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ON R A N D O M A N D MEAN EXPONENTS FOR UNITARILY 
INVARIANT PROBABILITY MEASURES ON GLn(C) 

by 

Jean-Pierre Dedieu & Mike Shub 

Dedicated to Jacob Palis for his sixtieth birthday. 
Abstract. — We consider unitarily invariant probability measures on GLrj(C) and 
compare the mean of the logs of the moduli of the eigenvalues of the matrices to the 
Lyapunov exponents of random matrix products independently drawn with respect 
to the measure. We prove that the former is always greater or equal to the latter. 

1. Introduction 

Given a probability measure /i on the spaee of invertible n x n complex matrices 
satisfying a mild integrability condition, we have, by Oseledec's Theorem, n random 
exponents r\ ^ r«2 ̂  • • • ^ rn ^ — oo such that for almost every séquence ... gk • • - 9i £ 
GLn(C) the limit lim £ log \\gk • • • 9iv\\ exists for every v G Cn \ {0} and equals one 
of the r7, i = 1.. . n, see Gol'dsheid and Margulis [4] or Ruelle [8] or Oseledec [7]. 
The numbers r i , . . . , rn are called Lyapunov exponents. In our context we may call 
them random Lyapunov exponents or even just random exponents. If the measure is 
concentrated on a point A, thèse numbers lim y} log || A""u|| are log | A11, . . . , log |Àn| 
where Xt(A) = Ày, 1 = 1... r?, are the eigenvalues of A written with multiplicity and 
|Ai| > |A2| |A„|. 

The integrability condition for Oseledec's Theorem is 

g G GLn(C) —> log+(||^||) is /i — integrable 

where for a real valued function / , /+ = max[0, / ] . Here we will assume more so that 
ail our intégrais are defined and finite, namely: 

(*) g e GLn(C) ^ log+(||#||) and log"1"(11|) are //-integrable. 

2000 Mathematics Subject Classification. — 37Axx, 37Hxx. 
Key words and phrases. — Random matrix, Lyapunov exponents, unitarily invariant probability mea­
sure, co-area formula. 
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2 J.-P. DEDIEU & M. SHUB 

We will prove: 

Theoreml. — If \i is a unitarily invariant measure on GLn(C) satisfying (*) then, 
for k = 1,. . . , n, 

A6GLn(C) i=1 

kd 
\og\Xt(A)\du(A) > 

k 

i=i 
d+d 

By unitary invariance we mean /JL(U(X)) — \i{X) for ail unitary transformations 
U G Un(C) and ail /i-measurable X Ç GLn(C). 

Corollary 2 

'AeGLn(C) 

vrn 

vr 
\og+\Xi(A)\dfi(A) > 

n 

i-1 

dd 

Theorem 1 is not true for gênerai measures on GLn(C) or GLn(M) even for n = 2. 
Consider 

Ai = 
' 1 0 
1 1 

A2 = d+dd1dr 
0 1 

and give probability 1/2 to each. Then the left hand intégral is zéro but as is easily 
seen the right hand sum is positive. So, in this case the inequality goes the other 
way. We do not know a characterization of measures which make Theorem 1 valid. 
We would find such a characterization interesting. 

The numbers Y2i=i ri have a direct géométrie interprétation. Let Gn,fc(C) dénote 
the Grassmannian manifold of k dimensional vector subspaces in Cn, A\Gn^, the 
restriction of A to the subspace Gn^ and v the natural unitarily invariant probability 
measure on Gn,k(C). 

Theorem 3. — If /j, is a unitarily invariant probability measure on GLn(C) satisfying 
(*) then, 

k 

i=l 
dd 

x++xw14xn,k)\dv{Gn,k)dii{A) 
log | Det (A\Gn,k)\dv{Gn,k)dii{A) 

We may then restate Theorem 1 in the form we prove it. 

Theorem 4. — If ji is a unitarily invariant probability measure on GLn(C) satisfying 
(*) then, for k = 1,. . . , n 

AeGLn(C) i=1 

k 
;iog|A.(^)|d/x(A) 

vrd 
JAeGLn(C) JG„,keGn,k(C) 

\og\Det (A\GnM)\du(Gn.k)d^(A). 
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ON RANDOM AND MEAN EXPONENTS 3 

There is a considérable literature on random Lyapunov exponents and quite gênerai 
criteria which guarantee that they are non-zero and even distinct. According to 
Bougerol and Lacroix in 1985 in [2] "The subject matter initiated by Bellman was 
fully developed by Furstenberg, Guivarc'h, Kesten, Le Page and Raugi." We refer 
to [2] for références prior to 1985 and to three others: Gol'dsheid and Margulis [4], 
Guivarc'h and Raugi [5] and Ledrappier [6]. 

Our interest in Theorem 1 and Theorem 4 was motivated by some questions in 
dynamical Systems theory, see Burns, Pugh, Shub and Wilkinson [3]. Theorem 1 for 
k = 1, the orthogonal group and GLn(IR) was raised there. 

We also get a version of Theorem 4 without the logarithms. 

Theorem 5. — Let JJL be a unitarily invariant probability measure on GLn(C) satisfying 
(*) and 1 ̂  k ^ n. Then 

AGGLn(C) i=1 

k 
Xi(A)\dfi(A) > 

JAeGhri{C) JGn,keGn,k(Q 
IDet (A\Gn.k)\dv(Gn,k)du(A). 

There is a spécial case of Theorems 4 and 5 that is good to keep in mind. Our 
proof relies it. 

Let A e GLn(C) and p be the Haar measure on Un(C) (the unitary subgroup of 
GLn(C)) normalized to be a probability measure. In this case Theorem 5 becornes: 

Theorem 6. — Let A e GLn(C). Then, forl^k^n, 

/f/GUN(C) ' 

k 

i=l 
lozWAUAMduiU) > 

'Gn,fcGGn,fc(C) 
loglDet (A\Gn,k)\dv(Gn,k) 

and 

'ueun(C) 

k 

i-l 
\\AUA)\du(U) > 

Gn,fe6Gn,fe(C) 
|Det (A\Gn,k)\dv{Gn,k). 

When k = 1, |Ài(f/A)| = p(U'A) is the spectral radius of UA. The Grassmannian 
manifold is identical to the complex projective space Pn_i(C). Intégration on this 
manifold can be reduced to the unit sphère §2n_1 in R2n so that 

Corollary 7. — Let A G GLn(C). Then 

uevn(C) 
log\p(UA)\dfi(U) > 

!xeg2n-l 
log ||Ar||di/(x) 

and 

'Ueun(C) 
\p(UA)\dp(U) > 

Ax\\dv( 
\\Ax\\dv(x). 

We expect a similar resuit for orthogonally invariant probability measures on 
GLn(R) but we have not proven it. Here we content ourselves with the case n = 2. 
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4 J.-P. DEDIEU & M. SHUB 

Theorem 8. — Let \i be a probability measure on GL2(M) satisfying 

g G GL2(M) —» log+(||g||) and log+(||g_11|) are /i-integrable. 

(a) If LL is a SÛ2(M) invariant measure on GLt(IR) then, 

M€GLj(R) 
l o g l A ^ y l ) ! ^ ) -

AGGL+(M) Jxes1 
loglIAdldS^xW/iM) 

(b) If /j, is a SÛ2(M) invariant measure on GL2 (M), whose support is not contained 
in IRĜ fM) z.e. m the set of scalar multiples of orthogonal matrices, then 

fAeGL-(R) 
loglAi^ld^A) > 

V4GGL~(M) Jxes1 
log\\Ax\\dS1(x)d/i(A). 

Here GL^(R) (resp. GL2 (M)) is the set of invertible matrices with positive (resp. 
négative) déterminant. Theorem 8 is proved in section 5. 

2. A More General Theorem 

Theorem 4 is actually a spécial case of the much more gênerai Theorem 11 below. 
Before we state Theorem 11 we need some preliminaries. 

A flag F in Cn is a séquence of vector subspaces of Cn: F — (Fi, F2,. . . , Fn), with 
Fi C and Dim Fi = i. The space of flags is called the flag manifold and we dénote 
it by Fn(C). Now it is easy to see that Fn(C) may be represented by GLn(C)/Rn(C) 
or by Un(C)/Tn(C), where Mn(C) is the subgroup of GLn(C) of upper triangular 
matrices and Tn(C) is the subgroup of GLn(C) consisting of diagonal matrices with 
complex numbers of modulus 1, so Tn(C) = Un(C) fl Mn(C). Regarding Fn(C) as 
Un(C)/Tn(C) we see that Fn(C) has a natural Un(C)-invariant probability measure. 

An invertible linear map A : Cn —» Cn naturally induces a map A$ on flags by 

At(F1,F2,...,Fn) = (AFl,AF2,...,AFn). 

The flag manifold and the action of a linear map A on Fn(C) is closely related to 
the QR algorithm, see Shub and Vasquez [9] for a discussion of this. In particular if F 
is a fixed flag for A i.e. A$F = F, then A is upper triangular in a basis corresponding 
to the flag F, with the eigenvalues of A appearing on the diagonal in some order: 
Xi{A, F), . . . , \n(A, F). 

Let 
G = {A G GLn(C) : |Ai(A)| > \X2(A)\ > ••• > \\n(A)\}. 

Then, there is a unique flag F such that A$(F) = F and such that Xi(A, F) — Xi(A) 
for i = 1,. . . , n. We call this flag the QR flag of A and let QR : G -> Fn(C) be the 
map which associâtes to A G G its QR flag. It follows from Shub-Vasquez [9] and the 
discussion of fixed point manifolds below that QR is a smooth mapping. 

Now fix A e GLn(C), define Un{C)A = {UA : U G Un(C)} and consider GA = 
Gfl(Un(C)A). Assume that GA / 0- If we restrict QR to GA then QR : G^ -> Fn(C) 
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ON RANDOM AND MEAN EXPONENTS 5 

is in fact a locally trivial fibration whose fibers are the orbits of a Tn(C) action we 
now clescribe. 

Let D G Tn(C) and U G Un(C) and let QR(UA) = *7iïRr,(C) where Ui G Un(C). 
Let 

<$>A : Tn(C) xGA^GA 

be defined by $A(D, U A) = UiDU^UA. In section 4 we establish 

Proposition 1 

(1) $A(D,UA) is well defined. 
(2) QR($A(D,UA))=QR{UA). 
(3) A ' Tn(C) x G,4 —> G A is an action o/Tn(C) on G^ whose orbits are the 

fibers ofQR : GA -> Fn(C). 
(4) If D = Diag(di,... ,dn) then XI(^A(D,UA)) = dIXL(UA) and in particular 

\Xi\ is constant on the fibers of QR : GA —> Fn(C) for i = 1,. . . , n. 

Let 
VA = {(J7, F) G Un(C) x Fn(C) : (£M)ttF = F}. 

We dénote by lli and II2 the restrictions to of the projections Un(C) x Fn(C) —» 
Un(C) and Un(C) x Fn(C) -+ Fn(C). We define an action of Tn(C) on YA denoted 

A :Tn(C) x V ^ V A by 

VA(D)(U,UiTn(C)) = (UxDUî 1/7, FiTn(C)). 

Proposition 2 
(1) ^ is we// defined and smooth. 

(2) Tfte or&ite 0/#A are the fibers ofU2 : VA Fn(C). 

We consider the manifold 
V={(A,F)eGLn(C)xFn(C) : ^ F = F} 

and the restrictions to V of the two projections GLn(C) x Fn(C) —» GLn(C) and 
GLn(C) x Fn(C) —> Fn(C) which we again dénote by II1 and II2. By the Jordan 
Canonical Form Theorem the map lli is surjective. Except on a set of positive 
codimension, IIi-1(v4) consists of n! points corresponding to the permutations of the 
eigenspaces of A G GLn(C). The fibers of the map IT2 are more complicated. 

For c G C \ {0} we write cUn(C) to mean {cU : U G Un(C)}. 

Définition 9. — Let / : GLn(C) x Fn(C) —> M be continuous. 

(1) / is Un(C) or unitarily invariant if f(UA,F) = f(A,F) for ail (A, F) G 
GLn(C) x Fn(C) and U G Un(C), and if /|cUn(C) x Fn(C) is constant for every 
c G C \ { 0 } . 

(2) For B G GLn(C) let g(B) = max(BiF)€V/(J5, F). We say that / is Tn(C) or 
torally invariant if g($A(D, B)) = g(B) for ail A G G, B G GA and D G Tn(C). 
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6 J.-P. DEDIEU & M. SHUB 

Examples of Un(C) and Tn(C) invariant mnctions are 
(1) For 1 ^ k ^ n let fk(A,F) = |Det(A|Ffc)| where F = (Fu F2,..., Fn) G 

Fn(C). 
(2) log/fe(A,F) where fk(A,F) is as in 1). 

Remark 10. — If A$F = F then \ Det (A\Fk)\ = nt=i \K(A,F)\. 

Given a continuons / : GLn(C) x Fn(C) -> E, let g : GLn(C) ^ M be defined by 
g(B) = max(fîîF)GV/(5,F). 

Theorem 11. — Let f : GLn(C) x Fn(C) —> M be continuons, unitarily and torally 
invariant. Let n be a unitarily invariant probability measure on GLn(C) satisfying 
(*). If f is /i (g) v'-integrable then g is fi-integrable and 

f g(A)dn(A)> [ f f(A,F)dv(F)dp(A). 
JAeGhn(C) JAe<GLn(C) JFGFn(C) 

It is now fairly simple to see how Theorem 11 implies Theorem 4. If fk(A,F) = 
log|Det(A|Ffc)| then, by Remark 10, g(A) = log |Ai(A)| where \Xi(A)\ ^ 
|À2(A)| ^ ••• ^ |An(A)| are the absolute values of the eigenvalues of A. So the 
left hand intégrais in Theorem 4 and 11 are the same. To see that the right hand 
intégrais are the same consider the natural fibration 11̂  : Fn(C) —> Gn^k(C) given by 
nk(Fu... ,Fn) = Fk. Then | Det (A\UkF)\ = | Det (A\Fk)\ and it is easy to see that 

/ log | Det (A\Fk)\dis(F) = f log | Det (A\Gn,k)\dv(Gn,k). 
JFE¥n(C) lGri,kEGn,k(C) 

We will say more about this in section 4. So we are done. 
We now turn to the proof of Theorem 11 which follows from the considération of 

a spécial case. 
Let A G GLn(C). We put Haar measure \i on Un(C) normalized to be a probability 

measure. Thus the next proposition is a spécial case of Theorem 11. 

Proposition 3'. — Let f : GLn(C) x Fn(C) —• R be continuous, unitarily and torally 
invariant. Let 

VA-{(f/,F)GUn(C)xFn(C) : (UA)tF = F} 

and g{B) = max(fî)F)€vA f(B,F). If f is /i® v-integrable then g is fi-integrable and 

f g(UA)dn(U)> [ f f(UA,F)dv{F)dii(U). 
Jueun(C) Jueun(C) JFe¥n(C) 

We now see that Proposition 3 implies Theorem 11. Disintegrate the measure \i of 
Theorem 11 along the orbits of Un(C) obtaining Un(C) invariant probability measures 
on each orbit. Identifying an orbit with Un(C) we see that thèse measures are left 
invariant on Un(C) hence they are Haar measures. Now Proposition 3 applies orbit 
by orbit. Integrating the inequality over the space of orbits proves Theorem 11. 
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Note that it is sufficient to prove Proposition 3 when A is not a constant times 
a unitary matrix, for otherwise g(UA) and f(UA,F) are both equal to the constant 
in the définition of unitary invariance. Thus the intégrais are equal since they are 
equal to this constant. We will assume below that A is not a constant times a unitary 
matrix i.e. A is not conformai. 

Note that in Proposition 3 the right hand intégral does not dépend on U since / is 
unitarily invariant. Thus it is not necessary to integrate over Un(C), the first intégral 
is constant. 

Now we restate Proposition 3 in its simpler form. 

Proposition 4. — Let f : Fn(C) —• R be continuons and torally invariant, suppose A 
is not unitary or a scalar times a unitary. Let 

YA = {(U, F) G Un(C) x Fn(C) : (UA)^F = F}. 

Let g(B) = max(5/)çV, f(F). Then 

Juev„(C) 
g(U)du(U) > 

JFeFn(C) 
f(F)du(F). 

Now we outline the proof of Proposition 4. We use the diagram 

Un(C) 

ni 
y A 

n2 

Fn(C) 

to transfer the right hand intégral over Fn(C) to an intégral over Un(C). First we 
identify a subset of Un(C) over which we will integrate. 

Let Qi be the open subset of Un(C) consisting of those U such that the eigenvalues 
of U A are of distinct modulus. In this case we write them as 

Xi = Xi(UA), l^i^n, 

where |Ài| > • • • > |An|. 

Propositions. — Gi is an open set of full measure in Un(C), Le. = 1. 

Lemmal. — Let f : Fn(C) —> M be continuons and torally invariant. Let g{B) — 
max(S)F)GvA f(F)- Then 

/F€Fn(C) 
f(F)dv(F) = 

JUeGi inF)Ey, 
d+d1d 

j<i 1 
1 - \,(UA,F) r 

\j(UA,F) dn{U) 

vr 
/(7eGi 

g{u) 
d+d1dr 

1 -
d+d1d+d1 
K{3) I 

dfi(U) 

with En the group of permutations over the set {1, 2 , . . . , n}. 
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8 J.-P. DEDIEU & M. SHUB 

Proposition 5 and Lemma 1 are proved in section 4. Proposition 3 and 4 follow 
from Proposition 5, Lemma 1 and from the next proposition. 

Proposition 6 

xxd 
d/x(î7) = 

o-GSN j<i 

1 _ A(T̂ ) 

d/x(î7) = 

i-2 
d/x(î7) = 

d/x(î7) = 
g(U)du(U). 

We will prove Proposition 6 in Section 4 by decomposing the two intégrais along 
the fibers of the QR fibration on which g(U) is constant. 

Proposition?. — The normal Jacobian of the QR fibration is Ylj<i |1 — A /̂Ajl~2 
where Xi = Xt(UA) are the eigenvalues of U A with |Ài| > • • • > |Àn|. Hence 

JueGi 
g{U) 

j6E„j<i' 
1 - vrd 

dr 

1-2 
dfji(U) 

= 
JFE¥n(C) 

9(U) 
U(EQR-l(F) ( d/x(î7) = 

11 - K ( i ) / K u ) I 2 
1 - Ai/A,-

lli(QR-\F)){U)dv(F) 

and 

lueG! 
g(U)du(U) = 

FGFN(C) 
x+x1 

UeQR~1{F) j<i 1 

d/x(î7) = 

rd 

2 
d^(QR~HF))(U)dv(F). 

Proposition 7 is proved in Section 4. Finally in Section 4 we prove 

Proposition 8 

)ueQR-1(F) 
j<i 

1 -
vr 

vr 

I2 
dM(QJR-1(F))([/) 

vr 
JU€QR-HF) ffgE j<4l 

! i - Act(î)/Act(j) 

1 - Ai/À,-

-2 
d/x(î7) = +xx1x+x1x+x 

Now Proposition 7 and Proposition 8 prove Proposition 6 and we are done. To 
summarize it remains to prove Theorem 3, Proposition 1, Proposition 2, Proposition 
5, Lemma 1, Proposition 7 and Proposition 8. 

3. Manifolds of fixed points 

The manifolds V and are manifolds of fixed points. In this section we discuss 
intégration formulas for manifolds of fixed points and prove Lemma 1 and Proposition 
7. We begin by recalling the co-area formula. 
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3.1. The Co-area Formula.— Let X and Y be real Riemannian manifolds. We 
dénote by dX and dY the associated volume forms. Suppose F : X —» Y is a smooth 
surjective map and suppose that the derivative DF(x) : TXX —» Tf(x)Y is surjective 
for almost ail x G X. The horizontal space Hx of TXX is defined as the orthogonal 
complément to Ker DF(x). The horizontal derivative of F at x is the restriction of 
DF(x) to The normal Jacobian NJ(F(x)) is the absolute value of the détermi­
nant of the horizontal derivative defined almost everywhere on X: 

NJ(F(x)) = \Det(DF(x)\H)\. 

The map F defines a fibration of X with base Y and fibers F 1(y)1 y G Y. Intégration 
over X with respect to this fibration generalizes Fubini's formula: 

Theorem 12 (Co-area Formula). — Let F : X —• Y be a smooth map of real Rie­
mannian manifolds satisfying the preceeding surjectivity conditions. Then, for any 
integrable f : X —• R 

rev 
f(x)dX(x) = 

JyeY JxeF-1(y 

d+d1 

NJ(F(x)] lF-1(v)(x)dY(v). 

Remark 13. — In the co-area formula, dX and dY are the volume forms associated 
with the Riemannian structures over X and Y, dF~1(y) is the volume form on F~1{y) 
equipped with the induced met rie. 

Remark 14. — The co-area formula also extends to complex Riemannian manifolds. 
In that case the normal jacobian is equal to 

NJ(F(x)) = | Det (DF(x)\Hx)\2. 

This follows immediately from the fact that if A : Cn —* Cn is a complex linear map 
and AM : R2N -» R2N the real map it defines, then 

|Det AR\ = |Det A\2. 

Remark 15. — When DF(x) : TXX —> Tf^Y is onto, the normal Jacobian is equal to 

NJ(F(x)) = (Det DF(x)DF(x)*)1/2 

so that 

Jxex 
f(x)dX(x) = 

yeY Jx£F-l(y) 

d+d1rd 

(Det DF(x)DF(x)*y/2 
iF-'iy^dYiy) 

and in the complex case (see Remark 14) 

vrd 
f(x)dX(x) = 

JyeY JxeF-1(y 

f(x) 
Det DF{x)DF(x)* 

dF~1(y)(x)dY(y). 

Remark 16. — The co-area formula also extends to the case of maps F : X —>> Y 
between algebraic varieties by considering the restriction of F to the smooth part 
of X. 
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10 J.-P. DEDIEU & M. SHUB 

3.2. Manifolds of Fixed Points.— Let T and A4 be compact Riemannian man-
ifolds and a smooth map <É> : T x A4 —• A4 be given. Let 

be defined by m) = ($(/, m), m). Suppose ^ is transversal to 

A = {(m, m) : m G M J c M x X . 

Then 

V = tf-^A) = {(/,m) G ^ x A4 : $ ( / , ra )=ra} 

is a submanifold in T x M. We dénote by IIjr and 11^ the restrictions to V of the 
projections T x M —> T and T x A4 —» A4. By Sard's Theorem, almost ail f E J7 
are regular values of Iljr : V —> J-. For thèse f £ T the corresponding fixed points 
m G Ai, i.e. (f,m) G V, are isolated in A4. Since A4 is compact thèse fixed points 
are finite. 

{m)NJ(UM(f,m) 

Theorem 17. — Let dénote the set of f G T which are regular values oflijr. Let 
G : M. —+ M be a continuous function. Then 

M G AI 
G(m)dM(m) = 

men, (/) 
G(m)-

{m)NJ(UM(f,m) 
Voinx}(m)iVJ(n^(/,m)) 

ttF(/). 

Remark 18. — The intégral is taken over the set of regular values of II jf. We note 
that / G .Tvh if and only if for ail m G Al, such that (/, m) G V, idrMM ~ DM^{I-> M) 

is invertible. 

Proof — We apply the co-area formula to the function 

G{m)NJ(UM(f,m)) 
voinxj(m) 

defined over V with respect to the projection II» . This gives 

(/,m)€V 

G(m)JVJ(IW/,m)) 
VoinTj(m) 

dV(f,m) 

ME M J(f,M)enH(M) 

G(m)NJ(UM(f,m)) 
\o\U^(m)NJ(nM(f,m)) 

dUjCt(m)(f,m)dM(m) 

ddr 
'MEM 

G(m)dM(m) 

We now apply the same formula to the same function with respect to the the projection 
Ujr. We notice that the fiber U.^r1(f) consists in a finite number of fixed points so 
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ON RANDOM AND MEAN EXPONENTS 11 

that: 

'(/,m)SV 

G(m)NjmM(f,m)) 
voinxj(m) 

dV(f,m) 

rd+d41 
{m)NJ(UM(f,m) 

G(m) NJ(UM(f,m)) 
VolUjd(m)NJ(Ujr(f,m)) m/) 

and we are done. • 

Now we compute the normal Jacobians in terms of the partial derivatives of $ : 
T x M —> M. The Riemannian structure we put on V is the restriction of the product 
structure on T x M.. 

Lemma 2. — Let f G and (/, m) G V. Then the tangent space ofV at (/, m) is 

T(/,m)V = {(/,m) GT/ f xTmM : m = (idTm>1 - DM$(f, m))'1 Df<S>{f, m)/}. 

Proof. — This is a conséquence of Remark 18. • 

If we put together Lemma 2, Theorem 17, and Blum-Cucker-Shub-Smale [1] 
Lemma 3, page 242, we have: 

Theorem 19. — Let G : A4 —> M be a continuons function. Then, for real manifolds 

m G A4 
G{m)dM{m) 

dv 
vrd {m)NJ(UM 

G(m) | Det (DJR$(F,m)Dr$(F,m)*)\V2 
Voln^1 (m)| Det (idTmM ~ DM$(f,m))\ dHf)-

For complex manifolds this formula becomes 

I raG Â  
G(m)dM(m) 

re 
{m)NJ(UM(f,m) 

G(m) \Det (Dr*(F,m)DrQ(F,m)*)\ 
VoinxJ(m)|Det (idTmM - D M * ( F , m ) W 

<LF(F). 

Similarly we may also evaluate intégrais defined on T using the fibration over A4. 
Suppose that S : —> V is a smooth section of V defined on J7^ or on an open set 
of TFA i.e. UJRS = IDJR 

Theorem 20. — Let H : —» R be an integrable function defined on J7^ or on an 
open set in T^. Then, for real manifolds 

d+d14r 
H(F)DT(F) 

vrd 
JrneM J(IlMS)-l(m) 

d+d41 |Det (idTmM - DM<$>(f,m))\ 
Det (D^(f,m)D^(f,m)*)\^2 dHf) 
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and for complex manifolds 

Jfer* 
H ( f ) m f ) 

rd 
{m)NJ(UM(f,m) 

ti(f) 
Det (idTmM -DM$(/,m))|2 
Det (Dr${f, m)Dr$(f, m)*) <LF(f). 

4. Proofs of Theorern 3, Propositions 1, 2, 5, Lemma 1 
and of Propositions 7 and 8 

4.1. Proof of Theorern 3.— If not explicitely stated this Theorern is inhérent in 
the works of Purstenberg, Guivarc'h, Raugi, Gol'dsheid, Margulis and possibly other 
sources. See also Bougerol-Lacroix. We sketch a proof. 

We consider two auxilliary spaces and maps: 

(1)<kkddd GLn(C) equipped with the product measure /ï, and 

a : 
oc 

i=l 
GLn(C) ^ 

the one sided shift: 
a(...gp...gl) = {... gp ... g2). 

(2)<kkddd GLn(C) x Gn,fc(C) with the measure ft x v and the map 

R : 
oc 

1=1 

GLn(C) x Gn,fc(C) +-> 

defined by 
r((. ..gp...gi), Gruk) = 0 ( . . . gp . . . g1),g1 (Gn,fc)). 

\i is invariant and ergodic for a and \i x z/ is invariant for r (here we use the unitary 
invariance of /x). It follows from Birkoff's Ergodic Theorern and the invariance of 
the measure fi x v for the map r that lim ̂  log | Det (gp ... gi\Gn^)\ exists a.e. in 
<kk GLn(C) x Grijfc(C), and the intégral of lim ̂  log | Det (gp ...gi\Gn^)\ equals 

AGGLn(C) ̂ Gn|fcGGn,fc(C) 
log|Det(A|Gn.fc)|di/(Gn.fc)du(A). 

Now by Oseledec's theorern for almost ail ^ = (... gp ... g\) the limit 

lim 1, 

P 
log | Det (gp...gi\Gruk)\ 

exists for almost ail GUik and equals Y^=\ ri- S° 

k 

i=1 
d+d1r 

JAeGLTl(C) Ĝn,fcGGn,fe(C) 
log | Det (A|Gn,fc)|di/(Gn,fc)d/i(A). 
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4.2. Proofs of Propositions 1 and 2.-— We now turn, in section 3, to the case 
that T = Un(C), M = Fn(C), V = YA and &(U,F) = (UA)$(F). 

Lemma 3. — Suppose (C/A)tt(C/iTn(C)) = /7iTn(C). Then, for any V G Un(C) one 
has 

(lM)j!([/iTn(C)) = U1Tn(C) 

if and only if there exists D G Tn(C) such that U\DU^lU = V. 

Proof — If (FA)s(C/iTn(C)) = l/iTn(C) then 

C/iRn(C) = V^C/iRn(C) = VU^UAU^niQ = FEZ^E/iR^C). 

So U^UV-^RniC) = Rn(C) and C / f 1 ^ " 1 ^ ! is in Rn(C) n Un(C) = Tn(C). So 
there is a D G Tn(C) with UV~l = UiDU'1 and V = UiD^U^U. 

On the other hand for, D G Tn(C), 

UiDU^UAUAXC) = UiDU^U^niQ = UiDRn(C) = *7iRn(C). 

So we are done. • 

Proof of Proposition 1 

(1) If QR(UA) = J7iRn(C) = U[Rn(C) then J7{ = UlDf for some D' G Tn(C). 
Thus 

U[DU[~lUA - UxD'DD'^U^UA = UiDU^UA. 

From QR(UA) - £/iRn(C) we get ( c / A ^ R ^ C ) = J7iRn(C) so that t/A = U^U'1 
for some G Rn(C). This gives 

$4(D,^4) - UxDU^lUA = UrDU^UxRU^1 = UxDRU^1. 

Thus the eigenvalues of $A(D, UA) have distinct modulus and &A is well defined. 

(2) Using UA = UxRUï1 we get 

<$>A(D,UA)Ul = UiDU^UAU! = UXDR 

so that 
QR($A{D,UA)) = QR(UA) = î/iRn(C). 

(3) Tins assertion is exactly Lemma 3. 
(4) \i($A(D,UA)) = diAi([/A) is proved in (1). and |À,| constant on the fibers of 

QR described in (3) and we are done. • 

Proof of Proposition 2. — Similar to the proof of Proposition 1. it also uses Lemma 3. 
• 
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4.3. Proof of Lemma 1.— Lemma 3 has an immédiate conséquence: 

Lemma 4 

(a) The volume of the fibers I T ^ F ) , for F G Fn(C), with ïl2 : VA -> Fn(C), is 
constant and equal to VolTn(C). 

(b) The volume of the fibers QR~l{F), for F G Fn(C), is constant and equals 
VolTn(C). 

Next we turn our attention to the term | Det DUn(C)$(cV, F)DVn(Q$(U, F)*\. If 
we fix a flag F then DVn(c)$(U,F) = DVn{c)$F(U) where $F(U) = C/C/iTn(C) and 
U\ defined by A$F — U\Tn{C). Next we prove that the normal Jacobian of &p(U) is 
constant. 

Proposition 9. — Let Un(C) ac£ on Un(C)/Tn(C) by &F(U) = /7/7iTn(C). Tftera the 
normal jacobian of^F(U) is independent of F, U\ and U and equals VolTn(C). 

Proof. — First consider the case U\ = In. Then &F(U) — C/Tn(C) is the projec­
tion from Un(C) to Un(C)/Tn(C). Before normalizing the Riemannian metric on 
Un(C)/Tn(C) to make the volume 1, the normal to the fiber is mapped isometri-
cally to the tangent space of Un(C)/Tn(C). Now RVl : Un(C) Un(C) defined by 
Rul (U) = UUi is an isometry of Un(C) and the fibers of <3>f are the reciprocal images 
by Rux of the fibers of $jn. So the normal jacobians are constant. After normaliza-
tion, the normal jacobians must equal VolTn(C) to make VolUn(C) equal 1. • 

Corollary 21. — | Det DUn(c)$(17, F)DUn(c)*(£7, F)*\ = VolTn(C) for any F G Fn(C) 
and U G Un(C). 

Proof. — By Remark 15 | Det D U T I ( C ) $ ( C 7 , F ) D U r i ( C F ) * \ is equal to the normal-
ized Jacobian of $>F(U) and we apply Proposition 9. • 

Finally we have from Lemma 4 of Shub-Vasquez [9] 

Proposition 10. — | Det (^-DFn(C)$([/, F)| = Y\3<1 1-
Xrr(i\ I 

x+ed1 
vhere \a(^ = \i(UA,F) 

and |Ai| > • • • > |An|. 

Making the substitutions in Theorem 19 given by Corollary 21 and Proposition 10 
we have 

Theorem 22. — Let f : Fn(C) —• R be continuons. Then 

d+d1rd 
(F)dv(F) = 

u^ (U, F)€nÛn(C 

f ( F] 

drd+d1 

1 -
d+d1r 

dd+d1r 

-2 
dp(U). 

This proves Lemma 1. 

ASTÉRISQUE 287 



ON RANDOM AND MEAN EXPONENTS 15 

4.4. Proof of Proposition 7.— Similarly substituting in Theorem 20 gives 

Theorem 23. — Let g : Gi —> M be integrable. Then 

lueGi 
g(U)du(U) 

vrd 
FGFn(C) J{u,F)en-*ic)(F) 

g(u) 
j<i1 

dr \ I2 

d+d1r 
n̂Fr!(C)(i?)(̂ )̂ (̂ ). 

This theorem proves Proposition 7. 

4.5. Proof of Proposition 8.— Since the fibers QR~1(F) for a given F G Gi are 
isometric to Tn(C) we have to prove the equality 

d+df1d+dr 
1 -

Ail2 
Ail 

dn(T(C)) = 
{m)NJ(UM(f,m) 

{m)NJ(UM(f,m) 

1 - Xi/\j 
d/x(Tn(C)). 

Let us dénote the Van der Monde déterminant 

V(Ai,...,A„) = 

1 Ai .. . A?"1! 
1 A2 . . . A""1 

1 An . . . A™ 1 j<i 
A, A,). 

The first intégral is equal to 

T«(C) -<4 
1 -

A(|2 

Ail 
^(T"(C)) = 

7t"(C) 

W A i , . . . , A n ) | 2 

n^iAi i2 
-dii(Vl(C)). 

The Van der Monde is equal to 

y(^i, • • •, A„) = 
f+dsd+d1r 

^ J A ^ - 1 . . . ^ » ) - 1 . 

Here the sum is taken for any permutation a in the symmetric group and s (a) = ±1 
dénotes its signature. The square of the absolute value of this Van der Monde is 

\V(X1,...,Xn)\2 = 
cr,rGEn 

^MAr(1)-1Â,T(1)-1. \A(n)-LT R(N)~1 

Now we integrate thèse products over a product of circles: 

JO<Ek<2iv 
{m)NJ(UM(f,m) +xslkx+xkx+x 

f0<Ek<2n 
exp{iOk(a(k)-r(k)))d6k 

Since dOk is a probability measure, this last intégral is equal to 1 when a(k) = r(k) 
and 0 otherwise. For this reason 

{UM(f,m) 
1 - Xi 

Ail 

2 
d/x(T"(C)) = 

«TES™ 

|Al|2«r(l)-2__|An|2o-(»)-2 

n^iAi i2 
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The second intégral is equal to 

/T"<C) ,eE„ ,-<i I 

1 1 - Kdddddu)IK(j) I 
1 - Xi/Xj 

2 
dii(Tl(C)) 

vrd 
'T"(C) (t6Eb 

i n A i , . . . , A „ ) i 2 
l ^ i ) , . . . ^ ^ ) ) ! 2 

X°U) I 2 

vrd Aj 
i/x(T"(C)) 

vrd 
<r€£n 7<? 1 

X I2 

d+d1r 

The first and second intégral are equal if and only if 

d+wx1r 

lAi l2 ( j (1 )~2 . . . IA \2aM~2 = 
d+d1d+d1r 

lA (̂j)|2 

or, in other ternis, if and only if 

d+r14e 

\\1\2°w-2...\\n\2aW-2 = 

d+xe+er 
| A C T ( 1 ) | 2 ( " " 1 ) | A C T ( 2 ) | « . . . | A C T ( „ _ 1 ) | 2 . 

This last equality is obvious. 

4.6. Proof of Proposition 5.— Gi is clearly open and semi-algebraic in Un(C). 
For this reason, "mil measure in Un(C)" is équivalent to "dense in Un(C)". We shall 
prove now this last property. 

Consider VhA C Un(C) x Un(C) defined by {UUU2) G Vi,A when (U^UiAU2)ij = 
0 for i > j , that is the flag defined by U2 is fixed by (UiA)#. Vi^ is a connected 
smooth real algebraic manifold. It is a locally trivial bundle over Y A with fiber Tn(C). 
Since the map (Ui,U2) -> U2U\AU2 taking Un(C) xUn(C) into GLn(C) is transversal 
to the upper triangular matrices, which can be seen by varying U\ alone, it follows 
that Vi.a is also a smooth variety. So a polynomial which vanishes on an open set in 
Vi,a vanishes identically. It will suffice to prove that the set of (C/i, U2) G VI,A such 
that JJ\A has distinct eigenvalue modules is dense in Vi,A. Now the eigenvalues of 
U\A are the diagonal éléments of U2UiAU2. The set of (UiM2) G Vi,a where there 
are equal modulus eigenvalues on the diagonal is given by the équations 

(Vt.k) {U;u1AU2)iAUiU1AU2)^ = (UZUiAU^kiU^AU^k. 

So, if we show for each (z, k) that there are (f/i, U2) such that the equality fails, then 
the variety defined by Vi,k is nowhere dense and the finite union of nowhere dense 
sets is nowhere dense. Let A = V\DV2 be a singular décomposition of A: V\ and V2 
are in Un(C) and D = Diag(di,..., dn) with 0 < d\ ^ • • • ^ dn. We know by the 
hypothesis that there are at least two distinct dj. This gives two unitary matrices U\ 
and U2 such that 

U2¥UXAU2 = Diag(di,..., dn) 

ASTÉRISQUE 287 



ON RANDOM AND MEAN EXPONENTS 17 

with some pair (<7M . d,.2 ) of différent moduli. By composing U2 with a permutation 
matrix P, P*U2U\AU2P permutes dn, dj2 to any two positions we wish, so we are 
done. 

5. Proof of Theorem 8 

We may décompose the measure /1 along §02(M) orbits. Then we are reduced to 
comparing the intégrais 

JSQ2(R) 
loglXA ReA)\du(0) = 

vrd 
log \\A(0)\\d9 

for Det A > 0 and 

'S02(R) 
log|Ai(i^yl)|d/i(tf) > 

JS1 
logP(0)||d0 

for Det A < 0 unless A is a constant times a reflection in which case equality holds. 
Without loss of gênerality we may assume that | Det A\ = 1 and hence that 

X1(ReA)X2(ReA) = ±1 for ail 0 as Det A = ±1. Now we consider 

YA = {(Re,x) e §Û2(M) x S1 : {ReA)x = x} 

and the two projections n§o2(M) : —» SÛ2(M) and II§i : VA —* S1. Then 

Js1 
logP(6>)||d0 

x 
/S02(B) 

log|Ai(iM)| 1 
U;u1AU2) 

U;u1AU2)i 
\-log\\2(RoA)\ 1- Ai(i2e>l)| 1 

A2(/^) | 
dn{9) 

xr 
S02(R) 

log|Ai(iM)| 1 -
\o(R»A)\ 1 
Ai ( /M) - 1 -

XAReA)\-l\ 
U;u1AU2) 

dp(6). 

Now for À1À2 = 1 

U;u1AU2 

A 

i-l 
- 1 - Ail"1 

^2 | 

1 1 
^ _ Aj2 Ai 1 

Ai À2 

: 1 

while for A1A2 = — 1 

1 -
x+d4rd 

Ai 
- 1 -

A:!"1 

A2| 

1 

U;u1AU2)iAUiU1AU2)^ = (UZU 

1 Ai + A2 
1. 

This proves Theorem 8 except for the possibility that Det A — — 1 and log ||A(0)|| is 
identically zéro, i.e. A is a reflection. 
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