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INJECTIVITY OF C1 MAPS M2 -> M2 AT INFINITY A N D 

PLANAR VECTOR FIELDS 

by 

Carlos Gutierrez & Alberto Sarmiento 

Abstract. — Let X : R2 \ D„ R2 be a C1 map, where cr > 0 and Da = {p G R2 : 
IblK^b 
(i) If for some s > 0 and for ail p G R2 \ Da - no eigenvalue of DX(p) belongs to 
(—£\oo), there exists s ^ cr, such that À'|r2x7J is injective; 
(ii) If for some e > 0 and for ail p G R2 no eigenvalue of DX(p) belongs to 
(-£-,0] U {z G C : ^ 0}, there exists p0 G M2 such that the point oo, of the 
Riemann sphère M2 U {oo}, is either an attractor or a repellor of x' = X{x) + po. 

1. Introduction 

The study of planar vector fielcls around singularities lias somehow motivated the 
présent work. A sample of tins study is the work doue by C. Chicone, F. Dumortier, 
J. Sotomayor, R. Roussarie, F. Takens. See for instance [Chi, DRS, Rou, Tak]. 
Here we study the behavior of a vector field X : R2 —> R2 around infinity. While a 
C1 vector field around a singularity is quite regular, we work under conditions that 
do not imply, a priori, any regularity of the vector field around infinity. Given an 
open subset U of M2 and a C1 map Y : U —» M2, we shall dénote by Spec(F) = 
{eigenvalues of DY(p) : p G U}. Our main resuit is the following 

Theoreml. — Let X = (f,g) : R2 \ Da R2 be a C1 map, where a > 0 and 
Da = [p e R2 : ||p|| ^ a}. The following is satisfied: 

(i) if for some e > 0, Spec(A) is disjoint of (—e, oc), then there exists s ^ a, such 
that X\R2^ç> is injective; 
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(ii) if for some s > 0, Spec(X) is disjoint of (—£,0] U {z G C : $t(z) ^ 0}, then, 
there exists po G E2 such that the point oo, of the Riemann sphère E2 U {oo},zs either 
an attractor or a repellor of x' — X(x) -f Po-

To give an idea of the proof of this resuit, let us introduce the following définition. 
Let X = (/, g) :R2\Da E2 be a C1 map as in Theorem 1. Since / : E2 \ Da -> 

E is a C1 submersion, q G E2 —» Vf^(q) — ( — fy(q),fx(q)), the Hamiltonian vector 
field of / , has no singularities. Let go(x,y) = xy and consider the set 

B = {(x, y) G [0, 2] x [0, 2] : 0 < x + y ^ 2}. 

We will say that A C E2 is a HRC (Half-Reeb Component) of V/# (see figure 1) 
if there is a homeomorphism h : B ^ A which is a topological équivalence between 

and Vgo^ls, and such that 

(1) h({(x,y) E B : x + y = 2}) (called the compact edge of A) is a smooth segment 
transversal to V/9^ in the complément of h(l, 1), and 

(2) both h({(x,y) G £ : x = 0}) and E B : y = 0}) are full half-
trajectories of V/^ . 

.4 

21 
B 

0 2 

h 

7 
compact edge of A 

FIGURE 1. A half-Reeb component. 

Observe that A may not be a closed subset of M2. 
Proceed to give an idea of the proof of Theorem 1. First, we shall prove that: 

Proposition 1. — if X — (f,g) : M2 \ Da —> R2 is a Cl rnap as m Theorem 1, then 
any HRC ofV&f ts a bounded subset ofW2. 

This is used to prove 

Theorem 2. — ifY — (f,g) : M2 —> M2 is a Cl map such that, for some e > 0, 
Spec(F) D (—e,e) — 0, then Y is injective. 
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Roughly speaking about Theorem 2, if the foliation induced by V/ has no half-
Reeb components then, V/ is topologically équivalent to the foliation, on the (x, y)-
plane, induced by the form dx (the foliation is made up by ail the vertical straight 
lines). The injectivity of X will follow from the fact that V/ and V r̂ are linearly 
independent everywhere. 

Sections 3 and 4 are devoted to prove 

Corollary 2. — if X = (f,g) : MÏ2\Da —> IR2 is a C1 map as in Theorem 1, then there 
exists a smooth compact dise E such that V/#, restricted to M2 \ E, is topologically 
équivalent to the foliation, on E2 \ D\, induced by dx. 

Observe that the foliation, on M2 \ D\, induced by dx has exactly two tangencies 
with dD\ (at (1,0) and (0,1)) which are "quadratic" and "externat". Let us say a 
little more about what is proved in Section 3 and 4: We show, in Section 3, that given 
any generic smooth compact dise F D Da the number of "external" tangencies of V/ 
with dF is equal to 2 plus the number of "internai" tangencies of V/ with dF. We 
show, in Section 4, that the dise F can be deformed to a smooth compact dise E so 
that the referred "external" and "internai" tangencies cancel in pairs yielding exactly 
2 tangencies which are "external". 

Using Theorem 2 we obtain 

Proposition!. — Let X be as in Corollary 2. If X takes dE diffeomorphically to a 
circle then X\^2^E may be extended to a map which satisfies conditions of Theorem 
2 and so it is injective. 

The proof of item (ii) of Theorem 1 is finished in Sections 5 and 6 by showing that, 
under conditions of Corollary 2, the dise E can be deformed so that, for the resulting 
new dise, still denoted by E, V/^|^2^£, is topologically équivalent to the foliation, 
on M2 \ D\, induced by dx and moreover X takes dE diffeomorphically to a circle. 
Then the resuit follows from Proposition 2. 

The item (ii) of Theorem 1 follows from the corresponding item (i) and some 
previous Gutierrez and Teixeira work [G-T]. 

Throughout this article, given an embedded circle C C M2, the compact dise (resp. 
open dise) bounded by C will be denoted by D{C) (resp. D(C)). Also, we will 
freely use the fact that the assumptions of the theorem are open in the Whitney C1-
topology. In this way, when possible and necessary, we will assume that X is smooth 
and that it satisfies some generic property which will be made précise at the proper 
place. 

Acknowledgements. — We wish to thank referee's comments which have been appre-
ciated and incorporated into this work. 
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2. A global injectivity resuit 

We shall need the following lemma which is contained in the proof of [Gut, Lemma 
2.51. For 6 G IR : let Ro dénote the linear rotation 

Ro = 
cosO — siné^ 
sin 6 cos 0 ) 

Lemma 1. — Let X — (f\g) : M2 \ Da —> M? be a C1 map as in Theorem 1. Suppose 
that V^V has an HRC which is unbounded (as a subset ofM^2) but whose projection 
on the x-axis is a compact interval Then, there exists S > 0 such that, for ail 
6 G (—5,0) U (0,s) fo has a HRC whose projection on the x-axis is an interval of 
infinité length; here (fo,go) = Ro ° X o R_Q. 

The proof of Proposition 1 and Theorem 2 can be found in [CGL] but, as we have 
already said and for sake of completeness, they are included here. 

Proposition 1. — Let X = (/,g) : M2 \~Da —> E2 be a C1 map as in Theorem 1. Then 
any HRC ofV^f is a bounded subset o/IR2. 

Proof. — Let A be a half Reeb component for / . Let II : M2 —>• R be the projection 
on the first coordinate. By composing with a rotation if necessary, in the way that 
is stated in Lemma 1, we may suppose that II(.4.) is an interval of infinité length, 
say \b,oo). We may also assume that X is smooth and - -by Thom's Transversality 
Theorem for jets [G-G]- that 

(al) the set 
T={(x,y)eR2:Ux,y)=0} 

is rnade up of regular curves; 
(a2) There is a discrète subset A of T such that if p G T \ A (resp. p G A), V# / 

has quadratic contact (resp. cubic contact) with the vertical foliation of M2. 
Then, if a > b is large enough, 

(b) for any x ^ a, the vertical line II-^x) intersects exactly one trajectory ax C A 
of V /#U such that II(ax.) fl (x, oo) = 0; in other w ôrds, x is the maximum for the 
restriction II|a<r. 

It follows that 

(c) if x ^ a and p G ax fl II"1 (x) then p G T n A \ A. 

Let Tm be the set of p G A such that, for some x > a, p G ax fl Il_1(x). Notice that, 
for every x ^ a, ax H Il_1(x) is a finit e set; nevertheless, by (b), (c) and by using 
Thom's Transversality Theorem for jets, we may get the following stronger statement: 

(d) There is a séquence F = {ai, a2,..., a-i, • • • } in [a, oo), which may be either 
empty or finite or else countable, such that if x G F (resp. x G [a, oo) \ F), then 
n_1(x) H Tm. is a two-point-set (resp. a one-point-set). 

ASTÉRISQUE 287 
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If x G [a, oo) \ F, define rj(x) = (x,rj2(x)) = U x(x) D Tm. Observe that rj : 
[a, oo) \ F —• TRN is a smooth embedding. As J\a is bounded, 

(e) For] extends continuously to a strictly increasing bounded map deflned in 
[a, oo) such that, for ail x G [a, oo) \ F, fx(v(x)) rias constant sign. 
Therefore, there exists a real constant K such that 

K =d 
oo 

AI 

d 

v 
f(rj(x)) dx = 

oo 

;—1 ° 

x 

x 

d 
v 

('rj(x)) dx 

x 
OO 

vr 

v 

r 
/x(»7(a:)) 

This and (e) imply that, for some séquence xn oo, lim^^oo fx(v(%N)) = 0- This is 
the required contradiction. • 

Theorem 2. — Let X : M2 R2 be a C1 map. Suppose that, for some e > 0, 
Spec(X) fl (—s,e) = 0. Then X is injective. 

Proof. — By Proposition 1, the Hamiltonian vector fields induced by the coordinate 
functions of X = (/, g) have no Reeb component. Therefore X is injective. • 

3. Index of a vector field along a circle 

We shall say that a collar neighborhood U of an embedded circle C C R2 \ Da is 
interior (resp. exterior) if U is contained in D(C) (resp. R2 \ D(C)). 

Proposition 2. — Let X = (/,#) : M2 \ ~Da —• M2 6e a C1 map as m Theorem 1. Let 
C C R2 \ Da be a smooth circle surrounding the origin. Suppose that X(C) is an 
embedded circle and that there exists an exterior collar neighborhood U C M2 \ Da 
of C such that X(U) is also an exterior collar neighborhood of X(C). Then X is an 
embedding. 

Proof — By the assumptions, X can be extended to a C1 map Y : R2 —» R2 which 
takes D(C) diffeomorphically onto the D(X(C)). See [Hir]. Under thèse conditions 
we may apply either Theorem 2 or Gutierrez and Fessier Injectivity Theorem [Gut, 
Fes] to conclude that Y is an embedding and, a fortiori, that X is an embedding 
too. • 

The theorem below on indexes of singularities of vector fields will be used to prove 
theorem 1. The proof can be found in [Har, Theorem 9.2] 

Let C be a simple closed curve of R2. A C1 vector field Y : R2 —> R2 is said to be 
internally (or externally) tangent to C at XQ G C, if there exists an e > 0 such that 
the solution arc <J)(t) of the équation 

x' = Y(x), x(0)=xo, 
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is interior (or exterior) to C for 0 < \t\ < e. We shall dénote by jy(C) the index of Y 
along C. 

Theorem 3. — Let Y be a C1 vector field on a connectée open set E C R2. Let C be 
a positive oriented Jordan curve of class C1 in E with the property that Y(x) ^ 0 on 
C and that Y is tangent to C at only a finite number of points xi,..., xn of C. Let nl 
(resp. ne be the number of thèse points Xj where the solution arc </>(£) of x' = Y(x), 
(j)(0) = Xj for small \t\ is internally (resp. externally) tangent to C at Xj (so that 
nl + ne ^ n). Then 2jY(C) = 2 + nl - ne. 

Corollary 1. — Let assume the notation and conditions of Theorem 1. In particular 
let X = (/,g) : R2 \ Da -> R2 be a C1 map. / / C c l 2 \ ~Da is a smooth circle 
surrounding the origin, then jVf#(C) — jvf{C) = 0. 

Proof — If j\jf(C) 7̂  0 there would exist a point p G C and a real a > 0 such that 
V/(p) = (a,0). In particular a will be an eigenvalue of DX(p). This contradiction 
with the assumptions of Theorem 1 proves the corollary. • 

4. Avoiding internai tangencies 

We say that is in gênerai position with an embedded circle C C R2 \ Da if 
there exists a subset F of C, at most finite such that (i) V/# is transversal to C \ F, 
(ii) has a quadratic tangency with C at each point of F, and (iii) a trajectory 
of V/7^ cari meet tangentially C at most at one point. 

Lemmal. — Suppose that Vf# is in gênerai position with a smooth circle C C 
R2 \ Da which surrounds the origin. Suppose also that a trajectory 7 of V /^ meets 
C transversally somewhere and with an external tangency at a point p. Then the tra­
jectory 7 contains a closed subinterval [p, r]f which meets C exactly at {p,r} (doing 
it transversally at r) and the following is satisfied: 

(i) If [p,r] dénotes the closed subinterval of C such that T = [p, r] U \p,r]f bounds 
a compact dise D(T) contained in R2 \ D(C), then points of 7 \ [p, r]f nearby p do 
not belong to D(T); 

(ii) Let (p,r) and [p, r] be subintervals of C satisfying [p, r] C (p, r) C [p, r]. If p 
and r are close enough to p and r7 respectively, then we may deform C into a smooth 
circle Ci in such a way that the déformation fixes C \ (p, r) and takes [p, r] C C to a 
closed interval [p, r\\ C C\ which is close to [p, r] / . Furthermore, is in gênerai 
position with Ci and the number of tangencies of V/# with Ci is smaller than that 
ofVf* with C. 

Proof. — Certainly, 7 contains a closed subinterval [p, r] f C 7 which meets C exactly 
at {p, r}. As is in gênerai position with C, 7 meet C transversally at r. Let 
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[p, r] be the closed subinterval of C such that F = [p, r] U [p, r]/ bounds a compact 
dise D(T) contained in R2 \ D(C). 

If [p, r]f does not satisfy (i) then the points of 7 \ [p, r]/ nearby p belong to D(F). 
Hence, as has no singularities in R2 \ D(C), points of 7 \ [p, r]/ nearby p belong 
to D(F). Therefore, there must be a closed subinterval [q,p]f C 7flD(r) (see fig. 2.a) 
such that: 

(al) the union Fi of the closed interval \p,q] C [p, r] and [p,q]f bounds a compact 
dise D(Fi) contained in (R2 \ D(C)) DD(F); 

(a2) [<?,p]/ meets C exactly at {p, g}, doing it transversally at q (with an external 
tangency at p); also, points of 7 \ [q,p]f nearby p do not belong to D(Fi). 
Summarizing either [p, r]/ or [ç,p]/ satisfies (i). Therefore we may dénote by [p, r]f 
the arc which satisfies (i). 

We claim that (i) implies (ii). In fact, let us choose a small flow box B of V ^ / 
whose interior contains [p, r]/ . By the assumptions, we may suppose that p, r G BnC. 
We may see that there exists a closed interval [p, r]T C B transversal to V/^ (drawn 
as a dotted line in fig. 2.b) and such that Ci — [C \ [p, r]) U [p, r]T is a smooth circle, 
surrounding the origin, contained in R2 \ D(C). Moreover, meets Ci with a 
smaller number of tangencies than it does it with C. The remaining conclusions of 
(ii) can easily be checked. Therefore (i) implies (ii). • 

.7 

vr /q P dc 

FIGURE 2.a 

R R/ 

B / 

v vr 

C 

FIGURE 2.b 

Remark 1. — Let suppose that V/# is in gênerai position with a smooth circle C C 
M2 \ Da which surrounds the origin. Suppose also that V/# has an internai tangency 
with C at the point q; then, by observing the trajectories of around q, we may 
see that there exist closed subintervals \p,q] [q,r] of C, with [p, q] D [g, r] = {g}, and 
a horneomorphism T : [p, g] —> [g, r) such that, 

(al) Tp = i\Tq — q and, for every x G (p, q], there is an arc of trajectory 
[x,Tx]f C i 2 \ -t^C) of V/#, starting at x, ending at Tx and meeting C exactly 
and transversally at {x,Tx}, 
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(a2) the family [x,Tx]f : x G (p, g] dépends continuously on x and tends to {g} as 
x —» q. 

Lemma 3. — Let suppose that V m gênerai position with a smooth circle C C 
M2 \ Da which surrounds the origin. Suppose also that V A a s an internai tangency 
with C at the point q. Given any pair of subintervals [p, g], [g, r] a /C (generated 
by q) as in Remark 1, the family {[x,Tx]f : x G (p, a]} tends continuously to the 
compact arc of trajectory [p, Tp]/ C M2 \ ^(C) which either meets C exactly and 
transversally at {p, Tp} or meets C with a quadratic external tangency; this second 
alternative happens if and only if (p, q] is the maximal interval with properties (al) 
and (a2) of Remark 1. 

Proof. — If (p, g] is not the maximal interval with properties (al) and (a2) of Re­
mark 1, then [p, Tp]/ c l 2 \ D(C) meets C exactly and transversally at {p, Tp}. 

Otherwise, as M2 \ D(C) is not bounded, the closure of (p, q] U [p, r) cannot be the 
whole circle. Therefore, there are two possibilités. The first one is that the positive 
(resp. négative) half-trajectory 7+ (resp. 7") of V/# starting at p (resp. at r) 
does not meet C and so it must accumulate at the point 00 of the Riemann sphère 
IR2 U 00. Uncler thèse circumstances, the subinterval [p, g] U [g, r] is the compact edge 
of non-bounded HRC of V/7^ made up of 7+" U7T7 together with the union of the arcs 
[x, Tx]/, with x G (p, q}. This contradiction with Proposition 1 shows that the second 
possibility must happen: this lemma is true. • 

Lemma 4. There exists a smooth circle C C R2 \ Da, surrounding the origin, in 
gênerai position with V/#, and such that 

(i) if a trajectory 7 of V/# meets C, with an external tangency, say p, then 
7nC7= {p}; 

(ii) As a conséquence of (i), every tangency of the Hamiltonian vector field 
with C is quadratic and external. In particular, there exists a correspondence between 
tangencies and HRCs (which —by Proposition 1— are contained in the dise of IR2 
bounded by C). 

Proof. — By a small C2 perturbation of / , we may assume that V/# is in gênerai 
position with C; in particular, every tangency of V/# with C is quadratic. If (i) of 
this lemma is not satisfied, we may use Lemma 2 to obtain a new circle C\ such that 
V/'# is in gênerai position with C\ and the number of tangencies of with C\ is 
smaller than that of with C. Using this procédure, as many times as necessary, 
we will be able to obtain a circle as required to prove (i) 

As (i) is true, (ii) follows from Lemma 3. • 

Corollary 2. — There exists a smooth circle C cR2 \Da, surrounding the origin and 
there are two points a, b G C, with f(a) < f{b), such that is tangent to C exactly 
at a and b; moreover, thèse tangencies are quadratic and external. 
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Proof. — In fact, by Lemma 4, we may take a smooth circle C C M2\D(T, surrounding 
the origin, such that every tangency of the Hamiltonian vector field Vf* with C 
is quadratic and external. Therefore, by the index formula of Theorem 3 and by 
Corollary 1, there are two points a, 6 G C, with /(a) < f(b), satisfying tins corollary. 

• 

5. Main Proposition 

This section is devoted to the proof of the following 

Proposition3. — There exists a smooth circle C c l 2 \ Da, surrounding the origin, 
such that X(C) is also an embedded circle and, for some exterior collar neighborhood 
[/ C l2 \ Da of C, X(U) is also an exterior collar neighborhood of X(C). 

The proof of this proposition will be complet ed at the end of tins section after some 
préparâtory lemmas. 

We say that a smooth circle C C R2\Da is of ETT (i.e. external tangency type) for 
Vf* if the following is satisfied: C surrounds the origin, there are two points a, b G C. 
with /(a) < f(b), and there are points ai, a2,. . . , an G C_ and 6i, 62,..., bn G C+, 
where C_ and C+ are the connected components of C \ {a, 6}, such that: 

(al) Vf* is tangent to C exactly at a and b; also, thèse tangencies are quadratic 
and external; 

(a2) f(a) = mï{f(x) : x G C} < sup{/(x) : x G C} = f(b); 
(a3) / takes diffeomorphically each C7, with i G { — ,+}, onto the open interval 

(f(a),f(b)) (i.e., X(Ct) Ls the graph of a map (f(a),f(b)) - R); 
(a4) X restricted to C \ {ai, a-2, • • •, an, 61, 62,..., 6.,,.} is an embedding, and also, 

X(C-) and X(C_j_) meet transversally to each other 
(a5) (X(al),X(a2),...,X(a„)) = (X (h), X (b2),.... X (bn)) and 

/(a) < /(ax) = /(60 < /(a2) = /(62) < • • • < /(a„) = /(&„) < f(b). 
(a6) there are séquences x*n —* a and yn —> b of points x,, and yn in M2 \ ^(C) 

such that, for ail n, f(xn) < f(a) < f(b) < f(yn). This means that the local exterior 
of C around a (resp. around b) is taken to the unbounded connected component of 
M2 \ X(C). In particular, n ^ 0 is an even number. 

(a7) If x G M2 \ D(C) is close enough to y G C+ (resp. y G C_) and /(x) = /(y), 
then 51(2/) < g(x) (resp. g(y)_>_g(x)). 

(a8) Ifâi,âr}. G C_ and 61, 6n G C+ are close enough to ai,an and b\,bn, respec-
tively, and [ai,an] C (âi,ân), [b\, bn] C (biJ)n) then, X([âi,ai) U (an,â7,J) is below 
X(\b~i,bi) U (&n,6n]) ( i.e. if a' G [âi, ai) U (an,ân] and b' G [61,61) U (6n,6n] are such 
that f(a') = /(&') then g (a') < g{bf)). 

Lemma 5. — There is a smooth circle C C M2 \ Da of ETT for Vf*. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003 
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FIGURE 3 

Proof. — In fact, by Corollary 2, we may take a smooth circle C C IR2 \ Dai sur-
rounding the origin, such that there are two points a, 6 G C, with f(a) < /(&), and 
so that (al) above is satisfied. This implies that (a2) and (a3) of définition above 
are also satisfied. Furthermore, by a small perturbation of X, we may assume that 
(a4) and (a5) of définition above are satisfied too. Item (a6) follows directly from the 
preceding properties. As X(C) is tangent to the vertical foliation at the points X(a) 
and X(b), and by using (a6), The connected components C_ and C+ can be named 
to satisfy (a7). Item (a7) implies (a8). • 

In the following of this section, C will be a smooth circle of ETT for V/^ and we 
shall use ail corresponding introduced notation. 

Given a, 13 G C_ (resp. a,/3 G C+), [a, [3], (a,f3), [a, (3) will dénote subintervals of 
C- (resp. of C+) with endpoints a, (3. Let L dénote the straight line which passes 
through the points X(a\) e X(an). Let C be the foliation of IR2 made up by ail the 
straight Unes parallel to the line L. By a small perturbation of X(C) with support in 
X([a\, an] U 6n]), we may assume that 

(b) every point of tangency of X([a\,an\) with C is quadratic, X([ai,an}) and 
X([bi,b7l\) are transversal to L. 

Also, by taking âi,ân G C_ and b\,bn G C+ close to a\,an and &i,6n, respectively, 
and [ai,an] C (âi,ân), [6i,6n] C (6i,6n), we may suppose as well that 

(c) AT([âi,ai) U (an,ân]) and X([6i,6i) U (frn,6n]) are disjoint of L. 

Let # G M be such that Re{£) is made up of vertical lines, where RQ is the rigid 
rotation of angle 0. Recall that (fo*ge) = Xe = Re ° X o R^1. By means of a small 
C2—perturbation of / , we may assume that 

(d) Vfe^1 is in gênerai position with RQ(C). 

Then we have that 
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Lemma 6. — Remark 1 and Lemma S are also valid when referred to the vector field 

Y = (R-e)*Vfe* = R-e o V fe* o RE. 

Also X takes any trajectory ofY into a subinterval of a leaf of C. 

Proof — If 7 is a trajectory of Y then Re{l) is a trajectory of Vfe^. Therefore, 
XQ O #0(7) is a subinterval of a vertical line and so R-e o XQ o Rq{^) is a subinterval 
of a leaf of C. However, 

R^e oXeoRe = X. 
This implies that X takes any trajectory of Y into a subinterval of a leaf of C. On the 
other hand, as (/#, go) — Xe = Re o X o R~l satisfies the assumptions of Theorem 1, 
Remark 1 and Lemma 3 are valid for the vector field By définition of y, we 
obtain the remaining conclusion of this lemma. • 

We claim that 

Lemma 7. — If X([âi,ai) U (an,ôn]) is below L and X([&i,&i) U (bn,bn]) is above 
L, then there is a smooth circle C\ C M2 \ D(C), surrounding the origin, obtained 
from C by a déformation which fixes C \ ((âi,ôn) U (61, 6n)) and £aÀ;es [âi,ân] C C 
and [61,6n] C C) to the closed sub-intervals [âi,ân]ci C Ci and [&i,5n]ci C Ci, 
respectively, which satisfy X([âi,ân]d) ^ ê/ow; L ana7 X([5i,6n]d) aèove L. In 
particular, C\ is as requested to prove Proposition 3. 

Proof. — Suppose that Y has an internai tangency with C at the point q G (ai,a77). 
By (d) and Lemma 6 we may proceed as in Remark 1 (applied to Y and considering 
the notation introduced there) to obtain sub-intervals \p,q], [q,r] of C (generated 
by g), determined by the condition that (p,q] is the maximal subinterval of [ai,an] 
satisfying properties (al) and (a2) of Remark 1. By Lemma 3, every élément of the 
family {[a:,Ta;]y : x G (p, q}} is an arc of trajectory of Y. Notice that the maximality 
critérium for (p.q] right above is différent from that of Lemma 3. 

To perform a séquence of adéquate déformations, we meet three possible cases: 
The first one is that {p, r} Pi {ai, an} 7̂  0. Consider only the case in which p — a\ 

and r / an. We may deform C into a new circle C\ in such a way that: the déformation 
fixes C \ (ôi,ôn) and takes [ôi,ôn] C C to a closed sub-interval [âi,ân]d C C\ such 
that 

(e) the cardinality of L H [âi,ân]c<1 is less than that of (the finite set) L n [ôi,ôn]; 
and, concerning tangencies with £, that are above L, [âi,ôn]ci has less ones than 
[âi,ôn]. 

In this déformation the arc [p, Tp] C C has been taken to an interval whose image by X 
is below L. This déformation takes place inside a small neighborhood of {[x,Tx]y ' 
x £ [P>#]}) and so Ci surrounds the origin. Also as both [ôi,ân] C C and C are 
transversal to the vertical foliation, [ôi,ôn]ci C Ci can be obtained to be transversal 
to the vertical foliation. We do not care if Ci has more self-intersections than C. 
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The second case happens when {p, r} C (ai,an) and the arc of trajectory [p, r]y 
of Y meets C according to the conditions (i) of Lemma 3. The arguments of such 
lemma imply that we may deform of C into a new circle C\ according to the following 
conditions. The déformation fixes C \ (ôi,ân) and takes [ôi,ôn] C C to a closed 
sub-interval \âi,ân]c1 C C\ such that 

(f ) Ln [âi, â71]c\ has the same number of éléments than LD [â\, ân] ; and, concerning 
tangencies with £, that are above L, X([ôi,ân]cj) has one less than A([âi,ân]). 
As above, this déformation takes place inside a small neighborhood of U{[x,Tx]y : 
x £ and so Ci surrounds the origin. Also as X([âi,â~n]) and C are transversal 

to the vertical foliation, [ôi,ân]ci C C\ can be obtained so that X([ôi,ôn]ci) is 
transversal to the vertical foliation. Again, as in case above, we do not care if C\ has 
more self- intersections than C. 

The third case occurs when {p,r} C (ai,an) and the arc of trajectory [p, r]y of Y 
does not meet C according to the condition (i) of Lemma 3. We shall show now that 
this case is not possible. In fact, otherwise, this supposition and (d) imply that the 
open subinterval of trajectory (p, r) meets tangentially C exactly once, say at s. 

Let [p, s] and [s, r] be the subintervals of C such that [p, s]yU [p, s] and [s, r]y U [s, r] 
bound dises D(\p.s]y U [p, s]) and D([s,r]y U [s,r]) contained in M2 \ D(C). Then, 
either [s,r]y is contained in D([p.s]y U[p, s}) or [p, s]y is contained in r]y U[s, r]). 
If [s,r]y is contained in D([p.s]y U [p, s]), then the circle (C \ [p, s]) U [p, s]y can 
be approximated by a circle C\ such that X(C\) has exactly two tangencies with 
the vertical foliation: {X(a),X(s)}. It follows from (a7) that X meets Ci with an 
internai tangency at s. As AT meets Ci with an external tangency at a, we conclude, 
by Theorem 3 that jx(Ci) = 1. This contradiction with Corollary 1 shows that 
[s,r]y is not contained in D([p.s]y U [p, s]). Similarly, [p, s]y is not contained in 
D([s,r]y U [s, r]). This contradiction implies that the third case is not possible. 

As cases 1 and 2 above are the only possible ones, and thanks to (e)-(f), we only 
need to perform finitely many times the process (just described above) of obtaining 
new circles, of ETT for V/#, in order to finally obtain a smooth circle, say C2, such 
that X([âi,ôn]c2) is below L. Similarly, by a déformation that fixes C2 \ [&i,&n] we 
shall finally obtain one circle as requested in this lemma. • 

Proof of Proposition S. — By (a8), A([âi, ai)U(an,~ân]) is below X([bi, &i)U(6n, bn]). 
It is easy to see that we may deform C, locally around {ai, 61, an, bn} so that the new 
circle of ETT for V/^ satisfies the conditions of Lemma 7 and so it can be deformed 
into one as requested to prove this proposition. • 

As a direct conséquence of this proposition and Proposition 2 we obtain: 

Corollary 3. — Under the assumptions of Theorem 1, there exists an embedded circle 
C C M2 \ Da such that X restneted to R2 \ D(C) can be extended to an orientation 
preserving embedding from R2 into R2. 
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6. Proof of Theorem 1 

Item (i) of Theorem 1 follows directly from Corollary 3. 

We shall need the following resuit of Gutierrez and Teixeira [G-T] 

Theorem 4. — Let a > 0 and Y : R2 —> R2 be a C1 vector field satisfying the following 
conditions: 

(i) Y has a singularity, say S; 
(ii) for ail p G M2 \ Da, no eigenvalue of DY(p) belongs to {z G C : $i(z) ^ 0}; 
(iii) for ail peR2, Det (DY(p)) > 0. 

IfX(Y) = / Trace(DF) is less than 0 (resp. greater of equal than 0), then the point 
JR2 

oo of the Riemann sphère R2 U {oo} is a repellor (resp. an attractor) ofY. 

Proceed to prove item (ii) of Theorem 1. Under the terms of Corollary 3, X can be 
extended to an orientation preserving embedding X : R2 —> R2. Choose po G M2 such 
that X +po has a singularity. By applying Theorem 4, we shall obtain that the point 
oo of the Riemann sphère M2 U {oo} is either a repellor or an attractor of X +p0. This 
proves item (ii) of Theorem 1 because, around infinity, X + po and X + po coincide. 

We should comment that there are vector fields of R2, as in Theorem 4, having 
either attracting or repelling behavior at oo [G-T]. For sake of completeness we 
présent in next section the example of Gutierrez and Teixeira of a vector field, as in 
Theorem 4, having attracting behavior at oo. 

7. An example 

The purpose of this section is to exhibit a vector field X satisfying the conditions 
of Theorem 4 and such that the unstable manifold Wu(0), of 0, is M2. In particular 
"oo" is an attractor of X. The required vector field is given by: 

X(x,y) = g(r)(e rx-y,x + e ry) 

where r = J x2 -f y2 and g(r) 
1 - e~r 

ry/1 + e~2r' 
The following expressions can be obtained by a symbolic computer System like 

Mathematica: 

(a) Det(DX) = er - 1 
rezr 

(b) Trace(DX) -
er + ( r - l ) ( l + 2e2r-e3r) 

r ^ M , p-2r\3/2 

(C) J(X) = 
R2 

Trace(L>X) = 0. 
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It is clear that Det(DX) > 0 everywhere and that Trace(DX) < 0 in the region 
{r > K} for some large K. 

It follows, from (a)-(c) and Theorem 4, that "oo" is an attractor of X. To obtain 
a stronger conclusion, we may observe that the inner product 

((x,y),X(x,y)) =g(r)r2e~r 

is greater than 0, for all a > 0; therefore, the vector field X points outside all discs 
whose boundary has the form {r = constant}. This implies that Wu(0) = R2. 
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