X i , . . . , Xn : G) 
is the algebraic analogue of a regular neighbourhood of a finite family of immersed 
codimension 1 submanifolds of a manifold with fundamental group G, and the enclos
ing groups correspond to the fundamental groups of the components of the regular 
neighbourhood. 

Note that even though the enclosing groups of 0 ( X i , . . . , X n : G) are finitely 
generated, the edge groups and the Vi-vertex groups need not be finitely generated, 
even when G is finitely presented. We give examples of this phenomenon in Example 
6.11. 

The result that 0 ( X i , . . . ,Xn : G) is finite can be strengthened greatly. We will 
see in Proposition 5.2 that T is a minimal G-tree. 

Proof. — 1) The action of G on itself by left multiplication induces an action of G on 
E and hence on E. As this action preserves crossing, it is immediate that it induces 
an action on P. 

Now we verify that P satisfies the four axioms (T0)-(T3) for a pretree. For the 
convenience of the reader, we give these axioms again. 

(TO) If xyz, then x ^ z. 
(Tl) xyz implies zyx. 
(T2) xyz implies not xzy. 
(T3) If xyz and w ^ y, then xyw or wyz. 
Axioms (TO) and (Tl) are immediate from our definition of betweenness. 
To prove (T2), suppose that A, B and G are elements of P such that we have both 

ABC and ACB. As ABC holds, Corollary 3.7 tells us that there isVeB such that 
we have UVW for any U G A and W G C. As ACB also holds, there is W G G 
such that UWV holds for any U G A. We choose some U G A. For these particular 
choices of U, V and W, we have both UVW and UWV. As UVW holds, we can 
arrange that U < V < W, by replacing sets by their complement if needed. As U W V 
holds, there exist X G Z7, Y eV, Z eW such that X < Z < Y. Now consider the 
inequalities U < V and X < Y, and recall that X equals U or [/*, and Y equals V or 
V*. It is easy to see that the only possibility is that X = U and Y — V. For example, 
if we had X = U* and Y — V, the inequalities U < V and X < Y would imply 
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that U < V and U* < V, which is impossible. Similarly, the inequalities U < W and 
X < Z imply that X = U and Z = W. But now the inequality V < W implies that 
Y < Z which contradicts the inequality Z < Y. This completes the proof of (T2). 

We next verify (T3). Suppose that we have A, B, C, D G P with ABC and 
D ^ B. We must show that ABD or BBC. Choose U G A, V G B, W G C so that 
U < V < W, and choose X G D. The result is trivial if D equals A or G, so we will 
assume that D is not one of A, 5 or C. Thus X does not cross any of U, V or W. 
Since X does not cross U, one of X^*) D i s small. Thus, we can, by interchanging 
X and X* if necessary, arrange that either U < X or X < U. If X < U, then 
X < V < W so that DBC holds, and we are done. If U < X , then we compare X 
and V. Since they do not cross, we should have one of the four inequalities X < V, 
V < X , X < or < X. If X < V, then as above we have DBC, and if V < X , 
we have U < V < X so that ABD holds. The inequality X < is impossible, as 
we already have U < X and U < V. The inequality V* < X implies that X* < V, 
which again implies DBC. This completes the proof that P is a pretree. 

2) As the given family of X^'s is finite, part 2) of Lemma 3.1 tells us that P is 
discrete. 

There is a natural surjective map from the given family of X^'s to the quotient 
G\E. As the quotient G\P is a quotient of G\E, it follows that G\P is finite, as 
required. 

Note that the surjection from the given family of X^'s to G\E may not be a bijection 
because it is possible that there are distinct i and j such that Xj has a translate which 
is equal to X^ or X*. This is an annoyance which we can easily remove as follows. 
It is clear that the construction of B ( X i , . . ., Xn : G) depends only on the G-orbits 
of the Xis in E rather than the X^'s themselves. Thus, by choosing one Xi for each 
such G-orbit, we can always replace the given family of X^'s by a subfamily which 
yields the same G orbits, and such that distinct XVs lie in distinct G-orbits in E. 
Such a family will yield the same graph of groups decomposition of G, so we will do 
this whenever it is convenient. In particular, we will assume this condition holds for 
the rest of this proof. 

It remains to show that the stabilisers of elements of P are finitely generated. We 
start by noting that the stabiliser Ki of Xi contains Hi as a subgroup of finite index 
and so must be finitely generated. Now let v denote an element of P, and consider 
those X^'s which have a translate in v. By renumbering, we can assume that Xi has 
a translate Yi in v for 1 ^ i ^ k. We let Si denote the stabiliser of Yi. As Si is 
conjugate to Ki, it is also finitely generated. 

There is a natural distance function on the elements of v described as follows. If 
U and V are elements of v, then d(U,U) — 0, and d(U, V) ^ r if and only if there is 
a sequence U — UQ,UI, ... ,Ur = V of elements of v such that Ui and LV4-1 cross for 
0 ^ i ^ r — 1. We call such a sequence a chain. Thus d(U, V) is the length of the 
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shortest chain from U to V. This function extends to a distance function on finite 
subsets of v in the usual way. Now let A denote the set { Y i , . . . , and let G(A) 
denote the subgroup of G generated by X — {g G G : d(gA, A) ^ 1}. 

We claim that G(A) is finitely generated, and that Stab(t;), the stabiliser of v, 
equals G(A). This will show that Stab(^) is finitely generated, as required. 

First we show that G{A) is finitely generated. Recall that if U is an element of A, 
it has finitely generated stabiliser. We will denote this stabiliser by S(U). Now let g 
denote an element of X. If d(gA, A) = 0, there are elements U and V of A such that 
gV — U. As we have arranged that distinct elements of A belong to distinct G-orbits, 
it follows that U — V. Thus the collection of all such elements g is simply S(U). If 
d(gA, A) = 1, then g stabilises no element of A, but there are elements U and V of A, 
possibly equal, such that gV crosses U. Lemma 2.30 shows that the collection of all 
such elements g consists of the union of a finite number of double cosets S(U)gS(V). 
It follows that G{A) is generated by the S^'s, 1 ̂  i ^ k, and by a finite collection of 
double cosets of these groups, and so is finitely generated. 

Next we show that Stab(w) equals G(A). Clearly G(A) is contained in Stab(v). 
We will prove that any element g of Stab(v) lies in G(A), by induction on the integer 
d(gA,A). If d(gA, A) ^ 1, this is immediate from the definition of G(A). Now 
suppose that d(gA,A) = D > 1. Thus there are elements U and V of A such that 
d(gA, A) — d(U, gV) — D. Pick a chain from U to gV of length D, and let W denote 
the element of A with a translate hW which immediately precedes gV in this chain. 
Thus d(hA, A) ^ d(U, hW) — D—l, so that h lies in G(A) by our induction hypothesis. 
As hW crosses gV, we see that W crosses / i - 1 ^ , so that d(h~~1gA, A) ^ 1. Hence 
h~xg also lies in G(A), so that g itself lies in G(A), as required. This completes the 
proof of part 2). 

3) Recall that a discrete pretree P can be embedded in a natural way into the 
vertex set of a tree T, and that an action of G on P which preserves betweenness will 
automatically extend to an action without inversions on T. Also T is a bipartite tree 
with vertex set V{T) = V0(T) U Vi(T), where V0(T) equals P, and Vi(T) equals the 
collection of all stars in P. It follows that the quotient G\T is naturally a bipartite 
graph of groups G with Vb-vertex groups conjugate to the stabilisers of elements of P 
and V\-vertex groups conjugate to the stabilisers of stars in P. Further, part 2) 
implies that © has only finitely many Vb-vertices, and that each such vertex carries 
a finitely generated group. Now we can show that 6 must be a finite graph. For as 
G is finitely generated, there is a finite subgraph 6 i of 6 with fundamental group G. 
Thus © — 6 i has finitely many components each of which must be a tree in which 
every edge determines a trivial splitting of G. Hence if 0 were infinite, one of these 
trees would be infinite. Part 2) tells us that 0 has only finitely many Vb-vertices. 
Thus any infinite subtree of 0 must have a V\-vertex v which is terminal in 0 . As the 
edge incident to v determines a trivial splitting of G, it follows that T has a terminal 
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V\ vertex which projects to v, which contradicts the fact that every V\ vertex of T 
has valence at least 2. This contradiction completes the proof of the theorem. • 

As we remarked immediately after the statement of Theorem 3.8, in most cases, 
the graph of groups 0 ( X i , . . . , Xn : G) will be our algebraic regular neighbourhood 
of the X^'s in G. However, there are a few situations where our construction of 0 
does not yield what we want. There is an important point here, and we will discuss 
some relevant examples. The most basic example occurs when one has a single almost 
invariant set X which is associated to a splitting. Surprisingly, a subtle problem can 
occur even in this case. An important property of our algebraic regular neighbourhood 
of a family of almost invariant subsets of a group is that it should be unchanged if 
we replace the sets in the family by equivalent sets. However our construction does 
not always have this property. Recall from Definition 2.12 that if X is an i7-almost 
invariant subset of a group G associated to a splitting of G over H, then X is invertible 
if there is an element g in G such that gX = X*. We will see that whether or not X 
is invertible has an important effect on our construction of 0(A) . 

Example 3 JO. — Let G be any group which splits over a subgroup H. This implies 
that G acts on a tree T with quotient a graph T with a single edge which yields 
the given splitting of G. We will let X denote a H almost invariant subset of G 
associated to the given splitting and apply the preceding construction to the set E 
of all translates of X and A*, to obtain a new graph of groups structure 0 = 0(A) 
for G. 

If X is not invertible, then we will see that 0 can be obtained from Y by subdividing 
its edge into two edges. The original vertices are V\-vertices and the new vertex is 
the single Vb-vertex. This is the graph of groups structure on G which we want to be 
the algebraic regular neighbourhood of X. 

To see that 0 has the claimed structure, let s be an edge of T with stabiliser H, 
oriented so that Zs is equivalent to A, and consider the map n from the oriented 
edges of T to the set E, given by sending gs to gX and gs to gX*. Note that this 
map is well defined, because if gs — s, then g lies in H, so that gX = X. Conversely, 
if gX = A, then some power gk of g must lie in H. Thus gkZs — Zs which implies 
that gs — s, so that g lies in H. As we are assuming that there is no element g 
in G such that gX = A*, it follows that rj is a bijection. Now the partial order ^ 
on E corresponds to the natural ordering of the oriented edges of T. As each CCC 
of E consists of a single translate of A, the collection P of all CCC's corresponds to 
the edges of T and has the same pretree structure as the collection of midpoints of 
edges of T. It follows that the G-tree constructed from the pretree P can be obtained 
from T by dividing each edge into two. Thus 0 has the claimed structure. 

If X is invertible, there is an element k in G such that kX — A*, and Lemma 2.15 
implies that G = A * H B , where H has index 2 in B and k lies in B . We will see that 
0 is the same graph of groups as T, and it has one Vb-vertex and one V\-vertex. The 
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Vb-vertex is the vertex which carries B. This means that if H has index 2 in both A 
and B, there are two distinct possibilities for B, as either of the two vertices could be 
the Vb-vertex, depending on the choice of X. 

To see that 6 has the claimed structure, we again let s be an edge of T with 
stabiliser H, oriented so that Zs is equivalent to X, and consider the map 77 from the 
oriented edges of T to the set E, given by sending gs to gX and gs to gX*. This 
time, 7] is not a bijection as it identifies ks with s. Of course, it follows that for any g 
in G, the map r] identifies gks with gs. However, as before n does not identify distinct 
translates of s. The proof of Lemma 2.15 shows that s has a vertex w of valence 2 
and that ks meets s in w. It follows that the interiors of ksUs and g(ksUs) are equal 
or disjoint. Hence the only identifications induced by 77 are the identifications of gks 
with gs and of gks with gs, for all g in G. Thus 77 induces a bijection between the 
set of all translates of w and the set E. Further this bijection preserves the pretree 
structures on these two sets. It follows that the G-tree constructed from the pretree 
P is the same as T. Thus B has the claimed structure. 

If one considers several compatible splittings of G, the situation is similar. 

Example 3.11. — If G has a finite family of compatible splittings o~\,..., o~ni then G 
acts on a tree T with quotient a graph T with n edges which correspond to the given 
splittings. If we let Xi denote a -almost invariant subset of G associated to the 
splitting Gi, chosen not to be invertible, and we apply the preceding construction 
to the set E of all translates of Xi and X*, 1 ^ i ^ n, we obtain a new graph of 
groups structure B for G which is obtained from T by subdividing each edge into two 
edges. The original vertices are V\-vertices and the new vertices are the Vb-vertices. 
This is the graph of groups structure on G which we want to be the algebraic regular 
neighbourhood of the X^s. 

If some Xz's are invertible, then, as in the preceding example, the corresponding 
edges of T will not be subdivided when forming B. 

Next we show that this fits neatly with simple topological examples. 

Example 3.12. — Let M be a surface and let G denote a finite family of essential, 
two-sided, simple arcs or closed curves on M. 

(1) If the arcs and curves in C are all disjoint, then C defines a graph of groups 
structure T for G = TTI(M) such that the underlying graph of T is dual to C. As in the 
previous example, so long as we avoid invertible almost invariant sets, our algebraic 
regular neighbourhood construction yields a graph of groups structure B for G which 
is obtained from T by subdividing each edge into two edges, and this corresponds 
exactly to a topological regular neighbourhood of C. If a component S of G is a 
circle which bounds a Moebius band W, it is possible to choose the associated almost 
invariant set to be invertible. In this case B corresponds to a topological regular 
neighbourhood of the family C obtained from G by replacing S by the core of W. 
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(2) If C denotes two essential simple arcs or closed curves on M which have min
imal possible intersection, then again it is true that, so long as we avoid invertible 
almost invariant sets, our algebraic regular neighbourhood construction yields a graph 
of groups structure G for G which corresponds exactly to a topological regular neigh
bourhood of C. 

(3) However, if C denotes three essential simple arcs or closed curves on M such 
that each pair has minimal possible intersection, the algebraic regular neighbourhood 
may be a little different from the topological one. For example, cutting M along C may 
yield a disc component. In this case, the dual graph for the regular neighbourhood 
would have a terminal vertex carrying the trivial group, but our algebraic regular 
neighbourhood construction can never yield such a vertex. 

As we have seen, there are occasions on which the graph of groups Q(X\,..., Xn : G) 
constructed in Theorem 3.8 is not what we want for our algebraic regular neighbour
hood. We will see shortly that this problem of invertible almost invariant sets is 
essentially the only problem. Before discussing this, recall that in the preceding con
struction and the proof of Theorem 3.8, we used the assumption that the family 
X\,..., Xn was in good position. This condition need not always be satisfied, so we 
need to discuss how to modify our construction to handle the general situation. 

Suppose that we consider any finite family of nontrivial Hi almost invariant subsets 
Xi of G. Recall that the basic idea in our construction of G ( X i , . . . , Xn : G) was that 
of a cross-connected component (CCC) of E. We can consider the equivalence relation 
generated by crossing of elements of E whether or not the family X\,..., Xn is in 
good position. Thus we can always define the family P of all CCC's of E and there 
will always be a natural action of G on P. The importance of good position was 
that it enabled us to define the inequality ^ on E and hence to define the relation of 
betweenness on P. Suppose that we have distinct elements U and V of E such that 
two o f c / ^ n y w 

are small, but neither is empty. This means that, when we attempt 
to define the inequality ^ onE, the elements U and V are not comparable. However, 
note that U and V must be equivalent (see Definition 2.8) up to complementation. 
Thus if there is an element W of E which crosses [/, then W also crosses V, so that 
U and V will lie in the same CCC. We will say that the family X i , . . . , X n is in good 
enough position if whenever we find incomparable elements U and V of E which do 
not cross, there is some element W of E which crosses them. It is easy to see that 
all the preceding discussion in this chapter applies essentially unchanged if the family 
X i , . . . , Xn is in good enough position. The point is that any pair of incomparable 
elements already lie in the same CCC, and so we never need to be able to compare 
them. 

Next we consider the case when the family X\,..., Xn is not in good enough 
position. We will say that an element of E which crosses no element of E is isolated 
in E. Note that this condition depends on the set E, but we will often omit the 
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phrase "in E" when the context is clear. As any translate of an isolated element is 
also isolated, such elements can occur only if the original family X\,..., Xn contains 
elements which are isolated in E. By re-labelling, we can arrange that X i , . . . ,Xk 
are the only isolated elements of the X^'s, for some k between 1 and n. The following 
result tells us that we can replace the isolated AVs by equivalent sets such that the 
new family is in good enough position. 

Lemma 3.13. — Let G denote a finitely generated group, and let H\,..., Hn be finitely 
generated subgroups of G. For each i ^ 1, let Xi be a nontrivial Hi-almost invariant 
subset of G, such that A i , . . . , Xk are the only isolated elements of the Xi ;s. Then, for 
each i, 1 ^ i ^ k, there is an almost invariant set Zi equivalent to Xi, such that the 
translates of all the Zi 7s and Z* 7s are nested and the family Z\,..., X^+i , . . . , Xn 
is in good enough position. 

Proof. — If Xi and Xj are two isolated elements of E with stabilisers Hi and ir
respectively, then the almost invariant subsets Hi\X{ of Hi\G and Hj\Xj of Hj\G 
have intersection number zero with each other, and each has self-intersection number 
zero. In [44], we discussed almost invariant sets with intersection number zero, and 
the main results of that paper are exactly what we need to understand the present 
situation. As Hi\Xi has self-intersection number zero, Theorem B.2.8 tells us that 
Xi is equivalent to Yi such that Yi is associated to a splitting of G over a subgroup 
K% commensurable with Hi. We will replace each of A i , . . . , Xk by Y i , . . . , Y&, chosen 
so that each Yi is associated to a splitting ai of G over Ki. In topological terms, this 
corresponds to starting with some closed curves Ci on a surface such that each d 
is homotopic to some power of a simple closed curve Si, and then replacing each d 
by Si. Note that as Yz is equivalent to X%, the splittings G\,..., Gk have intersection 
number zero with each other. Now Theorem 2.35 tells us that these splittings are 
compatible. This means that we can replace the Y '̂s by equivalent almost invariant 
sets Zi over Ki, whose translates are nested. It follows immediately that the new 
family Z\,..., Z^, Xk+i, • • •, Xn is in good enough position. In topological terms, 
replacing the Y '̂s by the Z^s corresponds to starting with some simple closed curves 
on a surface such that each pair has intersection number zero, and then replacing the 
curves by homotopic but disjoint simple closed curves. • 

Now we want to define ©(Ai , . . . , Xn : G) to be Q(Z\,..., X^+i , . . . , Xn : G). 
There is an obvious difficulty here, as we will need to show the resulting structure is 
independent of the choices of the Zz's. Recall that we also need to handle the problem 
of invertible almost invariant sets. It turns out that it will suffice to ensure that the 
Z2's are not invertible. 

Thus we can now give our plan for constructing the graph of groups structure 
T ( X 1 . . . , Xn : G) for G which will turn out to be the algebraic regular neighbourhood 

of the XiS. In general terms, we will simply replace the isolated XVs by equivalent 
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Zi$ so that each Zi is not invertible, and the new family is in good position. It remains 
to show that this construction can be made so that the result is independent of the 
choices of the Z^'s. This is not automatically the case as the new family may not have 
the same number of G-orbits in E as the original family. If there are distinct i and j 
such that Xi and X3 are isolated, and X% and Xj lie in the same G-orbit in E, it is 
possible that Zi and Zj do not lie in the same G-orbit in E, so that the new family has 
more G-orbits. On the other hand, if Xi and Xj are isolated and equivalent to each 
other, the method of the preceding lemma could well yield Zi equal to Zj, so that the 
new family has less G-orbits. In either case, 0 ( Z i , . . . , Z^, Xk+i,.. •, Xn : G) would 
clearly not give the "correct" structure. In topological terms, this would correspond to 
replacing a single curve by two homotopic curves or replacing two homotopic simple 
curves by a single curve. In order to deal with these difficulties, we first consider a 
special case. It will be convenient to introduce the following terminology. If Xi and 
Xj are isolated and some translate of X3 is equivalent to Xi or X*, we will say that 
the G-orbits of X% and Xj are parallel. We use this word because we are thinking of 
parallel G-orbits as corresponding to parallel simple closed curves on a surface. We 
obtain the following result. 

Lemma 3.14. — Let G denote a finitely generated group, and let H\,..., Hn be finitely 
generated subgroups of G. For each i ^ 1 , let Xi be a nontrivial Hi-almost invariant 
subset of G, such that X i , . . . , Xk are the only isolated elements of the Xi's. Suppose 
that each parallelism class of the G-orbits of isolated X% Js contains a single element. 
Then, for 1 ^ i ^ k, there is an almost invariant set Zi equivalent to Xi, such that 
each Zi is not invertible, and the family Z\,..., Z&, Xfc+i,..., Xn is in good enough 
position. Further the graph of groups structure ©(Zi, . . ., Z&, Xfc+i,.. ., Xn : G) is 
independent of the choices of the Zi Js. 

Remark 3.15. — The uniqueness part of this result can be deduced from Theorem 6.7 
where we prove the uniqueness of regular neighbourhoods in general, but it seems 
worth giving this more direct argument, which does not depend on any of the theory 
of the next two chapters. 

Proof. — We start by applying the statement of Lemma 3.13. The hypothesis that 
each parallelism class of the G orbits of isolated X2's contains a single element, implies 
that the same holds for the Z2's. In particular, there are k distinct G orbits of the 
X?'s and of the Z '̂s. It also follows that if al denotes the splitting of G determined 
by Zx, then distinct a^s are non-conjugate. If some Zi is invertible, it is trivial to 
replace it by an equivalent set which is not invertible, but the resulting collection 
of Z '̂s need not be nested. However, as distinct Zz's are not parallel, the new Z '̂s 
will be almost nested and the family Z i , . . . , Z^, X^+i , . . . , Xn will still be in good 
enough position. This proves the first part of the lemma. 
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For the uniqueness result, it will be convenient to consider first the graph of groups 
structure 0(Zi,.. . ,Zfc : G). In the proof of Lemma 3.13, when we replaced Xi 
by Yi, we obtained a splitting ax to which Yi is associated. Lemma B.2.3 implies 
that if two splittings of G have equivalent associated almost invariant sets, then 
the splittings are conjugate. Thus the splitting <7i is unique up to conjugacy. Now 
Theorem 2.35 combined with the assumption that no Zi is invertible tells us that 
B(Zi,.. . ,Z/c : G) is determined by the conjugacy classes of the splittings c^. It 
follows that B ( Z i , . . . , Z^ : G) is independent of the choices of the Z '̂s. 

A more useful way of putting this is the following. Suppose that W\,..., Wk are 
chosen in the same way as Z\,..., Z&, and are also non-invertible. Then the natural 
bijection between the set F(Z) = {gZi,gZ* : g G G, 1 ^ i ^ k} and the set F(W) = 
{gWi, gW* : g G G, 1 ^ i ^ A:} is order preserving. Now we consider the sets E(Z) and 
E(W) obtained from E by replacing each Xt by Z% or by Wi, 1 ̂  i ^ k. The natural 
bijection between these two sets extends the bijection between F(Z) and F(W). It 
is the identity on the translates of X^+i , . . . , Xn and so trivially preserves the partial 
order on the translates of these elements. Thus it remains to check that our bijection is 
order preserving when we compare a translate of one of these elements with a translate 
of some Zj. Suppose, for example, that gZ3 ^ hX\, where I > k, so that gZ3 n hXf is 
small. As Z3 and W3 are equivalent, the intersection gW3 f l hX* must also be small. 
We know that gW3 and hXi are comparable, as the family W\,..., Wfc, X^+i , . . . , Xn 
is in good enough position. Thus either gW3 fl hX* is the only small set out of the 
four sets gW • D hX\ , or there is a second small set and one of the two small sets is 
empty. As gW3 and hX\, and their complements, are not small, the second small set 
could only be gW? DhXi. Thus we must have either gW3 ^ hXi, or gW3 and hX\ are 
equivalent. If the second case occurred, the fact that W3 is isolated would imply that 
Xi was also isolated, which contradicts our definition of k and the fact that I > k. It 
follows that gWj ^ hX\. This shows that the natural bijection between the sets E(Z) 
and E(W) is order preserving, and hence that B ( Z i , . . . , Z&, AV+i,..., Xn : G) is 
naturally isomorphic to G(Wi,..., Wk, Xk+i,..., Xn : G) as required. This completes 
the proof of the lemma. • 

This result gives us a well defined construction of our regular neighbourhood 
r(Ai,...,An : G) on the assumption that each parallelism class of the G-orbits 
of isolated A '̂s contains a single element. Now we are ready to complete the con
struction of T(Ai , . . . , Xn : G) in the general case. As discussed earlier, by replacing 
the Az's by a subfamily, we can assume that distinct Az's lie in distinct G-orbits. 
Next we choose a subfamily of the XVs by selecting all the non-isolated X^'s and one 
isolated Xi from each parallelism class. We will renumber so that this subfamily is 
X i , . . . ,Xm. By our choice, this subfamily satisfies the hypotheses of Lemma 3.14. 
This lemma gives us a well defined regular neighbourhood T ( X i , . . . , Xm : G). Now we 
add back Xm+i,. . . , Xn to the family. Let Xi denote one of these sets, so that i > m. 
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Recall that X{ is equivalent to a translate of an isolated Xj, for some j ^ m. The 
construction above shows that Xj is equivalent to an almost invariant non-invertible 
set Zj associated to a splitting, and that T(X\,..., Xm : G) has a Vb-vertex Vj which 
comes from the CCC which consists only of Zj. Proposition 5.4 implies that v3 has 
valence 2, and the fact that Zj is non-invertible implies that each of the incident edge 
groups includes by an isomorphism into the vertex group G(v3). (Note that Proposi
tion 5.4 has not yet been proved. However, the half of the result which we need has a 
proof which could have been given now, so there is no logical problem in using it.) We 
now construct T(X\,..., Xm, X% : G) from r(Xi, . . . , Xm : G) by subdividing each 
of the two edges incident to Vj, to obtain four edges and three interior vertices, each 
with associated group G(v). The two new vertices are Vb-vertices and the original 
Vb~vertex becomes a V\-vertex. Effectively what this does is to replace Xi and Xj by 
the same almost invariant set Z3, which we then use twice in the construction of the 
regular neighbourhood. The topological analogue is to replace a single simple closed 
curve by two parallel curves. If several of Xm+i,... ,Xn are equivalent to the same 
Xj, we split the two edges incident to Vj several times, in order to obtain the requisite 
number of Vb-vertices. By repeating this process for each of Xm+i,... ,Xn we will 
construct the regular neighbourhood T(X\,..., Xn : G) from T(X\,..., Xm : G). 

We can summarise our construction of T(Xi,..., Xn : G) as follows. 

Summary 3.16. — Let G denote a finitely generated group, and let H\,..., Hn be 
finitely generated subgroups of G. For each i ^ 1, let Xi be a nontrivial i7j-almost 
invariant subset of G, and let E = {gXi,gX* : g £ G,l ^ i ^ n}. There are four 
cases to our construction of T(X\,..., Xn : G). 

(1) If the XiS are in good position, we have a partial order ^ on E and can then 
directly construct 0 ( X i , . . . , Xn : G) using a pretree as in Theorem 3.8. If in addition, 
no isolated Xi is invertible, we define T(X\,..., Xn : G) to be S(Xi,..., Xn : G). 

(2) If the X^s are in good enough position, we can make essentially the same 
construction as in Case 1) using the same partial order where it is defined. 

(3) If the X^s are not in good enough position or if some isolated Xi is invertible, 
we pick one Xi for each G-orbit in E, thus replacing the X^s by a subfamily with the 
same G-orbits in E such that distinct X^s lie in distinct G-orbits. By renumbering, 
we can assume that X\,..., Xk are the only isolated X^s. 

(a) Suppose that each parallelism class of the G-orbits of isolated X^s con
tains a single element. Then for each i such that 1 ^ i ^ k, we replace the 
isolated set Xt by an equivalent almost invariant set Zi, which is not invertible, 
such that the new family Z\,..., Zk-, Xfc+i,..., Xn is in good enough position, 
and we define T(X\,..., Xn : G) to be Q(Z\,..., Zk, Xk+i, • • •, Xn : G). 

(b) In general, we choose a subfamily of the X^s by selecting all the non
isolated X^s and one isolated Xi from each parallelism class. We will renumber 
so that this subfamily is Xi,..., Xm. Then we apply Case 3a) to construct 
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T ( X 1 , . . . , X m : G ) . Finally, we construct T(X\,...,Xn: G) by subdividing 
those edges of T ( X i , . . . , Xm : G) which are incident to Vb-vertices arising from 
isolated X^'s. For each isolated Xi, the corresponding Vo-vertex is replaced by 
a number of Vb-vertices which equals the number of elements in the parallelism 
class of Xi. 

This allows us to summarise our construction rather more briefly as follows: 
First we omit some XVs and replace others by equivalent almost invariant sets such 

that the new family is in good enough position and no isolated Xt is invertible. Now 
apply the direct construction using a pretree to the new family to obtain a graph 
of groups structure T for G. Finally, T(X\,... ,Xn : G) is constructed from T by 
subdividing certain edges of T. 

The above arguments raise the more general question of how our regular neigh
bourhood construction changes when one replaces X^'s, which need not be isolated, 
by equivalent sets. This is an important question because usually one is not very 
interested in a particular almost invariant set but rather in its equivalence class. Our 
next result shows that our regular neighbourhood construction essentially depends 
only on the equivalence classes of the X^'s. 

Lemma 3.17. — Let G denote a finitely generated group, and let H\,..., Hn be finitely 
generated subgroups of G. For each i ^ 1, let Xi be a nontrivial Hi-almost invariant 
subset of G and let Wi be a nontrivial Ki-almost invariant subset of G which is 
equivalent to Xi. Suppose that the correspondence between the isolated Xi7s and the 
isolated Wi 7s induces a bijection between the G-orbits of isolated Xi's and the G-orbits 
of isolated Wi 7s. Then T ( X i , . . . , Xn : G) and T{W\,..., Wn : G) are isomorphic. 

Remark 3.18. — There need not be a bijection between the G-orbits of non-isolated 
XVs and the G-orbits of non-isolated TVVs, but that does not affect the result. 

Proof. — Our construction of T ( X i , . . . , Xn : G) and r(Wi,. . . , Wn : G) shows that 
it will suffice to handle the case when each parallelism class of G-orbits of isolated 
X^'s has a single element. This is the situation of Lemma 3.14. Let E denote the 
set of all translates of the X^'s and let F denote the set of all translates of the W^s. 
As the stabilisers of Xi and Wi are commensurable but need not be equal, there is 
no natural map between E and F, but we will show that there is a natural bijection 
between the CCC's of E and F, which preserves betweenness. 

As in Lemma 3.14, we will renumber so that Xi , . . . ,Xfc are the only isolated 
elements of the X2's. Thus W\,..., Wk are the only isolated elements of the W^s. As 
in our construction of an algebraic regular neighbourhood, we can replace X\,..., Xk 
by equivalent sets Z\,..., Zk such that the translates of the Z^s are nested, the Z^s 
are not invertible, and the family Z\,..., Zk,Xk+\,. •., Xn is in good enough position. 
We can also replace W\,..., Wk by the same sets Z\,... ,Zk- This is because of the 
technical hypothesis on the isolated X^'s and W^s. Lemma 3.14 allows us to define 
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T(XU . .. , Xn :G) as 9 ( Z i , . . . , Zfc, . . . , Xn :G) and to define r(Wi,..., Wn :G) 
as 0 ( Z i , . . . , Z/, Wfc+i,..., Wn : G). Thus, by changing notation, we can suppose that 
in our original families X\,..., Xn and W\,..., VFn, we have X% — Wi, for 1 ̂  i ^ k. 

Now if is an isolated element of E, the CCC which contains U consists only of U. 
Conversely, if a CCC consists of a single element U of E, then U must be isolated. We 
call such a CCC isolated. There is an obvious bijection between the isolated CCC's 
of E and the isolated CCC's of F. Further, this bijection preserves betweenness for 
isolated CCC's. 

Now consider a non-isolated X%. If gXi is equivalent to Xi, then gXi must lie in 
the CCC [Xi] of E. As W{ is equivalent to Xi, it follows that gWz is equivalent to Wi 
and hence that gWi must lie in the CCC [Wi] of F. If kXj crosses X%, then kW3 
crosses W%. It follows that if S%3 denotes the collection of elements s of G such that 
sXj lies in [Xi], then Sl3 must also equal the collection of elements s of G such that 
sWj lies in [Wi]. This yields a natural bijection between the non-isolated CCC's of E 
and the non-isolated CCC's of F. Further, it is clear that this bijection preserves 
betweenness for non-isolated CCC's. 

It follows that we have a natural bijection between the CCC's of E and the CCC's 
of F, and that this preserves betweenness except possibly when we consider a mix
ture of isolated CCC's and non-isolated CCC's. As in the proof of the previous 
lemma, it is easy to see that betweenness must be preserved here also. It follows that 
r(ATi,..., Xn : G) and r(Wi,. . . , Wn : G) are naturally isomorphic, as required. • 

Our regular neighbourhood construction always expresses G as the fundamental 
group of a graph T(Ai,. . . , Xn : G) of groups, but this graph may consist of a single 
point. This occurs precisely when the set E has only one cross-connected component, 
so that P and hence T consists of a single point. We give two examples of situations 
where this will occur. Our first example is from the topology of 3-manifolds and is 
due to Rubinstein and Wang [37]. 

Example 3.19. — In this case n = 1, and we denote X\ by A and the stabiliser of A 
by H. The group G is the fundamental group of a closed graph manifold M, and 
the subgroup H is isomorphic to the fundamental group of a closed surface F. One 
can choose a 7Ti-injective map / : F -> M so that f*iri(F) — H, and F lifts to an 
embedding in the cover Mp of M with fundamental group equal to H. Considering 
one side of F in Mp determines the H almost invariant subset X of G. Rubinstein 
and Wang show that, for many choices of the manifold M, the surface F cannot lift to 
an embedding in any finite cover of M. They do this by showing that the pre-image 
of F in the universal cover M of M consists of a family of embedded planes such that 
any two cross in the sense of [19]. This implies that any two distinct translates of X 
cross, so that the set E has only one cross-connected component. 

Our second example is also rather special. 
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Example 3.20. — Let H denote any finitely generated group, and let G denote the 
group H x Z. Let X denote the H-almost invariant subset of G associated to the 
splitting of G as the HNN-extension H*H- Thus the translates of X by G are all 
equivalent to X. In particular, none of these translates cross each other. Now suppose 
that there is a subgroup K of G and a X-almost invariant subset Y of G such that 
Y crosses X. Then Y crosses every translate of A , and hence also X crosses every 
translate of Y. It follows that if we let E denote the set of all translates of X and Y, 
then the set E has only one cross-connected component. A simple way to generate 
such examples of K and Y is to choose H = A *c B1 choose K = C x Z and to choose 
Y to be associated to the splitting G = (A x Z) *x (B x Z). 

We have now completed discussing our regular neighbourhood construction when 
one is given a finite family of nontrivial almost invariant subsets of a group G. We will 
end this chapter by discussing what happens if one is given an infinite collection of 
such subsets, as this will play an important role in this paper. At first glance this may 
seem to be a very unreasonable thing to consider. In topology, one never discusses 
regular neighbourhoods of infinite collections of submanifolds. But if one considers 
a subsurface N of a surface M, then N contains curves representing each element 
of 7Ti(AT), and we want to regard Â  as a regular neighbourhood of this infinite family 
of curves. Of course, such an idea cannot make sense for arbitrary infinite families 
of curves. For example, an infinite collection of disjoint essential circles in M cannot 
reasonably be said to have a regular neighbourhood. 

Now let G denote a finitely generated group with a family of finitely generated 
subgroups {H\}\eA- For each AG A, let X\ denote a nontrivial H\ almost invariant 
subset of G. We will proceed as we did earlier in this chapter, and just note the 
differences in the case when A is infinite. 

As before, we let E denote the collection of all translates of the A \ ' s and their 
complements. First we will assume that the AA'S are in good position, i.e. that E 
satisfies Condition (*). This allows us to define the partial order < on E exactly 
as before. The first and crucial difference between the infinite case and the finite 
case occurs when we consider Lemma 3.1 . While parts 1) and 3) still hold, part 2) 
need not hold, i.e. E need not be discrete, so that there may be elements U and 
Y of E with infinitely many elements of E between them. The analogous situation 
occurs in topology if one considers infinitely many disjoint simple closed curves on 
a surface. However, we can still define the set E of pairs { A , A * } for X G E, and 
can define P to be the collection of all CCC's of E. Further the arguments following 
Lemma 3.1 still apply, and show that the idea of betweenness can be defined on P 
as before. Now we consider the proof of Theorem 3.8. The argument for the first 
part which asserts that P is a pretree remains correct. But the second part which 
asserts that P is discrete depends on the discreteness of E, and so P may not be 
discrete. In fact, if there are infinitely many AA's which are all equivalent, then P 
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will not be discrete. However, if it happens that P is discrete, then as before P can 
be embedded in a G-tree T and G\T is a graph of groups structure for G which we 
will denote by 0 ( { X A } A G A : G). Further, if no isolated X\ is invertible, we define 
F ( { A A } A E A : G) to be © ( { A A } A G A • G). Of course, the Vb~vertex groups of this 
graph need not be finitely generated, and it appears that it may have infinitely many 
Vb-vertices. However, as G is finitely generated, it will follow from Proposition 5.2 
that 0 ( { X A } A G A : G) is always a finite graph. 

Having dealt with the case when the A A ' S are in good position, we say that the 
family { A A } A G A is in good enough position if whenever we find incomparable elements 
U and V of E which do not cross, there is some element W of E which crosses them. 
As in the finite case, the above discussion applies equally well if the A A ' S are in good 
enough position. If this condition does not hold, or if some isolated X\ is invertible, we 
want to apply the proof of Lemma 3.14 and the discussion following. The arguments 
work exactly as before, so long as E has only finitely many G-orbits of isolated 
elements. If E has infinitely many such, then it is not possible to construct a regular 
neighbourhood of the ATA'S. For then r({ATA}AeA • G) would have to have infinitely 
many Vb~vertices, one for each G-orbit of isolated elements, whereas Proposition 5.2 
implies that r ( { A A J A e A : G) is finite. Note that it would be simpler to replace the 
condition that E has only finitely many G-orbits of isolated elements by the condition 
that only finitely many of the A A ' S are isolated. But this second condition is more 
restrictive than needed. 

Finally the proof of Lemma 3.17 still applies to show that our construction essen
tially depends only on the equivalence classes of the A A ' S . 

We summarise our conclusions as follows. Suppose that we are given a finitely 
generated group G, finitely generated subgroups H\, A £ A, and a nontrivial H\-
almost invariant subset X\ of G. Suppose that E has only finitely many G-orbits of 
isolated elements, so that after replacing the A A ' S by equivalent sets we can assume 
that they are in good enough position. Then one can define the idea of betweenness 
on the set P of all CCC's of E, and P is a pretree. If P is discrete, one can construct 
an algebraic regular neighbourhood T ( { A A } A G A • G) of the A A ' S , and this depends 
only on the equivalence classes of the A A ' S . 
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CHAPTER 4 

ENCLOSING 

In this chapter we will consider graphs of groups in general. We will discuss the 
idea of a vertex of a graph of groups enclosing an almost invariant set. In the following 
chapter, we will apply these ideas to our regular neighbourhood construction. 

Let r be a graph of groups and write 7Ti(T) for the fundamental group of T. We 
emphasise that although we will mostly consider situations where 7Ti(T) is finitely 
generated, we will not assume that the edge and vertex groups of T are finitely gener
ated unless this is specifically stated. To avoid some degeneracy phenomena, we will 
often assume that T is minimal, meaning that for any proper connected subgraph K, 
the natural inclusion of 7Ti (K) into i\\ (T) is not an isomorphism. Note that if T is 
minimal and 7Ti(T) is finitely generated, then T must be finite. 

If r' is a (not necessarily connected) subgraph of T, we say that a graph of groups 
structure Ti is obtained from F by collapsing V if the underlying graph of Ti is 
obtained from V by collapsing each component of V to a point. In addition, if p : 
r^Ti denotes the natural projection map, we require that each vertex v of Ti has 
associated group equal to 7Ti(p~1(v)). These conditions imply that 7Ti(T) and 7Ti(Ti) 
are naturally isomorphic. Two important special cases of this construction occur when 
we consider an edge e of T. If the subgraph V equals e, we say that Ti is obtained 
from T by collapsing e. If the subgraph V equals the complement of the interior of e, 
then Ti has a single edge which determines a splitting a of TTI(T), and we call a the 
splitting of 7Ti(T) associated to e. Note that so long as we assume that T is minimal 
then a really is a splitting, i.e. a nontrivial decomposition of 7Ti(T). Such splittings 
of G will be referred to as the edge splittings of T. 

It will be very convenient to introduce some terminology to describe the process 
which is the reverse of collapsing an edge. If a graph of groups structure Ti for a 
group G is obtained from a graph of groups structure T by collapsing an edge e, and 
if e projects to the vertex v\ of Ti, we will say that V is a refinement of Ti obtained 
by splitting at the vertex v\. 
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Definition 4.1. — Let Yi be a graph of groups structure for a group G, and let a 
denote a splitting of G. Then the vertex v\ of Y\ encloses a if there is a refinement Y 
of Y\ obtained by splitting Y\ at vi, such that the edge e of Y which projects to the 
vertex v\ has a as its associated splitting. 

To understand the reasons for our terminology, the reader should consider a sub
surface TV of a surface M , and let Y\ be the graph of groups structure for G — iri(M) 
determined by dN. Let C be some simple closed curve in N, and let Y be the graph 
of groups structure for G determined by dN U G. If e denotes the edge of Y which 
corresponds to G, then Ti is obtained from Y by collapsing e, and the vertex v\ of Y\ 
corresponds to the component of N which contains G. Thus saying that v\ encloses 
the splitting of G associated to G mirrors the fact that N contains G. 

Next we introduce a little more terminology. We will say that a vertex v of Y is 
redundant if it has valence at most two, it is not the vertex of a loop, and each edge 
group includes by an isomorphism into the vertex group at v. Now assume that T is 
minimal. Then a redundant vertex must have valence two. Clearly, these two edges 
determine conjugate edge splittings of G. Conversely, it is easy to see that if Y has 
two edges with conjugate edge splittings, then these edges are the end segments of 
a path all of whose interior vertices are redundant. If Y has a redundant vertex v, 
we can amalgamate the two edges incident to v into a single edge to obtain a new 
graph of groups structure for G. If Y is finite, we can repeat this to obtain a graph of 
groups structure Yf for G with no redundant vertices. Clearly Y is obtained from Yf 
by subdividing some edges. 

In Definition 4.1, we defined what it means for a vertex v of a graph of groups Y 
to enclose a splitting of G = 7Ti(r). Next we want to extend this notion to define 
what it means for v to enclose an almost invariant subset of G. This is meant to 
be an analogue of the topological idea of a subsurface containing a possibly singular 
curve. In order to avoid problems with conjugates, it is better to consider a G tree T 
rather than the quotient graph of groups Y. The condition that Y = G\T be minimal 
in the sense above is equivalent to the condition that T have no proper G-invariant 
subtree. Such a G-tree is also called minimal. Note that any G-tree possesses a 
minimal subtree To. If G fixes more than one vertex of T, then T0 is not unique, 
but otherwise To is unique and can be described simply as the intersection of all the 
G-invariant subtrees of T. Note that a minimal G tree has no vertices of valence 
one. For if a G tree has such vertices, one can obtain a proper G invariant subtree 
by simply removing each such vertex together with the interior of the incident edge. 

We recall some notation from chapter 2. An oriented edge s of a tree T determines 
a natural partition of V(T) into two sets, namely the vertices of the two subtrees 
obtained by removing the interior of s from T. Let Ys denote the collection of all the 
vertices of the subtree which contains the terminal vertex v of s, and let Y* denote the 
complementary collection of vertices. If a group G acts without inversions on T, then 
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choosing a basepoint w in T determines a G-equivariant map <p : G —• V(T) given by 
the formula ip(g) = gw. We define the sets Zs = ip~l{Ys) and Z* = ip~1(Y*). Lemma 
2.10 shows that, if S denotes the stabiliser of s, then Zs is 5-almost invariant, and 
its equivalence class is independent of the choice of basepoint w. 

Note that all the results in this chapter also hold if G acts on T with inversions. 
However, in all our applications T will be the universal covering G tree of a graph of 
groups, so that G will automatically act without inversions. 

We now define enclosing of almost invariant sets. 

Definition 4.2. — Let A be a nontrivial 7J-almost invariant subset of a group G and 
let v a vertex of a G-tree T. Choose a basepoint w for T. For each edge s of T, this 
determines the subsets Zs and Z* of G as above. We say that the vertex v encloses 
A, if for all edges s of T which are incident to v and directed towards v, we have 
A H Zs* or A* H Z* is small. 

Remark 4.3. — This definition is independent of the choice of basepoint w, because 
changing w replaces each Zs by an equivalent almost invariant set. 

Note that it does not make much sense to consider enclosing of trivial almost 
invariant subsets of G, because any such subset of G would automatically be enclosed 
by every vertex of T. 

It would seem more natural to say that v encloses A, if for all edges s of T which 
are incident to v and directed towards v, we have A* ^ Z* or A ^ Z*, but we want 
to ensure that any set equivalent to Zs or Z* is enclosed by v, and not all such sets 
are comparable with Zs. See part 4) of Lemma 4.6 for precise statements. 

It will also be convenient to define enclosing by a vertex of a graph of groups. 

Definition 4.4. — Let A be a nontrivial 77-almost invariant subset of a group G, let 
T be a G tree and let Y denote the associated graph of groups structure for G with 
underlying graph G\T. We say that a vertex u of Y encloses A if there is a vertex v 
of T which encloses A and projects to u. 

Remark 4.5. — If it encloses A, then it also encloses any translate of A and any almost 
invariant set equivalent to A. 

We now have two natural ideas of what it means for a vertex u of Y to enclose a 
splitting a of G over a subgroup H. One is given in Definition 4.1, and the other is 
that a H almost invariant set associated to a is enclosed by u. In Lemma 4.10, we 
will show that these ideas are equivalent when H is finitely generated. In Lemma 
5.10 we will be able to show that this equivalence holds even when H is not finitely 
generated. 

We will need the following basic properties of enclosing almost invariant sets, which 
we state in several lemmas. Again we emphasise that we are not assuming that the 
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subgroup H of G is finitely generated. Note that several of the statements below 
require a choice of basepoint for T, but are independent of that choice. 

Lemma 4.6. — Let A be a nontrivial H -almost invariant subset of a group G and let v 
a vertex of a G-tree T. Then the following statements all hold: 

(1) A is enclosed by v if and only if A* is enclosed by v. 
(2) / / B is an almost invariant set equivalent to A, then v encloses A if and only 

if v encloses B. 
(3) If s is an edge ofT with stabiliser S, and if Zs is a nontrivial S almost invariant 

subset of G, then Zs is enclosed by each of the two vertices to which s is incident. 
(4) A is enclosed by v if and only if either 

(a) A is equivalent to Zs or Z* for some edge s incident to v, or 
(b) we have A* ^ Z* or A ^ Z* for every edge s incident to v and oriented 

towards v. 
(5) If A is enclosed by v, then for any edge t of T which is oriented towards v, we 

have A n Z$ or A" D Z£* is small. 

Proof. — Parts 1), 2) and 3) are all trivial. 
4) First suppose that A is enclosed by v, so that for all edges s of T which are 

incident to v and directed towards v, we have An Z* or i * n Z* is small. If two of 
the four sets A^ n zi*̂  are small, then A is equivalent to Zs or Z*. Otherwise, we 
have A* ^ Z* or A ^ Z* for every edge s incident to v and oriented towards v, as 
required. 

Conversely, if A* ^ Z* or A ^ Z* for every edge s incident to v and oriented 
towards v, then An Z* or A* H Z* is small for each such edge s, so that A is enclosed 
by v. And if A is equivalent to Zs or Z* for some edge s incident to v, then parts 2) 
and 3) imply that A is enclosed by v. The result follows. 

5) Consider the oriented path in T which joins t to v. Let s be the edge of this 
path incident to v. As s is oriented towards v and A is enclosed by v, it follows that 
AD Z* or A* n Z* is small. As t ^ s in the natural ordering on oriented edges of T, 
it follows that Zs C Zt, so that A n Z£* or A* n Zt* is small, as required. • 

Lemma 4.7. — Let A and B be nontrivial H almost invariant subsets of a group G 
such that each is enclosed by a vertex v of a G~tree T. Then AUB, AnB and A + B 
are also H-almost invariant and each is also enclosed by v7 if it is nontrivial. 

Proof. — It is clear that A U B, AnB and A + B are H almost invariant. Let s be 
an edge of T incident to v and oriented towards v. Thus An Z* or A* n Z* is small, 
and B D Z* or 5* n Z* is small. We will examine the four possibilities in turn, and 
show that if C denotes any one of A U B, AnB and A + B, then either C fl Z * or 
C* (1 Z* is small. As this holds for every such edge s, it will follow that if C is a 
nontrivial //-almost invariant subset of G it is enclosed by v, as required. 
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Case 1: A n Z * and 5nZ* are both small. 
Then the union of these sets, (AU B) P\ Z*, is small. As AnB and A + B are each 

contained in i U B , it follows that (A n B) n Z* and (A + 5) D Z* are also small, 
completing the proof in this case. 

Case 2: An Zs* and £?* fl Z* are both small. 
As (A U 5)* C £*, it follows that (A U 5)* fl Zs* is small. As An B C A, it follows 

that (AnB)n Z* is small. As (A + £ ) * C A U B\ it follows that (A + 5)* fl Z* is 
small, completing the proof in this case. 

Case 3: A* n Zs* and £ n Zs* are both small. 
We apply the preceding paragraph with the roles of A and B interchanged. 

Again (AUBy n Zs*, (4nB)n Zs* and (4 + 5)* fl Zs* are small, completing the proof 
in this case. 

Case 4: A* fl Zs* and 5* fl Zs* are both small. 
As (An#)* = A*U#*, it follows that (An£)*nZs* is small. As (AUB)* C (AnB)*, 

it follows that (A U £ ) * fl Z* is also small. As (A + B) C (A* U £*), it follows that 
(A + B) H Zs* is small. 

This completes the proof of the lemma. • 

Lemma 4.8. — Let G be a group, and let T be a G-tree. 

(1) If s is an edge of T, and s has stabiliser S, then Zs is a nontrivial S-almost 
invariant subset of G if and only if s lies in the minimal subtree of T. 

(2) If a vertex v of T is not fixed by G, then v encloses some nontrivial H-almost 
invariant subset of G if and only if v lies in the minimal subtree of T. 

Proof. — 1) Let T0 denote the minimal subtree of T. If G fixes more than one vertex 
of T so that TQ is not unique, we let TQ denote one of the vertices fixed by G. 

First suppose that s does not lie in To- Note that in the special case when To is 
not unique, this condition is automatic as then TQ has no edges. We will show that 
Zs must be trivial. We can assume that s is oriented towards T0. As we are free to 
choose the basepoint w for T, we will choose it to lie in To. This implies that (p(G), 
which equals the orbit of w, also lies in TQ. Hence Zs = G, so that Zs is a trivial 
S-almost invariant set as claimed. 

Now suppose that s lies in To. Note that in this case, To must be unique. Lemma 
A.3.3 tells us that s lies in TQ if and only if there exists an element g of G such that s 
and gs are distinct and coherently oriented. (Two oriented edges in T are coherently 
oriented if there is an oriented path in T which begins with one and ends with the 
other.) By repeatedly applying g or g-1, we see that on each side of s in T there are 
translates of s which are arbitrarily far from s. It follows that (f(G) contains points 
in Ys and in Y* which are arbitrarily far from s. This immediately implies that Zs 
must be nontrivial, as required. 
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2) We choose To as in part 1), and recall that we are assuming that v is not fixed 
by G. It follows that if v lies in To, there is an edge s of T0 incident to v. Part 1) 
implies that Zs is a nontrivial S-almost invariant set, and part 3) of Lemma 4.6 
implies that Zs is enclosed by v. 

If v does not lie in To and v encloses some nontrivial //-almost invariant subset A 
of T, we will obtain a contradiction. Let s denote the edge of T which is incident to v 
and on the path joining v to T0 and we choose s to be oriented towards v. If we choose 
the basepoint w of T to lie in TQ, we will have Z* = G. But as A is enclosed by v, we 
have A n Z* or A* n Z* is small, which implies that A or A* is small. It follows that 
A is a trivial //-almost invariant set, which is the required contradiction. • 

Lemma 4.9. — Let A be a nontrivial H-almost invariant subset of a group G and let 
T be a G tree. 

(1) If A is enclosed by two distinct vertices u and v ofT, then A is equivalent to Zs 
or to Z* for each edge s on the path A joining u and v. Further A is contained in the 
minimal subtree TQ of T, and each interior vertex of X has valence 2 in TQ. 

(2) If A is enclosed by a vertex v of Tthen Hv = v. 

Proof. — 1) Let A denote the path in T which joins u and v. Let I denote the edge 
of A incident to u and oriented towards u, and let m denote the edge of A incident 
to v and oriented towards v. Our choice of orientations on I and m implies that 
Zf D Zm. As A is enclosed by u, we know that A n Z\ or A* fl Zf is small. Without 
loss of generality, we can assume that A fl Zz* is small. As Z^ D Zm, it follows that 
A n Zm is also small. As A is enclosed by v, we know that A n Z*n or A* fl Zm is 
small. But if A n Zm were small, then A would itself be small, which contradicts our 
hypothesis that A is nontrivial. It follows that A* P\Zm must be small. As AC]Zm and 
A* fl Zm are both small, it follows that A is equivalent to Zm. Similarly, A must be 
equivalent to Z\. If n denotes any edge of A oriented towards u, we have the inclusions 
Z\ C Zn C Z*n, and it immediately follows that A is also equivalent to Zn. The fact 
that A is contained in the minimal subtree To of T follows at once from part 1) of 
Lemma 4.8. 

Finally, let z denote an interior vertex of A, and let r and s denote the edges 
of A incident to z and oriented towards z. The above discussion implies that Zr and 
Z* are equivalent. In particular, their stabilisers are commensurable. Let K denote 
Stab(r) nStab(s), so that Zr and Z* are equivalent if-almost invariant subsets of G. 
Thus Zr fl Zs is i f finite. If there is another edge t of T incident to z, we orient 
t towards z also. As K fixes z, for each k G K, the edge k(t) is also incident to z 
and oriented towards z. Thus Zl(t) 1S disjoint from Z* and Z*, and so is contained 
in Zr n Zs. Hence U / ^ x ^ O ) 18 â so ^"finite. As the %k(t) are disjoint from each 
other, it follows that Zf* is Stab(£)-finite. Equivalently Zt* is a trivial almost invariant 
set over Stab(t). Now part 1) of Lemma 4.8 implies that t does not lie in the minimal 
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subtree TQ of T. Hence every interior vertex of A has valence 2 in To which completes 
the proof of part 1). 

2) As A is enclosed by v, it follows that gA is enclosed by gv. If g lies in H, then 
gA = A, so that A is enclosed by both v and gv. If gv = v for all g <E H, then i/v = v, 
as required. 

Now suppose that there is g in H such that gv is not equal to v. Then part 1) 
implies that A is equivalent to Zs or to Z* for each edge s on the path A joining 
v and gv. Further A is contained in the minimal subtree T0 of T, and each interior 
vertex of A has valence 2 in To. Fix an edge s of A oriented so that A is equivalent 
to Zs, and let S denote the stabiliser of s. Thus H and S must be commensurable. In 
particular, as g lies in H, some power of g lies in 5. As gA — A, and A is equivalent 
to Zs, it follows that gZs is equivalent to Zs. Let L denote the maximal subinterval 
of To which contains A and has all interior vertices of valence 2 in To. As gL meets 
L, we must have gL = L. If g reversed the orientation of L, we would have gZs C Z* 
or gZ* C Zs, but either of these is impossible as gZs is equivalent to Zs. Hence 
g preserves the orientation of L. As g does not act on L by the identity, it follows 
that L is doubly infinite and that g acts on L by a nontrivial translation. But this 
contradicts the fact that some power of g lies in S and so fixes s. This contradiction 
completes the proof. • 

Now we are ready to show that the two ideas of enclosing a splitting are equivalent. 

Lemma 4.10. — Let T be a G-tree, let V denote the graph of groups structure for G 
given by the quotient G\T, and let u denote a vertex ofT. Suppose that A is associated 
to a splitting a of G over H. Then the following statements hold. 

(1) If a is enclosed by u, then A is enclosed by u. 
(2) If H is finitely generated and A is enclosed by u, then a is enclosed by u. 

Remark 4.11. — In Lemma 5.10 we will show that part 2) holds even when H is not 
finitely generated. 

Proof. — 1) Suppose that a is enclosed by u. Thus there is a graph of groups Ti 
which is a refinement of T obtained by splitting at u so that the extra edge has a as 
its associated edge splitting. Let q : Ti —» T denote the projection map, and let e 
denote the extra edge of Ti so that q(e) = u. Let v denote a vertex in the pre-image 
of u in the G-tree T, and let T\ denote the universal covering G-tree of T\. Thus 
T\ is obtained from T by splitting at each vertex in the orbit of v. Let e also denote 
the extra edge inserted at v. Then T\ has an induced projection p : T\ —> T such 
that p(ge) = gv. Pick a basepoint w for Ti, and choose p(w) to be the basepoint for 
T. Consider the set E\ of all the sets Zs, for each oriented edge s of T\. If s is not 
equal to ge for any g, then p(s) is an oriented edge of T and Zs = Zp(sy There is a 
translate ge of e such that Zge is equivalent to A or A*. We will choose e so that this 
translate is e itself. As E\ is nested, we know that for any edge s of T\ — {e}, oriented 
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towards e, we have Ze D Z* or Z* D Z*. Turning to the tree T, it follows that either 
A is equivalent to Zs or Z* for some edge s incident to v, or we have A* ^ Z* or 
A ^ Z* for every edge 5 incident to v and oriented towards v. Now part 4) of Lemma 
4.6 implies that A is enclosed by v and hence by u. 

2) Suppose that A is enclosed by the vertex v of T. Without loss of generality we 
can suppose that A is not invertible. Part 2) of Lemma 4.8 implies that either v is 
fixed by G or it lies in the minimal subtree of T. Thus it suffices to consider the case 
when T itself is minimal. Now part 1) of Lemma 4.8 shows that for any edge s of T, 
the sets Zs and Z* are nontrivial ^-almost invariant subsets of G. Recall that the 
collection E of all these sets is nested. We now enlarge this set to a set F by adding 
A and A* and all their translates. As A is associated to a splitting, its translates 
are nested. Part 4) of Lemma 4.6 implies that either A is comparable with every Zs 
or that A is equivalent to some Zs. In the first case, we can apply Theorem 2.39 to 
obtain the required refinement of the graph of groups G\T. (This is where we use the 
assumptions that H is finitely generated and that A is not invertible.) In the second 
case, the required refinement of G\T can be constructed by simply subdividing the 
image of the edge s of T such that A is equivalent to Zs. • 

Recall from part 5) of Lemma 4.6 that if A is a nontrivial 17-almost invariant 
subset of a group G which is enclosed by a vertex v of a G-tree T, then for each 
edge s of T which is directed towards v, we have A n Z* or A* fl Z* is small. If both 
sets are small, then Z* itself must be small and hence is a trivial ^-almost invariant 
subset of G. Part 1) of Lemma 4.8 shows that this cannot occur if T is minimal. 
Thus, if T is minimal, we have a naturally defined H invariant partition of the edges 
of T, where one set consists of those s with A f l Z* small and the other set consists of 
those s with A* n Z* small. This induces a H invariant partition of all the vertices 
of T — {v} as in the following definition. 

Definition 4.12. — Let A be a nontrivial H-almost invariant subset of a group G and 
let v a vertex of a minimal G-tree T. Suppose that A is enclosed by v, and that s is 
an edge of T which is directed towards v. We will say that s lies on the Aside of v 
if A* H Zs* is small. 

We will say that a vertex u of T — {v} lies on the Aside of v if the path from 
u to v ends in an edge s which lies on the A-side of v. The collection of all vertices 
of T — {v} which lie on the A-side of v will be denoted by T,V(A) or by T,(A) if the 
context is clear. 

Remark 4.13. — As usual, this definition does not depend on the choice of basepoint 
for T. 

It is easy to see that if an edge s of T lies on the A-side of v, then the same holds 
for every edge (and hence every vertex) in the path joining s to v. Also if a vertex u 
of T — {v} lies on the A-side of v, then the path from u to v consists entirely of edges 
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which lie on the A side of v. Thus the ideas of an edge and a vertex being on the 
Aside of v are compatible. Clearly, every vertex of T — {v} lies in T>V(A) or E„(A*), 
so that these two sets partition the vertices of T — {v}. Also T,V(A) and T,V(A*) are 
each clearly //-invariant, under the left action of H. 

To understand the reason for our terminology, think of A as determined by a 
closed curve on a surface M which lies inside a subsurface Â  of M, think of G as 
being TT\ (A/), and think of T as being the G-tree determined by N, so that the picture 
in T corresponds to the picture in the universal cover of M. 

It is natural to ask if we can replace A by an equivalent almost invariant subset B 
of G such that for all edges s of T which are directed towards v, we have B fl Zs or 
B* fl Zs is empty. Equivalently, can we replace A by B which is nested with respect 
to every Zsl We will show that this is indeed the case. 

Suppose that we are given a nontrivial //-almost invariant subset A of G which is 
enclosed by a vertex v of T. The following result shows how to replace A by a subset 
B(A) which is nested with respect to every Zs. 

As usual, given a basepoint w for T, we define ip : G —• V(T) by the formula 
ip(g) = gw. Then we define 

B(A) = <f-\Zv(A))U(Anlp-1(v)), 

C(A) = ip~1(Ev(A*)) U (A* n ^ ( t ; ) ) . 

Note that these definitions are clearly equivariant, i.e. B(kA) = kB(A), for all k 
in G. 

Lemma 4.14. — Let G be a finitely generated group with a finitely generated subgroup 
H, and a nontrivial H-almost invariant subset A. Suppose that T is a minimal G-
tree with basepoint w. If A is enclosed by a vertex v ofT, then C(A) = B(A)*, and 
B(A) is H almost invariant and is equivalent to A. Further, B(A) is nested with 
respect to Zs, for every oriented edge s of T. 

Proof. — To simplify notation, we will write T,(A) in place of Y>V(A) throughout this 
proof. 

It is clear from their definitions that B and G are disjoint and that B U G = G. 
Thus G = B*. It is also clear that HB = B, because H(T,(A)) = E(A). Finally, it is 
also clear that if s is any edge of T which is directed towards v, and lies on the A-side 
of v, then B(A) D Lp~l{Y>(A)) D Z*. If s lies on the A*-side of v, then C(A) D Z*. 
Hence B(A) is nested with respect to ZS1 for every oriented edge s of T. 

It remains to show that B(A) is //-almost invariant and is equivalent to A. 
As (p(g) = gw, we see that (^_1(E(A)) = {g e G : gw G ^(A)}. As T is minimal, 

part 2) of Lemma 4.8 shows that the basepoint w encloses some nontrivial if-almost 
invariant subset U of G. This implies that (p~1(Tt(A)) C {g e G : gU^ < A}. 
Now Lemma 2.31 implies that (p~1(Tl(A)) lies in a bounded neighbourhood of A. It 
follows that B itself is contained in a bounded neighbourhood of A. Similarly B* is 
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contained in a bounded neighbourhood of A*. It follows that SB lies in a bounded 
neighbourhood of 5A. As A is H almost invariant, we know that 5A projects to a 
finite subset of the quotient graph H\T. It follows that SB also projects to a finite 
subset of H\T, so that B projects to an almost invariant subset of H\G and hence 
is //-almost invariant. As B is contained in a bounded neighbourhood of A, and B* 
is contained in a bounded neighbourhood of A*, it now follows that B is equivalent 
to A, which completes the proof of the lemma. • 

Before our final result of this chapter, we will need the following simple proposition. 

Proposition 4.15. — Let G be a finitely generated group, and let X be a H almost 
invariant subset of G which is contained in a proper subgroup K of G. Then X is 
H-finite. 

Proof. — As K is a proper subgroup of G, there is an element g G G — K. As A is 
//-almost invariant, we must have A and Xg being //-almost equal. The assumption 
that A is contained in K implies that A and Xg are disjoint. It follows that A is 
//-finite. • 

Now we can prove the following useful result. 

Corollary 4.16. — Let G be a finitely generated group with finitely generated subgroups 
H and K, and let T be a minimal G-tree which is not a single point. Let U be 
a nontrivial H almost invariant subset of G and let V be a nontrivial K almost 
invariant subset of G. Then the following statements hold: 

(1) If U is enclosed by a vertex v of T, then both T,v(U)j the U side of v, and 
T,V(U*), the U*-side ofv, are nonempty, so that U determines a nontrivial partition 
of the vertices of T — {v}. 

(2) If U is enclosed by a vertex v of T, then H is contained in Stab(Sv(C/)) with 
finite index. 

(3) If U and V are enclosed by a vertex v of T, and if they determine the same 
partition of the vertices of T — {v}, then U and V are equivalent. 

Proof. — We start by fixing the vertex v and choosing it to be the basepoint of T. 
As usual, this determines the G-equivariant map (f : G —> V(T) given by <p(g) = gv. 

1) By applying Lemma 4.14, we can assume that 

u = B(U) = tp-^EviU)) u(un ^-'(v)). 

If T,V(U) is empty, this implies that U C Lp~l(v). Now tp~l{v) = Stab(v), and the 
assumption that T is minimal and not a single point implies that Stab(v) must be a 
proper subgroup of G. Thus Lemma 4.15 implies that U must be trivial. We conclude 
that TiV(U) cannot be empty, and similarly that Y,V(U*) cannot be empty. Thus U 
determines a nontrivial partition of the vertices of T — {v}, as claimed. 
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2) Clearly H C Stab(Ev(C/)). Further, it is clear that Y>gv(gU) = gT,v(U), for any 
element g of G. Hence if g G Stab(E v ([/)), then Yigv(gU) — T,V(U). Let [/i be a 
translate of U enclosed by a vertex of T on the [/side of v, and let % be a translate 
of U enclosed by a vertex of T on the [7*-side of v. Then, for any g G Stab(E v([/)), 
the set gU lies between U\ and JJi- As the number of translates of U between JJ\ and 
U2 is finite, it follows that the orbit of U under the action of Stab(E v([/)) is finite, so 
that H has finite index in Stab(E v ([/)). 

3) Apply Lemma 4.14 so that we can assume that 

U = B(U) = (p"1 (£„([/)) u (u n 
and 

v = B(v) = p-\i:Ev(V)) u(vn p-\v)). 
Suppose that Ev([7) = E V (V). It follows that the symmetric difference U + V of U 
and V is contained in (p~l(v) = Stab(v). As part 2) implies that the stabilisers HJJ 
and Hy of U and V are commensurable, both U and V are //-almost invariant, 
where H — HJJ fl //y. It follows that U + V is also //-almost invariant. As in part 
1), Stab(v) must be a proper subgroup of G, and now Proposition 4.15 shows that 
U + V must be trivial, so that U and V are equivalent as claimed. • 
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CHAPTER 5 

ALGEBRAIC REGULAR NEIGHBOURHOODS: 
ENCLOSING 

In this chapter, we will apply the results of the previous chapter to graphs of 
groups which are obtained by the regular neighbourhood construction. Let G denote 
a finitely generated group with a family of finitely generated subgroups {^A/AGA-

For each A G A, let AA denote a nontrivial H\-almost invariant subset of G. In 
chapter 3, we discussed how to construct the regular neighbourhood F({AA}AGA • G). 
If the AA'S are in good position and isolated AA'S are not invertible, the construction 
produces a bipartite G-tree T whose Vb-vertices are the CCC's of E. Recall that the 
construction always works when A is finite. In order to show that this construction 
and our ideas about enclosing all fit together, our next result shows that the VQ-
vertices of r({ATA}AeA : G) enclose the given -XVs. Recall from Summary 3.16 the 
following brief description of our construction. "First we omit some AVs and replace 
others by equivalent almost invariant sets such that the new family is in good enough 
position. Now apply the direct construction using a pretree to the new family to 
obtain a graph of groups structure Y for G. Finally, r(AV . . . , Xn : G) is constructed 
from r by subdividing certain edges of I\" Recall from part 2) of Lemma 4.6 that if a 
vertex encloses one almost invariant set it also encloses all equivalent almost invariant 
sets. This fact combined with the above description shows that it suffices to prove 
that the Vb-vertices of F ({AA}AEA • G) enclose the given X\'s in the case when the 
AA'S are in good position and isolated AVs are not invertible. This we now do. 

Lemma 5.7. — Let G denote a finitely generated group with a family of finitely gen
erated subgroups {H\}\e\. For each A G A, let X\ denote a nontrivial H\-almost 
invariant subset of G, and suppose that the X\ ys are in good position, that isolated 
X\ 's are not invertible, and that the regular neighbourhood T ( { A A } A € A ' G) can be 
constructed as in chapter 3. Let T denote the bipartite G-tree produced in that chapter 
in order to define this regular neighbourhood. 

If v is a Vo-vertex of T, and the corresponding CCC of E contains an element U 
of E, then v encloses U. 
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Proof. — We choose v as our basepoint for T , so that we have the equivariant map 
ip : G —> V(T) given by <p(g) = gv. Thus ip(G) is contained in V b ( T ) , which we can 
identify with the pretree P consisting of all the CCC's of E. Let s be an edge of T 
which is oriented towards v. We will show that U fl Z* or [/* fl Z* is small. Recall 
that Zs = (/?-1(Ys), where Ys denotes the collection of all the vertices of T which lie 
on the terminal vertex side of s. Thus Ys includes v. Also Z* = (p~1(Y*) = {g G G : 
gv G Y*}. Hence if g and h lie in Z*, then v does not lie between gv and to. Recall 
that the idea of betweenness which we defined on the set P of all CCC's of E is the 
same as the idea of betweenness for the Vb-vertices of T. Thus the CCC [U] does not 
lie between g[U] and h[U}. Our definition of betweenness for P implies that U does 
not lie between gU and hU. As Y* does not include v, we know that g cannot fix v, 
so that gU and U are in distinct CCC's. Thus they are comparable using our partial 
order ^ on the elements of E. Similarly hU and U are comparable. By replacing U 
by U* if necessary, we can arrange that ^ U, and the fact that U does not lie 
between gU and hU then implies that we must also have hU^ ^ U. We conclude 
that, by replacing U by U* if necessary, we can arrange that gll^ ^ U, for every 
g G Z*. Now Lemma 2.31 implies that Z* lies in a bounded neighbourhood of £/, so 
that £/* fl Z* is small. It follows that for any edge s of T which is oriented towards v, 
we have U HZ* or [/* fl is small, so that U is enclosed by v as required. This 
completes the proof of the lemma. • 

Our first application of this result gives us some new information about our regular 
neighbourhood construction. The examples at the end of chapter 3 show that this 
construction can yield a graph of groups T consisting of a single point, but they also 
suggest that this is quite unusual. A more delicate question is whether the graph of 
groups decomposition of G which we obtain can decompose G trivially when F is not 
a point. The answer is that this cannot happen. In fact, we can show the far stronger 
result that r({A^A}AGA : G) is always minimal. 

Proposition 5.2. ----- Let G be a finitely generated group with a family of finitely gen
erated subgroups {H\}\e\. For each A G A, let X\ denote a nontrivial H\-almost 
invariant subset of G, and suppose that the regular neighbourhood T ( { A A } A G A • G) 
can be constructed as in chapter 3. Let T denote the universal covering G tree of this 
regular neighbourhood. Then T is a minimal G-tree, so that T({X\}\eA ' G) is also 
minimal. 

Proof. — Let TQ denote the minimal subtree of T. If G fixes more than one vertex 
of T so that To is not unique, we let To denote one of the vertices fixed by G. We 
will show that TQ = T . Now Lemma 5.1 tells us that every Vb vertex of T encloses 
some translate of some X\, and part 2) of Lemma 4.8 shows that any vertex of T 
which encloses a nontrivial almost invariant subset of G must lie in TQ. Thus To 
contains every Vb-vertex of T . If the AA'S are in good position, the construction of T 
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from a pretree shows that each V\-vertex of T is joined by edges of T to at least two 
Vb vertices. (It is possible that T has a single Vb-vertex, but in this case T consists 
only of this vertex.) The brief description of our construction given above implies 
that even if the X\s are not in good position, it is still true that each V\ vertex is 
joined by edges of T to at least two Vb-vertices. As T is a tree, it follows that TQ — T 
as required. • 

Next we will apply Lemma 4 . 1 4 to the regular neighbourhood T ( { X A } A € A • G). Let 
T denote the universal covering G-tree of T({AA}AGA • G). AS each AA is enclosed 
by a vertex of T, this lemma tells us how to replace each AA by an equivalent set 
B(X\), which is nested with respect to Zs, for every edge s of T. Note that before we 
can define ZSl we should first choose a basepoint w for T. Recall from Lemma 3.17 
that replacing each X\ by an equivalent set does not alter the regular neighbourhood. 
Thus we obtain the following interesting result which can be thought of as asserting 
that we can replace the AA'S by equivalent sets which are in "very good position". 

Lemma 5.3. — Let G be a finitely generated group with a family of finitely gener
ated subgroups {H\}\e\. For each A G A, let AA denote a nontrivial H\-almost 
invariant subset of G, and suppose that the regular neighbourhood F ({AA}AGA • G) 
can be constructed as in chapter 3. Then we can replace each X\ by an equiva
lent almost invariant set B(X\) so that if U and V are any two elements of the set 
E = {gX\,gX^ : g G G}, then either B(U) and B(V) are nested or U and V lie in 
the same CCC of E. 

Proof. — If U and V lie in distinct CCC's of E, they are enclosed by distinct vertices 
of T. Let s denote an edge of T on the path joining these two vertices. As B(U) and 
B{V) are nested with respect to every Zs, it follows that Zs lies between B(U) and 
B(V), so that the two sets B(U) and B(V) are nested, as claimed. • 

We next examine the special features of isolated elements of E in the case when the 
elements of E are in good enough position, and isolated AA'S are not invertible. Recall 
that if A is an isolated element of E, then the translates of A are nested and since 
gA is also isolated in E, each gA determines exactly one cross-connected component 
of E, which we call isolated. The following result characterises isolated CCC's of E 
in terms of the G-tree T. 

Proposition 5.4. — A Vb vertex v of T has valence 2 if and only if v corresponds to 
an isolated CCC of E. 

For such a vertex v of T, its stabiliser equals the stabilisers of the two incident 
edges. 

Proof. — Suppose that v is a Vb-vertex of valence 2 and let s and t denote the edges 
which are incident to v. Let U and V denote elements of E enclosed by v. Part 1 ) of 
Corollary 4 .16 implies that s and t must lie one on the [/-side of v and the other on 
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the U* side of v, and the same holds with U replaced by V. Thus U and V determine 
the same partition of the vertices of T — {v}. Now part 3) of Corollary 4.16 shows 
that U and V must be equivalent, up to complementation. As required, it now follows 
that the CCC which corresponds to v contains exactly one element of E. 

To prove the converse, suppose that A is an isolated element of E. Consider the 
Vb vertex v which is the CCC of A and, in the pretree P, let S be a star which 
contains v. Thus S can also be identified with a V\ vertex v\ in T which is adjacent 
to v. Let i>2 7^ v be a Vb-vertex corresponding to another CCC in S. This means 
that both V2 and v are adjacent to v\ in the tree T. If U is an element of E which is 
enclosed by v2, then we must have > A or < A. If < A, then we have 
the same inequality for any other CCC in S other than v. For otherwise, v would lie 
between two of these vertices. Conversely, if [U] = u is any vertex of a star which 
contains v and if < A, then u must lie in S since v cannot lie between u and i^. 
Thus, there are at most two stars which contain v. Equivalently, there are at most 
two edges of T incident to v. Now the fact that T is minimal implies that it has no 
vertices of valence 1. It follows that v has valence 2 as required. 

For the last part of the proposition, we note that the stabiliser of v equals the 
stabiliser of [/, where U is the unique element of E which corresponds to v. As we 
are assuming that U is not invertible, this stabiliser equals the stabiliser of U. Now 
the stabiliser of U must stabilise each of s and t, so it follows that the stabiliser of v 
equals the stabilisers of each of s and t as required. • 

Before proceeding, we will need the following simple fact about splittings of groups. 

Lemma 5.5. — Let G be a group with a splitting a over a subgroup H. Let X be one 
of the standard H-almost invariant subsets of G associated to a. Then one of the 
following holds: 

(1) there is an element g of G such that gX C A*7 and an element k of G such 
that kX* C X. 

(2) a is a HNN extension G = H*H in which at least one of the inclusions of the 
edge group in the vertex group is an isomorphism. 

Remark 5.6. — In case 2), such a HNN extension is often called ascending. 

Proof — The given splitting a determines a G-tree T such that the quotient G\T 
has a single edge. We pick an orientation of this edge, thereby fixing a G invariant 
orientation on all the edges of T. In terms of our previous notation, there is an edge s 
of T such that X or A* is equivalent to Zs. We will assume that X is equivalent to Zs. 
Let v denote the vertex of T at the initial end of s, and let gs denote another edge 
incident to v. Then gX C A* or gX* C A*, depending on whether gs points away 
from v or towards v. Suppose that there is no element g of G such that gX C A*. 
Then gX* C X*, and gs must point towards v. It follows that s is the only edge of T 
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which is incident to v and points away from v. Hence the stabilisers of s and of v are 
equal, which implies the conclusion of case 2) of the lemma. 

A similar argument considering the terminal vertex w of s shows that if there is 
no element k of G such that kX* C A, then the stabilisers of s and of w are equal, 
which again implies the conclusion of case 2) of the lemma. • 

Our next result is crucial for understanding algebraic regular neighbourhoods. It is 
the algebraic analogue of the topological fact that if N is a regular neighbourhood of 
a finite collection C\ of closed curves on a surface M, and if C is a closed curve which 
has zero intersection number with each C\, then we can homotop C into M — N. In 
our result, the curve C is replaced by a i7-almost invariant subset X of G, and the 
conclusion is that if A crosses no element of E, then X is enclosed by a V\-vertex 
of T ({AA}AGA • G). As usual, we argue with the G-tree T rather than with the graph 
of groups T itself. As for Lemma 5.1, it suffices to prove this for the case when the 
AA'S are in good position. 

Proposition 5.7. — Let G be a finitely generated group with a family of finitely gen
erated subgroups {H\}\eA. For each A G A , let X\ denote a nontrivial H\-almost 
invariant subset of G, and suppose that the regular neighbourhood T ({AA}AGA '• G) 
can be constructed as in chapter 3. Further suppose that the X\ ;s are in good position, 
and that there is more than one CCC, so that the pretree P is not a single point. Let T 
denote the G-tree with Vo(T) = P. Let X be a nontrivial H-almost invariant subset 
of G which does not cross any element of E. Then the following statements hold. 

(1) If H is finitely generated, then X is enclosed by a V\ vertex of T. 
(2) If X is a standard H -almost invariant set associated to a splitting of G over 

H, which need not be finitely generated, then X is enclosed by a V\-vertex of T. 

Remark5.8. — For this proof, it does not matter whether any isolated AA'S are in
vertible. 

Proof. — We start by showing that we can assume that A is in good position, i.e. 
that the set of all translates of X satisfies Condition (*). If H is not finitely generated, 
we are in case 2), and this is true by hypothesis. If H is finitely generated, we first 
observe that Condition (*) is automatic for A and gX, unless gX is equivalent to X 
or A*. Now we apply Proposition B.2.14, which asserts that A is equivalent to 
an almost invariant set Y whose translates are nested with respect to the subgroup 
JC = {g G G : gX ~ A or A*}. This immediately implies that Y satisfies Condition 
(*), and so it suffices to replace X by 7. 

If A is equivalent to Zs for any edge s of T , the result follows from part 3) of 
Lemma 4.6. If A is equivalent to an element U of E, our hypothesis on X implies 
that U must be isolated in E. This implies that A is equivalent to Zs for each of 
the two edges of T incident to the Vb-vertex which corresponds to the CCC [£/]. 
In particular, the result follows in this case also. So we will assume that X is not 
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equivalent to any element of E. As the X\s are in good position and A is in good 
position, this implies that the relation ^ on E can be extended to the set obtained 
from E by adding in all translates of A and A*. Note that ^ is a partial order on 
this larger set even if the stabiliser H of A is not finitely generated, because the proof 
of Lemma B.1.14 still applies. 

Our first step is to show that A is sandwiched between two elements of E, i.e. that 
there are elements U\ and U2 of E such that U\ < X < /72. Let Y denote an element 
of E. As A crosses no element of E, we know that, for each element g of G, one of the 
four inequalities gY ^ A, gY* ^ A, gY ^ A*, gY* ^ A* must hold. If the stabiliser 
H of X is finitely generated, then Lemma 2.31 tells us that {g G G : gY^ ^ A} 
is contained in a bounded neighbourhood of A, and that {g G G : gY^ ^ A*} is 
contained in a bounded neighbourhood of A*. As G is the union of these two sets 
it follows that neither is empty so that there are elements U\ and U2 of E such that 
U\ < X < U~2, as required. 

If H is not finitely generated, we use the hypothesis that A is associated to a 
splitting a of G. Suppose that A is not sandwiched between two elements of E. 
Then, by replacing A by A*, if necessary, we have that for every element U of E, 
either U < X or U* < A. As E is G-invariant, it follows that for every element U 
of E, and for every element g of G, either U < gX or U* < gX. Now suppose that 
there is an element g of G such that gX C A*. This implies that for every element 
U of E, either U < A* or [/* < X*, which contradicts the fact that either [/ < A or 
[/* < A. It remains to handle the situation where there is no element g of G such that 
gX C A"*. Then Lemma 5.5 shows that a is an ascending HNN extension G = H*H-
Let / : G —> Z denote the natural homornorphism associated to this HNN extension, 
and let U be an element of E such that U < A. As U does not cross A", it follows, in 
particular, that the image in Z of the coboundary SU of U is bounded above or below. 
Hence the stabiliser of U must be contained in ker(/). It follows that the image of SU 
in Z must be finite. As the image in Z of SgX is finite for all g in G, there must be 
an element g of G such that gX C [/. But we know that U < gX or U* < gX. The 
first implies that U is equivalent to #AT, which contradicts our assumption that A is 
not equivalent to any element of E, and the second implies that U* < U which is also 
a contradiction. This contradiction completes the proof that, in all cases, A must be 
sandwiched between two elements U\ and U2 of E. 

By considering the path in T which joins the Vb vertices [?7i] and [C/2], it is easy 
to see that there is a V\ vertex v with two Vb-vertices v\ and V2 adjacent to v, and 
an element Vz of E enclosed by vt, such that V\ < X < V2. We will show that A is 
enclosed by v. 

If U is any element of E, then either < A or < A* but not both. Further 
if V lies in the same CCC as [/, then the same inequality must hold as for U. Thus 
we obtain a partition of the Vb-vertices of T — {v} into two subsets $ and where 
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the vertices of <J> enclose those elements U of E such that < A and the vertices 
of 3>* enclose those elements U of E such that £/(*) < X*. If w lies in then every 
Vb-vertex on the path from w to v also lies in <£. This enables us to define a partition 
of all the vertices of T — {v} into two subsets ^ and We will say that a vertex 
w of T — {?;} lies in ^ if the last Vb-vertex on the path from w to v lies in Thus 
$ is contained in ^ . Note that if we already knew that X was enclosed by v, then ^ 
and \I>* would constitute the X-side of v and the X*-side of v. If U < X and h e H, 
then < X . Thus ^ and \I>* are //-invariant. In particular, H must be a subgroup 
of Stab(?;). 

Now, as in the proof of Lemma 4.14, we choose v as our basepoint for T, define 
if : G T/(T) by the formula <p(#) = gv, and define £ ( X ) - (p'1 U (X H tp'1 (v)), 
and G(X) = U (X* fl p~l (v)). Clearly B(X) and G(X) partition G, so that 
C(X) = P(X)*. If 5 is an edge of T which is directed towards v, then Z* C B(X) or 
Z* C C(X). It is also clear that HB — B, because X and i> are all iJ-invariant. 

We will show that B(X) is i/-almost invariant and is equivalent to X . It will then 
follow that Z* ^ X or Z* ^ X*, for every edge s of T which is directed towards v, 
so that X is enclosed by v. 

If H is finitely generated, we will proceed very much as in the proof of Lemma 
4.14. As cp(g) = gv, we have p'1^) = {g G G : gv G As Vi < X < V2, we 
have gV\ < gX < gV2, for all g G G. If gv lies in \I>, then gv\ and gi;2 must also lie 
in ^ . Thus we have the inequalities gV^ < X , for i = 1, 2. It follows that one of 
the inequalities gX^*) < X also holds. Thus = {g G G : gv G ^ } is contained 
in G G : gX^ < X } , which is contained in a bounded neighbourhood of X , by 
Lemma 2.31. It follows that B(X) itself is contained in a bounded neighbourhood 
of X . Similarly G(X) = B{X)* is contained in a bounded neighbourhood of X*. 
Exactly as in the proof of Lemma 4.14 it follows that B(X) is H almost invariant 
and is equivalent to X . 

If H is not finitely generated, we will choose X carefully and then show that 
X = B(X). As discussed above, this implies that A is enclosed by v as required. 
Recall our assumption that X is associated to a splitting of G over H. As discussed 
after the proof of Lemma 2.10, we can choose A to satisfy X = {g G G : gX^ C X } . 
As the translates of X are nested, we have 

{g e G : gXW C X} = {g € G : gX^ < X } 

which allows us to express X as the disjoint union 

{geG:gi Stab(^), gX^ < X} U (X n Stab(u)). 

Recall that B(X) =s-1(U) U (X n <p~l{v)). As (p(e) = v, we have tp~l{v) = 
Stab(?;), so that the second terms in our expressions for A and B(X) are equal. 

Now we consider the first terms. As above, we have 

<p-\*) = {g e G : gv e C {g € G : g £ Stab(v),gX^ < X}. 
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Suppose that g Stab(v) and gX < X . As g £ Stab(v), the vertices gv, gv\ and 
gv2 of T must all lie in \I> or all in \I>*. As gVi < gX < X , we see that gv\ must lie 
in \I>. Thus 91; G ^ , so that g G <£-1(\IJ). A similar argument applies if g ^ Stab(^) 
and #X* < X. Thus {g e G : g Stab(v),gX^ < X} C c/?"1 We conclude that 
y r 1 ^ ) — {g e G : g ^ Stab(v),gX^ < X } , so that X = B(X) as claimed. • 

Recall from the definition of betweenness on the pretree of CCC's of E that if three 
Vb-vertices v\, v2 and ^3 lie on a path in T with v2 between v\ and 173, then there 
is an element X of E which is enclosed by v2 and such that for any elements Y and 
Z of E with Y enclosed by v\ and Z enclosed by ^3 , we have YX Z. Hence if a 
Vb^vertex v2 lies between edges s and t which point towards v2l there is an element 
X of E enclosed by v2 such that Z* ^ X ^ Zt. The following result is an immediate 
consequence and is the analogous result for V\-vertices. 

Proposition 5.9. — Let Y be a nontrivial H-almost invariant subset of G, and let Z 
be a nontrivial K -almost invariant subset of G. If H is not finitely generated, suppose 
in addition that Y is a standard H -almost invariant set associated to a splitting of G 
over H, and similarly for Z. IfY and Z are enclosed by distinct V\-vertices v\ and 
v%, then there is a V^-vertex v2 and an element X of E which is enclosed by v2 such 
that ^ X < zw. 

Proof — Let v2 be any Vb-vertex on the path joining v\ and ^3 . Let s and t be the 
edges of this path which are incident to v2 and point towards v2, labelled so that s is 
nearer to v\ than is t. As we pointed out above, there is an element X of E enclosed 
by v2 such that Z* ^ X $C Zt. As s points away from v\, we have Y^ ^ Z*, and as t 
points away from i;3, we have Z^ ^ Zt. It follows that ^ Zs* ^ X ^ Zt ^ Z^\ 
so that y<*) < X ^ Z(*\ as required. • 

Next we apply the preceding results on regular neighbourhoods to obtain new 
results about more general graphs of groups. 

First we can use the argument of Proposition 5.7 to show that the two ideas of 
enclosing a splitting of G over a subgroup H are equivalent even when H is not finitely 
generated. 

Lemma 5.10. — Suppose that A is associated to a splitting a of G over H, and T is a 
G-tree. Let V denote the graph of groups structure for G given by the quotient G\T, 
and let u denote the image of v in T. Then A is enclosed by u if and only if a is 
enclosed by u. 

Proof. — In Lemma 4.10, we showed that if a is enclosed by u then A is enclosed 
by u. We also proved the converse in the case when H is finitely generated. It remains 
to prove the converse in the case when H is not finitely generated. 

Suppose that A is enclosed by the vertex u of T. This means that A is enclosed 
by some translate in T of v, and we will assume that A is enclosed by v itself. As 
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always there is a special case if v is fixed by G, but the result is trivial in this case as 
v encloses all splittings and all nontrivial almost invariant subsets of G. So we will 
now assume that v is not fixed by G. Part 2) of Lemma 4.8 shows that v lies in the 
minimal subtree of T. By replacing T by its minimal subtree, we can assume that T 
itself is minimal. 

Now the argument at the end of the proof of Proposition 5.7 applies to show that, 
by replacing A by an equivalent set, we can arrange that A — B{A). As B{A) is clearly 
nested with respect to every Zs, the set E of all ZS1 for all oriented edges of T, together 
with all the translates of A and A*, forms a nested set F of subsets of G. Thus F is 
a G-set partially ordered by inclusion. We want to apply Dunwoody's construction 
in [10] to F to obtain a G-tree T' whose oriented edges naturally correspond to the 
elements of F. This will yield a graph of groups structure V = G\Tf for G which is 
a refinement of T, with one extra edge whose associated edge splitting is a. This will 
show that a is enclosed by u as required. In order for his construction to be applicable, 
we need to know that F is discrete. Recall that the elements of E correspond to the 
edges of T and have the corresponding partial order. It follows at once that E is 
discrete. Also the fact that A is associated to a splitting implies that the set of all 
translates of A is discrete. (In fact, the translates of A correspond to the edges of the 
G-tree determined by the splitting.) As T is minimal, each vertex has valence at least 
two, so that A, and hence any translate of A, is sandwiched between two elements 
of E. Also any element of E lies between two translates of A or A*. Combining 
these facts shows that F is discrete, as required. We should point out that there is a 
possible problem here, because A might be invertible. But we can simply replace it by 
an equivalent non-invertible almost invariant set. The new set F might not be nested, 
but it will still be in good position, which is enough to be able to apply Dunwoody's 
construction. • 

Next we introduce a natural generalisation of the idea of a splitting of a group 
being enclosed by a vertex of a graph of groups. Recall that the precise definition of 
this idea was motivated by considering a surface with a subsurface which contains a 
simple closed curve. We now generalise this to the case of a subsurface which contains 
another subsurface. Let T and V denote graphs of groups structures for a given group 
G. We will define what it means for a vertex of T' to enclose a vertex of T. If v is a 
vertex of T, we let Tv denote the graph of groups structure for G obtained from F by 
collapsing the closure of T — star(v). Recall that this means that each component of 
the closure of T — star(v) is collapsed separately to a point. 

Definition 5.11. — Let T and Tf denote minimal graphs of groups structures for a 
given group G, and let v and v' denote vertices of T and V respectively. Then v is 
equivalent to v' if there is a graphs of groups isomorphism from Tv to T'v, which sends 
v to vf. 
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Definition 5.12. — Let T and Y' denote minimal graphs of groups structures for a 
given group G, and let v and v' denote vertices of Y and V respectively. Then v 
is enclosed by v' if there is a graph of groups structure Y" for G and a projection 
p : Yff —> Y' and a vertex v" of V" such that ^(starfV')) = t/, and v" is equivalent 
to 

Remark 5.13. — If v is enclosed by v' and 5 is an edge of Y incident to v, there is 
a corresponding edge s" of Y" incident to v" such that the edge splitting associated 
to s" is the same as that associated to s. In particular, this splitting is enclosed by v'. 

In the previous chapter, we also defined enclosing using almost invariant sets. In 
Lemma 5.10, we completed the proof that these two ideas of enclosing a splitting of G 
over a subgroup H are equivalent, even if H is not finitely generated. We will carry 
out the analogous arguments here. 

Definition 5.14. — Let T and T' be minimal G-trees on which G acts without inver
sions. Then a vertex w of T is enclosed by a vertex wf of T' if Stab (it;) C Stab(w') 
and, for each edge s of star(iu) with stabiliser S, the ^-almost invariant subset Zs is 
enclosed by w'. 

Note that in this definition, the group S may not be finitely generated. The 
following result brings these two ideas together as in Lemma 5.10. 

Lemma 5.15. — Let T and T' be minimal G-trees on which G acts without inversions. 
Let Y and Yf denote the quotients G\T and G\Tf, and let v and v' denote vertices 
of r and V respectively. Then v is enclosed by v' if and only if there are vertices 
w and w' of T and T' which project to v and v' respectively such that w is enclosed 
by w'. 

Proof. — Suppose that v is enclosed by v'. Thus there is a graph of groups structure 
Y" for G and a projection p : Y/f —> Ff and a vertex v" of Y" such that p(star(^//)) = v' 
and v" is equivalent to v. Let T, T' and T" denote the universal covering G trees 
of T, Y' and Y" respectively, let w denote a vertex of T which lies above v, let w" 
denote the corresponding vertex of T" and let w' denote the image of w" in T'. As 
p(star(i;//)) = v'', it follows that the image of star ( i ^ ) equals w'. In particular, it 
follows immediately that w is enclosed by w'. 

Conversely suppose that there are vertices w and w' of T and T' which project to v 
and v' respectively such that w is enclosed by w'. Thus for each edge s of star(w) 
with stabiliser 5, the S almost invariant subset Zs is enclosed by w'. We will choose 
w as the basepoint of T, choose s to be oriented towards w, and let X denote Zs. As 
discussed after the proof of Lemma 2.10, it follows that X = {g <E G : gX^ C X}, 
where we use X^ to denote a set which might be X or X*. Now we consider the 
tree T;, and the construction of the set B(X) using this tree. The argument at the 
end of the proof of Proposition 5.7 shows that X = B{X). Let F denote the family of 
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all the translates of Zs and Z*, for each edge s of star ( i t;) . As the Zs's are associated 
to distinct edges of T, it follows that F is nested. Now let E" denote the union of F 
with the set E' of all the Zt and Zt*, for all oriented edges £ of T'. As B(ZS) is nested 
with respect to every Z^, for every edge t of X", it follows that the G set E" is nested. 

In the rest of our argument we will assume that, if s\ and 5 2 are distinct edges 
of star ( i t ; ) , then the associated almost invariant sets ZSl and Z*2 are not equivalent. 
We will also assume that, if s is an edge of star (to) and t is an edge of T', then Zs 
is not equivalent to Zt. If either of these conditions fails, it is not difficult to modify 
the argument. 

We want to apply Dunwoody's construction in [10] to E" to obtain a G-tree T" 
whose oriented edges naturally correspond to the elements of E". This will yield a 
graph of groups structure V" = G\T" for G. In order for his construction to be 
applicable, we need to know that E" is discrete. Recall that the elements of E' 
correspond to the edges of T' and have the corresponding partial order. It follows at 
once that E' is discrete. Also the fact that the Zs's are associated to edge splittings 
of T implies that F is discrete. As T' is minimal, each vertex has valence at least 
two, so that each Zs, and hence any translate of Zs, lies between two elements of E'. 
Also any element of E' lies between two translates of Zs or Z*. Combining these facts 
shows that E" is discrete, as required. 

In order to show that v is enclosed by v', we need to show that there is a vertex v" 
of Y" which projects to t/, such that v is equivalent to v". Let a and b denote distinct 
oriented edges of star (it;) oriented towards w, and let a and f3 denote the edges of T" 
which correspond to Za and Z\> respectively, oriented so that Za is equivalent to Za 
and Z^ is equivalent to Z 5 . As Z* C Z5, it follows that Z* ^ Zp. As Za and Z5 
are each enclosed by the vertex it/ of T7, no element of E' can lie between them. It 
follows that a and /3 are adjacent and are oriented towards their common vertex. As 
this argument applies to all such edges, we see that the edges of T" which correspond 
to the Zs's have a common vertex, which we denote by it/7, and they are all oriented 
towards it/7. Next we claim that no edge of T" which corresponds to an element 
of E1 can meet it/7. For suppose there is an edge e of T" which meets it/7, is oriented 
towards it/7 and corresponds to an element of E'. Then Z* C Za for each edge a of T" 
corresponding to an edge a of star ( i t;) . Hence Z* ^ Za, for each edge a of star ( i t;) . 
Thus Ze is enclosed by the vertex w of T. Now recall that an edge s of star (it;) lies on 
the Ze-side of w if Z* HZ* is small. (See Definition 4.12.) Thus every edge of star(w) 
lies on the Ze side of w. But part 1) of Lemma 4.16 tells us that this is impossible. 
This contradiction completes the proof of the claim. We have shown that the edges 
of T" which correspond to the edges of star (it;) form star ( i t / ' ) . Let v" denote the 
image of it;" in r / ; . 

Now we will show that v and v" are equivalent. Recall that T" is constructed from 
the partially ordered set E" using Dunwoody's construction. As the graph of groups 
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r"„ is constructed from T" by collapsing every edge not incident to v", it follows that 
the universal covering G-tree T",t of T"„ is constructed from T" by collapsing every 
edge not incident to some translate of w". Hence T"„ can be constructed from the 
partially ordered set F using Dunwoody's construction. One can also think of T as 
constructed from the partially ordered set E of all Zs and Z* for all edges s of T. Now 
the universal covering G tree Tv of Tv is constructed from T by collapsing every edge 
not incident to some translate of w, and it follows that Tv can also be constructed 
from the partially ordered set F using Dunwoody's construction. Hence Tv and T"„ 
are G equivariantly isomorphic, so that the graphs of groups Tv and T",, are also 
isomorphic, as required. • 

The preceding results allow us to give a surprising generalisation of Theorem 2.35, 
which we proved in [44]. In that theorem, we showed that if G is a finitely gener
ated group with n splittings over finitely generated subgroups, then the splittings are 
compatible if and only if each pair of splittings has intersection number zero. Now we 
will show that the hypothesis that the splittings be over finitely generated subgroups 
of G can be removed. The precise result we obtain is the following. 

Theorem 5.16. — Let G be a finitely generated group with n splittings over possibly 
infinitely generated subgroups. Then the splittings are compatible if and only if each 
pair of splittings has intersection number zero. Further, in this situation, the graph 
of groups structure on G obtained from these splittings is unique up to isomorphism. 

Proof. For 1 ̂  i ^ n, let aL be a splitting of G over a subgroup and let X{ be 
an associated -almost invariant subset of G, chosen so that Xt is not invertible. 

We start by discussing the existence proof. In order to use the previous arguments 
directly, we will proceed by induction on n. The result is trivial when n = 1. Thus 
we consider the situation where we have k compatible splittings o\,. . ., o~k and then 
another splitting ak+i which has intersection number zero with each of G\ ,. . . , a^. 

Thus G has a graph of groups decomposition with k edges and the edge splittings are 
conjugate to the a2's, 1 ^ i ^ h. By subdividing each edge into two, we obtain the 
regular neighbourhood T(Xi,..., Xk • G). Now part 2) of Proposition 5.7 shows that 
Xk+\ is enclosed by a V\ vertex of .. ., Xk : G), and then Lemma 5.10 implies 
that o"i,. . . , cr/e+i are compatible as required. 

In order to prove the uniqueness, we want to use the proof of the second part 
of Theorem B.1.12. This argument never directly uses the hypothesis that the H^s 
are finitely generated. It does quote one result, Lemma B.2.3, and this in turn uses 
Lemma B.2.2. Both lemmas are about splittings of a finitely generated group G, 
and they each contain the hypothesis that the splittings be over finitely generated 
subgroups. However, this hypothesis is not needed and the proofs work perfectly well 
even when the splittings are over infinitely generated subgroups of G. Thus the proof 
of the second part of Theorem B.1.12 yields the required result. • 
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The following result is an immediate consequence of the uniqueness part of Theorem 
5.16. 

Theorem 5.17. — Let Y\ and T2 be minimal graphs of groups structures for a finitely 
generated group G. If each T; has no redundant vertices, and if they have the same 
conjugacy classes of edge splittings, then Ti and T2 are isomorphic. 

Remark 5.18. — As G is finitely generated, and Ti and T2 are minimal, it follows that 
Ti and T2 are finite. 

Note that this result needs no assumptions on the edge groups involved. 

The following result will be useful when we consider taking regular neighbourhoods 
of increasing finite families of almost invariant subsets of a fixed group. 

Lemma 5.19. — Let G be a finitely generated group with a finite family of finitely 
generated subgroups Hi,..., Hn. For 1 ^ i ^ n, let Xi denote a nontrivial Hi almost 
invariant subset of G, such that the Xi's are in good position. Let En denote the set 
of all translates of the X%'s and their complements, let Pn denote the pretree of all 
CCCJs of En, let Tn denote the associated G-tree and let Tn denote the corresponding 
graph of groups structure for G, so that Tn — G\Tn. 

Let m < n, and let f denote the natural map from Pm to Pn. Let A be a nontrivial 
H-almost invariant subset of G enclosed by a VQ vertex v ofTm. Then A is enclosed 
by the VQ vertex f(v) ofTn. 

Remark 5.20. — The point of this result is that A need not be an element of En. 

Proof. — Lemma 4.14 implies that each edge splitting of Tn has zero intersection 
number with each X%1 1 ̂  i ^ n, and it is trivial that the edge splittings of Tn have 
zero intersection number with each other. Now Theorem 5.16 implies that there is a 
common refinement Tm?n of Tn and Tm obtained by splitting the V\ -vertices of Tm 
using the edge splittings of Tn. (Thus the number of edges of rm?n is the sum of 
the number of edges of Tn and of Trn.) Associated to the construction of rm?n there 
is a natural quotient map pm : Trn^n —> Tm. There is also a natural quotient map 
Pn • Tnhn —> Tn obtained by collapsing those edges of Tm^n which correspond to edges 
of Tm. We choose a basepoint w for Tm?n, and let Pm(w) and pn(uj) be basepoints for 
Trn and Tn respectively. Now we consider the Vb vertex v of Tm. The construction 
of Tmjn means that the pre-image of v is a single vertex u. Further the pre-irnage of 
a small neighbourhood TV of v maps homeomorphically to N. 

Let A be a nontrivial H almost invariant subset of G enclosed by the vertex v 
of Tm. Thus for any edge s of Tm?n incident to u and oriented towards u, if t denotes 
pm(s), then we have A D Z£ or A* fi Zf* is small. As the pre-image in Tm^n of a small 
neighbourhood of v maps homeomorphically to AT, our choice of basepoints implies 
that Zs = Zt, so that we have Ad Z* or 4̂* D Z* is small, i.e. A is enclosed by the 
vertex u of Tm^n. Hence part 5) of Lemma 4.6 shows that An Z* or A* n Z* is small 
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for every edge s of Tm?n which is oriented towards u, whether or not s is incident to u. 
Let r denote an edge of Tn which is incident to pn(u) and oriented towards pn{u). 
The construction of pn implies that there is a unique edge s of Tm?n, which need not 
be incident to u, such that pn(s) = r. The edge s is automatically oriented towards 
u. Our choice of basepoints implies that Zr = Zs, so that we have i n Z * or A* D Z* 
is small, as required. Hence A is enclosed by the vertex pn(u) of Tn. If pn(u) = f(v), 
we have completed the proof of the lemma. 

Now suppose that pn(u) 7^ f(v)i and let U denote an element of Em which belongs 
to the CCC of Ern corresponding to the Vb-vertex v of Tm. Lemma 4.10 tells us that 
U is enclosed by v, so that the above argument shows that U must also be enclosed 
by the vertex pn(u) of Tn. But we know that U is enclosed by the Vb vertex f(v) 
of Tn, as it belongs to the CCC of En associated to f(v). As these vertices of Tn are 
distinct, part 1) of Lemma 4.9 tells us that U is equivalent to Zs or to Z* for each 
edge s on the path joining them. As each element of En is enclosed by some vertex 
of Tn, it follows that no element of En crosses any Zs, so that U must be an isolated 
element of En. Hence U is an isolated element of Em, and so Proposition 5.4 tells us 
that v has valence 2 in Trn. It follows from Corollary 4.16 that A is equivalent to U 
or U*, so that again A is enclosed by the vertex f(v) of Tn, as required. The lemma 
follows. • 

We end this chapter by discussing how to generalise our construction of regular 
neighbourhoods of almost invariant subsets to the case of almost invariant subsets 
over infinitely generated subgroups. We will use the preceding results to show that 
this can be done provided that such sets are associated to splittings. While this may 
seem a little exotic, it is a natural extension once one realises that the edge groups in a 
regular neighbourhood may be infinitely generated even if the given almost invariant 
sets are all over finitely presented groups. (See Example 6.11.) Also very little more 
work is needed. Here is an outline of the theory. 

As always we start with a finitely generated group G, a family {H\}\e\ of sub
groups of G, and for each A G A, a nontrivial H\ almost invariant subset X\ of G. 
We no longer assume that every H\ is finitely generated. Instead we assume that if 
H\ is not finitely generated, then X\ is associated to a splitting of G over H\. Now 
consider the construction in chapter 3. We will proceed exactly as we did there, and 
note the differences. 

First we let E denote the collection of all translates of the X\'s and their comple
ments, and assume that the X\Js are in good position, i.e. that E satisfies Condition 
(*), and that isolated A^'s are not invertible. This allows us to define the partial order 
^ on E exactly as before. For the proof that ^ is a partial order given in Lemma 
B.1.14 does not use the finite generation of the groups involved. As in our discussion 
at the end of chapter 3, E may not be discrete. However, we can still define the set E 
of pairs {A, A*} for X £ E, and can define P to be the collection of all CCC's of E. 
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Further the arguments of chapter 3 still apply, and show that the idea of betweenness 
can be defined on P as before and this makes P into a pretree. Of course, P need not 
be discrete, but if it is, then as before P can be embedded in a G-tree T and G\T is 
a graph of groups structure for G which we denote by 0({ATA}AGA : G ) . If no isolated 
X\ is invertible, then 0 ( { X \ } A G A : G ) is a regular neighbourhood F ( { A A } A G A G ) 

of the X\s. Of course, the Vb vertex groups of this graph need not be finitely gener
ated, but Proposition 5.22 below shows that T ( { X A } A G A : G ) is minimal, and so must 
be a finite graph. In order to prove this we first need the following generalisation of 
Lemma 5.1. 

Lemma 5.21. — Let G denote a finitely generated group with a family of subgroups 
{H\}AGA- For each A G A7 let X\ denote a nontrivial H\-almost invariant subset 
of G. If H\ is not finitely generated, then we assume that X\ is associated to a 
splitting of G over H\. Suppose that the X\'s are in good position and that the 
regular neighbourhood F ( { A A } A G A • G ) can be constructed as in chapter 3. Let T 

denote the bipartite G tree produced in that chapter in order to define this regular 
neighbourhood. 

If v is a VQ vertex of T, and the corresponding C C C of E contains an element U 
of E , then v encloses U. 

Proof. — Lemma 5.1 shows that this result holds if Stab(£7) is finitely generated, so 
it suffices to consider the case when Stab(c7) is not finitely generated. Let s be an 
edge of T which is incident to v and oriented towards v, and consider the proof of 
Lemma 5.1. This proof used the finite generation of the H^s only at the end when it 
used Lemma 2.31 . Thus the proof of Lemma 5.1 shows that, by replacing U by [/* 
if needed, we can arrange that gU^ ^ U, for every g G Z*. Our assumption that 
U is associated to a splitting of G now implies that gU^ C U, for every g G Z*. 
Further our discussion just before Definition 2 .17 shows that we can choose U so that 
U = {g G G : c U}. It follows that Z* <Z U. As the same argument applies to 
every such edge s, it follows that U is enclosed by v as required. • 

Now we can prove the following generalisation of Proposition 5.2. 

Proposition 5.22. — Let G be a finitely generated group with a family of subgroups 
{H\}xe\. For each A G A; let X\ denote a nontrivial H\-almost invariant subset 
of G. If H\ is not finitely generated, then we assume that X\ is associated to a 
splitting of G over H\. Suppose also that the regular neighbourhood T({AA}AGA • G ) 
can be constructed as in chapter 3. Let T denote the universal covering G-tree of this 
regular neighbourhood. Then T is a minimal G tree, so that F ( { A A } A E A ' G ) is also 
minimal. 

Proof. — The proof of Proposition 5.2 uses only Lemmas 5.1 and 4.8 . The second 
lemma applies even if the groups involved are not finitely generated, and Lemma 5.21 
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shows that Lemma 5.1 remains true in this more general context. This completes the 
proof of the proposition. • 

Having dealt with the case when the AA'S are in good position, we say that the 
family {X\}\e\ is in good enough position if whenever we find incomparable elements 
U and V of E which do not cross, there is some element W of E which crosses 
them. As before, the above discussion applies equally well if the AA'S are in good 
enough position. If this condition does not hold, we need to insist that E has only 
finitely many G-orbits which consist of isolated elements. Now we recall the proof 
of Lemma 3.13. This consisted of first replacing each isolated X\ by an equivalent 
almost invariant set Y\ associated to a splitting, and then replacing the Yx's by 
equivalent almost invariant sets Z\ such the collection of translates of the ZA'S and 
their complements is nested. In the present situation some isolated X\ may be over 
an infinitely generated group H\ , but in this case our hypothesis is that AA is already 
associated to a splitting, so we can simply take Y\ to equal AA- For the second stage, 
Theorem 5.16 tells us that we can still find the required sets Z\. Finally the proof 
of Lemma 3.17 still applies. We conclude that if E has only finitely many G-orbits 
which consist of isolated elements, we can arrange that the AA'S are in good enough 
position and then can define the pretree P. Further, if P is discrete, one can construct 
an algebraic regular neighbourhood T ( { A A } A G A ' G) of the AA'S which depends only 
on the equivalence classes of the AA'S, SO long as we are careful about isolated ATA'S. 

Finally, if the given family is finite, say Ai , . . . , Xn, we claim that P is discrete, 
so that r(Ai,..., Xn : G) always exists in this case. By renumbering we can suppose 
that Hi,..., Hk are the only non-finitely generated H^s. Let Ek denote the set 
of all translates of Ai , . . . , A& and their complements, and let F denote the set of 
all translates of Xfc+i,..., Xn and their complements. By replacing ATi,..., Xk by 
equivalent almost invariant sets, as discussed above, we can arrange that Ek is nested. 
As at the end of the proof of Lemma 5.10, any element of Ek lies between two elements 
of F and vice versa. But we already know that Ek and F are each discrete. It follows 
that E itself is discrete, so that P is discrete as required. 

When we consider this more general situation, we will need the following generali
sation of Proposition 5.7. 

Proposition 5.23. — Let G be a finitely generated group with a family of subgroups 
{H\}AGA- For each A E A , let X\ denote a nontrivial H\-almost invariant subset 
of G. If H\ is not finitely generated, then we assume that X\ is associated to a 
splitting of G over H\. Suppose that the regular neighbourhood T({X\}\e^ • G) can 
be constructed as discussed above. Further suppose that the X\ 7s are in good position, 
and that there is more than one CCC, so that the pretree P is not a single point. 
Let T denote the G-tree with V b ( T ) = P. Let X be a nontrivial H-almost invariant 
subset of G which does not cross any element of E. Then the following statements 
hold. 
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(1) If H is finitely generated, then X is enclosed by a V\ -vertex of T. 
(2) If X is a standard H-almost invariant set associated to a splitting of G over 

H, which need not be finitely generated, then X is enclosed by a V\-vertex of T. 

Proof. — Most of the proof of Proposition 5.7 still goes through as it does not depend 
on the H\s being finitely generated. The only place where this is used is in the third 
paragraph of the proof where we show that X must be sandwiched between two 
elements of E in the case when H is finitely generated. (If H is not finitely generated, 
the proof of Proposition 5.7 still applies.) 

In order to complete the proof of Proposition 5.23, we will consider the situation 
where H is finitely generated and Y is an element of E whose stabiliser is not finitely 
generated. We will use much the same argument as in the proof of Proposition 5.7 to 
show that X must be sandwiched between two translates of Y or Y*. 

Suppose that X is not sandwiched between two translates of 7 or 7*. Then, by 
replacing X by X*, if necessary, we have that for every translate U of F or 7*, either 
U < X or U* < X. In particular, by replacing 7 by 7*, if necessary, we can assume 
that Y < X. Thus X* < Y*, so that gX* < gY*, for all g in G. Now we use the 
hypothesis that Y is associated to a splitting of G, so that for every g in G, one of 
the inclusions gY c Y, gY C Y*, gY* C Y, gY* C Y* holds. Suppose that there is 
g in G such that gY* C Y. As gX* < gY*, it follows that gX* < Y. If we write 
k for g~x, this implies that X* < kY. But we know that kY < X or kY* < X. 
The first implies that A* < X which is impossible, and the second implies that X is 
equivalent to kY*, which is impossible as the stabiliser of A is finitely generated, but 
the stabiliser of Y is not. 

If there is no g in G such that gY* C Y, then Lemma 5.5 shows that Y is associated 
to an ascending HNN extension. Let / : G —> Z denote the natural homomorphism 
associated to this HNN extension. As X does not cross Y, it follows, in particular, 
that the image in Z of the coboundary SX of X is bounded above or below. Hence 
the stabiliser of A must be contained in ker(/). It follows that the image of SX in Z 
must be finite. As the image in Z of 5gY is finite for all g in G, there must be an 
element g of G such that A C gY. But we know that gY < X or gY* < X. The first 
implies that X is equivalent to gY, and the second implies that gY* < gY, which 
are both impossible as in the preceding paragraph. This contradiction completes the 
proof that, in all cases, A must be sandwiched between two elements of E. • 
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CHAPTER 6 

ALGEBRAIC REGULAR NEIGHBOURHOODS: 
EXISTENCE AND UNIQUENESS 

In this chapter, we finally give our precise definition of a regular neighbourhood, 
and prove existence and uniqueness results which correspond closely to the situation 
in topology. Then we discuss further generalisations and some applications. The rest 
of this paper uses heavily the existence and uniqueness of regular neighbourhoods. 

In order to motivate our definition, we recall the discussion in the introduction of 
the characteristic submanifold V(M) of a 3 manifold M and the graph of groups de
composition r of G = 7Ti(M), whose underlying graph is dual to the frontier fr(V(M)) 
of V(M). The graph T is naturally bipartite, with VQ vertices corresponding to com
ponents of V(M) and V\ vertices corresponding to components of M — V(M). The 
following two properties of V(M) have algebraic analogues. The first is the Enclos
ing Property, which says that any essential annulus or torus in M is nomotopic into 
V(M). The second is that if F is any embedded essential closed surface in M, not 
necessarily a torus, and if F has intersection number zero with every essential annulus 
and torus in M, then F is homotopic into M — V(M). These conditions are not suffi
cient to characterise V(M) up to isotopy, but they do contain much of the information 
needed for such a characterisation. The algebraic analogue of the Enclosing Property 
is that the almost invariant subsets of G which correspond to essential annuli or tori 
are enclosed by the VQ-vertices of Y. The algebraic analogue of the second property 
is that the splitting associated to F is enclosed by a V\-vertex of T. 

Now let G be a finitely generated group with a family of subgroups {H\}\E\. For 
each A G A, let X\ denote a nontrivial i^A^almost invariant subset of G. Then we 
want our algebraic regular neighbourhood of the X\ ' s in G to be a bipartite graph of 
groups structure T for G such that the Vb-vertices of T enclose the XVs, and splittings 
of G which have intersection number zero with each X\ are enclosed by the V\-vertices 
of T. In the preceding chapters, we discussed how to construct a bipartite graph of 
groups structure F({X\}\E\ : G). In chapter 3, we showed that this construction 
always works if A is finite and each H\ is finitely generated. However Example 6.11 
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will show that the edge groups of r ( A i , . . . , Xn : G) need not be finitely generated 
even if G and each Hi is finitely presented. Thus we need to consider splittings 
over non-finitely generated subgroups of G. This is why we formulate our definitions 
without assuming that the H\'$ are finitely generated, although in most of this paper, 
we will restrict to the case when the H\'s are finitely generated. 

Example 3 .11 shows that if the XA'S are a finite family of compatible splittings 
of G, then our construction of a regular neighbourhood of X yields a bipartite graph 
of groups T whose Vb vertices correspond to the splittings. Further each Vb vertex 
of T is of valence two, and the incident edge groups include by an isomorphism into 
the vertex group. Thus each Vb-vertex is redundant. This motivates part of our 
definition below. 

It will be convenient to say that a vertex v of a graph of groups T is isolated if it 
is redundant and has valence two. Thus v has exactly two incident edges and each 
edge group includes by an isomorphism into the vertex group at v. 

Here is our definition of an algebraic regular neighbourhood of the AA'S in G. 

Definition 6.1. — Let G be a finitely generated group with a family of subgroups 
{H\}\eA- For each A G A, let XA denote a nontrivial H\ -almost invariant subset 
of G. Let E denote the set of all translates of the AA'S and their complements. Then 
an algebraic regular neighbourhood of the X\ 's in G is a bipartite graph of groups 
structure T for G such that the following conditions hold: 

( 1 ) Each X\ is enclosed by some Vb-vertex of T, and each Vo vertex of T encloses 
some X\. 

(2) If a is a splitting of G over a subgroup H (which need not be finitely generated) 
such that a does not cross any H\\X\, then a is enclosed by some V\ vertex of T. 

( 3 ) r is minimal. 
(4) There is a bijection / from the G orbits of isolated elements of E to the isolated 

Vo vertices of T, such that f(X) encloses A. 
(5) Any non-isolated Vb vertex of T encloses some non-isolated element of E. 

Remark 6.2. — As G is finitely generated and T is minimal, T must be finite. Now 
the existence of the bijection of Condition 4) implies that E contains only finitely 
many G-orbits of isolated elements. 

It has been implicit in all our discussion so far that we are considering a non-empty 
family of AA'S. However, this definition makes perfect sense if the family is empty. In 
this case, the fact that each Vb vertex of T encloses some AA implies that T has no 
Vb-vertices, so that T must consist of a single V\-vertex labelled G. Clearly such a 
graph of groups structure for G does satisfy all the above conditions, so that we have 
the existence and uniqueness of algebraic regular neighbourhoods in this case. 

Before we prove our existence and uniqueness results, we discuss the motivation 
behind this definition. 
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Conditions 1) and 2) are expected from our previous discussions. Condition 3) is 
clearly necessary in order to be able to prove any uniqueness result. Conditions 4) 
and 5) only come into play when there are isolated X\'s. 

Consider a finite family of immersed circles C\ in a surface M, and consider the 
problem of characterising their regular neighbourhood N. Condition 1) above is 
analogous to asserting that each C\ is homotopic into N', and that for each component 
of TV, some C\ is homotopic into it. Condition 2) is analogous to asserting that any 
simple curve on M which has intersection number zero with each C\ is homotopic 
into M — N. If we assume that the CA'S are 7Ti-injective in M , and also assume that 
each component of dN is 7Ti-injective in M, then these conditions characterise TV, 
unless some C\ is homotopic to an embedding disjoint from all the other CA'S. In this 
case, N clearly has some annulus components, and the two conditions above do not 
completely determine TV, because they do not control the number of such components. 
First, one can always add annulus components to TV parallel to other such components 
without affecting the above two conditions. Second if there are two CA'S which are 
simple and disjoint from each other and from all other CA'S, SO that N has two parallel 
annulus components, the subsurface of M obtained from N by simply deleting one of 
these annulus components will still satisfy the above two conditions. Condition 4) is 
to deal with this problem of non-uniqueness. 

If we consider the case when the CA'S are arcs, there is a more subtle problem. 
Suppose that we have three disjoint simple arcs Ci, C2 and C3 in M, such that a 
component of M cut along the C '̂s is a disc D with copies of Ci, C2 and C3 in its 
boundary. Let TV denote a regular neighbourhood of the C '̂s. If we enlarge TV by 
adding a disjoint copy of D, the new submanifold still satisfies the two conditions 
above which correspond to conditions 1) and 2) of our definition of an algebraic 
regular neighbourhood. Condition 5) deals with this problem of non-uniqueness. 
This example has nothing to do with the triviality of the groups involved. Taking 
the product of this example with the circle S1 yields three annuli d x S1 in the 
3-manifold M x S1, and we can enlarge a regular neighbourhood of these three annuli 
by adding the solid torus D x S1. This example is related to some subtleties in the 
topological JSJ-decomposition of a Haken 3-manifold. 

An immediate consequence of condition 4) is that if one considers a single if-almost 
invariant set X which is associated to a splitting, then its regular neighbourhood has 
one Vo-vertex which must be isolated. This is what we wanted to happen, but the 
point we are making here is that this fact is really built into the definition and does 
not follow from any theory. 

Next we note the following result which is an immediate consequence of our defi
nition of a regular neighbourhood and the fact that if a vertex of a G tree encloses a 
nontrivial almost invariant subset X of C, it also encloses any almost invariant subset 
Y of G which is equivalent to A. 
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Lemma 6.3. — Let G be a finitely generated group with a family of subgroups 
{H\}\e\. For each A G A, let X\ denote a nontrivial H\ almost invariant subset 
of G7 and let W\ be a nontrivial K\-almost invariant subset of G which is equivalent 
to X\. Assume further, that the correspondence between the isolated X\7s and the 
isolated W\ 7s induces a bijection between the G- orbits of isolated X\ ;s and the 
G-orbits of isolated W\ \s. Then a bipartite graph of groups structure T for G is a 
regular neighbourhood of the X\ ?s if and only if it is a regular neighbourhood of the 
Wx's. 

Proof. — Checking the first three conditions of Definition 6.1 is trivial, as is check
ing condition 5). The technical hypothesis of the lemma about isolated elements is 
required in order to check condition 4). • 

One more definition will be very useful later in this paper. The above lemma shows 
that a regular neighbourhood is essentially determined by a collection of equivalence 
classes of almost invariant subsets of G. Thus it will be convenient to define a regular 
neighbourhood of a family of such equivalence classes. 

Definition 6.4. — Let G be a finitely generated group with a family T of equivalence 
classes of nontrivial almost invariant subsets. Then an algebraic regular neighbourhood 
of T in G is an algebraic regular neighbourhood of a family of almost invariant subsets 
of G obtained by picking a representative of each equivalence class in T, subject to 
the condition that if A and B are elements of T such that B — gA, for some g in G, 
then the representatives X and Y chosen for A and B must satisfy Y = gX. 

Remark 6.5. — The reason for requiring equivariance in the choice of representatives is 
to ensure that each equivalence class in T has a unique representative. This condition 
is not needed unless T has isolated elements. 

Let F denote the collection of all the almost invariant subsets of G which represent 
elements of T, and let T denote an algebraic regular neighbourhood of T in G. If 
no element of F is isolated, then T is also an algebraic regular neighbourhood of the 
collection F. However, if some element X of F is isolated, then the collection F does 
not have a regular neighbourhood. This is because it contains all the almost invariant 
subsets of G which are equivalent to X , and there are clearly infinitely many distinct 
such sets. 

Now we are ready to prove existence and uniqueness results for algebraic regular 
neighbourhoods. For our existence result, we need to restrict to finite families of 
almost invariant subsets of G, but our uniqueness result does not need this restriction. 

Theorem 6.6 (Existence of algebraic regular neighbourhoods) 
Let G be a finitely generated group, and for each 1 ^ i ^ n, let Hl be a subgroup 

of G, and let Xi be a nontrivial Hl almost invariant subset of G. If Hl is not finitely 
generated, then we assume that Xt is associated to a splitting of G over Hx. 

Then there exists an alqebraic regular neighbourhood of the X%'s in G. 
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Proof. — Recall that we constructed T ( X i , . . . , Xn : G) in chapter 3 in the case when 
every Hi is finitely generated, and constructed it at the end of the previous chapter 
in the general case. 

We start by considering the case when the XV s are in good position and no isolated 
Xi is invertible. 

We will write T for r(Xi , . . . ,Xn : G). Proposition 5.4 shows that V satisfies 
conditions 4) and 5) of Definition 6.1, as the Vb-vertices of T are precisely the CCC's 
of E. Note that Proposition 5.4 applies even when some H^s are not finitely generated. 

Suppose that each Hi is finitely generated. We showed in Lemma 5.1 that T 
satisfies condition 1). We showed in Proposition 5.7 that T satisfies condition 2), and 
we showed in Lemma 5.2 that T is a minimal G-tree so that T satisfies condition 3). 
Thus T ( X i , . . . , Xn : G) is an algebraic regular neighbourhood of the X^'s in G. Note 
that in Proposition 5.7 we proved a result which is stronger than condition 2) in the 
case when H is finitely generated, as it applies to i^-almost invariant subsets of G 
which need not be associated to splittings. 

Now suppose that some H% is not finitely generated. Lemma 5.21 shows that T 
satisfies condition 1), Proposition 5.23 shows that T satisfies condition 2), and Lemma 
5.22 tells us that T is a minimal G-tree, so that T satisfies condition 3). It follows 
that T is an algebraic regular neighbourhood of the X^'s in G. 

If the XV s are in good enough position, the same arguments apply. If the XV s are 
not in good enough position or some isolated X% is invertible, we proceed as in case 
3) of Summary 3.16. First we can replace the XV s by a subfamily such that distinct 
XV s lie in distinct G-orbits. A bipartite graph of groups structure for G is a regular 
neighbourhood of the original family if and only if it is a regular neighbourhood of 
the subfamily. Renumber the XV s so that only X\,..., Xk are isolated. Recall from 
Lemma 3.13 that each isolated Xi is equivalent to an almost invariant set Zi which 
is not invertible such that the family Z\,..., Xk+i, • • •, Xn is in good position. 
Suppose that we are in case 3a), so that if i and j are distinct and Xi and Xj are 
isolated, then no translate of Xj is equivalent to Xi or X*. Then as discussed in 
Lemma 3.14, we define T(XU ..., Xn : G) to be T(ZU... . . . , Xn : G). As 
we have just shown that T(Zi , . . . , Zk, Xk+i, • •., Xn : G) is a regular neighbourhood 
of the family Z\,..., Z^, Xk+i, • • •, Xni Lemma 6.3 shows that T(X\,..., Xn : G) is 
a regular neighbourhood of the family X i , . . . , X n , as required. If we are in case 
3b), we replace the X^s by a subfamily X i , . . . , X m which satisfies the condition 
of case 3a). Thus T ( X i , . . . , Xm : G) is a regular neighbourhood of Xi,..., Xm. 
We construct . . . , Xn : G) by subdividing certain edges of T ( X i , . . . , Xm : G) 
which are incident to Vo-vertices arising from isolated X^s. It now follows easily 
that r(Xi,. . . ,An : G) is a regular neighbourhood of the family X i , . . . , X n , as 
required. • 
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Theorem 6.7 (Uniqueness of algebraic regular neighbourhoods) 
Let G be a finitely generated group with a family of subgroups {H\}\e\. For each 

A G A , let X\ denote a nontrivial H\-almost invariant subset of G. IfT\ and Y2 are 
algebraic regular neighbourhoods of the X\ 7s in G, then they are naturally isomorphic, 
preserving their bipartite structures. 

Remark 6.8. — If A is finite, then the construction of chapter 3 yields a regular neigh
bourhood F({AA}AGA • G). It follows that all regular neighbourhoods of the X\ 's 
in G are isomorphic to F({AA}AGA ' G). However it seems conceivable that, when A 
is infinite, the X\s could be in good position and possess a regular neighbourhood, 
but that the construction of chapter 3 does not yield a regular neighbourhood because 
the pretree P is not discrete. 

Proof. — Let Y denote any algebraic regular neighbourhood of the X\s in G, let T 
denote the universal covering G-tree of T, and let E denote the set of all translates 
of the X\s and their complements. Recall from Remark 6.2 that the existence of T 
implies that E contains only finitely many G-orbits of isolated elements. Now Lemma 
6.3 implies that we will lose nothing by assuming that the XA's are in good enough 
position. We need to prove some general facts. 

Suppose that an element U of E is enclosed by distinct vertices v\ and v2 of T. 
Part 1 ) of Lemma 4.9 tells us that U is equivalent to Zs or to Z* for each edge s on 
the path joining v\ and v2. As each element of E is enclosed by some vertex of T, no 
element of E crosses any Zs. Hence U must be an isolated element of E. It follows 
that if U is a non-isolated element of E, then it is enclosed by a unique vertex of T. 
Next suppose that U\ and U2 are elements of E which are enclosed by distinct vertices 
v\ and v2 of T. Then U\ and U2 do not cross, as Zs lies between JJ\ and U2, for any 
edge s of T between v\ and v2. It follows that if U is a non-isolated element of E, 
then U is enclosed by a unique vertex v of T, and any element of E which lies in the 
CCC containing U must also be enclosed by v. 

Now let Ti and T2 denote two algebraic regular neighbourhoods of the XA'S in G. 
We will first suppose that Ti and T2 do not have any redundant vertices. As Ti and 
T2 are minimal, this is equivalent to assuming that they have no isolated vertices. 
Hence condition 4) implies that no X\ is isolated. Now it also follows that each 
X\ is enclosed by a unique vertex in each graph of groups. We will show that Y\ 
and T2 have the same conjugacy classes of edge splittings, which will then imply 
that they are isomorphic by Theorem 5.17 as required. Note that Vb-vertices of Y\ 
must correspond to Vb-vertices of T2 under this isomorphism because the Vb-vertices 
enclose the X\s and the V\-vertices do not. Thus the isomorphism of Y\ and T2 
automatically preserves their bipartite structure. 

Let a be an edge splitting of T2 over a subgroup H of G. (Recall that o is defined 
by collapsing T2 with the interior of an edge removed.) If X is a //-almost invariant 
subset of G associated to cr, then X does not cross any translate of any X\. Thus 

ASTERISQUE 289 



CHAPTER 6. EXISTENCE AND UNIQUENESS 91 

condition 2) for Ti implies that X is enclosed by some Vi-vertex of IV Now Lemma 
5.10 shows that we can refine the graph of groups Ti by splitting at this V\-vertex 
using the edge splitting a. If the new graph of groups has a redundant vertex, this can 
only be because Y\ already had an edge splitting conjugate to a. Now let I V denote 
the graph of groups structure for G obtained from Ti by splitting at Vi-vertices using 
those edge splittings of I^ which are not conjugate to any edge splitting of IV (Note 
that Theorem 5.16 shows that we can form I V . ) Thus I V has no redundant vertices. 
Similarly let I V be obtained from I^ by splitting at Vi-vertices using those edge 
splittings of Ti which are not conjugate to any edge splitting of IV so that I V also 
has no redundant vertices. As I V and I V have exactly the same conjugacy classes 
of edge splittings, Theorem 5.16 tells us that they are isomorphic. Now consider the 
universal covering G-trees TV and T V Although TV and TV are not bipartite, they 
still have the property that each element of E is enclosed by some vertex. Further, as 
each element of E is non-isolated, there is a unique vertex of TV which encloses every 
element U of E which lies in a given CCC of E, and there is a unique vertex of T21 
with the same property. Thus the G-isomorphism between TV and TV preserves these 
vertices. For each such vertex, consider the edge splittings associated to the incident 
edges. In one case they are all edge splittings of IV and in the other case they are all 
edge splittings of IV The G-isomorphism between the trees now implies that each 
edge splitting of T\ is conjugate to some edge splitting of IV and conversely. Thus 
Ti and T2 have the same conjugacy classes of edge splittings, as required. 

Now consider the case when T\ and T2 may have isolated vertices. Note that 
even if there are no isolated AVs, it is possible for a V\-vertex to be isolated. Now 
condition 5) tells us that a non-isolated Vb-vertex must enclose a non-isolated element 
of E, and hence is the unique vertex which encloses this element of E. We want to 
apply the construction of the previous paragraph but first we need to remove all the 
isolated vertices of Ti and IV by amalgamating suitable segments to a single edge. 
The resulting graphs of groups T[ and T'2 are no longer bipartite. But the non-isolated 
Vb-vertices do not get altered. The argument of the previous paragraph applies to 
show that T^ and T2 are isomorphic. Now Ti and T2 are obtained from this common 
graph of groups structure by subdividing some edges, and condition 4) implies that 
the same edges get subdivided the same number of times, so that T\ and T2 must be 
isomorphic. As before, this isomorphism must preserve the non-isolated Vb-vertices 
of Ti and IV so it follows that the isomorphism must preserve the bipartite structure, 
except possibly when every Vo-vertex of T\ and of T2 is isolated. Now an isomorphism 
between T\ and T2 which does not preserve the bipartite structure must reverse it, i.e. 
the Vb-vertices of one must correspond to the V\-vertices of the other. We conclude 
that the isomorphism must preserve the bipartite structure, except possibly when 
every vertex is isolated. In this case, Ti and T2 will each be a circle, and it is trivial 
to change the isomorphism to one which does preserve the bipartite structure. • 
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Now we can use our results about regular neighbourhoods to give the result 
promised in chapter 2, that nontrivial almost invariant subsets of a group with 
infinitely many ends are never 0 canonical. Note that regular neighbourhoods are 
not essential for this argument. They are simply convenient. 

Lemma 6.9. — Let G be a finitely generated group with infinitely many ends. If X is 
any nontrivial H-almost invariant subset of G, where H is finitely generated, or if X 
is associated to a splitting of G over H, then X is not 0 canonical. 

Proof. — As G has infinitely many ends, it admits a splitting a over a finite subgroup 
K. Let Y denote a standard if-almost invariant set associated to a. Suppose that 
X is O-canonical. In particular, X has zero intersection number with Y. Now we 
consider the regular neighbourhood T(X,Y : G), and its universal covering G-tree 
T. As a is a splitting and has intersection number zero with X , it follows that Y is 
isolated and so there is a corresponding isolated Vb-vertex of T. In particular, the 
edges of T adjacent to this vertex also have finite stabiliser. Let v be a Vb vertex of T 
which encloses X, and pick edges s and t of T with finite stabiliser such that one lies 
in Tiv(X) and the other lies in T,V(X*). Choose s and t to be oriented away from v. 
Then X crosses Zs U Ztl showing that X is not 0 canonical, as claimed. • 

We can also give our example, promised in Remark 3.9, of a finitely presented group 
G which splits over finitely presented subgroups H and K, such that the algebraic 
regular neighbourhood V of these splittings has some edge and vertex groups which 
are not finitely generated. We start with a general construction. 

Example 6.10. — This construction will give many examples of a group G which has 
two splittings with intersection number 1, and also yields the regular neighbourhood 
of these two splittings. Our construction is based on the following topological pic
ture. Consider two arcs I and m embedded properly in a surface M so that each arc 
separates M and the two arcs meet transversely in a single point w. Thus a regular 
neighbourhood N of the union of the two arcs has four frontier arcs and M — N has 
four components. Let V denote the graph of groups structure for G determined by 
the frontier fr(A/") of N. Thus T is a tree which has a single vertex VQ corresponding 
to N, has four edges corresponding to the components of fr(iV) and four other vertices 
corresponding to the components of M — N. The vertex vo and the four edges all 
carry the trivial group. We will use this simple picture to guide us in constructing a 
group G which corresponds to ir\{M) and possesses splittings over subgroups H and 
K which correspond to the arcs / and m. The group H H K will correspond to the 
point w. Finally the regular neighbourhood of the two splittings will be a graph of 
the same combinatorial type as T, with a single Vb-vertex corresponding to v$. 

To understand our idea, consider constructing M by starting with a point w, adding 
the four halves of I and m to obtain I Urn, then constructing TV, and finally adding in 
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the four remaining pieces of M. We will follow a similar procedure, but we will use 
spaces with nontrivial fundamental groups. 

Start with a group G and groups A, D and E which each contain G as a proper 
subgroup. We will assume that the intersection of any two of these groups is G. Let 
H — A*c B and let K — D *c E. Think of G as corresponding to the point u>, the 
groups A and B as corresponding to the two halves of /, and the groups D and E as 
corresponding to the two halves of m. Thus H corresponds to / and K corresponds 
to m. Let LQ denote H*cK, which corresponds to TTI(N). NOW the four components 
of fr(N) naturally have corresponding groups which are A *c D, D *c B, B *c E 
and E *c A, each of which is a subgroup of LQ. Denote these by Li, L2, L3 and L4 
respectively. For i — 1, 2, 3, 4, pick a group G; which properly contains Z ,̂ and think 
of the Gi's as corresponding to the components of M — N. Now we define the group 
G to be the fundamental group of the graph of groups T which is a tree with a vertex 

with associated group Lo, with four edges attached to VQ which carry the Z^'s, 
and with the four other vertices carrying the G '̂s. Let Vi denote the vertex which 
carries G;. 

To understand this construction topologically, one needs to build a space with 
fundamental group G which mimics the structure of our initial example M. We pick 
spaces MA, M B , MC, ME>, and ME with fundamental groups A, B, G, D and E 
respectively, such that each space contains Mc and the intersection of any two equals 
Mc- Let Z denote the union of these spaces, so that 7Ti(Z) = Lo- Then for each 
i ^ 1, we choose a space Mi with fundamental group Z^, take its product with the 
unit interval and glue one end to Z using the inclusion of L{ into ZQ. Finally, for each 
Gi, we choose a space with fundamental group Gi and glue the other end of Mi x I to 
it using the inclusion of Li in Gi. The resulting space M has fundamental group G. 
Further, its structure clearly yields splittings a and r over H and K respectively. For 
a is the splitting of G obtained by "cutting along" MA U M B , and r is the splitting 
of G obtained by "cutting along" Mo U ME- Consider the pre-image Z of Z in 
the universal cover M of M. If G is finitely generated, then it is easy to see that 
the pretree constructed combinatorially in chapter 3 is the same as the pretree of 
components of Z. (The main point to notice is that the stabiliser of a component 
of Z equals L0, which also equals the stabiliser of the corresponding CCC. Thus Z is 
in 'good position'.) It follows that a and r have intersection number 1, and that T is 
their regular neighbourhood in G. 

By making interesting choices of the groups involved in the above construction, one 
can give many interesting examples. Here is an important example which explains 
why we have spent so much time considering splittings over non-finitely generated 
subgroups. 

Example 6.11. — We give here an example of a finitely presented group G which 
splits over finitely presented subgroups H and K, such that the algebraic regular 
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neighbourhood T of these splittings has an edge group and a vertex group which is 
not finitely generated. We do this by making choices of the groups involved in the 
construction of Example 6.10. The edge group L\ and the vertex group G\ of the 
regular neighbourhood are not finitely generated. 

In Example 6.10, choose C = F ^ , the free group of count ably infinite rank, choose 
B and E to be F2l the free group of rank 2, and choose A and D to be F2 * C. The 
inclusions of C in A and D are the obvious ones. The inclusions of C in B and E 
can be chosen in any reasonable way. A good example would be to map the i the 
basis element of C to u~lvul, where u and v are the basis elements of F2. Thus 
H = A*c B and K = D * c E are each isomorphic to (F2 * C) * c F2 which is simply 
F4 , the free group of rank 4. In order to complete the construction of the group 
G, we need to choose the groups Gl. Recall that the groups Li, L2l L3 and L4 are 
respectively isomorphic to A*c D, D * c B, B * c E and E * c A. This means that L\ 
is not finitely generated, though the remaining Lz's are finitely generated. Further, 
L2 and L4 are each isomorphic to F4. The group L3 = B *c E = F2 *c F2 is finitely 
generated but is not finitely presented. It is trivial to choose finitely presented groups 
G2 and G4 which properly contain L2 and L4 respectively. We can use Higman's 
Embedding Theorem [23] to find a finitely presented group G3 which contains L3 . 
Finally, we choose G\ to be any group of the form P *Q L I , where Q is finitely 
generated and P is finitely presented. Now we claim that G is finitely presented. To 
see this, we build up G in stages. Recall that, by construction, each of G2, G3 and 
G4 is finitely presented. Thus the group G2 G3 is finitely presented. Hence the 
group (G2 *s G3) G4 is finitely presented. Denote this last group by G5. Then 
G = Gi *LX G5 = (P *Q Li) * L i G5 = P *Q G5, which is finitely presented because P 
and G5 are finitely presented and Q is finitely generated. 

Remark 6.12. — In the above example, the group G has subgroups which are finitely 
generated but not finitely presented. This raises the question of whether examples 
such as the above can exist for a group G which is coherent, i.e. finitely generated 
subgroups are finitely presented. We have no ideas about how to answer this question. 

We next consider an application which strengthens a result of Niblo in [35] on the 
existence of splittings of a given group. Let H be a finitely generated subgroup of a 
finitely generated group G, let X be a nontrivial iT-almost invariant subset of G, and 
consider the regular neighbourhood T(X : G). Recall that Proposition 5.2 implies 
that T(X : G) is minimal. It follows that unless it consists of a single vertex, then any 
edge will yield a splitting of G. We define the subgroup S(X) of G, to be the stabiliser 
of the CCC of E which contains X in the construction of T(X : G), so that S(X) is 
the vertex group for the corresponding Vb-vertex oiT(X : G). Thus we immediately 
deduce the following result. 
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Corollary 6.13. — Let G be a finitely generated group with finitely generated subgroup 
H, and let X be a nontrivial H-almost invariant subset of G. If S(X) is not equal 
to G, then G splits over a subgroup of S(X). 

Remark 6.14. — As S(X) was defined in terms of the regular neighbourhood T(X: G), 
Lemma 6.3 implies that if X and Y are equivalent, then S(X) = S(Y). 

In order to understand the implication of this, we need to consider the group S(X) 
more carefully. Let v denote the Vb-vertex of T which corresponds to the CCC of E 
which contains X. If X is not isolated in the set E of all translates of X and X*, then 
the argument at the end of the proof of Theorem 3.8 shows that S(X) is generated 
by H and {g G G : gX crosses X}. In [35], Niblo defined a group T(X) which is the 
subgroup of G generated by H and {g G G : gX and X are not nested}. He proved 
that if T{X) 7^ G, then G splits over a subgroup of T(X). Clearly S(X) is a subgroup 
of T(X) in this case, so our result implies his when X is not isolated. If X is isolated, 
then Theorem B.2.8 implies that G splits over a subgroup commensurable with H. 

An interesting related result due to Dunwoody and Roller [13] is that if S(X) is 
contained in Commc(7J), then G splits over a subgroup commensurable with H even 
if G = CommG(i7). 

The above Corollary was proved by considering the regular neighbourhood F(X:G) 
and using the fact that S(X) is a vertex group. If K is another finitely generated 
subgroup of G, and Y is a nontrivial K almost invariant subset of G such that H\X 
and K\Y have intersection number zero, then considering the regular neighbourhood 
r (X, Y : G) yields the following result, which strengthens another result of Niblo in 
[35]. 

Corollary 6.15. — Let G be a finitely generated group with finitely generated subgroups 
H and K. If G has a nontrivial H-almost invariant subset X and a nontrivial K-
almost invariant subset Y such that H\X and K\Y have intersection number zero, 
then G has a minimal graph of groups decomposition with at least two edges, in which 
two of the edge groups are a subgroup of S(X) and a subgroup of S(Y). 

Now we can use this corollary to give another generalisation of Theorem 2.35. In 
that result, we showed that if G is a finitely generated group with splittings a and 
r over finitely generated subgroups H and K of G such that a and r have zero 
intersection number, then a and r are compatible. In Theorem 5.16 of this paper, 
we generalised Theorem 2.35 to the case of splittings over subgroups H and K which 
need not be finitely generated. A natural question is whether an analogous result 
holds for almost invariant sets which are not associated to splittings. 

An equivalent formulation of Theorem 2.35 is that if X is a //"-almost invariant 
subset of G and Y is a X-almost invariant subset of G such that each is associated 
to a splitting of G and H\X and K\Y have intersection number zero, then X and Y 
are equivalent to subsets X' and Y' of G such that the set E of all translates of X' 
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and Y' is nested. We will prove the following result which is the natural analogue 
when X and Y are not associated to splittings. 

Lemma 6.16. — Let G be a finitely generated group with finitely generated subgroups i f 
and K. Let X be a nontrivial H-almost invariant subset of G and let Y be a nontrivial 
K-almost invariant subset of G such that H\X and K\Y have intersection number 
zero. Then X and Y are equivalent to subsets X' and Y' of G such that any translate 
of X' and any translate of Y' are nested. 

Remark 6.17. — We now have two generalisations of Theorem 2.35, one of which al
lows splittings over non-finitely generated subgroups and the other replaces splittings 
over finitely generated subgroups i f and K by almost invariant subsets over i f and 
K. It seems natural to ask if there is a common generalisation for arbitrary non-
trivial almost invariant sets over arbitrary subgroups of G. We have no methods for 
answering such a question but we think that such a generalisation is unlikely. 

Proof. — Let Y denote T(X,Y : G), as constructed in chapter 3. Then T has two 
Vb vertices, one of which encloses X and the other encloses Y. Now, Lemma 4.14 
shows that X and Y are equivalent to subsets X' and Y' of G such that X' is nested 
with respect to all the Zs and Z* and so is Y'. In particular, the claim follows. • 

The theory of algebraic regular neighbourhoods is analogous to the theory of topo
logical regular neighbourhoods, but there are situations where a slight modification 
of the algebraic theory seems useful. We start by discussing the topological analogue 
again. If we have two disjoint simple closed curves on an orient able surface M, their 
regular neighbourhood consists of two disjoint annuli. In the algebraic context, if one 
has two if-almost invariant subsets X\ and X2 of G each associated to the same split
ting but lying in distinct G-orbits, their algebraic regular neighbourhood will have 
two isolated Vb-vertices. On some occasions, we would prefer to ignore this multiplic
ity and have the algebraic regular neighbourhood of X\ and X2 be the same as the 
regular neighbourhood of X\ on its own. Another point arises even when there is no 
problem of multiplicity. Let M be a surface and X be a subsurface whose boundary 
consists of essential circles in M. We can regard X as a kind of regular neighbourhood 
of all the essential loops in X and this corresponds closely to our theory of algebraic 
regular neighbourhoods. However, the family of all essential loops in M which can be 
homotoped into X contains in addition the boundary components of X, and so our 
topological regular neighbourhood of this larger family will consist of X and of dis
joint annuli parallel to the boundary components of X. A similar phenomenon occurs 
in the algebraic context. Suppose one has a family T of nontrivial almost invariant 
subsets X\ of G whose regular neighbourhood T has a single Vb-vertex v. Let T' be 
obtained from T by adding almost invariant subsets of G associated to the splittings 
determined by the edges of T incident to v. Then every element of T' is enclosed 
by v, but the regular neighbourhood of T' will have a Vb-vertex corresponding to v 
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and isolated Vb-vertices one for each of the extra almost invariant sets. On some 
occasions, we would prefer not to have these extra isolated Vb-vertices. 

The above discussion motivates the idea of a reduced regular neighbourhood. We 
will first describe how to obtain such an object from an ordinary regular neighbour
hood, and will then give an abstract characterisation and a more direct construction. 
Let T be a regular neighbourhood of some family of nontrivial almost invariant sub
sets of a group G. Suppose that Y has a subgraph consisting of two edges e and e' 
such that e f l e' is a V\-vertex w and the other vertices of e and of e' are v and v' 
respectively, where v ^ v'. Suppose further that v' and w are isolated. Thus v' and w 
each has valence 2, and if e" denotes the other edge incident to v1', then the splittings 
associated to e, e' and e" are all conjugate. Then we "reduce" Y by collapsing eUe' 
to a single point which will be a Vb-vertex in the new graph Y\. This new graph still 
has fundamental group G, and is still bipartite. Repeating this procedure will even
tually yield a bipartite graph of groups structure Y' for G without such subgraphs. 
We will say that Y' is reduced bipartite. This is the reduced regular neighbourhood 
associated to the original regular neighbourhood Y. Note that we can obtain Y from 
Y' by simply subdividing certain edges, which shows that V is independent of the 
order in which reductions are made. One can give an abstract definition of a reduced 
regular neighbourhood as follows. Note that this definition is identical to that for an 
ordinary regular neighbourhood except that condition 4) of Definition 6.1 has been 
removed, and the fact that Y is reduced bipartite has been added to condition 3 ) . 

Definition 6.18. — Let G be a finitely generated group with a family of subgroups 
{H\}\EA. For each A £ A, let X\ denote a nontrivial H\-almost invariant subset 
of G. Let E denote the set of all translates of the X\s and their complements. Then 
a reduced algebraic regular neighbourhood of the X\ 's in G is a bipartite graph of 
groups structure Y for G such that the following conditions hold: 

(1) Each X\ is enclosed by some Vb-vertex of T, and each Vb-vertex of Y encloses 
some X\. 

(2) If a is a splitting of G over a subgroup H (which need not be finitely generated) 
such that a does not cross any element of E, then a is enclosed by some Vi-vertex 
of r. 

(3) T is minimal and reduced bipartite. 
(4) Any non-isolated Vb vertex of Y encloses some non-isolated element of E. 

The construction which preceded this definition shows that if the X\s possess an 
ordinary regular neighbourhood T, then they also possess a reduced one Yf. Con
versely, if the X\s possess a reduced regular neighbourhood and if there are only 
finitely many G-orbits of isolated elements, then they also possess an unreduced reg
ular neighbourhood Y which can be constructed from Y' by subdividing appropriate 
edges to add isolated Vb-vertices. However, we will be interested in families of almost 
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invariant sets which contain infinitely many G-orbits of isolated elements, and such 
a family cannot have an unreduced regular neighbourhood. Thus it will be useful to 
have a direct approach to the construction of a reduced regular neighbourhood. 

As usual, we let G be a finitely generated group with a family T of subgroups 
{H\}\e\- For each A G A, let X\ denote a nontrivial i^A^almost invariant subset 
of G, and let E denote the set of all translates of the X\s and their complements. 
We will replace T by a subfamily T' so that the usual regular neighbourhood of T' 
will be a reduced regular neighbourhood of T. Recall from the discussion immediately 
before Lemma 3.14 that if Xi and Xj are isolated elements of E and some translate 
of Xj is equivalent to Xi or X*, we say that the G-orbits of Xi and Xj are parallel. 
The first step in defining T' is to consider the parallelism classes of isolated X\ ' s . 
For each such class, we simply remove all but one of the X\s in it to obtain a new 
family T". If this family has a (unreduced) regular neighbourhood V", it will not 
have distinct isolated Vb vertices which enclose the same splitting, but it is possible 
that there is an isolated Vb-vertex v such that the splitting a of G enclosed by v is 
also enclosed by some other (non-isolated) Vb-vertex. If this happens, we alter T" by 
removing the X\ associated to a. Repeating this process will produce a subset T' of T 
such that the regular neighbourhood of T' is also a reduced regular neighbourhood. 

One consequence of the preceding discussion is that any reduced regular neighbour
hood is an unreduced regular neighbourhood of a suitable family of almost invariant 
sets. Thus we obtain the following existence and uniqueness results as immediate 
consequences of the existence and uniqueness results for unreduced regular neigh
bourhoods. 

Theorem 6.19 (Existence of reduced algebraic regular neighbourhoods) 
Let G be a finitely generated group, and for each 1 ^ i ^ n, let Hi be a subgroup 

of G, and let Xi be a nontrivial Hi-almost invariant subset of G. If Hi is not finitely 
generated, then we assume that Xi is associated to a splitting of G over Hi. 

Then there exists a reduced algebraic regular neighbourhood of the Xi's in G. 

Theorem 6.20 (Uniqueness of reduced algebraic regular neighbourhoods) 
Let G be a finitely generated group with a family of subgroups {H\}xeA- For each 

A G A, let X\ denote a nontrivial H\-almost invariant subset of G. IfT\ and T2 are 
reduced algebraic regular neighbourhoods of the X\ Js in G, then they are naturally 
isomorphic, preserving their bipartite structures. 
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CHAPTER 7 

COENDS WHEN THE COMMENSURISER IS SMALL 

The rest of this paper consists of understanding regular neighbourhoods of certain 
families of almost invariant subsets of a group and showing that in several interesting 
cases, certain infinite families of such subsets possess a regular neighbourhood. For 
the results about infinite families of almost invariant subsets, we will need to assume 
that G is finitely presented, but most of our results about finite families work without 
this additional restriction. 

We will be interested in a one-ended, finitely generated group G and nontrivial 
almost invariant subsets of G which are over virtually polycyclic (VPC) subgroups. In 
this and the following three chapters, we will mainly be interested in the case of VPC1 
subgroups. However many of our results are valid for VPC subgroups of length n > 1 
assuming that G has no nontrivial almost invariant subsets over VPC subgroups of 
length < n, and in this chapter we will prove several technical results in that generality 
for later use. Any VPC1 group is virtually infinite cyclic, or equivalently two-ended, 
and we will use the phrase two-ended in what follows. In chapter 10, we will show 
that if G is finitely presented, there is a regular neighbourhood of all the equivalence 
classes of nontrivial almost invariant subsets of G over two-ended subgroups. It turns 
out that if H is a two-ended subgroup of G such that there is a nontrivial almost 
invariant subset over i7, then the commensuriser of H in G plays an important role. 
We will analyse the role of the commensuriser in this and the next chapter. First we 
define it. 

Definition 7.1. — The commensuriser Commc^iJ) of a subgroup H of a group G 
consists of those elements g in G such that H and H9 are commensurable. 

It is easy to see that Commc7(iir) is a subgroup of G which contains H. 
We will say that a subgroup H of G has small commensuriser in G if Coming 

contains H with finite index. In this chapter we will consider a one-ended finitely 
generated group G and nontrivial almost invariant subsets over two-ended subgroups. 
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To study these, we need Bowditch's results from [8] as well as a non-standard acces
sibility result. We start by quoting a result in [8], but reformulated in the language 
of almost invariant sets (see [43] for a similar result for hyperbolic groups). 

Proposition 7.2. — Let G be a one-ended finitely generated group, and let X and Y 
be nontrivial almost invariant subsets over two-ended subgroups H and K. If X 
crosses Y strongly, then Y crosses X strongly and the number of coends of both H 
and K is two. 

We will prove a more general result in chapter 13. The following result tells us 
what happens when X and Y cross weakly. 

Proposition 7.3. — Let G be a one-ended finitely generated group, and let X and Y 
be nontrivial almost invariant subsets over two-ended subgroups H and K. If X 
crosses Y weakly, then H and K are commensurable. 

Proof. — As H and K are virtually infinite cyclic, either they are commensurable or 
H D K is finite. We will suppose that H f l K is finite and derive a contradiction. 

By Proposition 7.2, as X crosses Y weakly, we know that Y crosses X weakly. 
Thus one of SY n X^ is H finite and one of SX fl Y^ is K -finite. By changing 
notation if necessary, we can arrange that SY n X is if finite and SX D Y is K finite. 
As SX is H finite and SY is K finite, it follows that each of SY fl X and SX D Y is 
both if finite and K finite. Thus they are both (H fl K) finite. Now consider the 
coboundary S(XC\Y). Every edge in this coboundary meets SYHX or SXnY. Hence 
S(X H Y) is also (H n i f )-finite. As X n Y is clearly invariant under the left action 
of H Pi K, it is (H f l K) almost invariant. Now X P\Y must be infinite as X and Y 
cross. As we are assuming that H fl K is finite, this means that X fl Y is a nontrivial 
almost invariant subset of G, so that G has more than one end, which is the required 
contradiction. • 

We now recall from [44] that a pair of finitely generated groups (G, H) is of surface 
type if e(G, H') = 2 for every subgroup H' of finite index in H and e(G, H') = 1 for 
every subgroup H' of infinite index in H. It follows that (G, H) has two coends. 
Conversely, suppose that (G, H) has two coends. Using the notation at the end of 
chapter 2, this means that E(H) has two elements. Thus H has a subgroup H\ of 
index at most 2 which preserves the elements of E(H). It follows that e(G, Hi) = 2, 
and hence that the pair (G, Hi) is of surface type. The following result will be useful. 

Proposition 7.4. — Let G be a one-ended finitely generated group with finitely gener
ated subgroups H and K, a nontrivial H-almost invariant subset X, and a nontrivial 
K-almost invariant subset Y. Suppose also that the number of coends of H in G is 2. 
Then Y crosses X if and only if Y crosses X strongly. 
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Proof. — By replacing H by the above subgroup H\ of index at most 2, we can 
assume that the pair (G,H) is of surface type. Now Proposition B.3.7 tells us that 
if (G, H) is a pair of finitely generated groups of surface type, X is a nontrivial H-
almost invariant subset of G and Y is a nontrivial i^-almost invariant subset of G, 
then Y crosses X if and only if Y crosses X strongly. The result follows. • 

The following result summarises the above in the form which we will need. 

Proposition 7.5. — Let G be a one-ended finitely generated group and let {X\}\eA be 
a family of nontrivial almost invariant subsets over two-ended subgroups of G. As 
usual, let E denote the set of all translates of the X\ 7s and their complements. Form 
the pretree P of cross-connected components (CCC1s) of E as in the construction of 
regular neighbourhoods in chapter 3. Then the following statements hold: 

(1) The crossings in a CCC of E are either all strong or are all weak. 
(2) In a CCC with all crossings weak, the stabilisers of the corresponding elements 

of E are all commensurable. 

Proof. — 1) If X and Y are elements of E which cross strongly, then Propositions 7.2 
and 7.4 imply not only that Y must cross X strongly, but that the same applies to 
any other element of E which crosses X. Hence all crossings in the CCC determined 
by X and Y are strong. It follows that the crossings in a CCC of E are either all 
strong or are all weak, as required. 

2) If a CCC has weak crossing, then Proposition 7.3 implies that any two elements 
of this CCC have commensurable stabilisers, as required. • 

We will need the following definition. 

Definition 7.6. In a minimal graph of groups decomposition T of a group G, we will 
say that a vertex v is of finite-by-Fuchsian type, or that the associated vertex group 
G(v) is of finite-by-Fuchsian type, if G(v) is a finite-by-Fuchsian group, where the 
Fuchsian group is not finite nor two-ended, and there is exactly one edge of T which 
is incident to v for each peripheral subgroup K of G(v) and this edge carries K. 

Remark 7.7. — If G = G(v), then the Fuchsian quotient group corresponds to a closed 
orbifold. We should note that usually a Fuchsian group means a discrete group of 
isometries of the hyperbolic plane, but in this paper, it will be convenient to include 
also discrete groups of isometries of the Euclidean plane. As we are excluding finite 
and two-ended Fuchsian groups, the extra groups this includes are all virtually Z x Z. 

Now suppose that the family of X\s in Proposition 7.5 is finite. Thus their reg
ular neighbourhood T({X\}\eA ' G) exists by Theorem 6.6. Consider a Vb-vertex v 
of T ( { X A } A G A • G) which comes from a CCC of E in which all crossing is strong. If 
X\ lies in the CCC corresponding to v and is not isolated, Lemma 7.2 shows that H\ 
has two coends in G. Bowditch [8] and Dunwoody-Swenson [15] have shown that the 
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enclosing group G(v) is of finite-by-Fuchsian type. Bowditch deals only with the case 
when H\ has two coends in G for each A G A. In this case, our construction of regular 
neighbourhoods coincides with Bowditch's construction of enclosing groups as both 
use the same pretree. In fact our construction of regular neighbourhoods is suggested 
by Bowditch's use of pretrees in [5] and [8]. We state his result in the form that we 
will use later. We will also need similar results for VPC subgroups of length greater 
than 1, but we will simply observe that the Bowditch-Dunwoody-Swenson arguments 
go through in general. The following result is contained in Propositions 7.1 and 7.2 
of Bowditch's paper [8], and in the JSJ-decomposition theorem of [15] but we have 
reformulated it using our regular neighbourhood terminology. 

Theorem 7.8. — Let G be a one-ended finitely generated group with a finite family 
of two-ended subgroups {H\}\EA- For each A G A, let X\ denote a nontrivial H\~ 
almost invariant subset of G, let E denote the set of all translates of the X\ ;s and 
their complements, and let T denote the regular neighbourhood of the X\ 7s. Let X 
denote an element of E, let H denote its stabiliser, and let v denote a vertex of T 
which encloses X. 

Suppose H has two coends and that there exists an element of E which crosses X. 
Then the vertex group G(v) is of finite-by-Fuchsian type, and H is not commensurable 
with a peripheral subgroup of G(v). 

Remark 7.9. — If V consists of a single vertex, so that G = G(v), then G must itself 
be of finite-by-Fuchsian type. 

In a Fuchsian group E, any two-ended subgroup has small commensuriser unless E 
is virtually Z x Z . When combined with the above theorem, this yields the following 
result. 

Corollary 7.10. — Let G be a one-ended, finitely generated group and suppose that X 
is a nontrivial almost invariant subset over a two-ended subgroup H. Suppose some 
nontrivial almost invariant set over a two-ended subgroup K crosses X strongly. Then 
either G is of finite-by-Fuchsian type or H has small commensuriser in G. Further, if 
G has a finite normal subgroup K with Fuchsian quotient E; then either H has small 
commensuriser in G, or E is virtually Z x Z . 

Later we will want to consider infinite families of such almost invariant subsets 
of G. We want to do this by taking increasing finite families of such sets and showing 
that the graphs of groups structures for G obtained in this way must stabilise. If all 
crossings of such subsets of G are strong, one can use Theorem 7.8 to show that this 
happens for homological reasons. However if weak crossings occur such arguments do 
not work. We will need to assume that G is finitely presented and to use variants of 
previous accessibility results. 
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Recall that, in a graph of groups decomposition, we call a vertex redundant if it 
has valence at most two, it is not the vertex of a loop, and each edge group includes 
by an isomorphism into the vertex group. Recall that a vertex is reducible if it has 
two incident edges, it is not the vertex of a loop, and one of the incident edge groups 
includes by an isomorphism into that vertex group. For a finitely presented group G, 
the main result of [4] gives a bound on the complexity of reduced graphs of groups 
decompositions of G with all edge groups being small groups. We will use their result 
to prove the following. 

Theorem 7.11. — Let G be a finitely presented group and suppose that G does not 
split over VPC subgroups of length less than n. For each positive integer k, let 
be a graph of groups decomposition of G without redundant vertices and with all edge 
groups being VPCn, and suppose that for each k, Tk+i is a refinement ofTk- Then 
the sequence Tk stabilises. 

Proof. — Since G is finitely presented, Bestvina-Feighn's accessibility result [4] im
plies the theorem provided the T^'s are reduced. Thus we only have to bound the 
length of chains of splittings of G over descending subgroups (unfoldings in the lan
guage of [36]). This was done in [36] when G is finitely generated and torsion-free 
and n = 1. In [6], Bowditch gave a much simpler argument using tracks when G is 
finitely presented and n = 1. We give our argument which is similar to Bowditch's 
but which was arrived at independently. 

Suppose that we have an infinite sequence of splittings of G over descending VPCn 
subgroups Hi. Thus (li^iHi is VPC(n — 1). We fix a finite 2-complex K with 
fundamental group G and universal cover K. For each m ^ 1, there is a G-tree Tm 
which corresponds to the first m splittings, and Tm+1 is a refinement of Tm, i.e. there 
is a natural collapsing map gm+i : Tm+i —-» Tm. We now pick G-equivariant linear 
maps pm : K —> Tm such that pm — qm+iPm+i, let Wm denote the midpoints of 
the edges of Tm and consider p^(Wm). This is a G-invariant pattern in K, which 
projects to a finite pattern Lm in K. By construction of the maps pm, we have 
Lrn C Lm_f_i. Each component of Lm carries a subgroup of Hm. Since G does not 
split over a VPC subgroup of length less than n, Lm+i — Lm must have at least one 
component Gm with stabiliser which is VPCn. Now Dunwoody (see [10]) showed 
that there is an upper bound on the number of non-parallel disjoint tracks one can 
have in K. In particular, it follows that the Gm's carry only finitely many distinct 
subgroups of G, and hence that the descending sequence of H^s must stabilise, which 
is a contradiction. • 

Let T be a graph of groups decomposition of a group G without redundant vertices. 
We will say that F is maximal with respect to two-ended subgroups, if whenever a 
vertex encloses a splitting over a two-ended subgroup, this splitting is already an 
edge splitting of T. This means that if we form a refinement of T by splitting at some 

SOCIETE MATHEMATIQUE DE FRANCE 2003 



104 CHAPTER 7. COENDS WHEN THE COMMENSURISER IS SMALL 

vertex so that the extra edge splitting is over a two-ended group, this refinement must 
have a redundant vertex. The above result in particular implies the following. 

Corollary 7.12. — A one-ended, finitely presented group has maximal decompositions 
with respect to two-ended subgroups. 

Similarly we call a decomposition of G maximal with respect to VPC groups of 
length ^ n, if it cannot be refined without introducing redundant vertices by splitting 
at a vertex along a VPC group of length ^ n. 

The proof of Theorem 7.11 applies essentially unchanged to yield the following 
result. 

Theorem 7.13. — Let G be a finitely presented group and let TQ be a graph of groups 
decomposition of G which is maximal with respect to splittings over VPC groups of 
length ^ n. For each k ^ 1, letY^ be a graph of groups decomposition of G without 
redundant vertices, and suppose that for each k ^ 0, Tk+i is a refinement of IV 
Suppose further that all the edge splittings of which are not edge splittings of TQ 
are over VPC(n + 1) subgroups. Then the sequence Tk stabilises. 

Now consider a two-ended subgroup H of G. Let Q{H) denote the collection of all 
almost invariant subsets of G which are over subgroups of G commensurable with H, 
and let F(H) denote the subset of Q(H) which consists of all the trivial elements. 
(Recall that a H-almost invariant set is trivial if it is H finite.) Clearly if X and Y lie 
in Q(H), then XMY, X + Y and X U Y also lie in Q(H). Thus Q(H) is a subalgebra 
of the Boolean algebra of all subsets of G. Also F(H) is an ideal in Q(H). We 
let B{H) denote the quotient Boolean algebra Q(H)/F(H). Thus B{H) is precisely 
the collection of equivalence classes of elements of Q{H). Note that if H has small 
commensuriser so that CommG(^) contains H with finite index, then Commct^) is 
also two-ended. 

Theorem 7.14. — Let G be a one-ended, finitely presented group with a two-ended 
subgroup H with small commensuriser. Suppose that there is a nontrivial element X 
of Q{H) such that no nontrivial almost invariant set over a two-ended subgroup of G 
crosses X strongly. Then B(H) is finite. 

Remark 7.15. — Proposition 7.2 shows that the conclusion of this result remains true 
if X does cross strongly some nontrivial almost invariant set over a two-ended sub
group. 

Proof. — If there is a nontrivial almost invariant subset Y of G which is over some 
two-ended subgroup and crosses X , then it must do so weakly and Lemma 7.3 implies 
that the stabilisers of X and Y are commensurable. This implies that Y also lies 
in Q(H). 
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Given a finite subset {Uj}jej of nontrivial elements of Q(H), we can form E, T 
and the regular neighbourhood T({Uj}jej : G), which we will denote by T. Consider 
a Vb-vertex v of T such that the corresponding CCC of E contains U: for some 
element U of the Uj's. The other elements of E which lie in this CCC must all lie 
in Q(H), by the preceding paragraph. Now we consider Stab(v), the stabiliser of v. 
Recall from the proof of part 2) of Theorem 3.8 that there are a finite number of 
elements Xi of E enclosed by v such that Stab(v) is generated by the stabilisers d 
of Xi and by finitely many elements gij such that gijXi crosses X3. We know that the 
Ci are commensurable with H, and that GfZJ is commensurable with C3 since gijXi 
crosses Xj. Thus Stab(i;) commensurises H and so is a subgroup of CommG(i7), 
which we denote by G in this proof for brevity. As H has small commensuriser, G 
has 2 ends. Hence Stab(v) has 2 ends. Let e denote an edge of T incident to v, so 
that Stab(e) is a subgroup of Stab(v) and hence of G. If Stab(e) were finite, the 
fact that T is minimal would imply that G splits over this finite subgroup and hence 
has more than one end. As G is one-ended, it follows that Stab(e) is infinite and 
so has finite index in Stab(v). As T is finite, it follows that there are only finitely 
many edges of T incident to v. Recall that part 3) of Corollary 4.16 tells us that each 
nontrivial almost invariant subset X enclosed by v is determined up to equivalence 
by the induced partition of the edges incident to v. It follows that the elements of E 
enclosed by v belong to finitely many equivalence classes. 

The fact that T has finitely many Vb-vertices implies that the Vo-vertices of T lie in 
finitely many G-orbits. If a Vb-vertex w of T has stabiliser which is a subgroup of G, 
then the stabiliser of gw satisfies the same condition if and only if g commensurises 
H and so lies in G. As the G-orbit of w is finite, it follows that there are only 
finitely many Vo-vertices of T whose stabiliser is contained in G. As for u, each such 
Vb-vertex can enclose only finitely many equivalence classes of elements of E. 

We conclude from the above discussion that if T is the regular neighbourhood of a 
finite set of nontrivial elements of Q(H), then all the edge splittings of T are over two-
ended subgroups commensurable with H, and the Vb-vertices of T can only enclose 
finitely many equivalence classes of elements of Q(H). 

Now suppose that B(H) is infinite. We will describe how to pick a sequence 
{Ui}i^i of elements of Q(H) which represent distinct elements of B(H). Having 
chosen f/i , . . . , EV we will form their regular neighbourhood IV As the Vb-vertices 
of Tk can only enclose finitely many equivalence classes of elements of Q(H), there is 
C/fc+i in Q(H) which is not enclosed by any Vb-vertex of IV This implies that when 
we form r^+i, it is distinct from IV Lemma 5.19 implies that each edge splitting of 
is enclosed by some Vb-vertex of Tk+i, for any 1^1. In particular, the edge splittings 
of T& are compatible with those of Tk+i, for any 1^1. Consider all the edge splittings 
of T i , . . . , Tfc and choose one from each conjugacy class. Let denote the graph of 
groups structure for G whose edge splittings are the chosen ones. Such a graph of 
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groups exists by Theorem 2.35. It is trivial that A ^ + i is a refinement of A&. Further, 
our construction implies that A& has no redundant vertices. As the edge groups of A& 
are two-ended, the accessibility result of Theorem 7 . 1 1 applies and tells us that the 
sequence {Ak} must eventually stabilise, i.e. there is N such that AJV = AN, for all 
n ^ N. It follows that the Vb-vertices of TAT enclose every Ui. But the U^s represent 
infinitely many distinct elements of B(H) which contradicts the preceding paragraph. 
This contradiction shows that B(H) must be finite as required. • 

Now we know that B(H) is finite, we can prove the following result. 

Proposition 7.16. — Let G be a one-ended, finitely presented group, and let H be a two-
ended subgroup with small commensuriser. Let Y denote the regular neighbourhood of 
the collection B(H). Thus Y is the graph of groups YN above. Then one of the 
following cases holds: 

( 1 ) All Vb vertices ofT are isolated. In this case, Y has at most three V^-vertices, 
and each has associated group which is commensurable with H. 

(2) There is exactly one non-isolated Vb vertex of Y with associated group 
Comn\G(H), and a non-zero number of isolated V^-vertices. The non-isolated VQ-
vertex encloses every element of Q(H). Further each isolated Vb -vertex is joined to 
the non-isolated Vb -vertex by a path of length 2, such that the single V\ -vertex on 
this path has valence 2. 

Proof. — Choose representatives U\,..., Uk of the nontrivial elements of B(H), so 
that U{ has stabiliser Hx which is commensurable with H. We will use our usual 
notation from chapter 3. Thus E denotes the set of all translates of C/ i , . . . , Uk and 
their complements, and T denotes the universal covering G-tree of Y. 

Let K denote the intersection of the H^s, so that each Ui is if-almost invariant, 
and consider the almost invariant subsets K\Ui of K\G. Note that the coboundary 
5{K\Ui) is finite for each i. Let A denote the Cayley graph of G with respect to some 
finite generating set, and let A denote a finite connected subcomplex of the graph 
K\A which contains every edge of each of S(K\Ui) and which carries K. Consider 
the inverse image Z of A in A. Then Z is connected and if-finite. Let X\1..., Xm 
denote the if-infinite components of the complement of Z. Since the edges of 8(K\Ui) 
are contained in A, we see that the edges of SUi are contained in Z, and thus each Ui 
is a union of some of the Xj. Hence any if-almost invariant subset of G is equivalent 
to a union of some of the Xj's. In particular, if a nontrivial almost invariant subset 
over a subgroup commensurable with H is contained in one of the Xj's then it must 
be iJ-almost equal to Xj. It follows that Xj cannot cross any element of B(H). Thus 
any element of B(H) is represented by some union of the X, 's , and those elements 
of E which are equivalent to some Xj must be isolated in E. 
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If m > 3, we will show that we have case 2) of the proposition, and that the number 
of isolated Vb-vertices of T equals m. Recall that the CCC's of E correspond to the VQ-
vertices of T. Consider all unions of k of the X/'s, for all k such that 2 ^ k ^ (m — 2). 
It is easy to check that all elements of E equivalent to such unions lie in the same 
CCC. For example, X\ U X2 and X\ U X3 cross each other. Thus, if we consider 
only those CCC's which enclose representatives of elements of there is exactly 
one non-isolated such CCC, say v, and there are exactly m isolated such CCC's, say 
vi,... , v m , where Vj encloses Xj. Clearly, v is invariant under Commc(i^), and as 
its stabiliser must commensurise H by the proof of Theorem 7.14, it follows that 
Stab(w) = Commc(i7). Now Lemma 4.7 tells us that if a vertex of a G-tree encloses 
two almost invariant subsets of G, then it also encloses their intersection. Thus the 
fact that X\ — {X\ U X2) H {X\ U X3) implies that v encloses X\. As Proposition 5.2 
tells us that T is a minimal G-tree, we can apply part 1) of Lemma 4.9 which tells us 
that all the vertices on the interior of the path Ai in T joining v\ to v have valence 2, 
and all these vertices enclose X\. Lemma 5.4 now implies that each Vb-vertex on the 
interior of Ai is isolated. Recall that no two distinct elements of E are equivalent. 
This implies that X\ can be enclosed by only one isolated Vb-vertex of T. It follows 
that Ai has no interior Vb-vertices, so that Ai has length 2. Similarly each V{ is joined 
to v by a path of length 2, such that the single V\-vertex on this path has valence 2. 
This completes the proof that T has all the properties in case 2) of the proposition. 

If m ^ 3, every element of Q(H) is equivalent to some Xj or its complement. Thus 
we have m isolated CCC's, say v\,..., vm, where Vj encloses Xj, and so T has m 
isolated Vb-vertices as in case 1) of the proposition. • 

The first part of the proof of the above proposition shows that each Xj contains 
only one coend of H in G. Thus we have the following proposition which answers a 
question of Bowditch [8] in the finitely presented case: 

Proposition 7.17. — Suppose that G is one-ended and finitely presented and that H 
is a two-ended subgroup of G with small commensuriser. Then the number of coends 
of H in G is finite. 

Note that in either case in Proposition 7.16, there are isolated elements of E . 
Such elements determine splittings of G which have intersection number zero with 
every element of Q(H). We will call such a splitting H-canonical. Thus we have the 
following result. 

Corollary 7.18. — Suppose that G is a one-ended, finitely presented group and as
sume that G is not of finite-by-Fuchsian type. Let H be a two-ended subgroup of G 
and suppose that H has small commensuriser in G. If G possesses a nontrivial al
most invariant subset over a subgroup commensurable with H, then G possesses a 
H-canonical splitting over a subgroup commensurable with H. 
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CHAPTER 8 

COENDS WHEN THE COMMENSURISER IS LARGE 

Recall that Q{H) denotes the collection of all almost invariant subsets of G which 
are over subgroups of G commensurable with H, and B(H) denotes the collection 
of equivalence classes of elements of Q(H). In Proposition 7.16, we described the 
structure of the regular neighbourhood T of all nontrivial elements of B(H), in the 
case when H has small commensuriser in G. In this chapter, we consider a one-ended 
finitely generated group G, and a two-ended subgroup H such that H has large com
mensuriser in G, i.e. H has infinite index in Commc(i7). Again we want to study the 
structure of the regular neighbourhood T of all nontrivial elements of B{H). How
ever B(H) may be infinite, so that it is not clear that such a regular neighbourhood 
exists. We will show that it does exist in chapter 10. A key point in the argument is 
that B(H) possesses certain algebraic finiteness properties. Recall from the previous 
chapter that Q(H) and B(H) are Boolean algebras. Also Q(H) is invariant under 
the action by left multiplication of ComniG(i7), and this action induces an action on 
B(H). Thus B(H) is a Boolean algebra with a natural action of Comma 

We will use some arguments from [13]. As before, the results extend to the case 
where H is virtually polycyclic (VPC) of any length but we will first discuss the case 
where H is VPC1, i.e. H is two-ended. We start by stating a result which is a special 
case of a theorem of Kropholler and Roller in [30] (see also [21]), and we sketch an 
argument for this special case which uses the proof of Lemma B.2.13. 

Proposition 8.1. — Let G be a finitely generated group and H a two-ended subgroup 
with large commensuriser. Then the number of coends of H in G is 1, 2 or infinity. 
The number of coends is 2 if and only if G is virtually Z x Z . 

Proof — If the number of coends of H in G is greater than 1, Lemma 2.40 shows 
that there is a subgroup K of H and a nontrivial K-almost invariant subset X of G. 
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If K is finite, then G has more than one end. If G were two-ended, H would be of 
finite index in G and so could not have large commensuriser. Thus G has infinitely 
many ends, and it follows that H has infinitely many coends in G. 

If K is infinite, it must have finite index in if, so that Comma (#) = Comma (K). 
Consider the translates of X by elements of Comma (H). If infinitely many of these 
are equivalent to X, then the proof of Lemma B.2.13 shows that there is a subgroup 
K\ of finite index in G which contains a subgroup H\ commensurable with H such 
that H\ is normal in K\ and H\\K\ has two ends. Thus H has two coends in G, and 
as H is virtually infinite cyclic, G is virtually Z x Z. If only finitely many translates 
of X by Comma (H) are equivalent to X, then X has infinitely many distinct such 
translates and it follows that H has infinitely many coends in G. 

We complete the proof of the proposition by observing that if G is virtually Z x Z, 
then H has 2 coends in G. • 

Now we can prove the following finiteness result for the Boolean algebra B(H). 

Theorem 8.2. — If G is a one-ended, finitely presented group and H is a two-ended 
subgroup of G, then B(H) is finitely generated over Comma(i^). 

Proof. — Theorem 7.14 tells us that if H has small commensuriser, then B{H) is 
finite. Thus the result is trivial in this case. So we will assume that H has infinite index 
in Comma (#), and that B(H) is infinite. Note that all the crossings between elements 
of B(H) must be weak, by Corollary 7.10. The accessibility result of Theorem 7.11 
tells us that there is a finite graph of groups decomposition Q of G with all edge groups 
commensurable with H, such that Q cannot be properly refined using such splittings. 
An alternative way of expressing this condition is to say that if G possesses a splitting 
over a two-ended subgroup commensurable with H which has intersection number 
zero with the edge splittings of G, then this splitting is conjugate to one of these edge 
splittings. Let X i , . . . , Xn denote almost invariant subsets of G associated to the edge 
splittings of Q, and let H% denote the stabiliser of X{. Let A(H) denote the subalgebra 
of B(H) generated over Comma(H) by the equivalence classes of the JQ's. We will 
show that B(H) = A{H). 

Let E denote the collection of translates of the X^s by elements of Comma(H). 
Let Y be an element of Q(H), such that Y is a nontrivial almost invariant subset of G 
over a subgroup K commensurable with H. We will show that Y crosses only finitely 
many elements of E . The intersection number i{Hl\Xl,K\Y) is finite and is the 
number of double cosets KgHL such that gXL crosses Y. If gXi crosses Y, it must do 
so weakly by Corollary 7.10. Now Proposition 7.3 tells us that the stabilisers of gX% 
and Y are commensurable, so that H9% and K are commensurable. As Hx and K are 
commensurable, it follows that g commensurises Hi, and hence also commensurises K. 
If we let Lx denote K D HX1 then g~lKg can be expressed as the union of cosets 
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gj(g 1Kg fl Li), for 1 ̂  j ̂  n. Hence 

KgHi = g{g-lKg)Hi = g {U^gjig^Kg n U)) H, = g {u]=l9jHt) = U]=1ggjHz, 

so that KgHi is the union of finitely many cosets gHi of Hi. It follows that there are 
only finitely many translates of the X^s which cross Y. We conclude that Y crosses 
only finitely many of the translates of the X^s by G and that these must all lie in E . 

If Y crosses no elements of E , then Y is enclosed by some vertex v of the universal 
covering G-tree TofQ. In particular, the stabiliser K of Y is a subgroup of Stab(v), by 
part 2) of Lemma 4.9. Suppose that Y D Stab(v) is a nontrivial K- almost invariant 
subset of Stab(i>). Then the proof of the main theorem of [13] produces another 
nontrivial almost invariant subset U of G such that U is over a subgroup of Stab(v) 
which is commensurable with and U HStab(v) is also a nontrivial almost invariant 
subset of Stab(v), and U has self-intersection number zero. As U has self-intersection 
number zero, Theorem B.2.8 implies that U is equivalent to an almost invariant set 
W which is associated to a splitting a of G. The set U was constructed by taking 
successively intersections of Y^ and cY^ where c £ Comm^i/) D Stab(v), so that 
Lemma 4.7 shows that it is enclosed by v. Hence W is also enclosed by v. Thus a has 
intersection number zero with the edge splittings of Q. Our choice of Q now implies 
that a must be conjugate to one of the edge splittings of Q. In particular, a does not 
split Stab(v), so that U flStab(v) must be a trivial almost invariant subset of Stab(i;), 
which is a contradiction. This contradiction shows that if Y crosses no elements of E , 
then Y fl Stab(v) must be a trivial almost invariant subset of Stab(v). 

Now choose v as the basepoint of T, and define (f : G —» V(T) by the formula <p(g) = 
gv. Recall from Lemma 4.14 that Y is equivalent to the set B(Y) = cp^1(EV(Y)) U 
(YDLP^1^)). AS (f(e) = v, we see that tp~l{v) = Stab(i>). Thus Y^Lp~l{v) is a trivial 
almost invariant subset of Stab(i;). It follows that Y is equivalent to Lp~l(T,V(Y)). 

This set is the union of some of the Z*, for edges s incident to v and oriented towards 
v. As the Z* and their coboundaries are disjoint, the coboundary of this union equals 
the union of the 5Z*. As SY is i7-finite, it follows that each 5Z* is also H finite. Let 
S denote the stabiliser of s, and recall that S must be a conjugate of some Hi. As 
S is infinite, so is 5Z*. The fact that SZ* is i f finite now implies that £Z* must be 
stabilised by an infinite subgroup of H. It follows that S and H are commensurable, 
so that the equivalence class of Z* lies in A(H). It also follows that Y is equivalent 
to the union of a finite number of Z*. Thus the equivalence class of Y lies in the 
subalgebra A{H) of B(H). 

Next suppose that Y crosses some elements of E and let v be a vertex of T some 
of whose incident edges have associated edge splittings crossed by Y. If s i , . . . , Sk 
are these edges, we denote the almost invariant subset of G associated to st by Z% 

for obvious typographical reasons. Then, we can express Y as the union of Y fl Z*, 
1 ^ i ^ fc, and of W = Y fl ^Di=i N ° w Lemma 4.7 shows that W is enclosed 
bv v. so that the eauivalence class of W lies in the subalgebra A(H) of B(H). bv the 
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preceding paragraph. Moreover, each of Y fl Z* crosses a smaller number of elements 
of E than does Y and so by induction we see that the equivalence class of each Y fl Z* 
also lies in the subalgebra A(H) of B(H). This now implies that the equivalence class 
of Y itself lies in A(H) and completes the proof that B(H) is finitely generated over 
CommG(#). • 

In the preceding proof, we referred several times to the arguments of Dunwoody 
and Roller in [13]. It will also be convenient to state a result which combines one of 
the main results of that paper with results from [15]. 

Theorem 8.3. — Let G be a one-ended, finitely generated group which does not split 
over VPC subgroups of length < n, and let H be a VPCn subgroup with large com
mensuriser, such that e(G, H) ^ 2. Then G splits over some subgroup commensurable 
with H. 

Note that the proof of Theorem 8.2 shows that B(H) is generated by almost in
variant sets associated to splittings of G over subgroups commensurable with H, so 
that Theorem 8.3 follows. However, this is not a new proof of Theorem 8.3 as we used 
the main result of [13] in our proof of Theorem 8.2. 

We call a nontrivial element X of Q(H) special if X fl Coming(iJ) is H-finite. A 
splitting of G over a subgroup commensurable with H will be called special if one of 
the associated almost invariant subsets of G is a special element of Q(H). Recall that 
a splitting of G over a subgroup commensurable with H is H canonical if it has zero 
intersection number with every element of Q{H). 

Proposition 8.4. — Let G be a one-ended, finitely presented group which is not virtually 
Z x Z? with a two-ended subgroup H which has large commensuriser. If Q(H) has a 
nontrivial special element, then G has an H canonical special splitting over a subgroup 
commensurable with H. 

Remark 8.5. — If H has small commensuriser, then every element of Q(H) is special, 
so the result follows immediately from Corollary 7.18. 

Proof. — The proof uses details from the arguments of [13] with slight improvements 
from [15]. Note that as H has large commensuriser and G is not virtually Z x Z, 
Corollary 7.10 tells us that an element of Q(H) cannot cross strongly any nontrivial 
almost invariant set over a two-ended subgroup. 

The proof in [13] shows that if X is a special element of Q(H), then there is a 
splitting of G over a subgroup commensurable with H such that one of the almost 
invariant sets associated with the splitting is contained in X (and thus special). We 
recall some of the argument. By modifying X by a H finite set, we can arrange 
that X does not intersect Comma (if). In this case, Lemma 5 of [13] tells us that 
if c £ CommG(ff) and X and cX are nested, then either cX = X or X fl cX = 0 . 
Now [13] produces a new element Y of Q(H) which is a finite intersection of some 
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CiX, Ci G 0 0 1 1 1 1 1 1 0 ( 7 / ) , such that the translates of Y by all elements of G are almost 
nested. This is enough to produce a splitting of G with associated almost invariant 
set equivalent to Y. There is an improvement in [15] (see section 3, last paragraph 
on page 622), which shows there is a subset Z of Y which is equivalent to Y such 
that the translates of Z are actually nested. This implies that Z is associated to a 
splitting of G over a subgroup commensurable with 77. Thus, if we start with an 
element of Q(H) which is disjoint from Comma (77), there is a subset which is also 
an element of Q(H) and is associated to a splitting of G. Of course, this new element 
of Q(H) is also disjoint from Comma (77). 

Let X\ denote an element of Q(H) which is disjoint from Comma (77), and is 
associated to a splitting of G. If X\ contains an element Y\ of Q(H) which is not 
equivalent to X\, the preceding paragraph yields a subset X2 of Yi, which is also 
an element of Q(H) and is associated to a splitting of G. We repeat this process to 
obtain a descending sequence of inequivalent elements Xi of Q(77), each of which is 
disjoint from Comma (77), and is associated to a splitting Oi of G. 

Suppose that this sequence stops after finitely many steps. Then we will have 
found an element X of Q(H) which is disjoint from Comma (77) and is associated to 
a splitting of G, such that any subset of X which lies in Q(77) is equivalent to X. 
Thus X is a minimal element in 73(77). Any such minimal element cannot be crossed 
by any element in Q(77), so it determines a 77-canonical splitting of G, as required. 

If the sequence does not stop after finitely many steps, we will obtain an infinite 
sequence X{. We will show that this leads to a contradiction. Let Hl denote the 
stabiliser of X{. We claim 772 C H\. Let c be an element of 772. As 0X2 — X2, we see 
that cXi fl X\ is non-empty. As X\ is associated to a splitting, all its translates are 
nested. In particular, as c lies in Comma(77i), Lemma 5 of [13] tells us that we have 
cXi = Xi or cXi fl X\ = 0 . As cX\ PI X\ is non-empty, we must have cX\ = Xi , so 
that c lies in 77i. It follows that 772 C 77i. Next we claim that X\ does not cross any 
translate of X2, so that the splittings u\ and G2 have intersection number zero. For 
suppose that X\ and gX2 cross each other. We pointed out at the start of this proof 
that they must cross weakly because X\ lies in Q(77), so that Proposition 7.3 tells us 
that their stabilisers must be commensurable. As X\ and X2 have commensurable 
stabiliser, it follows that g lies in Comma (77). As before this means that gX\ = X\ 
or gX\ fl X\ — 0 . But the fact that X\ and gX2 cross implies that X\ fl gX2 is not 
empty, so that X\ fl gX\ is not empty. It follows that gX\ — X\, so that gX2 C X\, 
which contradicts our assumption that X\ and gX2 cross. Similarly, 77 +̂i C 772, for 
all i ^ 1, and Xi does not cross any translate of Xj, for any i and j . Thus the 
splittings Oi are all compatible. Hence we obtain an infinite sequence of graphs of 
groups decompositions of G each refining the previous one. As the a^s are distinct, 
this contradicts the accessibility result in Theorem 7.11. This contradiction shows 
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that the sequence of X^s cannot be infinite, so that we obtain a minimal X as in the 
preceding paragraph, and hence obtain a H canonical splitting of G. • 

The argument above shows that even though the number of coends of H in G is 
infinite, if Q(H) has a special element, then there are elements of Q(H) which contain 
a finite number of coends of H with the complementary set containing all the other 
coends. Of course, there may not be any special elements in Q(H). 

Now we will consider the following construction. Let G be a one-ended, finitely 
presented group, pick one representative for each element of B(H) and let E denote 
the set of all translates of this collection and their complements. We will consider the 
CCC's of E. As usual, these form a pretree, but we will not be able to prove that 
this is discrete until chapter 10. 

Proposition 8.6. — Let G be a one-ended, finitely presented group and suppose that G 
is not virtually Z x Z . Let H be a two-ended subgroup of G such that H has large 
commensuriser and there are nontrivial H-almost invariant subsets of G. Consider 
the CCC's of E which consist of elements of Q(H). There is exactly one such CCC 
which is infinite, and there are finitely many (possibly zero) other CCC's all of which 
are isolated. The infinite CCC has stabiliser equal to Comma (H), and encloses every 
element of Q(H). 

Remark 8.7. — In the case when G is virtually Z x Z , the CCC's of E which consist 
of elements of Q(H) form a single CCC. This is discussed at the start of the proof of 
Theorem 10.1. 

Proof. — Theorem 8.2 shows that there are a finite number of compatible splittings 
< T i , . . . c r n of G each over a subgroup of G commensurable with H, such that the 
equivalence classes of the associated almost invariant subsets {Xi,X* : 1 ^ i $J n} 
generate B(H) over Comma(H). In fact the proof shows more. It shows that any 
element of B(H) is represented by some finite union of translates by Comma (H) of 
the Xt's. As G is not virtually Z x Z , Proposition 8.1 tells us that H has infinitely 
many coends in G. As the translates of Xi and X* are nested, the proof of part 2) 
of Proposition 7.16 shows that the collection of all finite unions of more than one of 
these sets forms a single CCC. It further shows that this CCC also encloses the X^s 
themselves. It follows that this CCC has stabiliser equal to Comma(H). Finally, 
there are isolated CCC's corresponding to those X^s which are isolated (if any). • 
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CHAPTER 9 

CANONICAL DECOMPOSITIONS OVER TWO-ENDED 
GROUPS WHEN COMMENSURISERS ARE SMALL 

In this chapter and the next, we will find canonical decompositions of a one-ended, 
finitely presented group G which are analogous to the topological JSJ-decomposition 
of an atoroidal 3-manifold. Our approach is similar to an unpublished approach of 
Scott [39] for proving the classical results on the JSJ-decomposition. The idea is to en
close all nontrivial almost invariant subsets of G which are over two-ended subgroups. 
However, instead of enclosing all at once, we form regular neighbourhoods of larger 
and larger finite families and use accessibility to show that the sequence obtained in 
this way must stabilise. This is where we use finite present ability. The result is a 
regular neighbourhood of all equivalence classes of nontrivial almost invariant subsets 
of G over two-ended subgroups. (See Definition 6.4.) Since we enclose all nontrivial 
almost invariant sets over two-ended groups, the decompositions that we obtain are 
unique and are invariant under automorphisms of the group. 

The preceding two chapters contain the crucial pattern for obtaining our canonical 
decompositions. We want to form a regular neighbourhood of an infinite family of 
nontrivial almost invariant subsets of G. The first step is to show that the cross-
connected components are of two types, those which contain only strong crossings 
and those which contain only weak crossings. The structure of the strong crossing 
components is handled by the techniques of Bowditch [8] and of Dunwoody and 
Swenson [15]. If commensurisers are small, the structure of weak crossing components 
is easy to describe using regular neighbourhoods as in chapter 7. If the commensuriser 
of a subgroup H of G is large, we use the fact that the Boolean algebra B(H) is finitely 
generated over Comma (i /) , as in chapter 8. This used the arguments of Dunwoody 
and Roller [13] for a special case of the annulus theorem. To obtain our canonical 
decompositions, the only remaining difficulty is to show that the pretree which we 
construct from the cross-connected components is discrete. This is clear in the case 
when all commensurisers are small, and is proved in general using again the fact that 
B(H) is finitely generated over Comma (#). This is what we will do in this and 
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the next chapter. We will use the same strategy in the more general cases which we 
consider later. 

Let r be a minimal graph of groups decomposition of G. Recall from Definition 
7.6 that a vertex v of T is of finite-by-Fuchsian type if G(v) is a finite-by-Fuchsian 
group, where the Fuchsian group is not finite nor two-ended, and there is exactly one 
edge of r which is incident to v for each peripheral subgroup K of G(v) and this edge 
carries K. We will also need the following definition. 

Definition 9.1. — Let T be a minimal graph of groups decomposition of a group G. 
A vertex v of T is simple, if whenever X is a nontrivial almost invariant subset of G 
over a two-ended subgroup such that X is enclosed by v, then X is associated to an 
edge splitting of T. 

Note that if v is simple, then part 1) of Lemma 4.9 implies that X is associated 
to an edge splitting for an edge of T which is incident to v. Also note that it is not 
possible for v to be both simple and of finite-by-Fuchsian type. For if a Fuchsian 
group is not finite nor two-ended, the corresponding 2-orbifold has non-peripheral 
loops representing elements of infinite order, and any such yields a nontrivial almost 
invariant subset of G over a two-ended subgroup which is not associated to an edge 
splitting of T. 

The above definition is the analogue of the topological fact that if V(M) denotes 
the characteristic submanifold of a 3~manifold M, then any essential annulus in M 
which lies in M — V(M) is homotopic to a covering of an annulus in the characteristic 
family T. We could have defined simple differently by insisting that the condition 
applies only to almost invariant subsets which are associated to a splitting. Call this 
condition "simple for splittings". This would correspond to a topological definition 
of simple which applies only to embedded annuli. Unfortunately, the word simple is 
used in both these senses in the literature of 3 manifold theory. Note that a vertex v 
of a graph of groups F can be of finite-by-Fuchsian type and be simple for splittings. 
For example, this occurs when G(v) is the fundamental group of a thrice punctured 
sphere. 

If one applies Definition 9.1 to splittings of G, one sees that if v is simple, then V 
cannot be properly refined by splitting at v using a splitting of G over a two-ended 
subgroup. 

Finally, note that v need not be simple even if G(v) is two-ended, despite the fact 
that such a group does not admit any splitting over a two-ended subgroup. Again this 
is clear from consideration of topological examples. Consider a solid torus component 
S of V(M) such that £ has at least four frontier annuli. Then X will contain essential 
embedded annuli which are not homotopic to covers of the frontier annuli. This 
example shows that v need not even be simple for splittings. 

In this chapter, we will assume that whenever H is a two-ended subgroup of G and 
e(G, if) ^ 2, then i f has small commensuriser. The class of groups for which this 
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holds includes all word hyperbolic groups. For any group G, we will let T\ denote 
the collection of equivalence classes of all nontrivial almost invariant subsets of G 
which are over a two-ended subgroup. The subscript 1 is because a two-ended group 
is VPC1. Now we can state the main result of this chapter which is our version of 
the JSJ-decomposition for this class of groups. 

Theorem 9.2. — Let G be a one-ended, finitely presented group such that whenever i f 
is a two-ended subgroup and e(G, if) ^ 2, then H has small commensuriser. Let T\ 
denote the collection of equivalence classes of all nontrivial almost invariant subsets 
of G which are over a two-ended subgroup. 

Then the regular neighbourhood construction of chapter 3 works and yields a regular 
neighbourhood : G). Further each Vo~vertex v ofT^Ti : G) satisfies one of the 
following conditions: 

(1) v is isolated. 
(2) G(v) is the full commensuriser Comma (if) for some two-ended subgroup H, 

such that e(G, if) ^ 2. 
(3) v is of finite-by-Fuchsian type. 
Ti^Ti : G) consists of a single vertex if and only if either T\ is empty or G is of 

finite-by-Fuchsian type. 

Remark 9.3. — In cases 1) and 2), G(v) is two-ended. If v is of type 2) but not 
isolated, we will say that v is of small commensuriser type. 

Proof — We start by picking a representative for each element of T\, subject to the 
condition that if A and B are elements of T\ such that B = gA, for some g in G, 
then the representatives X and Y chosen for A and B must satisfy Y = gX. As T\ is 
countable, it can be expressed as the union of an ascending sequence of finite subsets 
Ei, for i ^ 1. As each Ei is finite, it has a regular neighbourhood Tt = T(Ei : G). 
We will choose the sequence Ei carefully, and then show that the sequence I \ must 
stabilise eventually. The resulting graph of groups structure T for G will be the 
required regular neighbourhood T — T[T\ : G). 

We will start with some choice of the E^s and then will modify this sequence induc
tively. We will continue to denote the modified sets by Ei. We modify E\ as follows. 
Let Ei denote the collection of all the translates of the chosen representatives of E\. 
Consider a if-almost invariant subset X of G which lies in E\. If X crosses weakly 
some element of T\, Lemma 7.3 tells us that this element lies in B(H). Theorem 7.14 
tells us that B(H) is finite. Thus, by enlarging E\, we can arrange that whenever E\ 
contains a if-almost invariant subset of G which crosses weakly some element of T\, 
then E\ contains each element of B(H). This is the final version of E\. 

The sequence Ei is constructed inductively starting from E\. Having constructed 
Ei, we first check whether Ei — T\. If it does, then T{El : G) is the required regular 
neighbourhood Y^i : G). Otherwise, we need to construct Ei+\. As the new Ei 

SOCIETE MAT HEM ATI QUE DE FRANCE 2003 



118 CHAPTER 9. CASE OF SMALL COMMENSURISERS 

is still finite, there is some index j > i such that E3 properly contains the new Si. 
By replacing our sequence of subsets of T\ by a subsequence, we can suppose that 
j = i + 1. Now we enlarge Ei+\ in the same way in which we enlarged S\. 

In order to show that the sequence Y% stabilises, we first need to describe the 
Vo-vertices of Yx. Recall that Yi can be constructed using the collection Ei of all 
the translates of the chosen representatives of S%. Proposition 7.5 shows that the 
non-isolated CCC's of Ei are of two types. In a given CCC, the crossings are either 
all strong or all weak. In the strong crossing case, Theorem 7.8 shows that the 
corresponding Vb vertex of Yi is of finite-by-Fuchsian type. Suppose that Ei has an 
element X which is if-almost invariant and crosses some other element of Et weakly. 
Then Proposition 7.5 shows that the CCC of E% which contains X contains only 
elements whose stabiliser is commensurable with if. Now the proof of Proposition 
7.16 tells us that the CCC of Et which contains X has stabiliser equal to Comma (if), 
and encloses every element of E% whose stabiliser is commensurable with H. As 
Comma (H) contains i f with finite index, it is two-ended. It follows that every VQ-
vertex group of Yi is either two-ended or of finite-by-Fuchsian type, and hence that 
every edge group of Yi is two-ended. Lemma 5.19 shows that the edge splittings of Yi 
are compatible with those of Yj for every j > i. Now we proceed as at the end of 
the proof of Theorem 7.14. Consider all the edge splittings of T i , . . . , Yk and choose 
one from each conjugacy class. Let A& denote the graph of groups structure for G 
whose edge splittings are the chosen ones. Such a graph of groups exists by Theorem 
2.35. It is trivial that Afc+i is a refinement of A&. Further, our construction implies 
that Afc has no redundant vertices. As the edge groups of A^ are two-ended, the 
accessibility result of Theorem 7.11 applies and tells us that the sequence A^ must 
eventually stabilise, i.e. there is TV such that Ayv = A n , for all n > N. It follows that 
the sequence Yi must stabilise, as required. We call this final graph of groups Y. 

By construction, Y is the required regular neighbourhood Y{T\ : G). Each VQ-
vertex group of Y is isolated, of small commensuriser type or of finite-by-Fuchsian 
type because this holds for each IV Finally, Y will consist of a single vertex if and 
only if either T\ is empty or the representatives of T\ lie in a single CCC. In the 
second case, the vertex group of Y must be two-ended or of finite-by-Fuchsian type. 
As the vertex group is G and we assumed that G is one-ended, it follows that Y[T\ : G) 
consists of a single vertex if and only if either T\ is empty or G is of finite-by-Fuchsian 
type. • 

In order to understand Y{T\ : G) in more detail, our next result lists some prop
erties which follow almost immediately from the above theorem and the properties of 
an algebraic regular neighbourhood. 

Theorem 9.4. — Let G be a one-ended, finitely presented group such that whenever i f 
is a two-ended subgroup and e(G,if) ^ 2, then i f has small commensuriser. Let T\ 

ASTERISQUE 289 



CHAPTER 9. CASE OF SMALL COMMENSURISERS 119 

denote the collection of equivalence classes of all nontrivial almost invariant subsets 
of G which are over a two-ended subgroup. 

Then the regular neighbourhood : G) is a minimal bipartite graph of groups 
decomposition of G with the following properties: 

(1) Each Vo-vertex v ofY^i : G) satisfies one of the following conditions: 
(a) v is isolated. 
(b) G(v) is the full commensuriser ComrriG'(ff) for some two-ended sub

group H, such that e{G,H) ^ 2. 
(c) v is of finite-by-Fuchsian type. 

(2) the edge groups ofT{!Fi : G) are two-ended. 
(3) any element of T\ is enclosed by some Vo-vertex of : G), and each VQ-

vertex o/r(jT1 : G) encloses such a subset of G. In particular, any splitting of G over 
a two-ended subgroup is enclosed by some Vo-vertex ofY(T\ : G). 

(4) if X is a nontrivial almost invariant subset of G over a finitely generated sub
group H, and if X does not cross any element of T\, then X is enclosed by a V\ -vertex 
o / T O :G). 

(5) if X is a H -almost invariant subset of G associated to a splitting of G over 
H, and if X does not cross any element of T\, then X is enclosed by a V\ vertex 
ofTift-.G). 

(6) the V\-vertices ofY(T\ : G) are simple. 
(7) If Yi and Y2 are minimal bipartite graphs of groups structures for G which 

satisfy conditions 3) and 5) above, then they are isomorphic provided that there is 
a one-to-one correspondence between their isolated Vo vertices, and that any non
isolated Vo-vertex ofY\ or Y2 encloses some non-isolated element of T\. 

(8) The graph of groups r(^ ri : G) is invariant under the automorphisms of G. 
(9) The edge splittings of Y(J^i : G) are precisely the canonical splittings of G 

over two-ended subgroups. Hence if G is not of finite-by-Fuchsian type and T\ is 
non-empty, then G has a canonical splitting over a two-ended subgroup. 

Proof. — Part 1) holds by Theorem 9.2. Part 2) holds because every edge of : G) 
has one end at a Vb-vertex, and each such vertex group is two-ended or of finite-by-
Fuchsian type. 

By construction, every element of T\ is enclosed by some Vo-vertex of r(J ri : 
G), and every nontrivial almost invariant subset of G over a two-ended subgroup is 
equivalent to some element of T\. Thus part 3) follows at once. Parts 4) and 5) follow 
from Proposition 5.7. 

To see that part 6) holds, suppose that X is a nontrivial almost invariant subset 
of G over a two-ended subgroup which is enclosed by some V\-vertex v of Y(T\ : G). 
Part 3) tells us that X is enclosed by some Vo-vertex of Y(Jr

1 : G). Now it follows 
from part 1) of Lemma 4.9 that X is associated to an edge splitting of Y(Fi : G). This 
implies that v is simple, so that every V\ vertex of Y(T\ : G) is simple as required. 
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Part 7) is. exactly the uniqueness result for regular neighbourhoods stated in The
orem 6.7. For conditions 3) and 5) of Theorem 9.4 ensure that T\ and T2 each satisfy 
conditions 1) and 2) of our definition of a regular neighbourhood, Definition 6.1. 
And the two provisos in the statement of part 7) ensure that Ti and T2 each satisfy 
conditions 4) and 5) of Definition 6.1. 

For part 8 ) , consider any automorphism a of G. Then a induces a natural G-
invariant action on T\. If we denote by P the pretree of CCC's of this collection, 
where we choose one representative for each element of T\ as in Definition 6.4, then a 
induces a G-invariant automorphism of P and thus defines a simplicial automorphism 
of the tree T. Thus there is an induced automorphism of r(jT1 : G). (See [2] for a 
discussion of automorphisms of graphs of groups.) 

To prove part 9), we start by observing that it is clear that every edge splitting 
of T(jr1 : G) is canonical, i.e. it has zero intersection number with any element of T\, 
because any element of T\ is enclosed by some vertex of Y(T\ : G). It remains to 
show that these are the only canonical splittings of G over two-ended subgroups. Let 
a denote a canonical splitting of G over a two-ended subgroup H, and let X denote 
the associated //-almost invariant subset of G. As AT has intersection number zero 
with every element of T\, Proposition 5.7 implies that it is enclosed by some V\-
vertex of T, the universal covering G-tree of T{Ti : G). But X is also enclosed by 
a Vo vertex of T. Now part 1) of Lemma 4.9 implies that a is conjugate to an edge 
splitting of Y{T\ : G) as required. Finally, if G is not of finite-by-Fuchsian type and 
T\ is non-empty, Theorem 9.2 implies that Y(T\ : G) does not consist of a single 
vertex. Thus T(JF1 : G) has at least one edge and so G has a canonical splitting over 
a two-ended subgroup. • 

At this point we need to discuss further a point about the topological JSJ -
decomposition which we mentioned in chapter 1. Recall that the frontier of the 
characteristic submanifold V(M) of a 3-manifold M is not quite the same as the 
canonical family T of annuli and tori in M. Some of the components of T may appear 
twice in the frontier of V(M). This means that we can obtain two slightly different 
graphs of groups structures for 7Ti(M), one graph being dual to T and the other dual 
to the frontier of V(M). The algebraic decomposition r(jF1 : G) which we obtained 
in Theorem 9.2 is closer to the second case. However, there is a natural algebraic 
object which corresponds to the first case also, and this can be defined without any 
regular neighbourhood theory. Namely consider the family of all conjugacy classes 
of canonical splittings of G over two-ended subgroups. Any finite subset of this 
family will be compatible and so will determine a graph of groups structure for G, 
by Theorem B.2.5. The accessibility result of Theorem 7.11 implies that if we take 
an ascending sequence of such finite families of splittings, the resulting sequence of 
graphs of groups structures will stabilise. Thus G has only finitely many conjugacy 
classes of canonical splittings and they determine a natural graph of groups structure 
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r' for G. Note that V need not be bipartite. The following result gives the connection 
between : G) and V. Recall that if a minimal graph of groups structure T for 
G has a redundant vertex, we can remove it by replacing the two incident edges by 
a single edge. If T is finite, repeating this will yield a graph of groups structure with 
no redundant vertices. 

Theorem 9.5. — Let G be a one-ended, finitely presented group such that whenever H 
is a two-ended subgroup and e(G, H) ^ 2, then H has small commensuriser. Suppose 
G is not of finite-by-Fuchsian type and possesses a nontrivial almost invariant subset 
over some two-ended subgroup H of G, so that G has a canonical splitting. Let Tf 

denote the graph of groups structure for G determined by a maximal family of non-
conjugate canonical splittings of G. Then 

(1) The graph of groups structure V for G is obtained from r(jT1 : G) by removing 
all redundant vertices as above. 

(2) The vertex groups of V are each simple, two-ended or of finite-by-Fuchsian 
type. 

(3) Any element of T\ is enclosed by some vertex ofV which is either two-ended or 
of finite-by-Fuchsian type. In particular, any splitting of G over a two-ended subgroup 
is enclosed by such a vertex ofV. 

Remark 9.6. — It follows from this result that V is closely related to the reduced 
algebraic regular neighbourhood of the collection of all nontrivial almost invariant 
subsets of G which are over a two-ended subgroup. 

Proof. — Let Y\ denote the graph of groups structure obtained from T(T\ : G) by 
removing all the redundant vertices. Thus the edge splittings of Ti are exactly those 
of r(jF1 : G), but now distinct edges of Ti have non-conjugate splittings of G as
sociated. Part 9) of Theorem 9.4 implies that there is a bijection between the edge 
splittings of V and of Ti, so that these graphs of groups structures for G are isomor
phic as required. This proves part 1). Now parts 2) and 3) follow immediately from 
Theorems 9.2 and 9.4. • 

Remark 9.7. — In the case of word hyperbolic groups, the graph of groups T{Ti : G) 
obtained in Theorem 9.2 is similar to that obtained by Bowditch in [5], but it may 
differ from that in [8] when r(jT1 : G) has isolated Vo-vertices corresponding to 
splittings over two-ended subgroups H which have at most three coends. This point 
is closely related to the discussion at the end of chapter 1 of the difference between 
the characteristic submanifold V(M) of a 3-manifold M and the submanifold V'(M). 
In particular, if V(M) has a solid torus component W whose frontier consists of 
a single annulus of degree 2 or 3 in W, then this annulus determines a splitting 
of G = 7Ti(M) over an infinite cyclic subgroup H which has two or three coends 
in G. Another difference between the decompositions is that ours has redundant 
vertices corresponding to canonical splittings which may not appear in Bowditch's 
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decomposition. However, such redundant vertices do not appear in the reduced version 
of our construction. 

The decomposition r' described in Theorem 9.5 also differs from that obtained by 
Sela in [49] for similar reasons. He further decomposes some of the vertex groups not 
of finite-by-Fuchsian type, and seems to take unfoldings of some of the edge splittings 
considered here. Moreover some vertex groups which are of finite-by-Fuchsian type 
in our terminology (for example, pairs of pants) may be counted as simple in his 
decomposition. Conditions 3), 4) and 5) of Theorem 9.4 are not in either of their 
results. 

There is yet another graph of groups structure for G which is also natural and 
is similar to V. We define a splitting a of G to be splitting-canonical if it has zero 
intersection number with every splitting of G over a two-ended subgroup. As for 
rr, there can be only finitely many conjugacy classes of splitting-canonical splittings 
of G which are over two-ended subgroups, and these yield a natural graph of groups 
structure T" for G, whose edge splittings are these splittings of G. The concepts 
of canonical and splitting-canonical are in general different. The following example 
demonstrates this, and simultaneously gives some insight into the properties of our 
regular neighbourhood T(T\ : G). 

Example 9.8. — Let A be a finitely presented group which is one-ended, admits no 
splitting over a two-ended subgroup, and is not finite-by-Fuchsian. For example, A 
could be the fundamental group of a closed hyperbolic 3-manifold. Let B be an 
infinite cyclic group, let d ^ 4 be an integer, and let dB denote the subgroup of index 
d in B. Let G denote an infinite cyclic subgroup of A and let G be constructed from 
A and B by identifying G with dB. Thus G = A*cB, and G is one-ended and finitely 
presented. Note also that if A is word hyperbolic, then so is G. Suppose that d is a 
composite number, say d = ran. Then G = A*c mB *m# B. We let crm denote the 
splitting of G over mB given by G = (A * c rnB) B. Thus the original splitting 
of G over G is ad- The lemma below shows that if p is prime and d = p 2, then the 
splitting crp of G over pB is splitting-canonical but not canonical. 

Lemma 9.9. — Let A, B, C, G and d be as in the above example. If p is prime and 
d — p 2 , then the splitting a p of G over pB is splitting-canonical but not canonical. 

Proof. — We start by considering the construction of G for general values of d. Let 
T be the G-tree determined by the given splitting ad of G over G, and let v be the 
vertex with stabiliser B. Then v has valence d in T. Let b denote a generator of B, 
and let so, • • •, s^-i denote the edges of T which are incident to v, labeled so that 
bsi — where the suffix is regarded as being modulo d, so that Sd — so- As 
usual, we choose v as the basepoint of T, and define (f : G —>• V(T) by the formula 
ip(g) — gv. We also orient the edges SQ, . . . , S d - i towards v. Let Z{ denote the almost 
invariant subset of G associated to Si. As v has finite valence, Corollary 4.16 implies 
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that the almost invariant subsets of G which are enclosed by v are all equivalent to 
some union of the Z^s and their complements. As each Zi is the union of all the 
remaining Zfs, it follows that any almost invariant subset of G which is enclosed 
by v is equivalent to some union of the Zfs. As the Z*'s are disjoint, we can apply 
the proof of Proposition 7.16. If d ^ 4, we have Case 2) of that proposition so that 
the regular neighbourhood T(T\ : G) is the graph of groups with a single edge given 
by the splitting G = A *c B. The vertex which carries B is a Vb-vertex of small 
commensuriser type. If d equals 2 or 3, then we have Case 1) of that proposition so 
that Y{Ti : G) has graph corresponding to G = A*c C *c B, and the vertex carrying 
C is the only Vb-vertex. 

If d — mn, then, as discussed in the above example, we have the splitting crm of G 
over mB given by G — {A *c mB) *MJB B. This induces a refinement Tm of T, in 
which the vertex v of valence d — mn is replaced by a tree which is the cone on points 
v\,..., vm, and the d edges which were attached to v are now attached to the vertices 
v\,..., vm with n of these edges being attached to each Vj. A similar replacement 
occurs for each translate of v, so that Tm is a G-tree. This shows that if we pick 
some Z{, then the union of its translates by mB is associated to a conjugate of the 
splitting am of G. It is also easy to see that, if m, n ^ 2, then crm is never canonical. 
For if X denotes the union of the translates of ZQ by mB, we let Y denote ZQ U Z\, 
and clearly X crosses Y. 

Now suppose that G has a splitting over some subgroup H, such that an associated 
//-almost invariant subset X of G is enclosed by v. As X is equivalent to some union 
of the Z*'s, and each Z* has stabiliser dB, it follows that dB C H C B. Thus we can 
write d — mn and H = mB. As the splitting over H and the given splitting over G 
are compatible, we can split T at v and at all its translates, to obtain a new G-tree 
which must be isomorphic to the above G-tree Tm. It follows that the splitting over 
H is conjugate to the splitting crm over mB. 

Now pick a prime p and let m = n = p , so that d = p2. The above discussion 
shows that if an almost invariant subset X is associated to a splitting a of G and is 
enclosed by v, then, up to equivalence, either AT is a single Zi or X is the orbit of a 
single Zi under the action of the subgroup pB of B. Thus a must be conjugate either 
to the original splitting <Jd over C, or to the splitting ap over pB. In particular, it 
follows that the splitting ov is splitting-canonical. As o~p is not canonical, the result 
follows. • 
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CHAPTER 10 

CANONICAL DECOMPOSITIONS OVER TWO-ENDED 
GROUPS WHEN COMMENSURISERS ARE LARGE 

Again we consider a one-ended, finitely presented group G and nontrivial almost 
invariant subsets over two-ended subgroups. This time, we do not assume that our 
two-ended subgroups have small commensurisers. This leads to two additional dif
ficulties. When we form the regular neighbourhood of a finite number of nontrivial 
almost invariant subsets of G which are over two-ended subgroups, the edge groups 
of the regular neighbourhood may no longer be two-ended. As pointed out in the 
introduction, this happens in the topological situation. For if one wants to enclose 
essential annuli in a 3-manifold M , one may obtain Seifert fibre space components 
of V{M) whose frontier has toral components. In the case of general finitely pre
sented groups, the edge groups may be even more complicated. Thus if we proceed, 
as in the previous chapter, to take regular neighbourhoods of larger and larger finite 
collections of almost invariant subsets over two-ended subgroups, we will not be able 
to show that our construction stabilises. Hence we are forced to consider directly 
regular neighbourhoods of infinite families of almost invariant sets. This leads to the 
additional problem of showing that the pretrees which appear in the regular neigh
bourhood construction are discrete. For this, Theorem 8.2 on the finite generation of 
certain Boolean algebras plays a key role. 

The main result of this chapter is our version of the JSJ-decomposition for arbitrary 
finitely presented groups with one end. 

Theorem 10.1. — Let G be a one-ended, finitely presented group, and let T\ denote 
the collection of equivalence classes of all nontrivial almost invariant subsets of G 
which are over a two-ended subgroup. 

Then the regular neighbourhood construction of chapter 3 works and yields a regular 
neighbourhood T{T\ : G). Each Vo-vertex v ofT{Ti : G) satisfies one of the following 
conditions: 

(1) v is isolated. . 
(2) v is of finite-by-Fuchsian type. 
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(3) G(v) is the full commensuriser Comma (//) for some two-ended subgroup H, 
such that e(G,H) ^ 2. 

T(Ti : G) consists of a single vertex if and only if T\ is empty, or G itself satisfies 
one of conditions 2) or 3) above. 

Remark 10.2. — We will say that a Vb-vertex in case 3) above is of commensuriser 
type, if v is not isolated nor of finite-by-Fuchsian type, and is of large commensuriser 
type, if in addition H has large commensuriser. 

Note that even if G is finitely presented, Example 11.1 shows that a vertex group 
of commensuriser type need not be finitely generated. 

Proof. — We start by picking a representative for each element of T\, subject to the 
condition that if A and B are elements of T\ such that B — gA, for some g in G, 
then the representatives X and Y chosen for A and B must satisfy Y = gX. 

Before proceeding further, we consider the very special case when G is virtually 
Z x Z . The equivalence classes of nontrivial almost invariant subsets of Z x Z which 
are over two-ended subgroups correspond to all the simple closed curves on the torus. 
It follows that the collection of all the chosen representatives of elements of T\ is 
cross-connected, so that the required regular neighbourhood exists and consists of a 
single Vo vertex with associated group G. As G is finite-by-Fuchsian, this proves the 
theorem in this case. In the following we will assume that G is not virtually Z x Z . 

Next we let So denote the subset of T\ whose elements are represented by almost 
invariant subsets of G which are over subgroups with small commensuriser. The 
proof of Theorem 9.2 applies to show that the regular neighbourhood construction 
of chapter 3 works to yield TQ = T(So : G). In what follows, we will express T\ as 
an ascending sequence of subsets Si of T\, for i ^ 0, and show that each Si has a 
regular neighbourhood Ti — Y(S% : G). Finally, we will show that the sequence Tt 

must eventually stabilise. The resulting graph of groups structure T for G will be the 
required regular neighbourhood T = r(jT1 : G). 

By our definition of So, any element of T\ — So will be represented by a //-almost 
invariant subset X of G, such that H is two-ended and has large commensuriser. From 
the collection of all such subgroups of G, we choose one group from each conjugacy 
class and denote the chosen groups by H0, j ^ 1. We choose Sl+\ to be the union 
of Si and all translates by G of elements of B(Hi+\). Clearly the union of the £2's 
equals T\. 

Let Eo denote the collection of the chosen representatives of all the elements of 
Denote H\ by H, so that S\ is the union of So and all translates by G of elements 
of B(H). We let E\ denote the collection of the chosen representatives of all the 
elements of S\. Theorem 8.2 tells us that B(H) has a finite system of generators 
when we regard B(H) as a Boolean algebra over Comma {H). We let X\,..., Xn be 
the chosen representatives of this system of generators. Thus any element of B(H) 
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can be represented by taking finite sums of finite intersections of the X^s and their 
complements. The proof of Proposition 8.6 shows that any isolated element of P ( P ) 
is a translate of some X% by an element of Comracf^). We will also need to consider 
the union of EQ with all the isolated elements of E \ . We denote this union by E'0. 
Thus E0 consists of EQ together with all the translates by G of those X^s which are 
isolated in E\. 

In order to show that £\ has a regular neighbourhood T\ — T(£\ : G), we will need 
to use some more facts from chapter 8. Recall that G is finitely presented, that H is 
a two-ended subgroup of G with large commensuriser and that G has a nontrivial H-
almost invariant subset. As we are assuming that G is not virtually ZxZ, Proposition 
8.1 tells us that the number of coends of H in G is infinite. Proposition 8.6 tells us 
that the corresponding cross-connected components (CCC's) consist of translates of 
a finite number of isolated almost invariant sets and a single CCC Poo which consists 
of an infinite number of almost invariant sets (we will call this 'the infinite CCC 
corresponding to P ) . We saw that any nontrivial K-almost invariant set with K 
commensurable with H is either isolated or in Poo- Note also that the stabiliser 
of Hoo is Comma (H). 

Let Po denote the pretree of CCC's of Po, let P\ denote the pretree of CCC's 
of Ei, and let PQ denote the pretree of CCC's of EF0. We know that Po is discrete and 
want to show that Pi is discrete. We note that the natural maps Po —> Po ~~* ^i are 
injective. 

Recall that the proof that Po is discrete, depended crucially on the discreteness 
of EQ, which holds because Po consists of translates of a finite family of almost in
variant sets. Recall that discreteness of a partially ordered set F means that, for any 
U, V G F , there are only finitely many Z G F such that U ^ Z ^ V. (See Lemma 
3.1) . The description of E'Q implies that this also is discrete, so that PQ is discrete. 

To show that Pi is discrete, we need to show that if A and G are distinct CCC's 
of Ei, then there are only finitely many CCC's B of Ei such that ABC. We know that 
there are only finitely many finite CCC's between A and C, because these come from 
elements of Ef0, which is discrete. So it remains to show that there are only finitely 
many infinite CCC's B between A and G. By construction, the only infinite CCC's 
in Ei are translates of the infinite CCC Poo corresponding to the commensurability 
class of H. We choose elements U and W of Pi, such that U G A and W G C. 
Suppose that B = Poo- The definition of betweenness for CCC's implies that there 
exists an element V of Poo such that U < V < W. Lemma 10.3 below shows that we 
can choose V in a special way. It shows that there is an almost invariant subset X 
of G which is a translate of one of the A2's by an element of Comma ( P ) , such that 
U ^ X $C W. Note that X will represent an element of B(H). If P is a translate gPoo 

of Poo such that ABC, then Poo lies between g~1 A and g~lC, and applying Lemma 
10.3 to this situation yields an almost invariant subset X of G as above except that 
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U ^ gX ^ W. Thus gX is a translate by an element of g Comma (P) of one of the 
-XVs. As only finitely many translates of the AVs can lie between U and W, it follows 
that there are only finitely many translates of between A and C. Thus Pi is a 
discrete pretree. 

Similar arguments yield an inductive proof that the pretree Pi is discrete, for all 
i ^ 0, so that each Si has a regular neighbourhood Tz = T(Si : G), as required. 

In order to show that the sequence I \ stabilises, we first need to describe the 
Vo vertices of IV The results of chapters 7 and 8 show that these are of three 
types, isolated, finite-by-Fuchsian type, and commensuriser type, which is where a 
Vb-vertex carries the group Comma (P) for some two-ended subgroup H of G such 
that e(G,P) ^ 2. Further, our construction implies that each Ti has i vertices of 
large commensuriser type. Now we claim that each Vb-vertex of large commensu
riser type encloses a splitting of G over a two-ended subgroup of G. For consider 
the Vb-vertex v determined by the infinite CCC Poo- Theorem 8.3 tells us that G 
splits over some subgroup commensurable with P . As the almost invariant subset 
associated to this splitting must lie in Q(P), and the proof of Lemma 8.6 shows that 
every element of Q(H) is enclosed by Poo, it follows that v encloses a splitting of G 
over a two-ended subgroup, as claimed. Thus we can refine I \ by splitting at each 
Vo vertex of large commensuriser type using such a splitting, to obtain a new graph 
of groups structure for G. This construction means that if we let f(i) denote the 
number of those edge splittings of which are over a two-ended group, then f(i) 
is strictly increasing. Now Theorem 7.11 implies that the sequence T[ must stabilise 
and hence that the sequence Ti must stabilise, as required. We call this final graph 
of groups r . By construction, T is the required regular neighbourhood : G). 
Each Vb-vertex group of T satisfies one of the three conditions in the statement of 
the theorem because this holds for each IV 

Finally, T will consist of a single vertex if and only if either T\ is empty or the 
representatives of T\ lie in a single CCC. In the second case, the vertex group of T 
must satisfy one of the three conditions in the statement of the theorem. As the vertex 
group is G and we assumed that G is one-ended, it follows that T{Ti : G) consists 
of a single vertex if and only if T\ is empty, or G is of finite-by-Fuchsian type, or G 
equals Comma(P) for some two-ended subgroup P, such that e(G, P ) ^ 2 . • 

Now we prove the following result which was used in the above proof. Recall that 
X\,..., Xn are the chosen representatives of elements of P ( P ) which generate B(H) 
over Comma (P) . 

Lemma 10.3. — Let A, B and C be distinct CCC's of E\, such that B equals the 
infinite CCC Poo; and B lies between A and C. Let U and W be almost invariant 
subsets of G such that U G A and W G G. Then there is an almost invariant subset 
X of G which is a translate of one of the Xi's by an element of Comma(P), such 
that U ^ X < W. 
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Proof. — As B lies between A and C, there is V G B with U < V < W. In particular, 
V represents an element of B{H). As B(H) is generated over Comma (P) by the 
AVs, any element of B(H) can be represented as a finite sum of finite intersections 
of translates of the X^s and their complements. We will need to prove the following 
two claims. 

Claim 10.4. — IfY and Z represent elements of B(H) and U < (Y -f Z) < W, then 
either U or W represents an element of B{H), or one of the four sets Y, Y* ; Z, Z* 
lies between U and W. 

Claim 10.5. — IfY and Z represent elements of B(H) and U < (Y fl Z) < W, then 
either U or W represents an element of B{H), or one of the four sets Y, Y* 7 Z, Z* 
lies between U and W. 

Here is the argument assuming these claims. Starting from an expression of V as 
a finite sum of finite intersections of the X^s and their complements, we apply one 
of these two claims. If one of the four sets Y, Y*, Z, Z* lies between U and W, we 
again apply one of these two claims, and repeat this process as long as possible. This 
process will eventually stop, at which point either we will see that U or W represents 
an element of B(H), or we will find an almost invariant subset X of G which is a 
translate of one of the X^s by an element of Comma (H), such that U < X < W. 
Such a set X completes the proof of the lemma. If U represents an element of B(H), 
then U is enclosed by the CCC B = ifoo- As U is also enclosed by the CCC A which 
is distinct from B, part 1) of Lemma 4.9 shows that U is equivalent to Zs for some 
edge s of T which is incident to H^. In particular, U represents an isolated element 
of B(H), which implies that U is equivalent to a translate of some Xi by an element 
of Comma {H). In this case, we find the required set X by simply choosing X = U. 
Similarly if W represents an element of B(H), we can choose X = W. Thus in all 
cases, we have found the required set X. 

It remains to prove Claims 10.4 and 10.5. 
To motivate our proof of Claim 10.4, consider the special case when U C (Y + Z) C 

W, and Y and Z are each nested with respect to U and to W. The group G is divided 
into the four disjoint subsets Y^ fl Z^\ As U is nested with respect to Y and Z, 
either U is contained in one of these four sets or U* is contained in one of these four 
sets. Now Y + Z = (Y n Z*) U (Y* fl Z), so it follows that either U c Y n Z* or 
U C Y* H Z. Similarly, as W* C (Y + Z)* = (Y fl Z) U (Y* n Z*), it follows that we 
must have W* C Y D Z or W* C Y* fl Z*. For each of the four possibilities, we will 
then obtain one of the four inclusions U C Y^ C W or U C Z^ C W as required. 
Here is the formal proof of Claim 10.4. 

Suppose that neither U nor W represents an element of B(H). Thus neither U nor 
W is enclosed by H^. As Y lies in B(H), it is enclosed by H^. As it is enclosed by 
a different CCC from U or W, it cannot cross U or W. Similarly, Z cannot cross U 

' SOCIETE MATHEMATIQUE DE FRANCE 2003 



130 CHAPTER 10. CASE OF LARGE COMMENSURISERS 

or W. Now consider the inequality U < (F + Z) . This is equivalent to the statement 
that U n (Y + Z)* is small. As (Y + Z)* = (Y n Z) U (F* fl Z*), it follows that 
/ 7 n ( F n Z ) and UH(F* HZ*) are each small. Hence / 7 * n ( F H Z ) and L7*n(F*nZ*) 
are each large (i.e. not small). This implies that each of U* fl F , £/* D Z, C/* fl F* 
and [/* n Z* is large. As U does not cross F or Z, we know that one of the four sets 
[/(*) n is small and that one of the four sets fl Z (*) is small. It follows that 
one of the two sets [/ D Y^ is small and that one of the two sets U D Z^*) is small. If 
U n F is small, then i7 n (F n Z*) is also small. As we already know that U n (F n Z) 
and 17fl (F* DZ*) are small, it follows that we have U ^ (F* HZ). Similar arguments 
apply in the other three cases. We conclude that U ^ (F* n Z) or U $J (F n Z*). 

Similar arguments using the inequality (F + Z) < W show that W* ^ (F D Z) or 
IF* ^ (F* D Z*). In each of these four cases, one sees that one of the four sets F , 
F*, Z, Z* is either equal to U or IF or lies between U and IF. Thus either U or IF 
represents an element of B(H), or one of the four sets F, F*, Z, Z* lies between U 
and IF, as required. 

The proof of Claim 10.5 is somewhat simpler. Suppose that U < ( F D Z) < W. 
Much as in the proof of Claim 10.4, one can show that as W does not cross F or Z, 
we have W* ^ (F n Z*), W* ̂  (F* n Z) or IF* ^ (F* n Z*). It follows that we have 
one of F ^ W or Z ^ IF. Thus we have U^Y^W or U^Z^W. As above, it 
follows that either U or W represents an element of B(H), or one of the two sets F 
and Z lies between U and IF, as required. • 

In order to understand r(7ri : G) in more detail, our next result lists some prop
erties which follow almost immediately from the above theorem and the properties of 
an algebraic regular neighbourhood. 

Theorem 10.6. — Let G be a one-ended, finitely presented group, and let T\ denote 
the collection of equivalence classes of all nontrivial almost invariant subsets of G 
which are over a two-ended subgroup. 

Then the regular neighbourhood r(7="i : G) is a minimal bipartite graph of groups 
decomposition of G with the following properties: 

(1) each Vo-vertex v q/T(jFi : G) satisfies one of the following conditions: 
(a) v is isolated. 
(b) v is of finite-by-Fuchsian type. 
(c) G(v) is the full commensuriser Comma(P) for some two-ended sub

group H, such that e(G, H) ^ 2. 
Further, if H is a two-ended subgroup of G such that e(G, H) ^ 2, and if H 

has large commensuriser, then r(7 r i : G) will have a Vo-vertex v such that G{v) — 
Comma (H). 

(2) / / an edge o /r(7 r i : G) is incident to a Vo-vertex of type a) or b) above, then 
it carries a two-ended group. 
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(3) any representative of an element of T\ is enclosed by some VQ vertex of 
r (7 r i : G), and each Vo-vertex of T{Ti : G) encloses such a subset of G. In par
ticular, any splitting of G over a two-ended subgroup is enclosed by some Vo-vertex 

(4) if X is a nontrivial almost invariant subset of G over a finitely generated sub
group H, and if X does not cross any element of T\, then X is enclosed by a V\-vertex 
ofT^x:G). 

(5) if X is a H-almost invariant subset of G associated to a splitting of G over 
H, and if X does not cross any element of T\, then X is enclosed by a V\-vertex 
ofT^-.G). 

(6) the V\ vertices ofY{T\ : G) are simple. (See Definition 9.1.) 
(7) If Ti and T2 are minimal bipartite graphs of groups structures for G which 

satisfy conditions 3) and 5) above, then they are isomorphic provided that there is 
a one-to-one correspondence between their isolated Vo~~vertices, and that any non
isolated Vo-vertex ofT\ orT2 encloses some non-isolated element of T\. 

(8) The graph of groups Y[T\ : G) is invariant under the automorphisms of G. 
(9) The canonical splittings of G over two-ended subgroups are precisely those edge 

splittings of T{Fi : G) which are over two-ended subgroups. This includes, but need 
not be limited to, all those edges o/T(jFi : G) which are incident to Vo-vertices whose 
associated groups are of type a) or b) above. 

Proof. — The description of the possible types of Vb-vertex given in part 1) follows 
from Theorem 10.1. Further, if H is a two-ended subgroup of G such that e(G, H) ^ 2, 
and if P has large commensuriser, then either G is virtually Z x Z , or e(G, P ) is 
infinite. In the first case, r(jT 1 : G) consists of a single vertex labeled G, and in the 
second case, Proposition 8.6 shows that r(7-*i : G) will have a Vb-vertex v such that 
G(v) — Comma (P) . Thus in either case, Y{T\ : G) will have a Vb-vertex v such that 
G(v) = CommG (H). 

The proofs for parts 2)-9) are the same as for parts 2)-9) of Theorem 9.4. • 

At this point, we note the connection between the above results and the Algebraic 
Annulus Theorem [15] for finitely generated groups. (See also [43] and [5] for the case 
of word hyperbolic groups.) The proof we give below is for finitely presented groups 
only and is not essentially different from that given by Dunwoody and Swenson in [15]. 
We include the argument here for completeness only. In the topological context, one 
can deduce the Annulus Theorem from the JSJ-decomposition in much the same way. 
Clearly regular neighbourhood theory is not essential for the proof of the Algebraic 
Annulus Theorem. Nor can it yield a proof for groups which are not finitely presented. 

Theorem 10.7 (Algebraic Annulus Theorem). — Let G be a one-ended, finitely pre
sented group. If G has a two-ended subgroup H such that e(G,H) ^ 2, then either G 
splits over some two-ended subgroup or G is of finite-by-Fuchsian type. 
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Proof. — The assumption implies that the set T\ in Theorems 10.1 and 10.6 is non
empty. Applying Theorem 10.1 yields the regular neighbourhood T = r(JT1 : G). If 
T consists of a single vertex, then G is of finite-by-Fuchsian type. Otherwise, each 
Vb-vertex of T has at least one incident edge. Any edge incident to a Vb-vertex of type 
a) or b) carries a two-ended group and so yields a splitting of G over such a group. If 
T has no such Vo-vertices, then it must have a Vb-vertex v of type c), and Theorem 
8.3 shows that G splits over some two-ended subgroup. The result follows. • 

A key point about the preceding arguments was that we considered all nontrivial 
almost invariant subsets of G over two-ended subgroups and did not restrict attention 
to those which are associated to splittings. However, now we have Theorem 10.1 , 
it is quite easy to deduce the existence of a regular neighbourhood of this smaller 
collection of almost invariant subsets. The result we obtain is the following. 

Theorem 10.8. — Let G be a one-ended, finitely presented group, and let Si denote 
the collection of equivalence classes of all almost invariant subsets of G which are 
associated to a splitting of G over a two-ended subgroup. 

Then the regular neighbourhood construction of chapter 3 works and yields a regular 
neighbourhood T(S\ : G). Each Vo-vertex v ofT(Si : G) satisfies one of the following 
conditions: 

(1) v is isolated. 
(2) v is of finite-by-Fuchsian type. 
(3) G(v) contains a two-ended subgroup H which it commensurises, such that 

e(G,H) ^ 2. 
IfT(Si : G) consists of a single vertex, then either S\ is empty, or G itself satisfies 

one of conditions 2) or 3) above. 

Remark 10.9. — Note that even if G is finitely presented, Example 11.1 shows that a 
vertex group of type 3) need not be finitely generated. Note also that if G commensu
rises a two-ended subgroup H such that e(G, H) ^ 2, then Example 10.10 shows that 
Y(S\ : G) need not consist of a single vertex. This is in contrast with the situation of 
Theorem 10.6. 

Proof. — We start from the regular neighbourhood T(J"\ : G) obtained in Theorem 
10.1 . Now we know that the construction of chapter 3 works, we can consider this 
construction directly. As in the proof of Theorem 10.1 , we start by picking a represen
tative for each element of T\, subject to the condition that if A and B are elements 
of T\ such that B = gA, for some g in G, then the representatives X and Y chosen 
for A and B must satisfy Y — gX. This determines the set E of all translates of 
these subsets of G, and we let S denote the subset of E consisting of almost invariant 
subsets of G which are associated to a splitting. When we replace E by S, we want 
to describe how the CCC's and their stabilisers alter. We claim that each G-orbit 
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of CCC's of E is the union of a finite number of G-orbits of CCC's of S. Given 
this, it is not difficult to verify that the pretree determined by S must be discrete, so 
that the regular neighbourhood T(S\ : G) exists. The reason for our claim is simply 
that otherwise, some Vo-vertex of r (7 r i : G) would enclose an infinite number of non-
conjugate compatible splittings of G over two-ended subgroups obtained by picking 
a splitting from each CCC of S, and this would contradict the accessibility result of 
Theorem 7.11. • 

Now we can give the examples referred to in Remark 10.9. These examples are to 
demonstrate that if G commensurises a two-ended subgroup H such that e(G, H) ^ 2, 
then T(<Si : G) need not consist of a single vertex. 

Example 10.10. — Let GPiq = A*c B, where A and B are both infinite cyclic and G 
has index p in A and index q in B. Thus GPjQ centralises, and hence commensurises, 
the two-ended subgroup G. If p , q ^ 2, then G splits over G, so that e(G, G) ^ 2. If, 
in addition, we exclude the case p — q = 2, then we claim that r (5 i : G p ? g ) does not 
consist of a single vertex. If p and q are both prime, then part 1) of Lemma 10.11 
below tells us that there is only one splitting of GPiq over a two-ended subgroup, 
up to conjugacy, which implies that T(S\ : Gp,q) is the graph of groups associated 
to G = A * c G * c B, where the vertex carrying G is the only Vb-vertex. If either p 
or q is composite, then there are other splittings of GPA over a two-ended subgroup. 
For example, if q = rs, then G = A*c rB *r# B, so that G splits over rB. However, 
part 2) of Lemma 10.11 shows that the given splitting of Gp^q over C is isolated among 
all the splittings of GPA over two-ended subgroups, so that Y{S\ : Gp,q) has more than 
one Vb-vertex, and in particular does not consist of a single vertex. 

These examples are closely related to some topological examples discussed in chap
ter 1. Let Wp^q denote the 3-manifold which is obtained by gluing two solid tori 
along an annulus A which has degree p in one solid torus and degree q in the other. 
Thus GPA = 7ri(Wp 5 ( ? ). If p, q ^ 2 and we exclude the case p — q = 2, then the 
annulus A is the only embedded essential annulus in Wp^qi up to isotopy. Note that 
this holds whether or not p and q are prime. The extra splittings discussed in the 
previous paragraph in the case when p or q is composite cannot be represented by an 
embedded annulus. 

On the other hand, M^,2 is filled by essential embedded annuli, and this implies 
that r (5 i : G 2 , 2 ) consists of a single vertex. 

Lemma 10.11. — Let GP)q — A * c B, where A and B are both infinite cyclic and C 
has index p in A and index q in B, where p , q ^ 2. 

(1) If p and q are prime and we exclude the case p = q = 2, then this is the only 
splitting of GPA over a two-ended subgroup, up to conjugacy. 

(2) If we exclude the case p — q — 2, then the given splitting of G over C is isolated 
among all the splittings of GPA over two-ended subgroups. 
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Proof. — Denote the given splitting of G over C by cr, and suppose that GPiQ has a 
splitting r over a two-ended subgroup P . As GPiq is torsion free, H must be infinite 
cyclic. Let T denote the G-tree determined by the splitting r, and let c denote a 
generator of G. As G is central in Gp^q, either c fixes every vertex of T, or c fixes 
no vertex of T. In the first case C also fixes every edge of T and so is contained 
in P . In the second case, G has an axis I in T, which must be G invariant, so it 
follows that I = T. As P stabilises one edge of Z, it must act trivially on T, so that 
GPiq is isomorphic to Z x Z or to the fundamental group of the Klein bottle, both 
of which are clearly impossible. (Note that if p = q — 2, then GPiq is isomorphic 
to the fundamental group of the Klein bottle. This is why we excluded this case.) 
We conclude that C is contained in P . Now we consider the quotient group Gp^q/C. 
The splitting a of GPA induces the free product splitting Z p * Z q of GPiq/C, which 
we denote by a'. The splitting r of Gp,q induces a splitting r' of GPA/C over the 
finite group H/C. Note that as Z p * 7Lq has finite abelianisation, r' cannot be a HNN 
extension. 

If H/C is trivial, we use the fact that any free product of two freely indecomposable 
groups, neither of which is Z has a unique free product splitting up to conjugacy. This 
can be seen by considering the two G trees corresponding to the two splittings, as 
the vertex stabilisers must be the same in both trees. It follows that if H/C is trivial, 
then o' and r' are conjugate, and hence that a and r are conjugate. 

Now we suppose that H/C is nontrivial and denote it by K. Note that K is finite 
cyclic. Suppose that the splitting r' of Z p * Z q is P *K Q. The Kuros Subgroup 
Theorem implies that K is conjugate to a subgroup of Z p or Z g . 

If p and q are both prime, it follows that K is conjugate to Z p or Z q . By conjugat
ing r, and interchanging p and q if needed, we can suppose that K — Zg . As P and Q 
each contain K — Z q , the Kuros Subgroup Theorem implies that each has Zg as a 
free factor. Further as P ^ K ^ Q, there are nontrivial groups L and M such that 
P *K Q = (K * L) *x (K * M) ~ K * L * M. This is impossible, as Z p * Z q cannot be 
expressed as a free product of three nontrivial groups. This contradiction shows that 
when p and q are prime, H/C must be trivial. Now the preceding paragraph shows 
that a and r must be conjugate. As r is arbitrary, this completes the proof of part 
1) of the lemma. 

Next we consider general values of p and q. We will show that a and r are 
compatible splittings of Gp>q. As r is arbitrary this will show that a is isolated 
among all the splittings of GPA over two-ended subgroups, as required. Suppose 
that K C Z q . The Subgroup Theorem applied to Z p and Zg implies that each is 
conjugate into P or Q. As they generate Z p * Zq, one must be conjugate into P 
and one into Q. Thus we can suppose that Z p is conjugate into P, and Zq is 
conjugate into Q. Now the Subgroup Theorem applied to P and Q implies that 
P = Z p * K * L, for some group L, and Q = Zq * M, for some group M. It follows that 
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Z v * Z q = P * x Q ^ (Zp * K * L) *K (Zq * M) = (Zp * P) * (Z 9 * M) = Zp * Z q * P * M, 
which implies that P and M are trivial. Hence P = Z p * P and Q = Z q , so that 
Z p * Z g = P *K Q — ( Z p * P ) * K Z g . Thus we have a graph of groups structure for 
Z p * Z q with two edges, whose associated edge splittings are conjugate to a' and rf. 
This induces a graph of groups structure for GPiq with two edges, whose associated 
edge splittings are a and r, which shows that a and r are compatible, as required. • 
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CHAPTER 11 

EXAMPLES 

We start this chapter with some specific examples, and then give some more general 
ones. 

Our first example is of a one-ended, finitely presented group G such that the regular 
neighbourhood T(G) of equivalence classes of all nontrivial almost invariant subsets 
of G which are over two-ended subgroups has a Vb-vertex of commensuriser type with 
a non-finitely generated vertex group. 

Example 11.1. — We start by showing that there exists a one-ended, finitely presented 
group A which has an infinite cyclic subgroup H such that Coming (P) is not finitely 
generated. To construct such a group, we take a free group F of count ably infinite 
rank, and an infinite cyclic group H. As F embeds in F2, the free group of rank 2, 
we can embed F x H in E — (F x H) *F F 2 . Clearly E is finitely generated and 
recursively presented, and Comm^i?) = F x H. Now we embed E in a finitely 
presented group L using Higman's Embedding Theorem [23]. He first constructs 
a certain finitely presented group K and then constructs L as a HNN extension 
with vertex group K x E. It is clear from the construction that Comm^(F) = 
K x Coming (P) = K x F x H, which is not finitely generated. If L is one-ended, we 
take A — L . Otherwise, the accessibility result of Dunwoody in [12] implies that L 
can be expressed as the fundamental group of a graph of groups with all edge groups 
finite, and all vertex groups having zero or one end. The vertex groups must then be 
finitely presented. Now one of these vertex groups must contain K x F x H, and this 
is the required one-ended, finitely presented group A . 

Now let C denote K x F so that Commyi(P) = C x H, let D denote any nontrivial 
finitely presented group, and let B denote C * D. Wfe define G — A *CXH 

(B x H). 

As B = C * D , we can also write G — A *H {D * H ) , so that G is finitely presented 
and splits over H. Now Comma (if) = B x H which is not finitely generated. As 
G splits over H and Comma (H) is not finitely generated, it follows that T(G) has a 
VQ vertex with associated group Comma (H). 
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If one can choose A so as not to split over any two-ended subgroup, then the 
graph of groups T(G) consists of a single edge which induces the decomposition G = 
A*CxH (B x H). 

It is natural to ask what can be said about the edge groups of T(G) which are 
incident to a Vo-vertex of commensuriser type. We have already pointed out that 
if the commensuriser vertex group is not finitely generated, then some incident edge 
group must also be not finitely generated. In the case of 3-manifolds, the components 
of V(M) which correspond to a VQ vertex of commensuriser type are Seifert fibre 
spaces, and each frontier component is a vertical annulus or torus. In particular, the 
incident edge groups all contain the normal subgroup H carried by a regular fibre of 
the Seifert fibre space. However the following example shows that this does not hold 
in general. 

Example 11.2. — Let K and L be free groups of rank at least 2, let H be an infinite 
cyclic group and let A and B be groups which properly contain K and L respectively. 
Then define G = A *K {K x H) *H (H x L) *L B. Then CommG(P) = (K * L) x H. 
As G splits over H, it follows that T(G) has a Vo-vertex of commensuriser type with 
associated group Comma (i / ) . If we choose A and B to be one-ended, it is easy to 
see that G is also one-ended. For if G splits over a finite subgroup, the one-endedness 
of A implies that A must be conjugate into a vertex group G\ of G. In particular K 
is conjugate into G\ which implies that H, and then L must also be conjugate into 
G\. As B contains L and is one-ended, it follows that B is also conjugate into Gi, 
which contradicts the assumption that G has a splitting. 

If we assume that A has no two-ended subgroups D with e(A, D) ^ 2 and similarly 
for B, then we claim that T(G) is the graph of groups given by 

G = v 4 * K [(K*L) xH}*LB. 

Assuming this, then it is clear that neither of the edge groups of the two edges incident 
to the commensuriser vertex of T(G) contains H. 

To justify the above claim about T(G), we need to show that if G is a two-ended 
subgroup of G such that e(G, G) ^ 2, then C is conjugate to a subgroup of H, and any 
nontrivial C almost invariant subset of G is enclosed by the commensuriser vertex of 
the above graph of groups. This can be shown topologically. Pick compact spaces 
with fundamental groups A, B, K and L, and use them to form a compact space with 
fundamental group G. Then consider a covering space with fundamental group G. 

Next we give a specific example, which puzzled us for many years before we un
derstood the theory of regular neighbourhoods. This is related to the problem of 
unfolding of splittings over two-ended subgroups, which appeared to make it very 
difficult to produce a truly canonical algebraic JSJ-decomposition. Our work in this 
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paper solves this problem by showing how to enclose all splittings over two-ended 
subgroups simultaneously. 

Example 11.3. — Let A and B be finitely generated groups, and let C and D be 
infinite cyclic subgroups of A and B respectively. Let nD denote the subgroup of D 
of index n. Let G denote the group A *c=6D B, and let a§ denote this splitting 
of G over 6D. For k — 1, 2 or 3, let Ak denote A *c=6D kD. Then we can also 
express G as A^ B, for k = 1, 2 or 3. Let o \ , a2 and as denote these three 
splittings of G over D, 2D and 3D respectively. The two splittings a2 and a3 of G 
must have non-zero intersection number, because otherwise they would be compatible 
by Theorem 2.35, and it is easy to see that this is impossible. We prove in the lemma 
below that the regular neighbourhood of a2 and as in G is the graph of groups T 
with two edges given by A *c=6D D * D B. This graph has a single Vb-vertex carrying 
D and two other vertices which are V\-vertices. One way to prove this would be 
to check that the conditions in Definition 6.1 hold. Certainly the vertex of T which 
carries D does enclose each of the splittings a2 and 0 3 . To see this for a2l observe 
that the graph of groups T2 given by G — A *c=6D 2D *2D D *£> B is the required 
refinement of T, and similarly for 0-3. Also T is minimal and the condition on isolated 
Vo-vertices is vacuous, because neither a2 nor as is isolated. But it is not easy to 
verify directly that T satisfies Condition 2) of the definition. Instead, we will directly 
consider the construction of the regular neighbourhood of a2 and (73 in C, which we 
gave in chapter 3. This is possible in this case, because we can directly understand 
the connections between the almost invariant sets associated to the four different 
splittings described above. 

Lemma 11.4. — If A, B, C, D, G and ak, for k = I, 2, 3 or 6, are all as in Example 
11.3, then the regular neighbourhood of a2 and 03 in G is the graph of groups T with 
two edges given by A *c=6D D *£> B. This graph has a single Vo-vertex carrying D 
and two other vertices which are V\ vertices. 

Proof. — For k = 1, 2, or 3, we let Zk denote one of the standard almost invariant 
subsets of G associated to the splitting ak- We let Z denote one of the standard 
almost invariant subsets of G associated to the original splitting a$. Finally, let d 
denote a generator of D. Consider the G-tree T2 determined by the graph of groups 
T2. Let v be a vertex with stabiliser 2D. There is one edge s incident to v with 
stabiliser 2D and three other edges incident to v each with stabiliser 6D. If t denotes 
one of these three edges, then the other two equal d2t and dH. We orient s towards 
v and t away from v, and pick any basepoint for T2. We choose Z2 — Zs and Z — Zt. 
It is now immediate that Z2 — Z U d2 Z U d4 Z. Similarly, considering r$, shows that 
Zs — Z U d3Z. We claim that the CCC of E which contains Z2 and Z3 consists 
precisely of Z 2, d3Z2, Z3, d2Z^ and d4Z^. Clearly these must all lie in vo, and we 
are claiming that no other translates of Z2 cross Z3, and that no other translates 
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of Z3 cross Z2. Assuming this, it follows that the stabiliser of VQ is simply the group 
generated by the stabilisers of Z2 and Z 3 , namely 2D and 3D, which is exactly D. 
Further, we claim that for any element a of A — D, the CCC's ^0 and avo are adjacent 
in the pretree, and that the analogous statement holds for any element of B — D. It 
follows that the regular neighbourhood of a2 and 0-3 in G has a single Vb-vertex with 
associated group D and has a V\ -vertex with associated group A and a Vi-vertex 
with associated group B. As these groups generate G and the regular neighbourhood 
is a minimal graph of groups, it follows that the regular neighbourhood must be the 
graph T described above. 

Now we prove the first claim about the composition of the CCC VQ of E which 
contains Z2 and Z3. This requires showing that no translate of Z2 by an element 
of G — D can cross Z3. It will then follow immediately that no translate of Z3 by an 
element of G — D can cross Z2. Let g be an element of G — D. We need to show 
that gZ2 and Z3 are nested. Considering T2 shows that we have either gZ\ C Z* or 
gZ^ C kZ^\ where kZ^ is not Z or Z*, so that k D. Considering T3 shows that 
Z* C ZI and kZ^ c Z 3 , when k <£ D, so that gZ2 and Z 3 are nested, as required. 
Hence the CCC VQ contains the five elements claimed. Note that as î o contains Z2 

and Z3, every CCC is a translate of VQ by some element of G. 
Next we prove that avo is adjacent to vo, for any element a of A — D. If some 

CCC gvo lies between VQ and avo, then there is an element X of VQ such that gX lies 
between Z2 and a^2. It is easy to see that this is impossible, using the fact that a 
stabilises a vertex of T2 adjacent to v. We prove similarly that bvo is adjacent to VQ, 
for any element b of B — D. This completes the proof of the lemma. • 

Now we come to the first of our general examples. 

Example 11.5. —- Let G be the fundamental group of an orientable Haken manifold. 
Recall from the discussion in chapter 1 that for our purposes we will consider the 
submanifold V'(M) of M rather than the characteristic submanifold V(M). The Vb 
vertices of the decomposition F of chapter 10 applied to G essentially correspond to the 
peripheral components of V'{M). However we get extra Vb" vertices corresponding to 
most of the annulus components in the frontier of the peripheral components of V (M). 
In fact, if S is an annulus component of the frontier of a peripheral component W 
of V'(M), we get an extra Vb vertex corresponding to S except in the case when 
W is homeomorphic to S x / . To see this, observe that the peripheral components 
of V'(M) are filled by essential annuli. (In most cases, these annuli can be chosen 
to be all embedded.) Moreover, we showed in [45], that the frontier components 
of V{M) induce splittings of G which are 1-canonical. The non-peripheral components 
of V'(M) do not enclose nontrivial almost invariant sets over two-ended subgroups, 
since this would give a splitting of a Seifert fibre space over a two-ended subgroup 
relative to its boundary. Thus the Vb-vertices of V correspond to the peripheral 
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components of V'{M) together with the extra annuli mentioned above. Note the 
reduced version of V does not have these extra Vb-vertices. 

We will obtain an algebraic analogue of the whole submanifold V'(M) in chapter 13. 
We next compare the decompositions of arbitrary finitely presented groups obtained 

by Bowditch in section 15 of [8] with ours. The construction of Bowditch in [8] is in 
terms of axes and does not seem to give the enclosing properties that we described in 
the previous chapters. Also it is not clear whether his decomposition is independent of 
the axis chosen. It seems that different choices of axes give the same Vb-vertex groups, 
but the edge groups may be different. We give an example where the decomposition 
given in the previous chapter may differ from that in [8]. 

Example 11.6. — Start with a one-ended hyperbolic group K which does not have 
any splittings over two-ended subgroups and let L be the HNN-extension obtained 
by identifying two non-conjugate infinite cyclic subgroups Hi, H2 of K. Let M be 
the product of a one-ended group with an infinite cyclic group H. Let G be the 
group obtained by amalgamating L and M along Hi and H. If we take the axis 
corresponding to the final decomposition, Bowditch's construction again yields the 
decomposition L *#1=# M. However in our decomposition, there are two more VQ-

vertices corresponding to the two splittings over Hi, i — 1, 2. This is more canonical, 
since it takes care of all splittings of G over virtually cyclic groups. 

Recall from Example 11.1 that Comma (H) need not be finitely generated. In such 
a case, it is not at all clear how the edge groups in Bowditch's decomposition and 
ours correspond. It is possible that the decompositions obtained by Bowditch for big 
enough axes are the same as ours. Even if this is possible, it is not clear how to prove 
the enclosing property for almost invariant sets without going through some work 
similar to that in this paper. 

Finally, we give an example from 3-manifold topology which motivates some of our 
later work. This is Example 2.13 of our paper [45]. 

Example 11.7. — Let F \ and F 2 denote two compact surfaces each with at least two 
boundary components. Let E 2 denote Fi x S1, let Ti denote a boundary component 
of and construct a 3-manifold M from Ei and E 2 by gluing T\ to T2 so that the 
given fibrations by circles do not match. Let T denote the torus Ei fl E 2 . Then T 
is a canonical torus in M, and the characteristic submanifold V(M) of M has two 
components which are a copy of Ei and a copy of E 2 . Let H denote the subgroup 
of G — i\\(M) carried by T. Then there is a splitting a of G over H which has 
non-zero intersection number with the splitting r determined by T. 

The splitting a is constructed as follows. Let Gi denote 7Ti(Ei), and let Ci denote 
the subgroup of Gi carried by Ti. The starting point of our construction is that if 
F is a compact surface with at least two boundary components, and if S denotes a 
boundary circle of F, then S carries an infinite cyclic subgroup of TT\(F) which is a 
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free factor of TTI(F). NOW it is easy to give a splitting of TT\(F) over 7Ti(5), and hence 
a splitting of Gi over Ci. If each TTi(Fi) is free of rank at least 3, then we can write 
Gi = Ai * c z Bi. If we let A denote the subgroup of G generated by A\ and A2, i.e. 
A = A\*H A2, and define B similarly, then we can express G as A*HB, and it is easy 
to see that this splitting a of G has non-zero intersection number with the splitting 
r of G determined by T. If ni(Fi) has rank 2, then we can write Gi = Ai*d and a 
similar construction can be made. 

The point of this example is the following. The fact that T is topologically canonical 
means that any essential annulus or torus in M has zero intersection number with T. 
But this example shows that the splitting r determined by T is not algebraically 2-
canonical. Now the natural next step after the results of the previous chapters would 
be to attempt to define an algebraic analogue of the characteristic submanifold of a 
3-manifold to be the regular neighbourhood of all nontrivial almost invariant subsets 
of G which are over subgroups isomorphic to Z or to Z x Z. Suppose that this can be 
done and consider the case when G is the fundamental group of the manifold M in 
the above example. Let Y denote the regular neighbourhood. The fact that r crosses 
another splitting over Z x Z implies that it cannot be an edge splitting of T, so that 
clearly Y would not be the same as the topological JSJ-decomposition of M. In fact, 
we do not know whether there is such a regular neighbourhood. However, our results 
in [45] imply that the topological JSJ-decomposition is a reduced algebraic regular 
neighbourhood of all nontrivial almost invariant subsets over Z and of all 1-canonical 
nontrivial almost invariant subsets over Z x Z , and this is what we will generalise in 
later chapters. 
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CANONICAL DECOMPOSITIONS OVER VPC GROUPS 
OF A GIVEN LENGTH 

As stated at the beginning of chapter 7, the analogues of the results of chapters 
7 to 10 go through for almost invariant sets over VPCn groups assuming that G 
does not have nontrivial almost invariant sets over VPC groups of length < n (the 
analogue of Proposition 7.2 is Proposition 13.3, which we prove in the next chapter). 
Note that the results of [13] and [15] imply that the condition that G does not have 
nontrivial almost invariant sets over VPC groups of length < n is equivalent to the 
condition that G does not split over such a subgroup. We will use these two conditions 
interchangeably. 

We will need the following definitions. 

Definition 12.1. — Let T be a minimal graph of groups decomposition of a group G. 
A vertex v of T is of VPC-by-Fuchsian type if G(v) is a VPC-by-Fuchsian group, 
where the Fuchsian group is not finite nor two-ended, and there is exactly one edge 
of r which is incident to v for each peripheral subgroup K of G{v) and this edge 
carries K. If the length of the normal VPC subgroup of G(v) is n, we will say that 
G(v) is of VPCn-by-Fuchsian type. 

Note that if G — G(v), then the Fuchsian quotient group corresponds to a closed 
orbifold. Note also that if G(v) is of I/P(7n™by-Fuchsian type, then each peripheral 
subgroup of G(v) is VPC(n + 1). 

Definition 12.2. — Let T be a minimal graph of groups decomposition of a group G. 
A vertex v of T is n-simple, if whenever X is a nontrivial almost invariant subset 
of G over a VPC subgroup of length at most n such that X is enclosed by v, then X 
is associated to an edge splitting of T. 

The following are the results which we obtain. To prove these results, we will 
need generalisations of the results in chapter 8 on the Boolean algebra B(H) to the 
case when H is VPCn. Such results can be proved by the same methods. This will 
then allow us to handle the Vb-vertices of large commensuriser type in our regular 
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neighbourhood. As in chapters 9 and 10, we first state the basic existence result for 
the appropriate regular neighbourhood and then list its properties. Recall that we 
use the term length instead of Hirsch length, for brevity. 

Theorem 12.3. — Let G be a one-ended, finitely presented group which does not split 
over VPC groups of length < n, and let Tn denote the collection of equivalence classes 
of all nontrivial almost invariant subsets of G which are over VPCn groups. 

Then the regular neighbourhood construction of chapter 3 works and yields a regular 
neighbourhood Tn = T(jTn : G). Each Vo-vertex v ofTn satisfies one of the following 
conditions: 

(1) v is isolated, so that G(v) is VPCn. 
(2) G(v) is ofVPC(n — l)-by-Fuchsian type. 
(3) G(y) is the full commensuriser Comm^i^) for some VPCn subgroup H, such 

that e(G, H) ^ 2. 
Tn consists of a single vertex if and only if Tn is empty, or G itself satisfies one 

of the above three conditions. 

Remark 12.4. — When n = 1, the decomposition I \ is precisely the decomposition 
obtained in Theorem 10.1. 

Now we list the properties of Tn. 

Theorem 12.5. — Let G be a one-ended, finitely presented group which does not split 
over VPC groups of length < n, and let Tn denote the collection of equivalence classes 
of all nontrivial almost invariant subsets of G which are over VPCn subgroups. 

Then the regular neighbourhood Tn = r(JT n : G) is a minimal bipartite graph of 
groups decomposition of G with the following properties: 

(1) each Vo-vertex v ofTn satisfies one of the following conditions: 
(a) v is isolated, so that G(v) is VPCn. 
(b) G(v) is ofVPC(n — 1) by Fuchsian type. 
(c) G(v) is the full commensuriser CommG*(i7) for some VPCn subgroup H, 

such that e(G, H) ^ 2. 
Further, if H is a VPCn subgroup such that e(G, H) ^ 2, and if H has large 

commensuriser, then Tn will have a Vo vertex v such that G(v) = CommG(F). 
(2) / / an edge ofTn is incident to a Vo-vertex of type a) or b) above, then it carries 

a VPCn group. 
(3) any representative of an element of is enclosed by some Vo-vertex ofTn, 

and each Vo-vertex of Tn encloses such a subset of G. In particular, any splitting 
of G over a VPCn subgroup is enclosed by some Vo -vertex of Tn. 

(4) if X is a nontrivial almost invariant subset of G over a finitely generated sub
group H, and if X does not cross any element of Tn, then X is enclosed by a V\-vertex 
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(5) if X is a H-almost invariant subset of G associated to a splitting of G over H, 
and if X does not cross any element of Tn, then X is enclosed by a V\ vertex ofTn. 

(6) the V\-vertices ofTn are n-simple. (See Definition 12.2.) 
(7) If Ti and T2 are minimal bipartite graphs of groups structures for G which 

satisfy conditions 3) and 5) above, then they are isomorphic provided that there is 
a one-to-one correspondence between their isolated Vo-vertices, and that any non
isolated Vo-vertex ofT\ or T2 encloses some non-isolated element of T\. 

(8) The graph of groups Tn is invariant under the automorphisms of G. 
(9) The n-canonical splittings of G over a VPCn subgroup are precisely those edge 

splittings of Tn which are over such a subgroup. This includes, but need not be limited 
to, all those edges ofTn which are incident to Vo-vertices whose associated groups are 
of type a) orb) above. 

We noted in the introduction, that, for n ^ 2, the special case of Theorem 12.3 
when G is a Poincare duality group of dimension n+1 recovers the results of Kropholler 
in [27]. We will briefly discuss this. First we need to show that if G is a Poincare 
duality group of dimension n + 1, then G does not split over VPC groups of length 
< n, so that Theorem 12.3 applies. This follows from Theorem A of Kropholler and 
Roller in [31], which shows that if H is a VPC subgroup of G such that G splits over 
H', then H has length n. Now we consider the Vb-vertices of Tn. Those of isolated 
type and of VPC[n — l)-by-Fuchsian type correspond to vertices of Kropholler's 
decomposition, but his results do not mention vertices of commensuriser type. In 
order to complete our discussion, we consider the Vo-vertices of Tn of this type. If H 
is a PDn-subgroup of G, it has 2 coends in G. Hence Proposition 7.4 implies that 
nontrivial almost invariant subsets of G which are over PDn-subgroups of G cannot 
cross weakly. If n = 1, it follows from the proofs of Lemmas 7.16 and 8.6 that if v 
is a Vb vertex group of commensuriser type, so that G(v) = Commc^iir), then G(v) 
contains the incident edge groups with index at most 3. If n > 1, we obtain the same 
conclusion by using generalisations of these two lemmas. Thus G(v) is a finite torsion 
free extension of the PDn-group H. This implies that G(v) is itself a PDn-group, 
and the same holds for the incident edge groups. Now Kropholler and Roller proved 
in Corollary A2 of [29] that if a PD(n + l)-group G splits over a PDn-subgroup K, 
and if K is contained in a PDn-subgroup L of G, then K has index at most 2 in L. 
It follows that either v is isolated, or that it has valence 1 and G(v) contains the 
incident edge group K as a subgroup of index 2. This reconciles our decomposition 
with that of Kropholler. In a later paper, we plan to discuss this in more detail. We 
also plan to show how our ideas can be used to recover and generalise Kropholler's 
results for the case of PDn-pairs. 

As in chapter 10.1, we can deduce from Theorem 12.3 that one can also form a 
regular neighbourhood of only those almost invariant subsets which are associated to 
splittings. This is the result we obtain. 
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Theorem 12.6. — Let G be a one-ended, finitely presented group which does not split 
over VPC groups of length < n, and let Sn denote the collection of equivalence classes 
of all almost invariant subsets which are associated to splittings of G over VPCn 
groups. 

Then the regular neighbourhood construction of chapter 3 works and yields a regular 
neighbourhood T{Sn : G). Each Vo-vertex v ofT(Sn : G) satisfies one of the following 
conditions: 

(1) v is isolated, so that G{v) is VPCn. 
(2) G(v) is ofVPC(n — 1)-by-Fuchsian type. 
(3) G(v) contains a VPCn subgroup H, which it commensurises, such that 

e(G, H) ^ 2. 
IfT(Sn : G) consists of a single vertex, then either Sn is empty, or G itself satisfies 

one of conditions 2) or 3) above. 

Remark 12.7. — Note that even if G is finitely presented, Example 11.1 shows that 
a vertex group of type 3) need not be finitely generated. Note also that if G com
mensurises a VPCn subgroup H, such that e(G,H) ^ 2, then Example 12.8 below 
shows that T(Sn : G) need not consist of a single vertex. This is in contrast with the 
situation of Theorem 12.5. 

Example 12.8. — This is the natural generalisation to higher rank of Example 10.10. 
We let Gp q — A * c B\ where A and B are both free abelian of rank n and C has 
index p in A and index q in B. Thus G™ centralises, and hence commensurises, the 
VPCn subgroup C. If O 2> then GplQ sPlits over c , so tnat e(G, G) ^ 2. Note 
that Gpq is not VPC, except in the case p = q = 2. If we exclude the case p — q = 2, 
then we claim that T(Sn : G™q) does not consist of a single vertex. 

For simplicity, we present the proof of this claim on the assumption that the quo
tients A/C and B/C are cyclic. This allows us to apply directly results used in 
Example 10.10. However, the claim holds without this assumption, and its proof 
needs only a very minor generalisation of the argument. 

To prove this claim, we argue as in the proof of Lemma 10.11, which deals with the 
case when n — 1. Now suppose that n > 1. Let a denote the given splitting of Gpq 
over G, and suppose that G™ q has a splitting r over a VPCn subgroup H. The first 
paragraph of the proof of Lemma 10.11 implies that, as C is central in Gpq, either 
it is contained in H, or H is normal in G^q and the quotient group is isomorphic 
to Z or to Z2 * Z2. The second case would imply that Gpq was VPC, which is only 
possible in the case p — q — 2, which we are excluding. It follows that the splittings 
a and r of G™ induce splittings a' and r' of G^^jC, where a' is the free product 
splitting Zp * 7Lq, and r' splits over the finite group H/C. 

Now we proved in Lemma 10.11 that, if p and q are prime, then a' and r' are 
conjugate splittings of Zp * Zg. This implies that a and r are conjugate splittings 
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of Gpq. Thus, up to conjugacy, G™9 has a unique splitting over a VPCn subgroup. 
We also proved for general values of p and q, that a' and r' are compatible splittings 
of Gpq. As r is arbitrary, this implies that a is isolated among all splittings of G^q 

over a VPCn subgroup. As in Example 10.10, this implies that T(Sn : G™ ) does not 
consist of a single vertex, as claimed. 





CHAPTER 13 

CANONICAL DECOMPOSITIONS OVER VPC GROUPS 
OF TWO SUCCESSIVE LENGTHS 

As usual, let G denote a one-ended, finitely presented group. In this chapter, 
we examine the problem of enclosing almost invariant subsets of G over VPC sub
groups of two successive lengths n and n + 1. Note that VPC groups of length at 
most 2 are virtually abelian. As discussed at the end of chapter 11 in the case when 
n = 1, we should not expect to be able to enclose all almost invariant subsets of G 
over VPC groups of lengths 1 and 2. However, if G is the fundamental group of a 
Haken 3-manifold M, and V'{M) denotes the submanifold of M which we discussed 
in chapter 1, then our results in [45] imply that the graph of groups structure for G 
determined by V'(M) is an algebraic regular neighbourhood of all nontrivial almost 
invariant subsets over Z and of all 1-canonical almost invariant subsets over Z x Z . 
(Note that a /c-canonical almost invariant set is always nontrivial, by Definition 2.36.) 
Thus, in the case n = 1, we will show for general G that one can enclose all nontriv
ial almost invariant subsets over two-ended subgroups together with all 1 canonical 
almost invariant subsets over VPC2 subgroups. This essentially corresponds to the 
classical JSJ-decomposition. If n > 1, we will need to assume that G does not have 
any nontrivial almost invariant subsets over VPC groups of length < n , and we will 
then show that one can enclose all nontrivial almost invariant subsets of G over VPCn 
subgroups together with all n~canonical almost invariant subsets over VPC(n + 1) 
subgroups. 

Here is a more detailed statement of what we will do in this chapter. Assume that 
G does not have any nontrivial almost invariant subsets over VPC groups of length 
< n . Recall from Theorem 12.3, that Tn denotes the collection of equivalence classes 
of all nontrivial almost invariant subsets of G which are over VPCn groups, and Tn 

denotes the regular neighbourhood T(jTn : G) of Tn in G. Let Tn denote the universal 
covering G-tree of Tn. Now we enlarge Tn to the set Fn^n+i which consists of Tn 

together with the equivalence classes of all n-canonical almost invariant subsets of G 
which are over a VPC(n-\-1) subgroup. We will construct the regular neighbourhood 
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Tn,n+i = r ( jF n i n + i : G) by refining Tn by splitting at some of its V\ vertices. This 
is natural because a n-canonical almost invariant subset of G over a VPC(n + 1) 
subgroup does not cross any element of Tn, and so must be enclosed by some I n 
vert ex of T n , by part 1 of Proposition 5.7. Note that if two such subsets cross, they 
must be enclosed by the same V\-vertex of Tn. 

Before starting on the main argument, we prove two facts about VPC groups which 
we will use frequently. These results are not new. See, for example, [30] and [15]. 

Lemma 13.1. — Let K be a VPC(n + 1) group, with a subgroup L of length n. Then 
the number of coends of L in K is 2 and moreover there is a subgroup V of finite 
index in L such that L' has infinite index in its normaliser. 

Proof. — The number of coends of L in K is 2 since both are virtual Poincare duality 
groups. Now, without loss of generality, we can assume that they are both Poincare 
duality groups. In order to find the required subgroup V', we use the fact that L 
can be separated from elements of K — L. UK and L are both orient able, then the 
number of ends of the pair (K,L) is 2. It follows from Scott's Theorem 4.1 in [40] 
on ends of pairs of groups that some subgroup K' of finite index in K splits over L. 
Now the fact that the number of ends of the pair (Kf', L) is 2 implies that L is normal 
in K' and L\K' has 2 ends. In particular, L has infinite index in its normaliser, so 
that V equals L in this case. If L is not orientable, we let L' denote the orientable 
subgroup of index two, and the preceding argument shows that V has infinite index 
in its normaliser, as required. • 

The same argument shows the following result. 

Lemma 13.2. — Suppose that L is a VPCn group and that L is a subgroup of two 
VPC(n + 1) groups K\ and K2. Then there is a subgroup L' of finite index in L 
and subgroups L\ and L2 of finite index in K\ and K2 respectively so that L'\L\ and 
L'\L2 are both infinite cyclic. 

Next we need to consider crossing of n-canonical almost invariant subsets of G 
which are over VPC(n + 1) subgroups. First we consider strong crossing of such sub
sets. The following proposition and proof are suggested by the symmetry of crossings 
proved in [43]. 

Proposition 13.3. — Let G be a one-ended, finitely generated group, and let X and Y 
be n-canonical almost invariant subsets of G over VPC(n + 1) subgroups H and K. 
If X crosses Y strongly, then Y crosses X strongly and the number of coends in G of 
both H and K is 2. 

Remark 13.4. — Proposition 7.2 is the special case of this result when n = 0. 

Proof. — Let A be the Cayley graph of G with respect to some finite system of 
generators. As H\5X is finite, there is a finite connected subcomplex of H\A which 
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contains H\SX and carries the group H. The pre-image of this subcomplex in A is 
a connected subcomplex C which contains SX and is if-finite. Similarly, there is a 
connected subcomplex D of A which contains SY and is i^-finite. Since X crosses Y 
strongly, there are points of SX, and hence of C, in Y and in Y* which are outside 
any ^-neighbourhood of SY. Thus the projection of C into K\A has at least two 
ends, so that e(H, H D K) > 2. It follows that H n K is a VPCn group. 

Lemma 13.2 tells us that we can find a subgroup L of finite index in H D K so that 
L has infinite index in its normalisers in both H and K. We claim that L\A has one 
end. For suppose that there is a nontrivial L-almost invariant subset Z of G. Since 
X and Y are n-canonical, we have one of the four inequalities Z^ ^ X^ and one 
of the four inequalities Z^ ^ Y^*h By appropriately replacing some of X, Y and Z 
by their complements, we may arrange that Z ^ X and Z ^ Y, which implies that 
Z ^ X HY. As L has infinite index in its normaliser NH(L) in H, there is an infinite 
cyclic subgroup J of NH(L)/L which acts freely on L \ A . As X crosses Y strongly, 
the orbit of any point of L \ A under the action of J contains points on each side 
of L\SY which are arbitrarily far from L\SY. As L\SZ is finite, there is an element 
j of J such that j(L\SZ) is contained in L\Y*. Thus there is an element h of NH(L) 
such that hSZ is contained in Y*. Thus we have one of the inclusions hZ^ C Y*. 
Suppose that hZ C Y*. As Z ^ X and hX = X, we have hZ ^ X fl Y*. As h 
normalises L, it follows that Z U hZ is a nontrivial L-almost invariant subset of G. 
As Z ^ Y and /iZ ^ Y*, this set crosses Y which contradicts our assumption that Y 
is n-canonical. If hZ* C I n Y*, we consider ZUhZ* instead, to complete the proof 
of the claim that L \ A has one end. 

Recall that H and K are VPC(n-\-1), that HnK and hence L have length n, and 
that L has infinite index in its normaliser. Thus both the covers L \ A —> i J \ A and 
L \ A —• K\A have two-ended covering groups. Let CL and be the images of C 
and D respectively in L \ A , so that both CL and D L are two-ended. 

Our hypothesis implies that H\A has more than one end. Now we claim that 
H\A has only two ends. For suppose that H\A has more than two ends. Since 
e{H, H n K) = 2, the image of D in H\A has two ends. Thus an end of H\A is free 
of the image of D . Choose a compact set separating this end from the image of D 
and let M be an infinite component of the complement of this compact set which 
does not intersect the image of D . Let be a component of the pre-image of M 
in L \ A , so that N is disjoint from DL- Since L\A has only one end, the coboundary 
of N is not finite. Thus the stabiliser of SN is an infinite subgroup of the covering 
transformation group of the cover L\A —> H\A. As this covering group is two-ended, 
the stabiliser of SN must have finite index in it. Thus SN and CL lie in a bounded 
neighbourhood of each other. Recall that as X crosses Y strongly, C has points in at 
least two components of A — D , which are arbitrarily far from D . Hence CL has points 
in at least two components of (L\A) — D L , which are arbitrarily far from DL- Thus 
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there are points of SN, and hence of TV, in at least two components of (L\A) — D L , 
which are arbitrarily far from DL- This is a contradiction since D L and TV are disjoint 
and are both connected. It follows that the number of ends of H\A is 2, as claimed. 

Now Y crosses X since crossing is symmetric, and Proposition B.3.7 shows that Y 
crosses X strongly. We can repeat the above argument for subgroups of finite index 
in H and K to conclude that both i f and K have two coends in G, as required. • 

We now consider n canonical almost invariant subsets of G which cross weakly. 

Proposition 13.5. — Let G be a one-ended, finitely generated group without nontrivial 
almost invariant subsets over VPC groups of length < n. Let i f and K be VPC(n + l) 
subgroups of G, and let X and Y be nontrivial n-canonical subsets of G over i f and 
K respectively. Suppose that X crosses Y weakly. Then H and K are commensurable. 

Remark 13.6. — Proposition 7.3 is the special case of this result when n = 0. 

Proof. — By Proposition 13.3, we know that Y also crosses X weakly. Thus one 
of SY H X^ is H finite and one of SX n is if-finite. By replacing X and Y by 
their complements as needed, we can arrange that SY D X is if-finite and SX f l Y is 
i f finite. As SX is i f finite and SY is if-finite, it follows that SY n X and SX D Y 
are both i f finite and i f finite. Thus they are (if f l i f )-finite. Now consider X P\Y. 
Every edge in S(X D Y) lies in SY D X or SX D Y. It follows that S(X D Y) is also 
(if D if) finite, so that X HY is (if D if)-almost invariant. 

If i f and i f are not commensurable, then i f n i f has infinite index in both i f 
and if. In particular, i f D i f has length ^ n. Suppose first that i f f l i f has length 
< n. As G has no nontrivial almost invariant subsets over VPC subgroups of length 
< n , it follows that X f l Y is (if f l if) finite, and hence i f finite, which contradicts 
our hypothesis that X and Y cross. Now suppose that i f D i f has length n , so that 
e(H,H f l if) = 2. As in the proof of Proposition 13.3, we can translate X D Y 
by an element h of i f such that h commensurises i f f l i f and h(X f l Y) is contained 
i nXnF* . Thus (XP\Y)Uh(XC)Y) is a nontrivial almost invariant set over a subgroup 
commensurable with H D i f which crosses Y. This contradicts the assumption that 
Y is n-canonical. Hence i f and i f are commensurable as required. • 

Note that the proof of Proposition 13.3 did not use the hypothesis that G has no 
nontrivial almost invariant subsets over VPC groups of length < n . But the proof of 
Proposition 13.5 used this hypothesis in an essential way. It was used to exclude the 
case when H n i f has length < n. If this occurs, we might not be able to construct a 
nontrivial almost invariant set which crosses Y, because there need not be any suitable 
elements of G which commensurise i f f l if. 

Remark 13.7. — We note that if X and Y are n-canonical and their stabilisers are 
commensurable, then X P\Y, X + Y, X UY are again n-canonical. 
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These results show that as in Proposition 7.5, we have: 

Proposition 13.8. — Let G be a one-ended, finitely generated group and let {X\}\eA 
be a family of nontrivial almost invariant subsets over VPCn subgroups and of n-
canonical almost invariant subsets over VPC(n-\-l) subgroups. As usual, let E denote 
the set of all translates of the X\'s and their complements. Form the pretree P of 
cross-connected components (CCC's) of E as in the construction of regular neighbour
hoods in chapter 3. Then the following statements hold: 

(1) The crossings in a CCC of E are either all strong or are all weak. 
(2) In a CCC with all crossings weak, the stabilisers of the corresponding elements 

of E are all commensurable. In a CCC with all crossings strong, the stabilisers of the 
corresponding elements of E have 2 coends in G. 

Recall that Tn denotes the universal covering G-tree of the regular neighbourhood 
T n of Tn, the equivalence classes of all nontrivial almost invariant subsets of G over 
VPCn subgroups. Recall also that if X is a n-canonical if-almost invariant subset 
of G, then it is enclosed by some V\-vertex v of Tn. In our construction of r n j n + i , 
the commensuriser of i f will play an important role, just as in the construction of T n . 
In particular, it will be important to know that the commensurisers of i f in Stab(v) 
and in G are equal. This is the last part of the following proposition. 

Proposition 13.9. — Let G be a one-ended, finitely presented group without nontrivial 
almost invariant subsets over VPC groups of length < n. Let X and Y be n-canonical 
subsets of G over VPC (a + 1) groups, and let i f and K denote the stabilisers of X 
and Y respectively. 

(1) Then X is enclosed by a unique V±-vertex vx ofTn. 
(2) If i f and K are commensurable, then vx and vy are equal. 
(3) Let v denote the V\ -vertex of Tn which encloses X. Then Comms t ab( v)(^) = 

Coming (if). 

Proof. — Recall that a n-canonical almost invariant subset of G over a VPC(n + 1) 
subgroup must be enclosed by some V\-vertex of T n , by Proposition 5.7. Now part 1) 
is the special case of part 2) obtained when Y equals X , so we will prove part 2). Let 
v\ and V2 be V\-vertices of Tn which enclose X and Y respectively, and suppose that 
v\ and V2 are distinct. Then there is a Vb-vertex v separating v\ from t?2. This implies 
that there is a nontrivial almost invariant subset Z of G over a VPCn group L such 
that Z is enclosed by v and Z lies between X and Y. Note that the stabilisers of X 
and Y are VPC(n + 1) groups and the stabiliser of Z is a VPC group of length n. 
Since i f and K are commensurable, SX and SY lie in a bounded neighbourhood of 
each other. In L\A, where A is the Cayley graph of G, the images of SX and of SY 
are non-compact and lie essentially on different sides of the image L\SZ which is 
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compact. This contradicts the fact that SX and SY lie in a bounded neighbourhood 
of each other. This contradiction shows that v\ must equal v2, as required. 

For the third part of the proposition, let g be an element of Coming (if). Then 
gX is an almost invariant subset of G over H9, which is commensurable with if, and 
gX is enclosed by the V\ vertex gv. Part 2) of the proposition tells us that gv = v, 
showing that we must have Comm Stab (v) (if) = Coming (if), as required. • 

Propositions 13.3 and 13.5 are the generalisations to higher lengths of Propositions 
7.2 and 7.3. We will also need generalisations of some of the other results from 
chapters 7 and 8. We will sketch what is involved. 

In [13] and [15], the algebraic Torus Theorem is proved for a finitely generated 
group G which has a nontrivial almost invariant subset over a VPCn subgroup, on the 
assumption that G has no such subsets over a VPC subgroup of length ^ n — 1. Their 
work dealt with the case when n ^ 1. Stallings structure theorem for groups with 
more than one end [52] [53] deals with the case when n = 0. We will need to apply 
arguments from [13] and [15] to cases where G may have nontrivial almost invariant 
subsets over a VPC subgroup of length ^ n — 1. Here are two of the results which 
we will need. The first is essentially in step 2 of [13] (see also [35] and Proposition 
B.2.14). 

Theorem 13.10. — Let G be a finitely generated group and let X be a nontrivial almost 
invariant subset over a VPCn group if. Suppose that whenever gX crosses X, then 
g commensurises if. Then G splits over a subgroup commensurable with if. 

The arguments for the second result are essentially in [15]. Their results in section 
4 of that paper are only for splittings and are not formulated in terms of regular 
neighbourhoods. However their methods do apply to almost invariant subsets in 
general, and we formulate the result in terms of regular neighbourhoods. This is the 
generalisation to higher lengths of Theorem 7.8 of this paper. 

Theorem 13.11. — Let G be a one-ended finitely generated group with a finite family 
of VPCn subgroups {H\}\EA- For each X e A, let X\ denote a (n — 1) canonical 
H\-almost invariant subset of G, let E denote the set of all translates of the X\ 7s 
and their complements, and let Y denote the regular neighbourhood of the X\ 7s. 

Let X denote an element of E, let i f denote its stabiliser, and let v denote a vertex 
ofT which encloses X. Suppose that each H\ has two coends in G and that there exists 
an element of E which crosses X. Then the vertex group G(v) is ofVPC{n — 1) by 
Fuchsian type, and i f is not commensurable with a peripheral subgroup of G(v). 

We note that both the above results imply that G splits over a VPCn subgroup. 
Theorem 13.10 yields a splitting over a subgroup commensurable with if. Theorem 
13.11 yields a splitting over each peripheral subgroup of G(v). (But no such subgroup 
is commensurable with if.) Thus, as in our proof of Theorem 10.7, the algebraic 
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Annulus Theorem, these two results yield a proof of the algebraic Torus Theorem. 
More importantly from our point of view, these two results lead naturally to relative 
versions of the algebraic Torus Theorem. In Theorem 13.10, suppose there is some 
nontrivial almost invariant set Y over a finitely generated subgroup of G which does 
not cross X or any of its translates. Then Y also does not cross the almost invariant 
sets associated with the splitting given by this theorem. This is because the almost 
invariant set associated to the splitting is obtained by taking successive intersections 
of translates of X or A*. In Theorem 13.11, suppose there is some nontrivial almost 
invariant set Y over a finitely generated subgroup of G which does not cross any 
element of E. Then Proposition 5.7 shows that Y is enclosed by some Vi-vertex of T, 
and hence does not cross the almost invariant sets associated with any of the splittings 
over peripheral subgroups of G(v). 

In our construction of the regular neighbourhood Tn^n+i = r(.F n 5 n +i : G) from 
the regular neighbourhood Tn = T(Tn : G ) , we use the fact that n-canonical almost 
invariant sets are enclosed by some V\-vertex v of Tn. In the case when G is finitely 
presented and we are considering n-canonical almost invariant subsets of G which 
cross weakly, we will use our accessibility results, Theorems 7.11 and 7.13, and Theo
rem 13.10 in two different ways. Suppose that we are in the situation of Proposition 
13.5 or Proposition 14.2. If H has small commensuriser in G then the number of 
coends of H in G is finite. If H has large commensuriser in G, then the Boolean 
algebra B(H) is finitely generated over Commc (H). The proofs are as before using 
the second accessibility result, Theorem 7.13. 

Now we state the main results of this chapter. As usual we state first the existence 
result. 

Theorem 13.12. — Let G be a one-ended, finitely presented group which does not split 
over VPC subgroups of length < n, and let .Fn,n+i denote the collection of equivalence 
classes of all nontrivial almost invariant subsets of G which are over a VPCn sub
group, together with the equivalence classes of all n-canonical almost invariant subsets 
of G which are over a VPC(n + 1) subgroup. 

Then the regular neighbourhood construction of chapter 3 works and yields a regular 
neighbourhood Tn^i = r ( j T n n + 1 : G). 

Each Vo-vertex v ofYn^n+i satisfies one of the following conditions: 

(1) v is isolated, so that G(v) is VPC of length n orn + 1. 
(2) v is of VPC-by-Fuchsian type, where the VPC group has length n — 1 or n. 
(3) G(v) is the full commensuriser CommG(if) for some VPC subgroup H of 

length n or n + I, such that e (G , H) ^ 2. 

r n ,n+i consists of a single vertex if and only ifJ-n,n+i is empty, or G itself satisfies 
one of the above three conditions. 

Now we list the properties of the decomposition r n ? n +i . 
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Theorem 13.13. — Let G be a one-ended, finitely presented group which does not split 
over VPC subgroups of length < n, and let Fn,n+i denote the collection of equivalence 
classes of all nontrivial almost invariant subsets of G which are over a VPCn sub
group, together with the equivalence classes of all n canonical almost invariant subsets 
of G which are over a VPC(n + 1) subgroup. 

Then the regular neighbourhood Tn?n+i = r(jTnn+1 : G) is a minimal bipartite 
graph of groups decomposition of G with the following properties: 

(1) each Vo-vertex v of rn,n+i satisfies one of the following conditions: 
(a) v is isolated, so that G(v) is VPC of length n orn + 1. 
(b) v is of VPC-by Fuchsian type, where the VPC group has length n — 1 

or n. 
(c) G(v) is the full commensuriser Commc-(if) for some VPC subgroup H 

of length n or n + l, such that e(G, if) ^ 2. 
Further if if is a VPCn subgroup such that e(G,H) ^ 2, and if if has large 

commensuriser, then rnin+i will have a Vo vertex v such that G(v) — Cornm^(if). 
The same holds if if is VPC{n + 1), so long as there exists a n-canonical almost 
invariant subset of G over if. 

(2) If an edge ofV is incident to a Vo-vertex of type a) or b) above, then it carries 
a VPC group of length n or n + l, as appropriate. 

(3) any representative of an element of Tn,n+i is enclosed by some Vo-vertex 
of rn5n_|_i, and each Vo-vertex of Tn^n+i encloses such a subset of G. In particu
lar, any splitting of G over a VPCn subgroup, and any n canonical splitting of G 
over a VPC(n + 1) subgroup is enclosed by some Vo vertex o/rn?n+i. 

(4) if X is a nontrivial almost invariant subset of G over a finitely generated sub
group H, and if X does not cross any element of Tn,n+i, then X is enclosed by a 
Vi vertex o/Tn,n+i. 

(5) if X is a H-almost invariant subset of G associated to a splitting of G over 
H, and if X does not cross any element of ,n+i> then X is enclosed by a V\ vertex 
of rn5n+i. 

(6) the V\ -vertices ofYn,n+\ we (n + 1) simple. In particular, rn,n+i cannot be 
further refined by splitting at a V\ vertex along a VPC group of length ^ n + 1. 

(7) If Ti and T2 are minimal bipartite graphs of groups structures for G which 
satisfy conditions 3) and 5) above, then they are isomorphic provided that there is a 
one-to-one correspondence between their isolated Vo vertices, such that corresponding 
vertices have stabilisers of the same length, and that any non-isolated Vo vertex ofT\ 
orT2 encloses some non-isolated element of Tn,n+\-

(8) The graph of groups rnin_|_i is invariant under the automorphisms of G. 
(9) For k = n or n+l, the k canonical splittings of G over a VPCk subgroup are 

precisely those edge splittings ofTn:n+i which are over such a subgroup. This includes, 
but need not be limited to, all those edges ofTn,n+i which are incident to Vo vertices 
whose associated groups are of types a) or b) above. 
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Proof. — The only new point which arises is in the proof of part 6). Suppose that X 
is a nontrivial almost invariant subset of G over a VPC subgroup H of length at most 
n + l such that X is enclosed by a V\-vertex of r n , n + i . This implies that X crosses 
no element of . F n , n + i , so that X crosses no nontrivial almost invariant subset of G 
over a VPC subgroup of length at most n . It follows that X represents an element 
of J~n,n+i, and so is enclosed by some Vb-vertex of T n ? n + i . It follows from part 1) of 
Lemma 4.9 that X is associated to an edge splitting of T n 5 n + i , as required. • 

If we specialise to the case n = 1, and apply this result to the fundamental group 
of a Haken 3-manifold M, then the Vb-vertices of essentially correspond to the 
components of the submanifold V'(M), which we discussed in chapter 1. The only 
difference is that n a s extra Vo-vertices corresponding to most of the components 
of the frontier of V'(M). In fact, if S is a component of the frontier of a component 
W of V'(M), we get an extra Vb-vertex corresponding to S except in the case when 
W is homeomorphic to 5 x L To see this, observe that the peripheral components 
of V'(M) have enough immersions of the annulus to make them cross-connected, and 
the interior components of V'(M) have enough immersions of the torus to make them 
cross-connected. Moreover, we showed in [45], that the frontier components of V'(M) 
induce splittings of G which are all 1 canonical. This is similar to the discussion in 
chapter 11 for the case of the canonical decomposition obtained in chapter 10. Note 
that, as before, the reduced version of does not have these extra Vb-vertices. 

We already saw from Example 11.7 that if there is a regular neighbourhood of all 
the nontrivial almost invariant subsets of G which are over VPC subgroups of length 
1 or 2, then it cannot be a refinement of Y\. Thus there may be nontrivial almost 
invariant subsets of G which are over VPC2 subgroups but are not enclosed by any 
Vb vertex of Ti^- However, we prove below that the stabiliser of such an almost 
invariant subset of G must be 'almost' conjugate into a Vb-vertex of I \ 2 -

In order to discuss Vb vertices, it will be helpful to introduce some new language. 
For the graph of groups r n ? n + i , there is a natural idea of the level of a Vb-vertex v. 
If v appears only after refining T n , then v has level n + l . Otherwise v has level n . 
In this second case, it is natural to think of v as belonging to T n , in some sense, but 
as there is no map from Tn to r n ? n + i , this is not very precise. A more accurate way 
to describe the level of a Vb-vertex is to use the projection map from Tn^n+i to T n , 
which is part of the definition of a refinement. This map sends each edge of r n ; n + i 

either to an edge or to a V\-vertex of Tn. Then a Vb-vertex of Tn^n+i has level n + l 
if it is sent to a V\-vertex, and has level n otherwise. 

Proposition 13.14. — Let G be a one-ended, finitely presented group which does not 
split over VPC subgroups of length < n, and let r n ; n + i denote the regular neighbour
hood of the previous theorem. Let X be any nontrivial almost invariant subset of G 
over a VPC (n + l) subgroup H. Then either X represents an element of Tn^n+\, and 
so is enclosed by some Vo-vertex q / T n ? n + i ; or some subgroup of finite index in H is 
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conjugate into the vertex group of a Vo-vertex of T n ? n + i which is of large commen
suriser type and level n. In the second case, G has a VPCn subgroup A, such that 
e(G, A) ^ 2, and there is a Vo-vertex v < 9 / T n ? n + i which is of large commensuriser type 
such that G(v) = Coming (yl), and some subgroup of finite index in i f is conjugate to 
a subgroup of G(v) which contains A. 

Proof. — If X does not cross any nontrivial almost invariant subset Y over a VPCn 
subgroup if, then X is n-canonical, and so represents an element of Tn,n+\. Oth
erwise X crosses such a set F . If X crosses Y strongly, then the first paragraph of 
the proof of Proposition 13.3 shows that i f f l i f must have length n and hence be 
of finite index in if. Now Lemma 13.1 tells us that a subgroup of finite index in i f 
commensurises if. It follows that i f has large commensuriser so that r n > n + i has a 
Vb-vertex group which equals Coming (if), and so contains a subgroup of finite index 
in i f as required. We can take the group A to be i f PI if. 

Now suppose that X crosses Y weakly. If Y also crosses X weakly, then the first 
paragraph of the proof of Proposition 13.5 shows that one of X^ f l Y^*\ say W, 
is almost invariant over i f Pi if. As X and Y cross, W will be a nontrivial almost 
invariant set over i f D if. It follows that the length of i f f l i f cannot be less than n , 
since G does not have any nontrivial almost invariant subsets over VPC subgroups 
of length less than n . Thus i f D i f has length n , and we can apply the arguments in 
the preceding paragraph. Note that X does not cross W. We simply need the fact 
that i f contains i f D if. 

The only remaining case is when X crosses Y weakly and Y crosses X strongly. 
In this case, let L = i f n if . By replacing i f by a subgroup of finite index, we may 
assume that L is normal in i f and that L\K is infinite cyclic. Since X crosses Y 
weakly one of SXHY^ is if-finite. We will assume that SXnY is if—finite. Now by 
again replacing i f by a subgroup of finite index, we may assume that for a generator k 
of L\K, the translates of SX f l Y by the powers of k do not intersect. We choose k 
so that k(SX n Y) C X n F , and consider the set Z = X n Y n kX*. This set is 
almost invariant over L. As L has length < n , any L-almost invariant subset of G 
is trivial. Thus Z is L-finite. In particular, Z lies within a finite distance of SY. As 
Ut^iklZ = X HY and k preserves SY, it follows that X DY also lies within a finite 
distance of SY, contradicting the hypothesis that X and Y cross. This contradiction 
completes the proof. • 

Finally, as in chapters 10 and 12, it follows that one can also form a regular neigh
bourhood of only those almost invariant subsets which are associated to splittings. 
This is the result we obtain. 

Theorem 13.15. — Let G be a one-ended, finitely presented group which does not split 
over VPC subgroups of length < n, and let * S n ? n + i denote the collection of equivalence 
classes of all almost invariant subsets which are associated to a splitting of G over 
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a VPCn subgroup, together with the equivalence classes of all n-canonical almost 
invariant subsets which are associated to a splitting of G over a V PC(n+l) subgroup. 

Then the regular neighbourhood construction of chapter 3 works and yields a regular 
neighbourhood Y(Sn^n+i : G). 

Each Vo-vertex v o /T(<S n ? n + i : G) satisfies one of the following conditions: 
(1) v is isolated, so that G(v) is VPC of length n or n+l. 
(2) v is of VPC-by-Fuchsian type, where the VPC group has length n — 1 or n. 
(3) G(v) contains a VPC subgroup H of length n or n+l, which it commensurises, 

such that e(G,H) ^ 2. 
IfY(Sn^n+i : G) consists of a single vertex, then either Sn,n+i is empty, or G itself 

satisfies one of the above three conditions. 

Remark 13.16. — Note that even if G is finitely presented, Example 11.1 shows that 
a vertex group of type 3) need not be finitely generated. Note also that if G itself 
satisfies the third condition, then the example below shows that r ( < S n ? n + i : G) need 
not consist of a single vertex. This is in contrast with the situation of Theorem 13.13. 

Example 13.17. — This is the natural generalisation of Example 12.8. As in that 
example, we let G™ = A*c B, where A and B are both free abelian of rank n and C 
has index p in A and index q in B. Thus G™ q centralises, and hence commensurises, 
the VPCn subgroup C. If p , q ^ 2, then G splits over G, so that e(G, G) ^ 2. If we 
exclude the case p — q = 2, we will show that F(Sn,n+i : G™q) does not consist of 
a single vertex. Let a denote the given splitting of G™ over G. Now suppose that 
Gp q has a n-canonical splitting over a VPC(n + 1) subgroup H. Then Theorem 5.16 
implies that this splitting is compatible with the splitting cr, so that, in particular, H 
must be isomorphic to a subgroup of A or £?, which is impossible. We conclude that 
there are no n canonical splittings of G^q over a VPC(n + 1) subgroup. Thus Sn,n+i 

equals the set Sn of Example 12.8, so that T(Sn:n+i : G™ ) equals T(Sn : G^q) which 
does not consist of a single vertex. 
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CHAPTER 14 

CANONICAL DECOMPOSITIONS OVER 
VIRTUALLY ABELIAN GROUPS 

Here is a summary of what we achieved in the last chapter. Consider a one-ended, 
finitely presented group G which does not have any nontrivial almost invariant subsets 
over VPC groups of length < n. Let Tn denote the regular neighbourhood of Tn, 
the equivalence classes of all nontrivial almost invariant subsets of G over VPCn 
subgroups, and let Tn,n+i denote Tn together with the equivalence classes of all n-
canonical almost invariant subsets of G which are over a VPC(n + 1) subgroup. We 
showed that there is a regular neighbourhood rn^n+i of J-n,n+i which is a refinement 
of Tn obtained by splitting Tn at some of its V\-vertices. 

The natural next step would be to let J-n,n+i,n+2 denote ^n,n+i together with the 
equivalence classes of all (n + 1) canonical almost invariant subsets of G which are 
over a VPC(n + 2) subgroup, and show that J-n,n+i,n+2 nas a regular neighbourhood 
rn,n+i,n+2 which is a refinement of Tn?n+i obtained by splitting rn?n+i at some of 
its Vi vertices. However, the following example for the case n = 1 shows that this 
cannot be done following the pattern of the previous results. On the other hand, we 
will show in this chapter, that such refinements always exist if we restrict our attention 
to almost invariant sets over virtually abelian groups, and that the process can be 
repeated up to any given rank. This seems to indicate that there may be geometric 
differences between splittings over VPC groups and virtually abelian groups. 

We should emphasise that the following example does not show that ^1,2,3 has no 
regular neighbourhood. We do not know whether this is true. This example shows 
simply that if ^1,2,3 has a regular neighbourhood, then it cannot be constructed from 
Ti,2 by splitting at Vi-vertices. 

Example 14.1. — This is an example of a one-ended group G with incommensurable 
polycyclic subgroups H and K of length 3, and 2-canonical almost invariant sets X 
and Y over H and K respectively which cross weakly. Thus Proposition 13.5 cannot 
be generalised and there is no hope of enclosing X and Y in a Vb-vertex group with 
stabiliser equal to the commensuriser of H or K. 
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We start with an extension of Z x Z by Z which is given by an automorphism 
of Z x Z with no real eigenvalues. This gives us a polycyclic group i f and we denote a 
lift of Z into i f by C\. Note that i f is the fundamental group of a closed 3-manifold 
M which is a bundle over the circle with fibre the torus. Our choice of H implies that 
any polycyclic subgroup of length 2 is contained in the normal ZxZ. We let i f denote 
a second copy of i f and let C2 denote the subgroup of i f corresponding to C\. Let L 
denote the fundamental group of a hyperbolic surface F with one boundary component 
and denote the subgroup corresponding to dF by C3. Now we amalgamate if, i f and 
L along the CVs to obtain the desired group G, and denote by C the identified copies 
of the CVs. Thus G is the fundamental group of a space Z which is the union of two 
copies of M and the surface F. Let Y denote the associated graph of groups structure 
for G, which is a tree with four vertices carrying the subgroups G, if, i f and L. 
Consider the subgroups i f * c if, i f * c L, K*c L of G. Then G can be obtained from 
the first two groups by amalgamating over if. We let X denote one of the standard 
if-almost invariant subsets of G associated to this splitting. Similarly, the first and 
third groups give an amalgamated free product decomposition of G over if. We let 
Y denote the corresponding i f almost invariant subset of G. 

Clearly i f and i f are not commensurable in G. Also it is clear that the above 
splittings of G over i f and i f are not compatible, so that X and Y must cross. As 
i f fl i f = C, and e(if, G) = e(if, G) = 1, the splittings cannot cross strongly, so that 
X and Y must cross weakly. It remains to show that X and Y are 2-canonical. We 
will do this by showing that they are 1 canonical and that G has no nontrivial almost 
invariant subsets over any VPC2 subgroups. 

We claim that if W is a nontrivial almost invariant subset of G over a two-ended 
subgroup A, then W is enclosed by the vertex of Y which carries L. Assuming this, it 
follows that X and Y are 1-canonical as required. The claim can be seen by simply 
considering the covering space of Z corresponding to a two-ended subgroup A. It 
follows that the regular neighbourhood of all the nontrivial almost invariant subsets 
of G over two-ended subgroups has a single Vo vertex of finite-by-Fuchsian type with 
associated group L, has no Vb vertices of commensuriser type and has three isolated 
Vb-vertex groups which carry G. Collapsing the edges which carry G will yield Y. 

Now any length two polycyclic subgroup of G is conjugate into i f or if, and any 
such subgroup of i f or i f is contained in the normal Z x Z subgroup of i f or of if. It 
is now easy to check, by considering the covering space of Z corresponding to the fibre 
torus of a copy of M, that G has no nontrivial almost invariant subsets over VPC2 
subgroups. It follows that the splittings of G over H and i f that we considered above 
are 2 canonical, as required. 

The above example shows that the process of refining our algebraic analogues of 
the JSJ-decomposition is not possible over VPC groups for more than two successive 
lengths even if we take i canonical sets over VPC groups of length (i + 1) at each 
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stage. However, it is possible for virtually abelian groups and we will indicate the 
necessary changes to the arguments. 

Two of the crucial properties we needed to obtain canonical decompositions in the 
previous chapter were contained in the following two propositions which we reproduce 
here for the reader's convenience. 

Proposition 13.3. — Let G be a one-ended, finitely generated group, and let X and Y 
be n-canonical subsets of G over VPC(n + 1) subgroups H and K. If X crosses Y 
strongly, then Y crosses X strongly and the number of coends in G of both H and K 
is 2. 

Proposition 13.5. — Let G be a one-ended, finitely generated group without nontrivial 
almost invariant subsets over VPC groups of length < n. Let i f and K be V'PC(n + l) 
subgroups of G, and let X and Y be nontrivial n-canonical subsets of G over i f and K 
respectively. Suppose that X crosses Y weakly. Then i f and K are commensurable. 

Note that in Proposition 13.3 we only needed the almost invariant sets to be n-
canonical whereas in Proposition 13.5 we excluded the existence of nontrivial almost 
invariant sets over VPC groups of length < n. The example at the end of the 
previous chapter showed that the analogue of Proposition 13.5 is not true in general. 
However, the following analogue holds when we restrict our attention to virtually 
abelian subgroups of G. 

Proposition 14.2. — Let G be a one-ended, finitely generated group, and let i f and K 
be virtually abelian subgroups of G of rank n + l. Let X and Y be almost invariant 
subsets of G over i f and K respectively which are n-canonical with respect to abelian 
groups. Suppose that X crosses Y weakly. Then i f and K are commensurable. 

Proof. — Our argument is based on the proof of Proposition 13.5. As in the first 
part of that proof, we know that X and Y cross each other weakly and that X fl Y is 
(if fl if) almost invariant. 

If i f and K are not commensurable, then i f D K has infinite index in both i f 
and K. In particular, HnK has rank ^ n. As i f is virtually abelian, there is h in i f 
of infinite order which commutes with a subgroup of i f n K of finite index. Thus h 
commensurises HnK. Further, by replacing h by a suitable power, we can arrange 
that h(X H Y) is contained in I n 7*, as in the proof of Proposition 13.3. Thus 
(X fl Y) U h(X n Y) is a nontrivial almost invariant subset of G over a subgroup of H 
commensurable with HP\K which crosses Y. This contradicts the assumption that Y 
is n canonical with respect to abelian groups. Hence H and K are commensurable 
as required. • 

Note that in the proof of Proposition 13.5, we proceeded essentially as above in 
the case when HnK had length n , but we eliminated the possibility that HnK had 
length < n by using the assumption that G had no nontrivial almost invariant subsets 
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over VPC subgroups of length < n. In the case above, G may have such subsets. 
Instead we used the assumption that H and K are virtually abelian, and applied the 
same argument as when HnK had length n. 

With this proposition available, and the other results discussed in the previous 
chapter, there is no difficulty in extending the main decomposition theorems to almost 
invariant sets over virtually abelian groups up to any rank. We will need the following 
definitions. In this chapter, it will be convenient to use the notation VA for a virtually 
abelian group of finite rank, and VAn for a virtually abelian group of rank n. 

Definition 14.3. — Let V be a minimal graph of groups decomposition of a group G. 
A vertex v of T is of VA-by-Fuchsian type if G(v) is an extension of a VA group by 
a Fuchsian group, where the Fuchsian group is not finite nor two-ended, and there is 
exactly one edge of T which is incident to v for each peripheral subgroup K of G(v) 
and this edge carries K. If the rank of the normal VA subgroup of G(v) is n, we will 
say that G(v) is of VAn by Fuchsian type. 

Note that if G = G(v), then the Fuchsian quotient group corresponds to a closed 
orbifold. Note also that if G(v) is of I/An-by-Fuchsian type, then each peripheral 
subgroup of G(v) is VPC(n + 1) but need not be VA(n + 1). See Example 14.7. 

Definition 14.4. — Let T be a minimal graph of groups decomposition of a group G. 
A vertex v of F is n-simple for abelian groups, if whenever A is a nontrivial almost 
invariant subset of G over a VA subgroup of rank at most n such that X is enclosed 
by then X is associated to an edge splitting of V. 

The results we obtain follow. The proof consists of starting with the graph of 
groups structure described in the previous chapter, and then using the methods 
of that chapter to repeatedly refine it by splitting at V\ vertices. We will need to 
use Proposition 14.2 in place of Proposition 13.5 because we are now in the virtually 
abelian case. As usual, we state the existence result and then list the properties of 
the decomposition obtained. 

Theorem 14.5. — Let G be a one-ended, finitely presented group. Let ^1,2,...,n denote 
the collection of equivalence classes of all nontrivial almost invariant subsets of G 
which are over a virtually abelian subgroup of rank i, for 1 ̂  i ^ n, and are (i — 1) -
canonical with respect to abelian groups. 

Then the regular neighbourhood construction of chapter 3 works and yields a regular 
neighbourhood ri ?2,...,n = r(-7~i,2,...,n • G). 

Each Vo vertex v ofTi^,...,n satisfies one of the following conditions: 
(1) v is isolated, so that G(v) is VA of rank ^ n. 
(2) G(v) is of VA-by-Fuchsian type, where the VA group has rank k < n. 
(3) G(v) is the full commensuriser Commc7(if) for some VA subgroup H of rank 

at m.nst n.. svch that e(G. H) > 2. 
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ri,2,...,n consists of a single vertex if and only if J-\,2,...,n is empty, or G itself 
satisfies one of the above three conditions. 

Now we list the properties of I\2,...,n-

Theorem 14.6. — Let G be a one-ended, finitely presented group. Let T\,2,...,n denote 
the collection of equivalence classes of all nontrivial almost invariant subsets of G 
which are over a virtually abelian subgroup of rank i, for 1 ^ i ^ n, and are (i — 1)-
canonical with respect to abelian groups. 

Then the regular neighbourhood I\2 , . . . ,n = 1^(^1,2,...,n '• G) is a minimal bipartite 
graph of groups decomposition of G with the following properties: 

(1) each Vo-vertex v of Ti^,...,n satisfies one of the following conditions: 
(a) v is isolated, so that G(v) is VA of rank ^ n. 
(b) G(v) is of V Ak by-Fuchsian type, where k < n. 
(c) G(v) is the full commensuriser CommG(H) for some VA subgroup H of 

rank at most n, such that e(G, H) ^ 2. 
Further if H is a VA subgroup of G of rank k ^ n such that e(G, H) ^ 2, if H 

has large commensuriser and if there exists a nontrivial H-almost invariant subset 
of G which is (k — 1) canonical with respect to abelian groups, then Ti^,...,n has a 
Vo vertex v such that G(v) = 001x11x10(H). 

(2) If an edge 0 / I \ 2 , . . . , n is incident to a Vo-vertex of type a) or b) above, then it 
carries a VPC group of some length at most n. 

(3) any representative of an element of J-\,2,...,n is enclosed by some Vo vertex 
o/ri,2,...,n> and each Vo-vertex ofTi^,...,n encloses such a subset of G. In particular, 
ifl^i^n, then any (i — 1) canonical splitting of G over a VAi subgroup is enclosed 
by some Vo-vertex o/Ti^,...,™-

(4) if X is a nontrivial almost invariant subset of G over a finitely generated sub
group H, and if X does not cross any element of ^1,2,...,n^ then X is enclosed by a 
V\-vertex o/Ti?2,...,n-

(5) if X is a H-almost invariant subset of G associated to a splitting of G over H, 
and if X does not cross any element of ^1,2,...,n ; then X is enclosed by a V\ vertex 
0/ri,2,...,n-

(6) the V\-vertices ofY\^,...,n are n-simple. In particular, I\2 , . . . ,n cannot be fur
ther refined by splitting at a V\ -vertex along a virtually abelian subgroup of rank at 
most n. 

(7) If Ti and T2 are minimal bipartite graphs of groups structures for G which 
satisfy conditions 3) and 5) above, then they are isomorphic provided that there is a 
one-to-one correspondence between their isolated Vo-vertices, such that corresponding 
vertices have stabilisers of the same rank, and that any non-isolated Vo vertex ofY\ 
orT2 encloses some non-isolated element of T\,2,...,n-

(8) The graph of groups I \2 , . . . , n is invariant under the automorphisms of G. 
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(9) For k ^ n, the splittings of G over a VAk subgroup which are k canonical with 
respect to abelian groups, are precisely those edge splittings o / I \2 , . . . ,n which are over 
such a subgroup. 

In case lb), where v is a Vb-vertex such that G(v) is of FA/c-by Fuchsian type, 
the edge groups of v need not be VA(k + 1). This may seem somewhat surprising but 
is another aspect of the general phenomenon that when one encloses almost invariant 
sets over subgroups of a certain type, the edge groups obtained need not be of the 
same type. Here is a specific example which is closely related to an example we gave 
at the end of chapter 1. 

Example 14.7. — For each k ^ 2, this is an example of a finitely presented group G 
such that r(jT 1 2,...,/c+i • G) has a Vb vertex v which is of VAfc-by-Fuchsian type, but 
none of the edge groups incident to v is VA(k + 1). 

Let F denote the compact surface obtained from a disc by removing the interiors 
of two disjoint discs. Let a and b denote the generators of TTI(F) carried by two 
boundary components of F, oriented so that the third component carries ab. Thus 
ab"1 is carried by a figure eight loop 7 in F. Note that F is a (topological) regular 
neighbourhood of 7. 

We will construct G as the fundamental group of a graph T of groups whose un
derlying graph is a tree with three edges all incident to one vertex v. 

Fix an integer k ^ 2, and let A denote a free abelian group of rank k. Choose 
an automorphism p) of A of infinite order, and let G(v) denote the extension of A 
by 7r 1 ( i ? ) in which a and b act on A by ip. It follows that ab^1 centralises A, and so 
determines a subgroup H of G(v) isomorphic to Z f c + 1 . Thus G(v) is the fundamental 
group of a bundle W over F with fibre the /c-torus, and the pre-image in W of the 
figure eight loop 7 in F is a (fc-hl)-torus T which carries H. Further W is a topological 
regular neighbourhood of T. The three peripheral subgroups of G(v) are extensions 
of A by Z for which the defining automorphism of A is cp or p)2, so that none of these 
groups is VA. These subgroups of G(v) are the three edge groups of T. Thus v is 
of VAk by Fuchsian type. To complete the construction of G, we attach to each 
remaining vertex the direct product of Z 2 with the incident edge group. 

We prove below in Lemma 14.9 that if G admits a splitting over a VPC subgroup 
of length i ^ k + 1, then i = k + 1 and the splitting is conjugate to one of the 
edge splittings of T. As we have noted before, the results of [13] and [15] imply 
that G has a splitting over some VPC subgroup of length ^ k if and only if it has a 
nontrivial almost invariant subset over such a subgroup. It follows that G possesses no 
nontrivial almost invariant subset over a VPC subgroup of length i $C k. Thus a H-
almost invariant subset X of G associated to the torus T is automatically /c-canonical 
for abelian groups and so lies in •7 ri,2,...,/c+i- Now X crosses some translate of itself 
strongly, so that the algebraic regular neighbourhood of J-\,2,...,k+i must have a Vb-
vertex of I/yl/c-by-Fuchsian type which encloses X. The fact that the only splittings 
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of G over VPC(k +1) subgroups are the edge splittings of T shows that this Vb-vertex 
must have the same edge and vertex groups as v. It follows that r(^ri52,...,/e+i : G) 
has a Vb-vertex v which is of VA/c-by-Fuchsian type, but none of the edge groups 
incident to v is VA(k + 1 ) . One can show further that T is equal to r(jF12,...,fc+i • G), 
but we omit the argument. 

In order to prove Lemma 14.9, we start by observing that A is normal in G. This 
convenient fact allows us to work with the quotient G' — G/A. Clearly G' is the 
fundamental group of a graph Yf of groups with the same underlying graph as T, with 
the group attached to v being 7Ti(F), the other vertex groups being isomorphic to Z 3 , 
and the edge groups all infinite cyclic. Further the edge groups are the peripheral 
subgroups of 7Ti(F) so that v is of Fuchsian type in V. 

Lemma 14.8. — If G' is the fundamental group of the graph of groups Tf just de
scribed, then the three edge splittings ofV are the only splittings ofG' over two-ended 
subgroups up to conjugacy. 

Proof. — Recall that the peripheral subgroups of TTI (F) are generated by the elements 
a, b and ab. We denote the Z 3 vertex groups which contain these elements by G a , 
Gb and Gab respectively, and denote the edge splittings corresponding to these edges 
by o~ai o~b and aab. 

Suppose that G' has a splitting a over a two-ended subgroup H', so that G' acts 
on a tree T' with quotient a single edge and with edge stabilisers conjugate to H'. 
As every subgroup of H' is two-ended or finite, Z 3 cannot split over any subgroup 
of H'. It follows that each of G a , Gb and Gab must fix a vertex of T'. Hence the three 
peripheral subgroups of ix\ (F) each fix vertices of T'. It follows that TTI (F) also fixes a 
vertex of T'. For otherwise, the action of TTI(F) on T' would yield a splitting of TTI(F) 

in which each peripheral subgroup lies in a vertex group, and standard topological 
methods show that this is impossible. In particular, it follows that G' is generated 
by vertex stabilisers. If a were a HNN extension, the subgroup of G' generated by all 
the vertex stabilisers would be the kernel of a surjection from G' to Z. We conclude 
that a cannot be a HNN extension, so that the quotient G'\T' has a single edge and 
two vertices. 

Note that none of G a , Gb, Gab and TTI(F) can be isomorphic to a subgroup of a 
two-ended group. Thus none of these groups can fix an edge of T ; , so that each must 
fix a unique vertex of T'. Let w denote the vertex of T' fixed by ix\ (F). As G' cannot 
fix a vertex of T'one of G a , Gb and G a 6, say G a , must fix a vertex u of T' where 
u 7^ w. It follows that a fixes each edge of the path A in T' between u and w, so 
that H' contains some conjugate of a. As H' is virtually infinite cyclic, it cannot also 
contain any conjugate of b or of ab, as a conjugate of a together with one of b or of ab 
would generate a free subgroup of H' of rank 2. It follows that Gb and Gab must 
fix w. By conjugating a, we can suppose that H' contains a. As H' contains the 
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subgroup generated by a with finite index, our expression of G' as the fundamental 
group of V shows that H' must be conjugate into a vertex group of T', and hence 
must be generated by a. 

If u is adjacent to w in X", it will follow that a must be conjugate to the splitting 
aa. If u is not adjacent to w, let z denote a vertex of T' in the interior of A. As a fixes 
every edge of A, it must fix two distinct edges / and m incident to z. As each vertex 
of G'\T' has valence 1, there is g in G' such that gz = z and gl = m. As the stabilisers 
of I and of m are each generated by a, it follows that g must normalise a. But the 
normaliser of a in G' is Ga which fixes u. Thus g must also fix u, and hence every 
edge between u and z, which contradicts the fact that gl = m. This contradiction 
shows that if Ga does not fix w, then a is conjugate to o~a. If Gb or Gab do not fix 
w, the same argument shows that a is conjugate to ab or to aab, so that a must be 
conjugate to one of the three edge splittings of T' as required. • 

Lemma 14.9. — IfGis constructed as the fundamental group of a graph T of groups as 
in Example 1^.7, and if G admits a splitting over a VPC subgroup of length i ^ fc+1, 
then i — k + 1 and the splitting is conjugate to one of the edge splittings ofT. 

Proof. — Suppose that G admits a splitting over a VPC subgroup K of length i ^ 
k + 1. Thus G acts on a tree T with quotient a single edge, and with edge stabilisers 
conjugate to K. As A is abelian, either it fixes a vertex of T, or it has an axis I. This 
means that there is a line / in T on which elements of A act trivially or by translations. 
Suppose that A fixes some vertex v of T. As A is normal in G, it follows that A fixes 
all the vertices in the G-orbit of v, and hence fixes some edge of T. It follows that A 
lies in K, in this case. Now suppose that A has axis /. As A is normal in G, it follows 
that T = I. As the symmetry group of / is Z2 * Z2, there is a natural homomorphism 
from G to Z2 * Z 2 , with kernel K, which is clearly a contradiction. We conclude that 
A must lie in K. It follows that G/A splits over K/A. As K/A is VPC of length at 
most 1 and it is easy to see that e(G/A) = 1, it follows that K/A must have length 1. 
Now the preceding lemma shows that the splitting of G/A over K/A is conjugate to 
one of the edge splittings of T7. It follows that the given splitting of G over K must 
be conjugate to one of the edge splittings of T, as required. • 

Recall from Example 11.7 that if there is a regular neighbourhood of all the non-
trivial almost invariant subsets of G which are over VA subgroups of length 1 or 2, 
then it cannot be a refinement of Y\. Thus there may be nontrivial almost invariant 
subsets of G which are over VA2 subgroups but are not enclosed by any Vb-vertex 
of Ti52. There are similar examples for higher rank groups. However, we prove below 
that, as in Lemma 13.14, the stabiliser of any nontrivial almost invariant subset of G 
which is over a VA subgroup of rank at most n must be 'almost' conjugate into a 
Vb-vertex of I\2 , . . . ,n- As for that lemma, it will be helpful to have an idea of the 
level of a Vb-vertex. A Vb-vertex of Ti^,...,™ has level n if it is sent to a Vi-vertex 
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of r i 5 2, . . . ,n-i by the refinement projection, and has level < n otherwise. This allows 
an inductive definition of the level of any Vo-vertex of Ti^,...^-

Proposition 14.10. — Let G be a one-ended, finitely presented group and let I \ 2 , . . . ,n 

denote the regular neighbourhood of the previous theorem. Let X be any nontrivial 
almost invariant subset of G over a VA subgroup i f of rank I + 1 ^ n. Then either X 
represents an element of J~i:2,...,n, and so is enclosed by some Vo-vertex of I \2 , . . . ,n? 

or some subgroup of finite index in i f is conjugate into the vertex group of a Vo-
vertex o/ri 92,...,n which is of large commensuriser type and level < n. In the second 
case, there is an abelian subgroup A of G of rank < n, such that e (G, A) ^ 2, and 
a Vo-vertex v of I \2 , . . . , N which is of large commensuriser type such that G(v) — 
CommG(A), and some subgroup of finite index in i f is conjugate to a subgroup of G(v) 
which contains A. 

Proof. — The proof is based on the proof of Proposition 13.14. We will argue by 
induction on /. The induction starts when / = 1, and this is just the case n — 1 of 
Proposition 13.14. It suffices to consider only the case when i f is abelian, so we will 
assume this during our proof. 

Now we will assume that the proposition holds for nontrivial almost invariant 
subsets of G which are over a VA subgroup of rank at most /. If X does not cross any 
nontrivial almost invariant subset of G which is over a VA subgroup of rank at most /, 
then X is /-canonical and so lies in T\,2,...,n- Otherwise X crosses some nontrivial 
if-almost invariant subset Y of G, where i f is V A of rank ^ and we will choose Y 
so as to minimise the rank of if. 

If X crosses Y strongly, then HnK must have rank and hence K has rank / 
and HnK has finite index in K. Now we apply our induction hypothesis. If Y lies 
in ^-*i,2,...,n, we use the fact that, as H is abelian, it centralises HnK. Thus HnK 
has large commensuriser, and there is a Vb vertex w of ri ?2,...,n which is of large 
commensuriser type such that G(w) = Coming (if C\K). As HnK has rank I < n, this 
proves the required result about H in this case. If Y does not lie in .Fi,2,...,n, we apply 
our induction hypothesis. This implies that, after simplifying by a conjugation, there 
is an abelian subgroup A of G of rank < /, such that e (G, A) ^ 2, and a Vb-vertex v 
of ri 52,...,n which is of large commensuriser type such that G(v) = Coming (A), and 
some subgroup of finite index in i f is a subgroup of G(v) which contains A. Now 
we simply note that H centralises HnK which has a subgroup of finite index which 
contains a subgroup of A of finite index. Thus H commensurises A, and so lies in G(v). 

If X and Y cross each other weakly, then the first paragraph of the proof of Propo
sition 13.5 shows that one of X^ f l 7 ^ , call it W, is almost invariant over HnK. 
As X and Y cross, W must be a nontrivial (if fl i f )-almost invariant subset of G. 
As G is one-ended, HnK must have rank at least 1. Now we apply the argument 
of the preceding paragraph with W in place of Y, to prove the required result. Note 
that X does not cross W. We simply need the fact that i f contains HnK. 
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Finally suppose that X crosses Y weakly but Y crosses X strongly. As in the 
proof of Proposition 13.14, we let L = i f f l if, and replace i f by a subgroup of finite 
index to arrange that L is normal in i f and that L\K is infinite cyclic. Since X 
crosses Y weakly, we can assume that SX f l Y is finite. By again replacing i f by a 
subgroup of finite index, we may assume that for a generator k of L\K, the translates 
of SX PI Y by the powers of k do not intersect. Consider the set Z = X n Y f l kX*. 
This set is almost invariant over L. If Z is L-finite, then it lies within a finite distance 
of SY. As Ut^iklZ = A f l y, it follows that X HY lies within a finite distance of SY, 
contradicting the hypothesis that X and Y cross. If Z is not L-finite, then X crosses 
Z U k~xZ, and as L has lesser rank than if, this contradicts our choice of Y so as to 
minimise the rank of if. • 

Next we discuss the behaviour of the sequence Ti^,...,n of graphs of groups struc
tures for a fixed group G as n increases. For brevity, we will denote ri ?2,...,n by T n 

in this paragraph only. Each Tn is a refinement of r n _ 1 . We would like to consider 
whether this sequence stabilises by applying Theorem 7.13, but this theorem does not 
apply because only those edge groups incident to Vb vertices of types a) or b) need 
to be VPC. Instead we argue as follows. Each Vb-vertex of Tn which is not a vertex 
of T n _ 1 encloses at least one splitting over a VAn subgroup. By picking one such 
splitting each time Tn and r n _ 1 are distinct, we obtain a sequence ak of compati
ble splittings of G over VA subgroups of rank at least k. This yields a sequence of 
graphs of groups structures A^ for G whose edge splittings are precisely <j\,. .., o^. 
If the sequence Yn does not stabilise, the sequence A/c will be infinite. This will not 
contradict Theorem 7.13, but this can only occur if there is a subsequence of the a^s, 
say Tj, such that Tj is a splitting of G over a VA subgroup C3 of rank at least j 
such that Cj C Cj+i , for all j . Further the sequence Tn stabilises apart from such 
subsequences of edge splittings, so there can only be finitely many such subsequences. 
In the case when there are no such sequences, then the sequence Ti^,...^ of graphs of 
groups decompositions of G eventually stabilises yielding a decomposition which we 
denote by Too, whose Vb vertices enclose all nontrivial almost invariant subsets of G 
over any finitely generated subgroup which is virtually abelian. 

Finally, as in chapters 10, 12 and 13, it follows that one can also form a regular 
neighbourhood of only those almost invariant subsets which are associated to split
tings. This is the result we obtain. 

Theorem 14.11. — Let G be a one-ended, finitely presented group. Let <Si,2,...,n denote 
the collection of equivalence classes of all almost invariant subsets of G which are 
associated to splittings over a virtually abelian subgroup of rank i, for 1 ^ i ^ n, and 
are (i — 1)-canonical with respect to abelian groups. 

Then the regular neighbourhood construction of chapter 3 works and yields a regular 
neighbourhood T(S\,2,...,n G). 

Each Vb vertex v ofT(Si,2,...,n : G) satisfies one of the following conditions: 
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(1) v is isolated, so that G(v) is V A of rank ^ n. 
(2) G(v) is of VAk-by-Fuchsian type, for some k such that 1 ̂  k ^ n — 1. 
(3) G(v) contains a VA subgroup H of rank at most n, which it commensurises, 

such that e(G, H) ^ 2. 
If r(<Si;2,...,n : G) consists of a single vertex, then either <Si52,...,n is empty, or G 

itself satisfies one of the above three conditions. 

As in examples 10.10, 12.8 and 13.17, the following example shows that if G itself 
satisfies the third condition of the above theorem, then r(5i?2,...,n : G) need not 
consist of a single vertex. 

Example 14.12. — Consider the group GVA of Example 10.10. We claim that 
r(<Si52,...,n ' Gp^q) = T(S\ : GPiq), which we showed in Example 10.10 does not 
consist of a single vertex. Suppose that GPjq has a splitting over a VAi subgroup 
iJ , for some i ^ 2, which is (i — l)-canonical with respect to abelian groups. Such 
a splitting must be compatible with the initial splitting of GPiQ over C, so that H 
must be isomorphic to a subgroup of A or B, which is impossible. It follows that 
<Si,2,...,n ecluals the set S\ of equivalence classes of all nontrivial almost invariant 
subsets of G which are associated to splittings over a two-ended subgroup. Thus 
r(<Si,2,...,n • Gp,q) = T(Si : Gp,q) as required. 

Note that this example is very special as GPA contains no VAi subgroups at all for 
i ^ 3, although it does contain subgroups isomorphic to Z x Z. 





CHAPTER 15 

PREVIOUS DECOMPOSITIONS 
OVER TWO-ENDED SUBGROUPS 

In this chapter, we will discuss the relationship between the JSJ-decompositions of 
previous authors and the canonical decomposition which we described in chapter 10. 
Let G be a one-ended, finitely presented group. Let F denote the decomposition 
of G which we obtained in Theorem 10.1, so that T is a regular neighbourhood of 
all equivalence classes of nontrivial almost invariant subsets of G which are over 
two-ended subgroups. It is clear that this is not usually the same as any of the JSJ-
decompositions of previous authors because it may have edge groups which are not 
two-ended. Such edge groups can only occur for edges which are incident to VQ-
vertices which are of large commensuriser type, and we will now describe how to alter 
r so as to obtain one of these other decompositions. Recall that each Vb-vertex v 
of T which is of large commensuriser type encloses at least one splitting of G over a 
two-ended subgroup. For each such Vb-vertex v of T, we pick a maximal family of 
compatible splittings of G each of which is over a two-ended group, is enclosed by v, 
and is not an edge splitting for an edge which is incident to v. This is possible by the 
accessibility result in Theorem 7.11. We refine T by splitting at each such vertex using 
all these splittings. The resulting graph of groups structure is no longer canonical, 
as the splittings enclosed by v are not usually unique. Next we simply collapse each 
edge of T which carries a group which is not two-ended. The result is a graph of 
groups structure TF for G in which every edge group is two-ended. In particular, it 
follows that every vertex group of T' is finitely generated. Of course, TF is no longer 
bipartite. Further, it is not true that any nontrivial almost invariant subset of G 
over a two-ended subgroup is enclosed by a vertex of TF. However it follows from our 
construction of V from T that if G possesses a nontrivial almost invariant subset over a 
two-ended subgroup H, then H has a subgroup of finite index which is conjugate into 
some vertex group of F 7. The known JSJ-decompositions along two-ended subgroups 
can all be refined to such a decomposition, but in [36] there are some assumptions on 
unfoldedness which may somewhat restrict the choice of splittings used to refine I\ 



174 CHAPTER 15. PREVIOUS DECOMPOSITIONS 

However these decompositions are not canonical. We call any such decomposition 
of G along two-ended subgroups a non-canonical JSJ-decomposition of G. 

Sela in [49] initiated the study of uniqueness of such decompositions up to some 
moves which he called sliding, conjugation and modifying the boundary homomor-
phism by a conjugation. In [16], Forester gave a complete description of the unique
ness properties of these decompositions. In [17], Forester considered two moves on 
graphs of groups or equivalently G-trees called a collapse move and an expansion 
move. The first move involves selecting an edge s in the graph which is not a loop 
and such that the induced map from the edge group G(s) to the initial vertex group 
G(v) is an isomorphism. One then collapses s down to v. An expansion move is the 
reverse of a collapse move. A move which factors as a composition of expansions and 
collapses is called an elementary deformation. He showed that two cocompact G-trees 
are related by an elementary deformation if and only if they have the same elliptic 
subgroups. More recently, Guirardel [22] gave a simplified proof of Forester's result. 

Consider one of the non-canonical JSJ-decompositions derived as above from our 
canonical decomposition T. By construction none of the edge splittings is crossed 
strongly by any nontrivial almost invariant set over a two-ended subgroup. Thus they 
are elliptic with respect to any splitting of G over a two-ended group. Next consider 
any two G-trees T\ and T^ corresponding to two such decompositions. The Fuchsian 
vertex groups are the same in both and are thus elliptic with respect to both the 
trees. The other vertex groups of T\ and T2 do not admit any splittings over two-
ended groups relative to the edge groups. This is because in our refinement of T, we 
used a maximal family of compatible splittings of G. It follows that the actions of G 
on the trees T\ and T 2 have the same elliptic subgroups. Thus, by Forester's theorem, 
we have: 

Theorem 15.1. — Let G be a one-ended group and let T\ and T2 be two G-trees cor
responding to non-canonical JSJ-decompositions of G. Then T\ andT^ are related by 
an elementary deformation. 

Corollary 15.2. — Let G be a one-ended group and a a splitting of G over a two-
ended subgroup. Let T be any non-canonical JSJ-decomposition of G. Then either a 
is enclosed by a Vo-vertex of T of Fuchsian type, or a can be obtained by collapses 
and expansions from the edge splittings ofV. 
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EXTENSIONS 

One might wonder how far the techniques above can be used to obtain canonical 
decompositions enclosing almost invariant sets over other classes of groups. In our 
arguments, the first step was to show that in any cross-connected component, the 
crossings are either all weak or all strong. Then we used different kinds of arguments 
in these two cases. For CCC's in which all crossing is weak, we proved that such a 
CCC must enclose a splitting, then proved a finiteness result for the CCC and finally 
we needed an accessibility result. Here are two general results of this type. The first 
is a reformulation of Theorem B.3.13, and asserts the existence of a splitting very 
generally. 

Theorem 16.1. — Suppose that H C G are finitely generated groups and that G does 
not contain any nontrivial almost invariant subsets over subgroups of infinite index 
in H. Let X be a nontrivial almost invariant subset of G over H and suppose that 
the translates of X do not cross each other strongly. Then G splits over a subgroup 
commensurable with H. 

Our arguments in chapter 7 of this paper extend to show the following accessibility 
result. 

Theorem 16.2. — Suppose JC is a class of small groups closed under commensurability. 
Suppose G is a finitely presented group which does not split over a subgroup of infinite 
index in an element of K. Let Tk be a graph of groups decomposition of G without 
redundant vertices and with all edge groups in K, and suppose that for each k, Tk+i 
is a refinement ofTk- Then, the sequence Tk stabilises. 

These two results can be used to handle more cases of CCC's in which all crossing 
is weak. However, to handle CCC's in which all crossing is strong, we used the 
results and arguments of Bowditch [8], and of Dunwoody and Swenson [15] which in 
turn depend on the special structure of VPC groups. Some of these results can be 
summarised in the following theorems. 
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Theorem 16.3. — Let G be a finitely generated group and let X be a nontrivial almost 
invariant subset of G over a virtually abelian group H of rank n + 1. Suppose that 
X is n-canonical with respect to abelian groups, i.e. it does not cross any nontrivial 
almost invariant subset over a virtually abelian group of rank ^ n. Then G splits 
over a virtually abelian group of rank n + l. If X does not cross any translate of X 
strongly, then G splits over a subgroup commensurable with H. Moreover the almost 
invariant sets associated with the splittings obtained are n canonical with respect to 
abelian groups. 

Theorem 16.4. — Let G be a finitely generated group and let X be a nontrivial almost 
invariant subset of G over a VPC(n + 1) group H. Suppose G does not have any 
nontrivial almost invariant sets over VPC groups of length < n and that X is n 
canonical. Then G splits over a VPC(n+ 1) group. If X does not cross any translate 
of X strongly, then G splits over a subgroup commensurable with H. Moreover the 
almost invariant sets associated with the splittings obtained are n-canonical. 

Example 14.1 suggests that it may not be possible to strengthen Theorem 16.3. It 
is possible that similar results may be provable for the special class of slender groups 
considered in [14], but these problems are still open. The techniques of [14] and [20] 
enclose splittings rather than almost invariant sets. The technique in [20] is particu
larly appealing. It is their construction that suggested to us regular neighbourhoods 
and Bowditch's use of pretrees provided us with a crucial technique. The crossing 
hypotheses used in their technique are weaker than ours, provided of course that 
one starts with splittings. Thus there may be further refinements of the decompo
sitions that we obtained if one combines their techniques with ours. We recall that 
even in the case of 3 manifolds the canonical decompositions obtained by enclosing 
splittings only are different from the standard topological JSJ-decompositions (see 
[34]). So, our work seems to suggest that there are several possible generalisations 
of JSJ-decompositions to groups. Moreover, our theories of regular neighbourhoods 
and canonical splittings are very general and these may apply to almost invariant sets 
over groups more general than VPC groups. 
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APPENDIX A 

THE SYMMETRY OF INTERSECTION NUMBERS 
IN GROUP THEORY 

This appendix consists of the complete text of Scott's paper [42], and its later 
correction. We are grateful to the editors of Geometry and Topology for agreeing to 
this. The numbering of results in this appendix is the same as the numbering in the 
original paper with the addition of a prefix A. 

If one considers two simple closed curves L and S on a closed orientable surface F, 
one can define their intersection number to be the least number of intersection points 
obtainable by isotoping L and S transverse to each other. (Note that the count is 
to be made without any signs attached to the intersection points.) By definition, 
this number is symmetric, i.e. the roles of L and S are interchangeable. This can be 
regarded as a definition of the intersection number of the two infinite cyclic subgroups 
A and E of the fundamental group of F which are carried by L and S. In this paper, 
we show that an analogous definition of intersection number of subgroups of a group 
can be given in much greater generality and proved to be symmetric. We also give an 
interpretation of these intersection numbers. 

In [36], Rips and Sela considered a torsion free finitely presented group G and 
infinite cyclic subgroups A and E such that G splits over each. (A group G splits over a 
subgroup C if either G has a HNN decomposition G — A*c, or G has an amalgamated 
free product structure G = A *c B, where A ^ C ^ B.) They effectively considered 
the intersection number i(A, E) of A with E, and they proved that z(A, E) = 0 if 
and only if i(E,A) = 0. Using this, they proved that G has what they call a JSJ 
decomposition. If i(A, E) was not zero, it follows from their work that G can be 
expressed as the fundamental group of a graph of groups with some vertex group 
being a surface group H which contains A and E. Now it is intuitively clear (and we 
discuss it further at the end of section A.2 of this paper) that the intersection number 
of A with E is the same whether it is measured in G or in H. Also the intersection 
numbers of A and E in H are symmetric because of their topological interpretation. 
So it follows at the end of all their work that the intersection numbers of A and E in G 
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are also symmetric. In 1994, Rips asked if there was a simpler proof of this symmetry 
which does not depend on their proof of the JSJ splitting. The answer is positive, 
and the ideas needed for the proof are all essentially contained in earlier papers of the 
author. This paper is a belated response to Rips' question. The main idea is to reduce 
the natural, but not clearly symmetric, definition of intersection number to counting 
the intersections of suitably chosen sets. The most general possible algebraic situation 
in which to define intersection numbers seems to be that of a finitely generated group 
G and two finitely generated subgroups A and E, not necessarily cyclic, such that the 
number of ends of each of the pairs (G, A) and (G, E) is more than one. Note that 
any infinite cyclic subgroup A of TT\(F) satisfies e(7Ti(F),A) = 2. This is because F 

is closed and orientable so that the cover of F with fundamental group A is an open 
annulus which has two ends. In order to handle the general situation, we will need the 
concept of an almost invariant set, which is closely related to the theory of ends. We 
should note that Kropholler and Roller [29] introduced an intersection cohomology 
class in the special case of PD(n — l)-subgroups of PDn^groups. Their ideas are 
closely related to ours, and we will discuss the connections at the start of section A.3 
of this paper. Finally, we should point out that since Rips asked the above question 
about symmetry of intersection numbers, Dunwoody and Sageev [14] have given a 
proof of the existence of a JSJ decomposition for any finitely presented group which 
is very much simpler and more elementary than that of Rips and Sela. 

The preceding discussion is a little misleading, as the intersection numbers which 
we define are not determined simply by a choice of subgroups. In fact, we define 
intersection numbers for almost invariant sets. A special case occurs when one has 
a group G and subgroups A and E such that G splits over each, as a splitting of G 
has a well defined almost invariant set associated. This is discussed in section A.2. 
Thus we can define the intersection number of two splittings of G. In the case of 
cyclic subgroups of surface groups corresponding to simple closed curves, these curves 
determine splittings of the surface group over each cyclic subgroup, and the intersec
tion number we define for these splittings is the same as the topological intersection 
number of the curves. 

In the first section of this paper, we discuss in more detail intersection numbers 
of closed curves on surfaces. In the second section we introduce the concept of an 
almost invariant set and prove the symmetry results advertised in the title. In the 
third section, we discuss the interpretation of intersection numbers when they are 
defined, and how our ideas are connected with those of Kropholler and Roller. 

Acknowledgments: This paper was written while the author was visiting the Math
ematical Sciences Research Institute in Berkeley in 1996/7. Research at MSRI is sup
ported in part by NSF grant DMS-9022140. He is also grateful for the partial support 
provided by NSF grants DMS-9306240 and DMS-9626537. 
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A . l . T h e symmet ry for surface groups 

In this section, we will discuss further the special case of two essential closed curves 
L and S on a compact surface F . This will serve to motivate the definitions in the 
following section, and also show that the results of that section do indeed answer the 
question of Rips. It is not necessary to assume that F is closed or orientable, but we 
do need to assume that L and S are two-sided on F . As described in the introduction 
in the case of simple curves, one defines their intersection number to be the least 
number of intersection points obtainable by homotoping L and S transverse to each 
other, where the count is to be made without any signs attached to the intersection 
points. (One should also insist that L and S be in general position, in order to make 
the count correctly.) Of course, this number is symmetric, i.e. the roles of L and S are 
interchangeable. We will show in section A.2 that one can define these intersection 
numbers in an algebraically natural way. There is also an idea of self-intersection 
number for a curve on a surface and we will discuss a corresponding algebraic idea. 

For the next discussion, we will restrict our attention to the case when L and S 
are simple and introduce the algebraic approach to defining intersection numbers 
taken by Rips and Sela in [36]. Let G denote ITI(F). Suppose that L and S cannot 
be made disjoint and choose a basepoint on L n S. Suppose that L represents the 
element A of G. This element A cannot be trivial, nor can L be parallel to a boundary 
component of F, because of our assumption that L and S cannot be made disjoint. 
Thus L induces a splitting of G over the infinite cyclic subgroup A of G which is 
generated by A. Let a denote the element of G represented by S. Define d(cr, A) to be 
the length of a when written as a word in cyclically reduced form in the splitting of G 
determined by L. Similarly, define d(\, a) to be the length of A when written as a word 
in cyclically reduced form in the splitting of G determined by S. For convenience, 
suppose also that L and S are separating. Then each of these numbers is equal to 
the intersection number of L and S described above and therefore d(X,a) = d(a. A). 
What is interesting is that this symmetry is not obvious from the purely algebraic 
point of view, but it is obvious topologically because the intersection of two sets is 
symmetric. 

In the above discussion, we restricted attention to simple closed curves on a sur
face F, because the algebraic analogue is clear. If F is closed, then not only does a 
simple closed curve on F determine a splitting of 7Ti(F) over the infinite cyclic sub
group carried by the curve, but any splitting of TT\ (F) over an infinite cyclic subgroup 
is induced in this way by some simple closed curve on F . Hence the algebraic situation 
described above exactly corresponds to the topological situation when F is closed. 

Now we continue with further discussion of the intersection number of two closed 
curves L and S which need not be simple. As in [18], it will be convenient to assume 
that L and S are shortest closed geodesies in some Riemannian metric on F so that 
they automatically intersect minimally. Instead of defining the intersection number 
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of L and S in the "obvious" way, we will interpret our intersection numbers in suitable 
covers of F , exactly as in [18] and [19]. Let FA denote the cover of F with fundamental 
group equal to A. Then L lifts to FA and we denote its lift by L again. Let / denote 
the pre-image of this lift in the universal cover F of F . The full pre-image of L in F 
consists of disjoint lines which we call L-lines, which are all translates of I by the 
action of G. Similarly, we define F E , the line s and S-lines in F . Now we consider 
the images of the L-lines in F ^ . Each L-line has image in F ^ which is a possibly 
singular line or circle. Then we define d(L, S) to be the number of images of L-lines 
in F E which meet S. Similarly, we define d(S, L) to be the number of images of S'-
lines in FA which meet L. It is shown in [18], using the assumption that L and S are 
shortest closed geodesies, that each L-line in F ^ crosses S at most once, and similarly 
for S'-lines in F A . It follows that <i(L, S) and d(S, L) are each equal to the number of 
points of L D S, and so they are equal to each other. (This assumes that L and S are 
in general position.) 

Here is an argument which shows that d(L, S) and d(S, L) are equal without ref
erence to the situation in the surface F . Recall that the L-lines are translates of / by 
elements of G. Of course, there is not a unique element of G which sends I to a given 
L-line. In fact, the L-lines are in natural bijective correspondence with the cosets gA 
of A in G. (Our groups act on the left on covering spaces.) The images of the L-lines 
in F ^ are in natural bijective correspondence with the double cosets EgA, and d(L, S) 
counts the number of these double cosets such that the line gl crosses s. Similarly, 
d(S,L) counts the number of the double cosets A/iE such that the line hs crosses /. 
Note that it is trivial that gl crosses s if and only if I crosses g~1s. Now we use the 
bijection from G to itself given by sending each element to its inverse. This induces 
a bijection between the set of all double cosets EgA and the set of all double cosets 
A/iE by sending Eg A to Ag _ 1 E. It follows that it also induces a bijection between 
those double cosets EgA such that gl crosses s and those double cosets A/iE such that 
hs crosses /, which shows that <i(L, S) equals <i(S, L) as required. 

This argument has more point when one applies it to a more complicated situation 
than that of curves on surfaces. In [19], we considered least area maps of surfaces 
into a 3-manifold. The intersection number which we used there was defined in es
sentially the same way but it had no obvious topological interpretation such as the 
number of double curves of intersection. We proved that our intersection numbers 
were symmetric by the above double coset argument, in [19] just before Theorem 6.3. 

A.2 . In tersect ion numbers in general 

In order to handle the general case, we will need the idea of an almost invariant set. 
This idea was introduced by Cohen in [9] and was first used in the relative context 
by Houghton in [24]. We will introduce this idea and explain its connection with the 
foregoing. 
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Let E and F be sets. We say that E and F are almost equal, and write E = F , if 
the symmetric difference ( F — F) U (F — E) is finite. If E is contained in some set W 
on which a group G acts on the right, we say that E is almost invariant if Eg = F , 
for all g in G. An almost invariant subset E of W will be called non-trivial if it is 
infinite and has infinite complement. The connection of this idea with the theory of 
ends of groups is via the Cayley graph T of G with respect to some finite generating 
set of G. (Note that in this paper groups act on the left on covering spaces and, in 
particular, G acts on its Cayley graph on the left.) Using Z2 as coefficients, we can 
identify 0-cochains and 1-cochains on Y with sets of vertices or edges. A subset E 
of G represents a set of vertices of T which we also denote by F , and it is a beautiful 
fact, due to Cohen [9], that E is an almost invariant subset of G if and only if 5E 
is finite, where S is the coboundary operator. If H is a subgroup of G, we let H\G 
denote the set of cosets Hg of H in G, i.e. the quotient of G by the left action of H. 
Of course, G will no longer act on the left on this quotient, but it will still act on the 
right. Thus we have the idea of an almost invariant subset of H\G. 

Now we again consider the situation of simple closed curves L and S on a compact 
surface F and let F denote the universal cover of F . Pick a generating set for G which 
can be represented by a bouquet of circles embedded in F . We will assume that the 
wedge point of the bouquet does not lie on L or S. The pre-image of this bouquet 
in F will be a copy of the Cayley graph T of G with respect to the chosen generating 
set. The pre-image in FA of the bouquet will be a copy of the graph A\T, the quotient 
of T by the action of A on the left. Consider the closed curve L on F A . Let D denote 
the set of all vertices of A\T which lie on one side of L. Then D has finite coboundary, 
as SD equals exactly the edges of A\T which cross L. Hence D is an almost invariant 
subset of A\G. Let X denote the pre-image of D in T, so that X equals the set of 
vertices of T which lie on one side of the line /. There is an algebraic description of X 
in terms of canonical forms for elements of G as follows. Suppose that L separates F , 
so that G = A *A B. Also suppose that L and D are chosen so that all the vertices 
of T labelled with an element of A do not lie in X. Pick right transversals T and 
T' for A in A and B respectively, both of which contain the identity e of G. (A 
right transversal of A in A consists of a choice of coset representative for each coset 
a A.) Each element of G can be expressed uniquely in the form a\b\ . . . a N 6 n A, where 
n ^ 1, A lies in A, each ai lies in T — {e} except that a\ may be trivial, and each 
bi lies in T' — {e} except that bn may be trivial. Then X consists of those elements 
for which a\ is non-trivial. If A is non-separating in F , there is a similar description 
for X. See Theorem 1.7 of [47] for details. Similarly, we can define a set F in F S and 
its pre-image Y in F which equals the set of vertices of T which lie on one side of the 
line s. Now finally the connection between the earlier arguments and almost invariant 
sets can be given. For we can decide whether the lines / and s cross by considering 
instead the sets X and Y. The lines I and s together divide G into the four sets 
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A n Y,X^ \ ) Y,A n r * and A fl r , wJiere A " denotes Cx — A, and l crosses s it 
and only if each of these four sets projects to an infinite subset of E\G. Equally, s 
crosses I if and only if each of these four sets projects to an infinite subset of A\G. 
As we know that I crosses s if and only if s crosses /, it follows that these conditions 
are equivalent. We will show that this symmetry holds in a far more general context. 

Note that in the preceding example the subset X of G is A-invariant under the left 
action of A on G, i.e. AX = X , for all A in A. 

For the most general version of this symmetry result, we can consider any finitely 
generated group G. Note that the subgroups of G which we consider need not be 
finitely generated. 

Definition A.2.1. — If G is a finitely generated group and H is a subgroup, then a 
subset X of G is H-almost invariant if X is invariant under the left action of and 
simultaneously the quotient set H\X is almost invariant under the right action of G. 
In addition, X is a non-trivial iJ-almost invariant subset of G if H\X and H\X* are 
both infinite. 

Note that if A is a non-trivial J^-almost invariant subset of G, then e(G, H) is at 
least 2, as H\X is a non-trivial almost invariant subset of H\G. 

Definition A.2.2. — Let X be a A-almost invariant subset of G and let Y be a S -
almost invariant subset of G. We will say that X crosses Y if each of the four sets 
X H V, X* n Y, X n r * and X* n y* projects to an infinite subset of E\G. 

Note that it is obvious that if Y is trivial, then X cannot cross Y. Our first and 
most basic symmetry result is the following. This is essentially proved in Lemma 2.3 
of [41], but the context there is less general. 

Lemma A.2.3. — If G is a finitely generated group with subgroups A and E 7 and X is a 
non-trivial A-almost invariant subset of G and Y is a non-trivial Ti-almost invariant 
subset of G, then X crosses Y if and only ifY crosses X . 

Remark A.2A. — If X and Y are both trivial, then neither can cross the other, so 
the above symmetry result is clear. However, this symmetry result fails if only one 
of X or y is trivial. Here is a simple example. Let A and E denote infinite cyclic 
groups with generators A and a respectively, and let G denote the group A x E. We 
identify G with the set of integer points in the plane. Let X = (m, n) G G : n > 0, 
and let y = (ra, n) £ G : m = 0. Then X is a non-trivial A-almost invariant subset 
of G and Y is a trivial E-almost invariant subset of G. One can easily check that Y 
crosses X , although X cannot cross Y as Y is trivial. 

Proof — Suppose that X does not cross Y. By replacing one or both of X and Y 
by its complement if needed, we can assume that X f l Y projects to a finite subset 
of E\G. The fact that Y is non-trivial implies that E \ y is an infinite subset of E\G, 
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so there is a point z in E \ F which is not in the image of X D Y. Now we need to 
use some choice of generators for G and consider the corresponding Cayley graph V 
of G. The vertices of T are identified with G and the action of G on itself on the left 
extends to an action on T. We consider z and the image of X D Y in the quotient 
graph E\r. As X f l Y has finite image, there is a number d such that each point of 
its image can be joined to z by a path of length at most d. As the projection of Y 
to E\T is a covering map, it follows that each point of X fl Y can be joined to some 
point lying above z by a path of length at most d. As any point above z lies in A*, it 
follows that each point of XDY can be joined to some point of A* by a path of length 
at most d. Hence each point of X f l Y lies at most distance d from SX. Thus the 
image of X f l Y in A\T lies within the ^-neighbourhood of the compact set S(A\X), 
and so must itself be finite. It follows that Y does not cross X , which completes the 
proof of the symmetry result. • 

At the start of this section, we explained how to connect the topological intersection 
of simple closed curves on a surface with crossing of sets. One can construct many 
other interesting examples in much the same way. 

Example A.l.5. — As before, let F denote a closed surface with fundamental group G, 
and let F denote the universal cover of F. Pick a generating set of G which can be 
represented by a bouquet of circles embedded in F, so that F contains a copy of the 
Cayley graph T of G with respect to the chosen generators. Let F\ denote a cover of F 
which is homeomorphic to a four punctured torus and let A denote its fundamental 
group. For example, if F is the closed orientable surface of genus three, we can consider 
a compact subsurface F' of F which is homeomorphic to a torus with four open discs 
removed, and take the cover F\ of F such that ni(Fi) — 7ri(F'). For notational 
convenience, we identify F\ with S1 x S1 with the four points (1,1), (1, z), (1, — 1) and 
(1, —i) removed. Now we choose 1-dimensional submanifolds of F\ each consisting of 
two circles and each separating F\ into two pieces. Let L denote S1 x {e7™/4, e5 7™/4} 
and let S denote S1 x {e 3 ™/ 4 , e 7 ™/ 4 }. As before, we let D denote all the vertices of 
the graph A\T in F\ which lie on one side of F, and let F denote all the vertices of 
the graph A\r in F\ which lie on one side of S. Let X and Y denote the pre-images 
of D and F in G. Now D is an almost invariant subset of A\G, as SD equals exactly 
the edges of A\T which cross L, and F is almost invariant for similar reasons. Hence 
X and Y are each A-almost invariant subsets of G. Clearly X and Y cross. An 
important feature of this example is that although X and Y cross, the boundaries L 
and S of the corresponding surfaces in F\ are disjoint. This is quite different from 
the example with which we introduced almost invariant sets, but this is a much more 
typical situation. 

Definition A.2.6. — Let A and E be subgroups of a finitely generated group G. Let D 
denote a non-trivial almost invariant subset of A\G, let E denote a non-trivial almost 
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invariant subset of E\G and let X and Y denote the pre-images in G of D and E 
respectively. We define i(D, E) to equal the number of double cosets EgA such that 
gX crosses Y. 

For this definition to be interesting, we need to show that i(D, E) is finite, which is 
not obvious from the definition in this general situation. In fact, it may well be false if 
one does not assume that the groups A and E are finitely generated, although we have 
no examples^1). From now on, we will assume that A and E are finitely generated. 

Lemma A.2.7. — Let A and E be finitely generated subgroups of a finitely generated 
group G. Let D denote a non-trivial almost invariant subset of A\G, and let E denote 
a non-trivial almost invariant subset o/E\G. Then i(D,E) is finite. 

Proof — This is again proved by using the Cayley graph, so it appears to depend on 
the fact that G is finitely generated. However, we have no examples where i(D, E) is 
not finite when G is not finitely generated. The proof we give is essentially contained 
in that of Lemmas 4.3 and 4.4 of [40]. Start by considering the finite graph 8D 
in A\r. As A is finitely generated, we can add edges and vertices to 8D to obtain a 
finite connected subgraph 8\D of A\r which contains SD and has the property that 
its inclusion in A\T induces a surjection of its fundamental group to A. Thus the 
pre-image of 8\D in T is a connected graph which we denote by 8\X. Similarly, we 
obtain a finite connected graph 8\E of E\T which contains SE and has connected 
pre-image 8\Y inT. As usual, we will denote the pre-images of D and E in G by X 
and Y respectively. 

Next we claim that if gX crosses Y then g{8\X) intersects S\Y. (The converse 
need not be true.) Suppose that g(8\X) and 8\Y are disjoint. Then g{8\X) cannot 
meet 5Y. As g(8\X) is connected, it must lie in 7 or 7*. It follows that g(SX) lies 
in For F*, so that one of the four sets X n Y, A* n Y, X n F* and A* n F* must be 
empty, which implies that gX does not cross Y. 

Now we can show that i(D,E) must be finite. Recall that i(D,E) is defined to be 
the number of double cosets Eg A such that gX crosses Y. The preceding paragraph 
implies that i(D, E) is bounded above by the number of double cosets EgA such that 
g(SiX) meets 5{Y. Let P and Q be finite subgraphs of 8\X and 8\Y which project 
onto 8\D and 8\E respectively. If g{8\X) meets 5\Y, then there exist elements A of A 
and a of E such that g(XP) meets aQ. Thus a~lg\P meets Q. Now there are only 
finitely many elements of G which can translate P to meet Q, and it follows that 
i(D,E) is bounded above by this number. • 

We have just shown that, as in the preceding section, the intersection numbers we 
have defined are symmetric, but we will need a little more information. 

( x )Since this was written, Guirardel has given such examples. See Example 2.34. 
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Lemma A.2.8. — Let G be a finitely generated group with subgroups A and £; let D 
denote a non-trivial almost invariant subset of A\G ; and let E denote a non-trivial 
almost invariant subset of £ \G. Then the following statements hold: 

(1) i(D,E) = i(E,D), 
(2) i(L>,E) = i(D\E) = i(D,E*) = i(D*,E*), 
(3) if D' is almost equal to D and E' is almost equal to E, and X, X' and Y, Y' 

denote their pre-images in G, then X crosses Y if and only if X' crosses Y', so that 
i(D,E) = i(D',E'). 

Proof — The first part is proved by using the bijection from G to itself given by 
sending each element to its inverse. This induces a bijection between all double cosets 
Eg A and A/zE by sending Eg A to Ag~xE, and it further induces a bijection between 
those double cosets Eg A such that gX crosses Y and those double cosets A/iE such 
that hY crosses X . 

The second part is clear from the definitions. 
For the third part, we note that, as E and E' are almost equal, so are their 

complements in E\G, and it follows that X crosses Y if and only if it crosses Y'. 
Hence the symmetry proved in Lemma A.2.3, shows that Y crosses X if and only Yf 

crosses X . Now the same argument reversing the roles of D and E yields the required 
result. • 

At this point, we have defined in a natural way a number which can reasonably be 
called the intersection number of D and E, but have not yet defined an intersection 
number for subgroups of G. First note that if e(G, A) is equal to 2, then all choices of 
non-trivial almost invariant sets in A\G are almost equal or almost complementary. 
Let D denote some choice here. Suppose that e(G, E) is also equal to 2, and let E 
denote a non-trivial almost invariant subset of E\G. The third part of the preceding 
lemma implies that i(D,E) is independent of the choices of D and E and so depends 
only on the subgroups A and E. This is then the definition of the intersection number 
z(A, £ ) . In the special case when G is the fundamental group of a closed orientable 
surface and A and E are cyclic subgroups of G, it is automatic that e(G, A) and e(G, E) 
are each equal to 2. The discussion of the previous section clearly shows that this 
definition coincides with the topological definition of intersection number of loops 
representing generators of these subgroups, whether or not those loops are simple. 
Note that one can also define the self-intersection number of an almost invariant 
subset D of A\G to be i(D, D), and hence can define the self-intersection number of 
a subgroup A of G such that e(G, A) = 2. Again this idea generalises the topological 
idea of self-intersection number of a loop on a surface. 

If one considers subgroups A and E such that e(G, A) or e(G, E) is greater than 2, 
there are possibly different ideas for their intersection number depending on which 
almost invariant sets we pick. (It is tempting to simply define i(A, E) to be the 
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minimum possible value for i(D,E), where D is a non-trivial A-almost invariant 
subset of G and E is a non-trivial £-almost invariant subset of G. But this does not 
seem to be the "right" definition.) However, there is a natural way to choose these 
almost invariant sets if we are given splittings of G over A and £. As discussed in 
the previous section in the case of surface groups, the standard way to do this when 
G — A *A B is in terms of canonical forms for elements of G as follows. Pick right 
transversals T and T' for A in A and B respectively, both of which contain the identity 
e of G. Then each element can be expressed uniquely in the form a\b\ . . . a n6 nA, where 
n ^ 1, A lies in A, each lies in T — {e} except that a\ may be trivial, and each bi 
lies in T' — {e} except that bn may be trivial. Let X denote the subset of G consisting 
of elements for which a\ is non-trivial, and let D denote A\A. It is easy to check 
directly that X is A-almost invariant. One must check that A A = X1 for all A in A 
and that Dg = D, for all g in G. The first equation is trivial, and the second is 
easily checked when g lies in A or B, which implies that it holds for all g in G. Note 
also that the definition of X is independent of the choices of transversals of A in A 
and B. Then D is the almost invariant set determined by the given splitting of G. 
This definition seems asymmetric, but if instead we consider the A-almost invariant 
subset of G consisting of elements whose canonical form begins with a non-trivial 
element of we will obtain an almost invariant subset of A\G which is almost equal 
to the complement of D. There is a similar description of D when G — A*A. For 
details see Theorem 1.7 of [47]. The connection between D and the given splitting 
of G can be seen in several ways. From the topologists' point of view, one sees this 
as described earlier for surface groups. From the point of view of groups acting on 
trees, there is also a very natural description. One identifies a splitting of G with an 
action of G on a tree T without inversions, such that the quotient G\T has a single 
edge. Let e denote the edge of T with stabiliser A, let v denote the vertex of e with 
stabiliser A, and let E denote the component of T — e which contains v. Then we can 
define X = g G G : ge C E. It is easy to check directly that this set is the same as 
the set X defined above using canonical forms. 

In the preceding paragraph, we showed how to obtain a well defined intersection 
number of given splittings over A and E. An important point to notice is that this 
intersection number is not determined by the subgroups A and E of G only. It depends 
on the given splittings. In the case when G is a surface group, this is irrelevant as there 
can be at most one splitting of a surface group over a given infinite cyclic subgroup. 
But in general, a group G with subgroup A can have many different splittings over A. 

Example A.2.9. — Here is a simple example to show that intersection numbers depend 
on splittings, not just on subgroups. First we note that the self-intersection number 
of any splitting is zero. Now construct a group G by amalgamating four groups Gi , 
G2, G3 and G4 along a common subgroup A. Thus G can be expressed as G12 *A G34, 
where Gij is the subgroup of G generated by Gi and Gj , but it can also be expressed 
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as G13 *A G24 or G14 *A G23. The intersection number of any distinct pair of these 
splittings of G is non-zero, but all the splittings being considered are splittings over 
the same group A. 

A question which arose in our introduction in connection with the work of Rips 
and Sela was how the intersection number of two subgroups of a group G alters if one 
replaces G by a subgroup. In general, nothing can be said, but in interesting cases one 
can understand the answer to this question. The particular case considered by Rips 
and Sela was of a finitely presented group G which is expressed as the fundamental 
group of a graph of groups with some vertex group being a group H which contains 
infinite cyclic subgroups A and E. Further H is the fundamental group of a surface F 
and A and E are carried by simple closed curves L and S on F. A point deliberately 
left unclear in our earlier discussion of their work was that F is not a closed surface. 
It is a compact surface with non-empty boundary. The curves L and S are not 
homotopic to boundary components and so define splittings of H. The edges in the 
graph of groups which are attached to H all carry some subgroup of the fundamental 
group of a boundary component of F. This implies that L and S also define splittings 
of G. It is clear from this picture that the intersection number of A and E should be 
the same whether measured in G or in H, as it should equal the intersection number 
of the curves L and 5, but this needs a little more thought to make precise. As usual, 
the first point to make is that we are really talking about the intersection numbers 
of the splittings defined by L and 5, rather than intersection numbers of A and E. 
For the number of ends e(H, A) and e(H, E) are infinite when F is a surface with 
boundary. As G is finitely presented, we can attach cells to the boundary of F to 
construct a finite complex K with fundamental group G. Now the identification of 
the intersection number of the given splittings of G with the intersection number of L 
and S proceeds exactly as at the start of this section, where we showed how to identify 
the intersection number of the given splittings of H with the intersection number of L 
and S. 

A.3 . Interpret ing intersection numbers 

It is natural to ask what is the meaning of the intersection numbers defined in the 
previous section. The answer is already clear in the case of a surface group with cyclic 
subgroups. In this section^2), we will give an interpretation of the intersection number 
of two splittings of a finitely generated group G over finitely generated subgroups. We 
start by discussing the connection with the work of Kropholler and Roller. 

In [29], Kropholler and Roller introduced an intersection cohomology class for 
PD(n — l)-subgroups of a PDn-group. The pairs involved always have two ends, 

( 2 )Th i s section contains a serious error which was corrected in a later paper. This correction has 
been added to this appendix as the next section. 
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so the work of the previous section defines an intersection number in this situation. 
The connection between our intersection number and their intersection cohomology 
class is the following. Recall that if one has subgroups A and E of a finitely generated 
group G, such that e(G, A) and e(G, E) are each equal to 2, then one chooses a non-
trivial A-almost invariant subset X of G and a non-trivial E-almost invariant subset 
Y of G and defines our intersection number z(A,E) to equal the number of double 
cosets Eg A such that gX crosses Y. Their cohomology class encodes the information 
about which double cosets have this crossing property. Thus their invariant is much 
finer than the intersection number and it is trivial to deduce the intersection number 
from their cohomology class. 

To interpret the intersection number of two splittings of a group G, we need to 
discuss the Subgroup Theorem for amalgamated free products. Let G be a finitely 
generated group, which splits over finitely generated subgroups A and E. We will 
write G = A\ *A {B\) to denote that either G has the HNN structure A\*\ or G 
has the structure A\ *A B\. Similarly, we will write G = A^ * E ( ^ 2 ) - The Subgroup 
Theorem, see [47] and [50] (or [51]) for discussions from the topological and algebraic 
points of view, yields a graph of groups structure 3>i(E) for E, with vertex groups 
lying in conjugates of A\ or B\ and edge groups lying in conjugates of A. Typically 
this graph will not be finite or even locally finite. However, as E is finitely generated, 
there is a finite subgraph ^ 1 which still carries E. If we reverse the roles of A and 
E, we will obtain a graph of groups structure $2(A) for A, with vertex groups lying 
in conjugates of A2 or B2 and edge groups lying in conjugates of E, and there is 
a finite subgraph ^ 2 which still carries A. We show below that, in most cases, the 
intersection number of A and E measures the minimal possible number of edges of 
these finite subgraphs. Notice that if we consider the special case when G is the 
fundamental group of a closed surface and A and E are infinite cyclic subgroups, this 
statement is clear. Now the symmetry of intersection numbers implies the surprising 
fact that the minimal number of edges for \£i and ^ 2 are the same. 

There is an alternative point of view which we will use for our proof. The splitting 
A2 * E (B2) of G corresponds to an action of G on a tree T such that the quotient 
G\T has one edge. The edge stabilisers in this action on T are all conjugate to E 
and the vertex stabilisers are conjugate to A2 or B2 as appropriate. If one has a 
subgroup A of G, the quotient A\T will be the graph underlying $ 2 ( A ) . There is a 
A invariant subtree T' of T, such that the graph A\T' is the graph underlying 
Whichever point of view you take, it is necessary to connect it with the ideas about 
almost invariant sets which we have already discussed. Here is our interpretation of 
intersection numbers. 

Theorem A3.1. — Let G be a finitely generated group, which splits over finitely gen
erated subgroups A and TJ, such that if U and V are any conjugates of A and E 
respectively, then U D V has infinite index in both U and V. Then the intersection 
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number of the two splittings equals the minimal number of edges in each of the graphs 
\£i and ^2-

Remark A.3.2. — This result is clearly false if the condition on conjugates is omitted. 
For example, if A = XI, then ^ i (E) and ^2(A) will each consist of a single vertex, but 
the intersection number of the two splittings need not be zero. 

The proof will use the following sequence of lemmas. 
We start with a general result about minimal G-invariant subtrees of a tree T on 

which a group G acts. If every element of G fixes each point of a non-trivial subtree 
T' of T, then any vertex of T' is a minimal G-invariant subtree of T. Otherwise, 
there is a unique minimal G-invariant subtree of T. An orientation of an edge e of T 
consists of a choice of one vertex as the initial vertex i(e) of e and the other as the 
terminal vertex t{e). An oriented path in T consists of a finite sequence of oriented 
edges ei, e 2 , . . •, efc of T, such that t(ej) = i ( e J + i ) , for 1 ^ j ^ k — 1. If we consider 
two oriented edges e and e' of T we say that they are coherently oriented if there is 
an oriented path which begins with one and ends with the other. Finally, given an 
edge e of T and an element g of G, we will say that e and ge are coherently oriented 
if for some (and hence either) orientation on e and the induced orientation on ge, the 
edges e and ge are coherently oriented. 

Lemma A.3.3. — Suppose that a group G acts on a tree T without inversions and 
without fixing a point. Let T' denote the minimal G-invariant subtree. Then an edge 
e of T lies in T' if and only if there exists an element g of G such that e and ge are 
distinct and coherently oriented. 

Proof. — First consider an edge e not lying in T'. Orient e so that it is the first edge 
of an oriented path A in T which starts with e, has no edge in T", and ends at a vertex 
of T'. Thus ge, with the induced orientation, is the first edge of an oriented path gX 
in T which starts with ge, has no edge in T", and ends at a vertex of T'. Now the 
unique path in T which joins e and ge must consist either of A and gX together with 
a path in T' or of an initial segment of e together with an initial segment of ge. In 
either case, it follows that e and ge are not coherently oriented. 

Now we consider an edge e of T' and its image e in G\T'. 
If e is non-separating in G\T 7, let a denote an oriented path in G\Tf which joins 

the ends of e and meets e only in its endpoints. Then the loop formed by /1 U e lifts 
to an oriented path in T 7, which shows that there is g in G such that e and ge are 
distinct and coherently oriented. 

If e separates G\X", we can write the graph G\Tf as Ti U e U T 2 , where each Ti 
is connected and meets e in one endpoint only. Now consider the graph of groups 
structure given by G\T'. By contracting each I \ to a point, we obtain an amalgamated 
free product structure of G as G\ *c G 2 , where G = stab(e) and each Gi is the 
fundamental group of the graph of groups I \ . Let Ti denote the tree on which Gi acts 
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with quotient IV Then the complement in T' of the edge e and its translates consists 
of disjoint copies of Ti and T 2 . We identify T% with the copy of Ti which meets e. 
Note that T\ and T2 are disjoint. Now it is clear that G\ 7^ C 7^ GV For if G\ = G, 
then G = G 2 , which implies that T2 is a G-invariant subtree of T'contradicting the 
minimality of T'. As G\ 7^ C, there is an element g\ of G\ such that gie 7^ e, and 
similarly there is an element of G2 such that 7^ e. For each z, there is a path Â  
in Ti which begins at e and ends at ^e . As T\ and T2 are disjoint, so are Ai and A2. 
It follows that of the three edges e ,g ie ,#2e , at least one pair is coherently oriented, 
which completes the proof of the lemma. • 

The following result is clear. 

Lemma A.3.4. — Suppose that a group G acts on a tree T without inversions and 
without fixing a point. Let e denote an edge ofT, let E denote a component ofT — {e} 
and let g denote an element of G. Then e and ge are distinct and coherently oriented 
if and only if either gE ^ E or gE* ^ E*. 

Next we need to connect this with almost invariant sets, although the following 
result does not use the almost invariance property. 

Lemma A.3.5. — Suppose that a group G acts on a tree T without inversions and 
without fixing a point and suppose that the quotient graph G\T has only one edge. Let e 
denote an edge ofT, let E denote a component ofT — {e} and let Y = k <G G : ke C E. 
Then the following statements hold for all elements g of G: 

(1) gY (ZY if and only if gE c E7 and gY* C Y* if and only if gE* C E*. 
(2) gY = Y if and only if gE = E7 and gY* = Y* if and only if gE* = E*. 
(3) gY C y if and only if gE C E, and gY* C Y* if and only if gE* g E*. 

Proof. — Suppose that gE C E. If /c lies in F , then ke C E, so that gke C gE c E. 
Thus gk also lies in Y. It follows that gY C Y. 

Conversely, suppose that gY C Y and consider an edge / of E. As G\T has only 
one edge, / = ke for some k in G. As / lies in E, k lies in Y, and hence gk also lies 
in Y by our assumption that gY c Y. Thus gke C E, so that gf C E. Thus implies 
that gE C E as required. 

The proof for the second equivalence in part 1 is essentially the same. 
The equivalences in part 2 follow by applying part 1 for g and g'1. Now the 

equivalences in part 3 are clear. • 

Next we connect the above inclusions with crossing of sets. 

Lemma A.3.6. — Suppose that a finitely generated group G splits over a finitely gen
erated subgroup A with corresponding A-almost invariant set X and also splits over a 
finitely generated subgroup E with corresponding T-almost invariant set Y. Suppose 
further that if U and V are any conjugates of A and E respectively, then U fl V has 
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infinite index in U. Then X crosses Y if and only if there is an element X in A such 
that either XY or AF* C y*. 
Proof — We claim that there exists Ai G A such that either X\Y ^ Y or AiF* ^ F , 
and there exists A2 G A such that either X2Y ^ F* or A 2 F * ^ Y*. Assuming this, 
either X\Y C Y or A 2 F * ^ F*, and our proof is complete, or we have AiF* ^ F and 
X2Y ^ F*. The last possibility implies that A 2 A 1 F * ^ A 2 F ^ F*, again completing 
the proof. 

To prove our claim, we pick a finite generating set for G, and consider the Cayley 
graph r of G with respect to this generating set. As Y is a E-almost invariant set 
associated to a splitting A2 *s ( ^ 2 ) of G over E, we can choose Y and Y so that, for 
every g in G, gSY is disjoint from or coincides with SY. A simple way to arrange 
this is to take as generators of G the union of a set of generators of E and of A2 and 
# 2 , so that T(G) contains a copy of the Cayley graph T(E) of E and E\T contains 
E\T(E) which is a wedge of circles. (Note that this uses the hypothesis that E is 
finitely generated.) Let v denote the wedge point, and let E denote the collection of 
vertices of E\T which can be joined to v by a path whose interior is disjoint from v 
such that the last edge is labelled by an element of A. Then clearly SE consists of 
exactly those edges of E\r which have one end at v and are labelled by an element 
of A. Further, if we let Y denote the pre-image of E in G, then, for every g in G, 
gSY is disjoint from or coincides with SY. 

In order to prove that Ai exists, we argue as follows. As A D E has infinite index 
in A, and as SX is A-invariant, it follows that SX must contain points which are 
arbitrarily far from SY on each side of SY. Recall that A\X is an almost invariant 
subset of A\G, so that it has finite coboundary which equals A\SX. Hence there is 
a number d such that any point of A\SX can be joined to the image of SY in A\r 
by a path of length at most d. It follows that any point of SX can be joined to XSY, 
for some A in A, by a path in Y of length at most d. Hence there is a translate of SY 
which contains points on one side of SY and another translate which contains points 
on the other side of SY. Hence there are elements Ai and A2 of A such that X\SY 
lies on one side of SY and X2SY lies on the other. Without loss of generality, we can 
suppose that Ai^F lies on the side containing Y so that either AiF ^ Y or AiF* ^ Y. 
As X2SY lies on the side of SY containing F*, either A 2F g F* or A2F* § F*. This 
completes the proof of the claim made at the start of the proof. • 

Now we can give the proof of Theorem A.3.1. 

Proof. — Recall that G splits over finitely generated subgroups A and E such that if 
U and V are any conjugates of A and E, then U fl V has infinite index in both U and 
V. Also G acts on a tree T so as to induce the given splitting over E. Let e denote 
an edge of T with stabiliser E and consider the action of A on T. Our hypothesis on 
conjugates of A and E implies, in particular, that A is not contained in any conjugate 
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of E so that A cannot fix an edge of T. Thus there is a unique minimal A-invariant 
subtree T' of T. Lemma A.3.3 shows that an edge he of T lies in T' if and only if 
there is A in A such that he and Xhe are distinct and coherently oriented. Lemma 
A.3.4 shows that this occurs if and only if either XhE ^ hE or XhE* ^ hE*, and 
Lemma A.3.5 shows that this occurs if and only if XhY ^ hY or A/iF* ^ hY*. Finally 
Lemma A.3.6 shows that this occurs if and only if X crosses hY. We conclude that 
an edge he of T lies in T' if and only if X crosses hY. Thus the edges of T which 
lie in the minimal A-invariant subtree T' naturally correspond to the cosets /iE such 
that X crosses hY. Hence the number of edges in ^ 2 (A) equals the number of double 
cosets A/iE such that X crosses hY, which was defined to be the intersection number 
of the given splittings. Similarly, one can show that the intersection number of the 
given splittings equals the minimal possible number of edges in the graph ^ 1 (E). This 
completes the proof of Theorem A.3.1. • 

A.4 . Correct ion 

This section consists of the complete text of the correction to Scott's paper [42]. 

Theorem A.3.1 is false as stated. The error in the argument occurs in the proof of 
Lemma A.3.6. See below for a counterexample. 

Lemma A.3.6 asserts that, under suitable hypotheses, X crosses Y if and only 
if there is an element A in A such that either XY ^ Y or AF* ^ Y*. One of these 
implications is correct. If such a A exists, then it is true that X must cross Y. However, 
I failed to give any argument for this, and I provide one below. The other implication 
is false. The mistake is contained in the second sentence of the last paragraph of the 
proof of Lemma A.3.6. A simple fix is to amend the statements of Theorem A.3.1 and 
Lemma A.3.6 to take this into account. Thus we need the additional hypothesis for 
Lemma A.3.6 that if X crosses Y, then SX must contain points which are arbitrarily 
far from SY on each side of SY. We also need the additional hypothesis for Theorem 
A.3.1 that if X crosses gY then SX must contain points which are arbitrarily far from 
SgY on each side of SgY. This technical assumption is often but not always satisfied. 

Here is the half of the proof of Lemma A.3.6 which was omitted. This asserts that 
if there is an element A in A such that either AF ^ Y or AF* ^ F*, then X must 
cross F . We will assume that AF ^ F , as the argument in the other case is essentially 
identical. As F is associated to a splitting of G, it is easy to see that the distance 
of XnSY from SY must tend to infinity as n —* 00. (For example, if G = A *c B, and 
F is the set of words in G which begin in A — G, then A must begin in A — C and end 
in B — C.) Now consider an element g 6 G, and let d denote the distance of g from 
SY. Then d is also the distance of Xng from XnSY. Hence, for any element g of G, all 
translates Xng lie in F , for suitably large n. If we apply these statements to an edge 
of SX, and recall that SX is preserved by A, we see that SX must contain points which 
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are arbitrarily far from SY and lie in Y. By applying the same discussion to A - 1 , we 
see that SX must also contain points which are arbitrarily far from SY and lie in Y*. 
Hence SX must contain points which are arbitrarily far from SY on each side of SY 
as required. 

Now we come to the promised counterexample. Let G denote the fundamental 
group of the closed orientable surface M of genus two. Let D denote a simple closed 
curve on M which separates M into two once-punctured tori S and T and let D' 
denote a non-separating simple closed curve in the interior of S . Let W denote the 
surface obtained from S by removing a regular neighbourhood of D ' . Let C denote a 
non-separating simple closed curve on M whose intersection number with D is two, 
and which is disjoint from D ' . We will describe two splittings of G. The first will be 
the HNN splitting over an infinite cyclic group determined by C. The second will be 
the amalgamated free product splitting of G over TTI(W) with vertex groups TTI(S) 

and 7Ti(W U T). These two splittings satisfy the hypotheses of Theorem A.3.1. If 
one considers TTI((7) as a subgroup of the splitting over TTI(W), the minimal graph of 
groups obtained has no edges, because TT\{C) is contained in TTI(W U T) which is a 
vertex group. If one considers i\\ (W) as a subgroup of the HNN splitting determined 
by (7, the minimal graph of groups obtained has at least one edge because m (W) does 
not lie in a conjugate of any vertex group. (The graph in question has exactly one 
edge, but this fact is not needed here.) This shows that Theorem A.3.1 must fail for 
this example, because the numbers of edges in these two graphs are not equal. It is 
also true that Lemma A.3.6 fails for this example. Let X and Y be the usual subsets 
of G associated to the two splittings. I claim that X crosses Y but SX does not contain 
points which are arbitrarily far from SY on each side of SY. To see this, consider the 
picture in the cover Mc of M whose fundamental group equals 7Ti(C). This cover is 
an open annulus which contains a lift of C which we will continue to denote by C. As 
in section A.2, we pick a generating set for G which can be represented by a bouquet 
of circles embedded in M, so that the pre-image in the universal cover M of M of 
this bouquet is a copy of the Cayley graph Y of (7, and we identify the vertices of this 
graph with G. Now let E denote the set of all vertices of TTI(C)\Y in Mc which lie on 
one side of C. Then E represents an almost invariant subset of TTI(C)\G and the pre-
image of E in r can be taken to be X. Now consider the picture in the cover Mw of M 
whose fundamental group equals -K\{W). This cover consists of a lift of W, which we 
will continue to denote by W and open collars attached to the boundary components 
of W. Let F denote the set of all vertices of iri(W)\Y which lie in the union of W 
together with the collar attached to the component D of dW. Then F represents an 
almost invariant subset of TTI(W)\G and the pre-image of F in G can be taken to 
be Y. The pre-image in M of C is a line whose image in Mw is a properly embedded 
line meeting W in a compact arc which projects homeomorphically to C fl W. Now 
inspection shows that each of the four sets X^ fl Y^ has infinite image in Mw so 
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that X crosses Y but SX does not contain points which are arbitrarily far from SY 
on each side of SY. 

The new version of Theorem A.3.1 described here is, of course, rather unsatisfactory 
as the extra hypothesis is technical and it is not clear when it holds. However, there 
is a little more which can be said without any extra work. For it follows from the 
preceding discussion that the number of edges in each of the minimal graphs of groups 
described above is always less than or equal to the intersection number of the two 
splittings being considered. 



APPENDIX B 

SPLITTINGS OF GROUPS AND 
INTERSECTION NUMBERS 

This appendix consists of the complete text of our paper [44]. We are grateful to 
the editors of Geometry and Topology for agreeing to this. The numbering of results 
in this appendix is the same as the numbering in the original paper with the addition 
of a prefix B. 

In this paper, we will discuss an algebraic version of intersection numbers which 
was introduced by Scott in [42]. First we need to discuss intersection numbers in the 
topological setting. Let F denote a surface and let L and S each be a properly im
mersed two-sided circle or compact arc in F. Here 'properly' means that the boundary 
of the 1-manifold lies in the boundary of F. One can define the intersection number 
of L and S to be the least number of intersection points obtainable by homotoping L 
and S transverse to each other. (The count is to be made without any signs attached 
to the intersection points.) It is obvious that this number is symmetric in the sense 
that it is independent of the order of L and S. It is also obvious that L and S have 
intersection number zero if and only if they can be properly homotoped to be disjoint. 
It seems natural to define the self-intersection number of an immersed two-sided cir
cle or arc L in F to be the least number of transverse intersection points obtainable 
by homotoping L into general position. With this definition, L has self-intersection 
number zero if and only if it is homotopic to an embedding. However, in light of later 
generalisations, it turns out that this definition should be modified a little in order 
to ensure that the self-intersection number of any cover of a simple closed curve is 
also zero. No modification is needed unless L is a circle which can be homotoped to 
cover another immersion with degree greater than 1. In this case, suppose that the 
maximal degree of covering which can occur is k and that L covers V with degree k. 
Then we define the self-intersection number of L to be k2 times the self-intersection 
number of L'. With this modified definition, L has self-intersection number zero if 
and only if it can be homotoped to cover an embedding. 
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In [19], Freedman, Hass and Scott introduced a notion of intersection number and 
self-intersection number for two-sided 7T\ infective immersions of compact surfaces 
into 3-manifolds which generalises the preceding ideas. Their intersection number 
cannot be described as simply as for curves on a surface, but it does share some 
important properties. In particular, it is a non-negative integer and it is symmetric, 
although this symmetry is not obvious from the definition. Further, two surfaces have 
intersection number zero if and only if they can be homotoped to be disjoint, and 
a single surface has self-intersection number zero if and only if it can be homotoped 
to cover an embedding. These two facts are no longer obvious consequences of the 
definition, but are non-trivial applications of the theory of least area surfaces. 

In [42], Scott extended the ideas of [19] to define intersection numbers in a purely 
group theoretic setting. The details will be discussed in the first section of this paper, 
but we give an introduction to the ideas here. It seems clear that everything discussed 
in the preceding two paragraphs should have a purely algebraic interpretation in 
terms of fundamental groups of surfaces and 3-manifolds, and the aim is to find 
an interpretation which makes sense for any group. It seems natural to attempt to 
define the intersection number of two subgroups //and K of a given group G. This is 
exactly what the topological intersection number of simple closed curves on a surface 
does when G is the fundamental group of a closed orientable surface and we restrict 
attention to infinite cyclic subgroups H and K . However, if one considers two simple 
arcs on a surface F with boundary, they each carry the trivial subgroup of G = TTI(F), 

whereas we know that some arcs have intersection number zero and others do not. 
Thus intersection numbers are not determined simply by the groups involved. We need 
to look a little deeper in order to formulate the algebraic analogue. First we need 
to think a bit more about curves on surfaces. Let L be a simple arc or closed curve 
on an orientable surface F, let G denote K\(F) and let H denote the image of TTI(L) 

in G. If L separates F then, in most cases, it gives G the structure of an amalgamated 
free product A *H B , and if L is non-separating, it gives G the structure of a HNN 
extension A*H- In order to avoid discussing which of these two structures G has, it is 
convenient to say that a group G splits over a subgroup H if G is isomorphic to A*H 
or to A *H B , with A ^ H ^ B . (Note that the condition that A ^ H ^ B is needed 
as otherwise any group G would split over any subgroup H. For one can always write 
G — G H.) Thus, in most cases, L determines a splitting of G = TTI(F). Usually 
one ignores base points, so that the splitting of G is only determined up to conjugacy. 
In [42], Scott defined the intersection number of two splittings of any group G over 
any subgroups H and K . In the special case when G is the fundamental group of 
a compact surface F and these splittings arise from embedded arcs or circles on F , 
the algebraic intersection number of the splittings equals the topological intersection 
number of the corresponding 1-manifolds. The analogous statement holds when G is 
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the fundamental group of a compact 3-manifold and these splittings arise from TT\-
injective embedded surfaces. In general, the algebraic intersection number shares some 
properties of the topological intersection number. Algebraic intersection numbers are 
symmetric, and if (7, H and K are finitely generated, the intersection number of 
splittings of G over H and over K is a non-negative integer. 

The first main result of this paper is a generalisation to the algebraic setting of the 
fact that two simple arcs or closed curves on a surface have intersection number zero 
if and only if they can be isotoped apart. Of course, the idea of isotopy makes no 
sense in the algebraic setting, so we need some algebraic language to describe multiple 
disjoint curves on a surface. Let L i , . . . , Ln be disjoint simple arcs or closed curves 
on a compact orientable surface F with fundamental group (7, such that each Li 
determines a splitting of G. Together they determine a graph of groups structure on 
G with n edges. We say that a collection of n splittings of a group G is compatible if 
G can be expressed as the fundamental group of a graph of groups with n edges, such 
that, for each i, collapsing all edges but the i-th yields the i-th splitting of G. We 
will say that the splittings are compatible up to conjugacy if collapsing all edges but 
the i-th. yields a splitting of G which is conjugate to the i-th given splitting. Clearly 
disjoint essential simple arcs or closed curves on F define splittings of G which are 
compatible up to conjugacy. The precise statement we obtain is the following. 

Theorem B.2.5. — Let G be a finitely generated group with n splittings over finitely 
generated subgroups. This collection of splittings is compatible up to conjugacy if 
and only if each pair of splittings has intersection number zero. Further, in this 
situation, the graph of groups structure on G obtained from these splittings has a 
unique underlying graph, and the edge and vertex groups are unique up to conjugacy. 

So far, we have not discussed any algebraic analogue of non-embedded arcs or 
circles on surfaces. There is such an analogue which is the idea of an almost invariant 
subset of the quotient H\G, where H is a subgroup of G. This generalises the idea of 
an immersed curve in a surface or of an immersed TTI -injective surface in a 3-manifold 
which carries the subgroup H of G. We give the definitions in section B.l. There is 
also an idea of intersection number of such things, which we give in Definition B.l.3. 
This too was introduced by Scott in [42]. Our second main result, Theorem B.2.8, 
is an algebraic analogue of the fact that a singular curve on a surface or a singular 
surface in a 3-manifold which has self-intersection number zero can be homotoped to 
cover an embedding. It asserts that if H\G has an almost invariant subset with self-
intersection number zero, then G has a splitting over a subgroup H' commensurable 
with H. We leave the precise statement until section B.2. 

In a separate paper [45], we use the ideas about intersection numbers of splittings 
developed in [42] and in this paper to study JSJ decompositions of Haken 3-manifolds. 
The problem there is to recognize which splittings of the fundamental group of such a 
manifold arise from the JSJ decomposition (see [32] and [34]). It turns out that a class 
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of splittings which we call canonical can be defined using intersection numbers and we 
use this to show that the JSJ decomposition for Haken 3-manifolds depends only on 
the fundamental group. This leads to an algebraic proof of Johannson' Deformation 
Theorem. It seems very likely that similar ideas apply to Sela's JSJ decompositions 
[49] of hyperbolic groups and thus provide a common thread to the two types of JSJ 
decomposition. Thus, the use of intersection numbers seems to provide a tool in the 
study of diverse topics in group theory and this paper together with [42] provides 
some of the foundational material. 

This paper is organised as follows. In section B.l, we recall from [42] the basic 
definitions of intersection numbers in the algebraic context. We also prove a technical 
result which was essentially proved by Scott [41] in 1980. However, Scott's results were 
all formulated in the context of surfaces in 3-manifolds, so we give a complete proof 
of the generalisation to the purely group theoretic context. Section B.2 is devoted to 
the proofs of our two main results discussed above. 

There is a second natural idea of intersection number, which we discuss in sec
tion B.3. We call it the strong intersection number. It is not symmetric in general, 
but this is not a problem when one is considering self-intersection numbers. We 
also discuss when the two kinds of intersection number are equal, which then forces 
the strong intersection number to be symmetric. We use these ideas to give a new 
approach to a result of Kropholler and Roller [29] on splittings of Poincare duality 
groups. We also discuss applications of our ideas to prove a special case of a conjecture 
of Kropholler and Roller [30] on splittings of groups in general. We point out that 
these ideas lead to an alternative approach to the algebraic Torus Theorem [15]. We 
end the section with a brief discussion of an error in [42]. In section 3 of that paper, 
Scott gave an incorrect interpretation of the intersection number of two splittings. His 
error was caused by confusing the ideas of strong and ordinary intersection. However, 
the arguments in [42] work to give a nice interpretation of the intersection number in 
the case when it is equal to the strong intersection number. Without this condition, 
finding nice interpretations of the two intersection numbers is an open problem. 

B . l . Pre l iminar ies and s ta tements of main results 

We will start by recalling from [42] how to define intersection numbers in the 
algebraic setting. We will connect this with the natural topological idea of intersection 
number already discussed in the introduction. Consider two simple closed curves L 
and S on a closed orientable surface F . As in [18], it will be convenient to assume 
that L and S are shortest geodesies in some Riemannian metric on F so that they 
automatically intersect minimally. We will interpret the intersection number of L and 
S in suitable covers of F, exactly as in [18] and [19]. Let G denote 7Ti (F) , let H 
denote the infinite cyclic subgroup of G carried by L, and let FH denote the cover 
of F with fundamental group equal to H. Then L lifts to F H and we denote its lift 
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by L again. Let I denote the pre-image of this lift in the universal cover F of F. The 
full pre-image of L in F consists of disjoint lines which we call L-lines, which are all 
translates of / by the action of G. (Note that in this paper groups act on the left on 
covering spaces.) Similarly, we define K, Fx, the line s and S'-lines in F. Now we 
consider the images of the L-lines in FK • Each L line has image in Fx which is a line 
or circle. Then we define d(L, 5) to be the number of images of L-lines in Fx which 
meet S. Similarly, we define d(S, L) to be the number of images of .S'-lines in FH 
which meet L. It is shown in [18], using the assumption that L and S are shortest 
closed geodesies, that each L-line in Fx crosses S at most once, and similarly for 
S'-lines in FH- It follows that d(L, 5) and d(S,L) are each equal to the number of 
points of L n S, and so they are equal to each other. 

We need to take one further step in abstracting the idea of intersection number. 
As the stabiliser of I is H, the L-lines naturally correspond to the cosets gH of H 
in G. Hence the images of the L-lines in Fx naturally correspond to the double cosets 
KgH. Thus we can think of d(L, S) as the number of double cosets KgH such that 
gl crosses s. This is the idea which we generalise to define intersection numbers in a 
purely algebraic setting. 

First we need some terminology. 
Two sets P and Q are almost equal if their symmetric difference P — QU Q — P is 

finite. We write P = Q. 
If a group G acts on the right on a set Z, a subset P of Z is almost invariant if 

Pg = P for all g in G. An almost invariant subset P of Z is non-trivial if P and its 
complement Z — P are both infinite. The complement Z — P will be denoted simply 
by P*, when Z is clear from the context 

For finitely generated groups, these ideas are closely connected with the theory of 
ends of groups via the Cayley graph F of G with respect to some finite generating set 
of G. (Note that G acts on its Cayley graph on the left.) Using Z2 as coefficients, we 
can identify 0-cochains and 1 cochains on F with sets of vertices or edges. A subset 
P of G represents a set of vertices of F which we also denote by P, and it is a beautiful 
fact, due to Cohen [9], that P is an almost invariant subset of G if and only if SP 
is finite, where S is the coboundary operator. Now F has more than one end if and 
only if there is an infinite subset P of G such that SP is finite and P* is also infinite. 
Thus T has more than one end if and only if G contains a non-trivial almost invariant 
subset. If H is a subgroup of G, we let H\G denote the set of cosets Hg of H in G, 
i.e. the quotient of G by the left action of H. Of course, G will no longer act on 
the left on this quotient, but it will still act on the right. Thus we also have the idea 
of an almost invariant subset of H\G, and the graph H\F has more than one end if 
and only if H\G contains a non-trivial almost invariant subset. Now the number of 
ends e(G) of G is equal to the number of ends of T, so it follows that e(G) > 1 if and 
only if G contains a non-trivial almost invariant subset. Similarly, the number of ends 
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e(G, if) of the pair (G, H) equals the number of ends of if \T, so that e(G, if) > 1 if 
and only if if \ G contains a non-trivial almost invariant subset. 

Now we return to the simple closed curves L and S on the surface F . Pick a 
generating set for G which can be represented by a bouquet of circles embedded in F . 
We will assume that the wedge point of the bouquet does not lie on L or S. The 
pre-image of this bouquet in F will be a copy of the Cayley graph T of G with respect 
to the chosen generating set. The pre-image in FH of the bouquet will be a copy of 
the graph if \ r , the quotient of T by the action of if on the left. Consider the closed 
curve L on FH- Let P denote the set of all vertices of H\T which lie on one side of L . 
Then P has finite coboundary, as SP equals exactly the edges of H\T which cross L . 
Hence P is an almost invariant subset of H\G. Let X denote the pre-image of P 
in T, so that X equals the set of vertices of T which lie on one side of the line I. Now 
finally the connection between the earlier arguments and almost invariant sets can be 
given. For we can decide whether the lines / and s cross by considering instead the 
sets X and Y. The lines I and s together divide G into the four sets X H F , X * H 7 , 
I n F and X* n Y"*, where X * denotes G — X , and I crosses s if and only if each 
of these four sets projects to an infinite subset of K\G. 

Now let G be a group with subgroups if and K, let P be a non-trivial almost 
invariant subset of H\G and let Q be a non-trivial almost invariant subset of K\G. 
We will define the intersection number i(P,Q) of P and Q. First we need to consider 
the analogues of the sets X and Y in the preceding paragraph, and to say what it 
means for them to cross. 

Definition B.L 1. If G is a group and if is a subgroup, then a subset X of G is 
H-almost invariant if X is invariant under the left action of if, and simultaneously 
H\X is an almost invariant subset of if\G. In addition, X is a non-trivial if-almost 
invariant subset of G, if the quotient sets H\X and H\X* are both infinite. 

Note that if if is trivial, then a if almost invariant subset of G is the same as an 
almost invariant subset of G. 

Definition B.l.2. Let X be a if-almost invariant subset of G and let Y be a K-
almost invariant subset of G. We will say that X crosses Y if each of the four sets 
X H Y, X * fl Y, X n r * and X * n F * projects to an infinite subset of K\G. 

We will often write X ^ n F ( * } instead of listing the four sets X H F , X * D Y, 
i n r and x* nr. 

If G is a group and H is a subgroup, then we will say that a subset W of G is 
H finite if it is contained in the union of finitely many left cosets Hg of H in G, and 
we will say that two subsets V and W of G are if almost equal if their symmetric 
difference is if-finite. 

In this language, X crosses Y if each of the four sets X^ n Y^ is not if-finite. 

ASTERISQUE 289 



B.l. PRELIMINARIES 201 

This definition of crossing is not symmetric, but it is shown in [42] that if G is a 
finitely generated group with subgroups i f and if, and X is a non-trivial if-almost 
invariant subset of G and Y is a non-trivial if-almost invariant subset of G, then X 
crosses Y if and only if Y crosses X. If X and Y are both trivial, then neither can 
cross the other, so the above symmetry result is clear. However, this symmetry result 
fails if only one of X or Y is trivial. This lack of symmetry will not concern us as we 
will only be interested in non-trivial almost invariant sets. 

Now we come to the definition of the intersection number of two almost invariant 
sets. 

Definition B.l.3. — Let i f and i f be subgroups of a finitely generated group G. Let P 
denote a non-trivial almost invariant subset of i f \G, let Q denote a non-trivial almost 
invariant subset of K\G and let X and Y denote the pre-images of P and Q respec
tively in G. Then the intersection number i(P,Q) of P and Q equals the number of 
double cosets KgH such that gX crosses Y. 

Remark B. 1.4. — The following facts about the intersection number are proved in 
Lemmas A.2.7 and A.2.8 of Appendix A. 

(1) Intersection numbers are symmetric, i.e. i(P,Q) = i(Q1P). 
(2) i(P, Q) is finite when G, if, and i f are all finitely generated. 
(3) If P' is an almost invariant subset of i f \G which is almost equal to P or to P* 

and if Q' is an almost invariant subset of K\G which is almost equal to Q or to Q*, 
theni(P',Q') = i(P,Q). 

We will often be interested in situations where X and Y do not cross each other and 
neither do many of their translates. This means that one of the four sets X^ n Y^ 
is if-finite, and similar statements hold for many translates of X and Y. If U = uX 
and V — vY do not cross, then one of the four sets D is i f ^-finite, but 
probably not if-finite. Thus one needs to keep track of which translates of X and Y 
are being considered in order to have the correct conjugate of if, when formulating 
the condition that U and V do not cross. The following definition will be extremely 
convenient because it avoids this problem, thus greatly simplifying the discussion at 
certain points. 

Definition B.l.5. — Let U be a if-almost invariant subset of G and let V be a i f 
almost invariant subset of G. We will say that U fl V is small if it is if-finite. 

Remark B.l.6. — As the terminology is not symmetric in U and V and makes no 
reference to i f or if, some justification is required. If U is also if ' almost invariant 
for a subgroup if' of G, then H' must be commensurable with if. Thus U fl V is 
if-finite if and only if it is i f '-finite. In addition, the fact that crossing is symmetric 
tells us that U fl V is if-finite if and only if it is if-finite. This provides the needed 
justification of our terminology. 
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Finally, the reader should be warned that this use of the word small has nothing 
to do with the term small group which means a group with no subgroups which are 
free of rank 2. 

At this point we have the machinery needed to define the intersection number of 
two splittings. This definition depends on the fact, which we recall from Appendix 
A, that if a group G has a splitting over a subgroup if, there is a if-almost invariant 
subset X of G associated to the splitting in a natural way. This is entirely clear 
from the topological point of view as follows. If G = A B, let N denote a space 
with fundamental group G constructed in the usual way as the union of NA, NB and 
NH x i. If G = A*Hi then N is constructed from NA and NH X I only. Now let M 
denote the based cover of N with fundamental group if, and denote the based lift 
of NH x f into M by NH X I. Then X corresponds to choosing one side of NH x / i n M . 
We now give a purely algebraic description of this choice of A (see [47] for example). 
If G = A *H B, choose right transversals TA, TB of i f in A , B, both of which contain 
the identity element. (A right transversal for a subgroup i f of a group G consists of 
one representative element for each right coset gH of i f in G.) Each element of G 
can be expressed uniquely in the form a\b\a2 • • • anbnh with h G if, ai G TA, b% G T B , 
where only h, a\ and bn are allowed to be trivial. Then X consists of elements for 
which a\ is non-trivial. In the case of a HNN-extension A*//, let az, i = 1, 2, denote 
the two inclusions of i f in A so that t~1a\(h)t = (12(h), and choose right transversals 
Ti of ax(H) in A , both of which contain the identity element. Each element of G can 
be expressed uniquely in the form a\tex a^t^ • • • antenan+i where an_|_i lies in A and, 
for 1 ̂  i ^ n , €i = 1 or — 1, di G T\ if Ci = 1, a% G T 2 if €i = — 1 and moreover ai 7^ 1 
if € i - i Ci. In this case, X consists of elements for which a\ is trivial and t\ = 1. In 
both cases, the stabiliser of X under the left action of G is exactly i f and, for every 
g G G, at least one of the four sets X^ f l gX^ is empty. Note that this is equivalent 
to asserting that one of the four inclusions X C gX, X C gX*, X* c gX, X* C gX* 
holds. 

The following terminology will be useful. 

Definition B. 1.7. — A collection E of subsets of G which are closed under comple
mentation is called nested if for any pair U and V of sets in the collection, one of the 
four sets HV^ is empty. If each element U of E is a i f [/-almost invariant subset 
of G for some subgroup BJJ of G, we will say that E is almost nested if for any pair 
U and V of sets in the collection, one of the four sets f l is small. 

The above discussion shows that the translates of X and X* under the left action 
of G are nested. 

Note that X is not uniquely determined by the splitting. In both cases, we made 
choices of transversals, but it is easy to see that X is independent of the choice of 
transversal. However, in the case when G = A*H B, we chose X to consist of elements 
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for which a\ is non-trivial whereas we could equally well have reversed the roles of A 
and B. This would simply replace X by X* — H. Also either of these sets could be 
replaced by its complement. We will use the term standard almost invariant set for 
the images in H\G of any one of A, XUff, A*, A* — H. In the case when G = A * H , 
reversing the roles of the two inclusion maps of H into A also replaces A by A* — if. 
Again we have four standard almost invariant sets which are the images in H\G of 
any one of A, X Uif, A*, X* — if. There is a subtle point here. In the amalgamated 
free product case, we use the obvious isomorphism between A * H B and B *H A. In 
the HNN case, let us write A*H,i,j to denote the group < A,t : t~1i(h)t — j(h) >. 
Then the correct isomorphism to use between A*n,i,j a n d A*H,j,i is n ° t the identity 
on A. Instead it sends t to t~l and A to t~x At. In all cases, we have four standard 
almost invariant subsets of H\G. 

Definition B.l.8. — If a group G has splittings over subgroups H and if, and if P 
and Q are standard almost invariant subsets of H\G and K\G respectively associated 
to these splittings, then the intersection number of this pair of splittings of G is the 
intersection number of P and Q. 

Remark B.1.9. — As any two of the four standard almost invariant subsets of H\G 
associated to a splitting of G over H are almost equal or almost complementary, 
Remark B.l.4 tells us that this definition does not depend on the choice of standard 
almost invariant subsets P and Q. 

If X and F denote the pre-images in G of Pand Q respectively, and if we conjugate 
the first splitting by a and the second by 6, then A is replaced by aXa~l and Fis 
replaced by bYb~l. Now Xg is if-almost equal to A and Yg is i f almost equal to F , 
because of the general fact that for any subset W of G and any element g of G, the 
set Wg lies in a /-neighbourhood of W, where I equals the length of g. This follows 
from the equations d(wg,w) = d(g,e) = I. It follows that the intersection number of 
a pair of splittings is unchanged if we replace them by conjugate splittings. 

Now we can state two easy results about the case of zero intersection number. 
Recall that if A is one of the standard if-almost invariant subsets of G determined by 
a splitting of G over if, then the set of translates of X and A* is nested. It follows at 
once that the self-intersection number of H\X is zero. Also if two splittings of G over 
subgroups i f and i f are compatible, and if X and F denote corresponding standard 
if-almost and if-almost invariant subsets of G, then the set of all translates of A, 
A*, F , F* is also nested, so that the intersection number of the two splittings is zero. 
The next section is devoted to proving converses to each of these statements. 

Before going further, we need to say a little more about splittings. Recall from 
the introduction that a group G is said to split over a subgroup i f if G is isomorphic 
to A*H or to A*HB, with A ^ i f ^ B. We will need a precise definition of a splitting. 
We will say that a splitting of G consists either of proper subgroups A and B of G and 
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a subgroup i f of A D B such that the natural map A * H B G is an isomorphism, 
or it consists of a subgroup A of G and subgroups HQ and i f i of A such that there is 
an element t of G which conjugates HQ to H\ and the natural map A*H —» G is an 
isomorphism. 

Recall also that a collection of n splittings of a group G is compatible if G can be 
expressed as the fundamental group of a graph of groups with n edges, such that, 
for each z, collapsing all edges but the i-th yields the i-th splitting of G. We note 
that if a splitting of a group G over a subgroup H is compatible with a conjugate 
of itself by some element g of G, then g must lie in H. This follows from a simple 
analysis of the possibilities. For example, if the splitting G = A B is compatible 
with its conjugate by some g £ G, then G is the fundamental group of a graph of 
groups with two edges, which must be a tree, such that collapsing one edge yields 
the first splitting and collapsing the other yields its conjugate by g. This means that 
each of the two extreme vertex groups of the tree must be one of A , A9, B or Bg, and 
the same holds for the subgroup of G generated by the two vertex groups of an edge. 
Now it is easy to see that A C A 9 and B9 C B, or the same inclusions hold with 
the roles of A and B reversed. In either case it follows that g lies in H as claimed. 
The case when G = A*H is slightly different, but the conclusion is the same. This 
leads us to the following idea of equivalence of two splittings. We will say that two 
amalgamated free product splittings of G are equivalent, if they are obtained from the 
same choice of subgroups A , B and H of G. This means that the splittings A * H B 
and B *H A of G are equivalent. Similarly, a splitting A*H of G is equivalent to the 
splitting obtained by interchanging the two subgroups Ho and Hi of A . Also we will 
say that any splitting of a group G over a subgroup H is equivalent to any conjugate 
by some element of H. Then the equivalence relation on all splittings of G which this 
generates is the idea of equivalence which we will need. Stated in this language, we 
see that if two splittings are compatible and conjugate, then they must be equivalent. 

Note that two splittings of a group G are equivalent if and only if they are over 
the same subgroup if, and they have exactly the same four standard almost invariant 
sets. 

Next we need to recall the connection between splittings of groups and actions 
on trees. Bass-Serre theory, [50] or [51], tells us that if a group G splits over a 
subgroup if, then G acts without inversions on a tree T, so that the quotient is a 
graph with a single edge and the vertex stabilisers are conjugate to A or B and the 
edge stabilisers are conjugate to H. In his important paper [11], Dunwoody gave a 
method for constructing such a G-tree starting from the subset A of G defined above. 
The crucial property of A which is needed for the construction is the nestedness of 
the set of translates of A under the left action of G. We recall Dunwoody's result: 

Theorem B.l.10. — Let E be a partially ordered set equipped with an involution e —» e, 
where e / e , such that the following conditions hold: 
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(1) If e, f e E and e ^ /, then f ^ e, 
(2) If e, f G E, £/zere are only finitely many g G E such that e ^ g ^ /, 
(3) / G E1, a£ /eas£ one of the four relations e^f,e^f,e^f,e^f holds, 
(4) If e, f G E , one cannot have e ^ / and e ^ / . 
TTien £/iere is an abstract tree T with edge set equal to E such that the order relation 

which E induces on the edge set of T is equal to the order relation in which e ^ / if 
and only if there is an oriented path in T which begins with e and ends with f. 

One applies this result to the set E = gX,gX* : g G G with the partial order 
given by inclusion and the involution by complementation. There is a natural ac
tion of G on E and hence on the tree T. In most cases, G acts on T without 
inversions and we can recover the original decomposition from this action as fol
lows. Let e denote the edge of T determined by X. Then X can be described as 
the set {g : g G G, ge < e or ge < e}. If the action of G on T has inversions, then 
the original splitting must have been an amalgamated free product decomposition 
G = A *H B, with H of index 2 in A. In this case, subdividing the edges of T yields 
a tree T\ on which G acts without inversions. If e\ denotes the edge of T\ contained 
in e and containing the terminal vertex of e, then X can be described as the set 
{g : g G G,gei < ex or ge{ < ex}. 

Now we will prove the following result. This implies part 2) of Remark B.l.4. We 
give the proof here because the proof in Lemma A.2.7 is not complete, and we will 
need to apply the methods of proof later in this paper. 

Lemma B.l. 11. — Let G be a finitely generated group with finitely generated subgroups 
H and K, a non-trivial H-almost invariant subset X and a non-trivial K almost 
invariant subset Y. Then {g G G : gX and Y are not nested} consists of a finite 
number of double cosets KgH. 

Proof. —- Let V denote the Cayley graph of G with respect to some finite generating 
set for G. Let P denote the almost invariant subset H\X of H\G and let Q denote 
the almost invariant subset K\Y of K\G. Recall from the start of this section, that 
if we identify P with the 0-cochain on H\T whose support is P, then P is an almost 
invariant subset of H\G if and only if SP is finite. Thus SP is a finite collection of 
edges in H\T and similarly SQ is a finite collection of edges in K\T. Now let G denote 
a finite connected subgraph of H\T such that G contains SP and the natural map 
KI(C) H is onto, and let E denote a finite connected subgraph of K\T such that 
E contains SQ and the natural map TTI(E) —> K is onto. Thus the pre-image D of C 
in T is connected and contains SX, and the pre-image F of E in T is connected and 
contains SY. Let A denote a finite subgraph of D which projects onto G, and let $ 
denote a finite subgraph of F which projects onto E . If gD meets F, there must be 
elements h and k in H and K such that ghA meets k<&. Now { 7 G G : 7 A meets <£} 
is finite, as G acts freely on T. It follows that {g G G : gD meets F} consists of a 
finite number of double cosets KgH. 
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The result would now be trivial if A and Y were each the vertex set of a connected 
subgraph of F. As this need not be the case, we need to make a careful argument as 
in the proof of Lemma 5.10 of [47]. Consider g in G such that gD and F are disjoint. 
We will show that gX and Y are nested. As D is connected, the vertex set of gD 
must lie entirely in Y or entirely in Y*. Suppose that the vertex set of gD lies in Y. 
For a set S of vertices of T, let S denote the maximal subgraph of T with vertex set 
equal to S. Each component W of X and A* contains a vertex of D. Hence gW 
contains a vertex of gD and so must meet Y. If gW also meets Y*, then it must 
meet F. But as F is connected and disjoint from gD, it lies in a single component 
gW. It follows that there is exactly one component gW of gX and gX* which meets 
y*, so that we must have gX C Y or gX* C Y. Similarly, if gD lies in Y*, we will 
find that gX C Y* or gX* cY*. It follows that in either case gX and Y are nested 
as required. • 

In Theorem 2.2 of [41], Scott used Dunwoody's theorem to prove a general splitting 
result in the context of surfaces in 3-manifolds. We will use the ideas in his proof a 
great deal. The following theorem is the natural generalisation of his result to our 
more general context and will be needed in the proofs of Theorems B.2.5 and B.2.8. 
The first part of the theorem directly corresponds to the result proved in [41], and 
the second part is a simple generalisation which will be needed later. 

Theorem B.l. 12 
(1) Let H be a finitely generated subgroup of a finitely generated group G. Let X 

be a non-trivial H almost invariant set in G such that E — gX, gX* : g G G is almost 
nested and if two of the four sets X^ n gX^ are small, then at least one of them is 
empty. Then G splits over the stabilizer H' of X and H' contains H as a subgroup 
of finite index. Further, one of the H'-almost invariant sets Y determined by the 
splitting is H-almost equal to A. 

(2) Let Hi,..., Hk be finitely generated subgroups of a finitely generated group G. 
Let Xi, 1 ^ i ^ k, be a non-trivial Hi-almost invariant set in G such that E = 
gXi.gX* : 1 ̂  i ^ k,g G G is almost nested. Suppose further that, for any pair of 
elements U and V of E, if two of the four sets PiV^ are small, then at least one 
of them is empty. Then G can be expressed as the fundamental group of a graph of 
groups whose i-th edge corresponds to a conjugate of a splitting of G over the stabilizer 
H[ of Xi, and H[ contains Hi as a subgroup of finite index. Further, for each i, one 
of the HI almost invariant sets determined by the i-th splitting is Hi-almost equal 
to Xi. 

Most of the arguments needed to prove this theorem are contained in the proof of 
Theorem 2.2 of [41], but in the context of 3 manifolds. We will present the proof of 
the first part of this theorem, and then briefly discuss the proof of the second part. 
The idea in the first part is to define a partial order on E = gX,gX* : g G G, which 
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coincides with inclusion whenever possible. Let U and V denote elements of E. If 
U fl V* is small, we want to define U ^ V. There is a difficulty, which is what to do if 
U and V are distinct but [/flV* and VC\U* are both small. However, the assumption 
in the statement of Theorem B.l . 12 is that if two of the four sets [/(*) n V(*) are small, 
then one of them is empty. Thus, as in [41], we define U ^ V if and only if U H P 
is empty or the only small set of the four. Note that if U C V then U ^ V. We will 
show that this definition yields a partial order on E. 

As usual, we let T denote the Cayley graph of G with respect to some finite gen
erating set. The distance between two points of G is the usual one of minimal edge 
path length. Our first step is the analogue of Lemma 2.3 of [41]. 

Lemma B.l.13. — U Pi V* is small if and only if it lies in a bounded neighbourhood of 
each ofU,U\ V, V*. 

Proof. — As U and V are translates of AT or A*, it suffices to prove that gX D A* is 
small if and only if it lies in a bounded neighbourhood of each of A, X*, gX, gX*. 
If gX D A* is small, it projects to a finite subset of H\G which therefore lies within 
a bounded neighbourhood of the image of 5X. By lifting paths, we see that each 
point of gXn A* lies in a bounded neighbourhood of SX, and hence lies in a bounded 
neighbourhood of X and X*. By reversing the roles of gX and X*, we also see that 
gX n X* lies in a bounded neighbourhood of each of gX and gX*. 

For the converse, suppose that gX n X* lies in a bounded neighbourhood of each 
of X and X*. Then it must lie in a bounded neighbourhood of SX, so that its image 
in H\G must lie in a bounded neighbourhood of the image of SX. As this image is 
finite, it follows that gX H A * must be small, as required. • 

Now we can prove that our definition of ^ yields a partial order on E. Our proof 
is essentially the same as in Lemma 2.4 of [41]. 

Lemma B.l.14. — If a relation ^ is defined on E by the condition that U if and 
only ifU C\V* is empty or the only small set of the four sets [/(*) n V^*\ then ^ is a 
partial order. 

Proof. — We need to show that ^ is transitive and that if U ^ V and V ^ U then 
U = V. 

Suppose first that U < V and V ^ U. The first inequality implies that U Pi V* 
is small and the second implies that V fl U* is small, so that two of the four sets 
[/(*) p| a r e small. The assumption of Theorem B.l. 12 implies that one of these 
two sets must be empty. As U ^V, our definition of < implies that UnV* is empty. 
Similarly, the fact that V ^ U tells us that VnU* is empty. This implies that U = V 
as required. 

To prove transitivity, let U, V and W be elements of E such that U < V ^ W. 
We must show that U ^ W. 
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Our first step is to show that U fl W* is small. As U D V* and V fl W* are small, 
we let di be an upper bound for the distance of points of U HV* from V and let d^ 
be an upper bound for the distance of points of V fl VF* from VF. Let x be a point 
of U D py*. If x lies in I/, then it lies in V D VF* and so has distance at most d^ from 
VF. Otherwise, it must lie in U fl and so have distance at most di from some point 
x' ofV. If xf lies in W, then x has distance at most d\ from W. Otherwise, a/ lies 
in V D VF* and so has distance at most d^ from W. In this case, x has distance at 
most di + 0*2 from W. It follows that in all cases, x has distance at most d\ + di from 
VF, so that U D VK* lies in a bounded neighbourhood of as required. As U fl VF* 
is contained in VF*, it follows that it lies in bounded neighbourhoods of W and W*, 
so that J7 H VF* is small as required. 

The definition of ^ now shows that U ^ W, except possibly when two of the four 
sets H are small. The only possibility is that U* n W and U n W* are 
both small. As one must be empty, either U C W or VF C U. We conclude that if 
U ^ V ^ VF, then either [/ ^ W or VF C [/. Now we consider two cases. 

First suppose that U C V ^ W, so that either [ / ^ o r ^ c t / . If VF C [/, then 
W C V, so that VF ^ I/. As F ^ W and W ^ V, it follows from the first paragraph 
of the proof of this lemma that V = W. Hence, in either case, U ^ W. 

Now consider the general situation when U ^ V ^ W. Again either U ^ W or 
W C [/. If C 17, then we have W C U ^ V. Now the preceding paragraph implies 
that W ^ V. Hence we again have V ^ W and W < F so that V = W. Hence 
U ^ W still holds. This completes the proof of the lemma. • 

Next we need to verify that the set E with the partial order which we have defined 
satisfies all the hypotheses of Dunwoody's Theorem B.l. 10. 

Lemma B.l.15. — E together with ^ satisfies the following conditions. 
(1) IfU,V eE andU ^ V, then V* ^ U*, 
(2) If U, V G E, there are only finitely many Z G E such that U ^ Z ^ V, 
(3) IfU,Ve E, at least one of the four relations U^V,U^V*,U*^V, 

U* < I/* holds, 
(4) IfU,V G £ 7 one cannot Aave U ^ V and U ^V*. 

Proof. — Conditions (1) and (3) are obvious from the definition of ^ and the hy
potheses of Theorem B.l . 12. 

To prove (4), we observe that if U ^ V and U ^ I/*, then U (IV* and U DV must 
both be small. This implies that U itself is small, so that A or A* must be small. 
But this contradicts the hypothesis that A is a non-trivial H almost invariant subset 
of G. 

Finally we prove condition (2). Let Z — gX be an element of E such that Z ^ A. 
Recall that, as Z fl A* projects to a finite subset of H\G, we know that Z D A* lies 
in a ^-neighbourhood of A, for some d > 0. If Z ^ A but Z is not contained in A, 
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then Z and X are not nested. Now Lemma B.l . 11 tells us that if Z is such a set, 
then g belongs to one of only finitely many double cosets HkH. It follows that if we 
consider all elements Z of E such that Z $C X , we will find either Z c l , or Z Pi X* 
lies in a d- neighbour hood of X , for finitely many different values of d. Hence there 
is d\ > 0 such that if Z ^ X then Z lies in the d\-neighbourhood of X . Similarly, 
there is d^ > 0 such that if Z ^ X*, then Z lies in the ^-neighbourhood of X*. Let 
d denote the larger of d\ and d<i> Then for any elements U and V of E with U ^ V, 
the set C / n r lies in the d-neighbourhood of each of U, U*, V and V*. 

Now suppose we are given U and wish to prove condition (2). Choose a point u 
in U whose distance from U* is greater than d, choose a point v in V* whose distance 
from V is greater than d and choose a path L in T joining u to v. If U ^ Z ^ V, 
then must lie in Z and i; must lie in Z* so that L must meet £Z. As L is compact, 
the proof of Lemma B.l. 11 shows that the number of such Z is finite. This completes 
the proof of part 2) of the lemma. • 

We are now in a position to prove Theorem B.l . 12. 

Proof. — To prove the first part, we let E denote the set of all translates of X and X* 
by elements of (7, let U —> U* be the involution on E and let the relation ^ be defined 
on E by the condition that U ^ V if U fl V* is empty or the only small set of the four 
sets fl V(*\ Lemmas B.l.14 and B.l.15 show that ^ is a partial order on E and 
satisfies all of Dunwoody's conditions (l)-(4). Hence we can construct a tree T from 
E. As G acts on E, we have a natural action of G on T. Clearly, G acts transitively on 
the edges of T. If G acts without inversions, then G\T has a single edge and gives G 
the structure of an amalgamated free product or HNN decomposition. The stabiliser 
of the edge of T which corresponds to X is the stabiliser Hf of X , so we obtain a 
splitting of G over H' unless G fixes a vertex of T. Note that as H\SX is finite, and 
H' preserves SX, it follows that H' contains H with finite index as claimed in the 
theorem. If G acts on T with inversions, we simply subdivide each edge to obtain a 
new tree Tf on which G acts without inversions. In this case, the quotient G\T' again 
has one edge, but it has distinct vertices. The edge group is H' and one of the vertex 
groups contains H' with index two. As H has infinite index in G, it follows that in 
this case also we obtain a splitting of G unless G fixes a vertex of T. 

Suppose that G fixes a vertex v of T. As G acts transitively on the edges of T, 
every edge of T must have one vertex at v, so that all edges of T are adjacent to each 
other. We will show that this cannot occur. The key hypothesis here is that X is 
non-trivial. 

Let W denote {g : gX ^ I or gX* ^ X } , and note that condition 3) of Lemma 
B.l.15 shows that W* = {g : gX < X* or gX* ^ X * } . Recall that there is dx > 0 
such that if Z ^ X then Z lies in the d\-neighbourhood of X . If d denotes d\ + 1, and 
g G W, it follows that gSX lies in the ^-neighbourhood of X . Let c denote the distance 
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of the identity of G from 5X. Then g must lie within the (c + ^-neighbourhood of X , 
for all g G W, so that W itself lies in the (c + d)-neighbourhood of X. Similarly, 
W* lies in the (c + ^-neighbourhood of X*. Now both X and X* project to infinite 
subsets of if\G, so G cannot equal W or W*. It follows that there are elements [/and 
V of E such that [/ < X < I/, so that [/and V represent non-adjacent edges of T. 
This completes the proof that G cannot fix a vertex of T. 

To prove the last statement of the first part of Theorem B.l . 12, we will simplify 
notation by supposing that the stabiliser if ' of X is equal to if. One of the standard 
if-almost invariant sets associated to the splitting we have obtained from the action 
of G on the tree T is the set W in the preceding paragraph. We will show that W 
is if-almost equal to X . The preceding paragraph shows that W lies in the (c + d)~ 
neighbourhood of X , and that VK* lies in the (c + ^-neighbourhood of X*. It follows 
that W is if-almost contained in X and W* is if-almost contained in X*, so that 
W and X are i f almost equal as claimed. This completes the proof of the first part 
of Theorem B.l.12. 

For the second part, we will simply comment on the modifications needed to the 
preceding proof. The statement of Lemma B.l. 13 remains true though the proof needs 
a little modification. The statement and proof of Lemma B.l . 14 apply unchanged. 
The statement of Lemma B.l . 15 remains true, though the proof needs some minor 
modifications. Finally the proof of the first part of Theorem B.l. 12 applies with minor 
modifications to show that G acts on a tree T with quotient consisting of k edges in 
the required way. This completes the proof of Theorem B.l . 12. • 

B . 2 . Zero intersection numbers 

In this section, we prove our two main results about the case of zero intersection 
number. First we will need the following little result. 

Lemma B. 2.1. — Let G be a finitely generated group which splits over a subgroup if. 
If the normaliser N of i f in G has finite index in G, then H is normal in G. 

Proof — The given splitting of G over i f corresponds to an action of G on a tree T 
such that G\T has a single edge, and some edge of Thas stabiliser if. Let T' denote 
the fixed set of if, i.e. the set of all points fixed by if. Then T' is a (non-empty) 
subtree of T. As N normalises if, it must preserve T", i.e. NT' = T'. Suppose 
that N 7^ G. As N has finite index in G, we let e , # i , . . . ,gn denote a set of coset 
representatives for N in G, where n ^ 1. As G acts transitively on T, we have 
T = V U gxT U • • • U gnT'. Edges of V all have stabiliser if, and so edges of g%T all 
have stabiliser glHg~1. As gi does not lie in X , these stabilisers are distinct so the 
intersection T' fl gtT' contains no edges. The intersection of two subtrees of a tree 
must be empty or a tree, so it follows that T' fl giT' is empty or a single vertex Vi, 
for each i. Now N preserves T' and permutes the translates g{T', so N preserves the 
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collection of all the v^s. As this collection is finite, N has a subgroup N\ of finite 
index such that N\ fixes a vertex v of T'. As N\ has finite index in G, it follows that 
G itself fixes some vertex of T, which contradicts our assumption that our action of G 
on T corresponds to a splitting of G. This contradiction shows that N must equal G, 
so that i f is normal in G as claimed. • 

Recall that if A is a if-almost invariant subset of G associated to a splitting of G, 
then the set of translates of X and A* is nested. Equivalently, for every g G G, one of 
the four sets X^ f l gX^ is empty. We need to consider carefully how it is possible 
for two of the four sets to be small, and a similar question arises when one considers 
two splittings of G. 

Lemma B.2.2. — Let G be a finitely generated group with two splittings over finitely 
generated subgroups i f and K with associated i f-almost invariant subset X of G and 
associated K-almost invariant subset Y of G. 

(1) If two of the four sets X^ n are small, then i f = K. 
(2) If two of the four sets X^ n gX^ are small, then g normalises if. 

Proof — Our first step will be to show that i f and K must be commensurable. 
Without loss of generality, we can suppose that A f l Y is small. The other small set 
can only be A* n7*, as otherwise A or Y would be small which is impossible. It 
follows that for each edge of SY, either it is also an edge of SX or it has (at least) one 
end in one of the two small sets. As the images in H\T of SX and of each small set 
is finite, and as the graph T is locally finite, it follows that the image of SY in H\T 
must be finite. This implies that HnK has finite index in the stabiliser K of SY. By 
reversing the roles of H and K, it follows that HnK has finite index in if, so that 
i f and K must be commensurable, as claimed. 

Now let L denote HnK, so that L stabilises both X and Y, and consider the 
images P and Q of A and Y in L\F. As L has finite index in i f and K, it follows 
that SP and SQ are each finite, so that P and Q are almost invariant subsets of L\G. 
Further, two of the four sets X^ f l Y^ have finite image in L\T, so we can assume 
that P and Q are almost equal, by replacing one of X or Y by its complement in G, 
if needed. Let L' denote the intersection of the conjugates of L in if, so that L' is 
normal in H, though it need not be normal in K. We do not have L' = H D K, but 
because L has finite index in if, we know that L' has finite index in i f and hence also 
in K, which is all we need. Let P' and Q' denote the images of X and Y respectively 
in L'\Y, and consider the action of an element h of i f on L'\T. Trivially hP' = P1. 
As P' and Q' are almost equal, hQ' must be almost equal to Qf. Now we use the key 
fact that Y is associated to a splitting of G so that its translates by G are nested. 
Thus for any element g of G, one of the following four inclusions holds: gY C Y, 
gY c f , gY* c Y, gY* cY*. As hQ' is almost equal to Q', we must have hY C Y 
or hY* C Y*. But h has a power which lies in L and hence stabilises Y. It follows 
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that hY — Y, so that h lies in K. Thus i f is a subgroup of K. Similarly, K must be 
a subgroup of if, so that i f = K. This completes the proof of part 1 of the lemma. 
Note that it follows that L = i f = K, that i f \ X = P and K\Y = Q and that P and 
Q are almost equal or almost complementary. 

In order to prove part 2 of the lemma, we apply the preceding work to the case 
when the second splitting is obtained from the first by conjugating by some element g 
of G. Thus K — gHg~l and Y = gXg~l which is K almost equal to gX by Remark 
B.1.9. Hence if two of the four sets X^ D gX^ are small, then so are two of the 
four sets X^ f l Y^ small. Now the above shows that i f = K — gHg~l, so that g 
normalises H. This completes the proof of the lemma. • 

Lemma B.2.3. — Let G be a finitely generated group with two splittings over finitely 
generated subgroups i f and K with associated H-almost invariant subset X of G and 
associated K-almost invariant subset Y of G. If two of the four sets X^ f l Y^ are 
small, then the two splittings of G are conjugate. Further one of the following holds: 

(1) the two splittings are equivalent, or 
(2) the two splittings are of the form G = L Cwhere H has index 2 in L, and 

the splittings are conjugate by an element of L, or 
(3) i f is normal in G and H\G is isomorphic to Z or to Z2 * Z2. 

Proof. — The preceding lemma showed that the hypotheses imply that i f equals K 
and also that the images P and Q of X and Y in H\G are almost equal or almost 
complementary. By replacing one of X or Y by its complement if needed, we can 
arrange that P and Q are almost equal. We will show that in most cases, the two 
given splittings over i f and K must be equivalent, and that the exceptional cases can 
be analysed separately to show that the splittings are conjugate. 

Recall that by applying Theorem B.l. 10, we can use information about X and 
its translates to construct a G-tree Tx and hence the original splitting of G over if. 
Similarly, we can use information about Y and its translates to construct a G-tree Ty 
and hence the original splitting of G over K. We will compare these two constructions 
in order to prove our result. 

As P and Q are almost equal subsets of H\G, it follows that there is 5 ^ 0 such 
that, in the Cayley graph T of G, we have A lies in a (^-neighbourhood of Y and Y lies 
in a ^-neighbourhood of A. Now let Ux denote one of X or X * , let Vx denote one 
of gX or gX* and let Uy and Vy denote the corresponding sets obtained by replacing 
X with Y. Recall that Ux H Vx is small if and only if its image in i f \G is finite. 
Clearly this occurs if and only if Vx lies in a (^-neighbourhood of for some S > 0. 
It follows that Ux H Vx is small if and only if Uy H Vy is small. 

As X and Y are associated to splittings, we know that for each g G G, at least one 
of the four sets X^*) D gX^*) is empty and at least one of the four sets Y^ n gY^ 
is empty. Further the information about which of the four sets is empty completely 
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determines the trees Tx and Ty. Thus we would like to show that when we compare 
the four sets f l g X ^ with the four sets f lgY^*\ then corresponding sets are 
empty. Note that when g lies in if, we have gX — X, so that two of the four sets 
XW H gXW are empty. 

First we consider the case when, for each g G G—if, only one of the sets X^CigX^ 
is small and hence empty. Then only the corresponding one of the four sets Y^HgY^ 
is small and hence empty. Now the correspondence gX —> gY gives a G isomorphism 
of Tx with Ty and thus the splittings are equivalent. 

Next we consider the case when two of the sets X^ f l gX^ are small, for some 
g G G — H. Part 2 of Lemma B.2.2 implies that g normalises if. Further if R — H\gX, 
then Pis almost equal to R or R*. Let N(H) denote the normaliser of i f in G, so 
that N(H) acts on the left on the graph H\T and we have R — gP. Let L denote 
the subgroup of N(H) consisting of elements k such that kP is almost equal to P 
or P*. Now we apply Theorem 5.8 from [47] to the action of H\L on the left on 
the graph H\T. This result tells us that if H\L is infinite, then it has an infinite 
cyclic subgroup of finite index. Further the proof of this result in [47] shows that the 
quotient of H\T by H\L must be finite. This implies that if\T has two ends and that 
L has finite index in G. To summarise, either H\L is finite, or it has two ends and L 
has finite index in G. Let k be an element of L whose image in H\L has finite order 
such that kP = P. As X is associated to a splitting of G, we must have kX C X or 
X C kX. As k has finite order in H\L, we have knX = A, for some positive integer 
n, which implies that kX = A so that k itself lies in if. It follows that the group 
H\L must be trivial, Z2, Z or Z2 * Z2. In the first case, the two trees Tx and Ty will 
be G-isomorphic, showing that the given splittings are equivalent. In the other three 
cases, L — i f is non-empty and we know that, for any g G L — if, two of the four sets 
x(*) n gXW are small. Thus in these cases, it seems possible that Tx and Ty will 
not be G isomorphic, so we need some special arguments. 

We start with the case when H\L is Z2. In this case, the given splitting must be 
an amalgamated free product of the form L *H G, for some group G. If k denotes 
an element of L — if, then kP = P*. Thus G acts on Tx and Ty with inversions. 
Recall that either the two partial orders on the translates of A and Y are the same 
under the bijection gX —• gY, or they differ only in that kX* C A but Y C kY*, 
for all k G L — H. If they differ, we replace the second splitting by its conjugate 
by some element k G L — PL, so that Y is replaced by Y' — kY and we replace X 
by X' — A*. As Y' is if-almost equal to X', the partial orders on the translates 
of X' and Y' respectively are the same under the bijection gX' —» gY' except possibly 
when one compares X', kX' and Y', kY', where k G L — if. In this case, the 
inclusion kX* C A tells us that kX' C (A7)*, and the inclusion Y C kY* tells us 
that kY' = k2Y = Y C kY* = (F 7)*. We conclude that the partial orders on the 
translates of X' and Y' respectively are exactly the same, so that Tx and Ty are 
G-isomorphic, and the two given splittings are conjugate by an element of L. 
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Now we turn to the two cases where H\L is infinite, so that L has finite index in G 
and H\T has two ends. As L normalises H, Lemma B.2.1 shows that H is normal 
in G. As H\T has two ends, it follows that L = G, so that H\G is Z or Z 2 * Z 2 . It 
is easy to check that there is only one splitting of Z over the trivial group and that 
all splittings of Z2 * Z2 over the trivial group are conjugate. It follows that, in either 
case, all splittings of G over H are conjugate. This completes the proof of Lemma 
B.2.3. • 

Lemma B.l A. — Let G be a finitely generated group with two splittings over finitely 
generated subgroups H and K with associated H -almost invariant subset X of G and 
associated K-almost invariant subset Y of G. Let E = gX, gX*, gY, gY* : g G G, and 
let U and V denote two elements of E such that two of the four sets f l are 
small. Then either one of the two sets is empty, or the two given splittings of G are 
conjugate. 

Proof. — Recall that X is associated to a splitting of G over H. It follows that gX 
is associated to the conjugate of this splitting by g. Thus U and V are associated to 
splittings of G which are each conjugate to one of the two given splittings. If U and V 
are each translates of X or X*, the nestedness of the translates of X shows that one 
of the two small sets must be empty as claimed. Similarly if both are translates of Y 
or Y*, then one of the two small sets must be empty. If U is a translate of X or A* 
and V is a translate of 7 or 7*, we apply Lemma B.2.3 to show that the splittings to 
which U and V are associated are conjugate. It follows that the two original splittings 
were conjugate as required. • 

Now we come to the proof of our first main result. 

Theorem B.2.5. — Let G be a finitely generated group with n splittings over finitely 
generated subgroups. This collection of splittings is compatible up to conjugacy if 
and only if each pair of splittings has intersection number zero. Further, in this 
situation, the graph of groups structure on G obtained from these splittings has a 
unique underlying graph, and the edge and vertex groups are unique up to conjugacy. 

Proof. — Let the n splittings Si of G be over subgroups Hi,..., Hn with associated 
-almost invariant subsets Xi of G, and let E = gXi,gX* : g G G, 1 ^ i ^ n. We 

will start by supposing that no two of the s '̂s are conjugate. We will handle the 
general case at the end of this proof. 

We will apply the second part of Theorem B.l . 12 to E. Recall that our assumption 
that the s^s have intersection number zero implies that no translate of Xi can cross 
any translate of Xj, for 1 ^ i ^ j ^ n. As each X% is associated to a splitting, it is 
also true that no translate of Xi can cross any translate of Xl. This means that the 
set E is almost nested. In order to apply Theorem B.l. 12, we will also need to show 
that for any pair of elements U and V of E, if two of the four sets n are 
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small then one is empty. Now Lemma B.2.4 shows that if two of these four sets are 
small, then either one is empty or there are distinct i and j such that Si and Sj are 
conjugate. As we are assuming that no two of these splittings are conjugate, it follows 
that if two of the four sets fl are small then one is empty, as required. 

Theorem B.l . 12 now implies that G can be expressed as the fundamental group of 
a graph T of groups whose i-th edge corresponds to a conjugate of a splitting of G 
over the stabilizer H[ of Xi. As Xi is associated to a splitting of G over Hi, its 
stabiliser H[ must equal Hi. Further, it is clear from the construction that collapsing 
all but the i-th edge of Y yields a conjugate of S i , as the corresponding G-tree has 
edges which correspond precisely to the translates of Xi. 

Now suppose that we have a graph of groups structure Y' for G such that, for each i, 
1 ^ i ^ n, collapsing all edges but the i-th yields a conjugate of the splitting Si of G. 
This determines an action of G on a tree T' without inversions. We want to show that 
T and T' are G-isomorphic. For this implies that Y and Y' have the same underlying 
graph, and that corresponding edge and vertex groups are conjugate, as required. Let 
e denote an edge of T', and let Y(e) denote {g G G : ge < e or ge < e}. There are 
edges ei of T', 1 ̂  i ^ n, such that the set E' of all translates of Y(ei) and Y(ei)* is 
nested and Dunwoody's construction applied to E' yields the G-tree T' again. We will 
denote Y(ei) by Yi. The hypotheses imply that there is k G G such that the stabiliser 
Ki of ei equals k~lHik, and that Yi is fQ-almost equal to k~xXik, where Xi is one 
of the standard i f $-almost invariant subsets of G associated to the splitting S i . Let 
Zi denote kYi so that Zi is i f ̂ -almost equal to Xik. Now Remark B.l . 9 shows that 
Xik is if^-almost equal to Xi, so that Zi is if\-almost equal to Xi. Now consider 
the G-equivariant bijection E —» E' determined by sending Xi to Zi. The above 
argument shows that if U is any element of E, and U' is the corresponding element 
of E', then U and U' are stab(U)-almost equal. We will show that in most cases, 
this bijection automatically preserves the partial orders on E and Ef, implying that 
T and T' are G-isomorphic, as required. We compare the partial orders on E and E1 

rather as in the proof of Lemma B.2.3. 
For any elements U and V of E, let U' and V denote the corresponding elements 

of E'. Thus U fl V is small if and only if U' Pi V is small. We would like to show 
that when we compare the four sets n with the four sets U'^ 0 V'(*\ then 
corresponding sets are empty, so that the partial orders are preserved by our bijection. 
Otherwise, there must be U and V in E such that two of the sets f l are 
small. If U and V are translates of Xi and Xj, then Lemma B.2.3 tells us that the 
splittings Si and Sj are conjugate. As we are assuming that distinct splittings are not 
conjugate, it follows that i = j. Now the arguments in the proof of Lemma B.2.3 
show that either the splitting Si is an amalgamated free product of the form L *# G, 
with \L : i f | = 2, or i f is normal in G and i f \G is Z or Z2 * Z 2 . If the second case 
occurs, then there can be only one splitting in the given family, so it is immediate that 
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T and T' have the same underlying graph, and that corresponding edge and vertex 
groups are conjugate. If the first case occurs and the partial orders on translates of Xi 
and Z% do not match, we must have IX* C Xi but Zi C IZ*, for all / G L — if. We 
now pick I G L — i f and alter our bijection from E to E' so that X% maps to Wi = IZ* 
and extend G-equivariantly to the translates of Xi and X*. This ensures that the 
partial orders on E and E' match for translates of Xi. By repeating this for other 
values of i as necessary, we can arrange that the partial orders match completely, and 
can then conclude that T and T' are G-isomorphic as required. 

We end by discussing the case when some of the given n splittings are conjugate. 
We divide the splittings into conjugacy classes and discard all except one splitting from 
each conjugacy class, to obtain k splittings. Now we apply the preceding argument to 
express G uniquely as the fundamental group of a graph T of groups with k edges. If 
an edge of T corresponds to a splitting over a subgroup i f which is conjugate to r — 1 
other splittings, we simply subdivide this edge into r sub-edges, and label all the sub-
edges and the r — 1 new vertices by if. This shows the existence of the required graph 
of groups structure T7 corresponding to the original n splittings. The uniqueness of Tf 

follows from the uniqueness of T, and the fact that the collection of all the edges of V 
which correspond to a given splitting of G must form an interval in V in which all 
the interior vertices have valence 2. This completes the proof of Theorem B.2.5. • 

Now we turn to the proof of Theorem B.2.8 that splittings exist. It will be conve
nient to make the following definitions. We will use H9 to denote gHg~l. 

Definition B.2.6. — If X is a Tf-almost invariant subset of G and Y is a K almost 
invariant subset of G, and if X and Y are if-almost equal, then we will say that X and 
Y are equivalent and write X ~ Y. (Note that i f and K must be commensurable.) 

Definition B.2.7. — If i f is a subgroup of a group G, the commensuriser in G of i f 
consists of those elements g in G such that i f and H9 are commensurable subgroups 
of G. The commensuriser is clearly a subgroup of G and is denoted by ComrriG(if) 
or just Comm(H), when the group G is clear from the context. 

Now we come to the proof of our second main result. 

Theorem B.2.8. — Let G be a finitely generated group with a finitely generated sub
group H, such that e(G, if) > 2. If there is a non-trivial i f -almost invariant subset 
X of G such that i(H\X, H\X) = 0, then G has a splitting over some subgroup if ' 
commensurable with if. Further, one of the H'-almost invariant sets Y determined 
by the splitting is equivalent to X. 

Remark B.2.9. — This is the best possible result of this type, as it is clear that one 
cannot expect to obtain a splitting over i f itself. For example, suppose that i f is 
carried by a proper power of a two-sided simple closed curve on a closed surface 
whose fundamental group is G, so that e(G,if) = 2. There are essentially only two 
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non-trivial almost invariant subsets of H\G, each with vanishing self-intersection 
number, but there is no splitting of G over H. 

Proof. — The idea of the proof is much as before. We let P denote the almost 
invariant subset H\X of H\G, and let E denote gX,gX* : g G G. We want to apply 
the first part of Theorem B.l.12. As before, the assumption that i(P, P) — 0 implies 
that E is almost nested. However, in order to apply Theorem B.l . 12, we also need to 
know that for any pair of elements U and V of E, if two of the four sets f l 
are small then one is empty. In the proof of Theorem B.2.5, we simply applied 
Lemma B.2.4. However, here the situation is somewhat more complicated. Lemma 
B.2.10 below shows that if A D gX* and gX f l l * are both small, then g must lie 
in a certain subgroup JC of Commc* (ii) . Thus it would suffice to arrange that E is 
nested with respect to JC, i.e. that gX and X are nested so long as g lies in JC. Now 
Proposition B.2.14 below tells us that there is a subgroup if ' commensurable with i f 
and a if'-almost invariant set Y equivalent to A such that E' — gY, gY* : g G G is 
nested with respect to JC. It follows that if U and V are any elements of E' and if 
U C\V* and V nU* are both small, then one of them is empty. We also claim that, 
like E, the set E' is almost nested. This means that if we let P' denote Hf\Y', we are 
claiming that i(P',P') = 0. Let if" denote i f n if'. The fact that Y is equivalent 
to A means that the pre-images in H"\G of P and of P' are almost equal almost 
invariant sets which we denote by Q and Q'. If d denotes the index of PL' in if, then 
i(Q,Q) = d2i(P,P) = 0 and similarly i(Q'',Q') is an integral multiple of i(P',P'). 
As Q and Q' are almost equal, it follows that i(Q,,Q/) = i(Q,Q), and hence that 
i{Pf,P') — 0 as claimed. This now allows us to apply Theorem B.l.12 to the set 
E'. We conclude that G splits over the stabiliser if" of Y, that PL" contains if ' with 
finite index and that one of the //"-almost invariant sets associated to the splitting 
is equivalent to X'. It follows that LL" is commensurable with PL and that one of 
the i f "-almost invariant sets determined by the splitting is equivalent to A. This 
completes the proof of Theorem B.2.8 apart from the proofs of Lemma B.2.10 and 
Proposition B.2.14. • 

It remains to prove the two results we just used. The proofs do not use the 
hypothesis that the set of all translates of X and A* are almost nested. Thus for the 
rest of this section, we will consider the following general situation. 

Let G be a finitely generated group with a finitely generated subgroup i f such that 
e(G, if) ^ 2, and let A denote a non-trivial if-almost invariant subset of G. 

Recall that our problem in the proof of Theorem B.2.8 is the possibility that two 
of the four sets X^ D gX^ are small. As this would imply that gX ~ A or A*, it 
is clear that the subgroup JC of G defined by JC = {g G G : gX ~ A or A*} is very 
relevant to our problem. We will consider this subgroup carefully. Here is the first 
result we quoted in the proof of Theorem B.2.8. 
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Lemma B.2.10. If JC = {g G G : gX ~ X or X * } 7 then H C JC C CommG(#). 

Proof. — The first inclusion is clear. The second is proved in essentially the same 
way as the proof of the first part of Lemma B.2.3. Let g be an element of JC, and 
consider the case when gX ~ X (the other case is similar). Recall that this means 
that the sets X fl gX* and X* n gX are both small. Now for each edge of 5gX, either 
it is also an edge of SX or it has (at least) one end in one of the two small sets. 
As the images in H\T of SX and of each small set is finite, and as the graph T is 
locally finite, it follows that the image of SgX in H\T must be finite. This implies 
that H D H9 has finite index in the stabiliser H9 of SgX. By reversing the roles of A 
and gX, it follows that H n H9 has finite index in H, so that H and H9 must be 
commensurable, as claimed. It follows that JC C CommG(if), as required. • 

Another way of describing our difficulty in applying Theorem B.l . 12 is to say that 
it is caused by the fact that the translates of A and A* may not be nested. However, 
Lemma B.l . 11 assures us that "most" of the translates are nested. The following 
result gives us a much stronger finiteness result. 

Lemma B.2.11. — Let G, H, X, JC be as above. Then {g G JC : gX and X are not 
nested} consists of a finite number of right cosets gH of H in G. 

Proof. — Lemma B.l . 11 tells us that the given set is contained in the union of a 
finite number of double cosets HgH. If k G JC, we claim that the double coset HkH 
is itself the union of only finitely many cosets gH, which proves the required result. 
To prove our claim, recall that k~lHk is commensurable with H. Thus k~xHk can 
be expressed as the union of cosets gi(k~lHk D H), for 1 ̂  i ^ n. Hence 

HkH = k{k'lHk)H = k (\J^igi(k'lHk n H)) H = k (U?=igiH) = U^kgiH, 

so that HkH is the union of finitely many cosets gH as claimed. • 

Now we come to the key result. 

Lemma B.2.12. — Let G, H, X, JC be as above. Then there are a finite number of 
finite index subgroups H\,..., Hm of H, such that JC is contained in the union of the 
groups N(Hi), 1 ̂  i ^ m, where N(H{) denotes the normaliser of Hi in G. 

Proof. — Consider an element g in JC. Lemma B.2.10 tells us that H and H9 are 
commensurable subgroups of G. Let L denote their intersection and let L' denote the 
intersection of the conjugates of L in H. Thus V is of finite index in H and H9 and 
is normal in H. Now consider the quotient L'\G. Let P and Q denote the images 
of A and gX respectively in L'\G. As before, P and Q are almost invariant subsets 
of Lf\G which are almost equal or almost complementary. Now consider the action 
of L'\H on the left on L'\G. If h is in H, then hP = P, so that hQ = Q. If h(gX) and 
gX are nested, there are four possible inclusions, but the fact that hQ = Q excludes 
two of them. Thus we must have hQ C Q or Q C hQ. This implies that hQ = Q as 
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some power of h lies in L' and so acts trivially on L'\G. We conclude that if h is an 
element of i f — V such that h(gX) and gX are nested, then h stabilises gX and so lies 
in H9. Hence h lies in L. It follows that for each element h of i f — L, the sets h(gX) 
and gX are not nested. Recall from Lemma B.2.11 that {g G JC : gX and X are not 
nested} consists of a finite number of cosets gH of H in G. It will be convenient to 
denote this number by d — 1. Thus, for g £ JC, the set {/i G JC : h(gX) and gX are 
not nested} consists of d — 1 cosets /iif 9 of i f p in (7. It follows that H — L lies in the 
union of d - 1 cosets hH9 of H9 in G. As L = H f) H9, it follows that H - L lies in 
the union of d — 1 cosets /iL of L in G and hence that L has index at most d in if. 

A similar argument shows also that L has index at most d in i P . Of course, 
the same bound applies to the index of H fl i f ^ in if, for each i. Now we define 
H' — P\iezH9 . Clearly H' is a subgroup of H which is normalised by g. Now 
each intersection H fl i f^ has index at most d in if, and so H1 = fl^z (^H fl i f ^ 
is an intersection of subgroups of i f of index at most d. If i f has n subgroups of 
index at most d, it follows that H' has index at most dn in H. Hence each element 
of JC normalises a subgroup of i f of index at most dn in if. As H has only finitely 
many such subgroups, we have proved that there are a finite number of finite index 
subgroups i f i , . . . , i f m of if, such that JC is contained in the union of the groups 
N(Hi), 1 ̂  i ^ m, as required. • 

Using this result, we can prove the following. 

Lemma B.2.13. — Let G, H, X, JC be as above. Then there is a subgroup H' of finite 
index in H, such that JC normalises H'. 

Proof. — We will consider how JC can intersect the normaliser of a subgroup of finite 
index in if. Let ifi denote a subgroup of i f of finite index. We denote the image 
of X in Hi\G by P. Then P is an almost invariant subset of H\\G. We consider the 
group JCC\N(Hi), which we will denote by K\. Then Hi\JC\ acts on the left on ifi\G, 
and we have kP = P or P*, for every element k of H\\JC\, because every element 
of JC satisfies kX ~ X or X*. Now we apply Theorem 5.8 from [47] to the action 
of ifi\/Ci on the left on the graph ifi\T. This result tells us that if ifi\/Ci is infinite, 
then it has an infinite cyclic subgroup of finite index. Further the proof of this result 
in [47] shows that the quotient of ifi \T by ifi\/Ci must be finite. This implies that 
ifi\r has two ends and that JCi has finite index in G. Hence either H\\Ki is finite, 
or it has two ends and JC\ has finite index in G. 

Recall that there are a finite number of finite index subgroups i f i , . . . , i f m of if, 
such that JC is contained in the union of the groups N(Hi), 1 < i ^ m. The above 
discussion shows that, for each z, if JCi denotes JC fl X(if^), either Hi\JCi is finite, or 
it has two ends and JCi has finite index in G. We consider two cases depending on 
whether or not every ifi\/Q is finite. 
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Suppose first that each Hi\Ki is finite. We claim that JC contains i f with finite 
index. To see this, let if" = DHi, so that if" is a subgroup of i f of finite index, and 
note that JC is the union of a finite collection of groups JCi each of which contains 
if" with finite index, so that JC is the union of finitely many cosets of if". It follows 
that JC also contains H" with finite index and hence contains H with finite index as 
claimed. If we let if' denote the intersection of the conjugates of i f in JC, then H' is 
the required subgroup of i f which is normalised by JC. 

Now we turn to the case when Hi\JCi is infinite and so H\\JC\ has two ends and 
JC\ has finite index in G. Define H' to be HkeJC (HI) . As JC contains JCi with finite 
index, if ' is the intersection of only finitely many conjugates of H\. As JC is contained 
in Comm(H), each of these conjugates of ifi is commensurable with H\. It follows 
that H' is a subgroup of H of finite index in H which is normalised by JC. This 
completes the proof of the lemma. • 

The key point here is that JC normalises Hf rather than just commensurises it. Now 
we can prove the second result which we quoted in the proof of Theorem B.2.8. 

Proposition B.2.14. — Suppose that (G, H) is a pair of finitely generated groups and 
that X is a non-trivial H-almost invariant subset of G. Then, there is a subgroup 
H' of G which is commensurable with H, and a non-trivial H'-almost invariant set 
Y equivalent to X such that gY, gY* : g G G is nested with respect to the subgroup 
JC = {g G G : gX ~ A or A*} of G. 

Proof. — The previous lemma tells us that there is a subgroup H' of finite index in H 
such that JC normalises H'. Let P denote the almost invariant subset H\X of H\G, 
and let P' denote the almost invariant subset H'\X of H'\G. 

Suppose that the index of Hf in JC is infinite. Recall from the proof of the preceding 
lemma that ff'\/C has two ends and that JC has finite index in G. We construct a 
new non-trivial i f "-almost invariant set Y as follows. Since the quotient group H'\JC 
has two ends, JC splits over a subgroup H" which contains Hf with finite index. 
Thus there is a if"-almost invariant set X" in JC which is nested with respect to JC. 
Further, H" is normal in JC and the quotient group must be isomorphic to Z or 
Z2 * Z2. Let gi = e, #2, • • • 5 <7n be coset representatives of JC in G so that G = U2/C^. 
We take Y = UiX"gi. It is easy to check that Y is i f "-almost invariant and that 
gY,gY* : g G G is nested with respect to JC. 

Now suppose that the index of H' in JC is finite. We will define the subgroup 
/C0 = g G G : gX ~ X of JC. The index of /Co in JC is at most two. 

First we consider the case when JC — JCQ. We define P" to be the intersection of 
the translates of P' under the action of if'\JC. Thus P" is invariant under the action 
of Hf\JC. As all the translates of P' by elements of H'\JC are almost equal to P', it 
follows that P" = P' so that P" is also an almost invariant subset of H'\G. Let Y 
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denote the inverse image of P" in G, so that Y is invariant under the action of JC. In 
particular, gY, gY* : g G G is nested with respect to JC, as required. 

Now we consider the general case when JC ^ /Co. We can apply the above arguments 
using /Co in place of JC to obtain a subgroup H" of G and a if" almost invariant subset 
Y of G which is equivalent to X, and whose translates are nested with respect to /Co-
We also know that Y is /Co-invariant. Let Q denote the image of Y in JCQ\G, let k 
denote an element of JC — /Co and consider the involution of JCQ\G induced by k. Then 
Q is a non-trivial almost invariant subset of JCQ\G and kQ = Q*. Define R = Q — kQ, 
so that R = Q and let Z denote the pre-image of R in G. We claim that the translates 
of Z and Z* are nested with respect to JC. First we show that they are nested with 
respect to JCQ, by showing that Z — Y — kY is /Co-invariant. For ko G /Co, we have 
k~lk$k G /Co as /Co must be normal in JC. It follows that k$kY — kY. As koY = y, 
we see that Z is /Co-invariant as required. In order to show that the translates of Z 
and Z* are nested with respect to JC, we will also show that Z fl kZ is empty. This 
follows from the fact that R D kR = (Q - kQ) n k (Q - kQ) = (Q - kQ) f l (fcQ - Q) 
which is clearly empty. 

This completes the proof of Proposition B.2.14. • 

B . 3 . St rong intersection numbers 

Let G be a finitely generated group and let i f and K be subgroups of G. Let A 
be a non-trivial if-almost invariant subset of G and let Y be a non-trivial ff-almost 
invariant subset of G. In section B.l, we discussed what it means for X to cross Y 
and the fact that this is symmetric. As mentioned in the introduction, there is an 
alternative way to define crossing of almost invariant sets. Recall that, in section B.l, 
we introduced our definition of crossing by discussing curves on surfaces. Thus it seems 
natural to discuss the crossing of X and Y in terms of their boundaries. We call this 
strong crossing. However, this leads to an asymmetric intersection number. In this 
section, we define strong crossing and discuss its properties and some applications. 

We consider the Cayley graph r of G with respect to a finite system of generators. 
We will usually assume that i f and K are finitely generated though this does not 
seem necessary for most of the definitions below. We will also think of SX as a set 
of edges in T or as a set of points in G, where the set of points will simply be the 
collection of endpoints of all the edges of SX. 

Definition B.3.1. — We say that Y crosses X strongly if both SY n X and SY D A* 
project to infinite sets in H\G. 

Remark B.3.2. — This definition is independent of the choice of generators for G which 
is used to define I\ Clearly, if Y crosses X strongly, then Y crosses A. 

SOCIETE MAT HEM ATI QUE DE FRANCE 2003 



222 APPENDIX B. SPLITTINGS AND INTERSECTION NUMBERS 

Strong crossing is not symmetric. For an example, one need only consider an 
essential two-sided simple closed curve S on a compact surface F which intersects a 
simple arc L transversely in a single point. Let G denote 7 r i ( F ) , and let i f and K 
respectively denote the subgroups of G carried by 5 and L, so that i f is infinite cyclic 
and K is trivial. Then S and L each define a splitting of G over i f and K respectively. 
Let X and Y denote associated standard if-almost invariant and if-almost invariant 
subsets of G. These correspond to submanifolds of the universal cover of F bounded 
respectively by a line S lying above S and by a compact interval L lying above L, 
such that S meets L transversely in a single point. Clearly, X crosses Y strongly but 
Y does not cross X strongly. 

However, a strong intersection number can be defined as before. It is usually asym
metric, but we will be particularly interested in the case of self-intersection numbers 
when this asymmetry will not arise. 

Definition B.3.3. — The strong intersection number si(H\X, K\Y) is defined to be 
the number of double cosets KgH such that gX crosses Y strongly. In particular, 
si(H\X, H\X) = 0 if and only if at least one of SgX n X and SgX n X* is if-finite, 
for each g G G. 

Remark B.3.4. — If s and t are splittings of a group G over subgroups i f and if, with 
associated almost invariant subsets X and Y of G, it is natural to say that s crosses t 
strongly if si(H\X,K\Y) ^ 0. It is easy to show that this is equivalent to the idea 
introduced by Sela [49] that s is hyperbolic with respect to t. 

Remark B.3.2 shows that si(H\X,H\X) < i(H\X,H\X). Recall that Theorem 
B.2.8 shows that if i(H\X,H\X) = 0, then G splits over a subgroup H' commen
surable with if. Thus the vanishing of the strong self-intersection number may be 
considered as a first obstruction to splitting G over some subgroup related to if. We 
will show in Corollary B.3.11 that the vanishing of the strong self-intersection number 
has a nice algebraic formulation. This is that when si(H\X, H\X) vanishes, we can 
find a subgroup K of G, commensurable with if, and a if-almost invariant subset 
Y of G which is nested with respect to Coming (if) = CommG?(if )• However, Y may 
be very different from X. This leads to some splitting results when we place further 
restrictions on if. 

Proposition B.3.5. — Let G be a finitely generated group with finitely generated 
subgroup if, and let X be a non-trivial if -almost invariant subset of G. Then 
si(H\X,H\X) = 0 if and only if there is a subset Y of G which is i f -almost equal 
to X (and hence i f -almost invariant) such that HYH — Y. 

Proof. — Suppose that there exists a subset Y of G which is if-almost equal to X, 
such that HYH = Y. We have 

si{H\X, H\X) = si(H\Y, i f 
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as X and Y are if-almost equal. So, it is enough to show that for every # G G, either 
g5Y H X or gSY n X * is if-finite. Suppose that g G Y. Consider SY HY which is a 
union of a finite number of right cosets ifg*, 1 ^ i ^ n. Since g G Y, gH C Y. For 
any ft G if, d(gh,ghgi) — d ( l ,^ ) . Thus #(5Y is at a bounded distance from Y and 
hence gSY n Y* has finite image in H\G. Similarly, if g G Y*, Y fl Y projects to a 
finite set in i f \G. 

For the converse, suppose that si(H\X, H\X) — 0 and let TT denote the projection 
from G to H\G. By hypothesis, 7r(g5X) fl (H\X) or TT(^(5X) n ( i f \ X * ) is finite. 
The proof of Lemma B.l . 15 tells us that there is a positive number d such that, 
for every g G G, the set gSX is contained in a d-neighbourhood of X or X * . Let 
V = X ( X , d ) , the d-neighbourhood of X and let Y = # | # ( £ X ) c Y. If g G Y and 
ft G if, then ft#£X C ftY = V and thus HY = Y. If # G Y and ft G if, then 
gh(5X) = g(SX) C V and thus Y i f = Y. It only remains to show that Y is i f -
almost equal to X . This is essentially shown in the third and fourth paragraphs of 
the proof of Theorem B. 1.12. • 

Definition B.3.6. — We will say that a pair of finitely generated groups (G, if) is 
of surface type if e(G, H') — 2 for every subgroup H' of finite index in i f and 
e(G, if') = 1 for every subgroup H' of infinite index in if. 

This terminology is suggested by the dichotomy in [43]. Note that for such pairs 
any two non-trivial if-almost invariant sets in G are if-almost equal or if-almost 
complementary. We will see that for pairs of surface type, strong and ordinary inter
section numbers are equal. 

Proposition B.3.7. — Let (G, if) be a pair of surface type, let X be a non-trivial i f 
almost invariant subset of G and let Y be a non-trivial K-almost invariant subset ofG 
for some subgroup K of G . Then Y crosses X if and only ifY crosses X strongly. 

Proof. — Let V be the Cayley graph of G with respect to a finite system of generators 
and let P = i f \ X . As in the proof of Lemma B. 1.11, for a set S of vertices in a graph, 
we let S denote the maximal subgraph with vertex set equal to S. We will show that 
exactly one component of X has infinite image in H\T. Note that P has exactly 
one infinite component as if\T has only two ends. Let Q denote the set of vertices 
of the infinite component of P and let W denote the inverse image of Q in G. If 
W has components with vertex set L^, then we have US (Li) = SW C SX. Let L 
denote the vertex set of a component of W, and let Hi be the stabilizer in i f of L. 
Since SQ is finite, we see that HL\SL is finite. Hence HL\T has more than one end. 
Now our hypothesis that (G, if) is of surface type implies that HL has finite index 
in i f and thus HL\SW is finite. If HL ^ if, we see that HL\SW divides if L\r 
into at least three infinite components. Thus HL = i f and so W is connected. The 
other components of X have finite image in H\T. Similarly, exactly one component 
of X * has infinite image in ff\T. The same argument shows that for any finite 
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subset D of H\T containing 5P, the two infinite components of ((H\T) — D) fl P 
and((if \r) — D) fl P* have connected inverse images in V. 

Recall that if Y crosses X strongly, then Y crosses X. We will next show that if Y 
does not cross X strongly, then Y does not cross X. Suppose that SY fl X projects 
to a finite set in H\T. Take a compact set D in H\T large enough to contain SY D X 
and SP. By the argument above, if R is the infinite component of ((H\T) — D) fl P, 
then its inverse image Z is connected and is contained in X. Any two points in Z 
can be connected by a path in Z and thus the path does not intersect SY. Thus Z is 
contained in F o r F*. Hence ZnY or ZnY* is empty. Suppose that ZnY is empty. 
Then Z* D y . Since Z* D X projects to a finite set, we see that Y Pi A projects to a 
finite set. Similarly, if Z fl y* is empty, then y* n X projects to a finite set in H\G. 
Thus, we have shown that if SY D X projects to a finite set, then either Y fl A or 
y* n A projects to finite set. Thus Y does not cross A. • 

From the above proposition and the fact that ordinary crossing is symmetric, we 
deduce: 

Corollary B.3.8. — If (G, H) and (G, K) are both of surface type and X is a non-
trivial H-almost invariant set in G, and Y is a non-trivial K-almost invariant set 
in G then si(H\X,K\Y) = i(H\X,K\Y). In particular i(H\X,H\X) = 0 if and 
only ifsi(H\X, H\X) = 0. 

Let K be a Poincare duality group of dimension (n — 1) which is a subgroup of a 
Poincare duality group G of dimension n. Thus the pair (G, K) is of surface type. 
In [29], Kropholler and Roller defined an obstruction sing(K) to splitting G over a 
subgroup commensurable with K. Their main result was that sing(K) vanishes if and 
only if G splits over a subgroup commensurable with K. At an early stage in their 
proof, they showed that sing(K) vanishes if and only if there is a K-almost invariant 
subset y of G such that KYK = Y. Starting from this point, Proposition B.3.5, the 
above Corollary and then Theorem B.2.8 give an alternative proof of their splitting 
result. Thus Theorem B.2.8 may be considered as a generalization of their splitting 
theorem. We next reformulate in our language a conjecture of Kropholler and Roller 
[ 3 0 ] : 

Conjecture B.3.9. — If G is a finitely generated group with a finitely generated 
subgroup H, and if X is a non-trivial H-almost invariant subset of G such that 
si(H\X, H\X) = 07 then G splits over a subgroup commensurable with a subgroup 
of a. 

Note that Theorem B.2.8 has a stronger hypothesis than this conjecture, namely the 
vanishing of the self-intersection number i(H\X, H\X), rather than the vanishing of 
the strong self-intersection number, and it has a correspondingly stronger conclusion, 
namely that G splits over a subgroup commensurable with H itself. A key difference 
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between the two statements is that, in the above conjecture, one does not expect the 
almost invariant set associated to the splitting of G to be at all closely related to X . 
Dunwoody and Roller proved this conjecture when i f is virtually polycyclic [13], and 
Sageev [38] proved it for quasiconvex subgroups of hyperbolic groups. The paper 
of Dunwoody and Roller [13] contains information useful in the general case. The 
second step in their proof, which uses a theorem of Bergman [3], proves the following 
result, stated in our language. (There is an exposition of Bergman's argument and 
parts of [13] in the later versions of [15].) 

Theorem B.3.10. — Let (G, if) be a pair of finitely generated groups, and let X 
be a H-almost invariant subset of G. If si(H\X,H\X) — 0 ; then there is a 
subgroup H' commensurable with H, and a non-trivial i f ' -almost invariant set Y 
with si(H'\Y, H'\Y) = 0 such that the set gY,gY* : g G G is almost nested with 
respect to CommG(H) = Comm^ (if') • 

This combined with Proposition B.2.14 gives: 

Corollary B.3.11. — With the hypotheses of the above theorem we can choose if ' 
and a non-trivial Hf-almost invariant set Y with si(Hf\Y, Hf\Y) = 0 such that 
gY,gY* : g G G is almost nested with respect to Comme? (if) and is nested with 
respect to the subgroup JC = {g G G : gX ^ X or X*} of Commc7(if). 

Now Theorem B.l. 12 yields the following generalization of Stallings' Theorem [53] 
already noted by Dunwoody and Roller [13]: 

Theorem B.3.12. — If G, i f are finitely generated groups with e(G, if) > 1 and if G 
commensurises if, then G splits over a subgroup commensurable with if. 

Corollary B.3.11 leads to the following partial solution of the above conjecture of 
Kropholler and Roller : 

Theorem B.3.13. — If G, i f are finitely generated groups with e(G, if) > 1, if 
e(G, K) = 1 for every subgroup K commensurable with a subgroup of infinite index 
in H, and if X is a H-almost invariant subset of G such that si(H\X1H\X) = 0 ; 

then G splits over a subgroup commensurable with H. 

Proof. — Observe that Corollary B.3.11 shows that, by changing H up to commensu-
rability, and changing X , we may assume that the translates of X are almost nested 
with respect to Commc7(if) and nested with respect to JC = {g G G : gX ~ X or X * } . 
If we do not have almost nesting for all translates of X , then there is g outside 
ComniG(if) such that none of X(*) n #X(*) is if-finite. In particular, none of these 
sets is (if n ifp)-finite. But these four sets are each invariant under H fl H9 and 
the fact that the strong intersection number vanishes shows that at least one of them 
has boundary which is (if fl if^)-finite. Since g is not in Coming (if), we have a 
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contradiction to our hypothesis that e(G, K) = 1 with K = i f D H9. This completes 
the proof. • 

We note another application of groups of surface type which provides an approach 
to the Algebraic Torus Theorem [15] similar to ours in [43]. We will omit a complete 
discussion of this approach, but will prove the following proposition to illustrate the 
ideas. 

Proposition B.3.14. — If (G, if) is of surface type and if i f has infinite index 
in Commc? (if) ; then there is a subgroup H' of finite index in i f such that the 
normalizer N(Hf) of H' is of finite index in G and H'\N(H') is virtually infinite 
cyclic. In particular, if i f is virtually polycyclic, then G is virtually polycyclic. 

Proof. — Let A be a non-trivial if-almost invariant subset of G, let g be an element 
of Comm^ (ii) and let Y — gX, so that Y has stabiliser H9. Let if ' denote the 
intersection i f D H9 which has finite index in both i f and in H9 because g lies 
in Commc (if). Thus H'\X and H'\Y are both almost invariant subsets of H'\G. 
As (G, if) is of surface type, the pair (G, if ') has two ends so that H'\X and H'\Y 
are almost equal or almost complementary. It follows that X is if-almost equal to Y 
or y * , i.e. gX ^ I or gX ~ X*. Recall from Lemma B.2.10, that if JC denotes 
{g G G : gX ~ X or gX ~ X * } , then JC C Commc (if). It follows that in our present 
situation JC must equal Commc(if). By Lemma B.2.12, we see that there are a finite 
number of subgroups i f i , . . . , i f m of finite index in i f such that JC is contained in 
the union of the normalizers N(Ht). As i f has infinite index in JC — Coming (if), 
one of the ff ,̂ say ifi, has infinite index in its normalizer N(H\). As (G, if) is of 
surface type, the pair (G, ifi) has two ends, so we can apply Theorem 5.8 from [47] 
to the action of Hi\N(Hi) on the left on the graph Hi\T. This result tells us that 
i f i \N ( i f i ) is virtually infinite cyclic. Further the proof of this result in [47] shows 
that the quotient of Hi\T by Hi\N(Hi) must be finite so that AT (ifi) has finite index 
in G. • 

The arguments of [43] can be extended to show: 

Theorem B.3.15. — Let (G,if) be a pair of finitely generated groups with i f virtually 
polycyclic and suppose that G does not split over a subgroup commensurable with a 
subgroup of infinite index in if. If for some subgroup K of i f ; e(G, K) ^ 37 then G 
splits over a subgroup commensurable with H. 

We end this section with an interpretation of intersection numbers in the case when 
the strong and ordinary intersection numbers are equal. This corrects a mistake in 
[42]. Suppose that a group G splits over subgroups i f and K and let the corresponding 
if-almost and if-almost invariant subsets of G be X and Y. Let T denote the Bass-
Serre tree corresponding to the splitting of G over K and consider the action of i f 
on T. Let T' denote the minimal if-invariant subtree of T, and let ^ denote the 
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quotient graph H\Tf. Similarly, we get a graph <£> by considering the action of K on 
the Bass-Serre tree corresponding to the splitting of G over H. We have: 

Theorem B.3.16. — With the above notation, suppose that 

i(H\X, K\Y) = si(H\X,K\Y). 

Then the number of edges in \£ is the same as the number of edges in 4> and both are 
equal to si{H\X, K\Y). 

Proof — The proof of Theorem 3.1 of [42] goes through because of our assumption 
that i(H\X,K\Y) = si(H\X,K\Y). The mistake in [42] occurs in the proof of 
Lemma 3.6 of [42] where it is implicitly assumed that if X crosses Y, then it crosses Y 
strongly. Since we have assumed that the two intersection numbers are equal, the 
argument is now valid. • 
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