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STABLE ACCESSIBILITY IS C1 DENSE 

by 

Dmitry Dolgopyat & Amie Wilkinson 

Abstract. — We prove that in the space of ail Cr (r ^ 1) partially hyperbolic dif-
feomorphisms, there is a C1 open and dense set of accessible diffeomorphisms. This 
settles the C1 case of a conjecture of Pugh and Shub. The same resuit holds in 
the space of volume preserving or symplectic partially hyperbolic diffeomorphisms. 
Combining this theorem with results in [Br], [Ar] and [PugSh3], we obtain several 
corollaries. The first states that in the space of volume preserving or symplectic 
partially hyperbolic diffeomorphisms, topological transitivity holds on an open and 
dense set. Further, on a symplectic n-manifold (n $C 4) the C1-closure of the stably 
transitive symplectomorphisms is precisely the closure of the partially hyperbolic sym-
plectomorphisms. Finally, stable ergodicity is C1 open and dense among the volume 
preserving, partially hyperbolic diffeomorphisms satisfying the additional technical 
hypothèses of [PugSh3]. 

Introduction 

This paper is about the accessibility property of partially hyperbolic diffeomor­
phisms. We show that accessibility holds for a C1 open and dense set in the space 
of ail partially hyperbolic diffeomorphisms, thus settling the C1 version of a conjec­
ture of Pugh and Shub [PugShl]. Partially hyperbolic diffeomorphisms are similar 
to Anosov diffeomorphisms, in that they possess invariant hyperbolic directions, but 
unlike Anosov diffeomorphisms, they can also possess invariant directions of non-
hyper bolic behavior. Accessibility means that the hyperbolic directions fill up the 
manifold on a macroscopic scale. Accessibility often provides enough hyperbolicity 
for a variety of chaotic properties, such as topological transitivity [Br] and ergodicity 
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34 D. DOLGOPYAT & A. WILKINSON 

[PugSh3], to hold. As a conséquence, we dérive several density results about stable 
ergodicity and stable transitivity among partially hyperbolic diffeomorphisms. 

Let M be a smooth compact, connected and boundaryless Riemannian manifold. 
A difFeomorphism / : M —• AI is partially hyperbolic if the tangent bundle to AI splits 
as a T/-invariant sum 

TAI = Eu 0 Ec 0 Es, 

such that Tf uniformly expands ail vectors in Eu and uniformly contracts ail vectors 
in Es, while vectors in Ec are neither contracted as strongly as any vector in Es nor 
expanded as strongly as any vector in Eu. More precisely, for each p G M, there exist 
0 < ap < bp < 1 < Bp < Ap such that: 

\\TPf\E*\\ ^ap< bp ^ m(Tpf\Ec) ^ \\Tpf\Ec\\ < Bp < Ap ^ m(Tp/U«), 

where m(T) = \\T~1\\~1. Throughout this paper we assume that both subbundles Eu 
and Es are nontrivial. 

A more stringent condition, often called partial hyperbolicity in the literature (cf. 
[BrPe], [BuPuShWi]) requires that the constants ap,bv,Ap and Bp be chosen in-
dependent of p. Since the results in this paper apply to diffeomorphisms satisfying 
the weaker condition, to avoid excessive terminology, we will use the term partial 
hyperbolicity in the broader sensé. 

A partially hyperbolic diffeomorphism / is accessible if, for every pair of points 
p,q G M, there is a C1 path from p to q whose tangent vector always lies in Eu U Es 
and vanishes at most finitely many tirnes. We say / is stably accessible if every g 
sufficiently C1-close to / is accessible. We prove here the following theorem. 

Main Theorem. — For any r ^ 1, stable accessibility is C1 dense among the Cr, 
partially hyperbolic diffeomorphisms of AI, volume presermng or not. If AI is a sym-
plectic manifold, then stable accessibility is C1 dense among Cr, symplectic partially 
hyperbolic diffeomorphisms of AI. 

Related to the Main Theorem is the resuit of Niticâ and Tôrôk [NiTô] that 
stable accessibility is G r̂-dense among partially hyperbolic diffeomorphisms with 1-
dimensional, integrable center bundle Ec. Other results about stable accessibility 
treat more spécial classes of diffeomorphisms, such as time-one maps of Anosov flows 
[BuPuWi], skew products [BuWil], certain Systems where Eu 0 Es is integrable 
[ShWi], and Systems whose partially hyperbolic splitting is C1 [PugSh2]. 

The Main Theorem has several corollaries. The first corollary concerns the topolog-
ical transitivity of partially hyperbolic diffeomorphisms and follows immediately from 
a theorem of Brin [Br]. Dénote by VHr(AI) the set of Cr partially hyperbolic diffeo­
morphisms of AI. If ji and LU are, respectively, Riemannian volume and a symplectic 
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STABLE ACCESSIBILITY IS C1 DENSE 35 

form on M, then set 

VH^M) = {/ G 7>*T(M) | = M}, and 

VHl(M) = {/ G 7>iT(M) | / » = a;}. 

Corollary 0.1. — For r ^ 1, £/iere is a Cl-open and dense set of topologically transitive 
diffeomorphisms in VHrfl(M). If M has a symplectic form LU, then there is a Cl-open 
and dense set of transitive diffeomorphisms in VH^M). 

This corollary is false without the volume préservation assumption. NrÇicâ and 
Tôrôk have shown in [NiTô] that there is an open set of accessible non-transitive 
diffeomorphisms. While it is plausible that for a C1 open and dense set of diffeomor­
phisms in the space VHr(M), there are only finitely many transitivity components, 
it is not a direct corollary of the Main Theorem. 

M.-C. Arnaud has shown in [Ar] that if M is a symplectic 4-manifold, then the 
stably transitive diffeomorphisms in Diff^(M) are partially hyperbolic. (The same 
resuit has been announced by J. Xia in arbitrary dimension). Hence there is a complète 
picture in dimension 4 of the stably transitive diffeomorphisms, which we summarize 
in the next corollary. 

Corollary 0.2. — Let M be a symplectic manifold with dim(M) ^ 4. The C1 -closure 
of the stably transitive diffeomorphisms in Diff^(M) coincides with the C1 closure of 
the partially hyperbolic ones. 

In other words, invariant tori are essentially the only obstacle for topological tran­
sitivity in the symplectic category, at least if dim(M) ^ 4. We conjecture that the 
same is true in the volume preserving case. 

Conjecture 0.3. — In the space of volume preserving diffeomorphisms, the C1 -closure 
of the stably transitive diffeomorphims coincides with the closure of the diffeomor­
phisms admitting a dominated splitting. 

For a discussion of the dominated splitting condition and some results related to 
Conjecture 0.3 see [Vi]. Even though the results of this paper could be useful in 
attacking this conjecture some other ideas (possibly ones from the paper [BonDi]) 
are necessary to solve this problem. Here we note only that in [BV] a volume pre­
serving example is presented which is stably transitive yet not partially hyperbolic. 
A. Tahzhibi has announced a proof that thèse example are in fact stably ergodic. 

Another corollary of the Main Theorem concerns ergodicity of / G VHrfl(M). Pugh 
and Shub proved the following theorem: 

Theorem 0.4 ([PugSh3, Theorem A]). — Let f G VH\(M). If f is center bunched, 
dynamically cohérent, and essentially accessible, then f is ergodic. 

Thus we also have the corollary: 
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36 D. DOLGOPYAT & A. WILKINSON 

Corollary 0.5. — Among the center bunched, stably dynamically cohérent diffeomor-
phisms in VH2L(M), stable ergodicity is C1 open and dense. 

Theorem 0.4 refers to partially hyperbolic diffeomorphisms in the stronger sensé 
described earlier, but recently Burns and Wilkinson [BuWi2] have shown that thèse 
results extend to the larger class of partially hyperbolic diffeomorphisms described 
in this paper (satisfying additional center bunching conditions). For a description of 
examples of diffeomorphisms satisfying the conditions "center bunched" and "stably 
dynamically cohérent" see the survey paper [BuPuShWi]. In particular, the corollary 
implies that there is a C1-open neighborhood U C VH2 (M) of / in which stable 
ergodicity is C1-open and dense, where / is the time-t map of an Anosov flow, a 
compact group extension of an Anosov diffeomorphism, an ergodic automorphism of 
a torus or nilmanifold, or a partially hyperbolic translation on a compact homogeneous 
space. 

This paper arose out of an attempt to prove the following conjecture of Pugh and 
Shub. 

Conjecture 0.6 ([PugSh2, Conjecture 4] and [PugSh3, Conjecture 2]) 
Stable accessibility is Cr - dense in both VHr(M) and VHr^(M). 

In the spirit of Theorem 0.4, Pugh and Shub also conjectured: 

Conjecture 0.7 ([PugSh3, Conjecture 3]). — A partially hyperbolic C2 volume preserv-
ing diffeomorphism with the essential accessibility property is ergodic. 

Finally, combining Conjectures 0.6 and 0.7, they conjectured: 

Conjecture 0.8 ([PugSh3, Conjecture 4]). — Stable ergodicity is Cr-dense in VHr^(M). 

As with Theorem 0.4, thèse conjectures refer to the narrower class of partially 
hyperbolic diffeomorphisms described above, but in light of the results in [BuWi2] 
and this paper, it seems reasonable to extend them to the class under considération 
here. 

The question of accessibility is closely related to problems in control theory (see, 
e.g. [Lo]). In fact, analogous density theorems in control theory initially suggested the 
Conjectures 0.6 and 0.7. The sole reason that the results in control theory cannot be 
directly transported to this setting is that we do not perturb the bundles Eu and Es 
directly, but rather the diffeomorphism / . We'd like to be able to say that a spécifie 
perturbation of / has a spécifie effect on Eu and Es. What makes this difficult is 
that Es(p) and Eu(p) are determined by the entire forward and backward orbit of p, 
respectively; a perturbation will have various effects along the length of this orbit, 
some désirable and others not. 

The key observation that permits a measure of control is that the effects of the 
perturbation are greatest along the first few itérâtes of p. To maximize our control 
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STABLE ACCESSIBILITY IS C1 DENSE 37 

over the bundles Eu and Es, we isolate régions where we need local accessibility and 
localize the perturbation to thèse régions. Choosing the support of the perturbation 
to be highly non-recurrent then minimizes undesirable "noisy" effects of the pertur­
bations. The trade-off is that the désirable effects of the pertubations are necessarily 
quite small. Nonetheless, with the right C1-small perturbation, the désirable effects 
outweigh the undesirable ones and we obtain accessibility. Similar perturbations are 
found in [PP]. 

It appears that a localized C2-small perturbation cannot achieve this, and so the 
techniques in this paper do not extend to the C2 setting. New techniques would be 
required to prove Conjectures 0.6 and 0.7. 

Here is how the proof of the Main Theorem goes. Let / G VHr{M) have partially 
hyperbolic splitting TM = Eu 0 Ec 0 Es. By [BrPe, HiPuSh] Eu and E8 are 
tangent to the leaves of continuous foliations which are denoted Wu and Ws and 
are called the unstable and stable foliations respectively. A us-path for f is a path 
7 : [0,1] —* M consisting of a finit e number of consécutive arcs — called legs — each 
of which is a curve that lies in a single leaf of Wn or Ws. It is easy to see that / is 
accessible if and only if for ail p,q G M, there is a i/s-path for / from p to q. 

To prove the Main Theorem, we first find a collection of disjoint disks in M. Each 
disk is approximately tangent to the center direction Ec. We choose this collection 
large enough so that / is accessible, modulo thèse disks. More precisely, for every 
p, q G M, there is a finite séquence of ws-paths for / , the first path originating at p 
and ending in one of the disks, the last path originating in a disk and ending at q. The 
intermediate paths ail begin and end in disks, each path beginning in the disk where 
the previous path ends. We then perturb / in a small neighborhood of thèse disks. 
We can arrange that if this neighborhood and the C°-size of the pertubation are both 
sufficiently small, then the perturbed System will still be accessible, modulo the same 
collection of disks. It is not hard to see that any additional C1-small perturbation 
will préserve this property. 

Under the Cr-dense assumption that the fixed points of fk are isolated, for ail 
k ^ 1, we can choose thèse disks to be very small and their union highly non-recurrent. 
This is Lemma 1.2. We show in Lemma 1.1 that it is then possible to perturb / in a 
neighborhood of thèse disks by a C1-small perturbation to obtain a stably accessible 
g. We prove stable accessibility by showing that any two points in a given disk can 
be connected by a ws-path for g, and for any small perturbation of g. Since any 
small perturbation of g is already accessible modulo thèse disks, this gives stable 
accessibility. 

Lemma 1.1 is the only place where it is essential that the perturbation be only 
C1-small. When we examine the effect of perturbing / on Eu and Es, we find that 
in C1, the contribution to Eu(p) and Es(p) of the perturbation near p is larger than 
the combined contributions along the rest of the orbit of p; this is not true in C2. 
Therefore, a more complicated analysis, taking into account the first several returns, 
is needed to establish the analogue of our resuit in the C2-setting. 
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1. Proof of the Main Theorem 

Proof. — We first prove the Main Theorem in the case where / préserves a smooth 
volume p. The proof is easily modifiée! to the non volume preserving case. In the 
final section we describe how to modify the proof for the symplectic case. 

Let / G VHr^(M) and S > 0 be given. Our goal is to find a stably accessible 
g G Diff^(M) with g) < S. We give some preliminary définitions and notation. 

Let V(M) be the collection of ail subsets of M. We say that / is accessible on X G 
P(M) if, for every p, q G X, there is a ws-path for / from p to q. The diffeomorphism / 
is accessible modulo X C V(M) if, for every p, q G M, there exist X\,..., Xr G X and 
us-paths for / : fromp to X\, from q to Xr, and from Xrn to Xm+i, for m = 1,. . . , r—1. 
We say that / is uniformly accessible modulo X if / is accessible modulo X and, 
further, there is a number N such that the us-paths in the previous définition can be 
chosen to have length less than TV and to have fewer than TV legs. 

A property of a diffeomorphism / is said to hold stably if it also holds for ail 
g G Diff1(M) sufficiently C1-close to / . Clearly if / is stably accessible modulo 
{Xi,..., Xk} and / is stably accessible on each Xi, then / is stably accessible. 

Define a function R : V(M) -^NU {oo} as follows. For X G V(M), let R(X) be 
the smallest J G N U {oo} satisfying: 

(i) f(x) n i / 0 , with \i\ = J + 1. 

Note that R(Bp(p)) —> per(p), as p —* 0, where we set per(p) = oc if p is not periodic. 
We next fix a System of local charts on M. We will on several occasions refer to 

the orthogonal splitting W1 = TvWl = Ru ® Rc 0 R6', where a = dim(£a). 
Let Bn{v,p) dénote the bail of radius p about v G Rn with respect to the sup 

norm on coordinates. More generally, we will use the notation Ba(v,p), where a = 
u,c, 5,c + w,c + 5, or u + to dénote the sup-norm bail of radius p about v in the 
affine space v + IRa. 

Applying Moser's theorem on the équivalence of volume forms [Mo] we obtain, for 
any p G M, a C°° map 

VP:Bn(0,l)^M 

such that 

(1) <pp(0)=p, 
(2) T0(pp sends the splitting T0Rn = Ru 0 Rc 0 Rs to the splitting TpM = Eu 0 

£ c 0 £ s , 
(3) ipp sends divergence-free vector fields to divergence-free vector fields. 
(4) p i—» (fp is a uniformly continuous map from M to C1(Bn(0,1), M). The 

dependence of tpp on / is also continuous. 

([Mo] gives maps satisfying (1), (3) and (4). (2) can be achived by precomposing 
with a linear map.) 
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STABLE ACCESSIBILITY IS C1 DENSE 39 

Since we do not assume that EC is tangent to a foliation, we will work with ap-
proximate center manifolds. For p < 1 and p G M, let 

Vp(p) = <pp(Bc(0,p)). 

We refer to Vp(p) as a c-admissible disk with center p and radius p and write r(Vp(p)) = 
p. If D is a c-admissible disk with center p and radius p, then for (5 G (0,1), we dénote 
by (3D the c-admissible disk with center p and radius Pp. 

A c-admissible family is a finite collection of pairwise disjoint, c-admissible disks. 
If V is a c-admissible family, and j3 < 1, then let 

PD= {(3D I DeV}, 1271 U D> 
dd 

r(V) = sup r(D), and R(V) = R(\V\). 
d+d1d 

We have the following lemma. 

Lemmal.l (Accessibility on central disks). — Let f G VHr(M) and S > 0 be given. 
Then there exists J > 0 with the following property. 

IfVisa c-admissible family with r(V) < J~l and R(V) > J, then for ail a > 0 
and (3 G (0,1), there exists g G Diff^(M) such that: 

(1) dci(f,g)<6, 
(2) dco(f,g)<a, 
(3) For each D eT>, g is stably accessible on (5D. 

We may assume that the fixed points of fk are isolated, for ail k ^ 1; this property 
is Cr-dense in DifF^(M). Under this additional assumption we have the following 
lemma. 

Lemma 1.2 (Accessibility modulo central disks). — Let f G VHr^{M) be given. As­
sume that the fixed points of fk are isolated, for ail k ^ 1. Then for every J > 0 
there exists a c-admissible family T> such that: 

(1) r(V) < J-1, 
(2) R(V) > J, 
(3) / is uniformly accessible modulo \V. 

Lemma 1.3 (Persistence of accessibility modulo V). — There exists ô0 > 0 so that, 
given ô < ÔQ, a c-admissible family V with f uniformly accessible modulo ^V, and 
(3 G 1), the following holds. 

There exists a > 0 such that any g satisfying 
(1) dci{f,g)<6, 
(2) dco(f,g)<a, 

is accessible modulo (3T> (and hence g is stably accessible modulo (3V, since (1) and 
(2) are open conditions). 
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The proof of the Main Theorem now follows from Lemmas 1.1, 1.2 and 1.3. Let 
/ and 5 be given. After a Cr-small perturbation, we may assume that the fixed 
points of fk are isolated, for ail k. We may assume that ô < <5o, where ÔQ is given by 
Lemma 1.3. 

Choose J according to Lemma 1.1. By Lemma 1.2, there exists a c-admissible 
family P, with R(T>) > J and r(V) < J -1 , such that / is accessible modulo \V. 

Now fix j3 G ( | , 1), and choose a according to Lemma 1.3. Applying Lemma 1.1 
we obtain a diffeomorphism g G Diff^(Af), with dc± (/, g) < S and dCo(f, g) < cr, such 
that g is stably accessible on (3D, for each D G V. By Lemma 1.3, g is also stably 
accessible modulo f3V. Thus, g is stably accessible. • 

The proofs of Lemmas 1.2 and 1.3 are given in the next section, and the proof of 
Lemma 1.1 is given in Section 3. 

The arguments of Section 2 become simpler if Ec(f) is integrable. In that case, 
one can work with central disks instead of c-admissible ones. To construct a family 
of central disks satsifying the conditions of Lemma 1.2 one should take a small s > 0, 
choose an e-net {p3} and let V be the union of unit central disks centered at p3. If 
there are some i,j < Card(D) and n < J such that fnD{pi) f]D(pj) ^ 0 then one 
can remove this intersection by arbitrary small shift of pi in an unstable direction 
(this is possible even if i = j since the periodic leaves of / are isolated by partial 
hyperbolicity). In case Ec is not integrable the proof becomes significantly more 
complicated since one has to work with disks which are almost tangent to Ec, but the 
idea remains the same. As mentioned in the introduction the most difficult part of 
the proof is Section 3 where the abundance of C1-perturbations is crucial. Therefore 
many readers would find it helpful to skip Section 2 during the first reading returning 
to it after mastering Section 3. 

2. Global accessibility 
In this section we prove Lemmas 1.2 and 1.3. 

Proof of Lemma 1.2. — Let J be given. Let A = {p G M \ per(p) ^ J + 2}. Since 
the fixed points of /•?', j < J -h 2, are isolated, there exist # i , . . . , xm, G M such that 
A = M \ {xi,. . . , Xm}. 

For p > 0, let Up(p) be the image of the bail Bn(0,p) under ipp. The proof of the 
following lemma is straightforward. 

Lemma2.1. — If r > 0 is sufficiently small, then everyp G [jUr(x2) can be connected 
to a point in M \ [jUr(xi) by a us-path with one leg. 

Choose r according to this lemma, and let Ar = M \ \J Ur(xi). Assume r is small 
enough that Ar is connected. Since Ar is compact and contained in A, there exists 
po < 1/(2J) such that R(U2p0(q)) > J, for every q G Ar. 
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The next lemma follows from the uniform continuity of the invariant splitting for / , 
and we omit its proof. 

Lemma 2.2. — There exists K > 1 so that, for p0 sufficiently small, for ail p G M, 
and for every q\,q2 G UPO/K{p), there is a us-path with < 2 legs from q\ to some point 
in VPo(q2). 

The next lemma is key. 

Lemma 2.3. — Let K > 1. If po is sufficiently small, then there exist a cover of 
Ar by finitely many neighborhoods U\,..., Uk of the form Ul — Upo/K(qt), and, for 
i — 1,. . . , k, points pi G U-i such that 

v2pQ(pi)nv2po(Pj) = 0, 

for i 7̂  j , and 

V2PO(Pi)nfm(V2PO(pj)) = 0, 

for ail i,j and 0 < \m\ ^ J. 

Before proving Lemma 2.3, we finish the proof of Lemma 1.2. 
Let U\,..., Uk and p\,... ,pk be given by Lemma 2.3. For i = 1,. . . , c, let Di = 

V2po(Pi)- Note that the collection V = {Di,..., D^} satisfies conclusions (1) and (2) 
of Lemma 1.2, if po is sufficiently small. 

Lemma 2.2 implies that, for every p G Bj, there is a ws-path with ^ 2 legs from p 
to some point in \DL. It follows that, whenever B% D B3 ^ 0, there is a ws-path 
with ^ 4 legs from some point on \D% to some point in \Dj. Since Ar is connected 
and the balls BL,. . ., Bk cover Ar, we obtain, for any i, j , a séquence of disks Dao = 
Di, Dai,..., Dai = Dj, such that \Dam is connected to \Dam+l by a ^s-path, for 
m = 0,... ,1 — 1. Then for any p, q G Ar, there are a séquence of disks D^0,..., Z\s 
and i/s-paths: from p to \Db0, from q to T>A>.s, and from \Dhr to |Z\m+1, for 
m = 0,..., s — 1. The length and number of legs of thèse paths is clearly bounded. 
Since any point in M \Ar = \J Br(xt) can be connected to a point in Ar by a i/s-path 
with one leg, it follows that / is uniformly accessible modulo {\D\,..., \D^}. This 
proves (3), completing the proof of Lemma 1.2. • 

Proof of Lemma 2.3. — We start with a simple Besicovich-type covering lemma. 

Lemma 2.4 (Covering lemma). — For any C > 0 there exists an integer N > 0 such 
that, for any compact set A Ç M, and for p > 0 sufficiently small, there exist 

,..., qk £ A with the following properties, for i = 1,. . . , k: 

^ AÇBp(qi)U--'UBp(qk), and 
- #{j | BCp(qi) H BCp{q3) £ 0} <: TV. 
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Proof of Lemma 2.4- — On the manifold M, there exists a constant K > 0 such that 
for every p < 1 and every p G M, the volume of the bail Bp(p) lies between pn/K 
and Kpn. Let ./V = (4C + 2)nK2; this is an upper bound on the number of disjoint 
balls of radius p/2 that can fit inside a bail of radius (2C + l)p. 

Let A and p be given. Let Sp C M be a maximal p-separated subset of A. Such a 
set exists by compactness of A. We claim that Sp is also p-spanning. If not, then there 
exists x G A such that d(x, y) > p, for ail y £ A. But this contradicts maximality 
of Sp. Hence, if q\,..., qk are the éléments of Spi then 

AÇBp(qi)U-..UBp{qk). 

For p e Sp, let N(p) be the set o£ q <E Sp such that 

Bcp(p)nSCp(g)^0. 

For each q G AT(p), the distance from p to q is less than 2Cp, and so the bail Bp/2(q) 
is contained in B(2c+i)P(p)' Since Sp is p-separated, the balls Bp/2(q) and Bp/2(q') 
are disjoint, for distinct g, g7 G N(p). The cardinality of iV(p) is thus bounded by iV, 
which complètes the proof. • 

The sets Up(p) are uniformly comparable to round balls Bp(p), and the maps 
{jfrn, |m| ^ J} distort distances by a bounded factor. Thus Lemma 2.4 implies the 
following. 

Corollary 2.5 (Strengthened covering lemma). — Let C, J > 0 be given. There exists 
an integer N > 0 such that, for any compact set A C M, and for any p > 0, there 
exist #1 , . . . , qk G A with the following properties, for i = 1,. . . , k: 

- AÇUp{q1)\J-->UUp{qk), and 
- #{j I UCp{q,) H R (Ucp(qj)) ï 0, for some \m\ < J} ^ N. 

We now return to the proof of Lemma 2.3. To simplify notation, let p\ = po/K and 
let p2 = 4p0, where po is defined after the statement of Lemma 2.1. Thus pi < po < P2 
In this notation, we have that R(UP2(p)) > J, for ail p in Ar. 

For p G M and p > 0, let Tp(p) be the connected component of p in (/9p(.BK+s(0, p)). 
For d(p, q) small enough, the maps tp~ltpp distort the Euclidean structure by a factor 
^ 1.5. Assume that p2 is small enough that this distortion bound holds whenever 

q G UP2 (z), for any z. From this we obtain that for ail p G M and ail q G TPl (p), 

(2) ^W<?) C UPl+3po(p) C t/P2(p). 

We now apply Corollary 2.5 with C = \K, A = Ar, and p = pi- By Corollary 2.5, 
there exists N > 0 and q\,..., qk G Ar such that 

- Ar = UPl(qi)[J--- UUPl{qk), and 
- #{J I ^2fe) H R (UP2(gj)) ^ 0, for some \m\ <J}^N. 
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For i = 1,... /c, let Ul = UPl (qt). The neighborhoods Ui,..., Uk cover Ar. 
We choose pi,...pk inductively. Let pi = qi- Since V2po(pi) C UP2(pi), and 

R(UP2(p\)) > J, we have that 

v2po(Pl)nr(v2pM) = 0, 

for 0 < |ra| ^ J. 
Fix i > 1, and suppose that the points p i , . . . have already been chosen. We 

want to choose p% so that 

V2PO(Pr)nfm(v2po(Pl)) = 0, 

for 0 < \m\ ^ J, and 

^po(pOn/m(v2po(Pj)) = 0, 
for 0 ^ \m\ ^ J and j < i. The first of thèse two properties is satisfied if we choose 
Pi so that V2po(pi) Ç UP2(qi). By (2), this is turn will hold if we choose pi G TPl(qi). 

Hence, we would like to find pi G TPl(ql) such that 

(3) v2po(Pi)nfm(v2po(Pj)) = 0, 

for 0 ^ \m\ ^ J and j < i. The neighborhood UP2(qi) meets at most N sets of 
the form /m (UP2(qj)), for m between — J and J. Thus, ^ TV, where Ji is the 
collection of ail (j, m) with j < i, |m| < J, and 

uP2(ql)nfm(uP2(qj))ï0. 

For q e M and |m| ^ J, let V^m(ç) be the connected component of fm(q) in 
UP{fm(q)) H /m(Vi(g)). There exists C0 > 1 such that, for ail p, q G M, 

- ^ 2 ( ^ ) ^ / m ( ^ 0 ( g ) ) , a n d 
- if UP2(p) n frn{UP2(q)) 7̂  0, and po is sufficiently small, then V^p2(ç) intersects 

TcQPl (p) in exactly one point. 
(It is not hard to see that Co can be chosen to dépend only on J, on the Riemannian 
structure, and on ||T/|£;c||.) For (j, m) £ J%-> ^ Pj,m ̂ e tne Ponit of intersection of 
vc0p2(Pj) and TCoPi(q?)' 

{pj,m} = vSl0P2(Pj)nTc0M-

Consider the collection of thèse points 

Pi = {v'i.m I (hm) € Ji \ C TC()Pl(q2). 

The points in ^^(Vi) lie on Z?n+S(0, C0P1) C Rn. By elementary Euclidean geometry, 
there exists C\ > 0 such that, for any p > 0, and any finite collection of points 
Q C Bu+S(0, Cap), there is a point v G Bu+S(0, Cop) whose distance to the points in 
Q is at least p/(d#Q). 

Applying this fact to the points in (/?~i1('P;), we find that there exists a point 
p% G TPl(qi) C Ui, such that, for ail p G Vi, 

(4) fa, [Pi) ~ <pa<(P) > Pis+s;,s69s+6s> PI c'iTV . 
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We claim that if po is sufficiently small, then pL satisfies (3); that is, for ail j < i 
and \rn\ ^ J, 

v2po(pi)nfm(v2po(Pj)) = 0. 

Clearly the claim is true for those (m, j) such that UP2(ql) D fm (UP2(qj)) = 0, so 
suppose that (m, j) G Jh. We show that 

v2pa(pt)nfm(v2ptl(Pj)) = 0. 

which clearly implies the resuit. 
W7e shall view everything in Rn. Under the map (p"1, the sets V2Po (pi) and (pj) 

lift, respectively, to 13c(0,2po) and a set we'll call VF. We show that £?c(0, 2p0) and 
VF are disjoint, for po sufficiently small. 

The set V^)P2(p:j) is a C1 disk, tangent at /'"(/;,) to Ec(fm{pj)). Thus VF is a C1 
disk, tangent at a point w\ G W to the uniformly continuous distribution Tif^^E0). 
Furthermore, the distribution T(p~.L(EC) coincides at pl with Rc. 

By the distortion bounds, the diameter of VF is on the order of p2: 

(5) diam (VF) < 3 C W 

Let w2 = (Pr^ip'n m) £ W. Combining the distortion bounds with (4), we obtain that 

(6) IM! = l i c i t e ) - <P^(p'<m)\\ > 2p1/(3C1N). 

Ail of thèse statements - about the C1-smoothness of VF, the continuity of the dis­
tribution TLP~^EC\ etc. - hold uniformly over p^ po and \m\ < J. Thus, to summarize 
the preceding remarks, we have a constant C2 > 0, and fonctions 6 i, 02 '• R-(- —1R—(_, 
ail independent of po and m, such that VF is contained in the graph of a C1 function 
F : £c(0,C2p0) -> Ru+S, with: 

(1) ||DF(xi)|| O i ( IM ) , f o r somez i €£c(0,C2Po), 
(xi corresponds to the point w\ G VF), 

(2) \\F(x2)\\ > p0/C2, for some x2 G £c(0,C2po), 
(x2 corresponds to the point w2), 

(3) \\F(y) - F(x) - DF(x)(y - x)\\ ^ 02(\\y - x||), for ail x,y e £c(0, C2p0), 
(4) limr_>o0i(r) = 0, and limr^0 02(r)/r = 0. 

We claim that if po is small enough, then > 0, for ail x G Bc(0, C2po). This 
implies that VF is disjoint from £?c(0,2po)> which is the desired resuit. By (3), we 
have that for ail x G £c(0, 2p0), 

||F(x) - FrxOll ^ WDFixAlx - Xl)\\ + 02(ll* - *i||) 

<C 2C2po^i(2C2po) + ^2(2C2p()). 

By the triangle inequality, 

\\F(x)\\ £ lIFfe)!! - ilFfe) - F(Xl)\\ - llFfx!) - F(x)|| 

> /9o/C2 - 4C2poÔi(2C2po) ~ 202(2C2Po). 
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If po is sufficiently small, then tins quantity is positive. • 

Proof of Lemma 1.3. — We want to pass from infinitésimal conditions given in the 
définition of partial hyperbolicity to local conditions. To this end, let 

ap(r) = max \\Tqf\E,{q)\\, 
qeBr(p) 

bp(r) = min m(Tqf\Er{)), 
qeBr(p) 

Bp(r) = max \\Tqf\Ec, }||, 
qeBr(p) 

AJr) = min m(Tqf\Eu(a)). 
qeBr(p) 

By continuity of Tf we can choose r0 > 0 and 6 < 1 so that âp(r0) < 9bp(ro) and 
Ap(ro) < 0Bp(i\)). From now on we will fix this TQ and write âp etc. instead of âp(r0) 
etc. 

Let T\ and T2 be two continuous foliations with C1 leaves on 71/. We say that 
T2 is e (C0-) close to T\ if given any p, q on the same leaf of T\ with the leafwise 
distance at most 1 apart, the T2 leaf passing through p intersects the e bail centered 
at q. 

It is clear that there exists e > 0 such that g is stably accessible modulo (3V 
provided that Wgl is e close to Wj and is £ close to Wj. So we need to show 
that given e > 0 there is a > 0 such that the conditions of Lemma 1.3 with this a 
imply e closeness of dynamical foliations of g to those of / . Namely we prove that for 
ail p, q G B^/2(f,p), the intersection Ws(g,p) f] B£(q) is non-empty. (Thus, 1 in the 
initial définition is replaced by r'o/2 but this is sufficient because the unit bail can be 
covered by a finite number of 7o/2-balls.) Let ap(n) dénote 

ap(n) = apafp.. .afn-ip 

where a is either of a, A,b, B. 
Partial hyperbolicity implies that given 77 E ( 0 , 1 ) there is a continuous cône family 

Kcu around Eu 0 Ec such that 

(a) Tf(K™(p)) C A-'-"(./>). 
(b) Kcu is uniformly transverse to E'j, and 
(c) for any v G Kcu(p) 

\\Tf(v)\\>âvn\\v\\. 

For ÔQ sufficiently small, KCU will also satisfy (a)-(c) if / is replaced by any g such 
that dci(f,g) ^ SQ. Let q G W*f(p) and let dw»(p,q) ^ r0/2. Then d(fNpJNq) <: 
âp(N). Let V be a topological disk of dimension dim(Eu(BEc) passing through q and 
such that TV belongs to Kcu (for example, we could take V = <pq(JBu+c(0,1))). 

Given n we can find a so small that dco(f,g) < o~ implies that 

d{gnp,gnV)<2âp{n). 
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Since gnV is uniformly transverse to Es there exists C = C(f) such that 
Wsg(gnp)Ç\gnV contains a point z with d(gnq1z) ^ Câp(n). Hence g~nz G Ws(p) 
and d(q,gnz) ^ Crjn. Thus, if n is large enough, is close to Wf. • 

3. Local accessibility 

Proof of Lemma 1.1. — Let / and ô < ôo be given. Assume So is small enough that 
any g within ÔQ of / in the C1-metric remains partially hyperbolic, with functions 
a, b. Since our perturbations are local, it is convenient to adapt the structures we use 
to a neighborhood of a point p. To each p G M we shall associate: 

(1) a neighborhood Up = (fp(Bn(0,1)), 
(2) a C°° Riemann structure gp on Up with path metric dpi isometric under ^p~l 

to the Euclidean metric on Bn(0,1), 
(3) a C°° splitting TU = Eu 0 Ëc 0 És = Tipp(Ru 0 Rc 0 M6'), that agrées with 

EU@EC<£> Es at p, 
(4) C°° foliations Wp,Wp,Wpu, W£s of Up, tangent to the corresponding subbun-

dles of the C°° splitting in (3), 
(5) for i = 1,. . . , c, partial flows Q : Up —> Up tangent to the leaves of Wc, 
(6) partial flows r\l :UP^UP and : Up —> Up tangent to the leaves of Wn, W5', 

respectively. 

We describe the construction of (5) and (6) in more détail. Let {ei, . . . , ec} be an 
orthonormal basis for the Rc factor in the splitting Rn = RU(&RC®RS. For i = 1,. . . c, 
Hpfinp ttip nartial flnw« f% • fi —» R tw 

CHvvM) = ipJv + tei). 

Similarly, fix unit vectors wu and ws tangent to the Ru and Rs factors in the 
splitting Rn = Ru 0 Rc 0 Ms, and define the partial flows r\\ rfs : B -+ B, by 

T?(VV(V)) = <Pv(v + and 

TtS((fp(v)) = ifp{v + tWS) 

Note that rtu (resp. rts) sends Wc,$ leaves (resp. WCM leaves) to other Wcs leaves, 
and between Wcs leaves is the exactly the Wu (resp. Ws) holonomy map. Note that, 
where defined, T^T^T^T^ is the identity. This expresses the fact that Wu and Ws 
are jointly integrable. In Subsection 3.2, we will use the partial flows r", rs, c^1,..., ("f 
to define g. 

The next lemma follows directly from the uniform continuity of ipp. 

Lemma 3.1. — The structures described in (l)-(6) are uniform over p G M and over 
g sufficiently C1-close to f. For ail p G M, the structure gp is uniformly comparable 
to the original Riemann structure on Up. 
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Since ail estimâtes involving the Riemann structure on M in this paper are local, 
uniform over p G M, any statement about the Riemann structure becomes valid 
for gp by introducing a multiplicative constant. We will therefore be deliberately 
ambiguous in our notation, using d interchangeably for the Riemannian metric and 
the local metric dp. Also, when the point is clear from the context, we will drop the 
subscript p in describing the various structures. 

3.1. A criterion for stable accessibility. — We describe here a condition on the 
foliations www ww that implies that g is stably accessible on a c-admissible disk for / . 

Let D be a c-admissible disk for / centered at p G M, and let p = r(D). Let Nr(D) 
dénote the tubular neighborhood of D of radius r. Let m = m(c, dim(M)) be the 
constant given by Lemma 3.10. Suppose that g is partially hyperbolic. We say that 
g is 0-accessible on D if, for each i — 1,.. . , c, there exists a continuous map 

^ : [0 , l ]xD^7V(rn_2) , (2D) 
with t i—• Hl(t, q) a 4-legged ixs-path for g originating at q, and, for some to G (0, p/2), 
the condition 
(7) d(Wil,q),Cto(q)) <t06 
holds for ail q G D'. Here Ç\ d, etc. are the structures described in the previous 
section, adapted at p. 

The next lemma gives a criterion for central accessibility. A basic élément of the 
proof is the "quadrilatéral argument" of Brin, in which 4-legged paths are homotoped 
to the trivial path along 4-legged paths with endpoint in a fixed c-admissible disk. The 
reader unfamiliar with this argument may consult the survey paper [BuPuShWi] for 
a detailed description; the case c = 1 is also proved there. The case c > 1 is essentially 
proved in [ShWi], using an index argument. 

Lemma 3.2 (Central accessibility criterion). — Suppose (3 > 1/2. For every j3' G 
1), there exist 9 > 0, S\ > 0 and po > 0 such that, for every c-admissible disk D 

of radius r(D) < po, if 
- dclU,g) < Si, and 
- g is 6-accessible on [31D, 

then g is stably accessible on (5D. 

Proof of Lemma 3.2. — Let (3,(5' be given. Choose 6 < (f3' - (3)/^(3'c. By continuity 
of the bundles Elgl(p) and Eg(p) in there exist ô\ > 0 and po > 0 such that, 
if dci(f,g) < Si, if D is any c-admissible disk of radius r(D) — p ^ po, and if 
s : [0,1] —> N(RN_2)p{D) is any 4-legged us-path for g with s(0),s(l) G D, then 
(8) d(s(0),s(l)) ^p{(3' -(3)lAc. 

Let g,D be any such diffeomorphism and c-admissible disk. Suppose that g is 
^-accessible on (3'D. For i = 1,... c, we have maps H1 satisfying (7) with D' = (3'D. 
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We show g is accessible on [3D. Since the existence of such H1 is a C1-open condition, 
this implies that g is stably accessible on f3D. 

By varying the lengths of the last 2 legs in the path t i—> H'l(t, q), we may arrange 
that that Hl(l,q) G D, for ail q G f3'D. The reader may verify that it is possible to 
do so while preserving property (7). (If necessary, the value of 6 can be reduced a 
little). 

By a standard argument, the path t i—• Hl(t,q), for q G (3'D, can be homotoped 
through 4-legged us-paths originating at q to the trivial path so that the endpoints 
stay in D during the homotopy. The trace of thèse endpoints along the homotopy 
gives a curve in D from q to H1 (l, q). More precisely, for i — 1,.. ., c, we obtain 

¥ : [0,1] x [0,1] x [3' D —> Ne{D) 

such that, for ail s G [0,1], t i-> ^'(s,t,ç) is a ws-path for g with \£''(s, G 
^'(O.t.q) - g and ww +qq1 = H'l{t,q). Thus, s H-> ^ ( s , l , g ) =: + +q+ +s is a curve 
in Z), from g to H''(l,q). Every point on this curve is the endpoint of a ws-path 
originating at q. 

By (8), we have, for q G 

(9) diam(<I>?:([0,1] x {q})) < p{fi - (3)/4c. 

For q G (3'D, we then extend the définition of Q\(q) to values of s > 1 by the 
inductive formula 

*i+m(<z) = *;($;„(</)), 
for £ G (0,1] and m G N. How far &ls(q) can be extended in s dépends of course on q. 
Note, however, that (7) gives, for m G N, 

<*(*u<7),a,t„(<z)) = u ' i A - •••• //;,|-'/> • • • )).C„(9)) 

= d(^( l ,9m-l) ,à(9m-l)) 

^ (i(//t(i,<7m„i),a(('?»î-i))+d(à(9m-i),c0(^-i)) 
< f„(/3' -|9)/4/3'c + d(q„,_i,<?,'„_!) 

(10) < mt0(/3' - /?)/4/3'c. 

As before, every point in the image of &''(q) is the endpoint of a us-path originating 
at q, although this path can have more than 4 legs. 

Let q0 = (p(-(3'p/2(ei H + e,:)), and define a map Z : [0,f3'p]c M by: 

Z(a1,...,ac)=£l---£r(qo). 

Note that Z is a horneomorphism onto (3fD. 
Next, consider the the map P : [0,pP']c D defined by: 

P(ai,...,ac) = *1ai/t„*L2,t0--- 'K,./rlto(<lo)-
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Each point in the image of P is the endpoint of a us-\ydth for g originating at ÇQ. We 
claim that D is in the interior of its image. Since Z is a homeomorphism onto /3fD, 
it suffices to show that dc»(P, Z) < d{df3D, dp'D) = p((3f - /J)/2. 

If a = (ai , . . . , ac) G [0, ($'p]c, with at = t0(m./ + s./), m./ G N and st G (0,1], then. 
by (9), and (10), 

d(P(a), Z(a)) = d(^ll/t0</t(ï ' • • Ql/tM^lSl • • • C M ) 

dv 
d 

/.=i 

$([0a]x{^iA()...^;.Ao(go)}) $([0a]x{^iA()...^;.Ao(go)}) $([0a]x 

r 
c 

•1=1 

diam($([0a]x{^iA()...^;.Ao(go)}) 

+ 
x 

i=l 
d(*L*ÏL /TN • • •CU*:i\ ,tl, • • C U * : i \ ,tl, • • • •**„(*) ) 

sCc(/3-//)/4c + 
cr 

7=1 

mdn(0' -8)/Wc 

< o(B' - 8)/2. 

since torrij < pfîf. Then g is accessible on j3D. • 

3.2. Constructing the perturbation. — Fix (3' G 1). The next lemma com­
plètes the proof of Lemma 1.1. 

Lemma 3.3. — For every Ô, 0 > 0, ifr(T>) is sufficiently small and R(V) is sufficiently 
large, then there exists g G Diff'̂ (A/) such that 

(1) ,/,. (/.//• • .y 
(2) dco(f.g)<6 
(3) g is 9-accessible on f3' D, for each D G V. 

The proof of Lemma 1.1 now follows. Choose 6 < a satisfying the hypothèses of 
Lemma 3.2. Let g be given by Lemma 3.3. Since g is 0-accessible on /3'D, g is stably 
accessible on D. • 

Proof of Lemma 3.3. — Let ô, 0 > 0 be given. We will perturb / by composing with 
a C00, volume preserving diffeomorphism 0 : M —> M. We first estimate the effect of 
the composition 0 ° / on the partially hyperbolic splitting. 

Say that 0 ' M -> M is supported on X C M if 0 = ^ outside of X C il/. The 
next lemma states that if R(X) is sufficiently large, and p,q£ X are sufficiently close, 
then for any g, with gf~l supported on X, the subspaces Ti~1{E^){q) and E*(q) 
are very close to E'£(q) and Ep(q), respectively. 

Lemma 3.4 (Bundle Perturbation Lemma). — There exists ô0 > 0 such that the fol-
lowing is true. For every 7 > 0, there exists J > 0 such that, if 0 — g o f~l is 
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supportée, on a set X with R(X) > J, and dçi (ip, id) < 5Q, then for any p,q € X with 
d(p,q) < J~l, we have: 

(1) Z, (T^-1(£^) and 

(2) Z,(T^-1(£^),JB«)^7. 

Proof of Lemma 3.4- — Let 7 > 0 be given. Recall that the splittings TUP = E"n © 
£c 0 Es and T(7P = Ë%®Ë*®Ës coincide at p. 

By uniform continuity of the splitting Eu (& Ec & Es, uniformity of (pp, and smooth-
ness of I/J, there exists a continuous function 6\ : M+ —>• M+, with #i(0) = 0, such that, 
for ail p, q G M, 

(h) z0(mEu),TME:)) < el(d(P,q)) 

(12) Zq(Es,EÎ) ^8y(d(P,q)), 

provided de1 (V'î ^ ) is small enough. 
Let 

A = max I max 
p \ 

vrd 
vr 

s+sd4s 

vrd 
and note that A < 1, because / is partially hyperbolic. There exist Ci,0o > 0 such 
that, for ail ail subspaces Fu, Fs with 

nmx{Z(Fu,Eu), Z(F",Ea)} < 0a 

we have: 

Z{Tf-*(F*),Tf-*(Es)) ^ CiV, and 

Z(Tfj(Fu),TP(Eu)) < CW3, 

for ail j ^ 0. The splitting £™ © E'g © £7* dépends continuously on g, and so 

max{Z(£-,£"), Z(Esg,E")} ^ 60, 

if dci{ïp,id) (and so de1 (/>#)) is sufriciently small. 
Fix positive < R(X). lï q e X, then = f(q), for ail i between 0 and R. 

For thèse g, we have 

ZJE»a,E°) = ZJTg-HE°Tf-"Es) 

= ZJTf-RE*Tf-REs) 
$([0a]sd 

Similarly, for q e X, g '(q) = f l4> (<?) = / 5 (9), for ail i between 1 and 
R — 1, and so 

Zq(E^,T^(Eu)) = Zq(Tg(E^,Tg(Eu)) 

< C2Zg-i(q)(Eg,Eu) 

= C2Zg-Hq){TfR-lEa\TfR-lEu 

${^iA()...^;.Ao(go)}) 
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Combining thèse inequalities with (11), we have shown: there exist A, 6\ : M+ —> 
M+, and C > 0 such that, for any ip sufficiently close to the identity and supported 
on X, for ail R < R(X), and ail q G X, p G M, we have 

- Zq(E*g,E8p) ^ C^A* + 0i(d(p, </))), and 
- /Lq{Til>-\E»),EÏ) ^ 2Zq(El\T^(Ep)) ^ C(XR + 0i(d(p,q))). 
Hence if JR is sufficiently large and q) is sufficiently small, thèse quantities are 

bounded by 7. • 

We will also need the following lemma. 

Lemma 3.5. — There exists T > 0 such that, for e > 0 sufficiently small, for any 
p G M, and for any c-admissible disk D centered atp, there are C°°, volume preserving 
flows £/ Ç'f : Up —» Up such that, for each i : 

(1) Q= id outside N2£(D). 
(2) Forqe N£(D), 

(hence £J préserves the leaves ofWc fl N£(D)), 
(3) dcl(id,t;>) <r\t\. 

P roof of Lemma 3.5. — Let G = (p~l{D) = £?c(0,p), for some p > 0. Fix z, and 
let be the divergence-free vector field on N2e{G) C Wn such that, for ail v: 

E(v) = eet. 

Let UJ be the Euclidean volume form on Mn, and let (J)Q = %E^- Since E is divergence-
free, the (n — l)-form 0o is closed: d(j)Q — disu — div(E)u) = 0. Since N2e(G) is 
contractible, there exists an (n — 2)-form v on N2£(G) such that = 0Q. We may 
choose i/ so that 

|H <C 2e\ and ||^||ci ^ 5. 
Let a : N2£(G) —-> [0,1] be a C°° bump function, vanishing on a neighborhood of 

dN2£(G) and identically 1 on Ns(G), such that 

\\da\\ ^ 2/e, and ||dtj||Ci ^ 2/e2. 

Let </; = d(ais). Then 

$([0a]x{^iA().. 

11011(71 = llrfcr A 1/ +abolir 

< Hdtrll • IHIci + l l ^ l l c - H + Hci- | |0o| |c i 
^ 8 

Hence 0 has the following properties: 

- ^ T, where T = 8, 
- # = 0, 

0 = 0o on Ne(G), 
<p = 0 on dN2e(G). 
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Let X be the vector field on W1 satisfying ixw = 0 and let Xt be the flow generated 
by X. Let £J = o X/ o <p_1. Then lias the desired properties. • 

Returning to the proof of Lemnia 3.3, let T be given by Lemma 3.5. Let 7 = 
0ô/100cT. Choose J > 0 according to Lemma 3.4. 

Now suppose that V — {D\,. .., D^} is any c-admissible family with R,{T>) > J and 
r(V) < J~l. Choose 7/ < r(D) so that the //-neighborhoods of any two c-admissible 
disks in V are disjoint. 

To prove Lemma 3.3, it suffiees to show that for any D ç P , there is a C°° volume 
preserving diffeomorphism iju supported on the //-neighborhood Nn(D), such that 

(1) dc>{il>,id)<S, 
(2) dCn(ljKid) < 0, 
(3) if / is any diffeomorphism with f~vf supported on iV7/(|X>|) \ NV(D), and 

d(n (/, / ) < then 0 o / is ^-accessible on fi'D. 

To construct the final diffeomorphism g, we proceed disk by disk, constructing for 
each D-, G V a diffeomorphism ihj suppported on Nn(D;) so that 'iji, oiï).i_1 • • • ?/',• o / is 
0- accessible on fi'Dj. Then g = 0/,. • • • 0i of will satisfy the conclusions of Lemma 3.3. 

Fix D G T> centered at p and choose s < ///4c small enough to satisiy the hypothèses 
of Lemma 3.5. Let the flows .. ., ^ be given by Lemma 3.5. 

For / = 1 r. let s,, = Aie, let Z, = t£ (D), and let 

Nr = N2s(Zt) = r". (N2e(D)). 

The neighborhoods Ni, ... . Nr are pairwise disjoint. Define •*/••' : AI AI by 

0(9) = 
ri^ r̂ '.T~ t;'6 !Tr " (q ) if q G Ar,. for some 2. 

[Q otherwise. 

Observe that 0 lias the following properties: 

- '0 préserves /x, 
-- 0 = *d outside TVj U • • • U Nc c Nn(D), 
- 0 préserves the leaves of Wr outside of Ni U • • • U Nc and inside of N£(Zj), for 

7 = l , . . . ,c . 
dr\(c.id) < S. 

Let / be any diffeomorphism with d^I ( , / . / ) < S and supported on NV(\V\) \ 
Nlj(D)1 and let # = 0 0 /• It remains to show that # is 0-accessible on fi1 D. 

We will now examine the behavior of the holonomy maps for g along iis-paths 
whose corners are near the points: 

$([0a]x{^iA()...^;.Ao(go)}) +s14s+s1s+s1s+s1 
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In analogue with T}' and r/A which translate along leaves of W", Ws, respect ively, we 
introduce maps TT". TT* : Nv(f3'D) —> £?, which translate along and W* leaves: 

K(9 )} = w w n r ( r ; ( , ) ) 

K W } = M ï ( « ) n r ( T ; ( ç ) ) . 

If dCn(,f\g) is sufficiently small, thèse maps are well-defined for |f| ^ £>. Notice 
that if we were to replace W"' and W;J with W" and W \ thèse équations would 
instead demie r}' and r/\ respectively. Between Wc,s leaves, TT}1 is the W"-holonomy 
(and similarly for 7rj*). Lemma 3.4 will allow us to predict the behavior of thèse maps. 
The upshot is: 

On the appropriât e domains. TTU ~ 0r" and TTs ~ r \ 
where we will be précise about ~ later. 

For i — 1,... c, let 

KW} = Mï(«)nr(T;(ç)). 

Then is a homeomorphism of A:f (.i' I)) onto its image. Observe that h1 (q) is the 
endpoint of a 4-legged -u.s-path for g, originating at q. By construction, thèse pat lis 
dépend continuously on q, and so there are continuons maps 

H1 : [0,1] x p'D —> NJD) 

with t »-> H'(t, q) a 4-legged //.s-path for g, such that H'(0. q) = q and H'l(l,q) = h'(q). 
The rest of the argument goes as follows. We will show that TTU ~ i^ru and 7TS ~ r \ 
which will imply that h' ~ T'1s %,1T'!i£ T£ IJ>T£. Since r" and rs are just translations. 
yj = Qo on r£.(D), and 0 = on TL!_£JT£.T£i{D), we find that /?/' ~ where 
to = sS/T. The rcmaindor of the argument, is devoted to making ~ précise. 

Lemma 3.6 (Holonomy Perturbation Lemma). Fors and S siiffieiently small 

dc"(h'.Ç;j <: t{)6 

where to = sS/T. and the C°-distance is measnred on iifD. 

Proof of Holonomy Perturbation Lemma 3.6. For 6 sufficiently small. there exists 
a neighborhood Q C N£([i'D) of fl'D such that, for / = c, 

7T'J.(Q) Q ihr^(N£(/3fD)). 

<^\Q) Ç TI<4>T£1.{N£{(3'D)). and 

7T[[.i-:i77"i(Q) Ç r ' A ^ rT^(\-(.i,I))). 

We now show that d(Ji'[q). Q (q)) ^ /n#, for ail q G Q and i = 1 . . . . c, which implies 
the conclusion of the lemma. 
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From the définition of ip, we write, for q e Q, 

KW} = Mï(«)nr(T;(ç)). 

= CS/AQ) 

KW} = Mï(«)nr(T;(ç)). 

(13) KW} = Mï(«)nr(T;(ç)). 

the final equality a conséquence of the fact that X/J is supported on Ni U • • • U7VC, which 
is disjoint from TT^TT^. (Q). On the other hand, 

(14) hi(q) = <einlEy£inl(q). 

We show that the corresponding factors in the two compositions (13) and (14) satisfy 
the desired inequality. More specifically, we show that, restricted to the appropriate 
domains, the distances dco(^±£I,^T^£I) and < ĉ°(7r±£̂  T±£t) are bounded by 6to/A. 

First, consider the maps I/JOT£ and TT£I on the domain Q. Recall that, restricted to 
WCS leaves, r£. is the WU holonomy map. But X/JOT£. sends WCS leaves in Q C N£(f3'D) 

to WCS leaves: r£. sends Wc leaves to Wc leaves, and 0 préserves WCS leaves in 
rl\ {Q) C N[. It follows that, restricted to Wcs(q) D Q, the map o is the 
holonomy map to the transversal WCS(T£j (q)), where is the image of Wu under 
ij). Recall that TT£I restricts to the W^-holonomy map between Wcs(q) C]N£(/3/D) and 
Wca(r£(g)). 

Thus, between Wcs leaves, we are comparing the holonomy maps for the foliations 
Wg and ïp(Wu). To compare the holonomies for Wg and ^(Wn), we first apply the 
smooth change of coordinates p ^ 41~l{p) and compare the holonomies for i^~1(Wg) 
and Wu. Since dci(ïpjid) is small, this change of coordinates distorts distances by a 
factor very close to 1. 

The tangent distributions to ijJ~l(Wg ) and Wu are Trip~lEgl and Eu, respectively. 
According to the Bundle Perturbation Lemma 3.4, the distributions Tip~1(Eg) and 
Eu are close; in particular, 

(15) ^(Té-1 (E"),EU) ^7 = OS/lOOcT, 

for ail q G NR](D). We now apply the next élémentary lemma. 

Lemma 3.7. — Let T be a continuons foliation of B C Up with C1, u-dimensional 
leaves, transverse to Es ® Ec. Let T\ and T2 be smooth disks tangent to Es 0 Ec. 
Assume that both the T- and Wu -holonomy maps between T\ and T2 are defîned, and 
dénote them by hT and /zw , respectively. Then, for ail q G T\, 

d(h:F{q),h^u{q)) ^ dist(Tx,T2) • sup Zq{TT, Eu). 

The analogous statement holds for s-dimensional foliations transverse to E* 0 Ec. 
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Applying Lemma 3.7 to the foliation ip 1 and using inequality (15), we obtain 
that, for any two transversals T\ C Q and T2 = re" (Ti), and ç G Ti, 

d(^"1(w«U)(9),hWU(9)) ^ dist(Ti,T2) sup 
q£Nv(D) 

KW} = Mï(«)nr(T;(ç)). 

s+s1s+s1 

^ (4ce)7 

^ (4c£)(0£/lOOcT) 

< 0(eô/8T) 

= Oto/8. 

But then, for ail o G Q, 

d(7r?.((7),^u(a)) - d(M^~l^Hq)^hWU(q)) 

<: Lip(^)^0/8 

< ^0/4. 

Similarly, for q G ipT^(Q), 

d(^(qU:(q))^2elAEf1,Es) 
d(7r?.((7),^u(a)) - d 

Combining thèse inequalities and using the fact that r*. is an isometry, we have, 
for ail q £ Q, 

= d« < (g), ri tt» (g)) + d« (g), ?/>t<; (g)) d(7r?.((7),^u(a)) - d(M^~l^Hq)^hWU(q)) 

= d « < (g), ri tt» (g)) + d « (g), ?/>t<; (g)) 
d(7r?.((7),^u(a)) - d(M 

= eto/2. 

Proceeding in this fashion, we obtain that for q G Q, 

d(ntti «Z€(< < (q). rist inlEi r» tf-r» (g) ) < 0*„, 

which complètes the proof. 

This complètes the proof of Lemma 3.3. We have now shown that for each i, there 
exists 

H1 : [0,11 x (3'D —> NJD) 

with t i ^ Hr(t, q) a 4-legged us-path for g, such that H1 (0, q) — q and 

d(H'(hq),CL(q)) = d(h'(q)XL(q)) < 0ta, 

where to - - sô/T. Hence, g is ^-accessible. 
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3.3. The symplectic case. — If / préserves a symplectic form cj, then the per­
turbation g can also be made symplectic. 

As in the proof for the volume preserving case, we begin with a local System of C°° 
charts <pp : B2m(0,1) —> M, defined for each p G M, where 2m = n. Similar to the 
volume preserving case, thèse charts can be chosen to have the following properties: 

(1) ^ ( 0 ) = p , 
(2) T0ipp sends the splitting T0Rn = R" © Rr © M5' to the splitting TpM = Eu © 

£©©£© 
(3) the symplectic form ^ppu is a linear pullback of the standard symplectic forni 

on R2m: 

V>*PUJ = A*p\ dp, A rig7). 

for some linear map Ap on R2'"1, 
(4) p I—> ^ is a uniformly continuons map from M to C1 (jBn(0.1). M). The 

dependence of (pp: Ap on / is also continuons. 

By Darboux's theorem, for each p £ M, there exists a neighborhood Up oï p and 
coordinates KP : f/p —> R2m such that, in thèse coordinates, LU takes the standard 
form Y. dp.j A dq,. For each TF,K7, sends the splitting T/;AJ = © Er(p) © £/s(p) 
to a splitting R2'" = R;; © R;; © R;. Let Ap : R2"' R2'" be a linear map that 
sends £2m(0,1) into nv{Uv) and sends the trivial splitting R2"' = R" © W © W to 
R2™ = Rj; © Wp © R£, chosen to dépend continuously on p, f. Then yp = K'1 o Ap 
satisfies properties (l)-(4). 

With tins modification, the proof of the Main Theorem in the symplectic case 
proceeds exactly as in the volume preserving one, replacing "/i" by w u/\ until the proof 
on Lemma 3.3. Since we will modify slightly the statement and proof of this lemma, 
we restate it here in the symplectic case. 

Lemma 3.8. For every 6,0 > 0, ifr(T>) is sufficiently small and R(D) is sufficiently 
large, then there exists g G Diff^(M) such that 

(1) dCI (/ ,(/) <6, 

(2) dc»(f,g) < 9, and 
(3) each D G V is covered by c-admissible disks iW\.. . ., such that g is 0-

accessible on Vt, for each i. 

Remark. — If 0 and S are sufficiently small, then any g G Diff^(M) satisfying condi­
tions (l)-(3) in Lemma 3.8 is stably accessible on D: for then Lemma 3.2 implies that 
g is stably accessible on each 0V,,, which implies stabe accessibility on their union, 
which contains D. 

Proof of Lemma 3.8. — Let P be a c-admissible family. Using Lemma 3.10 below, 
we will cover each D G V with c-disks fiV\,..., /3V/,; • The lemma associâtes to each i 
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an open set (a union of balls) N(D,i) C Nn(D): for différent /, thèse sets are disjoint. 
We will then perturb inside of N(D,i) to obtain 0-accessibility on Vr. 

Similar to the volume preserving case, we will need to show that if r(D) is suffi­
ciently small and RÇD) is sufficiently large, then for each D £ V and each c-disk Vt 
in the cover of D. there is a symplectic C10C diffeornorphism Y.\ supported on N(D, /'), 
with 

(a) <lRI(C.i<l) < S. 
(b) dc4i\id) < 0. 
(c) if / is any diffeornorphism with f~lf supported on N.r)(\V\) \ N(D.i) and 

de1 (/• /) < °\ then •</> o /' is ^-accessible on V,. 

Each perturbation V is supported on a union of balls (as opposed to a tubular 
neighborhood); this allows for symplectic perturbations. The next lemma replaces 
Lemma 3.5 for the symplectic case. 

Lemma 3.9. - There exists T > 0 such that. for s > 0 sufficiently small. for each 
p G M and q G B[/2(p), there are C°°, symplectic flows £J = <̂ v/ : M —• 
/ = 1,. . . . c, such that. for each i : 

(1) ^ = ?ri /̂/.s/Vr £2c(<?) 
(2) /•>;/• ./• G 7i (7). 

(hence Préserves the leaves of Wc D B£(q)), 
(3) dCI(id.Çi)<T\t\. 

H ère. ail balls Bf)(q) are measured in the dv-metric. and ail other invariant structures 
VV. C. etc. are adapted at p. 

Proof of Lemma 3.9. Let p.q. i be given and let v = ç~l(q) G B"{{). 1/2). We will 
explain how T is chosen later. Since constant vector fields are locally Hamiltonian 
with respect to ç*-aj = A^Ç^dp, A dq,), there exists a Hamiltonian vector held X'. 
supported on 1/2), such that X' = e, on B"(v. 1/4). Since the C]-size of 
<pp is uniformly controlled. there exists a T{) > 0. independent oï p.q.i. such that 
llX'Hci < I]). Given s < 1/4, let 

Yi(x)=sXi((x-v)/4s). 

Then Y'1 is Hamiltonian (if X' lias Hamiltonian H, then F ' lias Hamiltonian 
4s'2 H ((x - v)/te)), is supported on £"(?;. 2-), and satishes ^ 4T(). Further-
more, Y1 = se,; on Bn(v.s). The vector held ((^)*y générâtes the desired flow 
Clearly T can be chosen to dépend only on To and other uniform data, • 

Next, we choose the balls. The proof of the next lemma is an élémentary exercise 
in Euclidean geometry. 

&(*)= Ce, (•>')• 
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Lemma 3.10. — There exists m > 2, depending only on c and dim(Af), such that, for 
e > 0 sufficiently small and ail p G M, there exist k > 0 and points 

{<l,j \i = 1, • • •, c, j = 1, •. ., k} C N{rn_2)£(D) 

with the following properties: 
(1) there exist pi,... G D and eUJ > 0 such that r^f_£% . (qt^) = Pj, 
(2) the halls in the collection 

{B2e(qi,j), B2e(T» (qij)),B2e(rlX , (<&,,•)) | i = 1,. . . , c, j = 1,... ,k} 

are pairwise disjoint, 
(3) the halls 

/<'•• •/'!) />', Un.) 
cover D. 

Given 5 and 0, let T be given by Lemma 3.9, let 7 = Oô/lOOcT, and choose J 
according to Lemma 3.4. Let V be any c-admissible family with R{V) > J and 
r(V) < J~l. Let D G V with center p. Proceeding as in the proof of Lemma 3.3, 
choose e < 6/Ame satisfying the hypothèses of Lemma 3.9, where m is given by 
Lemma 3.10. Fix 1 ̂  i ^ c, and let the points {qi.j},Pi be given by Lemma 3.10. Let 
Vi = V£(pi); by Lemma 3.10 the disks (3Vi,..., 0Vk cover D. Let 

N(D,i) = U{*M<fc . i ) ,B^Kj (g , . , ) ) ,B^r l^(q i , j ) ) I j = I....«•}. 

We show that properties (a)-(c) above are satisfied for this i. 
In each bail B2£(qi.j), let £'t,J = <̂ '9j be the flow given by Lemma 3.9, with q = qj. 
Define ^ : M -> M by 

d+d1= 

f 4 £ B2e 

Cs/T if 4 £ B2e{qi.j), for some j , 

ç otherwise. 

Then lias the following properties: 

- ^ = id outside N(D,i), 
- V; préserves the leaves of Wc outside of |J • B>2£(qij) and inside of (Ĵ - B£(ql:J), 
~ <lri(c. id) < 5. 

Let / be any diffeomorphism with f~1f supported on Nr](\V\) \ N(D,i), and let 
g = ip o / . Let It remains to show that g is ^-accessible on Vj,. 

By the same argument as in the proof of the Main Theorem, we obtain that for 
each x G Vh, there is a 4-legged us-path for g from x to a point y G N(M_2)e(D) such 
that 

d(y,G0(x))<9tQ, 

In other words, g is accessible on V} 
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