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AVERAGING IN DIFFERENCE EQUATIONS
DRIVEN BY DYNAMICAL SYSTEMS
by

Yuri Kifer

Dedicated to Jacob Palis for his siztieth birthday

Abstract. — The averaging setup arises in the study of perturbations of parametric
families of dynamical systems when parameters start changing slowly in time. Usu-
ally, averaging methods are applied to systems of differential equations which combine
slow and fast motions. This paper deals with difference equations case which leads to
wider class of models and examples. The averaging principle is justified here under a
general condition which is verified when unperturbed transformations either preserve
smooth measures or they are hyperbolic. The convergence speed in the averaging
principle is estimated for some cases, as well.

1. Introduction

In the study of evolution of many real systems we can usually observe only few
parameters while other less significant ones are regarded as constant in time. A more
precise investigation may reveal that these parameters change, as well, but much
slower than the others. These leads to complicated double scale equations describing
slow and fast motions which are difficult to solve directly. Such problems were en-
countered with already long ago in celestial mechanics in the study of perturbations
of planetary motion. People noticed that good approximations of the slow motion on
long time intervals can be obtained by averaging coefficients of its equation in fast
variables. This averaging principle was applied in celestial mechanics long before it
was rigourously justified in some cases in the middle of the 20th century (see [18] and
historical remarks there).

Traditionally, averaging methods were employed in the study of two scale ordinary
differential equations describing a continuous time motion. On the other hand, it
is well known that the study of discrete time dynamical systems, i.e. of iterates of
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104 Y. KIFER

transformations (not necessarily invertible), enables us to deal with a wider class of
models and examples and to reveal new effects. Suppose that an idealized physical
system can be described by a transformation Fyy of a (d + m)-dimensional space and
there exist functions z;,...,z4 which do not change along orbits of Fy (integrals
of motion). Then, generically, Fy can be written as a transformation of a locally
trivial fiber bundle M = {(z,y) : = € R, y € M,} with base R? and fibers M,
being m-dimensional manifolds acting by the formula Fy(z,y) = (z, f,y) where f, =
flx,) : M, — M, is a transformation of M,. It is natural to view a real physical
system as a perturbation of the above idealized one, and so it should be described by
a transformation

(1.1) Fo(z,y) = (v +e®(x,y,¢), f(x,y,¢))

where ®(-,-,&) : M — R? and f(x,-,¢) : M, — M,. Since locally M has a product
structure U x M, where U is an open subset of R? and M is an m-dimensional
manifold, and iterates F'(x,y) of any point (x,y) in U x M stay there for all n < 6/e
with small but fixed § = §(x) > 0 we conclude that it suffices to study the evolution
on time intervals of order 1/e only on product spaces and then glue pieces of orbits
together.

In this paper we consider difference equations of the form

X°(n+1)=X(n) =e®(X°(n),Y°(n),e), X°(0) ==z,

(1.2) Yo+ 1) = ((X°(m).Y*(n).c), Y5(0) =y

where X¢(n) = X2, (n) € R, Y*(n) = Y (n) runs on a compact m-dimensional
Riemannian manifold M, ® = ®(z,y,e) is a Lipschitz in x,y,e vector function,
fe(,e) = f(x,-,e) is a family of smooth maps (usually, endomorphisms or diffeo-
morphisms) of M close to f,. Thus (X7 (n),Y; (n)) = F(z,y). The equations
(1.2) usually cannot be solved explicitly and it is desirable to approximate its solu-
tions for small . Returning back to the unperturbed ¢ = 0 case eliminates the slow
motion X¢ completely and gives a rather pure approximation valid only for bounded
time intervals. The averaging principle is supposed to give a prescription how to ap-
proximate the slow motion X¢ on time intervals of order 1/e. Recurrent relations (1.2)
can be regarded as a more general than usual setup for perturbations of dynamical
systems where not only the transformation itself is perturbed but also we begin to
take into account evolution of some parameters whose change was disregarded before.

We note that the standard continuous time averaging setup (see [13]) can be always
reduced by discretizing time to a model described by difference equations of type
(1.2). On the other hand, an attempt to go the other way around faces substantial
difficulties since the standard suspension construction should be implemented now for
different transformations f, and it is not clear how to glue everything together in an
appropriate way. Observe, that (1.2) can be generalized adding some randomness in
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AVERAGING IN DIFFERENCE EQUATIONS DRIVEN BY DYNAMICAL SYSTEMS 105

the right hand sides there so that f.(-,¢) become random endomorphisms, but we
will not discuss this setup here.

Assume, first, that the fast motion Y#(n) is independent of the slow variables, i.e.
flz,y.e) = fy,and so Y (n) = f"y. For an ergodic f-invariant probability measure
1 the limit

. 1 N-—1
(1.3) Bulo) = Jim 5 32 0(r.1") = [ v idut)

exists for p-almost all y. For such y's uniformly in n the solution X7 of (1.2) is close

on any time interval of order 1/¢ to the solution X = X =X . taken at integer

€Zp

times, of the differential equation

(1.4) 2 FX 1), X0 =

where ® = ®,, (see similar continuous time results in [18]). Already in this case the
averaging principle works only for p-almost all initial points y and for different y's
averaged solutions may be different. In the particular case when f is uniquely ergodic
the convergence in (1.3) is uniform in y and for all y, whence the averaged equation
(1.4) and its solution are unique and the latter approximates X<(n), n € [0, N/¢]
uniformly.

The general case (1.2) when the fast and the slow motions are fully coupled is much
more complicated. The averaging principle suggests here to approximate X: by 3(_5,
satisfying (1.4) but with ® given by

n—1
(1.5) B(x) = By(x) = lim - Z[:] ®(x
provided the last limit exists for “most” z and y. If p, is an ergodic invariant measure
of f, then the limit (1.5) exists for u,-almost all y’s and

(1.6) Ba) =, (0) = [ Bl ).

Observe that Lipschitz continuity of ® cannot be guaranteed now without further
assumptions even for smooth ®, and so we do not have automatically existence and,
especially, uniqueness of solutions in (1.4) in these general circumstances. On the

other hand, consider the recurrent relation for X (n)=X f.(n/),
(1.7) X (1) =X () +eBX (n), X (0)=

=€ — J—
which determines X (n) without any conditions on ® and it is easy to see that if ®
is Lipschitz continuous and bounded then

. a < Cre
(1.8) Ogr}}gx;}/EIX (n) — (n)| Cr
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106 Y. KIFER

for some Cp > 0 independent of €. Thus we may discuss the approximation of X*(n)
by X—E(n) under more general conditions when we even do not have uniquely defined
solutions of (1.4).

In general, there exists no natural family of invariant measures u,, * € R?, since
the transformations f, may have rather different properties for different z’s and the
averaging principle can be justified here only under substantial restrictions. First,
the averaging prescription relies here on existence of a family of probability measures
i, such that the limit (1.5) exists p,-almost everywhere (a.e.) and it is given by
(1.6) (at least, Lebesgue a.e. in ). Of course, in addition, we need sufficiently good
dependence of ® and f in (1.2) on £ but still, this does not seem to be enough, in
general. The problem here is that the average in (1.5) is taken along orbits of the
unperturbed fast motion but in the perturbed evolution (1.2) we cannot disregard now
changes in the slow variable parameter of the fast motion, and so we have to study
the interplay between unperturbed and perturbed dynamics. Namely, the method of
this paper relies on measure estimates of sets of pairs (z,y) which arrive under the
action of F* to sets of points with a specified behavior of averages for the unperturbed
evolution. Then we will show that the slow motion is close to the averaged one in
certain L'-sense. Required estimates can be done assuming, for instance, that each
Sz is a smooth endomorphism or a diffeomorphism of M preserving a smooth measure
1, on M which is ergodic for Lebesgue almost all (a.a.) . This result is a discrete
time version of Anosov’s theorem [1] which is one of few general results about fully
coupled averaging. Actually, we prove our result under a general condition which is
satisfied in essentially all known cases where the averaging principle holds true and it
does not rely on existence of smooth invariant measures as in Anosov’s approach.

Recently, quite a few papers dealt with a class of diffeomorphisms called stably
ergodic (see, for instance, [5]) which are volume preserving ergodic diffeomorphisms
having a C2-neighborhood of volume preserving ergodic diffeomorphisms. If each f.
from our parametric family belongs to such a neighborhood then our results yield
an L'-convergence in the averaging principle. Moreover, we need ergodicity only
for almost all z’s which suggests to study parametric families of volume preserving
diffeomorphisms which are ergodic for almost all parameter values. When convergence
in the averaging principle in a fully coupled setup (1.2) holds true for any reasonable
® we can naturally regard this as a manifestation of compatibility of f.’s or their
stability within our parametric family.

Observe that our result works in the case when all fis are C? expanding transfor-
mations of M which always possess fast mixing smooth invariant measures p,. On
the other hand, close relatives of expanding transformations Anosov and Axiom A
diffeomorphism do not possess, generically, smooth invariant measures. Still, relying
on specific properties of Axiom A system in a neighborhood of an attractor we will be
able to carry out necessary estimates for u, being either Lebesgue or corresponding
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AVERAGING IN DIFFERENCE EQUATIONS DRIVEN BY DYNAMICAL SYSTEMS 107

Sinai-Ruelle-Bowen (SRB) measures, and so the averaging principle will be justified
in this case, as well. Moreover, using moderate deviations estimates from [12] for this
case we will give an estimate of deviation of the slow motion from the averaged one.
More delicate limit theorems (large deviations, central limit theorem etc.) for these
deviations will be studied in another paper. Some relevant results in this direction
were obtained recently in [3].

Our conditions need ergodicity of measures p, only for a.a. and not all z’s which
is important in the presence of resonances. For instance, let f, be a parametric
family of toral translations. All of them preserve the Lebesgue measure but only
translations with rationally independent mod 1 frequencies are ergodic. Assuming
that these frequencies depend only on the slow variable x we see that, generically,
they will be rationally independent mod 1 for Lebesgue almost all and not all z's.
For such translations and also for some skew translations of the torus (which are both
uniquely ergodic) we will be able to estimate the speed of convergence in the averaging
principle deriving a discrete time version of Neistadt’s theorem (see a comprehensive
exposition of Anosov’s and Neistadt’s theorems in [13]).

The author is grateful to the anonimous referee for several useful suggestions im-
proving the exposition.

2. Preliminaries and main results

Assume that the right hand sides in (1.2) satisfy

(2 1) |<I>(x,y,€)—@(z,v)|+dM(f(:c,y,5) f(z 1))) (€+|$—z|+d1\,(y ’U))
' and |®(z,y,¢)| <

for some L > 0 independent of ¢ > 0, z,z € R? and y,v € M, where ®(z,v) =
®(z,v,0), f(z,v) = f.v = f(2,v,0), fo = f(x,") : M — M for each x € R% is a
Lipschitz map and dj; is the Riemannian metric on M. In Corollaries 2.2 and 2.3
below we will assume also that

(22)  feCo)ller +IfCeller < Land Dy f( - 8) = Day f( )l < Le

where || - ||c is the C* norm of the corresponding map and D, , f is the differential
at (z,y) of the map f : R x M — M. Our setup includes also a family of probability
measure ji,, * € R? on M depending measurably on z. For each n € N and § > 0 set

E(n,d) = {.L‘y ’—Z@xfk 5(1‘)‘>(5}
where ®(z fM x,y)dp, (y). Assume that for all z, z € RY,

(2.3) () - / B (0)] < Lo
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108 Y. KIFER

and there exist a, gy > 0 such that for any 7,6 > 0,k € N, and a compact K ¢ R¢ we
can find dp g (k,0) — 0 as k — oo and n(e) — oo as € — 0 such that for any ¢ < gq
and k < n(e),

(2.4) p((K x M)NF-"E(k,§)) <dpg(k,0) ifn<T/e—k

where du(z,y) = du,(y)dé(z) and ¢ is the Lebesgue measure on R?.

Theorem 2.1. — Suppose that (2.1), (2.3) and (2.4) hold true. Then for any T > 0
and a compact set K C R?,

(2.5) lim/ /1\ sup X5 ,n) - X (n)|dp (y)dé(x) = 0

=0 I (]<n<1/€

where X, (t) is the solution of (1.4).

The conditions (2.1) and (2.2) are clear and rather standard, the condition (2.3)
is less straightforward, in general, while the assumption (2.4) is far from being trans-
parent. We will provide in Corollaries 2.2 and 2.3 two important classes of trans-
formations f, such that (2.3) and (2.4) hold true for any perturbation satisfying
(2.1) and (2.2). Tt is instructive to verify these conditions in the simpler well known
setup when the fast motion does not depend on € and on the slow one, i.e. when
F.(z,y) = (v + e®(z,y,¢), fy) where f is a map of M. Suppose that all measures
t, coincide with the same ergodic f-invariant probability measure pg on M so that
1w ="{x po. Then (2.3) follows automatically and

p((K x MYn F-"E(k,0)) = / po(Ey )de(x)
K
where
E,=E.(n,k,0)={ye M: (X;,n),f"y) € E(k,d)}.

Set E.(k,0) = {y: (z,y) € E(k,6)}. By (2.1) we have that F,(k,0) C E.(k,0/2)
provided |u — z| < §/4L. Hence,

E,.=E;.(n,k,0)={yeM:|X] (n)—2[<d§/4L and f"y € Exj_u(,,,)(k,()‘)}

C fT"E.(k,8/2).

Let K, denotes the closed r-neighborhood of K. By (2.1), Xt (n) € Kppif x € K

€,y
and n < T/e. Thus, if z1,..., 2 is a minimal 6/4L-net in Ky then X§

to a d/4L-ball around some z; provided n < T'/e. Then, for any x € K,
Ey(n,k,0) C U B, ., (nk,8) CU_ f"E., (k,6/2).

(n) belongs

Ty

Since pg is f-invariant and ergodic we obtain from here that
1

po(Ex(n, k,0)) < ZHO(Ez,va(s/Q)) —0 ask — o0

i=1
and (2.4) follows.
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AVERAGING IN DIFFERENCE EQUATIONS DRIVEN BY DYNAMICAL SYSTEMS 109

We note that though the assumption (2.4) does not seem to be weakest possible
it is rather clear that without some compatibility between measures j,, r € R? the
averaging principle is not going to work, in general. Consider, for instance, the fol-
lowing simplest example where d = 1, M is a circle T! of length 1, all f, coincide
with the identity transformation of T!, ®(z,y,) = ®(y) is a C! function depending
only on y. We define p, to be the unit mass at  (mod 1) regarded as a point of
T! which is identified with the unit interval whose end points are glued together. Of
course, each pu, is an ergodic invariant measure of the identity transformation and
(2.3) holds truo as well. Extonding ® as a l-periodic function to the whole R! we

can write ®(z) = [ ®(y)du.(y) = ®(x) for any x € R'. Then dX°(t)/dt = e®(X" (1))
and Z(t) = (1‘/5) sdtlsfi(\s dZ( )/dt = ®(Z(t)). Clearly, X& y(n) =z +end(y), and

//T sup | X5, (n) ~ X, (n)|dpe (y)dé ()

1L0<n<T /e

1

= / sup [t®(x) + x — Z,(t)|dl(z) + O(e).
0 0<t<T

The last integral is positive, in general, (take, for instance, ®(z) = cos? 2w obtaining

Z,(t) = (2m) "' arctan(2nt + tan2mz)) and it does not depend on &, so we do not

have (2.5) in this case. More substantial examples of nonconvergence in (2.5) can be

constructed, as well, but the whole question is not yet completely understood.

Next, we will provide more specific conditions which ensure that (2.4) is satisfied.
We assume now that (2.1) and (2.2) hold true and that for each z € RY we are
given an f,-invariant probability measure u, where f, is supposed to be now a C?-
endomorphism of M, i.e. its differential D, f, is nondegenerate at any point y € M.

Corollary 2.2. — Suppose that each measure i, has a Radon-Nikodim derivative
q(x,y) = q.(y) = dp.(y)/dp(y) with respect to the normalized Riemannian volume p
on M such that

(2.6) laller + 11/qll < L

where || || and || - || are corresponding C' and supremum norms. Then there exists
C = Cr i such that for alln <T/e and k € N,

(2.7) (K x MYNF"E(k,0)) < Cu((Kpr x M) N E(k,9))

were, again, du(x,y) = du,(y)dl. Assume, in addition, that for ¢-a.a. x the limit
(1.5) exists pi-a.e. and it is giwen by (1.6). Then p((Kpr x M) N E(k,d)) — 0 as
k — oo and (2.4) follows. Since (2.1) and (2.6) imply (2.3) then (2.5) holds true, as
well. Clearly, the measures , can be replaced there by the Riemannian volume p.

We claim that (2.4) is also satisfied in the setup of hyperbolic diffeomorphisms.
Namely, we assume now that f,, € R? are diffeomorphisms and for each z there
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110 Y. KIFER

exists a compact f-invariant set A, C M which is a basic hyperbolic attractor for f,
(see [11]). Moreover, we assume that there exists an open set W C M such that for
all x € R,

(2.8) A, CW, LWCW, and Mo W = A,

Denote by p, the Sinai-Ruelle-Bowen (SRB) invariant measure of f, on A,. Recall,
that 1, can be obtained as a weak limit of f}'pw as n — oo where py is the normalized
restriction of the Riemannian volume p on M to W (see [11]). There are several other
important characterizations of the SRB measure ., in particular, it is the unique
equilibrium state of f, for the function

(2.9) pa(y) = —log J;/(y)

where JU(y) is the absolute value of the Jacobian with respect to the Riemannian
inner products of the linear map D, f, : I'y | — 'y where Ty M =13 ® T} is the
hyperbolic splitting. The measure u, sits on A, and, in general, even when A, = M
(Anosov diffeomorphism case) is singular with respect to the Riemannian volume p
so that Corollary 2.2 is not applicable here.

Corollary 2.3. — Suppose that (2.1) and (2.2) hold true and for each x € R% a C?
diffeomorphism f. of M is given which C? depends on x and possesses a basic hy-
perbolic attractor A, satisfying (2.8). Then (2.8)-(2.5) hold true if each p, is taken
to be the corresponding SRB measure. This remains true if instead of SRB measures
we take in Theorem 2.1 p, coinciding for each x with the Riemannian volume pw
restricted to the set W satisfying (2.8). Moreover, for each v > 0 and a compact set
K there exists Ck > 0 such that

o) [ [ s (X ) = X mldpw ()df(x) < Cicy (108 1/2) 74
M O<n<T/5

Note that the convergence (2.5) can be derived from the results announced in (3]
but we consider it useful to have an independent direct proof based on Theorem 2.1.
The bound (2.10) will be derived from estimates of the next section and the moderate
deviations asymptotics obtained in [12]. The estimate (2.10) holds true also when
fs, © € R? are C? expanding endomorphisms of M but (2.5) follows for them already
from Corollary 2.2 since they preserve smooth ergodic invariant measures (see, for
instance, [14]). Moreover, it is possible to extend Corollary 2.3 to the continuous time
case of flows with hyperbolic attractors. If f, do not depend on x then methods from
[12] yield easily much better estimate of order /¢ for the left hand side of (2.10) (cf.
(8]). In the general case Y7 (n) and f;'y diverge exponentially fast and the arguments

z,y
of the next section yield only a logarithmic estimate of speed of convergence in (2.10).
Still, a more precise study of normalized deviations ~*/%(X¢  ([t/e]) — “([t/€))

which should lead also to the central limit theorem here is likely to prov1de the order
V€ estimate for the left hand side of (2.10) in the general case, as well.
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AVERAGING IN DIFFERENCE EQUATIONS DRIVEN BY DYNAMICAL SYSTEMS 111

Next, we consider two types of specific uniquely ergodic diffeomorphisms f, of an
m-~dimensional torus T falling into the framework of Corollary 2.2 for which we will
be able to obtain good estimates of speed of convergence in (2.5). First type of these
diffeomorphisms consists of translations of T defined by

(2~11) f:z:(yl, S aym) = ({yl + Wl(x)}v ) {y'm + Wm(x)})

where w(z) = (w1(x),...,wm(z)) is a vector function of frequencies and {a} denotes
the fractional part of a. All these f, preserve the Lebesgue measure p on T™ and it
is well known (see, for instance, [7]) that f, is ergodic (and even uniquely ergodic)
if and only if the vector w(z) has rationally independent mod 1 components. The
second class of diffeomorphisms consists of skew translations of T™ having the form

(212) f-17(y17~'~»y771)
= ({yl -+ (Y(.TZ)}, {yZ + pQIyI}» B {ym + Pmi1Y1 + -+ p7n,m—1ym—l})

where p;; are positive integers and « is a function on R%. Again, each f, preserves
the Lebesgue measure p and it is ergodic (and uniquely ergodic) if and only if a(x) is

irrational.
Since M is now the torus T" we can regard ®(z,y), y = (y1,...,Ym) as a vector
function on R? x R™ 1-periodic in each Y;» J = 1,...,m. Furthermore, we assume

that ®(z,y) can be extended as an analytic function ®(z,y + iz) to a strip
{y+iz:yeR™ |zi| <k, 1=12,....m}CC™, k>0

with |®] < L. The latter condition can be relaxed to finite differentiability similar to
[13] and it will be used only to get appropriate estimates on remainders of Fourier
series. Following, [13] we say that a map ¢ : R? — R! satisfies Kolmogorov’s non-
degeneracy condition if its Jacobi matrix (9€;/0xy) has rank [ at any point = which
means that d > [ and the maximal absolute value A\¢(x) of determinants of [ x [
submatrices of (0¢;/0xy) is positive.

Theorem 2.4. — Suppose that ® and f satisfy (2.1) and (2.2) and, in addition, ®
satisfies the above analyticity condition and f., v € R? are either all translations of
T™ defined by (2.11) or all skew translations defined by (2.12) with w(x) : RY — R™
and a(z) : RY — R satisfying Kolmogorov’s nondegeneracy condition. Then there
exists co > 0 such that for every ¢ < cp, each compact set K C R? and any T > 0
there exists Cp .. > 0 such that

(2.13) / /A sup  |XE.,(n) - X0 (n)ldp(y)de(x) < Crce”

1 ()<n<T/5

Moreover, if f,, x € R? are given by (2.11) then we can take co = 1/5 and if they are
given by (2.12) then co = 1/(3m+ 7) will do.

Actually, employing the approach from [15] it is possible to prove (2.13) for f,
given by (2.11) with ¢ =1/2.
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3. General estimates and convergence

We begin with a general basic estimate which will be used in the proof of both
Theorems 2.1 and 2.4. Set Ry (z,y) = da (Y, (k), fFy).

Proposition 3.1. — Suppose that (2.1) and (2.3) hold true. There exists C > 0 such
that if 1 < n(e) < T/e and N(g) is the integral part of T(en(e))™! then for all v € R?,
yeM,e€(0,1) and § > 0,

3.1)  sup  [XZ,(n) - Xo(n)] < CeT x (T(S +en(e) (T +1)
0<n<T /e

TG (ST Ru(XE (n(e). Y (n(<)
() p(e).5) (X, ((E)), Vi, (0(2))))
where Ip(v) =1 if v € I and = 0, otherwise.
Proof. — By (1.4)-(1.6) and (2.1),

sup X, (s) — X (k)| < Le,
k<s<k+1

and so by (2.3),
k+1
‘/ ))ds — B X(k))‘ eL?(L +1).

Hence, by (1.2) and (1.4) for X¢(n) = X% (n) and X (n) = X, (n) we have

Ty

X (n) = X ()] < 2nL3(L+1) + | Y2 (DX (R), Y2 (k). €) = DX (k) |
<MLL+ 1) +e S0 [(@(X=(k). Y (k),e) — ®(X=(k), YE(k))|
(3:2) -+ 2| sy (®X7(K), Y=(k)) = BCX(k)) | + & Thog [BOXE(R) = BX (k)]
< L(E 4 L+ 1) + | S0 (B(XF (k). Y4 (k) = B(X(h))|
+eL?(L 4 1) 33 X2 (k) = X7 (K)].

By a version of the discrete Gronwall inequality (see, for instance, Lemma 4.20 in [9])
we derive from (3.2) that

(3.3) |X%(n)— X ()] < (1 +eL(L+1)"! (52nL(L2 +L+1)

2] SRSy (@(X7(K), (k) = B(X(R))))-
Next, setting 25 = X;  (jn(e)) and y5 = Y77 (jn(c)) we obtain by (2.1) that

(34) Supl)éngT/E l:’:(; ((D(XI‘ l/(l‘) YIE z/( )) 5( x, z/(k)»‘

g 2LTL(€) 1 (6)) ' ‘ Z;sl(e() 6 €1 JE(k)? Yl%‘yj (k)) - 6(X55 5(1\)))"

ASTERISQUE 287



AVERAGING IN DIFFERENCE EQUATIONS DRIVEN BY DYNAMICAL SYSTEMS 113

(35) | ZhS T (X5 e ()Y e (0) = D(XE: e (R). )|
LZA =0 R;‘,(;rj,yjﬁ

(3.6) | SHD T (OOXE (). ) — BG5S ) | < LS 1K e () - a3,

and

(3.7) | X2, (k) — 2| <elk

for any z € R? and v € M. In addition, by (2.1) and (2.3),

(3.8) | SR BN (1) = Blas)n(e)| < L4+ 1) PG X (k) - 3]

J7

Observe also that
(39) | TR0 SE) = B(n(e)| < nle)(6 + 2LLugne0) (2 0)):
Finally, Proposition 3.1 follows from (3.3)-(3.9). O
Now we can complete the proof of Theorem 2.1. Observe that by (2.1) and (3.7),
Ri(x,y) = du (f(X5 (k= 1), Y5, (k = 1),¢). fiy)
<dar(f(X 1,,(' 1),Yy, (k=1),¢), f(X

l/(k ) (l‘ - 1))
+da(f(XS (k- c

7Y ( ) E)v f(JT7Y<:f.;l/(k - 1))
): fz(fk 'y))

Y

(3.10) +dar (fi( “,(k
< L(e + Lek + Ry (2, y

=LY L+ Lk — 1))

<eL(1+4 LE) (LY = 1)(L —1)7!

1
)
~1

1)
)
)
)
Integrating (3.1) against p over K x M and taking n(s) = min([n(e)]. [(log2)'~*]) for
some « € (0 1) we derive from (2.4), (3.1), and (3.10) that for any T,y > 0 there
exists C(T,v) > 0 such that

(3.11) //1\ sup |X7  (n)— X (n)|du(r,y) < C(T, )6+ +drp ke (n(e), 0)).

1 0<n<T /e

Letting, first, ¢ — 0 and then § — 0 we obtain (2.5).

4. Proof of Corollaries

4.1. We deal first with Corollary 2.2. Denote by Jac, f, the Jacobian of the linear
map D, f, : T,M — Ty ,M with respect to the Riemannian norms. Since f, is
an endomorphism Jac, f, is bounded away from zero uniformly in y € M and in z
belonging to a compact set. The density ¢, of the f.-invariant measure p, satisfies

(4.1) 4:(y) = Z U(i((f%
efily

SOCIETE MATHEMATIQUE DE FRANCE 2003



114 Y. KIFER

By perturbation arguments, for any compact set V C R? there exists (V) > 0 such
that if ¢ < (V) then the differential D, ,F. : RY x M — R x M is nondegenerate
on V x M and, moreover, its Jacobian Jac; , F; is uniformly bounded away from zero
there. Then for any bounded Borel function g on R? x M,

/ g0 Fu(a,y)dus (y)dé(z) = / g0 Fo(2,9)a:(y) x dp(y)dt(x)
VxM JV M

_ o 6(y) N
(4.2) - /F oy 00 Y e apane)

(z,y)EFI M (zw)

It follows from (2.1), (2.2), and from the implicit function theorem arguments that
there exists C7 > 0 depending only on V such that if x € V| F.(x,y) = (z,v), and

frtv = (wi,...,wg) then F-1(z,0) = ((z1,91), .-, (Tk, yx)) with |x; — 2| < C1e and
|w; —y;| < Cre, i =1,...,k. Thus by (2.1), (2.2) (2.6), and (4.1),

4.3 _ =) . :

(4:3) 2 |Jac1 JF| Z IJacyfz T O = g:(v) + Coe

(wy)EFT(2,0)

for some Cy > 0 depending only on V. Suppose that g > 0 then substituting (4.3)
into (4.2) and taking into account (2.6) we obtain

[ seRdntae < [ g0 + Cedplo)dt(z)
VXM Fo(V x M)

(4.4)

< (14 CyLe) g(z,v)dp, (v)de(z).
F.(VxM)

If (z,y) € K x M then by (2.1) we see that F*(z,y) € Krp x M for all n € [0,T/¢]
where, recall, K, is the closed r-neighborhood of K. It follows that there exists
Cr.x > 0 such that

(4.5) /K 00 P (@)den(1)dl(@) < Crx /K s o))

for all n € [0,T/¢] and taking g = I ) we derive (2.7).

4.2. Next, we consider the setup of Corollary 2.3. First, observe that (2.3) follows
from §14 in [2] (see also [17]). If = belongs to a compact set K then by (2.1),
X;,(n) € X = Kpr for all n < T/e so we will have to consider z-coordinates
in X only. Any vector £ € T(R? x M) = R? @ TM can be uniquely written as
€ =¥ + W where ¢¥ € TR? and ¢V € TM and it has the Riemannian norm
HEN = 1€%) + 1€V where | - | is the usual Euclidean norm on R? and || - || is the
Riemannian norm on M. The corresponding metrics on M and on R? x M will be
denoted by dys and d, respectively, so that if z; = (z1,w), 22 = (22, w2) € R x M
then d(21,22) = |1 — @2| + dp(wi, w2). It is known (see [10] and [16]) that the
hyperbolic splitting Tha, M = TS ¢ T'% over A, can be continuously extended to the

ASTERISQUE 287



AVERAGING IN DIFFERENCE EQUATIONS DRIVEN BY DYNAMICAL SYSTEMS 115

splitting Tyw M =TI'S &' over W which is forward invariant with respect to D f, and
uniformly in z € X satisfies exponential estimates

(4.6) IDfIEN < e gl and  [[Df;"nll < el

forall€ € '3, n € T'%, and n = ng. Moreover, by [6] (see also [17]) we can choose these
extensions so that I'S and I'* will be C'! in z in the corresponding Grassmann manifold.
Each vector £ € Ty, (X x W) = T, X &T,,W can be represented uniquely in the form
E=e¥per e withe¥ e T,x, ¢v €T, and € €T3 . For any small £, 3 > 0 set
C(e. ) = {€ € T(XxW) = €] < ef2|€v]| and €¥] < 3~ |€v]|} and C2, (=, B) =
C"(e,8) NTy (X x W) which are cones around I'* and I'} ,,, respectively. Similarly,
we define C(c, 8) = {€ € T(X x W)« €[] < ef2(|€"] and [¢¥] < eB7"]|€"]} and

C3 (e, 8) =C%(e,8) N Ty (X % W) We claim that there exist ny, 8y, e(8) > 0 such
that if F¥2 € X x WVk=0,1,...,n,n>ny, < By, £ <e(3) then

(4.7) D.FICY(e, ) © an;(s,ﬂ), C3(e.8) D D.F"Ciy (e, )
and for any £ € C¥(e,0), n € Chns (,0),
(4.8) ID-E | = 2" |llglll, 1I1D=E=nlll = e2~" ||l

Before deriving (4.7) and (4.8) we explain how to use them in order to obtain
(2.4). For any linear subspace = of T,(X x W) denote by JZ(z) absolute value of
the Jacobian of the linear map D.F. : Z — D, F.=E with respect to inner products
induced by the Riemannian metric and set J=(n,z) = Z;& JED:F: E(F *2). Denote
also by Ji!(y) absolute value of the Jacobian of the linear map Dy f, : I'y , — 'y
and set J'(z,n,y) = [1'2, J¥e (Y5, (k). Let n" and n® be the dimensions of
Iy, and I} v respectively, Wthh do not depend on x,y by continuity considerations.
If Z is an n"-dimensional subspace of T.(X x W), z = (z,y), and = C C} (¢, )
then it follows easily from (2.1), (2.2), and (4.7) that there exists a constant C'; > 0

independent of x € X and y € M, such that for any small ¢ > 0 and n € N,
(4.9) (1= Cie)" < JZ(n,2) (T (en,y)~h < (L4 Cre)™
For each y € A, and v > 0 small enough set
Wiy, y) = {v e W: du(fhy, fiv) <y Vk >0}
and
Wi (y.y) = {ve W : dy(fiy, fiv) <v vk <0}
which are local stable and unstable manifolds for f, at y. According to [10] these
families can be included into continuous families of n® and n"“-dimensional stable and
unstable discs W?(y,~v) and W) (y,7), respectively, defined for all y € W and such

that W (y,v) is tangent to I';,, W (y,~) is tangent to I'Y, f, W2 (y,v) C Wi(fay,7)
and Wi (y,v) D fr llV;,’(fJ;y,v). For any z,7 € R x M set

d5,(2,2) = max{d(FFz, FF2) : 0 <k < n}
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and
Bi(y,v,n) ={veW: d,((x.y) (x,v)) <~}

Let v € W!(y,v) and assume that BZ(v,v,n) does not intersect the boundary
OW(y.) of Wi (y.7). Set

Vi) = Vit(e,y) = Wi(y.y) 0 By(v, 7. n)
and

V(o k) = Vi (v, v k) = FF({a} x V'(v)), k=1.2,... n.

By (4.7), TV*(v,k) C C"(e,3), k =1.2,...,n (where TV is the tangent bundle of V')
and we conclude by (4.8), (4.9) and the volume lemma type arguments (see Appendix
in [4]) that
(4.10) Ch < p (V)T (e n,0) < C
where p" is the induced Riemannian volume on W (y.~) and we denote by C here
and below different positive constants depending on v but not on x € X, y,<, and
n < T/z. By the volume lemma arguments we derive also that
(4.11) p (VI (0) N EZ"E(k,0)) < C(J) (=.n, ’U))_l/)\,r (Vi(v.n) N E(k,d))

where py is the induced n"-dimensional Riemannian volume on V.*(v,n). By (4.7)
and (4.8) it is easy to see that if w € V.*(v) then

(4.12) A(FY (e, 0), FF(row)) < Cexp(=C™Hn — k)
for all k = 0.1,...,n which together with (1.2) yield that
(4]3) |X.i_1'(n) - 1Y.i.ll‘(’”')| < C’S’

i.e. the a-coordinate of points in V!'(v,n) may differ at most by 2Cs. It follows
by (2.1) that if (z,u) € V' (v,n) N E(k,0) then (X< ,(n).w) € E(k,d/2) provided
k< (logl/e)!=" a > 0 and ¢ is small enough. Then, we will have also that for
such k,

[X5,0) x Wi () (w7) C E(k,6/3)

€U

provided 7 is small enough. This together with (4.7) yield that
pv (Vi (v,n) N E(k,6)) < C'p”(T/'I/’A{ij(,,)(Yf.,,(n,),q')) N Ex: (n)(k,0/2))
< CQP(EXf’ ('n)(l“* 5/3))

Ny

(4.14)

where E.(k,r) = {v: (z,v) € E(k,r)} and k < (log1/¢)' . In the right hand side
of (4.14) we can write also pxz () in place of p. It follows from the upper moderate

deviations bound in [12] that

(4.15) e = sup p(E. (k, k*71)) <exp(—c k* 1)
zeX

for each a € (é 1) and some ¢, > 0. Observe that (4.15) remains true with g, in

place of p.
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Now, choose a maximal set of points v; € W¥(y,v) such that V*(v;,7) does not
intersect the boundary of W (y,2v) and d, (v;,vj) = v if i # j. Then U;V*(v;,y) D
Wi(y,v) and V}*(v;,~v/2) are disjoint for different i's. Applying the volume lemma
style arguments as above to V. (v;,v/2) we conclude from (4.10) that

(4.16) S ()< Cpt (W),

i

It follows from (4.11) and (4.14)-(4.16) that
(4.17) P Wily,y) N F."E(k,6)) Zp ‘(vi,y) NEF"E(R,0)) < Cry,

provided § > k*' and k < (log1)'=*. Let B((x,y),¢y) be a ball in R? x M
of radius ¢y centered at (x,y) for some small constant ¢. The family W¥(v,v) N
B((x,y),cv), (z,v) € B((x,y), ¢y) forms a measurable partition of B((z,y), cy) (even
a foliation) and conditional measures of ¢ x p relative to this partition are equivalent
to the corresponding measures p*. Hence, (4.17) implies

(4.18) {x p(B((x,y).cy) N F-E(K,6)) < Cry,

provided ~ is small enough. Choose a minimal finite cover of X x Al by balls of radius
¢y centered at some points (x;,y;), making the above construction for each point
(j,y,) and applying (4.18) we arrive at (2.4) and (2.10) follows from (3.1), (3.10),
(4.15) and (4.18). Since essential estimates concern only volumes on unstable and close
to unstable manifolds where the SRB measures are equivalent to the volume there we
see that (4.19) remains true if we replace ¢ x p by p such that du(x,y) = dp,(y)dl(x),
and so (2.4) and (2.10) remain true with such p, as well.

Findllv, we ])I()V(’ (4.7) and (4.8). Let £ = €YV 4+ & € T.(X x M), D.F"¢Y =
C=CY 4 ¢+ ¢ € Trna(X x M), 2 = (x,w), Dupfrét = 0", and D, fres = .
Then D2e — C¥ 4 (0 b a%) + (C* + 1) amd €3] — CF] V] < Cecolen]
o]l < CeCmeX ], It < C1€%| for some C' > 0 independent of € and ||"]| = e""[|€"|
if n > ng. Hence, for n > ny,

(4.19) ™ + 0"l = Il = I = e |1l — (\r(}(,'n|£‘l"l
and
(120 I+l < I+ Il < el + el

Suppose that [[€]] = ==Y and [|€4]] = 327 |€7. Then by (4.19),
(121> ||Q“ + ’/u” ( SR 30—1 (7(»’,('”)|£X| + %(}m:ﬂ‘zé_—l H&.s”

Put ny = [k~ In(8C" + 5)] + 1, choose ) > 0 so that e > 43Ce" for any 3 < 3
and all n € [n1.2n4], and set £(3) = %min("’i C~'e=2¢m1) Then by (4.21) we see
that D.Fy'¢ € Cp. .. (€,23) and since we have to check (4.7) only for n € [ny.2n,] we
obtain easily from (2.1) and (2.2) that the perturbation Fy of Fy satisfies the first
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part of (4.7) provided By and () are chosen sufficiently small. The second part of
(4.7) follows in the same way.
Next, for n > ny,

UD-FZell > I = 161 ~ ¢ — el — 'l
(4.22) > 6"””5”” (1+2Ce“™)je*| - Clle’]|
' > (e = B le(1+20e™) — 520 ||e"|
> (e = B e(1+20e") = §72%C) (1 + 67"+ e072) €]l
Choose £(f3) so small (for instance, () = 3?) that for all £ < &(3) and 8 < By,

e — efTH1 +20e") —eB72C > (1 + 71 + e 2)es™

for any n € [nq,2n4]. Then, |||D, F(§‘€||| e35||¢]|| for all such n, and so if & small
enough we have also ||| D, F™¢||| = e2*"|||€]||. Using (4.7) and repeating this argument
for D,F™¢ i = 1,2,.... in place of & we derive the first assertion in (4.8) for all

n > n; and the second one follows in the same way.

5. Toral translations and skew translations

First, we write the Fourier series for ®,
(5.1) = Y ®y(x) exp(2mi(k,y))
L€Z77)

where (k,y) = Z:” 1 kjy;, the vector coefficients ®;, are given by

(5.2) (o) = [ Blay) exp(-2mik.y))do(y)
where p is the Lebesgue measure on T™. Set
v(zy) = Y @p(x)exp(2ri(k,y))
ki |k|>N
then by the well known estimates of tails of Fourier expansions of analytic functions

(5.3) rnv(z,y) < ¢y lemcalN

for some cg > 0 which can be written explicitly via the supremum norm of the analytic
extension of ® (see Appendix 1 in [13]). By (5.2), ®(x) = ®¢(x), and so by (2.1) and

(5.1)-(5.3),

n—1 n—1
1 e L — .
Y ) B <t N b DS | S esplamith fy)|
1=0 k:|k|<N  1=0

Next, we will deal separately with translations and skew translations.
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5.1. Consider, first, toral translations f, defined by (2.11). Then we have to estimate

n—1

(5.5) . Z exp(2mi(k,y + lw(x)))| < 2|exp(2mi(k,w(z))) — 1|~
1=0

Let V C R be a compact set and
Uy(n,N)={z e V: |exp(2mi(k,w(z))) — 1| < nlk|”"for some k with 0 < |k| < N}.

It follows by Diophantine approximations type arguments (cf. Appendix 4 in [13])
that for some constant C' > 0,

(5.6) {Uv(n, N)) < Cn(inf Ao(@))HV)

with A, defined before the statement of Theorem 2.4. Set N = N(¢) = [—c¢; loge], n =
n(e) =&, 5 =9d(c) =%, and n = n(e) = ¢ where ¢1, ¢2, ¢3, ¢4 > 0 will be picked
up later. Then by (5.4) and (5.5) for any = € V \ Uy (n, N),

nl

(5.7) ’ 3" @(a, fiy) — Bla)| < O + (loge)>"e2—7%)
=0

for some C' > 0 independent of €. Hence, if

(5.8) min(cpcy, o — ¢q) > c3
then
(5.9) VN E(@(s),n(e)) C Uv(n(e), N(g))

provided ¢ is small enough.
Next, we improve the estimate (3.10) in our particular case. Since f, is an isometry
then dar(f. (Y, (1 - D), f+(fi= ') = Ri—1(x,y) and (3.10) becomes

(5.10) Ri(x,y) < eL(1+ L)+ Ri—1(x,y) < L1+ LI).

It follows from (2.7), (3.1), (5.6), (5.7), and (5.10) that (2.13) holds true with ¢ =
min(es, 1 — 2¢2, ¢q) provided (5.8) is satisfied. Since ¢; can be chosen arbitrarily large
we have to choose only ¢z, c3,c¢4 > 0 so that min(cs, 1 — 2¢2, ¢4) is maximal possible
assuming that ca — ¢4 > ¢3. Set ¢5 = min(ez — ¢4, 1 — 2¢9,¢4) then ¢5 = ¢. Since we
can increase one term in the last minimum only by decreasing another term there, it
is clear that cs will be maximized when all three terms are equal. Solving emerging
then two equations we obtain ¢; = ¢4 = 1/5 and ¢o = 2/5. Taking ¢z arbitrary close
but less than 1/5 we conclude that (2.13) holds true with any ¢ < ¢y = 1/5.

5.2. Next, we consider skew translations f, defined by (2.12). Identifying y € T™
with a vector of R™ having coordinates y; € [0,1), 7 = 1,...,m we define recursively
vectors [y, Ve, (k) € R™ by oy = 4. Y2, (0) =y and fly = (I + P)J2 "y + a(a),
Yf y(n) = + P)Yf y(n—=1) +a(X; ,(n—1)) where I is the m x m identity matrix,
P = (pji) is the matrix whose olements for [ < j appear in the definition (2.12) and
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for [ > j are equal to zero, and a(z) is the m-vector whose first coordinate is «(x)
and all other coordinates are zero. Then

(5.11) ffy=(I+P)y+ Z([ + P)"la(x)
=1
and
(5.12) YZ,(n) = (I+P) y+z I+ P)"la(XZ,(1-1)).
=1

The crucial fact in using the formulas (5.11) and (5.12) is that P is nilpotent, and so
(5.13) Pl =0 forall j>m

: , = (v1,..-,0m m ote b he vector in T whose coor-
For any vector v Uly-.., V) € R™ denote by {v} the tor in T wl

dinates are fractional parts {v1},...,{vn} of v1,... vy, 1e. {-} : R™ — T is the
natural projection. It is clear that

(5.14) Fly=A{fly} and YZ,(n)={¥7,(n)}.

Expanding binomials in (5.11) the coordinates of f]'y can be written more explicitly.
Namely, (see [7], §2 in Ch. 7) f™(y1....,Ym) = (yg )(Oz(.L)), oy (a(x))) where

u"(8) = y1 + np.

(5.15) ya Do 7\
:w+zu,zl( Dy (L s
q q=
where p§7) are elements of the gth power of the matrix P.

Observe, that the projection {-} does not increase distances, and so by (3.7) and
(5.11)=(5.14),

Ry (a.y) = da(YE,(n). fly) <Y, — [yl

5.16 . .
(5.16) < CLn™ Z X5 ,0—1)—x2 < sCL*n™*?

=1
for some C' > 0 depending only on P and m.
Let k = (k1,... k) € 2", |k| # 0 and set Iy = (k) = max{l : k; # 0}. Define
the map Wy : R — R acting by Wi(yi.....y,-1.68) = (41, ... 7,) so that
/U

Yk (8) = Gy (n) = (hoy) +31m 4720”44 0
=1

for any n € N where l/( )(/3) =1, ...,l() are given by (5.15). Observe, that Wy is
one-to-one and the coordinates of W, Y(v1.....79,) can be obtained recursively from
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the formulas

(1 1
ﬁl‘ ml)ln(i - l()!’)/l(” ylk’lupl(,(,‘i (l() - 1) (’W()—l + (11/)))
(5.17) kalupl[I)‘é 2= (lg = 2)! (g2 + 218 + cooy1)s - - -

Yio—thtapi 1 = (1 + c—1a B+ 30 e y))

where the coefficients ¢j;, j > [ satisfy
(5.18) el < ello) K]

for some ¢(m) > 0 depending only on . Next, we will employ an elementary estimate
of Weyl’s sums which can be found on p.p. 215-216 in [19]. Namely, let

W, (n) = Z exp(2miG4 (1))
=1

then it follows easily that for any compact V C R0,

/‘” W, (n)2dl(v) < nl(V )

where, recall, V,. is an r-neighborhood of V. By Chebyshev’s inequality we conclude
that for any n € N and ¢ € (0, 1/2) there exists a Borel set U = Uy, - C V such that

5.19 U) <OV 2!
Vio
and
(5.20) W, ()| < n'~¢ provided v ¢ U.

It follows from (5.17)-(5.20) and the nondegeneracy condition on a(2) that for any
T > 0 and a compact K C R? there exists a constant C'(K,T) > 0 such that

n—1

(5.21) | S experith, fly)| < o'~
1=0

provided x € K7, y € T" and (x.y) € Uy € RY x T with

(5.22) (x p(Up) <C(K,T)|k|"n

where Uy, depends on n, k and ¢. Set now N = N(g) = [—cyloge], n = n(e) = 7,
and ¢ = 0(¢) = 5. Then by (5.4) for any (2,y) € U = Up. < n U

n—1

(5.23) Z O(a f‘ y) — ®(x)| < CET + (log E):{"'E{"(:z)
=0

for some C' > 0 independent of . Hence, if

(5.24) min(cecy, cey) > ¢3
then
(525) I\’LTOE(d(S),’II(S)) cU.
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It follows from (2.7), (3.1), (5.16), (5.22), and (5.25) that (2.13) holds true with
(5.26) ¢ =min(cz, 1 — (m + 2)ca, c2(1 — 2¢))

provided ¢ < 1/2 and (5.24) is satisfied. Since ¢; can be chosen arbitrarily large we
have to choose only ¢, ¢a, c3 > 0 so that the right hand side of (5.26) is maximal
possible assuming that ¢co > ¢3. Set ¢4 = min(cca, 1 — (m + 2)ca, c2(1 — 2¢)), then
¢4 > ¢. Again, ¢4 will be maximized when all three term in the minimum there will
be equal which gives ¢ =1/3, co =3/(3m +7), and ¢y = 1/(3m 4 7). It follows that
(2.13) holds true with any ¢ < ¢o = 1/(3m + 7).
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