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ON THE MATHEMATICAL CONTRIBUTIONS OF 
JACOB PALIS 

by 

Sheldon Newhouse 

Abstract. — A Conference on Dynamical Systems celebrating the 60th birthday of 
Jacob Palis was held at IMPA (Instituto de Matemática Pura e Aplicada) in Rio 
de Janeiro from July 19-28, 2000. This article is a revised and expanded version of 
a lecture I gave at the Conference. Many additions, including the list of references 
and the entire sections below on Homoclinic Bifurcations, Cantor Sets and Fractal 
Invariants, Non-Hyperbolic Systems, and A Unifying View of Dynamics, were made 
later by Marcelo Viana. It wras decided to preserve the flavor of the lecture by keeping 
the narrative in the first person. I am grateful to Marcelo for his contributions to this 
paper. In my opinion, they greatly improved the presentation of the mathematical 
scope and influence of Jacob Palis. 

Introduction 

Let me begin just by saying that Jacob has made many, many contributions to 
Mathematics. I will not talk about all of them because, in fact, in one hour it's 
impossible to discuss in any detail all of them. I pick some of what I consider to be 
the main contributions, and there will be relatively little that is new for experts, but 
I hope you will be reminded of many experiences during the last thirty or some years 
of the development of Dynamical Systems. 

First, to my mind his primary mathematical contributions fit into three categories: 
- global stability related to the concepts of structural stability and ^-stability; 
- bifurcation theory, which is how systems depending on parameters change, how 

their structure changes. 
- formulation of some general ideas and conjectures, that motivated several very 

interesting recent results in this field. 
I will talk about these aspects of his work a little bit later. Besides these types of 
subjects there are many other ancillary results, many interesting kinds of things. 
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2 S. NEWHOUSE 

But, together with the mathematical contributions that he has been making, one 
has to appreciate and understand the overview and direction of research that Jacob 
is responsible for. At the present time he is at 

- 35 graduate students, and some 30 grand-students, originating from 10 different 
countries mainly in Latin America, as you can see in his academic tree (attached to 
this paper). 
Some of these students have become main figures in the whole theory of Dynamical 
Systems, in fact in the world of Mathematics. You know who they are as well as I do, 
I don't need to mention names. It's a testimony to his vision, his generosity, and 
the freedom of ideas that he's encouraged, that he is such an inspiration to so many 
people. 

In addition, I think it's really fair to say that in our time Jacob Palis has been 
one of the main figures responsible for the development of Mathematics and Science, 
primarily in Latin America(1) and, in fact, in many other places, through his 

organization of meetings, symposia, workshops, and the support of sciences and 
Mathematics in developing countries, most notably, that I'm familiar with, in Trieste. 
He has facilitated the contacts between scientists who have had great difficulty in 
traveling to the west for political or other reasons. They were able to establish contacts 
with western mathematicians in the settings of meetings, workshops, and schools 
where one can get to meet many people. I myself met a number of people from 
mainland China in Trieste, at a time when it was extremely difficult for them to travel 
to Western Europe. Jacob has been one of the primary organizers and supporters of 
such occasions. 

Moreover, he has been responsible, in great measure, for 
- the tremendous growth of IMPA, this wonderful institute, as a researcher and, 

more recently, also as the Director. 
I think it's fair to say that IMPA has become the principal center for Mathematics in 
Latin America and, certainly, one of the world centers for Dynamical Systems. In no 
small measure is this due to his efforts and, again, his vision. 

I want to go now toward some of the mathematical developments Jacob has ac­
companied in his many years of activity. 

Structural Stability 

Let me go back to 1960. Let M be a compact connected smooth manifold without 
boundary, and let us consider the space Vr(M) of Cr diffeomorphisms on M, and the 

(^The impact of Jacob Palis's work throughout Latin America was the subject of another lecture at 
the Conference, by Alberto Verjovsky. 
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ON THE MATHEMATICAL CONTRIBUTIONS OF JACOB PALIS 3 

space XR(M) of C vector fields on M, as well as certain distinguished well-known 
subsets of these 

Vrss(M) — set of C1 structurally stable diffeomorphisms on A/, 
A's's ( AI ) = set of C1 structurally stable vector fields on M. 

This notion of structural stability means that under any small C1 perturbation, the 
entire orbit structure persists after a global continuous coordinate change. As far as 
I know, it was first presented by Andronov and Pontrjagin in 1937. They introduced 
these systems, that they called rough systems, or coarse systems, and the primary part 
of the paper [2] was to characterize them among vector fields in the two dimensional 
disk which were nowhere tangent to the boundary. And what they described in that 
paper was that a vector field X is structurally stable if and only if 

(a) X has only finitely many critical elements (singular points and periodic orbits), 
all hyperbolic, 

(b) and there are no saddle connections. 
The next principal result connected to structural stability we will mention was 

due to Maurfcio Peixoto in a paper [53] that was published in 1959. There, he 
studied various general properties of structurally stable systems and proved that the 
Andronov-Pontrjagin systems formed an open and dense subset of the set of all vector 
fields on the two dimensional disk which were nowhere tangent to the boundary. Later, 
in [54], in a somewhat surprising way, he proved the following theorem: on a compact 
oriented surface A/2, 

the structurally stable vector fields AJS(A/2) form a dense open set in the space 
XR(M2) and 

- they are completely characterized by the Andronov-Pontrjagin conditions (a) 
and (b), and the additional condition that the a- and cj-limit sets of every point x 
are critical elements. 

As far as I know, originally this paper was thought to prove that the result is true 
for all surfaces (not necessarily orientable), but that's still not known, except in the 
case of genus two, where Carlos Gutierrez [18] proved the general result, and in the 
Cl topology, where it is a consequence of Pugh's closing-lemma [56]. 

This led to two main questions at the time: 
- Is A^S(M) non-empty, that is, do structurally stable systems exist on any mani­

fold? 
Is A^S(A/) always dense in the space XR{M) of all vector fields? 

Also the analogous questions for Cr diffeomorphisms on compact manifolds. 
Well, to some people's disappointment, the second question, the density, has a 

negative answer. That was discovered by Smale around 1964 or 65. He found out 
that on any manifold in dimension bigger than or equal to 4 there were open sets 
of vector fields which were not structurally stable. That dimension was then made 
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4 S. NEWHOUSE 

optimal by Bob Williams in the end of the 60's [68]: he found more detailed versions 
of Smale's theorem, and a counter-example in dimension 3. 

Around the same time, in the 60's, in the Soviet Union, Anosov studied other kinds 
of structurally stable systems. The systems that he called C-diffeomorphisms [3], 
where the entire space had a splitting into two continuous distributions invariant by 
the derivative, one of which was exponentially expanded and the other exponentially 
contracted under iterates. These systems, now well known, were coined the name 
Anosov diffeomorphisms by Smale in his 1967 paper [65] in the Bulletin of the AMS. 
What Anosov was able to to prove for these systems was that 

- they formed an open subset of the set of all C1 diffeomorphisms on a manifold 
- and they were structurally stable systems. 

The methods were related (I don't know, in fact, in which order) to his celebrated 
result that geodesic flows on manifolds with negative curvature were structurally 
stable and had the flow version of these Anosov conditions. 

At this time, in the mid 60's, what was then the status of this kind of mathemat­
ics? We had high dimensional examples of structurally stable systems. They exhibited 
very complicated recurrence, and they were only known in special manifolds. In fact, 
for the Anosov systems the existence of the invariant bundles of course brings with it 
topological obstructions. So, for example on surfaces, Anosov diffeomorphisms only 
exist on the torus. And in higher dimensions, also only on very special manifolds. In 
fact, for a while it was felt that the only manifolds that admitted Anosov diffeomor­
phisms were the tori, of any dimension. Smale found examples using other kinds of 
Lie groups, non-Abelian Lie groups, but still they were very special in the kinds of 
manifolds that can exhibit them. 

What about simple recurrence, that is, systems that don't have complicated recur­
rent orbits? Motivated by gradient systems, which Smale sort of used for going back 
and forward between dynamical systems and topology, a special class of dynamical 
systems, which we now call Morse-Smale systems, was defined. In the diffeomorphism 
case, these are systems where the non-wandering set consists of a finite number of 
hyperbolic periodic orbits, and if you have two such orbits their stable and unstable 
manifolds are transverse. Analogous definitions were given for vector fields, where 
the non-wandering set consists of finitely many critical points and periodic orbits all 
hyperbolic, and with the transversality conditions. 

Smale was able to prove that there was a residual set of gradient systems (a residual 
set of functions) on any compact manifold that were Morse-Smale, and their time-one 
maps were Morse-Smale diffeomorphisms. The easy part of this is to realize that a 
Morse function has only hyperbolic critical points as its non-wandering set. But it's 
not so obvious to get the transversality condition: that is a consequence of a general 
approximation theorem, the Kupka-Smale theorem, which was done in those days. 
And Smale conjectured that, 
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- Morse-Smale systems form an open set in the space of all dynamical systems, 
both Vr(M) and Xr(M) 

- and every Morse-Smale system is structurally stable. 
And then, in a remarkable result in 1967, in his thesis [38] Jacob Palis proved that 
the first statement, the openness statement, held in general. And he proved the 
second statement, that Morse-Smale systems were structurally stable, for any systems, 
diffeomorphisms and vector fields, in dimension less or equal to 3. 

A Geometric Approach 

To indicate some of the difficulties which Jacob had to overcome in proving this 
theorem, let's take a simple example of a Morse-Smale diffeomorphism on the 2-sphere 
as indicated in Figure 1, where we have six fixed points as the non-wondering set. The 

FIGURE 1. Tubular famili 

Pi P2\\ 

circles represent sources and sinks, and we have two saddle points, I denote pi and p2, 
such that the unstable manifold of p\ has some transverse intersection, a heteroclinic 
saddle connection, with the stable manifold of p2-

Well, it was known earlier that there was a local stability phenomenon for hyper­
bolic fixed or periodic points, the Grobman-Hartman theorem. Locally, the system 
can be topologically linearized, that is, on a neighborhood of each periodic point the 
map is topologically conjugate to its derivative at the periodic point. But you need 
to do much more to get a global conjugacy, of course, you have to preserve stable and 
unstable manifolds globally. And orbits near the saddle points in the past go near the 
sources, and in the future go near the sinks. So, to have some conjugacy between a 
system like this and its perturbation it's not enough to look at local pictures, you have 
to glue them together in a special way. And the gluing is not obvious at all, because 
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6 S. NEWHOUSE 

the local linearizations are very special, so how you glue this in some compatible way 
was a major problem. 

And here there was the first major development that Palis came up with, which 
were the so-called tubular families, or invariant foliations, that I'll describe in some 
detail. They turned out to be very important for many later developments, as we'll see. 
These were invariant foliations defined in a neighborhood of each periodic point, one 
family for the stable direction and another for the unstable direction, and they were 
compatible: if two leaves from diffèrent periodic points intersect, then one contains 
the other. The construction of this is not at all obvious, it's still technically quite 
difficult — a very intricate geometric construction. The tubular families have different 
dimensions, in general. And the intricacies of this construction is what forced the 
restriction to dimension 3 in Jacob's thesis, the higher dimension analogue only came 
later. 

In particular, initially it was thought that topological questions would arise in this 
connection, since one has to extend maps defined on certain subsets to bigger sets. It 
was thought that the annulus conjecture, a major unsolved problem at the time, was 
related to the higher dimension analogue of this tubular families method. Well, I'm 
not sure about the exact details of how these problems were overcome, but together 
with Smale in 1968 or 69, the general construction of tubular families was given, and 
the general structural stability of Morse-Smale systems in any dimension was proved 
[42]. 

It's important to notice that there is a lot of freedom in the construction of these 
tubular families. The conjugacies are not unique. The existence of invariant manifolds 
covering the whole manifold was crucial to Anosov in his treatment of structural 
stability. Those invariant manifolds are unique, and so the conjugacies, if they are 
near the identity, are unique for Anosov systems. Here they are highly non-unique, 
and in fact the flexibility of the choice is very much related to the freedom one has 
in the construction of tubular families. So this was a major breakthrough at the time 
and still is, in my opinion, a major contribution, that came quite early in his career. 

This had two main corollaries. The first one was that 

- an open dense subset of the set of gradient systems on any manifold consists of 
structurally stable vector fields; 

Even more, the time-one maps of such vector fields are structurally stable diffeomor­
phisms. That's much stronger. Indeed, as we know, the usual equivalence relation 
for vector fields is homeomorphisms taking orbits to orbits. A stronger equivalence 
relation is conjugacy, actual one parameter group conjugacy. And structural stabil­
ity for the time-one maps gives stability under this stronger equivalence relation, for 
gradient flows. So, as an extension of this, the problem of the existence of structural 
stability was solved in a very positive way: 

- every manifold has structurally stable vector fields and diffeomorphisms. 
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The Stability Conjectures 
Around this time, in the late 60's, having proved that structurally stable systems 

are not dense, Smale was looking for a more general kind of system, that would still 
have some good structure and have the chance to form a dense subset in the space of 
all dynamical systems. And so he formulated what was called the ^-stability theorem. 

Our system is Q-stable if when you take a C1 perturbation of it you have a con-
jugacy from the non-wandering set of the first system to the non-wandering set of 
the second one (not a global conjugacy on the whole manifold, as in the definition 
of structural stability). He studied special systems, the so-called Axiom A diffeomor­
phisms, where the non-wandering sets are hyperbolic sets, and the periodic points are 
dense in the non-wandering set. He also assumed an additional property, the no-cycle 
property, that gives the ability to construct so-called filtrations for the system, that 
is, to isolate the recurrent orbits in individual indecomposable pieces. And he proved 
the theorem that Axiom A and the no-cycle property implied that the diffeomorphism 
was ^-stable. 

Around the same time, Jacob proved that if you have an Axiom A system and it 
has a cycle, then it is not ^-stable. And that led to the Stability Conjectures, which 
were also present in the Palis and Smale paper of 1969 [42]: 

(1) a diffeomorphism / G Vr{M) is structurally stable if and only if it satisfies 
the Axiom A and the so-called strong transversality condition: stable and unstable 
manifolds are in general position at each point wherever they meet; 

(2) and / G Vr(M) is ^-stable if and only if it satisfies the Axiom A and the 
no-cycle property. 
And they made analogous conjectures for flows. 

Let me mention a little personal anecdote in connection with this theorem and the 
formulation of these conjectures. For those who were around that time, you remember 
that the first formulation of the ^-stability theorem had another stronger condition, 
called Axiom B. Axiom B said that if you have two basic sets and the unstable 
manifold of one accumulates on the other, then there is a periodic point in the first 
whose unstable manifold has a transversal intersection with the stable manifold of the 
other. And the first formulation of the 0,-stability theorem, in fact the formulation 
that is in the Bulletin paper [65], says: Axiom A plus Axiom B implies ^-stability, 
or something to that effect. 

I remember Smale giving a lecture in the seminar in Berkeley in 1966 or maybe 
1967. I was a new graduate student just sort of going to this seminar from time 
to time, but it was a very active and energetic seminar, many questions, comments, 
discussions. I remember Charles Pugh was there, and Mike Shub, Morris Hirsch, 
Jacob Palis. As a young graduate student we look around at all those famous people 
in the room, and just watch what they were doing. Well, Terry Wall had just come 
in from England and was interested, so he went to the seminar. In fact, he was 
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under jet-lag so he was asleep in a large part of the talk. So, Smale was doing the 
construction of the local conjugacy of the fî-stability for the basic sets. Then, with 
Axiom B, he constructed this partial order on the basic sets, and hence a filtration 
to isolate each piece, so that one can get the global conjugacy. And, suddenly, Terry 
woke up and looked and said, quietly: "Is all you need, the partial order relation, in 
order to get the stability?" This was an agitated seminar with many people. Steve 
turned and said: "Well, maybe, I'm not sure about that, I'm not sure." 

At that instant, I didn't know who Jacob Palis was, but he became very animated 
and said: "That's right, that's it, that is all you need!" And the next day, as I recall, 
he proved that if you had a cycle then you had ^-explosions, and so, in fact, this 
no-cycle condition was necessary for stability. Later on, in the paper that actually 
appears in the proceedings of the symposium [42], you see Axiom A and no-cycle 
condition, not Axiom A and Axiom B, Axiom B disappeared. So, as part of this 
discussion, Jacob had a significant part in the formulation of the Q-stability theorem 
as it now sits. 

From Hyperbolicity to Stability 
How does one go beyond toward more general stability theorems and proving these 

conjectures? What did people know at that time? They knew that the Morse-Smale 
systems were structurally stable. They knew that Axiom A and no-cycle property 
implies Sl-stability. How does one to get more general structurally stable systems? 
One idea at the time was to take Jacob's tubular family construction and extend 
it to Axiom A systems. That is, to get an invariant foliation on neighborhoods 
of complicated hyperbolic sets. It turned out to be quite a complicated thing to 
do and, in fact, this is still not known in general, it's not known how to do that 
for high dimensional systems. But that program did succeed for two-dimensional 
diffeomorphisms, with the thesis of Welington de Melo in 1971. 

The next progress came in what might seem a curious way. Jiirgen Moser gave 
a second proof of the stability of Anosov systems, using the so-called infinitesimal 
methods. His idea was the following: you want to solve the equation ho f = g o h for 
a homeomorphism h. You rewrite this as 

f-1 oho f = f~l ogoh. 

Then you take a Riemannian metric on your manifold, and try to find h as the 
exponential of some continuous vector field v, which should be C°-small so that the 
homeomorphism is close to the identity. So, writing h = exp(i>), and also f~~1og = 
exp(w) for a C1-small vector field w, you get 

f~l o exp(i;) o / = exp(w) o exp(v). 
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Linearizing this equation (or using infinitesimal methods, which is the term I use), 
you get 

exp(D/_1 o v o f) = exp(w + v), 

up to a small error. So, taking exp-1 in the previous relation, it becomes 

Df~l ovof + s(v, w) — w + v, 

where s(v,w) is small. Denoting Fv = Df~l o v o / , this may be rewritten as 

(I — F)v = v — Df-1 o v o f = s(v, w) — w. 

So, we know w, which is a C1-small vector field, and we are looking for v, a small 
continuous vector field. Moser realized that if you could invert this operator (I — F) 
on the space of continuous vector fields, then you could solve this functional relation 
for v, using the contraction mapping theorem. And, in fact, the Anosov condition 
was precisely the condition you need to make (I — F) invertible. 

So, he was able to give a new proof of the stability of Anosov systems using vector 
field methods, infinitesimal methods, whereas Anosov's proof made strong use of the 
existence of integral manifolds for the expanding and contracting distributions, the 
stable and unstable manifolds. Well, at the time this was interesting because it made 
Anosov's proof understandable to people in the West, there was no published English 
version of it. And also I think it was thought of as a useful addition, a curious new 
proof of a known result. One thing that came out of it is that you get unique solutions 
near the the identity, which you can also prove by other methods. 

There is an other development that I should mention. In the group of people 
who were in Berkeley and in the West at the time, the way that Moser's methods 
became known was through an implicit function theorem argument that John Mather 
produced. It turned out that, in detail, Mather's argument was actually incorrect, 
because differentiability assumptions were not satisfied. What the method gave you 
was a continuous solution to the functional equation, it didn't prove that the solution 
was a homeomorphism. But the arguments could be fixed up. I think it was Mike 
S hub who observed, and was well-known in the Soviet Union as well, that Anosov 
systems were expansive, and you can use that to show that solutions which are C°-
close to the identity actually have to be one-to-one. So you got the proof anyway, 
even if the implicit function theorem didn't work. 

Far away, in the middle of the United States, Joel Robbin was learning about those 
things, and I think he shocked everybody by announcing that he could prove that, in 
the C2 case, Axiom A diffeomorphisms satisfying the strong transversality condition 
are structurally stable. Well, how did he do it? He used infinitesimal adaptations of 
the tubular families constructions. Basically, the conjugacies were not unique, they 
involved choices, and he used the fact that Moser's transformation (I — F) had a 
continuous right inverse. You can see Jacob's influence again, even at that level: at 
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the end of the paper [60] there's a ratio that says 

(Moser) : (Anosov) = (Robbin) : (Palis - Smale). 

The idea being that Moser produced an infinitesimal proof of the structural stability, 
removing the necessity of integrating the invariant subbundles for the construction, 
and Robbin produced an infinitesimal proof for Axiom A systems, removing the ne­
cessity of tubular families. 

For technical reasons Robbin needed the C2 assumption, not for the perturba­
tions, but for the original diffeomorphisms. That was ultimately improved by Clark 
Robinson, who proved the general structural stability theorem, that Axiom A C1 
diffeomorphisms satisfying the strong transversality condition are structurally stable 
[62], and he also proved it for the vector field case [61]. Concerning fJ-stability, in 
Smale's paper [65] where he proves his ^-stability theorem, he makes the statement 
that, presumably, similar methods can be used for flows. It was a highly non-trivial 
extension required to do it for flows, and it was carried out by Charles Pugh and Mike 
Shub [57]. So, at this stage, which I suppose is the mid-70's, we had general sufficient 
conditions for structural stability and ^-stability, both for diffeomorphisms and for 
flows. 

From Stability Back to Hyperbolicity 

Remember the stability conjecture had a converse as well. So there was a lot of 
activity focussed on the converse. The initial efforts involved changing the definition 
of stability, to include conditions about dependence of the solution on the perturbation 
(whether it is continuous, whether is Lipschitz), and a number of people contributed 
with interesting works in that direction. John Franks [14] had a notion of time-
dependent stability, with which he was able to characterize Axiom A and strong 
transversality systems. John Guckenheimer [16] had a notion of absolute stability, 
and so on. And then the full problem itself was treated in some special cases in low 
dimensions, by Liao [21], Mane [23, 24], Pliss [55], and Sannami [64]. 

But the major breakthrough came in 1986, when Ricardo Mane, one of Jacob's 
early graduate students, completely solved the problem! He proved what was the main 
remaining part, that is, that structurally stable systems had to satisfy the Axiom A 
[25]. 

Curiously enough, although this is a substantial result which uses much information 
about the non-wandering set, Ricardo was not able to prove the fl-stability converse, 
he only proved the structural stability statement. It took some other intricate knowl­
edge, and a fair amount of effort, for Jacob to prove that converse, and so complete 
the ^-stability conjecture for diffeomorphisms, again around 1986. For the flow case, 
neither of the statements was known at the time, they were resolved only recently, by 
Shuhei Hayashi [19] in 1994. 
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ON THE MATHEMATICAL CONTRIBUTIONS OF JACOB PALIS 11 

So, in the development of this very important concept and theory, a period of 
almost 25 years was needed to accomplish what is now one of the crown jewels in 
the field of Dynamical Systems, the complete characterization of structurally stable 
systems. And as you saw, Jacob Palis played a very central role in that. 

That's what I wanted to say about stability, the global stability issue. Now I want 
to go toward bifurcation theory. 

Bifurcation Theory 

In 1970 or so, I had the privilege to come to IMPA for two years, and to begin 
our program in bifurcation theory with Jacob. We started to work on the problem of 
understanding the structure of how hyperbolicity breaks down when you start with a 
Morse-Smale system. Basically, what we wanted to study was the so-called accessible 
part of the boundary of the Morse-Smale systems. The idea is the following. Let 
{4>}M ^e an arc (a curve) °f diffeomorphisms starting at a Morse-Smale system £0-
See Figure 2. You look at the first value /i = b of the parameter where the system 

M-S 
x+d1d 

So 

d+dr 

FIGURE 2. Bifurcations along parametrized families 

fails to be structurally stable, the so-called first bifurcation point, and you want to 
describe the structure of such systems 

Some ideas and problems were motivated by work done by Jorge Sotomayor [66] 
for one-parameter families of vector fields on surfaces, and also by a general periodic 
point description for one-parameter families of diffeomorphisms, which was obtained 
by Pavel Brunovsky [6]. In addition, there were mathematicians in the Soviet Union 
studying similar problems, Gavrilov and Shilnikov [15], although we didn't know that 
at the time, we only became aware of their work somewhat later. 

During that period I wrote two papers with Jacob, [35] and [36], in which we 
basically proved the following. Assuming that at the first bifurcation point the limit 
set (the closure of the a- and o;-limit sets of the system) consists of a finite number 
of orbits, we completely described the structure at the bifurcation for generic arcs of 
diffeomorphisms. We also studied other issues related to stability as you move along 
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the parameter, that I'll talk a bit more about later. But the main contents of the first 
paper [35] was this description at the bifurcation in the case when the limit set has 
finitely many orbits. 

In the second paper [36] we considered systems where at the bifurcation point 
the limit set was actually hyperbolic, it stayed hyperbolic, but structural stability or 
Q-stability failed all the same, because of the creation of a cycle. We studied the 
situation where the cycle was equidimensional, that is, the stable manifolds of all the 
periodic points in the cycle have the same dimension. We were able to prove that in 
that situation the bifurcation map £5 was accumulated by Axiom A, non Morse-Smale 
diffeomorphisms. That is, 

- there existed parameter values \i\ > [12 > • • • > l^i > * • • converging to the first 
bifurcation point 6, such that the diffeomorphisms t\Ul satisfied the Axiom A and the 
strong transversality condition, and the non-wandering sets were infinite. 
Moreover, the non-wandering sets were all topologically distinct, so that £Mi could not 
be ^-conjugate to each other. In fact, we proved that £M satisfies the Axiom A and 
the strong transversality condition for most parameters \i > b near 6, in the sense that 
such parameters are a fraction close to 1, in measure, of small intervals (/z, /z + e). 

Later, in a paper with Floris Takens and Jacob [37], we completely characterized 
the so-called stable arcs of diffeomorphisms, under the assumption that the limit set 
have finitely many orbits for each parameter value. An arc {^j/x of diffeomorphisms 
is called stable if, given any perturbation {r]^}fl, as represented in Figure 2, then 

(1) every diffeomorphism £fl in the arc is conjugate to a diffeomorphism 77̂  in the 
perturbed one, with a nearby parameter v, 

(2) and the conjugacy varies continuously with the parameter. 
That's the condition of stability for arcs of diffeomorphisms. In [37] we character­
ized this condition and, as part of that work, a number of new concepts and ideas 
were introduced. In particular, a notion of rotation interval for circle endomorphisms 
was introduced. Strong rigidity for saddle-node bifurcations also came up in this 
work. One consequence of this strong rigidity phenomenon for saddle-node bifurca­
tions is that the strong-stable and strong-unstable manifolds have to be preserved 
under conjugacy that varies continuously with the parameter (in general, topological 
conjugacies don't preserve strong-stable and strong-unstable manifolds). 

Then these works were extended in a very significant way by Palis and Takens [43], 
who proved in 1983 that 

- an open dense set of one-parameter families of gradients systems on any manifold 
were stable in the sense I've just described (continuous variation of the conjugacy with 
the parameter). 

And somewhat later, in 1990, Mario Jorge Dias Carneiro and Jacob [8] proved that 
one can extend that to two-parameter families: an open and dense subset of families 
of gradient systems depending on two parameters are stable. 
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One might have hoped, in fact the hope around that time and earlier was that 
/c-parameter families of gradient systems in a dense open set would be stable. That 
was shown to be false by Takens, who proved that for 8 or more parameters the stable 
families of gradient systems are not dense. I don't know how far down one has got 
yet, I think the conjecture still is that for k less than or equal to 4 the stable families 
should form an open and dense subset in the space of gradient systems. 

In these constructions, the geometric freedom of tubular families and how you bring 
them up is, again, of fundamental importance. It's interesting to point out that at 
the time people discussed whether infinitesimal maps could be used for this theorems, 
but, as far as I know, they never managed to work. So far, infinitesimal methods have 
only been useful for the general structural stability theorem. 

Homoclinic Bifurcations 

Bifurcation theory continued to be one of Jacob's major projects during the 80's 
and afterwards. Initially, the goal was to extend some of these results, especially from 
[36], to the case where the limit set may have infinitely many orbits. In particular, 
now you want to consider more general arcs of systems starting inside the Axiom A, 
not just the Morse-Smale systems. But this also led to some very interesting new 
problems and ideas related, for instance, to fractal dimensions. 

To explain this, let me consider a situation as described in Figure 3, a surface dif­
feomorphism with a non-transverse intersection between the stable and the unstable 

d+d1dd1d+ 

vrd 

\w«(p) 

H 

W»(p) 

d+x21b 

FIGURE 3. Homoclinic tangency associated to a hyperbolic set 

maniiold oi a periodic saddle point p. We call that intersection a homoclinic tangency. 
And the periodic point p is contained in an infinite hyperbolic set H of the diffeomor­
phism, a horseshoe. This means that the homoclinic tangency is accumulated by a 
pair of laminations, or partial foliations, formed by the stable and unstable manifolds 
of all the points in H. 

A diffeomorphism like this may be obtained as a first bifurcation of an arc 
starting at an Axiom A system. The map itself is not Axiom A, the homoclinic 
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tangency implies that the non-wandering set is not hyperbolic. Then, as you increase 
the parameter, the stable and the unstable laminations move with respect to each 
other and, whenever there is a tangency between a leaf of one and a leaf of the other, 
the diffeomorphism can not be Axiom A. 

Since these are just laminations, not full foliations of open sets, you might expect 
that such tangencies should be easy to avoid, taking advantage of the gaps between 
the leaves. However, I showed in my thesis [32] that it is not true in general. In fact, 

if the laminations are transversely thick, that is, if the gaps are relatively small, 
it is impossible to avoid tangencies between leaves of the two laminations, they exist 
for a whole open set of diffeomorphisms. 

I'll call this phenomenon persistent homoclinic tangencies. Later, in [34], I proved that 
this phenomenon occurs near any surface diffeomorphism with a homoclinic tangency: 

- there always exist open sets in the parameter space arbitrarily close to the bifur­
cation, that correspond to persistent tangencies. 

And then Clark Robinson [63] deduced a version of this result for arcs of diffeomor­
phisms. 

Palis and Takens wanted to understand this issue in more detail, and they came to 
establish a deep connection between homoclinic bifurcations and fractal dimensions 
of hyperbolic sets. Let me explain this. 

In the paper [36], that I mentioned before, Jacob and I had shown that tangencies 
between the stable and the unstable laminations were, essentially, the only thing one 
has to worry about. We showed that if there were no tangencies and, in fact, the map 
was not too close to having a tangency, then the non-wandering set was hyperbolic. 
So this was a kind of converse to the fact that tangencies are an obstruction to 
hyperbolicity. 

In the setting we were dealing with the limit set was finite, and we were able to 
show that parameters for which the map is too close to a tangency have small rela­
tive measure near the bifurcation. That's how we proved that hyperbolicity (Axiom 
A and strong transversality) prevails near these homoclinic tangencies, in terms of 
measure in parameter space. And the arguments suggested that it might be possible 
to avoid tangencies for most parameter values in more general situations, provided 
the laminations were not too thick. 

Now, Palis and Takens realized that this should be formulated in terms of the 
transverse fractal dimensions of the laminations. The condition they required was 
that the sum of the transverse Hausdorff dimensions of the stable and unstable lam­
inations should be less than 1. By definition, the transverse Hausdorff dimension is 
the Hausdorff dimension of the intersection of the lamination with some cross-section. 
It can be shown, in this context, that the definition doesn't depend on the choice of 
the cross-section. 
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It turns out that the sum of these transverse Hausdorff dimensions is equal to the 
Hausdorff dimension of the hyperbolic set H. So, their theorem, proved around 1984, 
has a very elegant statement [45]: 

- if the Hausdorff dimension HD{H) of the hyperbolic set involved in the tangency 
is less than 1, then £/A is hyperbolic (Axiom A and strong transversality) for most 
nearby parameters /i > b: 

(1) lim -m ({fi G (6, b + e) : £„ is hyperbolic }) = 1, 

where ra(-) is Lebesgue measure. 

At about the same time they proved a similar result for the heteroclinic case [44], 
where the tangency is between stable and unstable manifolds of different periodic 
points. Actually, in those papers they used another notion of dimension, called limit 
capacity, or box dimension, instead of Hausdorff dimension. But then it became 
clear that the two notions of fractal dimension coincide for hyperbolic sets of surface 
diffeomorphisms. This is discussed in their book [46, Chapters 4-5], where they also 
explain why (1) can always be stated with the full limit, initially in the heteroclinic 
case they only had a lim sup. 

Then, in a paper [51] that was published in 1994, Jacob and Jean-Christophe 
Yoccoz proved that the condition in the previous theorem is, in fact, optimal: 

if the Hausdorff dimension of H is larger than 1, then the conclusion (1) above 
no longer holds. 

This statement and, to some extent, the proof itself were inspired on a result of John 
Marstrand [26] about arithmetic differences 

Ki — XK'2 = {a\ — \a>2 '• ai ^ Kl and a-2 G K2} 

of Cantor sets in the real line: if the sum HD(Ki) + HD{K2) is larger than 1 then 
the difference has positive Lebesgue measure, for almost every A. So, at this point it 
was already clear that there was an important relation between this part of Dynamics 
and other topics, like Geometric Theory of Dimension and Harmonic Analysis. 

Cantor sets and Fractal Invariants 

Motivated by this, Jacob started asking several questions about arithmetic differ­
ences of Cantor sets, with an eye on their applications to Dynamical Systems and 
other areas. In particular, he conjectured that for generic regular Cantor sets K\ 
and K2 , the arithmetic difference either has zero Lebesgue measure or contains some 
interval. A Cantor set is called regular if it is generated by a smooth expanding 
map. The set of such Cantor sets comes with a natural topology, inherited from the 
corresponding maps. 
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Well, this conjecture was proved by Carlos Gustavo Moreira and Yoccoz [30], 
around the beginning of 1995. Actually, they proved a rather strong version of the 
conjecture. Their result applied to an open and dense set of regular Cantor sets that 
has "full probability", in some natural sense. Moreover, they get stable intersections, 
which is much stronger than just having an interval contained in the arithmetic dif­
ference. Then, they proved the following substantial extension of the previous results 
about homoclinic tangencies [31]: for generic arcs of diffeomorphisms {^}u with a 
homoclinic tangency at \i = b, 

- for most parameters /x > b close to 6, in the sense of (1), either Çu is hyperbolic 
or /x is in some interval with persistent homoclinic tangencies. 

In other words, if PT + AT is the union of all the intervals of persistent tangen­
cies with those parameters for which the map satisfies the Axiom A and the strong 
transversality condition, then 

lim -m(PT + AT n (6, b + e)) = 1. 

The theorem of Palis and Takens says that if the Hausdorff dimension of the horseshoe 
H is less than 1 then we have the same result already for the set of parameters 
corresponding to hyperbolic maps. So, the main novelty of this result is when the 
Hausdorff dimension is larger than 1. 

There is a very natural question that arises, which is, what can we say about 
the dynamics when it's not hyperbolic. Well, Jacob has some recent joint work with 
Yoccoz [52] about this, that Yoccoz will talk about later in this Conference, so I won't 
discuss in any d e t a i l . B u t the point is that they define so-called non-uniformly 
hyperbolic sets, or non-uniformly hyperbolic horseshoes, that are an extension of the 
hyperbolic sets that still have several nice properties. And they were able to show 
that if the Hausdorff dimension of the original hyperbolic set H is not much larger 
than 1 (they have a precise technical condition), then the diffeomorphisms £M are 
non-uniformly hyperbolic for most parameters /x > b near b. That is, if NUH is the 
set of parameters such that the non-wandering set is a non-uniformly hyperbolic set, 
then 

lim -m(NUH D (b, b + e)) = 1, 

as long as the Hausdorff dimension is not much larger than 1. 
Now let me say a few words about the higher dimensional case. Most of this 

has been proved for surface diffeomorphisms, and there are several serious difficulties 
that appear in higher dimensions. The main reason is that the stable and unstable 
laminations need not be transversely smooth. So, in general, it's not even known 
whether the transverse Hausdorff dimension is well defined. In fact, the geometry of 
hyperbolic sets in high dimensions is much less understood than in the surface case. 

(2) Abstracts of talks given at the Conference are available at www.impa.br/~dsconf/. 
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In general, the Hausdorff dimension and the limit capacity are not equal, and they 
do not vary continuously with the dynamical system. 

However, and this is a development near my heart, Jacob and Marcelo Viana 
were able to overcome some of these difficulties and, around 1989, prove the higher 
dimensional extension of the result about persistent homoclinic tangencies. The result 
was published in [47]. 

And they have very recent results together with Moreira, as we heard in Moreira's 
talk in this Conference, which show that the relation between fractal dimensions and 
abundance of hyperbolicity in parameter space stays valid for families of diffeomor­
phisms in arbitrary dimension. 

Non-Hyperbolic Systems 

The study of bifurcations, and these results that I mentioned, are part of an effort 
to go beyond the hyperbolic systems and understand very general dynamical systems. 
I think that, from the beginning, Jacob was convinced that bifurcation theory was the 
right way to do that or, at least, an essential part of trying to understand systems that 
are not hyperbolic, that are not structurally stable. And as the theory of homoclinic 
bifurcations developed, he became more and more convinced that they should play a 
key role in this. 

By 1989 there was a paper of Benedicks and Carleson [4] where they proved that 
non-uniformly hyperbolic dynamics is frequent in the so-called Hénon family of plane 
maps 

h(x, y) — (1 — ax2 -h y, bx). 

That is, for a set of values of the parameters a and b with positive Lebesgue measure, 
the maps have a non-uniformly hyperbolic attractor. This was a striking extension of 
a very important pioneering work of Jakobson [20], back in the late seventies, where 
he had obtained a similar result for the family of quadratic real maps q{x) = 1 — ax2. 

Even before their paper appeared, Palis suggested that this result should be true, 
more generally, for generic arcs of surface diffeomorphisms with a homoclinic 
tangency. You see, it was known that returns maps of £M to certain regions near 
the tangency look like the Hénon model, so that was the idea. So, he proposed this 
problem to two of his students at the time, Leonardo Mora and Marcelo Viana. And 
Mora and Viana [27] were able to show that the approach of Benedicks and Carleson 
extended to more general dissipative systems, that are called Hénon-like maps, and 
from this they could prove Jacob's conjecture, in 1990. 

These kinds of results, there are many others, relating homoclinic tangencies to 
other types of complicated dynamics, convinced Jacob that homoclinic tangencies 
might be some sort of unifying notion for understanding non-hyperbolic systems, at 
least in low dimensions. So he made the following conjecture: 
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- the union of Axiom A diffeomorphisms with those that have a homoclinic tan­
gency is dense in Vr{M), if M is a surface. 

In other words, every Cr surface diffeomorphism that is not in the closure of the 
Axiom A systems is approximated by other diffeomorphisms that have homoclinic 
tangencies. 

As you probably know, this conjecture was proved a couple of years ago by two 
other former students of Jacob, Enrique Pujals and Martin Sambarino, in the case 
r = 1. Their paper has just appeared [58], In fact, the result had been announced by 
Araujo and Marié in the early 90's, but they never provided a proof. As a consequence 
of their methods, Pujals and Sambarino also got another most interesting result [59]: 

- any arc of surface diffeomorphisms such that the topological entropy is not con­
stant on it must contain a homoclinic tangency. 

There is a version of the previous conjecture for high dimensions, that says that 
the union of Axiom A diffeomorphisms with those that have a homoclinic tangency 
or a heterodimensional cycle should be dense in Vr(M). A cycle is called heterodi­
mensional if the stable manifolds of the periodic points involved in the cycle are not 
all of the same dimension. It seems that several groups of people have made progress 
in the direction of this high dimensional conjecture, indeed there will be a couple of 
talks on this subject in this Conference, but a complete proof is not yet available. 

Back in the late eighties, Jacob suggested the study of heterodimensional cycles to 
Lorenzo Diaz, as his thesis problem. The idea was to complement our own results in 
[36], as I said before, we studied the equidimensional case. Now, Diaz found out that 
the conclusions are quite different for heterodimensional cycles: most of the times the 
bifurcating diffeomorphism <̂  is not accumulated by hyperbolic ones, in fact, there is 
a whole interval (6, b -f e) such that £M is not hyperbolic, not structurally stable, for 
any parameter \i in this interval. These results appeared in his thesis [11] and were 
much developed in a series of joint papers with Jorge Rocha, another former student 
of Jacob. See for instance [13]. 

And, sometime later, it became clear that heterodimensional cycles also have an im­
portant connection with the phenomenon of robust non-hyperbolic attractors, which 
I'll mention again in a little while. 

A Unifying View of Dynamics 

By 1995, Jacob had put several ideas and conjectures together to form a coherent 
picture of what might be the typical kinds of behavior of non-hyperbolic systems. This 
appeared in a preprint that was published in Douady's volume of Astérisque [41]. The 
main point is a conjecture that every system can be approximated by another having 
only finitely many attractors, whose basins of attraction contain almost all points. In 
fact these systems should have large probability in parameter space, in some natural 
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sense. And the attractors should have nice properties, such as the existence of so-
called Sinai-Ruelle-Bowen measures. 

It is interesting to observe that the idea that most dynamical systems should have 
a finite number of attractors goes back to René Thorn, in the sixties, although he 
didn't make precise what "most" was supposed to mean. Certainly, he was motivated 
by Smale's ideas in hyperbolic theory at the time^, where the point of view was, 
primarily, topological. Maybe because of this, it was widely understood that Thorn 
had in mind a residual (second category of Baire) subset of all dynamical systems 
and, in this form, the finiteness statement turned out to be false [33]. So, Jacob's 
conjecture is a very interesting revival of this classical idea, in a new and more proba­
bilistic framework. A key novelty in Palis' approach is to allow the existence of cycles 
occupying a small volume in the dynamical space. Indeed, cycles have been a main 
obstruction to the realization of previous global scenarios for Dynamics. 

So far, it is known that this conjecture holds for quadratic maps of interval, as a 
consequence of work done by Lyubich, Martens, and Nowicki. See [22]. And both 
Misha Lyubich and Artur de Melo will speak in this conference about their recent 
work with Welington de Melo, where they extended this to general analytic families 
of unimodal maps. 

In higher dimensions, there have been some very interesting results that, I believe, 
were at least partially motivated by Jacob's questions and conjectures. 

There is the work of Diaz, Pujals. Ures, and Bonatti [12, 5] where they character­
ized the robust sets of diffeomorphisms in any dimension. An invariant set is robust if 
it is transitive and remains transitive under any Cl small perturbation of the system. 
They proved that robust sets must have a so-called dominated splitting, which is a 
decomposition of the tangent space into two continuous distributions such that one 
is more expanding than the other at every point, by a definite factor. In dimension 3 
at least one of the distribution is hyperbolic, either expanding or contracting. This is 
called partial hyperbolicity. 

Moreover, Alves, Bonatti, and Viana proved existence and finiteness of ergodic 
attractors, or Sinai-Riielle-Bowen measures, for certain types of partially hyperbolic 
systems, in a paper [1] that has just appeared. 

And there is also very important work of Carlos Morales, Maria José Pacifico, 
and Enrique Pujals [28, 29], characterizing the robust sets of arbitrary flows in 3 
dimensions. Robust sets containing only regular orbits must be hyperbolic, so the 
more interesting case is when the set contains some singularity. They proved that any 
robust set that contains a singularity is a Lorenz-like attractor, or repeller, meaning 
that it has all the main features of the geometric Lorenz models of Guckenheimer-
Williams [17]. 

('̂ "Toutefois, selon certaines idées récentes de S. S maie, si la variété est compacte, presque tout 
champ X présenterait un nombre fini d'attracteurs isolément structurellement stables" [67, p. 56] 
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Many Other Results 
There are many other important contributions that Palis has done. For instance, 

there is his work on moduli invariants, that is, characterizing systems with the prop­
erty that the number of topological types of perturbations depends on a finite number 
of real parameters. In [40], he discovered a smooth invariant for topological conjugacy 
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FIGURE 4. Moduli of conjugacy in saddle-connections 

between flows with a saddle connection as in Figure 4. In fact, two such flows are 
conjugated if and only if they have the same ratio of eigenvalues 

Ai 
0~2 

And, together with Welington de Melo and Sebastian van Strien [9, 10], he obtained a 
characterization of such systems with mild recurrence, in a wide variety of situations. 

As a part of the development of moduli theory there was a description of typical 
holomorphic vectors fields, the topological types of linear holomorphic vector fields in 
CP7\ which was done by César Camacho, Nicolaas Kuiper, and Jacob in [7]. 

I should also mention his series of papers with Yoccoz, where they study rigidity of 
centralizers of diffeomorphisms, that are the sets of diffeomorphisms which commute 
with a given diffeomorphism. In a series of papers [48, 49, 50], they prove that, 
generically, the centralizer is trivial for a hyperbolic diffeomorphism, it just contains 
the iterates of the map. 

Actually, even back in his thesis, Jacob had been interested in a related problem: 
how frequently diffeomorphisms embed in flows. He observed that there were open 
sets of diffeomorphisms where the natural topological conditions that you would need 
to embed in a flow were not sufficient: there were open sets of such diffeomorphisms 
that did not embed in flows. And, somewhat later, in [39], he was able to prove that, 
C1 generically, diffeomorphisms do not embed in flows. 

If you look at Jacob's list of scientific works attached to this paper, you'll see that I 
could still go on for a long time. So, let me just conclude with some personal remarks. 
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Conclusion 

It's interesting to note that up to 1993 Jacob had 16 graduate students, whose 
theses appeared up to that year. He's been Director of ²IMPA since around 1993, and 
as of 2000 he has 35 graduate students. So one might conclude that administration 
is not so bad for someone with the talents of Jacob Palis... 

In any event, he has exhibited leadership, as I indicated, direction and scope in 
formulating conjectures and stimulating many people throughout the world. The 
scope has increased dramatically as we get evidence of collaboration with Yoccoz, 
with Viana, with many other people, and of much activity, many interesting results, 
going deeply into the study of dynamical systems. 

So, on the occasion of his 60th birthday, we all look forward to continued develop­
ment for many, many years. 
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