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NON-GIBBSIANNESS OF THE INVARIANT MEASURES 
OF NON-REVERSIBLE CELLULAR AUTOMATA WITH 

TOTALLY ASYMMETRIC NOISE 

by 

Roberto Fernández & André Toom 

Abstract. — We présent a class of random cellular automata with multiple invari­
ant measures which are ail non-Gibbsian. The automata have configuration space 
{0,1}Z , with d > 1, and they are noisy versions of automata with the "eroder prop-
erty". The noise is totally asymmetric in the sensé that it allows random flippings 
of "0" into "1" but not the converse. We prove that ail invariant measures assign to 
the event "a sphère with a large radius L is filled with ones" a probability that 
is too large for the measure to be Gibbsian. For example, for the NEC automaton 
(— ln/x/J x L while for any Gibbs measure the corresponding value is x L2. 

1. Introduction 

Studies of cellular automata and of their continuous-time counterpart, the spin-
flip dynamics, have been successful in determining how many invariant measures 
the automaton or dynamics have. Much less is known about properties of thèse 
measures. A natural question is whether they are Gibbsian, that is whether they 
could correspond to measures describing the equilibrium state of some statistical 
mechanical System. There are two catégories of évolutions —both with local and 
strictly positive updating rates— for which the answer is known to be positive: (1) 
If the updating prescription has a high level of stochasticity —high noise régime—, 
in which case Gibbsianness cornes together with uniqueness of the invariant measure 
[15, 19, 18]; and (2) if the updating satisfies a detailed balance condition for some 
Boltzmann-Gibbs weights [20]. Known cases of non-Gibbsianness, on the other hand, 
refer to automata where the updating rates are either non-strictly positive [16], [30, 
Chapter 7] or non-local [23]. 
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72 R. FERNÂNDEZ & A. TOOM 

In this paper we présent some examples of stochastic non-reversible automata — 
that is, automata not satisfying any form of detailed balance—, with multiple in­
variant measures, ail of them non-Gibbsian. Our class of automata can be seen as a 
generalization of the North-East-Center (NEC) majority model introduced in [24] and 
discussed in many papers. Its non-ergodicity was first proved in [28] (see also the dis­
cussion in [15]) and later by another method in [2]. Also it was simulated more than 
once [1, 21, 22]. Models of this sort are obtained by superimposing stochastic errors 
(noise) to deterministic automata having the so-called eroder property: finite islands 
of aligned spins, within a sea of spins aligned in the opposite direction, disappear in 
a finite time. 

We allow only one-sided noise or stochastic error —a "0" can stochastically be 
turned into a "1", but not the reverse. Thus some of our transition rates are zéros 
and therefore the "dichotomy" resuit of [20, Corollary 1] is not applicable. Our work 
does not settle the long-standing issue of the Gibbsianness of the invariant measures 
of NEC models with non totally asymmetric noise. There are conflicting arguments 
and évidences for the model with symmetric noise: An interesting heuristic argument 
has been put forward [30, Chapter 5] pointing in the direction of Gibbsianness, and 
a couple of pioneer numerical studies yielded findings respectively consistent with 
Gibbsianness [21] and non-Gibbsianness [22]. However, we hope that the simple non-
Gibbsianness mechanism clearly illustrated by our examples could be a useful guide 
and référence for the study of the more involved two-way-noise situation. 

In our examples, non-Gibbsianness shows up in the same way as in the basic voter 
model [16]: Large droplets of aligned ("unanimous") spins have too large probability 
for the invariant measures to be Gibbsian. More precisely, we show that once a 
suitable "spider" of "1" appears, the dynamics causes the alignment of the spins in 
a neighboring sphère. This sort of damage-spreading property (or error-correcting 
deficiency) implies that the présence of a sphère of "1" is penalized by the invariant 
measures only as a sub-volume exponential. This contradicts well known Gibbsian 
properties. In fact, we can be more précise. Gibbsian measures are characterized by 
two properties [13]: uniform non-nullness and quasilocality. As we comment in Section 
3, the large probability of aligned droplets means that the invariant measures can not 
be uniformly non-null. More generally, such invariant measures can not be the resuit 
of block renormalizations of non-null, in particular Gibbsian, measures. Furthermore, 
known arguments [7] (briefly reviewed in Section-3 below), imply that if one of thèse 
measures is not a product measure, then its non-Gibbsianness is preserved by further 
single-site renormalization transformations. 

2. Simple examples 

Before plunging into the technical and notational détails needed to describe our 
results in full generality, we would like to présent some simple examples that contain 
the essential ideas. The examples are defined on the configuration space {0,1}Z . 
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NON-GIBBSIANNESS OF THE INVARIANT MEASURES 73 

Example 1: The NEC rnodel. — Its deterministic version is defined by a translation-
invariant parallel updating defined by the rule 

( i ) xf(^(0,0) — major xf(0,l), z '(l ,0), a;*(0,0) }, 

where j) dénotes the configuration at site G Z2 immediately after the t-
th itération of the transformation and major : {0,l}2/c+1 —> {0,1} is the majority 
function, i.e. the Boolean function of any odd number of arguments, which equals "1" 
if and only if most of its arguments equal "1". This prescription yielcls an évolution, 
which is symmetric with respect to the flip 0 <-> 1 [a function with this property is 
called a self-spin-flip function in Section 4 below]. We consider a noisy version, where 
in addition spins "0" flip into "1" independently with a certain probability e, while 
spins "1" remain unaltered. This corresponds to stochastic updating 

(2) Prob(xt+ï(i,j) = 0 r ' ) (1 • I I x'+îiij) . 

The "all-ones" delta-measure ô\ is invariant for this automaton. For small s there is 
at least another invariant measure, as a conséquence of Theorem 4.2 below. 

Let us start with the following simple observations which are immédiate consé­
quences of the NEC rule (1) and the one-sidedness of the noise: 

(i) Horizontal lines (parallel to axis i) filled with spins "1" remain invariant under 
the évolution. 

(ii) The same invariance holds for vertical lines (parallel to axis j) filled with spins 
"1". 

(iii) After one evolution-step (that is, after one parallel updating of ail the spins). 
a line of slope —1 filled with spins "1" moves into the parallel line immediately to the 
south-west. 

(iv) If the (infinité) "spider" formed by the /-axis, the j-axis and the line i + j = 0 
is filled with "1", then after t steps the évolution causes the whole triangle {(?', j) : 
i, j ^ 0, i + j - t } to be filled with "1". 
The last observation can be visualized as a displacement, at speed 1, of the "front" 
formed by the line i + j = 0, with a simultaneous displacement (hère a trivial one), 
at speed 0, of the "fronts" formed by the i- and j-axis. This combined displacement 
produces a growing triangle full of "1". 

The same observations hold if full lines are replaced by finite segments, except that, 
depending on the values of neighboring spins, in each itération each segment can lose 
one or both of the ul" at its endpoints. We conclude that if at some time the spider 

(3) SP(0.o),i {(2,0) G Z2 : -8L ^ i ^ 4L \ I J { ( 0 , j ) G Z2 : -8L <: j <: 4LJ 

<^ (L i) G Z2 : i + ? = 0, -6L <i<:6Ll 

is filled with "1", then after 4L itérations the 'T" fill a triangular région that contains 
the sphère of radius L centered at (—L,L), to be denoted S(_L_LyL. Therefore, if /x 
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74 R. FERNÂNDEZ & A. TOOM 

is a invariant measure, 

(4) M(1S(^. ,_M,L)^M(1SP(0.0,J>S3(12L+1). 

We have denoted 1A, for A C Z?, the event {x : x(i,j) = l,(z,j) G A}. The last 
inequality in (4) foliows from the fact that a CT" has a probability at least s to appear 
at a given site because of the noise. As commentée! in Section 3, such a probability is 
too large for the invariant measure to be Gibbsian, or block-transformed Gibbsian. 

Example 2: North-South maximum of minima (NSMM). — The initial deterministic 
prescription is defined by 

(5) ^dtt1 (°' °) = max{min(V(0,0), z'(l,0)J , min(V(0,l), 1)) j 

plus translation-invariance. The corresponding évolution is not symmetric under flip-
ping, unlike the previous example. The stochastic version is obtained by adding 
one-sided noise as in (2). For small s this automaton has more than one invariant 
measure (see comment after Theorem 4.2). One of them is, of course, the "all-ones" 
delta-measure 5\. 

The mechanism for non-Gibbsianness for this model is even simpler to describe 
than for the NEC model. Indeed, it suffices to observe that whenever a horizontal 
line is filled with "1", then in the next itération thèse "1" survive and in addition 
the parallel line immediately to the South becomes also filled with "1". The same 
phenomenon happens for finite horizontal segments, except that each création of a 
new segment filled with "1" can be accompanied by shrinkages of up to two sites (the 
spins at the endpoints) of ail the previously created segments. We conclude that if 
the "spider" (which looks more like a snake in this case) 

(6) SPmm L = l ( i ,0) G Z2 : -3L <: i ^ 3L\ 

is filled with "1" at some instant, then 2L instants later the "1" will cover at least a 
square région that includes the sphère 5(O.-L).L- Arguing as for (4), we obtain for ail 
invariant measures \i the bound 

(7) in(V(0,0), z'(l,0)J , min(V(0 cds +ss1se+s1e 

which implies that \i is neither Gibbsian nor block-transformed Gibbsian. 

A comment by A. van Enter (private communication) gives a colorful description 
of the mechanism acting in both preceding examples: "the spider fills his stomach 
faster (x L sites at a time) than his legs shrink (x 1 sites at a time)". 

Example 3: A non-example. — The automata defined by the deterministic prescrip­
tion 

(8) ^ ( 0 , 0 ) = majorlmin(V(0, 2), x*(-l,2)Y min(x*(2, 0), x^(2,-l)), 

min (x* (0,-1), xÉ(- l ,0) ) | 
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NON-GIBBSIANNESS OF THE INVARIANT MEASURES 75 

followed by one-sided noise (2), also has multiple invariant measures; this follows 
from Theorem 4.2 (see the comment following this theorem). Nevertheless, neither 
the mechanism of Example 1 (travelling fronts), nor that of Example 2 (growing 
strips) are présent, so the theory of the présent paper does not apply. 

We présent in this section the key property used in our paper to detect non-
Gibbsianness. To state it in its natural generality we introduce some définitions. 

We consider a gênerai space of the form Q — Az where A is some finite set, 
equipped with the usual product cr-algebra. For A C Zd and zGHwe dénote z\ the 
cylinder 

(9) z\ — {x G SI : xx = Zi, i G A}. 

Définition 3.1. — A measure /i in Q is said to have the alignaient-suppression property 
(ASP) if there is a positive number C such that the inequality 

3. Non-nullness and the probability of aligned sphères 

(10) -lnu(zA)>C-\A\ 

holds for every configuration and for every finite set A C 7Ld. 

Ail Gibbs measures have the ASP property, but many non-Gibbsian measures 
too. We construct now a gênerai class of measures with this property by considering 
renormalized measures having suitable non-nullness features. For this we consider an 
auxiliary configuration space Qo = SZ< . The single-site space S can be very gênerai, 
not necessarily finite or even compact. We assume that there is a a-algebra on S 
and consider the usual product Borel cr-algebra on ^ . A renormalization transfor­
mation from QQ to Q is a probability kernel T( • | • ) from Q0 to Q. In words, T(A \ eu) 
is the probability that, given a configuration LU £ 17O, the "renormalized" configura­
tion is in A . This represents a gênerai stochastic transformation while deterministic 
transformations are the spécial cases obtained via delta-like prescriptions T(-\OJ). A 
block-renormalization transformation is a transformation, for which probabilities fac-
torize in the following sensé: to every i G Zd there corresponds a finite set B(i) C Zd, 
called block, with the following properties: 

(i) If two points are far enough from each other, the corresponding blocks are dis­
joint. That is, there is a positive do such that if the distance between k,£ G 7Ld is 
greater than do, then B(k) D B(£) = 0 (do = 1 for the renormalization transfor­
mations used in statistical mechanics, while do > 1 for common cellular-automata 
transformations). 

(ii) If 2i,. . . , ik are sites in Zfi, and a i , . . . , are values in A, then 

( H ) T({xll = ai , . . .,xik = ak} UJ) = 
k 

3=1 

in(V(0,0), z'(l,0)J , min(V(0 
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Our notation indicates that the functions Ttj ({xtj = a7-}| - ) dépend only on the values 
of uj( for £ G B{ij) (Le., they are measurable with respect to the cr-algebra generated by 
the cylinders with base in B(ij)). Examples of such transformations include decima-
tion (deterministic), Kadanoff transformations (stochastic), majority rule, sign fields 
and transitions of cellular automata (the last three can be deterministic or stochastic, 
depending on the setting). Thèse transformations are well known in physics, their 
précise définitions can be found, for instance, in [6, Section 3.1.2]. 

The kernel T naturally induces a transformation at the level of measures: each 
probability measure p on i\ is mapped into a probability measure pT on Q —the 
renormalized measure— defined by 

(12) JJ(x)(pT)(dx) = ^ [Jj(x)T(dx\uj)\p{doj) 

for ail suitable / (e.g. continuous or non-negative measurable). For each measure p on 
QQ and each block B(i) let us consider the conditional probabilities p(duJB{i) I ^z(\B(t))-
For a given transformation T we single out the set VT of measures on Q0 that admit 
conditional probabilities such that 

(13) min inf inf / f({xt = a} ujB(t)) - p(dujB{t) uZd^B{i)) ^(5, 

for some ô > 0. We dénote V the union of thèse families VT over ail block-
renormalization transformations T. Here is our key characterization. 

Theorem 3.1. — Every measure in V has the alignment-suppression property. 

Proof. — Let T, p be such that p = pT. By property (ii) above, there exists a 
constant 7 > 0 (proportional to do) such that for any A C Ul there is a family of 
sites ii,... ,ik G A with k ^ 7|A|, ail of which are far enough from each other and 
therefore the blocks B^ii),... ,B(i^) are disjoint. We therefore have that for every 
zen 

r k 
M(-A) = / p{r({xtl = zh} | •) uz<i^D(h)) Yl^jii-^j = zij] | uB{l])) p(duj) 

(14) < (1 - S) / J ] Tij ( K = } I UBM) P(du). 
J 3=2 

This inequality is an immédiate conséquence of condition (13). After k itérations of 
this procédure we obtain 

(15) p(zA) <: (l-ô)k <: (l-sy^. • 

The class V of measures is a very large class. It contains practically ail block trans­
formations of Gibbs measures with finite alphabet obtained via standard statistical 
mechanics prescriptions (decimation, Kadanoff, majority rule, etc), plus the measures 
generated by finite-time évolutions of usual cellular automata prescriptions. There is 
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NON-GIBBSIANNESS OF THE INVARIANT MEASURES 77 

by now a vast literature about such measures —see, for instance, [6, 18, 3]; for récent 
reviews with many références see [4, 10, 11, 8]— showing that many of them are 
non-Gibbsian. In fact, the family Vi, where I is the identity, includes ail uniformly 
non-null measures. Thèse are measures /x that have, for each finite région A C Zd, 
uniformly bounded conditional probabilities jJi(d(J\ |c^dxA)? that is, such that there 
exist ô\ > 0 with 

(16) min inf f-i ( {x\ = d\} u^vA)^£A 
11<+<<+<1<++< 

Here we have denoted a A = (a?:) ieA- Gibbs measures are uniformly non-null — 
and in addition quasilocal (the finite-volume conditional probabilities are continuous 
functions of the external conditions c^xA)— hence they also belong to Vj. Property 
(13) seems to be more gênerai than usual non-nullness, in particular it does not dépend 
on the existence of a whole System of conditional probabilities. 

The invariant measures of the automata of the présent paper, on the other hand, 
do not have the alingment-suppression property, hence they do not belong to the 
class V. They therefore can be neither Gibbsian nor uniformly non-null nor block-
transformed Gibbsian. As further examples of measures without the ASP we mention 
the invariant measures of the basic voter model [16], the invariant measure of some 
non-local dynamics [23], and the sign-fields of massless Gaussians [14, 5], anharmonic 
crystals [6, Section 4.4] and solid-on-solid (SOS) models [9, 17]. 

For measures /x having a well defined relative entropy density s( • | //), the alignment-
supression property (10) implies that s(ôz |/x) > 0 for every periodic configuration 
z ç H . The relative entropy density is known to exist for translation-invariant Gibbs 
measures [12, Chapter 15]. Récent work in [25] shows that it is also well defined for 
most translation-invariant measures obtained through block transformations of Gibbs 
measures. Because of tins, the non-Gibbsianness resuiting from the lack of ASP 
has often been interpreted as "too large probabilities of large déviations". The non-
Gibbsianness (non-nullness) criterion obtained by falsifying Theorem 3.1, however, 
is a more gênerai argument that needs neither translation invariance of /i nor the 
existence of the entropy density. 

For completeness, we mention a further resuit obtained in [7]. 

Theorem 3.2. — Suppose /i is a measure in Q such that (i) it violâtes the ASP property 
for some periodic configuration z G Q, and (ii) it is not a product measure. Then, for 
every single-site block-renormalization transformation T (i.e. a transformation defined 
by blocks B(i) formed by only one site), the measure \iT is not Gibbsian. 

This resuit follows from the fact that such a violation implies that s(ôz\/i) = 0, 
wrhich in its turn implies that s(ôzT | (iT) = 0. If \iT were Gibbs, then by a well 
known resuit [12, Theorem 15.37] the measure SZT would be Gibbs for an équivalent 
interaction. But this is impossible because the latter is a product measure and the 
former is not. Note that if T corresponds to a not-totally asymmetric noise, the 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003 



78 R. FERNÂNDEZ & A. TOOM 

measure \xT is uniformly non-null. Hence its non-Gibbsianness would correspond to 
lack of quasilocality. 

For the automata of this paper, we suspect that many of their invariant measures 
are non-product. 

4. General Results 

We now describe a large family of automata exhibiting a gênerai version of the 
non-Gibbsianness mechanism of the first two examples in Section 2. Throughout 
the article we consider the d-dimensional integer space T>d with d > 1 embedded into 
the c/-dimensional real space Wd with the same axes and Euclidean norm. || • ||. The 
configuration space is Cl = {0,1}Z . We first need some définitions. 

For any i G If1 we dénote T\ : Cl —* Cl the translation of Cl defined by (r?; x)j = Xj-i. 
Any function / : Cl —» {0,1} will be called a transition function. Given any transition 
function / , we define the corresponding operator Df : Cl —* Cl by the rule 

(17) \/ieZd : (Dfx)i=f{Tix). 

We call / : Q —̂  {0,1} standard if it has the following three properties: 

1) / is local, i.e. there is a finite set A C lLd —the support of /— such that 
f(x) = / ( # A ) . Given A, we dénote ||A|| the maximum of for i G A. 

2) / is monotonie, that is (Vz : X{ ^ yi) =4> f(x) ^ f{y)-
3) / is not a constant. (Otherwise our theorem is either trivially true if / = 1 or 

trivially false if / = 0.) 

Since / is monotonie and non-constant, 

(18) /("ail zéros") = 0 and /("ail ones") = 1. 

For any x E Cl we dénote its indicator Ind(x) = {i G 7Ld \ xi = 1}. Conversely, for 
any S C Z>d we dénote Conf(.S') that configuration, whose indicator is S. 

Let us call an élément of W1 a direction if its norm equals 1. For any direction p 
we call a front with this direction any configuration whose indicator has the form 

(19) {i € Zd | (i,p) < C}, 

where C is a real number and (•,•) dénotes the scalar product in Rd. It is évident 
that for any standard / the operator Df transforms any front (19) into a front with 
the same direction, C being substituted by C + Vp, where Vp does not dépend on C. 
We call Vp the velocity of Df in the direction p. 

Let us call a configuration x G Cl invariant for Df if Df x = x. Given x, y G Cl, 
we call y a finite déviation of x if the set of those i G Zd, for which yi Xi, is finite. 
We say that an invariant configuration x attracts Df if for any its finite déviation y 
there is a time t such that D } y = x. 
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NON-GIBBSIANNESS OF THE INVARIANT MEASURES 79 

Let M dénote the set of probability measures on Q (on the cr-algebra generated by 
cylinder sets). For any s G [0,1] we define one-sided noise N£ : M —> M as follows: 
when applied to a measure Sx concentrated in a configuration x = (xi ), it produces a 
product measure N£ Sx, in which the i-th component equals 1 with a probability 1 if 
Xi — 1 and with a probability s if xz — 0. 

Theorem 4.1. — Take any standard f, such that "ail ones" attracts Df, and make any 
ont of the following two assumptions: 

a) Vp + V-p ^ 0 for ail directions p. 
b) There is a direction p such that Vp + V-p > 0. 

Then for any s > 0 ail the invariant measures of N£ Df satisfy 

(20) -\n^lSoL)<Ld-\ 

Here and in the sequel / -< g or g y / , for / and g positive functions means that 
there exists a constant C > 0 such that g ^ C • / . If / -< g and / >- g, we write / x g. 

If s = 0, our theorem may be false, for example if D is the identity. Notice also 
that in the case b) our assumption that "ail ones" attracts Df is redundant because 
it follows from b). 

Let us présent some further considérations that clarify the statement of the theo­
rem. Given any non-constant affine function 0 : Rd —• R and two numbers Ci ^ C2, 
we call a layer any configuration Conf{z G 7Ld | C\ ^ (j)(ï) ^ C2}. We call the thick-
ness of this layer the distance between the hyperplanes <\> — C\ and <fi = C2, that is 
(C2 — Ci) / y0||, where || • || is the norm. We call a layer thick-enough if its thickness 
is not less than 2 ||A||. We call the two normal unit vectors to hyperplanes 0 = const 
the directions of this layer. If / is standard, Df transforms any thick-enough layer 
into a layer with the same directions, the thickness of the layer changing by Vp + V-p. 
The condition a) of our theorem means that thickness of any thick-enough layer does 
not decrease and the condition b) means that thickness of some layer increases under 
the action of Df. 

Of the examples of Section 2, the NEC automaton satisfies condition a), while 
the NSMM automaton satisfies condition b) for p — (0,1). For the non-example, 
however, Vp + V-p < 0 for ail directions p. In ail the three cases / [given, respectively, 
by (1), (5) and (8)] is standard, and both "ail zéros" and "ail ones" attract Df. 

The NEC example is représentative of a class of models with a further duality 
property. For any xi G {0,1} we dénote = 1 — x%. Accordingly, if x is a configu­
ration, -ix is another configuration such that (-*x)i = ~^(xi). Any transition function 
/ has an associated spin-flip ^ function denoted ->/ and defined by the identity 
-*f(x) = f(-^x). Let us call / self-spin-flip if it coincides with its spin-flip. If / is 

^'In the theory of Boolean functions -1/ is called dual, but we have to use another term because in 
the theory of random processes the word "duality" is used for another purpose. 
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80 R. FERNÂNDEZ & A. TOOM 

standard and self-spin-flip, then Vp + V^p = 0, so the thickness of ail layers does not 
change under the action of Df, which provides many examples where out results can 
be applied. For example, the function major(-), described above, is self-spin-flip. 

It is évident that under the hypothesis of Theorem 4.1, the measure ô\ is invariant 
for any superposition N£ Df . Hence, the theorem is not trivial only if the automata 
have more than one invariant measure. This is ensured by the following theorem. 
Given / , let us call a set S C 7Ld a one-set if /(Conf(S)) = 1. Since one-sets belong 
to 7Ld, they belong to IRRI, where we can consider their convex hulls, the intersection 
of which is denoted o\. In the analogous way we call a set S C Zd a zero-set if 
/(Conf(Zd — S)) = 0 and dénote <Jo the intersection of their convex hulls. 

Theorem 4.2. — For any operator Df defined by (17), where f is standard, the fol­
lowing four statements are équivalent: 

1) N£ Df has more than one invariant measure for some positive s. 
2) The configuration "ail zéros" attracts Df. 
3) <To is empty. 
4) There are a natural number m ^ d + 1 and m, affine functions 

(j)i,..., <j)m : Rd -> R such that: 

i) for every j G [l,m] the set {p G Zd : (j)j(p) ^ 0} is a zero-set. 
ii) 0i + • • • + <j)rn = const > 0. 
iii) There is a rational point p G M.d such that (j)j(p) > 0 for ail j G 

This theorem proves, in particular, that the three examples of Section 2 exhibit 
multiple invariant measures for s small. Indeed, in the three cases the configuration 
"ail zéros" attracts Df. 

5. Proof of Theorem 4.2 

If we omit the condition iii) in 4), our Theorem 4.2 almost follows from theorems 
5 and 6 and lemma 12 of [29]. However, there is some différence, so for the reader's 
convenience we completely deduce 4) from 3). 

Suppose that O~Q is empty. Every zero-set can be represented as an intersection of 
several zero-half-spaces, i.e. half-spaces, which are zero-sets, where a half-space is a 
subset of Rd, where some non-constant affine function does not exceed zéro. Thus 
there are several zero-half-spaces, whose intersection is empty. Everyone of them can 
be represented as {p G Rd | fl(p) ^ 0 } , wdiere ft are affine functions on Rd. We can 
choose thèse functions so that they have no common direction of recession (that is, 
no direction p such that ft(p) ^ ft(0) for ail i), which allows us to apply to them 
Theorem 21.3 on page 189 of [26]. Since the intersection of our zero-half-spaces is 
empty, the case (a) of this theorem is excluded in the présent situation, whence the 
case (b) takes place, which amounts to our conditions i) and ii) in 4), the products 
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X,f, mentioned in the case (b) serving as our (j)t. We niay assume that oui* m is the 
minimal for which there are functions satisfying i) and ii). Based on this, let us prove 
statement iii) using the following lemma, which is a direct conséquence of Theorem 
21.1 on page 186 of [26]: 

Lemma 5.1. — Let 0 i , . . . , 0m be affine functions on Rd. Then one and only one of 
the following alternatives holds: 

(a) There exists some x G Wl such that <fii{x) > 0,. . . , o,„(./•) > 0; 
(b) There exist non-negative re.al numbers Ài,...,Àm, not ail zéro, such that the 

sum X\0\ (x) + • • • + Àm0m(.x) is a non-positive constant. 

Let us assume that the case (b) takes place in our situation. We may assume that 
Àm is the greatest of Ai,... , Àm, and therefore positive. From the statement ii) of 4), 
not ail À; are equal to Xm. Let us divide ail ternis by Xm : 

Ai 
d+dr 

fil + • • • + : Am-i 
d+d1 

01 + 0 M — COllSt ^ 0 

and subtract this from the statement ii) of 4): 

' i - Ai ^ 
dv 

01 H h 1 -
d+d1r 
red 

<fii = const ^ 0. 

Here ail coefficients are non-negative and not ail are zéro. Therefore the functions 
(1 — X;/Xm )Oj for i = 1,. . . , m — 1 also satisfy the conditions i) and ii) of 4) with a 
smaller value of m, which contradicts our assumption. Thus case (b) is excluded, so 
case (a) takes place, whence there is a point p G Wl where ail (fij(p) > 0. Silice ail cfi} 
are continuons, there is a rational point with this property also, whence condition iii) 
of 4) follows, • 

6. Proof of Theorem 4.1 
6.1. Proof of (20) in case a) of the theorem. — Rewording Theorem 4.2 for 
the case when 0 and 1 are permuted, we see that whenever / is standard and uall 
ones1' attracts Df, there exist a natural nurnber m ^ d + 1 and m affine functions 
(fil,..., (fim, : Rd -> R such that: 

(21) 
i) for every j G [l,m] the set {i G Zd : (fij(i) ^0} is a one-set. 
ii) 0i + • • • + (fim = const > 0 
iii) There is a rational point p G Rd such that <fij(p) > 0 for ail j G [1, m] 

For instance, for the NEC example there are m = 3 such affine functions, whose 
level lines are horizontal, vertical and lines of slope —1 respectively. 

For every j let us dénote 0J = (fi3 - 0^(0), whence (fi3 = (fi,} + 0j(O), where 0 • is the 
linear part. Notice that |0y(O)| ^ ||07|| • ||A|| and that 0i(O) + • • •+ 0m(O) > 0. Notice 
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also that if / is standard, "ail ones" attracts Df and Vp + V-v ^ 0 for ail directions 
p, then for any j G [l,m] and any thick-enough layer 

y = Conf{z G Zd | Ci ^ < -̂(i) ^ C2}, 

(22) Ind(D/ y) 5 l i e Zd \ d + 0,(0) < ^{i) ^ C2 + 0,(0) j . 

Lemma 6.1. — Take any standard f and assume that uall ones" attracts Df and that 
Vp -h V-p ^ 0 for ail directions p. Take x* defined by 

(23) Ind(x*)= I J UeZd\\4>i(i)\ç2\\M-Ui\\\. 
— v 

Then for t = 0,1, 2, 3 , . . . the indicator of Dl x* includes the union AtU Bt, where 

(24) d+d1r1d+ ( i€Zd | | ^ - ( i ) - t -0 , ( 0 )1 <2| |A | | - | |^ | |1 
d+d><+>+>+> 

and 

(25) Bt = 

<<>+1+ 

\iezd <t>Ji) -t'(t)j(o) ^ o\. 

[For the NEC example of Section 2, this lemma corresponds to observation (iv).] 
Let us prove this lemma by induction. Base of induction: Since AQ coincides with 

Ind(x*) and 5o C Ao, our statement is true for t = 0. 

Induction step. — Let us suppose that Ind(jD* x*) D AtUBt, take any i G At+iUBt+i 
and prove that i G Ind(Dt+1 x*). Let us consider two cases. 

Case 1. — Let i belong to At+i. Then our statement follows from (22). 

Case 2. — Let i belong to Bt+i, but not to At+\. Then 

0,(i)-(*+l)-^-(O)<-21^11-11^11 

for ail j G [l,m]. Notice that 

<t>S + vk) < d>Ai) + Uj\\ • k l < <PAi) + H^-ll • ||A||. 

Therefore 

0,(* +q+qqq+q+qq+q0,(0) ^ ^-(i) + | |0J • ||A|| - (t + 1)0,(0) + 0,(0) 

<:-2| |A|H|0,| | + ||0,|| . | |A | |+0 , (0 )^0 . 

Thus 
i + A C Bt C Ind(L>*x*). 

Hence from (18) i G Ind(Di+1 x*). Lemma 6.1 is proved. 

Lemma 6.2. — Under the conditions of Lemma 6.1, there is a positive constant a > 0 
such that for ail t = 0,1, 2, . . . the set Bt defined by (25) contains a sphère m 7Ld with 
the radius a • t. 
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Proof. — In fact we shall prove that 

VzGZd, t = 0,1,2,... : \i + t-p\^a-t i G BU 

where p is that rational point where ail (j)j{p) > 0, whose existence is provided by iii). 
Let us dénote Kj = (j)j(p) > 0 and a = mm / that is the minimal distance 
from p to the hyper planes — 0. Let us consider three cases. 

Case 1. — Let p = 0. Then (j)3(0) — k3 > 0 for ail j . Now let us take any point i in 
the sphère with the radius a • t and center 0. This means that 

\i\ ^a-t = mm(^(0)/UJ\\)-t 
3 

Then 

< 1*1 • HA < ^J(o)/110,11 • t • Hj\\ = t • 4>j(0) 

for ail j , whence i G Bt. 
Case 2. — Let p G U1. Then along with our operator Df we consider another 
operator Dg, where g(x) = f(rp x). The function g is also standard, Dg is also 
attracted by "ail ones" and the affine functions provided for Dg by iii) of (21) can 
be obtained from those for Df by the same translation, so their values at 0 are 
Ki,..., Krn > 0, whence Dg fit s our case 1. So the set Bt for Dg contains a sphère 
with the center 0 and radius a • t. Since Df commutâtes with ail translations, the set 
Bf for Dg résulta from the set Bt for Df by a translation at t • p. Thus the set Bf for 
Df results from Bt for Dg by the opposite translation, whence it contains a sphère 
with the center —t - p and the same radius. 

Ca.se S. — Let p be any rational point. Let us dénote q the least common de-
nominator of ail the coordinates of p and immerse our Zd into the set ZjJ, where 
Zq — {n/q | 7/ G Z}. Let us dénote flq = {0, l}zy. Now / can be considered as a 
function g from Qq to {0,1}. Now let us "stretch" Zq to turn it into Zd. Under this 
transformation the function g remains standard and "ail ones" still attracts Dg. In 
addition to that, the affine functions for Dg with the properties (21) now can be 
obtained from those for Df by a homothety with coefficient q. Therefore their values 
at the integer point q • p are Ki,..., Km > 0. So Dg fit s our case 2, whence the set 
Bt for Dg contains a sphère with the center —t - q - p and radius a • q • t, whence the 
set Bt for Df contains a sphère with the center — t • p and radius a • t. Lemma 6.2 is 
proved. • 

Now let us prove (20). From monotonicity it is sufficient to prove this inequality 
for /x = (N£ Df)1 So for some t. Let us choose t\ such that a • t\ ^ R + d. Then, 
taking defined by (23) as the initial configuration, after t\ time-steps we obtain a 
configuration, whose indicator contains a sphère with the radius R + d and therefore 
contains a sphère with the radius R and center at some integer point p. However, what 
we actually need is a finite déviation from "ail zéros", which coincides with x* only 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003 

http://Ca.se


84 R. FER.NÂNDEZ & A. TOOM 

within a sphère with the radius R + t\ • ||A|| and has zéros outside it. The cardinality 
of its indicator does not exceed C(Rd~l + 1) with an appropriate C. Translating this 
configuration at the vector —p, we obtain another configuration, which fills with ones 
a sphère with radius R and center at the origin after t\ time-steps. The probability 
that the actual configuration's indicator contains this configuration is not less that 
^C(I?'/~1 + I)Î whenCe (20) follows. • 

6.2. Proof of (20) in case b) of the theorem. — This tinie we define x* as 
follows: 

Incl(x-*) = {/GZ'y||(7.p>|<||A||}. 

Then for ail f = 0,1,2,... 

I n d ^ r * ) D {/' G Z'y | - || A|| + *• V-v ^ 1 ( ^ ) 1 ^ Il A|| + t- Vp}. 

Here the right side is a layer with the thickness 2|| A|| +1(Vp + V-p). Given any R ^ 0, 
let us choose the minimal integer t{ for which 2||A|| + t\ (Vp + V-p) ^ R• + d. Then 
indicator of D^- .r* contains a sphère with an integer center and radius R. If we take an 
initial condition which coincides with ;r* within a sphère with the center at the origin 
and radius R. + d + t\ - ||A||, we shall obtain the same resuit. This configuration has 
C(Rd"] + 1) components that equal 1, where C is an appropriate constant. Further 
we argue like in case a). • 

7. Final notes 

Note 1. — Using minoration arguments, is is easy to expand our theorem to some 
random cellular automata, which cannot be represenred as A^ Df. Using the same 
A as before and choosing transition probabilities 0(x \ y&) for ail x G {0,1} and 
y G {0.1}A, we can define a random cellular automaton as an operator P : j\4 —+ Ai 
which transforms any Sy, where y G 12, into a product-measure in which the probability 
that the i-th component eciuals x is 0(x I i/.+a)- This operator maiorates Df if 

x+d1d+dx1d+x = 1 IF/(?M) = L. 

= 1 IF/(?M) = L. 

As soon as this condition holds and Df satisfies conditions of our theorem, ail invariant 
measures of P also satisfy (20) and therefore are non-Gibbs. 

Note 2. — In some cases it is possible to obtain a stronger estimation than (20). 
Let d > a > 0 and f(x) equal 

mm 
d+dd1d+e1d+sd 

max 
iu + i ^€{0,1} 

x(i\ i/) 

where ?'I %A are the coordinates of U1. In this case 

-1hM(1(5(,L)) -< L", 
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where \x is any invariant measure of N£Df. If a < d — 1, this estimation is stronger 
than (20). This estimation can be proved in the same manner as in the case b), only 
x* now is defined by the condition: 

x* = 1 if max(|za+i|, . . . , \id\) ^ const. 

Note 3. — Given a standard / , let us assume that "all zeros" attracts Df. Then we 

hope to estimate — ln/i(l(5o,L)) horn below as follows: 

- l n / / ( l ( S o , L ) ) ^ £ . 

If we succeed, this will settle the question of asymptotics of — 1II^(1(5'O,L)) in some 
cases, e.g. in our examples 1 and 2. 

Note 4. — Those conditions under which our theorem holds and is non-trivial can 
be satisfied only for d > 1. However, a statement similar to our theorem for the 
one-dimensional case was proved in [27]. Namely, it was proved that all non-trivial 
invariant measures of a class of one-dimensional random cellular automata did not 
belong to a class, which included all Markov measures. 
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