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CHAOS VERSUS RENORMALIZATION AT QUADRATIC 
5-UNIMODAL MISIUREWICZ BIFURCATIONS 

by 

Eduardo Colli & Vilton Pinheiro 

Abstract. — We study C3 families of unimodal maps of the interval with nega­
tive Schwarzian derivative and quadratic critical point, transversally unfolding Misi-
urewicz bifurcations, and for these families we prove that existence of an absolutely 
continuous invariant probability measure ("chaos") and existence of a renormalization 
are prevalent in measure along the parameter. Moreover, the method also shows that 
existence of a renormalization is dense and chaos occurs with positive measure. 

1. Introduction 
The quadratic family 

fa : [0,1] [0,1] 
x i—> Aax(l — x) 

a G [0,1], 

is the simplest model that shows the complexity arising in nonlinear dynamical sys­
tems. For a fixed value of the parameter a, supposed to vary along the interval [0,1], 
one is interested to follow the behavior of iterates x0, x\ = /a(#odddddd), ̂ 2 = • • • ? 
in othpr words of orbits 

O(x0)={f"(x0)}n>0 
starting at a point x$. The set UJ(XQ) of accumulation points of O(XQ) gives a clue of 
the asymptotic behavior of the orbit of and is called the uo-limit set of XQ. It turns 
out ([7]) that "typical" starting points xo G [0,1] have equal cj-limit sets. This could 
be stated as follows: for each a G [0,1], there is a set A = Aa such that UJ(XQ) = A for 
Lebesgue almost every XQ G [0,1]. Moreover, there are only three types of sets which 
Aa could be: (i) a periodic orbit, i.e. a set {po,pii • • • ,Pk-\} such that fa{'Pi)) = Pi, 
fa(pi) = P2, • • • 7 fa(Pk-i) = Po'i (ii) a periodic collection of pairwise disjoint intervals 
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258 E. COLLI & V. PINHEIRO 

{IoJu.. -Jk-i} where /tt(J0) = h, fa(h) = h, • • •, fa(h) = h; or (hi) a Cantor 
set (i.e. a perfect and totally disconnected compact set) of zero Lebesgue measure. 

The striking alternation of behavior of fa has been revealed and proved along the 
last three decades. Among others, we know that: parameters for which the typical 
cj-limit set is a periodic orbit are dense (and contain intervals, implying also positive 
Lebesgue measure) ([3], [8]); parameters for which the typical u-limit set is a collection 
of intervals have positive measure (following [4]); and parameters for which the typical 
cj-limit set is a Cantor set have zero Lebesgue measure ([10]). 

Among parameters with a cycle of intervals as its typical cj-limit set, with total 
Lebesgue measure ([9], [12]) we find those for which there is an absolutely continuous 
(with respect to Lebesgue) /^-invariant probability measure. In this case fa is said to 
be chaotic, although more intuitive and not exactly equivalent definitions of "chaos" 
are available. This definition supplies at least some statistical properties for the 
mean growth of derivatives along orbits and imply some dynamical structure on the 
configuration space. 

On the other hand, parameters where the typical cj-limit set is a non-hyperbolic 
periodic orbit are rare in measure. In other words, hyperbolicity is prevalent in 
measure for these parameters. Putting things altogether, we conclude that for almost 
all a € [0,1], the dynamics of fa is either hyperbolic or chaotic. 

A largely used concept in one-dimensional dynamics is the idea of renormalization. 
We say that fa is renormalizable if there is a collection of pairwise disjoint intervals 
{Io,Ii,. .. ,Ik-i} properly contained in [0,1] such that (i) the critical point \ of fa 
belongs to, say, Ik^i] (ii) fa(Ik-i) C I0 and fa{dlk~\) C dl0; (iii) /„ : -> I m is 
a diffeomorphism for all i — 0,.. ., k — 2. In particular, if we call / = h--i, then the 
function f£\I resembles in many ways the general aspect of a quadratic function in 
[0,1], since f^(I) C /, f^(dl) C dl and f£\I has a single (quadratic) critical point 
(equal to | ) . By an affine rescaling a new function g : [0,1] —» [0, 1] could be defined, 
but in general we may not expect g to be quadratic. 

Renormalization is a kind of reduction tool. For example, the behavior of typical 
orbits is completely determined by the restriction f^\I, since we know (see [13] and 
references therein) that for Lebesgue almost every x G [0,1] there is n = n(x) such 
that fa(x) G /. All subsequent iterates must remain inside the cycle from this iterate 
on, because of the invariance properties stated above. This suggests that no complete 
knowledge of the quadratic family could be achieved without the understanding of a 
larger class of functions which contains in particular the ones generated via renormal­
ization. For this class, it would be desirable some qualitative dynamical similarity with 
quadratic functions, not only for technical reasons (proves with recursive arguments) 
but also for the sake of some universality in the conclusions. 

In [3] and [8] (denseness of hyperbolicity), [9] joint with [12] (measure prevalence 
of chaos) and [10] (rareness of Cantor cj-limit sets), this larger class of functions to 
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CHAOS VERSUS RENORMALIZATION 259 

which the quadratic functions belong (and which is invariant under renormalization) 
is composed by all analytic functions / which are holomorphically extendible to a 
neighborhood U of [0,1] in the complex plane, such that f(U) contains the closure of 
U and / is a double branched covering between U and f(U). Recently ([1]) there have 
been considered the case of real analytic functions, but even so some main arguments 
are based on constructions developed in the complex plane. 

Among the results mentioned for the quadratic family, the positive measure of 
chaotic parameters, proved for the first time in [4], is the only one which has been 
stated for C2 families (see for example [16] or [13] and references therein). The present 
work is an attempt to provide techniques restricted to the real setting, weakening 
smoothness considerably, in order to state results that go in the same direction as the 
ones of the previous paragraph. Unfortunately the extent of the conclusions cannot 
be as complete as the ones already proved for the quadratic family. The main reason 
is that our statements are of a local nature, that is, they are valid only for parameters 
in small intervals around some bifurcation values. This does not allow us to go beyond 
the first renormalization, where full families appear. 

Here we deal with C'] unimodal interval maps / , that is those with a single turning 
point c, with the (classical) additional hypothesis that the Schwarzian derivative 

w+w1w+w w+w1 
w+w1w 

3 (f(x)\2 
2 V f'(x) J 

defined for all x ^ c, is non-positive. These functions will be called S-unimodal. From 
this hypothesis some a prion conclusions can be derived. For example, there is at 
most one periodic attractor and if it does exist then it must attract the critical orbit 
0(c) ([15]). Moreover, distortion of derivatives for powers of / can be uniformly con­
trolled (see statements in [13]). This comes from two facts: first, if a diffeomorphism 
defined in an interval / has non-positive Schwarzian derivative, the ratio between its 
derivatives evaluated at two points can be bounded by a constant which depends only 
on the proportion between their mutual distance and their distance to the bound­
ary of /, but not on the diffeomorphism. Second, powers of / have also non-positive 
Schwarzian derivatives, hence distortion bounds may be obtained whenever fn\I is a 
diffeomorphism for some /, independently of n. 

To make clear the results we want to state below, it is convenient to relate renor­
malization with the classification of functions into three types we have made above, 
which are still valid for the larger class we are considering now (see [7]). First, we 
observe that if / is renormalizable then there is an interval v̂ 1) containing the critical 
point and a number k\ such that fkl\I^ is a unimodal function. It may be that 
this function is also renormalizable, and in this case we say that / is (at least) twice 
renormalizable. We can take the maximum chain of renormalization intervals ordered 
by (proper) inclusion 

fO,ll = /(0) D/(1) D/(2).. 
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260 E. COLLI & V. PINHEIRO 

If this chain has size N + 1 then we say that / is N times renormalizable, and if its 
size is not finite (N = oo) then we say that / is infinitely renormalizable. The case 
where the size is equal to 1 is called non-renormalizable. 

It turns out that / is infinitely renormalizable if and only if typical points have a 
Cantor set as its c -̂limit set ([13]). If f is N times renormalizable, its typical cj-limit 
set is determined by the N-th renormalization g = fk"\l(N). If g has an attracting 
fixed point, the cj-limit set is a periodic orbit, otherwise a collection of intervals. Here 
we are using the fact that if g had an attracting point of period greater or equal than 
two then g would be renormalizable, characterizing a contradiction. 

We say that / is Misiurewicz if the critical point c is not recurrent, i.e. c £ UJ(C). 

It may happen that OJ(C) is an attracting periodic orbit. If not, then f(c) belongs 
to a hyperbolic invariant compact set A — A/. From hyperbolic theory, we know 
that for g sufficiently near / (in the C1 topology), there is a ^-hyperbolic invariant 
compact set Ag such that / |A/ and g\Ag are conjugated by hg : A —• Ag. The function 
g i—» Ag is in fact C1 and is called the hyperbolic continuation of A. Now we embed 
/ in a Cs family (/a)„, where fo — / , and call w the point belonging to A such that 
w = f(c). As a varies, w has its continuation wa = hfa(w) and the critical point c 
has its continuation ca, which is well defined by the Implicit Function Theorem, using 
that c is quadratic. We will say that (fa)a iy transversal at a = 0 if 

d 
da 

fa(Ca) - Wa) ^ 0. 

Without loss of generality, we assume ca = c and d 

da 
fa(c) -Wa) > 0. 

Theorem 1.1. — Let f : [0,1] —> [0,1] be a CA S-unimodal non-renormalizable Misi­
urewicz function, without periodic attractors. Let (fa)a be a CA family with fo = f, 
transversal at a = 0. Then there is e > 0 such that 

(1) for almost all a G [—£,£], /«, is chaotic or renormalizable; 
(2) parameters for which fa is renormalizable constitute a countable union of closed 

intervals which is dense in [—e,e\; 
(3) parameters for which fa is at the same time non-renormalizable and Misi­

urewicz have zero Lebesgue measure in [—s,e]. 

All items of Theorem 1.1 are new for non-analytic families (the third item is anal­
ogous to the statements in [14]) 

As a corollary of the method, we are also able to show that parameters for which 
fa is chaotic have positive Lebesgue measure in [—£,£], assertion which has already 
been proved, even in more generality, for C2 families (see [16] and [13], Chap.V, 
Section 6; in fact, they prove that the relative measure goes to one at the bifurcation 
value). The techniques, however, go in a totally different direction, since they work 
with exclusion of "bad" parameters (which in general include everyone for which there 
is a renormalization), showing then that the remaining ones have positive measure 
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CHAOS VERSUS RENORMALIZATION 261 

and reasonably good expansion properties (an absolutely continuous invariant proba­
bility measure, for instance). These methods however may exclude also some positive 
measure set of "good" parameters, for which one could also prove the existence of 
stochastic dynamics. Here, on the other hand, we show that chaos is prevalent in 
non-renormalizable dynamics and non-renormalizable dynamics occurs with positive 
measure in the parameter. 

Our methods could also be useful to obtain precise estimates of the measure of 
chaotic parameters and even an upper bound for the Hausdorff dimension of non-
renormalizable non-chaotic parameters, provided enough control was achieved in con­
figuration space (see [5], for attempts in this direction for C2 families). 

After suitable changes in the conclusion, we could drop the assumption that the 
bifurcating map is "non-renormalizable" in Theorem 1.1 by writing, instead, that / 
is finitely renormalizable. In this case, / would be TV times renormalizable (TV ̂  1), 
Misiurewicz and without periodic attractors. Then for the transversal family (fa)a 
we would have two possibilities: (i) fa is at least TV times renormalizable for all 
a G [—£,£], for e > 0 small; (ii) fa is at least TV times renormalizable for a G [—£,0] 
and at least TV — 1 times renormalizable for a G (0,^]. The first statement might be 
rephrased, respectively, into: (i) almost every a G [—£,£"] is chaotic or TV + 1 times 
renormalizable; (ii) almost all a G [—£, 0] is chaotic and TV -f 1 times renormalizable 
and almost all a G [0,c] is chaotic or TV times renormalizable. The proof would run 
on in the same way, with minor adaptations. 

The proof of Theorem 1.1 uses a result proved in [2]. Some "starting conditions" 
must be satisfied for the functions fai a G [—£,c], allowing an inductive argument to 
work. This will be better explained in the next section. 

2. Mounting the proof 

Let / : [0,1] —• [0,1] be an 5-unimodal CA function and c its critical point. Assume 
that / is Misiurewicz, i.e. the critical point c is not recurrent, and / does not have a 
periodic attractor. The following definitions and Proposition 2.2 can be found in [11] 
(in fact without the Misiurewicz hypothesis). 

Let x G [0,1] and T(X) ^ x be such that 

f(x) = f(r(x)), 

and let Vx = (x,r(x)). 

Definition 2.1. — A point x G [0,1] is nice if fn(x) 0 Vx for all n ^ 1. In this case Vx 
is a nice interval. 

For example, every periodic orbit contains a nice point, for instance the one maxi­
mizing the value of / . Moreover, as / does not have a periodic attractor then there 
are periodic points arbitrarily near c, assuring arbitrarily small nice intervals. 
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Let Ux C [0,1] be the set of points that visit Vx at least once (including the points 
of Vx ), and 

A, - [0,1] \ Ux 
The following Proposition is proved in [11]. 

Proposition 2.2 
(1) If I is a connected component of Ux then there is n such that fn : / —• Vx is 

monotone and onto. This function is called the transfer map from I to Vx. 
(2) In this case, the intervals of the collection 

{/,/(/),...,/"(/) = VX} 

are pairwise disjoint. 
(3) The set Ax is invariant and hyperbolic (hence with zero measure), and if w G A./; 

is such that fn(w) 0 Vx, Vn ^ I, then Ax accumulates from both sides on w (for 
short, w G A;r \ dAx, where dAx denotes the set of points of Ax which belong to the 
boundary of a connected component of (0,1) \ Ax). 

Proof. — See [11]. 

As / is Misiurewicz, there is a neighbourhood V of c such that fn(c) 0 V, Vn ^ 1. 
Take a hyperbolic periodic nice point y in V (all periodic points must be hyperbolic 
under the hypotheses, since Sf ^ 0 implies that nonhyperbolic periodic points must 
be attractors). Then V y C V and, as fn(c) 0 Vy, Vn ^ 1, it follows from Proposition 
2.2 that f(c) G Ay \ dAy. In other words, f(c) is accumulated from both sides by 
arbitrarily small connected components of Uy. 

Now we define a new nice point as follows. Take z G Vy Pi [0, c) such that f(z) G dl 
for some connected component I oîUy. As /(c) G Ay\dAy, z can be chosen arbitrarily 
near c, so that 

\VZ\ 
IK I 

can be as small as desired. With a minor modification in context, the following 
Proposition is also stated in [11]. 

Proposition 2.3. — Let I be a connected component ofUz and, by Proposition 2.2, let 
n be such that fn : I —> Vz is monotone and onto. Then there is I D I such that 
fn : I —> Vy is monotone and onto. 

Proof. — Let T be the maximal interval containing / such that fn\T is monotone and 
fn(T) C Vy. It is easy to see by Proposition 2.2, item 2, that I C int(T). Supposing 
by contradiction that fn(T) ^ Vy, there is at least one connected component L of T\I 
such that fn(L) C Vy. By the maximality of T, there is j < n such that c G dfJ(L). 
Again by Proposition 2.2, p (I) H Vz = 0, hence z G ft(L) (or r(z) G fJ(L)). But 
fn(L) C Vy implies fn~j(z) G Vu. contradiction, since f(z) G A.„. • 
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Let (fa)a be a CA family of 5-imimodal functions with fo = f\ transversal at a = 0, 
where a varies in the range [—£,£:], for some e > 0. As y is a hyperbolic periodic point, 
it has a continuation ya defined for small values of a. Also z has a continuation z(l, 
since it is a preimage of y. Moreover the hyperbolic sets Ay and Az have continuations 
AyM. and AZJl and the whole "hyperbolic structure" is preserved. This could be stated 
as follows: for each sufficiently small a there is a homeomorphism 

ha : [0,1] x Vz [0,1] \ VZA 

such that 
f:;°ha{x) = haof»(x), 

whenever {x, fo(x),..., fo(x)} c 1] \ Vz- In particular, Proposition 2.3 remains 
valid (if adapted to the continuations) for a G [—s, s}. 

Lemma 2.4. -— Let f" : I —> VZti be the transfer map of some preimage I of VZa, and 
let ,//; : 7 — Vya be its extension. If I fl [fa{za), 1] ^ 0 then I C [/„(s„), !]• 

Proof — Otherwise fa(za) G int(J) and f'al(fa(za)) G VVn, contradiction, since by the 
choice of z the orbit of za never intersects VVa. • 

Now we fix some notation, which the reader can follow with the help of Figure 1 (de­
picted for a > 0). Let w > w be a point of Ayi for a = 0, and ira its continuation. Since 

dr 

dv 

u) \ id] 

dd52d 

fn(Ua) 

fa 

V. 

d+dr 

FIGURE 1. Mounting the proof 

A/; accumulates from both sides in tv. we may suppose that \wa — wa| <C \wa — fa(za)\-
By requiring e > 0 small enough we also beg that fa(c) < wa: for all a G [—s. s}. 
Let W = W(l be the collection of preimages of VZa intersecting [fa(za). wa]. For each 
UJ — \jJ G W let \V : UJ Vz be its transfer map, and let UJ — UJ,, be its extension 
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domain relative to VVn. Although hidden in the notation, we look at W as a function 
of both parameter and space, defined in the domain 

Ua,x) ; x G u(na G [-£,£]}. 

We will adopt capital letters to indicate two-variable dependence in other situations. 
For example, we write F(a,x) = fa(x), so that partial derivatives are denoted by 
Fa, Fx, /\,.r. Fxa, etc. In this notation, compositions are denoted with respect to 
the second variable (configuration space), for example W o F means the function 
(W o F)(a,x) — W(a, F(a,x)). The powers Fk are inductively defined as Fk\a.x) — 
F(a, Fk~l(a,x)) and we write Fk. Fk, etc, for their derivatives. The notation (Fx)k\ 
in turn, means the k-th power of the .x-derivative of F. We sometimes treat these 
functions as functions of one-variable (the x-variable), writing expressions as F(x), 
meaning /•"(//. ./•). or F\I, meaning f(l\F where / is an interval, whenever it is clear 
that the parameter is fixed. 

In Section 5 wre will show that the transversality of the family (fa)a at a = 0 implies 
that the critical value fa (c) transversally crosses the hyperbolic set AZti not only at 
w(l, for a = 0, but also at nearby points for small parameter values. In particular, if 
we fix some preimage OJQ of VZ(I, whose continuation is cuo.a, the set of parameters 

Jo = {a G [-c.s] : fa(c) G UJ()M} 

is an interval, for e small (see Figure 2, where J() occurs for a < 0). Moreover, we will 

fa(c) 

dd+r 

dd+ d+dr 0 4-- a 

dr+d 

FIGURE 2. Evolution of the critical value 

show that the set 
r = { a e f - M : /„(r)e A-,} 

has zero Lebesgue measure. Hence all of our assertions will be made for a fixed 
preimage CJQ to which the critical value belongs, for parameters in the corresponding 
interval Jo. 
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We now focus our attention on the first return map <1> = $r/ of VZ(i, for parameters 
a G Jo, for a fixed CJQ = uoo,a (see Figure 3). The connected component of dom(<F) 
containing the critical point c is called the central interval and will be denoted by 
7o = 7o,a (note that ^(djo) C dVZa). The restriction 

if = $|7o = W()oF|7o 
s called the central branch, where Wo : UJQ —» I7u is the transfer map associated to UOQ. 
The remaining connected components of dom(<3>), together with the central interval, 
:over VZa up to measure zero. They form a collection which will be denoted by V, 
where for each TT G V we have F (re) = uo, for some uo G W. In other words, 

P = <T>|TT = IT o F|TT : TT —> 

is a diffeomorphism, where W : uo —> 17 ; is the transfer map associated to uo. Each 
7T G 7-Ms called a regular interval. 

dv 

drd 

F 

7o TT 
dd 

vd 

dv 

H 

P 

<< To 7T 

d sd dvf 

/3 <w VZi, 

Vz.r 
H(a.c) 

70a 

< 

Jo a 

FIGURE 3. Return functions 

A further refinement is made, obtaining from $ a new map <f>o, defined in VZa (up 
to measure zero). This map coincides with «F in the central interval, and outside it 
corresponds to the first entry map into 70. The domain of $0 is composed by the 
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central image together with a collection B of intervals called the preimages of the 
central interval. To each preimage ft G B we define the diffeomorphism B = $o|/3 : 
ft —> 7o, assigning 7Ti, 7r2,..., 7rn such that /3 C TTI. PI(/3) C 7T2, . . ., (Pmo- • •oP1)(ft) c 
7Ttn+i, . . . , (Pn o • • • o P\)(ft) = 7o, where Pm : 7rm —> is the restriction of $ to 7rm, 
m = 1,. . . , n. We also define 

W(/3) = (P„o.--oP1)"1(U1), 

which in particular coincides with 71*1 in the case n = 1. 
Of course all definitions above depend on the parameter a, which is allowed to vary 

in the interval JQ. Capital letters again are used to denote two-variable functions. 
The interval 70 = 70,« is continuously defined for all a G Jo- The same is true for 
each 7T G V and ft G B. Figure 3 shows what should be the evolution of the connected 
components of dom$o with respect to the parameter, along the interval JQ. Among 
others, we will show that H (a, c) transversally crosses these components. 

A number of requirements for the map $0, which we call starting conditions, must 
be satisfied, in order to start an induction procedure, developed in [2], that proves 
Theorem 1.1. We separate these requirements into three parts, listed below. We are 
implicitly assuming non-positive Schwarzian derivative. 

Geometry. — There is 77 > 0 small such that 

l7o,«| 
\y,,\ 

< m 
s+dr5 

dist(/ia.7o.a) 
< V: 

d+rd 
dist(pa,dVZa) C r/, 

for all a G Jo and ft G B. Moreover, for each ft G B, the diffeomorphism B : ft —> 70 
is extendible to a 77"11/̂ -neighborhood of ft. for all a G JQ. 

These conditions are uniform in the parameter and have been considered in previous 
works (see [6] and [7], for example). 

Central branch. — Hxx ^ 0, Ha / 0 and there is 6o > 0 small such that the quotients 

|7(.| 
/ / , , , I 
//,,. bol 

Hax I 
dd |./0| 

Haa 1 
dv 

vrd H-rj-a I 
H,, 

are smaller than £0, for all x G 70,a and a G Jo. 
In particular, these conditions imply small distortion of Hxx and Ha along x G 70.a 

and a G JQ. 

Preimages of the central branch. \BX\ ^ 2. for all ft G S, x G i,. a G JQ. For each 
i G B. let 

J(ft) = {a G Jo ; ImHnU(ft) ^ 0 or \ImH\ ^ h\VZa\}. 
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Let V be the mean value of Ha(a,c) along a G Jo- Then there is Si > 0 small such 
that the ouotients 

B„ 
BXV 

|7()I • 
Bxx 

(B,.)2 1701 
Bx„ 

(BXYV\ 

|7()| ' 
B„a 

(BX)2V2 
l7o|2 

II,.,., 

dd+dr l7o|2 
dd1r 

dr+dr1e 

are smaller than S\, for all x G A,., a G J(/3) and (3 e B. The first quotient implies 
that preimages are transversally crossed by the critical value of H, and the second 
implies small distortion of derivatives of the functions £?:/?—> 70. 

The following Theorem is proved in [2], when <I>o is C00 • In Appendix A we show 
that in fact C3 is enough. 

Theorem 2.5 (Colli). — If $0 satisfies the starting conditions Geometry, Central 
Branch and Preimages of the Central Branch, for sufficiently small rj > 0. So > 0 
and S\ > 0 then 

(1) for almost all a G Jo, fa ls chaotic or renormalizable; 
(2) parameters for which fa is renormalizable constitute a countable union of closed 

intervals which is dense in Jo; 
(3) parameters for which fa is chaotic have positive Lebesgue measure in Jo; 
(4) parameters for which fa is non-renormalizable and Misiurewicz have zero 

Lebesgue measure tn Jo-

Therefore we are left to prove that, given 77 > 0, So > 0 and Si, there is a choice of 
Vz and e > 0 such that for every map <I>o as above, constructed for a G Jo, Jo C [—£, e], 
the starting conditions are satisfied with the constants 77, So and S\. 

In the proof we rely mostly on expansion estimates which comes from the Misi­
urewicz hypothesis. It is known that distortion of derivatives can be obtained using 
expansion along iterates, and the same will be true for the quotients mentioned above, 
related to distortion involving both the parameter and the configuration space. The 
estimates are, however, more delicate, and recovering of bad derivatives must be 
achieved in unusual manners, mainly when parameter is involved. We call circular 
recovering the ensemble of these techniques, which are developed in Section 4, and 
their first applications appear already in Section 5, where the first derivative with 
respect to the parameter appears. 

In addition to expansion obtained from the proximity of a Misiurewicz bifurcation, 
the techniques exposed in Section 4 use also the geometry generated by the dynamics 
and a priori distortion coming from the hypothesis on the Schwarzian derivative. 

We believe that this result could be stated without the Misiurewicz hypothesis, 
but some obstacles should be bypassed. First, a transversality condition should be 
formulated for germs of families unfolding a general non-renormalizable map. Second, 
some features of the geometry should be adapted. And third, some expansion would 
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be desirable, unless a completely different approach could control the quotients without 
expansion (more or less like the Schwarzian derivative controls distortion even if little 
of the dynamics is known). 

The Sections are organized as follows. In Section 3 we briefly discuss constants 
and their hierarchy, and state immediate consequences of non-positiveness of the 
Schwarzian derivative. The main one is Corollary 3.4, proving the Starting Conditions 
called "Geometry". We are left to obtain the remaining Starting Conditions, a task 
which is achieved step by step. In Section 4 we develop the techniques mentioned 
above which we call "circular recovering". There we deal with the expansion rates of 
the transfer maps W : UJ —> VZa, for UJ G W. In fact, more than simply estimating Wx, 
we also look at derivatives of intermediate iterates, like F'\UJ if i < k and W — Fk\uj. 
Moreover, we are able to recover not only "bad derivatives" but also "the square of bad 
derivatives", which is essential to Section 6. In Section 5 we explore the transversality 
assumption on the bifurcation and control the quotient Wa/Wx (and also intermediate 
iterations). This quotient is related with the way pre-images UJ of VZA are crossed by 
the critical value. We also prove that the set of parameters T where the critical value 
does not belong to any of these pre-images has zero Lebesgue measure. In Section 6 
the remaining quotients for the transfer maps W are controlled. 

In Section 7 we obtain the Starting Conditions called "Central Branch". Estimates 
of Sections 5 and 6 are used, since the central branch H : 70 —•» VZa is the composition 
Wo o F|7o (recalling that Wo is the transfer map of the pre-image UJO of VZu to which 
the critical value belongs). 

In Section 8 we work with regular branches P : TT —• VZA and their compositions, 
which form the maps B : [3 —-> 70. Recall that P is the composition W OF\TT, for some 
W '. UJ —> VZa, UJ G W. The goal is to control expansion of compositions, since there 
are also bad derivatives for some of the P's. But bad derivatives may be recovered as 
in Section 4, with ideas resembling "circular recovering". 

In Section 9 we study the first derivative with respect to the parameter for com­
positions of regular branches and we achieve control on the first quotient BA/BX of 
the Starting Conditions "Pre-images of the central branch". The remaining quotients 
are obtained in Section 10. 

Everywhere we have to work with mixed derivatives of compositions, using the 
formula stated in Appendix B. In Appendix A, as we said above, a key lemma in [2] 
is stated for CA families, instead of (7°°. The same approach could be useful whenever 
one has to deal with saddle-nodes and parameter distortion at the same time. 

3. Conventions, distortion and geometry 

We adopt the following convention on constants. We denote by Co a constant 
greater than 0 which is bigger than any constant used from now on which depends 
only on functions belonging to a CA small neighborhood of fo. This includes universal 
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constants which do not depend even on these functions. Next, we adopt Cy as the 
constant which depends also on the choice of y, and Cz as the constant depending 
on the choice of z. There will be some abuse of notation when we calculate things 
as "3CQ" and after all say that it is smaller than Co- This means that if in some 
previous Lemma we have estimated something with Co and now we are obtaining 
another estimate Co = 3Co then Co is greater than both Co and Co-

The Greek letter ô will be used as an auxiliary quantifier, appearing always as 
"given ô > 0 there is...". We will choose S sufficiently small such that the Starting 
Conditions are satisfied for given 77, ÔQ and S\. 

Remark that we have the freedom to choose Vz (independently of Vy) in such a way 
that the ratio |Vz|/|V^| is small. After the choice of Vz we can also choose £ small. 
For example, we define 

r = r(z) = 2 
\VZ\ 
\Vy\ 

and choose e small so that 
dd+d1r 

IK„| 
< Hz) 

for all a G [—£,£]. Moreover, the constant e has to be chosen small to validate the 
constants Co, Cy and Cz. 

To be more precise, we will be interested not only on the ratio |V2a|/|V^a|, but 
on the size of VZa compared with both connected components of VVa \ VZ(l. But the 
involution function r = ra is Lipschitz with constant Co, for a G [—£,£], so that r(z) 
small also implies that VZu is uniformly small compared with its adjacent components 
oîVya \ VZa. 

Below we introduce the small constant 9 > 0, which will be related to the ex-
tendibility of iterations of the map. It will directly depend on r = r(z). 

Other constants, a = a(y) > 1 and À = y/b~ will depend only on the choice of Vy 
(with s small, of course), and will be related to the rate of expansion outside VVa. 

Finally, we use the symbols "~", " < " and " > ", in the following sense. For some 
fixed small constant £ > 0, say £ = 10"3, C < D whenever D > 0 and C ^ (1 + £)D. 
Then C > D if and only if D < C and C ~ D if and only if C < D and D < C. 

Non-positive Schwarzian derivative has its main consequence in the Koebe principle, 
which is restated in the following form. 

Lemma 3.1. — Given 6 > 0, there is q > 0 such that if f : I —> f(I) is a diffeo­
morphism, Sf(x) ^ 0 for all x e I, I C I is another interval and f(I) is smaller 
than q times the size of each connected component of f(I) \ f(L) then there is a 
6~1\I\-neighborhood I of I in I such that the derivative of f has small distortion in I, 
that is 

d+d1re 

f'(y) 
- 1 . 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003 



270 E. COLLI & V. PINHEIRO 

Proof. — See [13] for a detailed account. • 

Lemma 3.1 has the following important Corollaries, which prove the Geometry of 
the Starting Conditions. They will be used in many points of this work. 

Corollary 3.2. — Given 0 > 0, if r — r(z) is sufficiently small then \uo\ is 0 times 
smaller than the two connected components of uo \ uo. 

Proof. — The transfer map W : uo —* VZ(I is extendible to W : uo —>• VVa. But W 
has non-positive Schwarzian derivative, since it is a power of fa and the sign of the 
Schwarzian derivative is preserved by compositions. Then the Koebe principle can be 
applied to W. • 

Corollary 3.3. — Given 0 > 0, if r — r(z) is sufficiently small then 

M 
dist(7r,av2j 

s+se 

for all TT G V. 

Proof. — By Lemma 2.4, uo C [F(za),l], Vuo G W. Combining with Corollary 3.2, 
uo is as small as we want compared with dist(cj, F{za)), provided r(z) is small. But 
for every TT G V, F(TT) = uo, for some uo G W. The Lemma follows, since F is 
approximately quadratic on VZa. • 

Corollary 3.4. — Given rj > 0, if r = r(z) and e are sufficiently small then 

l7ol 
IK J ' 

s+ss 
s+s 

dist(/3,7o) 
ss 

s+s 
dist(/3,av;j 

s+se 

for all (3 G B. Moreover, for each (3 G B, the diffeomorphism B : (3 —• 70 is extendible 
to a r]~1\[3\-neighborhood of (3. 

Proof. — The first inequality can be obtained with e small. The intervals uo = uoa 
accumulate (uniformly on a) in w — wa. If e is small then UOQ must be small for 
every Jo C [—£,£] and 70 will be small as well, compared with VZa, whose size is ap­
proximately constant. Moreover 70 is small compared with each one of the connected 
components of VZn \ 70-

To prove the remaining assertions, observe that U{(3) is into the connected compo­
nent of VZa \ 70 to which [3 belongs, and B : (3 —» 70 is extendible to B :U((3) —>• VZa. 
By Lemma 3.1, if £ is small then there is an r/~1 \(3\-neighborhood of [3 in U(f3). In par­
ticular the other inequalities are valid and B is extendible to this neighborhood. • 
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4. Circular recovering 

In this Section we deal with expansion of derivatives along the iterates which send 
an interval UJ G W onto VZ(I. We use Proposition 4.1 below, proved for example in 
[13], which assures some expansion of derivatives provided some simple information 
is given about the orbit. In the proof of this Proposition, a loss in expansion at a 
given iterate is compensated by the iterates following it. wdiich is a kind of forward 
recovering of the derivative. Lemma 4.5 below says that the last loss of expansion 
in the derivative could also be recovered by the first iterates. This could be called a 
backward recovering. We call circular recovering the combined use of these techniques. 
The same ideas appear in Sections 8 and 9, in a slightly different context. They are 
in the core of this work and deserve a careful attention. 

Proposition 4.1. — There is Cy > 0, a = a(y) > 1 and s > 0 such that if a G [—e,e] 
then F — F (a, •) has the following properties. 

(1) Ifx,.. .,Fk'-l{x) 0 VUa then \Fk{a.x)\ ^ C~lak. 
(2) Ifx,.. .,Fk-l(x) VZ(, and Fh'(x) G VVa then \Fk(a.x)\ ^ Cylcrk. 
(3) Ifx,...,Fh-l(x)£VZa then \Fk(a,x)\^ C"VA; inf/=() k^ '\Fx{a, F'(a, x))\. 

This constant a = a(y) > 1 will be fixed from now on. The first consequence is 
bounded distortion for iterates outside Vlhi. 

Lemma 4.2. -- Suppose e > 0 small and a G [—£,£]. There is Cy > 0 such that if T 
is an interval satisfying F' (T) n VVa = 0 for all i = 0,. . . , j — 1 then 

F'(a) 

F;.(v) 
2 = X^f 

for all u, v G T. 

Proof. — Write 

\og\Fi(u)\-\og\Fi(v)\ = 
.7-1 

I /=() 
log|Fi;(F'u)|-log|Fc(F'7.0| 

which is smaller than 
.7-1 

x+x1 
i=() 

IF'u-F'vl, 

where Cy = max{|^: log\Fx(a, x)\\ ; x 0 VyJ, remarking that Fx(F'a) and Fx(F'v) 
have the same sign for i = 0 . j — 1. But Proposition 4.1 implies 

1 ^ \Fju - FJv\ >, C-l(jJ-'\F'u - Fjv\, 

proving the Lemma. 
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Now we fix some UJ G W and x G UJ, and suppose a G [—5, s], for £ small. We write 
W : UJ —• 14a as PF = Ffc|u;. The next Lemma says that when the orbit visits the 
interval VVa the square of the derivative can be recovered by the next iterates until 
the next visit of the orbit to VVa. 

Lemma 4.3. — There is Cy > 0 such that if u = Flx G VVa \ VZ(i and j ^ 2 is the 
first integer such that FJu G VVa then 

\Ft\Fu)\-\Fx(u)\sss2>C7\ 

Proof. — Let T — [Fu,wa]. As F is approximately quadratic and e is small then 

\T\ <: C0\F,.(u)f. 

Hence the Lemma will be proved if we show that 

\Frl(Fu)\-\T\^C~\ 

This in turn follows from \Fx\Fu)\ • \T\ ^ C 1, where i is the first integer such that 
F'{T) H Vya + 0, since 1 ^ j - 1 and I F / 1 ' '(F' //)| ^ C'1^-1-1. Now F'(T) is 
an interval intersecting VVa, but with a point, say F'l(wa), outside a neighborhood V 
containing the closure of VVa (see definitions of V and VVa in Section 2). This implies 
that there is d > 0 such that |F7(T)| ^ d. 

By Lemma 4.2, 

\F'(T)\^CUSSSSSS\F;XFU)\-XI 

proving the Lemma. 

The following Lemma is a corollary of the proof of Lemma 4.3. It says that the 
square of a bad derivative Fx(u), u = Flx, may also be recovered by the first iterates 
of the orbit of x. 

Lemma 4.4. — Let i\ ^ 1 be the first integer such that F'llx G VVa. There is Cy > 0 
such that if u = Flx, I < k, is such that u G Vy<i \ VZa then 

iF^ixM-lFJuMsss^C-1. 

Proof. — As in the proof of Lemma 4.3, let T = [Fu,wa]. We want to show that 
|F;.'(.r)| • \T\ ^ C'1. If i is the first integer such that Fl(T) n VVa ^ 0 then 1 ^ ix 
(since T D UJ). Hence it suffices to show that \F'x(x)\ • \T\ ^ C~l. But by the 
bounded distortion of the derivative of Fl\T and since x G T we have d ^ |Fy(T)| $J 
C/y|F,*(a;)| • |T|, for some fixed d > 0, and the Lemma follows. • 

If the square of a bad derivative is recovered by the first iterates then the same 
happens with the derivative itself. This is the content of the following Corollary. Let 
A = X(y) = yfcr(y), where a is given by Proposition 4.1. 
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Corollary 4.5. — Let i\ ^ 1 be the first integer such that Fllx G VVa. There is Cy > 0 
such that if u = Flx, I ^ k, is such that u G VVa \ VZa then 

\F^(x)\-\Fx(u)\ >CZlX\ 

Proof. — By Lemma 4.4, 

\FlHx)\1/2 • \FJu)\ >C71/2. 

On the other hand, x, Fx,..., Fn lx ^ VVa, hence by Proposition 4.1 

2 = X^Li^y + v])+sms+s 

The Corollary is proved if we multiply both sides of the first inequality by \Fxl (x)|1//2 
and then use the second inequality. • 

The following two Corollaries will be directly applied in the following Sections. 

Corollary 4.6. — There are Cy > 0 and X = X(y) > 1 such that the following holds. 
For all x G LU, LU G W with transfer m,ap W = Fk\uu : LU —• VZa and u = Flx, for 
0 ^ / ^ k — 1, we have: 

(l) \Ftl(u)\ZCyl\k-1. 
(2) If u £ Vya then ^-^(Fu^ • \Fx(a)\2 > C'lXk-1. 
(3) Ifu G Vya then |F/A'~/"1 (F//)| • \Fx(u)\2 ^ C~lXs, where 

s = #{/ + l ^ z < / c ; F'xeVyJ. 

Proof. — The first inequality comes directly from Proposition 4.1. It is valid also for 
A since X < a. The second inequality follows if we use the first and observe that if 
u 0 Vya then \Fx(u)\ ^ Co"1!^! ^ Cy1 - For the last inequality we use Lemma 4.3 to 
assure that the square of the bad derivative is recuperated until the next visit of the 
orbit to VVa. From this moment on we use the expansion given by the first inequality, 
with unknown number of iterates surely greater or equal than s. • 

Corollary 4.7. — There are C„ > 0 and X — X(y) > 1 such that 

\Fi(x)\ Z C-lX^ 

for all x G LU, LU G W with transfer map W = Fk : LU —> VZa and 1 ̂  j ^ k. 

Proof. — Let I ^ j be the last iterate such that Flx G VVa and 1 ^ i\ ^ / be the 
first iterate such that Fllx G VVa. If j = I then Proposition 4.1 implies the Corollary. 
Otherwise we write 

\Fi(x)\ = I F j - ' - 1 ^ 1 * ) ! ' \Fx(Flx)\• \Fx-'HF^x)\ • \F^(x)\. 

As Fl+1x, Fl+2x,..., F^x $L Vy , by Proposition 4.1 we have 
2 = X^Li^y + v])+s2 = X^Li^y + v]) 
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In addition, F^},..., F1 1x 0 VZa and Flx G Vya, hence again by Proposition 4.1 
we have IF'-*1 (Fllx)\ ^ C^X1'11. Finally, by Corollary 4.5, |Fx(Fzx)| • iF^fx)! ^ 

d+d1r+d1x 

5. Exploring transversality 

In this Section we combine the estimates of Section 4 with the transversality as­
sumption. For uo G W with transfer map W = Fk\uo : uo —» we may define 
Xco = x^^ = W~l(c) as the "center" of uo — uoa. 

Using the Glossary (at the end of this work), we obtain 

d 

da uj,a 
Wa 

dd 
{&i Xu>,a) 

A; 

7 = 1 

FaoF'-1 

dd+d 
(tt,^,a)-

We want in fact to give estimates on Wa/Wx for every x G uo and even estimates on 
Fi/Fi., for every x G uo and j = 1,. . . , k, as in the following Lemma. 

Lemma 5.1. — There is CY > 0 such that 

I FJ I 
a Fi 

d+d45r+d 

/or even/ x G CJ, CJ G W wit/i transfer map W — Fk\uo : a; —> 14a ana7 j = 1,. . . , k. 

Proof. — By the Glossary, 

FJ 
a dv 

3 

7 = 1 

FaoF1-1 
F>. 

But Fa is bounded by C0 and | i^ | ^ C 'A', by Corollary 4.7. 

Lemma 5.2. — Given ô > 0, there are an integer k = k(ô,y) ^ 1 and pi — (i(ô) > 0 
such that if uo\,uo2 G W have transfer maps Ws = Fks\uos, s = 1,2 wz£/i /ei,/c2 ^ A: 
ana7 moreover xs G u;,s, s — 1,2, satisfy \x\ — x2\ < \x then 

WUl 

\whx 
xi) -

w2jl 

W-2, 
< s. 

Proof. — Let CY > 0 and À = X(y) be as in Corollary 4.7 and let 

CQ > max{|FA| : a G [-£,£:], x G [0,1]}. 

Let k = k(ô,y) be such that 

Write 

CVCQ-
dvr 

1-A-1 
. 6 

4" 

dvr 

Ws r 
dd 

A;, 

7=1 

FaOF*-1 

vfd 
(a,xs) 
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for s = 1,2. If ks > k then 

A-s 

i=k+l 

Fn O F'*"1 

d+d 
dd+d ^ CyCo 

ddv 

1 - A"1 

ô 

• 47 

for s — 1, 2, using Corollary 4.7 and the choice of k. Then we are left to proving that 
k 

U=l 

F„ o f " 1 . 
c+d1 a,xi -

A; 

7 = 1 

d+d1r+d 

d+d1 
d+dr dv 

2' 

But this is true if \xi — x2| < for sufficiently small u > 0. 

Let us see what are the consequences of Lemma 5.2. Let {UJN}N be a sequence 
converging to w at a = 0. In particular the centers xyv = xUN converge to w and 
their continuations a i—• .T/v,a converge in the (7° topology to a i—• wa, for a G [—£,£], 
£ > 0 small. This is easy to be proved since the rates of expansion outside VZa are 
uniform. By Lemma 5.2, {a i—> xN_a}N also converges in the C1 topology. This leads 

to a formulae on 
d 
da 

-wa: 

d 
da 

d+d1r 
oc 

7=1 

FaOF'-1 

Fx 
-(a,wa). 

Now let v > 0 be such that 

Fa(0,C)-
d 

da 
"a dv+d 

la=0 
by the transversality condition. This implies that if Vz is chosen sufficiently small, in 
order that every UJ G W is forced to be near w, and a G [—e: e], for e > 0 small, then 

Wa 
vrd 

[a,x) ^ i /-FA(0,c) , 

for every x G = uoai UJ G W and a G [—s, s]. 
Moreover, if e > 0 is small then for every point x G AZo in [fo(z), w], its continuation 

xa = ha(x) has velocity smaller than J^,/a(c) — This implies two things: (i) to each 
x G Az corresponds (at most) a single point a = a(x) G [—s, e] in the parameter space 
such that /«(c) = xa and (ii) for every UJ G W the set {a G [ — ; /a(c) <E UJ = UJ(1} 
is an interval. 

Define 
r = {aG[-e.cl ; / 0 ( c ) e A , , l 

which is totally disconnected. We will prove below that Leb(r) = 0. Each gap of T 
corresponds to the parameters for which fa(c) belongs to some UJ = UJ(1 G W. The 
collection of gaps in the complement of T will be called j7o, and from the next Section 
on we shall restrict our attention to a particular element Jo of this collection, as 
alreadv described in Section 2. 

Lemma 5.3. — Leb(F) = 0. 
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Proof. — Without loss of generality and for simplicity we will consider in this proof 
only the negative range [—£,0] and will assume the following: for a = —e, fa{c) 
belongs to the leftmost boundary point of some uj\ = uj\^a G W, with transfer map 
W\ = Fni|o;i : UJ\ —* VZu, and any other UJ = uja G W between UJIM and wa has 
transfer map W — Fn\uj : UJ —>• VZa with n > n\. 

For each interval family / = (Ia)a let 

J ( J ) = {a G {-£,e} ; /„(c) G/„}. 

Let T1 = (T^)a be the family of intervals with boundary points <9+T̂  = wa and d-T}x 
the rightmost point of oJi,a. It is not difficult to see that the following reasoning is 
independent of a, so we omit the subindex. Let n2 ^ 1 be the first integer such that 
fn'2(Tl) intersects Vz. Then n2 > n\ and /n2(T1) must contain Vz (in fact Vy), since 
P(d+Tl) Vy, Vi ^ 0, and /* (cLT1) <£ Vy, Vi ^ m -f 1 (by the definition of 14 
and l/,y)- Therefore there is UJ2 G W, ĉ2 C T1, with transfer map W2 — Fn'2\uj2 : 
UJ2 —» Vz. Moreover, any other UJ G W between uj\ and UJ2 or else between UJ2 and 
has transfer map W = Fk\uj : CJ —> Vz with n > n2. 

By Proposition 4.1, the expansion outside VZ is uniform, up to a constant which 
depends only on the choice of z. Therefore, analogously to Lemma 4.2, we have 
bounded distortion for iterates outside 14, this time with a constant Cz. In this 
particular case, this means that 

F-Hx) 
d+d1r * cz 

for every x, 'ty G T1. Hence 
d+d1r 

d+dr 
> c-l\vz\. 

It is easy to see, because of the bounds on velocities, that 
\J(UJ,)\ 

d+d1r 
^ CÛ1C-1\VZ\ = c~l. 

The interval J(UJ2) is in the complement of T. Hence at this stage Leb(r) ^ 
(1 — C~1)\J(T1)\. The argument continues by induction in the remaining connected 
components of J(Tl) \ J(oJ2.), and so on, in order that at every stage a definite z-
dependent fraction of parameters not belonging to V is suppressed from the remaining 
ones. This proves the Lemma. • 

6. Transfer maps 

Let UJ G W and W = Fk\uj : UJ —> 14 n its transfer map. We have already established 
bounds on Wa/Wx in Section 5. In this Section we control the quotients 

W,, Wxa Wxxx Waa Wxxa 
{W,)2' (H4)2' (W4;)'v (Wx)2' (Wx)*' 
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Once more we suppose that Vy is already chosen, and then take Vz sufficiently small. 
We always assume uo G W as above and a G [—£,£], for e > 0 sufficiently small, but 
constants are independent of these choices. In the Lemmas we omit the argument of 
functions. It is implicit that they are calculated for a G [—£,£] and x G uo. If we write 
Fx o F*-1, for example, it means Fx(a,Fl~l(a,x)). In this notation, \F'1 — c| is the 
distance from the critical point to the i-th iterate of F. 

We start by proving a technical Lemma which is a direct consequence of Corollary 
4.6. The goal is to bound the sum 

Sj = 
dv 

•1=1 
2 = X^Li^y + v])+xsls+s 

where j ^ /c, which appears in all Lemmas of this Section. 

Lemma 6.1. — There is Cy > 0 such that Sj ^ Cy, for all j ^ k. 

Proof. — This follows from Corollary 4.6. Separate the sum Sj into two sums: the 
first, containing only those 2 ^ i ^ j such that F'~L G VVa, is bounded by a y-
dependent geometric series, following the third item of the Corollary, and the second, 
containing only those 1 ^ i ^ j such that Fl~~l 0 V{Jal is also bounded by a y-
dependent geometric series, following the second item of the Corollary. • 

Lemma 6.2. — Given 6 > 0, if Vz is sufficiently small then 

\vZa\-
d+d1r 
ds+d1r 

< s 

for all x 6 w, u G W . Moreover, if as above W = Fk\ui then 

IVU 
\FX~~J oF->\ 

F:j 
x :r.:r: (Ff:)2 

< s, 

for all x G uo and j = 1,. . ., k — 1. 

Proof. — - Write 

1 
d+d1rd+dx 

dv 

(Fir 

j 

1=1 

F,.,. o Fl~l 
[Fk-' oF>)(FxoF>-lY' 

for 1 ̂  j ^ k. As \FXX \ is bounded by Co, the sum is bounded by CqSj, where Sj was 
given above, hence by (\)(\,. by Lemma 6.1. The Lemma is proved if we multiply by 
\VZ I and take VZ sufficiently small. • 

Lemma 6.3. — Given Ô > 0, if VZ is small enough then 

ivy2-
wxxx I 
(wxr 

< 6, 

for all x G u) and UJ G W. 
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Proof. — Write 
s+s1es 
(Wx)z 

= Si + 3S2, 

where 

Si = 
k 

1=1 ' 

FxxxoF>^ 
(FrioFi )2(Fr o f -1 )3 

and 

$2 = 
k 

i=z 

Frr o P'-[ 
(Fx~% o Fl)(Fx o f - i ) 2 

1 
d+d1r2 = X^Li^y + v]) 

X X'X' 

We start by estimating \VZ(i \2S'2- By Lemma 6.2, 

s+s1e 
s+s2 = X^Li^y + v]) 

s+w 

is smaller than 8, for every i = 2, . . . , k, provided Vz is small. Using Lemma 6.1 as in 
Lemma 6.2 we have 

|VU2|S2| ^ \VZa\CQCv5, 
which is smaller than Ô/6 if Vz is sufficiently small. 

Similarly, using the first item of Corollary 4.6, we bound \VZa \2S\ by 

C0Cy\VZ(f 
A: 

1=1 
K F ^ o F ^ ^ o F " 1 ) 2 ! - 1 

which is smaller than (5/2, if Vz is sufficiently small, by Lemma 6.1. 

Let k = k(uo) be the transfer time from UJ to VZa, for UJ G W. Let 

TV = min{/e(cj) ; o; G W}. 

By the definition of W, if is small then any UJ G W must be near ica, hence N 
is big. In the following Lemma we use the fact that N/XN is as small as we wish, 
provided Vz is sufficiently small. 

Lemma 6.4. -— Given 6>Q,ifVz is sufficiently small then 

\v,a\-
v 
vrdd+d 

< ô 

for all x G u), UJ <G W . Moreover 

\VZ„\ 
d+d1r+dr 

e+e1e 
(Fx)2 

dv 

for all j < k, where k = k(uj), 
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Proof. — Write 

1 
d+d1r+d1 

FJ 
xa (Fi)2 

J 

1=1 

d+d1r+d 

Wx(FxoF'^) 
+ 

j 

1=2 

Fxx o /•' 1 pi-1 * a 
{FÏ~l o F>){FX o F^Y Ft1' 

We have \Fxa\ < C0, \WX\ >C-X\k and \FX o Fl~l\ > Ct\VzJ, therefore 

dd12dr 
3 

i = l 

FxaoF1'1 
Wx(FxoF'~") 

< CçCy 
k 

dd1+ 

which is smaller than (5/2 if the choice of Vz implies N sufficiently big. 
Moreover, by Lemma 5.1 

I Fl~l I 
d+d1r 

^Cy 

But Lemma 6.1 implies that 

Cy\VZn\-
j 

1=2 

FrrOF'-1 
( ^ o F ' ) ( F x o F - i ) 2 

d+r1 
< 2 

if Vz is sufficiently small. 

Lemma 6.5. — Given Ô > 0, if Vz is sufficiently small then 

IVLI 
Waa 

(wxy 
< 5. 

for every x G LU, LU G W. 

Proof. — Write 
Waa 

(Wx)2 " 
= S, + 2So. + Su, 

where 

d+d1r 
k 

1=1 

F o Fl~l 
1 aa u 1 WxFi 

S2 = 
d+d1r 

i=2 

F,f/oF'- ' F'' 1 
WxFi Fl~l 

and 

S:i = 
k 

t=2 

db+d1rd 

(Ft'o F')(FX o F'^y 
'F;t\2 

Fx-1 

The proof follows as in Lemma 6.4. Note that here denominators are slightly better, 
and \Fi\ can be estimated using Corollary 4.7. • 

Lemma 6.6. — Given 6 > 0, if Vz is sufficiently small then 

ik... i2 if,,., 
d+d1rd 

< 6, 

for all x € UJ, LU G W. 
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Proof. — Write 
Wxxa 
{Wxf 

= Si + S2 + S3 + 2S4 + 2Sb, 

where 

Si = 
k 

1=1 

F o Fi_1 
1 xxa w 1 I R , : ( F F ' o P ) ( F > P - ' F ' 

s2 = 
k 

i=2 

F , , o F ' - 1 ) ( F , o F - , l F;, 1 
(Fx~' o F')'2(F,: o F'-1)4 F r 1 

53 = 
d 

i=2 

oF'-1)(F,oF 
d+d1 

1 
oF'-1)(F,oF 

pi-l 
± XX (Ft1)2 

S4 = 
k 

i=2 

FxxoF^ 2 pi-l 
xa (FTfc-'oF')(FToF'-i)2 Fr~'+1 o F'-1 (Fr1)2 

and 

5K = 
fc 

d+r 

2 = X^Li^y + v]) 
(F*-* o F*)(FX o F*-1)* 

pi-i 
d+1+ 

1 
F,A'"M 1 o F' 1 

pi-l 
d+d1r 

The only "new" term to pay attention is 
oF'-1 s )(F,oF 
Fti+1 (Fr1)2' 

but it can be bounded using Lemma 6.4. 

7. Central branch 

Now we fix Jq, the parameter interval such that the critical value belongs to UJQ G 
W. Therefore the central branch H : 70 —> 14 fi of the first return map to VZa may be 
written as H == Wo o F, where Wo : CJO —> Vza is the transfer map associated to UJO-

All the Lemmas below depend on the fact that Vz and e are sufficiently small, so 
we omit it in the statements. 

The following Lemma shows in particular that Ha(a, x) is nonzero for every x G 70, 
a G Jo and its sign is determined by the sign of Wo,x. 

Lemma 7.1 
HJa,x) 

W0,,(a,F(a,x)) 
v 
2J 

for every x G 70 and a G Jq. 

Proof. — Write 

Ha(a,x) = W0,a(a,F(a,x)) + W0jX(a,F(a,x))Fa(a,x). 
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If Vz and £ are small then Fa(a,x) is very near F(0,c). But in Section 5 we have 
shown that 

Wn , 
s+s1es+ 

£ i/-Fa(0,c), 

and the estimate follows. 

An analogous statement is valid for Hxx. 

Lemma 7.2 
Hxx(a,x) 

W(hx(a.F(a.x)) ' 
• Fxx{().e) < 0. 

for all x G 70 and a G Jo. 

Proof — As the critical point is quadratic, (Fx(a.x))2 < Co\u>o\ for every x G 70. 
Moreover, the function 11 0 • ^0 —» V ,̂ has small distortion, by Lemma 3.1 and 
Proposition 2.3, implying that 

\Wnx\ 2 s+s1e 
M) I 

Also, by continuity, Fxx(a. x) ~ F(.,.((). r). We have 

s+s1e 
Ho.,;(a.F) ~ 

(Fr)2ILo.,.(a.F) Uo.,-, o F 

(W(Kx o F)2 
f Fxx, 

hence the Lemma is proved if we show that 

Co I V U 
Hi..,, 

(W.>..r)2 
is small for points in UOQ. But this is true by Lemma 6.2, choosing Vz small with 
respect to Vv. • 

At this point we are ready to prove the four starting conditions relative to the 
central branch. For simplicity, we write from now on U = Wo to designate the 
transfer map of OJQ. 

Lemma 7.3. - Given 5 > 0. Vz is sufficiently small then 

|7()| 
/ / , , , I 
s+s 

ss 

for all x G 70 and a G Jo. 

Proof. As H = W o F we have 

Hxxx = (IL,, o F)/•:,,,.,. + (Wxxx o F)(Fr)3 + 3(ir,,r o F)FrF,,r. 

We analyze these three terms, each one divided by Hxx and multiplied by |7o|. By 
Lemma 7.2, 

Hxx ~ (̂)(HU: o F), 
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where SQ = Frx.(0,c). Hence 

|7(»I 
I (Wx o F)FXXX 

Hxx 
„ 2C0 

so 
7o |, 

which is smaller than 5/3 if Vz is small (since |7o| <C |K„|)- The second term can be 
written as 

ho\(Fxy Wx o F) 
Hxx 

I I , , , o F 
{WxoFf 

But |F,f < C0|7o|3, 
\WxoF\ ~ \V„,\ 

Wn 
and |7o|2 < Co|wo|, hence the second term is bounded by 

2Ci 
\s«\ 

s+s1s i r , , , o F 
{WxoF)*\ 

which, according to Lemma 6.3, can be smaller than 6/3 if Vz is sufficiently small. 
Similarly, the last term is bounded by 

6QÎ 
dvr \vZa\ Wxx o F 

(Wx o F)2 
which can be made smaller than Ô/3 by the choice of Vz, according to Lemma 6.2. • 

Lemma 7.4. — Given 6>0,ifVz is sufficiently small then 

l7ol 
I H ax 
d 

< Ô 

for all x G 70 and a G Jo • 

Proof. — Writing H = W o F we obtain 
H,a = (W, o F)Fxa + (Wxa o F)FX + (Wxx o F)FxFa 

and then analyze each term when multiplied by |7o| -\Ha\ 1. By Lemma 7.1 we have 

so that 
\Ha(a,x)\ > v 

2' 
WT O Fl, 

l7o|-
Wx o F I 

d \Fxa\ 2C0 
v 

|7()| , 

which is smaller than (5/3 \iVz (and hence 70) is sufficiently small. Also, 

I 7 0 H F J 
d+d1r 

d+d 
2 < 

d 
7 o | - | ^ | - | W ^ o F | -

Wxa o F 
(WX o FY 

As in the proof of the previous Lemma, \FX\ < Co |7o|, \WX o F\ ~ |VzJ/|u;o| and 
|7o|2/|w0| < Co, so that |7„| • \FX\• \WX oF\ ^ 2C,2|VJ. Then Lemma 6.4 implies that 

4C2 
V |v;„| 

I WxaoF I 
(Wx o F)2 

S 
3' 

provided Vz is small enough. 

ASTÉRISQUE 28<> 



CHAOS VERSUS RENORMALIZATION 283 

The same argument combined with Lemma 6.2 is applied to the last term, proving 
the Lemma. • 

Lemma 7.5. — Given Ô > 0, if Vz is sufficiently small then 

\Jo\ Haa 
d < Ô 

for all x e 70 and a G Jo-

Proof. — First observe that | Jn| ^ Co|wo| and 

\Ha\ * 
V 

2 1 
\WxoF\ - v 

2 
ivu 
NI 

Then write 
Haa = (Wx o F)Faa + WaaoF + (Wxa o F)Fa + (Wxx o F)(Fa)2 

and oroceed as in the previous Lemmas, usiner also Lemma 6.5. 

Lemma 7.6. — Given ô > 0, if Vz is sufficiently small, then 

\Jo\- ffxxa 6, Hxx 
for all x G 7n and a G Jn. 

Proof. — The proof is similar to the previous Lemmas, after writing 

//,,„ = (Wx o F)Fxxa + ill',,., o F)(FX)2 
+ (Wxxx o F)Fa(Fxf + (Wxx o /•')i 2/••,„/;, + A;,/-',,.) + (Wxa o F)FXX. • 

8. Expansion of regular branch compositions 

We aim at proving the starting conditions for preimages of the central branch. To 
any preimage (3 G B is assigned a sequence of regular branches 

{-̂ m • TTrn * Vza }rn = l,...,n 
such that B : f3 70 is written as B = Pn, o • • • o Px \[3. Each Pm in turn is written as 
Pm — Wm o F|7rm, where Wm : ujin —+ VZa is the transfer map of ujm G W, OJ7U 7̂  CJQ, 
rn — 1,. . . , n. 

This Section is devoted to estimate the expansion of regular branches and their 
compositions. The ideas involved here are very similar to the concept of forward 
recovering, mentioned in Section 4. A kind of backward recovering appears in Section 
9, when dealing with the first parameter derivative. 

The first estimates give absolute lower bounds for derivatives of regular branches. 
We will see that expansion may be not sure in some cases. Next we show that every 
time there is a loss of derivative for some Pm there is an immediate recuperation for 
PrnA-\ • 
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From now on we choose a constant 0 > 0, and take Vz small so that Corollaries 3.2 
and 3.3 are satisfied. This constant will be chosen sufficiently small, according to the 
needing of various Lemmas until the end of the work. It is implicitly assumed that 
assertions are valid for every (3 G 8 and constants do not depend on (3. 

Accordingly to Section 2, the intervals u;n,^i, • • • ->un have extension domains cDo, 
a?i,..., Qn which are mapped onto VVa. Take uj17l1 for some m = 1,. . . , n. We will say 
that uJm is subordinated to LOQ if urn C So, that UJQ is subordinated to um if UJQ C cDm 
and that UJQ and ujrn are independent otherwise. By construction it turns out that 
one and only one of these situations occurs. In particular, this implies by Corollary 
3.2 that in the first and third cases 

dist(a;m,u;o) ^ 0 X|u;m|, 

and in the second case 
dist(cjm,u0) ^ 0 1\UJQ\. 

Lemma 8.1. — If u)m is subordinated to UJQ, or else ujm and UJQ are independent, then 

oF'-1)(F,oFx+xx1d 

for all x € 7r,„. 

Proof. — Write Pm = WmoF\irm, hence \Pm,x\ = \Wm,xoF\-\Fx\. As Wm : wm VZa 
is extendible to Wm : ovi —• VVa, and is chosen small, then by Lemma 3.1 

\Wm,xoF\ ~ \V, I 
km I ' 

But the hypotheses imply that 

IF*I > Cn-Vdist(o;m)a;o) > C^l0-1/2\cum\^2. 

Therefore 
\pm,A^Câle-li- \v, I 

luU1/2" 
On the other hand, if e is small then |tDm| < 2| Im ,F| V-,t [, hence 

UJ1/2 ^ V2e^2\lmF\Vz„\^2 < CQ91/2\Vz\, 

and the Lemma follows. 

Lemma 8.2. — If wo is subordinated to iom, then 

\pmAx)\>crle-*/2- +q1q+zs 
\vZa\ 

for all x G 7rm. 
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Proof. — As in the proof of the previous Lemma, 

oF'-1)(F,oF I V U 
d 

oF'-1)(F,oF 

On the other hand, also as in the previous Lemma, 

knl <Co6\VZa\\ 

and the Lemma follows. 

These two Lemmas suggest that a bad derivative may occur if UJQ is subordinated 
to ujrn, as depicted in Figure 4. The problem is overcome with forward recuperation, 

ssc 
s+s 

s+s1e 

s+s1e 

/dd+d1e Bm-i X?1 

C 

FIGURE 4. Possible bad derivative in the ra-th iterate 

which we describe now. Let 

Brn = Pmo...oP1|/3, 

hence B — Bn. Let Bni denote the point Brn(x)1 as we did before in other situations, 
when it is clear that there is no possibility of confusion. In this notation, Bm-i G 7rm, 
and F(Brn-i) G ujrni see Figure 4. We call xj1 and x^, respectively, the innermost 
and the outermost boundary points of 7rm, with respect to the critical point c. 

Define 

Pm = Pm(x) = 
\F(xf) - F{Bm.{)\ 

km I 
By the small distortion property of Win : ujm —* Vz , if pm < 1/3 then 

d\st(Bm,dVZa) 
\vZn\ - Pm-

We state two technical Lemmas to be used in the sequel. 

Lemma8.3. — |Pm,* (zg ) | £ \P™Av)\> e ^ 

Proof. — As Wm has small distortion, the distortion of Pm is mostly due to F\7rm. 
But \FX \ increases as the distance from the critical point increases, since Fxx ^ 0. • 
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Lemma 8.4. — \Bm-l ~ C\ 
\x% - c\ 

> C-lol/2 

Proof. — Since Vz is small and next to c the function F is nearly quadratic. • 

As 
1 

Km I J-jrn 
\Pm,x(y)\dy = 

\vZa\ 
km I 

and VZa is at least 0~ times greater than 7rm, according to Corollary 3.3, it is expected 
that |Pm,x| is big for some points in 7rrn. In particular, by Lemma 8.3, |Pm,x(^)| > 
\0~~l. The following Lemma gives a lower bound for \Pm,x{Bm-\)\ as a function of 
Pm-

Lemma 8.5. — \PmABm-i)\ > C^O^pll2. 

Proof. — By the remark above \Pm, X{%F)\ > \® 1 •> hence 

\Pm,,x(Bm,— l) I — |i:>m?x(x )̂| \PmABm-i)\ 
\Prn,x(x7E)\ 

3„_i 
4 

\WnhX(F(Bm^))\ lfa(gm-!) 
\Wm,x(F(x%))\ \Fx(x%)\ 

But Wm x is almost constant in u>m and 

\Fx(Bm-i)\ |Bm_i-c | 
\Fx(x%)\ | x £ - c | • 

and the Lemma follows using Lemma 8.4. 

Corollary 8.6. — |Pn,x(Bn-i)| > C^Q~\ 

Proof. — As F(Bn-i) G W~1(/yo) then pn ~ 1/2. 

Corollary 8.7. — If pm ^ \ then |Pm,.c(Pm-i)| > C^O"1 

Proof. — Directly from Lemma 8.5. 

The following Lemma is the central assertion for forward recovering. 

Lemma 8.8. — If Pm < \ then 

\{Pm+loPm)x{Brn-l)\^CQ-lO-2. 

Proof. — First notice that Bm = PTn(Bm-i) G 7rm+i, and |7rm+i| < 0dist(7rm+i, dVZa) 
by Corollary 3.3. Moreover dist(jBm, dVZa) ~ Pm|V72a|, hence 

dist(v,ôK ) 

\V*a\ 
— Pm t 

for all y G 7rm+i. This also implies |7rm+i| ^ Opm\VZa\. On the other hand, since 
pm. < 1/3, |7rm+i| <C dist(7rm+i,7o), therefore the distortion of Pm+i must be small. 
Then 

\Pm-\-l,x\ — 
IUJ 

Km+ll 
oF'-1)(q 
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Combining with Lemma 8.5 we get 

|(Pm + l O Pm)x(Brn^)\ > C0-Vm1/2<T2. 

proving the Lemma. 

We obtain some useful Corollaries, but first we introduce the following notation. 
For mo ^ mi, let 

^mo.mi — A rn o,mi(^) 
dr 

711 = 1 TlQ 

Pm,x(Bin-i)\ 

which is equal to |(Pmi o • o Prno)x(Brno-i)\, by the Chain Rule. For example, with 
this notation, 

\BX\ = Ai,n. 

Let also Amo,mi = 1 if mo > mi. 

Corollary 8.9. — > ( C ^ 1 ^ 1 ) " > 1. Jn/aci , Amo,n > (C^O71-™0*1* /or a// 
mo = 1,.. . , n. 

Proof. — We prove by (decreasing) induction on mo, starting from mo = n. For 
mo = n we use Corollary 8.6. Suppose now that AniJl > (Co~10_1)n_m+1, for all 
m = m0 + l , . . . ,n . We want to prove that Amo,n > (Co~10~1)n~mo+1. But if 
Pmo ^ ^ tnen 

Amo?n — |Pm(hX(£>mo_i)| • Amo + l,n > (CQ lQ 1)n m° + 15 

by induction and Corollary 8.7. Otherwise pniQ < | , then 

Aroo,n = |(Pmo+1 o P ^ W f U - O I • A,no+2j- > ( C o - ^ - 1 ) " " ' " ^ 1 , 

by induction and Lemma 8.8. 

Corollary 8.10. - If |Pmi,*(£mi_i)| > Co"1*"1 tften Amo,mi >ssssss (C^Q-1)^-^1, 
for all mo = 1,..., m,\. 

Proof. — As in the proof of Corollary 8.9, but now induction starts at mi. 

Corollary 8.11. — In general, 

A „ , > (CN-10DDDDDDDDD-1)ROI-,"O+1 
dd1rd+ 

IK J 

/or every 1 ̂  mo ^ mi < n. 

Proof. — First we notice that 

k>l1/2 
\Vza\ 

< Co01/2 < 1, 

by Corollary 3.2 and Lemma 2.4, supposing also 6 sufficiently small. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003 



288 E. COLLI & V. PINHEIRO 

Suppose m0 < m\. If pmi_i < 1/3, then 

\(Pmi oPmi_i)x(Bmi_2)| > (Co"1^1)2, 
by Lemma 8.8, and by induction, as in the preceding Corollaries, 

Amo,mi > (cN-I0-ir»-mn+i. 

Otherwise pmi_i ^ 1 / 3 , implying, by Corollaries 8.7 and 8.10 that 

A -, > f(7_1rMmi"m° 

Then we write 
r̂no,m i — I Pm i,.7; (Brn 1 — 1 ) I ' ^mo.m 1 — 1 

and use Lemmas 8.1 and 8.2. These Lemmas are directly applied in the case mo — 
m i. 

9. Parameter dependence of regular branches 

As remarked in Section 2, for each ft G B the function B : ft —>• 70 is extendible to 
J? : —» 14n. By Corollary 3.4, as |7o|/|V^a | < 77, provided Vz and e are sufficiently 
small, we choose rj > 0 so that, by Lemma 3.1, contains a 6~l|/3|-neighborhood 
of ft, for some small 0 > 0, where the derivative of B has small distortion. Moreover, 
lA(ft) is completely inside one of the connected components of VZu \ 70. 

We have also defined the parameter interval 

J(ft) = {a G Jo ; ImH (MA{(3) / 0 or \ lmH\ > -\VZa\). 

Observe that, according to the notation of the previous Section, ft C lA(ft) C 7TI, so 
that ImH nU(ft) ^ 0 implies ImH n TTI ^ 0. On the other hand, |ImiJ| > \\VZa\ 
implies | ImF HCJOI ^ ||^o|5 by the small distortion of Wo : ĉ o —> Ka-

We now define F = Y (a, ft), for a G Jo, as the distance between F (ft) and F(c) 
(see Figure 5). As ft G TTI then F {ft) G o;i. We also define Z = Z(a) = | ImF|V;j , 
X = X(a, ft) = Z - Y and r = X/Z. 

The underlining idea in this Section is to better control the derivative of P\ : 717 —> 
T4„ • As Pi,.x. = (IFL;x- oF)Fx, expansion depends on the relative position of F (ft) with 
respect to the critical value, controlled by r. 

Roughly speaking, we deal with the following situations. Fixing ft and taking 
a G J(ft) we may have \lmH D \4J ^ yl^J- In this case, since | ImF D coo\ is 
relatively large with respect to \coo\ the derivative of F outside 70 is always bounded 
by something of the order of |u;o|1//2, which will be enough to our purposes. Otherwise 
a G J(ft) implies ImiJ (MA(ft) ^ 0. In this case we may have r small or not. If r is 
small it means that ft is near dVZa, and the derivative of F is not so small. But if r 
is near 1 this means that ft (and also 717), is near the critical point. The consequence 
is that Im H occupies approximately one half of VZa, which in turn implies that Im F 
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Y d+d1r F 

7Ti : 

.M) 

drd+ Z 

dd+r 7o fl 
F(z„)/-

! 

(. Illl II 1 

FIGURE 5. Placement of F (fi) with respect to the critical value 

occupies approximately one half of UJQ. Once again derivatives outside 70 must be at 
least of the order of |CJ0|1//2-

The next two Lemmas quantify these arguments. 

Lemma 9.1. — If a G J(p) then |7o| > C{]~1T1/2\UJO\1/2. 

Proof. — If I Imi/ | > ±\VZa\ then |ImFncj0| > ^ o | , hence |7o| > CJ"1 |ĉ 011/2 - Now 
it is enough to verify the inequality when ImH DU\j3) ^ 0 but | lmH\ < j\VZa\. By 
Lemma 2.4 and Corollary 3.2 < OX, and also dist(^i, F(za)) ~ r |ImF|T4j. As 
\FX\ < C0\VZA \ in VZA then 

(1) dist(7ri,^V;j ^ Cûl\VZa\-lr\lmF\Vz<i\. 

The assumption Im HnU([3) ^ 0 implies | ImH\ > dist(7Ti, dVZa ), hence by the small 
distortion of WQ : CJQ —» V~a 

bol ^ c,;1 dist(7ri,ôI4„.) 
U N 1 / 2 

IU,I 

Using Equation (1) we obtain the Lemma, taking into account that 

|ImF|VzJ1/2 
\VZa\ 

> c-1 

Lemma9.2. — If dist(7r1,7()) > \\VZA\ then \PHX\ ^ C^T^O'1. 

Proof. — We write = \W\/X oF\ • \FX\. By small distortion properties, \W\a-\ ~ 
\VZa\/\uJi\. Moreover 

bil <C()TO\VZ\\ 

since |a;i| ^ OX = rOZ and Z = |ImF|V;j ^ C0|KJ2. On the other hand, 
dist(7Ti,7o) ^ \\VZa \ implies ^ C^^I/.J, and the Lemma follows. • 
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The goal of this Section is to show that 

Bm. n 
d+d1rd+ 

is as small as desired, for all a G J{(3) and x G (3, provided Vz and e are sufficiently 
small. Here Bm. = Prn o Pm-i o • • • o Px and Ha is the mean value of H(a,x), for 
x G 7o and a G Jo, based on the statements of Section 7. For m = n this gives the 
first quotient of the starting conditions Preimages of the central branch. The cases 
rn < n will be used for the other quotients. We write 

Prn, a 

£>m,x 

rn 

t = l 

PtaOBri 
BUx 

therefore 

(2) 
B ni ,a 

B,n,.rHa 
Pl.a 

Pl.,Ha 

m 

t = 2 

1 

Bt-i... 
Pt.a°Bt-l 

(Pt.xoBt-i)Ha 

This last equation motivates the following Lemmas. 

Lemma 9.3. — For m — 1,. . . , n, 

Pm.a ° B7n — j 
(Prn^°Bm^)Ha 

<Cy ee 
\vzJ 

i 
\Brn-l ~ C\ ' 

Proof. — Write 

PWJl o Bnh-i _ Fa o Brn-i 

Pm.x O Bm.-l Fx O Bin-i 

1 

Fx o Bm-i 
W1riia ° F o Bm-i 
Wm,: O F O J57„_i ' 

We know that \Fa\ ^ C0, \FxoBrn^\ > C^l\Brn^~c\ and |Wm,a|/|W^m,x| ^ Cy (by 
Lemma 5.1). The Lemma follows usine; Lemma 7.1. • 

Lemma 9.4. — 7/dist(7Ti,70) ^ \\VZ(l\ then 

dxrd 

^ xHn 
< cve. 

Proof. — The quotient is evaluated at Bo — BQ(X) = x. By the hypothesis, 
\Bo ~ c\ > \\VZa\. By Lemma 9.3, 

Pl.a 
Pl.xHa 

<cv- dvrd 
\VZ„ 12 

<CyO. 

Lemma 9.5. — If dist(7Ti, 70) < -7 IK I and a G J(f3) then 

Prn.a ° Bm_i 
{Pm.x ° Brn-i)Ha 

<Cy l7ol 

/or all m = 1,.. . , n. 
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Proof. — If a G J(f3) then \ lmH\ ^ \\VZa\ or ImH ^U((3) ^ 0. In the latter case, 
Imi7~ri7ri / 0 and, by the hypotheses, | Im# | > ||VZa|. In any case, | I m i 7 | ^ ylV^J? 
therefore |ImFno;o| > ||^o|- This implies |Bm_i — c| > C^1 \UJQ\1/2, for all m — 
1,..., n. By Lemma 9.3 the quotient of the statement is bounded by Cy\ujQ\1/2 /\VZa\. 
By Lemma 9.1 and the hypothesis, implying r bounded away from zero by CQ-1, it 
follows 

K|1/2<C0|7o| 

and the Lemma. 

The next Lemma is somehow analogous to the idea of backward recovering of 
Section 4. 

Lemma9.6. — If a G J{(3) and dist^i, 70) ^ \\VZa\ then 

d+d1r oF'-1)(F,oF 
(Prn,x m,xHacd  

<cve ko|1/2 
\VZa\ 

for all m — 1,..., n. 

Proof. — By Lemma 9.1, |£m_i - c\ > C0 1T1/2\UJ{)\1/2 . Putting into Lemma 9.3 and 
using Lemma 9.2 the Lemma follows. Observe also that r ^ 1. • 

Lemma 9.7. — Given ô > 0, if Vz and £ are sufficiently small then 

P m .a 

I Bm,xHa I 
q+q1 

for all (3 G B, x G [3, a G J(/3) and m = 1,..., n, where B = Pn o • • • o Px\(3 : (3 —> 70 
and Bra = Pm o • • • o P1 \(3. The value Ha indicates the mean value of H(a,x) for 
x G 70 and a G Jn • 

Proof. — We evaluate term by term the R.H.S of Equation (2) supposing always that 
a G J{(3). We have to consider two separate cases: A) dist (7^,70) ^ | |^4J and B) 
dist(7Ti,7o) < \\VZ I. The first term, 

Pl.a 
dd+d1rd+ 

is bounded by Cy6 if dist(7Ti,7o) ^ l l ^ j i by Lemma 9.4, and bounded by 
Cy|7o|/|I4„I if dist(7Ti,7o) < ||VZfJ, by Lemma 9.5. In both cases the first term is 
bounded by 8/2, provided 6 is small, and this is guaranteed if Vz is small enough. 
We are left with the remaining terms, from t = 2 to t = rn. 

In Case B, where dist(-7Ti,7o) < jIV^J, Lemma 9.5 implies 

Pt.a 
Pt.xHa <Cy-

co|1/2 

\VZa\ 
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On the other hand, 

\Bt-l,x\ 1 =dd dd d* +s4s+s4e \VZ\ 
NI1/2' 

by Corollary 8.11. Hence we are left with 

Cy 
m 

t=2 
(Cooy-1 

which is smaller than 6/2 if 0 is sufficiently small. 
In Case A, where dist(71-1,70) ^ ^IVzJ? we bound the t-th term by 

oF'-1)(F,oF Pt,aOBt-l 
{PtjXoBt^)Ha\ 

which is smaller than CyO(CoOY 2, by Corollary 8.11 and Lemma 9.6. Therefore the 
sum is smaller than Ô/2 if 0 is small enough. • 

10. Other derivatives 

We keep the same notation introduced in the preceding Sections. The goal is to 
bound derivatives of P : tt —• VZa, for all tt G V, and take their compositions to bound 
derivatives of B : (5 —> 70, for all /3 E B. This will complete the proof of the starting 
conditions Preimages of the central branch. 

Lemma 10.1. — LfVz is small then 

dd+dre Pxx 
{P.,;)2 

|70| 
\VZa\ -ColPxl"1 

Proof. — Write P = W o F and 

Pxx Fxx . vVxx 
[i',)J /',/•:, (ir,i--

We have 

l7o| ir,,. 
d+d5r 

, ItoI 
d+d45r 

for 14 sufficiently small, by Lemma 6.2. This controls the second term. For the first, 
we have \FXX\ < Co and 

Wot 
FJ <C0. 

Lemma 10.2. — If Vz is small then 

l7o| • 
Bjn/xx 
B )2 

Wol 
d+dr h Co 

m 

t = l 
d+rd 

for all m — 1,. . . , n. 
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Proof. — Write 

Byn,xx 
d+dr+dr 

m 

t=l 

1 

(Pm o • • • o Pt+i)x o Bt 

Pt.xx ° Bt-\ 
(PUxoBt^Y' 

Then 

ItoI 
Bm,xx 

dd+dr 

m 

t=l 
d "4+1,m 

l7o| 
\VZa\ 

oF'-1)(F,oF+xwd 

by Lemma 10.1. In the statement we separate the term Am\ x rn = 1. 

Lemma 10.3. — Given ô > 0; if Vz is sufficiently small then 

l7o| 
BXx 

(Bx)2\ 
< S, 

for all x & [3, (3 £ B and a G Jo-

Proof. — Put rn = n in Lemma 10.2. Then 

Ar+i ,„ ^ (Co0)n-\ < (CO0)N-T+1, 

by Corollary 8.9. As Vz small implies 0 small and |7o|/|Kj small, then the Lemma 
follows. • 

Lemma 10.4. — If Vz is sufficiently small then 

l7o|2 
1 XXX 

d+dr1d 
l7o|2 

< 
\V,J< 

+ \Px\-\ 

for all x G TT, TT G V and a G Jo-

Proof. — Write P = IT o F and 

Pxxx 
(Px)3 

Fxxx 

[l',r\Y:l\ 
Wxxx 
(Wx)* 

oF'-1)(F,oF 

oF'-1)(F,oF 

where Wx, Wxx, etc, mean Wx. o F, ITrx. o F, etc. The second term, multiplied by 
|7o|2, is smaller than |7o|2/|Krt|2, by Lemma 6.3, if Vz is small. For the first term, 
|7o|2/(Fr)2 < Co and \WX\ >̂ Co (by the choice of Vz) implies that it is bounded by 
^\Px\~l. For the third term, we have |7o|/|Fr| < CQ and 

l7o| 
Wxx 

(wxy 
re) l7o| 

IK I 
«C0l 

by Lemma 6.2, hence it is bounded by \\PX\ \ and the Lemma follows. 

Lemma 10.5. — Given ô > 0, ifVz is sufficiently small then 

l7ol2 
I HXXX 
(pxr 

dr 

for all x G fi, fi G B and a G JQ. 
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Proof. — We write 

where 

Bxxx 
(Sx)3 " 

= Si+3S2, 

Si = 
n 

s 

Pt.xxx 
{Pn.x • • • Pt+l,x)2(Pt,x)3 

and 

S2 = 
71 

t=2 

Pt,xx 
Pn.x • • • Pt+l,x{Pt,x)2 Pn.x • • • Pt,x (Bt-l,x)2 

1 Bt-l-xx 

For simplicity, we are omitting arguments, writing Pt,x instead of PtiX o Bt-i, etc. 
Using Lemma 10.4 and An+i n E 1 we obtain 

l7o|2|S!| < l7ol2 
~ H4,12 

\PnA~1 
n-l 

t=l 

A - 2 4-
n-l 

t=l 
4+1,71^,71* 

which is smaller than 5/2 if 0 is sufficiently small, by Corollary 8.9. On the other 
hand ^oPl^l is bounded by 

n 

t=2 
^ l . n A ^ C l + ColPt.xl"1)- 1 + Co 

t-i 

,s=l 

XFG +d 

using Lemmas 10.1 and 10.2 and |70| <C |V2fJ. It is straightforward to see that this 
sum is smaller than 5/6, if 6 is small, using Corollary 8.9. • 

Lemma 10.6. — IfVz is sufficiently small then 

l7o|- -, 
x xa 

(Px)2Ha 
< \PA~l-

d+rd 

d+rd 
for all x E TT, IT £ V and a e JQ. 

Proof. — Write P = W o F and 

Rxa _ I':; , 1 H ,„. Wxx K 
(-Pi;) CP, FX(WX)2 (Wxf Fx 

We analyze each term multiplied by |70|/|PTa|, which is smaller than Cb|7o|/|Wo,x|-
As |7o|/|Px| < Co, the first term can be bounded by 

Co 
\Wo.x\ \Px\-1 < \Px\-\ 

if Vz is small. For the second term we still use that 

dvr wxa 
(Wx)2 

is much smaller than Co, by Lemma 6.4, and |Wo,x| — I^J/l^ol- The same in the 
third term, but now using Lemma 6.2. • 
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Lemma 10.7. — IfVz is sufficiently small then 

hoi • 
d+dr+d 

d+d4dr+d 
- <mA, i, + C0 

M 1 / 2 

\vZl,\ 

in 

t=2 

A-1 

for all m = 1,..., n, x G /?, /? G S and a G J(/3). 

Proof. — Write 
Pm.xa 

(Bm.,y2 
= Si + 5-2 

where 

5 i = 
m. 

t = l 

Pt,xa 
Pf,j -Bm.x 

and 

S2 = 
in 

t = 2 
Pjn,x • • • Pt + l,x 

1 Pt.xx Bt-l.a 
oF'-1)(F,oF+x4 

Then, by Lemma 10.6, 

hoi, 
\Ha\ 

5,1 < 
m 

^=1 

Pt.r 
Bm.v 

\Pt.,\-1 1̂ 0 I 
K , r . 

which is smaller than 

mA,L + ko I 
v,„ i2 

•tn 

t=l 

A"1 A"1 -Af+l,mAAl.£-l 

Using Corollary 8.11, we simplify 

i i m 

\vz\2 
t=l 

^t + l,m^li-l 
^ U|1/2 

1 ,̂1 

dv 

£=2 
vrdd 

On the other hand, as in Lemma 10.2, 

l7ol 

l-H«l 
|52| ^ 

l7o| 
\VZJ 

Co' 
771 

d 

\7l 

using Lemmas 10.1 and 9.7. 

Lemma 10.8. — Given ô > 0, ifVz is sufficiently small then 

l7o|-
Bxa 

(Bx)2Ha < 5, 

for all x G /i, (3 G B and a G J(/3). 

Proof. — It is enough to apply Corollary 8.9 in Lemma 10.7, with 0 small. 

Lemma 10.9. — If Vz is sufficiently small then 

l7o|2 
1 xx a 

il', I'll., 
dvrd 
114.. I2 

+ \P,\-1 

for all x G n, TT G P and a G JQ. 
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Proof. — We have 
p 
1 xxa dd+d1f 

= Qi + Q-2 + Qi + QA + 4Qr, + 2Q0, 

where 

Qi = 
L xxa 

oF'-1)(F,oF 
Q-2 = 

wxxa 
dd+dr+ Q.3 = 

WXXX FA 

d+dr1d+d1r 

QA = 
1 WXA FXX 

PX(\VX)2(F,)2 
x+xd 1 U ,, F,(, 

oF'-1)(F,oF+xd+x4 
x+d4sx 

1 WXX FXX FA 

' WX(Wxf (F,)2FT' 
We multiply each of these terms by |70|2/|I/H|, which is smaller than Coho|2|wol/l V,, |, 
by Lemma 7.1, using then the following estimates, which are valid for Vz sufficiently 
small: \FXXA\, |F„ | , |Fa|, \FXI,\ < C„, hol < C\>\FX\, CIW,!"1 < 1, C M < \VZJ, 
C0I70I < \VZa I and Lemmas 6.2, 6.4, 6.6. 6.3, with 5 = Qf1 or S = 1. • 

Lemma 10.10. — Given 5 > 0, ifVz is sufficiently small then 

|7(,|2 Bxxa 
I (BxfHa 

< ô, 

for all x e ii, [3 & B and a £ J(/i). 

Proof. — Write 

|7o|2 />',,., 
dd1rd+d1 

< |5i| + |52| +15^,1+4|54| + 2|55|, 

where 

S\ = 
n 

t=l 
K+i,All-i-ho\2-, 

Pt.XXd 
D.'rll. 

S2 : 
1) 

t=2 
-^t+l.n l7o|2-

d+d4r 
'Pi.sY 

Bt-i.u 
Ii, .,11.,' 

d+d4d 
d 

t = 2 
KIA7+1,, - hoi 

Pf.xa 
(Pt.x)2Ha 

l7o| 
d+d4r+d 

oF'-1)(F,oF 

d+f54d 
n 

t = 2 
'\ + l.,At.n • ho 

d+d4r 
d+d4r 

hol 
Bt-i,x„ 

ill. h,!'//., 

dr 
d+d4r 

f=2 

drd ddd dA-1 • l7o| 
d+dr 

{Pt.x)'2 
•hol 

B*-i,M 
(-Bf-i..,-)2 

Bt-l,a 
/'< l.ill,, 

By Lemma 10.9, 

\Si\^ 
n 

t = l 

\-ddd2 A-ddl kddddo I 
d+d4r+d +- \Pt,rl) 

which is smaller than 5/b if 0 is small, by Corollaries 8.9 and 8.11. With the other 
sums we proceed in the same way, using the same Corollaries and also Lemmas 9.7, 
10.2. 10.7, 10.4, 10.6 and 10.1. • 
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Lemma 10.11. — IfVz ls sufficiently small then 

bob -
P 
1 a a P,)2(Ha)2\ <c»ïï 

U l 2 , 
V U 2 

PA-1-
N l 2 , 
l v u : î 

l a r - d " 1 

/or ail x £ n, 7T G P tmei a G JQ. 

Proof — Write 

P 
a a dd+d4r 

-1 a a 
xfrd 

d+d1r 

(^)2(W^): 
2F„IT:„ 

(F,:)2(T,)2 
fF„\2 
dvre 

Wxx 

(Wx)2 

Then we use |7o| < C0\FX\, \FX\-1 < CQ\x - c\'1, {H,,}'1 < C()\u0\/\VZn | and Lemmas 
6.5, 6.4 and 6.2, with <5 = C U . • 

Lemma 10.12. — Given 6 > 0, if Vz is sufficiently small then 

l7o| 
Baa 

dd+d4r+d 
< s. 

for all x e ft, ft € B and a € J(/i). 

Proof. — Write 
K.»!2 Baa 
H2 {Bx)2 

< | S i | + 2 |52 | + | 5 . , | , 

where 

S i = 
n 

t = l 
^r .2 -A+i .„ • bo i 

Pf.aa 
(Pt,)2(Ha)2-

S2 = 
n 

t = 2 
oF'-1)(F,oF s+s Pf.xa 

iP.rY'll., Bt-[ xHa 
B,-lM 

dd 
dv 

t = 2 
.̂+i.7, • bol 

i),x 
A.,)2 

B,-l.a V 
d+doF'-1)(F, 

Using Lemma 10.6, Lemma 9.7 (with 6 = 1) and Corollaries 8.9 and 8.11 we get 

| S ' 2 K ( n - l ) ( C W - u i 1 / 2 
I V U 

[n-lxcoey-1 

which is smaller than Ô/6 if 0 is small. It is also easy to see that \S%\ is smaller than 
S/3 if 0 is small, using Lemma 10.1 and Corollary 8.9. The difficult part is contained 
in S\. By Lemma 10.11 we have 

d+d4r dd 

t-l 
^ î . f - i ^ f + i . » Co M 2 , 

K , | 2 
p,xr 

\tOo\2 . 
\vz F 

d+d4r++d 

If we separate into two sums, the first one is bounded by 

Mil2 
I V U 2 

dv 
n 

*=1 

d+d4r 
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where it is implicit that A1<0 = 1. By Corollary 8.11, A~1T_1 ^ 2\VZa\/\u)0\1/2, 
so that the first sum is bounded by 

ko I 
ko 11/2 
d+dr 

d+dr 

which is smaller than 5/6 if 0 is small. For the second sum, 

5* = M 2 
v, •* 

d 

d+dr 
Ar .L iAr+Vn- i^ -1 -c r1 , 

we use the ideas of Section 9. 
We have two cases: A) dist(71-1,70) ^ \\VZA\ and B) dist(7Ti,7o) < \\VZA\. In Case 

B, |7o| > CQ1 ICJOI1/2 (see Lemma 9.5, for example), which implies, by Corollaries 8.9 
and 8.11, 

S ^ C0 ko I 
dvr + 

dv+r 
6' 

if is sufficiently small. In Case A we have 
\Elt-! - cl"1 < 2I70I-1 < COT-V^LJOI-1'2, 

for alH = 1,... ,n, by Lemma 9.1, \B0 - c|_1 < 5\VZA I"1 by hypothesis and P1-d 
by Lemma 9.2, hence  

S < ko I2 
d+d+d 

.̂.-rl/2/31,., ,.1-1/2 d 

* = 2 
Ar.LiAr+Vn-i^-1-criAr+Vn-i^-1-cr1, 

which is smaller than 

vxx Ul2 
IV- I4 

d+d1rd6+ k>|1/2 
iv;„i 

71 

t = 2 
{Cod)"-*.. 

by Corollaries 8.9 and 8.11. If VZ is small the Lemma is proved. 

A. Appendix 

As remarked at the end of Section 2, Theorem 2.5 is proved in [2] assuming C°° 
differentiability. This hypothesis is used only for estimates of derivatives near saddle-
node bifurcations, where a map is considered as a time-one map of a flow. Here we are 
able to reduce the needed differentiability to 3, obtaining the same bounds (Lemmas 
S.7 and S.8 of [2]) without any embedding into a flow. In addition, as the arguments 
are direct, they allow much more control on constants. 

The proof of Theorem 2 is made in [2] by induction, starting from the map <3>o 
defined in Section 2. The central interval 70 together with the preimages of the 
central branch (3 belonging to the collection Bo form the set of connected components 
of the domain of $0, contained in 7_i = VZA. 

The central branch H0 = $o|7o is unimodal and i70(^7o) C d^-\. We also have the 
diffeomorphic branches B = &o\ft P 7o- The map $n+i, for n ^ 0, is defined by 
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induction with domain in 7n, with a central branch Hn+\ = 3>n+i|7n+i : 7n+i —• 7n, 
Hn+i(djn+i) C (?7n and with difFeomorphic branches B = 3>n+i|/3 : /? —* 7?,.+i, for (5 
in the collection Z3n+i. The map iin+i is the critical component of the <3>n-first entry 
map into 7n a/ter escaping from this same 7n (and not the -first return map to 7n, 
as usual). The maps B : (3 —+ 7n+i are the branches of the $n-first entry map into 
7n+l-

At all stages of the induction, the maps 3>n are shown to satisfy the same three 
sets of conditions Geometry, Central Branch and Preimages of the Central Branch of 
Section 2, with small and uniform constants n > 0, ÔQ > 0 and S\ > 0. One of the 
main steps in the proof is the analysis of ifn-iterates near the creation of a saddle-node 
fixed point for Hn. In [2], this analysis is resumed in Lemmas S.7 and S.8. 

The function Hn is a two-variable function Hn = Hn(a,x), defined for x G 7.,,. = 
7?,.,a and a G J, where J is some interval. As a varies along J, Hn(a,c) crosses 
7n_i = 7n_i,a. For simplicity we assume c = 0 and ifn(0,0) = 0. The starting 
conditions named Central Branch imply that there are non-zero constants Sn and Vn 
such that 

1 - 2&) ^ i/„..r.r("--0 
2Sn 

^ l + 2(5(), 1 - 2<S0 ^ Hn,a(a,x) 
Vn ^ l + 250, 

for all x G 7n.« and a G J, if Oo is sufficiently small. 
The sign of Sn • is always the same as the sign of So • Vo, which we suppose to be 

negative, without loss of generality. If we do a linear coordinate change x > —Snx, 
a H-» —SnVna we normalize Hn so that 

\Hn.xx{a,x) + 2| < 4<Jo, |//„.,,(«..r) - 1| ^ 250. 

The starting conditions Central Branch are kept unaffected by linear changes of co­
ordinates. Integrating these two last inequalities we have 

\HnJa,x) + 2x\ ^ASnlxl 

\Hn(a,x) - (Hn(a,0) - x2)\ <: 260x2 
and 

\Hn{a,0)-a\ ^2S0\a\. 
In fact, we are only concerned here with negative values of the parameter, where the 
saddle-node appears. Let as be the least (and unique) value for which there is a 
(unique) solution for the equation 

Hn(a, x) = x 

and let xs be such that Hn(aS/xs). 
By solving the equation Hrux(xs) = 1 we get 

1 1 
2 1 - 2ôo 

d < ss 1 1 
2 1 + 2*0 ' 
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On the other hand, as G [a], a2], where a\ and a2 are, respectively, the first parameter 
values for which (1 — 2ôo)(a — x2) = x and (1 + 2ôo)(a — x2) = x have a solution. 
Hence 

1 1 
4 (1 - 2S0)2 

^ a.s ^ 
1 1 
4(1 + 2<S0)2 

These values are very near a = — \ and x = — \, which are the bifurcation values for 
(a,x) i—» a — x2. Now we normalize iJn again by linear changes of coordinates both 
in a and x so that as = — \ and xs — — \. The values of HnM and Hna:x do change, 
but are still very near 1 and —2, if 8Q is sufficiently small. 

For the sake of simplicity, we write H = Hn, in these coordinates. For every such 
H the starting conditions Central Branch are satisfied, Hxx is near —2, Ha is near 1, 
and the values of the saddle-node bifurcation are given by (as,xs) = ( — \,—\)- The 
constant ÔQ regulates the proximity to the function (a, x) a — x2. We call 7i = Hs0 
the set of functions satisfying these conditions. Since here we are only interested in a 
bounded region of the plane and the parameter space near the saddle-node bifurcation, 
we can fix the domain of each H G 7ï as 

{(a,x) ; (a,x) G [-10,10] x [-10,10]}. 

Every constant appearing in the estimates will be uniform among the functions H G 
Tt, provided So is sufficiently small. 

Let ao < a.s be such that \H(a,0)\ ^ 2 for every a ^ ao. This is the lowest 
parameter value we are interested in, since all iterates outside the critical region 
Jr7_1([i:/2(0), H(0)]) have some expansion (approximately greater or equal than 4) 
and can be treated by other methods. For H (a, x) = a — x2, we have ao = —2 and in 
the remaining cases there is an error of the order of ÔQ about —2. 

For a > ao we are concerned with iterates x, Hx,..., HJx, where \x\ < 2, x 0 
iJ-1([i^2(0),H(0)]) and \HJ(x)\ ^ 2. For each a we associate the number / = 1(a) 
which gives the maximal j . In other words, 

/ - 1(a) = mm{j ^ 1 ; \Hj(H(0))\ ^ 2}. 

Now for x G (-2, 2) \ H-l([H2(0), H(0)]) and j as above we denote 

Fs(a, x) = HJ(a, x) 

We aim at proving the following Lemma (corresponding to Lemma S.8 in [2]). 

Lemma A.l 
There is C > 0 such that for all H G H, x G (-2,2) \ H-l([H2(Q), H({))]) and 

ao < a < as — — \, we have 

\FsJ-\ 
FS,,r 1 

(Fs.,ï2 
Fs..,,,,c I 
(FS,:)3 

dd+rd 

I^.S',,|, 
FS.:r, 
Fs,, 

< Cl2, 
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\FS,a\, 
Fs.xn 
Fs.r 

FS. XX a 
(Fs.x)2 | 

d+d4r 

\Fs.aJ < Cl\ 

where l = 1(a) as above. Moreover, if x G \H (0),H(0)\ then 
Ar.LiAr+V 

and 
\FSiœl s\FS.xx\ ^ C. 

This Lemma will be proved in the following way. We will fix a\ < as and define 

/n = max max 1(a). 
+qq6+q1q 

Also we let x\ < — \ < xr be such that x\ > — 2, xr < H(0) and some conditions 
stated below are satisfied. The order of choice is this one: first x\ and xr, then a\ 
and finally 60. If So is sufficiently small then the constant C will be uniform for all 
H en. 

Iterates done for ao ^ a ^ a\ and outside [xi,xr] for a > a\ are in (uniformly) 
finite number, so that they contribute only with constants to the Lemma. The main 
problem lies on the "unbounded" part [ai,a6.] x [x/,x>], which is solved if we prove 
the following Lemma (Lemma S.7 in [2]). 

Lemma A.2. — There is C > 0 such that for a > a\ 

(1) C'1 ^ I/-/•/:I ^ Cl2, for all x G [xhxr]; 
(2) C~l ^ \HX\ <: C. for all x G [Hxr,xr]; 
(3) \Wa \ < Cî\ for all x G \x,.xr}: 
(4) \Wa \ ̂  C"1/3, for all x G [Hxr,xr]; 
(5) \HÏa\^Cl«, for all x G [xh xr}; 
(6) \IIf,.\<:C\H:>\2. for all x G [xhxr]; 
(7) \dddHfl:x\^C\Hxf,forallxe\xhxr}; 
(8) |//;/„| ^ C\H-[.\F. for all x G [xhxr]; 
(9) \Hixa\ ^ C\IL>\21\ for all x G [xhxr]. 

Establishing the relation between a and I is one of the main steps in the proof of 
Lemma A.2. We change coordinates again by x »—• x + \ and a i-» a + | , so that 
now the saddle-node occurs for (a, x) = (0, 0). We also regard ao, ai, xr in the new 
coordinates. Then we suppose that x\ and xr are chosen so that 

2 
3 

>+41> 
3 
2' 

for all x G [H xi,xr]. Moreover we take a\ such that if a ^ a\ and HJ(a,xr) < x\ 
then j ^ 10 (actually these choices are somewhat arbitrary). 

The following Lemma compares H with purely quadratic functions. It is a direct 
consequence of the assumed proximity to (a, x) i—> a — x2. 
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Lemma A.3. — If H e H, So is sufficiently small, ai ^ a < 0 and x G [H2xi,xr] then 
5 
4 

a — x2) ^ H(a, x) — x ^ 3 
4V (a-x2) 

A fundamental domain for is any interval of the form [Hx,x\. The smaller 
fundamental domain in [xi, xr] has size equal to min \H(a, x) — x|, which is greater or 
equal than |a , by Lemma A.3. 

Consider now a fundamental domain [Ht+1xr,H'lxr\, i ^ 0. Let m be the first 
integer such that Hmxr < x\ (m differs from / by a finite amount). The power 
Hm-1 maps [/// + 1.rr.//'.rr] diffeomorphically onto [Hm + 1xr, Hmxr}. Note that H™'1 
is extendible to the adjacent fundamental domains, so that the image extends to 
[Hin+2xr, Hm~~lxr]. As the Schwarzian derivative of H is non-positive, the distortion 
of the power map derivative is bounded. In other words, there is C\ > 0 such that 

s+s14e+s 
s+sf44e+s 

s+s5e 

for every X\,X2 G [Ht+lxr, Hlxr] and 0 ^ i ^ m — 1. In particular, by the Mean 
Value Theorem and the estimate on the least size of a fundamental domain, there is 
C > 0 such that 

C'1 < \HJj < Ca'1. 
for all x G [x/,x>], where j here is the first integer such that HJx < x\. 

Another consequence is that if x G [Hxr.xr] then \HX\ < C. This proves the first 
two items of Lemma A.2, provided we have Lemma A.7 below, relating a and /. To 
prove this Lemma, however, we need three others. 

LemmaA.4. - If i$ is such that \Hx — x\ is not monotone in {HtoJrlxr,HH)xr] then 

\H'U ' '.rr - //'*'.r,.| 25 
X -a. 

Proof. — Let xc be the unique point where min \ Hx — x\ is attained. Then xc belongs 
to [Hl^lxriH^xr] and, by Lemma A.3, \Hxc - xc\ ^ fa. But [HiQ + lxr, Hioxr] C 
\Hxc,H~lxc], hence 

|ir°+1xr - Hioxr \ ̂  \Hxc - xc\ + \H-lxc - xc\. 

By the choice of x\ and xr. 

\H~lxc.-xc\ 3 
2 

Hxc — xc\. 

and the Lemma is proved. 

Lemma A.5. —- If\Hx — x\ is monotone in [H'+lxr, Hlxr] then 

2 
3 

H'xr 

s+s4e 
1 

\Hx — x\ 
dx 3 

2' 
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Proof. — By the Mean Value Theorem, there is xt in \Hl+lxr, Hlxr] such that 

+s4s+s 

s+s4e 

1 
\Hx - x\ 

dx = |//' + 1.rr - H'xr\ 
\Hxi - Xi\ 

As the maximum and the minimum values of \Hx — x\ are attained at the boundary 
of [H'l,+1xr, Hlxr], we compare them with \Hl+lxr — H'xr\ using the supposition 
I ^ \HX\ ^ ^, and the Lemma is proved. • 

Lemma A.6. — If IQ IS such that \Hx — x\ is not monotone in [HH)+1xr, H'll)xr] then 

s+s45e 

H>o + lxr 
1 

\Hx-x\ 
dx <: 5. 

Proof. — This is a consequence of Lemma A.4, since 

s+s4e 

s+s4e 
1 

\Hx-x\ dx ^ \HH)+1xr -Hl°xr\umx\Hx - x\~x 25 
8 

4 _1 

Lemma AJ. — There is C > 0 s^c/i 

C-^"1/'2 < 1(a) < Ca"1/2. 

/or all CLQ ^ a < 0. 

Proof. — It is enough to prove the same statement for m instead of I and for a ^ a\. 
By Lemmas A.5 and A.6, we have 

2 
3 ' 

s 
sc 

1 
\Hx - x\ 

dx - 5 ^ m - 1 < 3 
2 

sc 

sc 
1 

\Hx - a;I s 

Applying Lemma A.3 to the left inequality, we get 

rn ^ -4 + 2 4 
3 5 

fXr 

scs 

1 
lal + x2 

-dx 

> -4 + 
1, 
21 lal-1/2 arctan ce 

v/ai 
— arctan -xi 

d+dr 
s+s4ed+s4se+s 

where C is fixed after the choice of x/, xr and ai. On the other hand, 

sces 

J H"lx, 
1 

\Hx-x\ 
dx ^ 

ces 

ces 

1 
|f/x — x| dx C 1, 
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since the maximum of \Hx — x\ 1 in [Hxi,xi] is attained in x\. Then 

m 
5 
2 

3 
2 t 

dvc 

vrd 
1 

\Hx - x\ 
dx 

vfr 3 4 
2 3 

|a |"1/2 arctan vd 
d+dr 

- arctan xi 
d++d5r 

dv 5 
2 

-h27r|a|-1/2 ^C|a|-1/2. 

Now we are able to prove the remaining assertions of Lemma A.2. 

Lemma A.S. — \H{\ ^ CT\ for all x G [xhxr]. 

Proof. — For x G [,t/,xy], write 

d+d4r+d .7 

v.= l 

HaoH'-' 
Hx ^ 2 

j 

i = l 
\m-' OH}\. 

But this last sum is bounded by C7/2 ^ C73. 

Lemma A.9. — If x E [Hxr,xr] then \ W0\ ^ C"1/3. 

Proof. — As in the previous Lemma. 

zz+ze 3 
4 dvr 

3 dd4r 

since ifa ~ 1. By bounded distortion, 

Ar.LiAr+Vn-i^-1-cr1,dd+d1r+ 

hence, similarly to the proof of Lemma A.7, 

d+d4r+d4 
RN 

d 

|//'fl.rr - H'xJ 
|//'"» './> - H'xr\2 

d+d4g dv 
I*, 

1 
( | a | + x 2 ) 2 

Ar.LiAr+Vn-i^-1-cr1, 

Lemma A.10. — |//:/,.| <: C|///.|2. for all x G \x,.xr}. 

Proof. Writing 

d+d4 
(Hi:)2 

dv 
J 

1=1 

HxxoH>-1 
(Hi-'+1 oH^){Hx 0W-1) 

we get 

\HU < C(Hl)2 
J 

i=l 

1 
\Hti+1 oH'-l\ 
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Using bounded distortion, 
iHt^l'1 < C\H'x- H'l~lxl 

for i — 1,. . . , j . As the sum of the sizes of the fundamental domains is bounded, the 
Lemma follows. • 

Lemma A.ll. — \H?ia\ ^ Cl(\ for all x G \xhxr}. 

Proof — Write 
d+d14r 

d+r4 
= Si + 2S2 + 5A, 

where 

5, = 
d+d4b+d4r dv 

i=l 
d+d4r 

So. = 
.7 

i=2 

H^oH1'1 Hjr1 
H^oH1'1 Hjr1 

d+d4r j 

i = 2 

il,, il 1 
(Hi~'+l oH'-v)(H,oH'~i) 

dd+d41r+ 

d+dss4r 
Then, as in Lemma A.8, 

d+d4f+d4r+d 
JD 

d+dr4 
Ar.LiAr+Vn-i 

In addition, 

( i # ) 2 | S 2 | < C 
/ / - I 

/ = 2 t = l 
\Hj-f oHf\ CY1. 

as in the proof of Lemma A.8. Finally, 

(Hif\S,\ < C 
dv 

y-2 

Ar.LiAr+Vn-i^-1 dv 

T=l 
d+dr+d1az+s 

2 

^ Cl6 
J 

i = 2 

;//•; 1 o/r'-1!"1 ^ C7(i, 

where the last inequality is similar to the proof of Lemma A. 10. 

LemmaA.12. \Hfrr \ <: C|//:/.|:i. for all x e [xhxr]. 

Proof — Similar to Lemma A. 10. It is enough to bound Hxxx/(Hx)'] by 

C 
vr 

vr 
Ar.LiAr+Vn-i^-1-cr1, 

2 

Lemma A A3. — \H-j.a\ ^ C\Hi\l:i. for all x e [xhx7]. 
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Proof. — Write Hxa/Hx = Si + S2, where 

Si = 
x 

4=1 

/ilSi + So + 5, //' ' 
d+d4r+d 

and 

52 = H^ 
.7 

7=2 

d+d1rd1d+ ^ r 1 
Ar.LiAr+Vn-i^-1-cr1, +Vn-i^-1-cr1, 

The techniques employed in the previous Lemmas lead to |5i| ^ CI and IS2I ^ 

CF. 
LemmaA.14. — |7^xa| <: C\Wr\2l:\ for all x e [xhxr]. 
Proof. — Write 

XX a 
d+d4r 

= HilSi + So + 5, + AS, + 255), 

where 

Si = 
1 

Hi 

j 

i=l 

dd+d41<+4q+ 
•://,' // : ;•://, //' !: 

S2 = 
d 

i=2 

HxxxoW-1 
://•/ " ' //' 1 rill, IV : • 

Ht1 
ir, 

s, = 
1=2 

H,.„oHj-1 
m hi 

1 

//' '•' //- 1 
Hi-1 
XJ-xx ; ^ r1 )2 ' 

s4 --
w 

1=2 

//,, IV 1 
H^oH1'1 Hjr1 q qq qsss 

dd+r4 
( A T 1 ) 2 ' 

dvr 
j 

i=2 

II,. II 1 
ill' " ' • //' 1 fill, W • i 

^ r 1 
d+d4r 

dwx 
(-HT1)2 

then proceed as in the previous Lemmas. 

B. Glossary 

The formula below appear in many places of this work. They give mixed deriva­
tives of compositions of parameter dependent diffeomorphisms. Let {i^}i=i....,j, 
Ft — Ft(a,x), be a sequence of diffeomorphisms and G — G3 its composition 
Gj = F-j• o • • • o Fi. Consider also the partial compositions Gr = F,o • • • o F\ and 
Qi = Fjo • • • o Fj,. To simplify the notation, we omit the points where the functions 
are evaluated. 

(3) G a 
GX 

j 

(=1 

Fi.a 
G,.x 
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(4) 
Gxx 

(Gxy 
dv 

dd 

F: „„. 
Ql+i.x(F,,)2 

(5) GXa 
d+d4r 

3 

i=l 

F 
t l.xGj.X 

3 

i=2 

F 
-1 l.XX Q..+ UÂF,,:)2 

s+s45s 
G,-l.x 

(6) Gaa 
(G,)2 

3 

7-1 

F 
L i,aa f 2 

3 

d+d 

F 
1 i,xa F,..VG h.v 

Gi-\,a 
Gi-i,x 

3 

i=2 

F 
L l. XX Qi+iAFi.*)2 

d+d45r+d 
KG,-i,J 

(7) 
GXXX 
G, V 

3 

i=l 

Fi^xxxFi^x 
(Q.+ l,x)2(Fi,x)4 

+ 31 
3 

i=2 

F 
1 t, x X Qt+i.x(F,A2 

i 
Q..x {Gi~\,x) 

Gi-i^xx 

(8) G xxa 
(Gxr 

3 

i=l 

F'i^xxa 
ilSi + So + 5, d++d1dr 

3 
+ 

i=2 

Fi 'XXXFi,x 
(Q,;+i.,)2(F,,,)4 

Gi-l^a 
Gj.-i,x 

3 

i=2 

F 
L i/xa Fi.xG j.x 

1 Gi-l.xx 
ilSi + So + 5, +wx 

+ 2 
d 

i=2 

F,.xx 
Q,+iAF,A2 

2 Gj-i.xa , GL-\M 1 Gt-i.xx 
.Qi,x (Gi-i.x)2 G. >, Q,.x (G,_i,x)2J 
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