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MICROLOCAL ANALYSIS, BILINEAR ESTIMATES A N D 
CUBIC QUASILINEAR WAVE EQUATION 

by 

Hajer Bahouri & Jean-Yves Chemin 

Abstract. — In this paper, we study the local wellposedness of a cubic quasilinear 
wave équation. The Strichartz estimate used for the solutions of linear variable 
coefficients wave équations are not relevant here. We prove bilinear estimâtes for 
solutions of linear wave équations with variable coefficients. The main tools are Bony's 
paradifîerential calculus and the microlocalization in the sensé of Weyl-Hôrmander 
calculus. 
Résumé (Analyse microlocale et équation d'onde quasilinéaire cubique). — Dans cet 
article, nous étudions l'existence et l'unicité locale de solutions pour une équation 
d'onde quasilinéaire cubique. Les classiques estimations de Strichartz ne sont pas 
adaptées dans ce cas. Nous démontrons des estimations bilinéaires pour des solutions 
d'équations d'ondes à coefficients variables. Les deux outils principaux sont le calcul 
paradifférentiel de Bony et la microlocalisation au sens du calcul pseudodifférentiel 
de Weyl-Hôr mander. 

Introduction 
In this paper, our interest is to prove local solvability for équations of the type 

(EC) 
dfu — Au -

Agi>k = Qjik(d 
gj*djdku = 0 

Agi>k = Qjik(du,du) 
(u,dtu)\t=0 = (uQ,ui). 

where Qj,k are quadratic forms on Rd+1. In ail this work, we shall state, for a real 
valued function won[0,T]xRd, 

Vu def hu,-- ,ddu), du iedf (dtu, d\u, - - - , ddu) and g-Vu def 

Agi>k = Qjik(d 
g^djdku. 

2000 Mathematics Subject Classification. — 35L70, 35A07. 
Key words and phrases. — Equations d'onde quasilinéaire, estimation bilinéaire, analyse microlocale, 
calcul paradifférentiel, calcul pseudodifférentiel de Weyl-Hôrmander. 
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94 H. BAHOURI & J.-Y. CHEMIN 

When no confusion is possible, we shall also state 

7 
def 

(Vu0,tii). 

This problem of course is a model one. The gênerai problem consists in considering 
équations of the type 

d2u - Au -

Agi>k = Qjik(d 

gj>kdjdku = 
Agi>k = Qji 

Agi>k = Qjik(d 

Agj>k = QiAdu,du) 
(u,dtu)\t=0 = (uo,ui). 

where Qj^ are quadratic form on Rd+1 and where ail the quadratic forms are supposed 
to be smooth fonctions of u. This simply complicates a little the estimâtes without 
any relevant new phenomenon. In the frame work of équation (EC), it makes sensé 
to work with small data and this simplifies the proofs. 

Energy methods allow to prove local wellposedness for initial data (uo,ui) 
inif2+è x fl" 2_è. More precisely, we have the following theorem. 

Theorem 0.1. — If d > 3, let (wo,wi) be in H%+^ x Hi~% such that | |7|| . d_1 is 
small enough. Then, a positive time T exists such that a unique solution u of (EC) 
exists in C([0,T]; Hi+%) fl C1([0,T]; Hi~%). Moreover, a constant C exists (which 
of course does not dépend on the initial data) such that 

T > C\h\\ 
ki-i 

Let us recall that Hs is the usual Sobolev space on R and that Hs is the homo-
geneous one and we shall state 

11/112 def 
rd 

lÉl2'l/(0fdÇ-

This is an Hilbert space when s < d/2. 

The goal of this paper is to go below the regularity Hd/2+1/2 for the initial data. 
Let us have a look to the scaling properties of équation (EC). If u is a solution 

def 
of (EC), then u\(t,x) = u(\t,\x) is also a solution of (EC). The space which is 
invariant under this scaling is Hd/2. So the above theorem appears to require 1/2 
derivative more than the scaling. The goal of this work is to try to go as closed as 
possible to the scaling invariant regularity. 

Some results in that direction have been proved by the authors (see [4] and [5]) and 
also by D. Tataru (see [27] and [28]) for quasilinear wave équations of the following 
type 

(E) dfu -Au- Glu) • V2u = Flu)Q(du, du) 
(u,dtu)\t=Q = (u0,ui) 
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MICROLOCAL ANALYSIS AND CUBIC QUASILINEAR WAVE EQUATION 95 

where G is a smooth function vanishing at 0 and with value in K such that Id+K is 
a convex compact subset of the set of positive symmetric matrices. Let us recall this 
results. Let us notice that the scaling of the two équations (E) and (EC) is the same. 

Theorem 0.2. — Ifd^3, let (UQ, UI) be in Hs xHs 1 for s > Sd with Sd 
d 1 1 
2 ^ 6 

Then, a positive time T exists such that a unique solution u exists such that 

du e C([0, T]; H8-1) n L2([0, T]; L°°). 

Moreover. a constant C exists such that 
C([0, T]; H8-1) n L2([0, 

This theorem has been proved with 1/4 instead than 1/6 in [4] and then improved 
a little bit in [5] and proved with 1/6 by D. Tataru in [28]. Strichartz estimâtes for 
quasilinear équations are the key point of the proofs. Recently, S. Klainerman and 
S. Rodnianski have announced a better index. Their proof is based on very différent 
methods. In this case, the energy methods give the classical index s > d/2 + 1 and 

T>Ch\\-\.1. 

The goal of this work is to do the analogous in the case of Equation (EC). The 
resuit will be the following. 

d 1 
Theorem 0.3. — If d ^ 5, let (uo,ui) be in Hs x Hs~l with s > - + - such 

2 o 
that W^W^d-! is small enough. Then, a positive time T exists such that a unique 
solution u of (EC) exists such that 

dueCdo.ThH'-^nLU drd 
4,2 

where . d_ 1 
'4,2 

dénotes the Besov space defined in Définition 1.1. Moreover. for any 
positive a, a constant Ca exists such that 

C([0, T]; H CdaldddMI" î C([0, T]; H 
The case of dimension 4 is a little bit différent. The theorem is the following. 

Theorem 0.4. — Ifd = 4, let (uo, u\) be in Hs x Hs~x with s > 2+ ^ such that 

is small enough. Then, a positive time T exists such that a unique solution u of (EC) 
exists such that 

dueC^T^H^ddddddnLUÈ1^6) and dgeLlT(L°°) 

where 
d_l > fi 9 
6,2 

dénotes the Besov space defined in Définition 1.1. Moreover, for any 

positive a, a constant Ca exists such that 

C([0, T]; H8-1 •1 
wx+wk 

Remarks 
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96 H. BAHOURI & J.-Y. CHEMIN 

- If we think in term of small data (i.e. of initial data of the type £(i£o,^i)), 
then energy methods give a life span in e~2. The above theorem gives a life span of 
order e~6+a for any positive a. 

- As we shall see, the case when d ^ 5 can be treated only with Strichartz estimâtes 
simply because laws of product in Besov spaces imply that if du belongs to Lj,(B£2 2 ) 
then dg is in L^(L°°). 

- The case when d = 4 requires bilinear estimâtes. This fact appears in the 
statement of Theorem 0.4 through the following phenomenon: the fact that du is 
in £y(i?g46) d°es not ûnpty that the time derivative of g belongs to L^(L°°). Of 
course this condition is crucial in particular to get the basic energy estimate. But we 
have been unable to exibit a Banach space B which contains the solution u and such 
that if a function a is contained in S, then dA~1(a2) belongs to L^(L°°). 

- In ail that follows, the dimension d will supposed to be greater or equal than 4. 

Acknowledgments. — We want to thank S. Klainerman for introducing us to this 
problem and also for fruitful discussions. We thank J.-M. Bony for very important 
discussions about the concept of microlocalized functions. 

1. Method of the proof and structure of the paper 

As we shall use Littlewood-Paley theory ail along this work, let us begin by recalling 
some basic facts and définitions related to it. 

1.1. Some basic facts in Littlewood-Paley theory. — Let us dénote by C the 
ring of center 0, of small radius 3/4 and of big radius 8/3. Let us choose two non 
négative radial functions x and <p belonging respectively to D(i?(0,4/3)) and T>(C) 

sucn mat 
(i) x(0 + 

9€N 

C([0, T]; H8 

qez 
p(2-q0 = 1, 

(2) \p - q\ > 2 =>• Supp<yp(2-9-) n Supp<p(2~p-) = 0, 

q^l=ï Suppx H Supp ip(2~q-) = 0. (3) 

and if C = i?(0,2/3) + C, then C is a ring and we have 

(4) \p - q\ ^ 5 =» 2PC H 2qC = 0. 

Notations 
h = T ltp and h = T 1y, 

Aqu = <p(2-qD)u = 2qd h{2qy)u(x - y)dy, 

Squ = 
x + d+d 

Avu = x(2~qD)u = 2qd h(2qy)u{x - y)dy. 
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MICROLOCAL ANALYSIS AND CUBIC QUASILINEAR WAVE EQUATION 97 

We shall often dénote Aqu by uq. Let us recall the définition of Besov spaces. 

Définition 1.1. — Let s be a real number, and (p, r) in [1, oo]2. Let us state 

N U -
def ( 2 ^ i i a ^ i i l p ; q€Z £r(Z)' 

If s < d/p then the closure of the compactly smooth functions with respect to this 
norm is a Banach space and we have that H8 = B^^ and the norm || • || gS is équivalent 
t o II • L . 

Notation. — We shall also state 

Hall, def 
MIB* > HftllL?(JS) 

def 
\\b\\LP(I;E), WHL^E 

def 
\\b\\LP([0,T]:E) 

and \\b\\TI def 
I6HL2?(B5,)' 

Here we want to explain the problems we have to solve in order to prove Theo­
rem 0.4. As in the case of Equation (E), the basic fact is energy estimâtes. This 
implies the control of 

r 

lo 
\\dg(t,.)\\Laodt. 

In the case of Equation (E), it is obtained by Strichartz estimâtes. This will be the 
case here when d ^ 5 but this will not be the case when d = 4. Let us have a look 
on a model problem to understand this difficulty. Here we essentially follow ideas of 
S. Klainerman and D. Tataru (see [22]). 

Let us assume that u is the solution of the constant coefficient wave équation and 
let us estimate 

d 

d 
\\dA'l(dju(tr)dku(tr))\\Loodt. 

As 

dtA'1 (dju(t, -)dku(t, •)) = A - 1 (dtdjudku(t, •)) + A " 1 (djudtdku(t, •)), 

we have to control expression of the type 
RT 

Jo 
{^(dtdjudkufayUaodt. 

When d > 3, we have (see Lemma 2.1) that 

H A " 1 | | ^ / 3 < l(dju(tr)dku(trC\\du(t,-)\\ 3L _ L ' 2 2 

So we get that 

RT.. 

xr 
^(DTDJUDKU^yUoodt ^ T\\du\\2Ti_x 
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98 H. BAHOURI & J.-Y. CHEMIN 

Then the proof of Theorem 0.1 is routine. If we want to go below this dddd dregu-
larity of the initial data, we shall use Strichartz estimâtes. Let us introduce Bony's 
décomposition which consists in writing 

ao = 
Q 

Sq-iaAqb 4 
dr 

C([0, T]; H8 
d+d1d Q 

AqdAq-jb. 

When d > 4, we have 

\\9kUq\\L*.(L<*>) : $C2«(*-i+*-i)||7fl||La 

Then it is not diffîcult to prove that 

A"1 
q 

Sq-id2uduq^ 
d+d1 

Sq-iaAqb 4 
1 1 

The symmetric term can be treated exactly along the same lines. The so called 
remainder term 

Sq-iaAqb 4 
d+d1d 

q 

d2Uqduq-j) 

is much more diffîcult to treat particulary in dimension 4. The reason why is the 
following. When d is greater or equal to 5, the Strichartz estimâtes tells us that 

l|d%llz4(L4) Sq-iaAqb 4 d+d1 

So thanks to Bernstein inequality, we infer that 

APA-11 
d+d1r 
q^p-No 

Aqd2uAq-jdu 
d+d1d 

Sq-iaAqb 4 
d+6d1 
q^p-No 

C([0, T]; H8-1) n L 

dr 
dr+d1 
d+d1r 

2-(9-p)(f-2)29(D-2)||7G||I2||79_.||L2 

Convolution and Cauchy-Schwarz inequalities implies that 

|A~1(ô2txa«)|| 1\.{L°°) ̂ C | |7 l lLr 
2 X The case of dimension 4 is much more délicate. In dimension 4, the Strichartz estimate 

is 
II^SllL^)^2<t-i+fc-1)| |7g||L2 

So the séries d2uqduq-j does not converge in L^(L3) because the only estimate we 
have is 

C([0, T]; H8-1) n L2([0, kdld+d 

^ C2*2/3dq\\7\\2 With 
q 

dq = l. 

To overcome this difficulty, we follow an idea of S. Klainerman and D. Tataru: the 
precised Strichartz estimate which will allow to prove bilinear estimâtes. 
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MICROLOCAL ANALYSIS AND CUBIC QUASILINEAR WAVE EQUATION 99 

1.2. Bilinear estimâtes and precised Strichartz estimâtes. — To explain the 
basic ideas of bilinear estimâtes, let us consider the case of constant coefficient case. 
In this paragraph, we essentially follow the ideas of [22]. What a bilinear estimâtes 
lookes like is described by the following proposition. 

Proposition 1.1. — Let u\ and U2 two solutions of 

dfuj - AUJ = 0 
{duj)\t=0 = 7j. 

Then, if d^ 4, we have 

WdA-iQidutd^huL") < Ce,r||7i||$_i+ell72|l2_i+e. 

Remark. — We find a gain of half a derivative about the regularity of the initial data 
compared with purely Strichartz methods. 

The precised Strichartz estimâtes is described by the following proposition proved 
in [22]. 

Proposition 1.2. — A constant C exists such that for any T and any h^l, if Suppûj 
and Supp^r(Dî/(^, •)) are included in a bail of radius h and in the ring C, we have 

IMIl'cloo) < C(/>d-2log(e + T))1/2(||U(0)||L2 + ||fcu(0)||L2 + ||D«||Li,(i2)). 

To prove Proposition 1.1, let us recall that we want to estimate the 

APA-1 
d+dkr 
q^p-N0 

Aad2uAa-jdu 
LUL°O)' 

With a rescaling of the équation, we can assume that q = 1 and let us state h = 2P q 
Let us define ((/)u)i^^Nh a partition of unity of the ring C such that 

Supp^ C Bfëv, h). 

Then, using the fact that the support of the Fourier transform of the product of two 
fonctions is included in the sum of the supports of their Fourier transform, a family 
of function (4>V)I<V<NH exists such that Supp^ C B{—^v,2h) and 

(5) xih^D^vdv) = 
re 

vrd 

X(h-1D)(d%(D)vd(f>JD)v). 

Applying Proposition 1.2 gives 

IMh-'D^vdvMlruroo, < Chd-2\og(e + T) 
vrd 

i/=] 
HADhh'WMDhÏÏL*-
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100 H. BAHOURI & J.-Y. CHEMIN 

The Cauchy Schwarz inequality implies that 

(j)v(D)^2)i^v^Nh +xw1 

^C/id-2log(e + T) 
xx 

x+x1 
MDhWh 

1/2 Nh 

x+x 
I I M ^ h l I Ê » 

1/2 

The almost orthogonality of ((j)v(D)7\)i^v<^Nh and ((j)v(D)^2)i^v^Nh implies that 

(6) Mh^D^vdv)^s^ s< sC/id-2losg(e + T)||7||L2||7||L3. 

So after rescaling, we get that 

ApA-1 
" - 1 < 7 < ] 
q^p-No 

Aqd2uAq-jdu) x2Hf-1)(2 

MDhWh 

-1^.7X1 
q^p-No 

log(e + 2«T)22i\\yq\\L4lq-Jh*. 

If 7 £ if 2 L+£ then we have 

MDhWh 
d+d+dd 
q^p-i\c 

Aqd2uAq-jdu) 
x2Hf-1)(2 

< (2PT)"£ 

q+q1q+q 
q^p-No 

2-{q-p)(d-A+e) 

x2Hf-1)(2^Tr | |7, | |L22^H^-1)(2^rr | |7G-J||L2 

So the séries convergences in L^(L°°) for large p. The case when p is small (low 
frequencies) is nothing but Sobolev embeddings. 

The real problem we have to solve in this work is to prove this bilinear estimate in 
the context of quasilinear wave équation. To do this, we follow the lines of [4] and [5]. 

As we shall use geometrical optics technics, we need to deal with smooth functions 
in time also. This leads to the following itérative scheme introduced in [5], Let us 
define the séquence (u^N )̂NGN by the fîrst term satisfying 

- Au<°> = 0 
(u(0),fttx(°))|t=o = (S0t*o,SoUi), 

and by the following induction 

s+s; f & V n + 1 ) - Au^ — Gn T ' W n + 1 ) = 0 
yn+l)^(n+l))|t=0 = (5n+1tt0,5n+iUi) 

with 

Gnr = 0(T~1)Gn with G^kd^ A-lQ^k{du^\du^). 

where 6 is a function of T>(] - 1,1[) whose value is 1 near 0. Let us point out that 
the séquence (w^)N€N does dépend on T. We introduce some notations which will 
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MICROLOCAL ANALYSIS AND CUBIC QUASILINEAR WAVE EQUATION 101 

be used ail along this work. If a is a (small) positive number, let us define 

rd 
def d rdd 1 

2 6 
a and N^(% def, 'r*+«||7|L , 

Let us introduce the assertions we are going to prove by induction. 

- If d ^ 5, 

{Vu) 
\\du^\\ 

x2Hf-1)(2+ 4 
< C0JV?(7) 

l|0u(n,l|r,8-i < e3||7||s-i for any s £ Sa ~ 1 
rvr 
2 " 

11 
2J 

- if d = 4, 

d+d= 

||0u<n>||. 
L*([0,ri;B»3 *) 

< C-o7V (̂7) 

||5G„,T|UI([0,T];L°°) < 2 

l|du(n)Hr,.-i < e3||7||5_i for any s e 
-3 
.2 

+ a. 
d 

' 2 

11 

2J 
AU what follows in this paper consists in proving that if 

| | 7 l l ^ - , + ^ ( 7 ) 

is small enough, {VQ) is true and (VN) implies (Vn+i)- Then the proof of Theorems 0.3 
and 0.4 is pure routine of non linear partial différential équations. 

To do this, we shall localize in frequency and transform équation lZn into an équa­
tion where the space-time frequencies of the metric which defines the d'Alembertian 
are very small with respect to the level frequencies we work with. This is the purpose 
of the second section. 

In the third section, we show how the proof can be reduced to "microlocal" 
Strichartz and bilinear estimâtes. By microlocal estimâtes, we mean estimâtes that 
are valid only a time interval whose length dépends on the size of the frequencies 
we work with. To prove the complète estimâtes (with a loose of course), we use D. 
Tataru's version of the method we introduced in [4] which consists in a décomposition 
of the interval [0, T] on intervais where microlocal estimâtes are true. 

In the forth section, we recall the method of approximation of solutions of (vari­
able coefficients) wave équation by the method of geometrical optics. This is the 
opportunity to study precisely the link between the solutions of the Hamilton-Jacobi 
équation 

<9r$(r, y, rj) = F(r, y, a,$(r, y, r?)) 
*(0,2/,rç) =(y\v) 

and the flow of Hp and also properties of this flow which will be useful in the seventh 
section. 
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102 H. BAHOURI & J.-Y. CHEMIN 

The fifth section is devoted to the following problem: in the proof of the équivalent 
of Inequality (6), we use the fact that the support of the Fourier transform is preserved 
by the flow of the constant coefficient wave équation; this is no longer true in the 
variable coefficient case. So this information is not relevant because it is not preserved 
by the flow of the équation. The purpose of this fifth section is to define the concept 
of microlocalized function near a point X = (x, £) of the cotangent space T*Rd (the 
cotangent space of Rd). This notion is due to J.-M. Bony ([7]) and means that the 
function is concentrated in space near the point x and in frequency near the point £ 
with of course the limit on the uncertainty principle. The good framework of this is a 
simplified version of Weyl-Hôrmander calculus which is also presented in this section. 
Properties of the product of microlocalized functions is also studied. 

In the sixth section, we prove that for solutions of a variable coefficients wave 
équation, microlocalization properties propagates nicely along the Hamiltonian flows 
related to the wave operator. 

In the seventh section, we apply the three previous sections to prove the microlocal 
bilinear estimâtes. This proof consists in a second microlocalization, which means 
that we have to décompose again the interval on which we work. The reason why is 
that interaction in the product and propagation of microlocalization are badly related. 

2. Littlewood-Paley theory and Paralinearization of the équation 

AU along this work, we shall need to study the quadratic operator A'1 ((Du)2). 
Let us summarize now some basic properties of this operator in the following lemma. 

Lemma 2.1. — A constant C exists such that 

||A-\ôaô6)||£d/a < CWdaW^WdbW^., and 

WVA-^dadtyW^ < C\\da\\ô6)||£d/a < CWdaW^ 

Moreover, for any a greater than 3/2, a constant C exists such that 

\\A-\dadb)\\È„+h ^ CiWdaïïç^WdbW^ + ||8a||a„_1||3&||6_1/3). 

3 d 
And, for any a greater than - — -, a constant C exists such that 

H A - 1 ^ ) ! ! i <C(\\da\\ .i-i\\db\\il.-i + \\da\\A<,-1\\db\\ < è). 

From this lemma, we give the following corollary. 

Corollary 2.1. — A constante exists such that, if (Vn) holds, then 

IIGWHIL- < Ch l t ë . i . 
2 ± 
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MICROLOCAL ANALYSIS AND CUBIC QUASILINEAR WAVE EQUATION 103 

Moreover, if 5, then 

\\dGn,T\\LUL-) < CW£(7)2. 

The proof of this lemma and its corollary is an exercice on Littlewood-Paley theory 
and we omit it. 

Theorem 2.1. — For any s > 3/2, a constant C exists which satisfies the following 
properties. Let us consider two functions u and v whose partial derivatives belong to 
the space L^(H8-1)r\L2T(C-1^2) and a function F in L^iH8'1). Let us assume that 

d+d1r def XT-^A^Q^idv.dv) e LlT{L°°) 

and that 
d2u -Au- GV,T - V2u = F. 

Then we have 

d2uq - Auq - Sq-iGv,T^2uq = Rq(Vu, dv) + Fq 

with 

\\Rq(Vu(t),dv(t))\\L2 ^ Ccq(t)2-^8-^ (\\^GVtT(t)Uoo\\Vu(t)\\a^ 

+ ||ft;(t)IU.i||a;(*)ll6-i/a||Vti(t)||6.1/a). 

with as in ail that follows 

q 

c2q(t) = 1. 

To prove this theorem, we use paradifferential calculus. More precisely, we apply 
Bony's décomposition which consists in writing 

(7) 

Gv T(t)V2u(t) = Ki(t) + n2(t) with 

dd+d1 def 

rd 
Sq'-iGy^T^Uqt and 

n2(t) def 

q' 
Sq>+2V2uAq>Gv,T-

The first term Tl\ (t) is easy to estimate. As the support of the Fourier transform of 
the function Sq'-\Gv^T^2uq' is included in a ring of type 2q C, we have 

AMi) = 

W-q'KNi 

Aq(Sq/-1Gv^2uqf) 

(8) = Sq-iGv,TV2uq + 
Ig-g'l^i 

[Ag,5Q/_iGv,T]V2v 

+ 
\q-q'\^N! 

(Sq'-lGvT — Sq-\GV,T)^2 AqUq', 
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104 H. BAHOURI & J.-Y. CHEMIN 

As for instance in [4], we have 

K A ^ ^ - i G ^ V V I L a < C'cg2-^-1)||VGt,,r(t)|Uoo||Vîi(t)||a-i and 

\(Sq>-iGVtT ~ V I G V , T ) V 2 v | | l 2 < Ccg2-^-1)| |VGt,,TWIUoo | |Vu(t)|U_i. 

So it turns out that 

(9) WAçKxit) - S ^ I G ^ T V 2 ^ ! ! ^ ^ C ^ - ^ - ^ I I V G ^ r W I U o o H V w W H ^ i . 

The second term is a little bit more délicate to estimate. Because the support of the 
Fourier transform of Sg'+i V2uAq'GViT is included in a bail of center 0 and radius C2g , 
we have that 

Aqn2(t) = 

x2Hf-1) 
Aq(Sq>+2V2uAq,GVjT) 

By définition of C1!2 and using Bernstein inequalities, it is obvious that 

||^+1V2u||Loc < 23« /2\\Vu(t)\\ô„1/2. 

Using Lemma 2.1, we get that 

\\\>GVtT\\L2 < Ccq,{t)2-^s+1^dv{t)\\à.u4dv{t)\\Ès^ 

when s is greater than 3/2. So the theorem is proved. 
Now we are going to state two corollaries of this theorem. 

Corollary 2.2. — // (Vn) is satisfied, then for any s e ]3/2,sa], a constant C exists 
such that 

| | ô « ( n + 1 ) l k , - i < e 2 | | 7 | | B - i ( l + CCoN^7)\\du^Ll(ô.1/2)) 

To prove it, let us first deduce by standard energy estimâtes from Theorem 2.1 
above applied with u = u(n+1) and v = u^ that 

d 

dt' 
ft4n+1)(*)ll£a < Cc2(t)2-2^-i)(||aGn,T(t)||Loo||^^+1)(t) |2 

Is—1 

+ c,||7l|s-i||au(")(0llc-1/2||vw("+1)wiic-1/2||^("+1)(t)||s-1) 

By multiplication by 22q^s ^ and summation we have that 

rd 
dt 

\wn+iHt)\\* < ci\\dGnMt)\\Loo\mn+iHtm_, 

+ c||7l|s-i||^")(t)||d;_1/2||vu("+1)(i)||6_1/2||au("+1)(t)||5_1) 

Using Gronwall lemma, it turns out that 

||0u<n+1>(t)||8_iexp -C 
red 

0 
\dGn,T(t')\\L°°dt') 

<| |7 | | . - i+C| |7 | | . - i 
rt 

<0 
\du^\t')\\àdddddd^^u^\t')\\à.indt' 
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Using Cauchy-Schwarz inequality, we get 

| |c>u<"+1>(t)IU-iexp' -C 
r*. 

rd 
\dGn,T(t')\\L°°dt') 

^ ||7||s-i + C||7||.-i||ôuW||L3,(6_1/aJV^+^H x2Hf-1)(2 

Using (Pn), we get that 

||dtt("+1>(t)|U_iexi - C 
ft 

dv 
\\dGn,T(t')\\L°°dt'} 

< ||7||s-i + CC07V«(7)||7||S_1||VU("+1)| L|,(C-1/2)-

The fact that 

$'Gn,r(f) -
1 
T 

vrd 

vr 
Gn + edt-G 

n 
together with induction hypothesis and corollary 2.1 implies the resuit. 

The second corollary treats the case of low frequencies. 

Corollary 2.3. — A constant C exists such that under the hypothesis (Vn), have, 
for any r ^ 2, 

\\dSquin+1)\ w+w 
1w+w1 

^ C(2qT)ï-aN%(j)(l + CC0N^^)\\du{n+1)\ x2Hf-1)(2d 

Using Bernstein inequalities and Corollary 2.2, we get that 

x2Hf-1)(2 -+ ; x2Hf-1)(2 dd1d+d ^ CT2p(d_1) l^n+1)lll x2Hf-1)(2 

^C(2pT)i-2aTs+2a\\du(n+1>\\ls . 

^ C(2pT)i-2aNZM2(l + CC0NZM\\du{n+1)\ L|,(C-V2)) • 

Thus a; 
\\dSqU^\\ Cs+s+s1s+ <c 

x2Hf-1)(2 
22P(âr-^\\du^ 2L%(Lr) » 

we have proved the corollary. 

Let us now do a precised paralinearization in the spirit of [4]. 

Theorem 2.2. — A constant C exists which satisfies the following properties. Let us 
consider two functions u and v whose partial derivatives belong to L^>(HSa~1) fl 
L\{C~XI2) and a function F in L]r(Hs~1). Let us assume that <9GV,T belongs 
to LlT(L°°) and that 

diu - Au - G. T • Vzu = F. 
Then for any 6 £ [0,1], we have 

d2uq - Auq - Sôq{Gv,T) • V2uq = R*(Vu,dv) + Fq 

with 
Ssqb 

def (1+d) 
qô-(l-ô) log2 T-iV and 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2003 



106 H. BAHOURI & J.-Y. CHEMIN 

\\I?JVu,dv)\\r±tTn<C2-«'-lHl + (2qT)^ \\I?JVu,dv)\\r±tTn<C2-«'-lHl + (2qT)^ 

+ I I ^ I L - ( ^ - i ) l l ^ l l z , 2 (C7-i/2)||V^||^(^-1/2)) 

The proof of this theorem is based essentially on Theorem 2.1 and Corollary 2.2. 
Using Theorem 2.1, it is obvious that 

Rôq(Vu,dv) = Rq{Vu,dv) + (Sôq - Sg_i)(GWïr) • V % . 

As we have 

\\(Sq- Sq-i)GVlT\\LUL<*>)^C2 q(2qT)1 S\\dGVjT\\LUL°°)i 

we get the theorem applying Theorem 2.1. 

As a corollary, we have 

Corollary 2.4. — A constant C exists such that under the hypothesis (Vn) we have for 
any ô in the interval [0,1], 

(ECPT,q) 
a?ti<n+1) -Au<n+1) Sq(Gn,T v24"+1) x2Hf-1)(2 

duqn+l-|t=0 ~ x2Hf-1)(2 

with 

Sôqb 
def 

1K ^ }ssss s+s;sh and }qô-(l-ô) log2 T-N0° ana 

\\R5a{n)\\LUm < C2-q^-1\2qT)-le--(l + (2qT)1-s)mh) 

x ( + 1 d s + d 1 d + l 4 - C C 0 ^ ( 7 ) | | ^ n + 1 ) | IL^(C-1/2) 

3. Réduction to microlocalized estimâtes 

By microlocalization of the estimâtes, we mean that we shall prove estimâtes that 
are valid on time intervais whose length dépend on the frequency parameter. Thèse 
techniques have been introduced in [4] and used in [5] and improved by D. Tataru 
in [28]. For technical reasons, we prefer to work at frequencies of size 1. 

3.1. The statement of the microlocal estimâtes. — In ail that follows, we shall 
consider a family of smooth fonctions Q = (GA)A^A0 defined on IA X such that 
G A is small enough and such that, for any k > 0, the following quantities 

(10) I I S I I o 
def 

sup ||VGa||m a») + |/a| I|V2GA||LI A„ 
ÂAo 

and 

( H ) WSh 
def SUp |/A|AFE||VFC+2GA||Li froc. 

ÂAo 
for k > 1. 

are imite. Let us dénote by PA the opérât or 

P\v 
def 

div - Av -
kl 

^Gk/dkdev. 
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Theorem 3.1. — Let C be a ring ofHd and eo CL positive real number. Let us consider 

two families of smooth metrics d= (G^)A^A0 such ^at for any k, \\G^\\k is 
finite and such that \\G^\\o is small enough. For any positive real number £ ^ e$, 
a constant C£ exists which satisfies the following properties. Let f\ and f2 be two 
functions in L}A(L2) and 71 and 72 two functions of L2; let us assume that the 
Fourier transform of those functions have their support included in C. Let us assume 
that 

\IK\ < A2"£-

Then if V\,A and V2,A are solutions of 

\IK\ < A2 P(AJ)Vj,A =fj 

VvUiT=n = 7.7 

we shall have the following properties: 

- if d^ 5, we have 

KaII l?a(l .) < C(\\7j\\L2 + 11/,-HII (IA)). 

- */d = 4, 

IKaIIl? (l«) < CiW-yjU* + H / i l l i j (L3)). 

- if d^ 4, then we have, for any h ̂  1 and any e > 0, 

I I x ^ - ^ K A ^ I I L } (LOO) ^G£^-2-£log(e+|/A|) 

X (||7l|U> + ||/l||L} (L»))(ll72|Ua + ||/2||L} (L2)) • 

Let us point out at this step that when h is small enough, this estimate is nothing 
but the Sobolev embedding. Using Bernstein inequality, we can write 

\\x(h 1D)(V1,AV2,A)\\L) < ^IK,A^2,A| |L} (Li) 

^ hd\I\ \ ||VI,A|UF> (L2)||V2,A||Lf (L2) 

< hd\iA\ (IItiIIL» + II/IIIL}A(L2))(II72||L2 + II/2||L}A(L>)). 

So when hd\lA\ ^ hd 2 £, the inequality of above Theorem 3.1 is proved. In ail that 
follows, we shall assume that 

(12) |/a| > h~2-£. 

The proof of this theorem will be the purpose of sections 4 to 7 and this is in fact 
the core of this work. 
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3.2. The local estimâtes. — From this microlocal statement, let us deduce now 
the following local resuit. 

Theorem3.2. — Let (G^)i^j^2 be two metrics such that \\dG^\\L^Loo^ < Co- For 
any e, a constant C£ exists (which of course dépends on d) such that if u^q are 
functions whose Fourier transform is supported in a ring 2qC and are solutions of 

d+dkl d2tuqj) - Auqj) - G«> • V24j) = . d+d 
\IK\ < A2"£- S 

\IK\ < A2"£-

where sms dmd dmd dmd dmd and where 7 ^ and fjyq have Fourier transform supported in 
a ring 2qC, then we have 

- ifd > 5, 

2^-^-k)\\d1+kU^\\r2<r,, 

< Ce2«(*-1)(2«r)*+e(||ôuW)||Lo.(LÎ) + (2«r)-1/3||/,-,,||Lx (iî)); 

- ifd = 4, 

2^-k)\\d1+ku^\\LULS) < Ce2«(2«r)*+«(||ô«W)||LSP(i.2) + (2«r)-1/3||/,-,,||Li.(ta)); 

- i/d ^ 4, /or anyp^ q, 

||x(2-^)(»1+*«wauW)||iii(iao) 

< Ce2^-2)2"(1+fc)(2«r)H^(||9u(1)||L^(L2) + (2«T)-1/3||/ljg|| ) 

x (||Ôu<2)|U~(ia) + (2qT)-1/3||/2,g||^(L2)). 

To start with, let us observe that after a rescaling of the above Theorem 3.1, we 
get that, for any subinterval I =xld d+dmd +dù of [0,T] such that 

(13) |/| < T(2«T)1-25-£ and ||VGf \\L)(LOB) + \I\ \\W2G(sj) \\L]{L^ < s0 , 

we have 

- if d ^ 5, 

(14) \\d1+kumL*(L« < C2<-<~+k)(\\dui»(t-)\\L2 + \\hQ\\LuL2)). 

- if d = 4, 

(15) l|31+fct#>||LÎ(L8) < C2"(f+fe)(||^)(i-)||L2 + WfjJw)). 

- if d > 3, for any p ^ q and any e > 0, 

\\x(2-VD)(d1+kuqV •au(2))|LLR,00, < Ce2p(««-2)(2«r)e2«(1+fc) 

(16) X (||ô<>(r)||L3 + | | / I , , H L } ( L » ) ) ( I I ^ 2 ) ( * - ) | U > + ll/2,,|U}(La)). 
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Let us observe that in the case when 2PT ̂  1, the above inequality (16) is obtained 
by Bernstein inequality. 

Then the method consists in a décomposition of the interval [0, T] in subintervals / 
on which the above microlocalized estimâtes are true. The key point is a careful 
counting of the number of such intervais. This method has been introduced by the 
authors in [4] and improved by D. Tataru in [28]. 

Let us state G{f d= SÔQG^. Using the fact that 

l l V ^ H ^ o o ) 
1 
re 

^T)5||VG^||LKLOO), 

Condition (13) becomes 

(17) III < T(2qT)1-25-£ and 
l/l. 
T ' 

2"T)A HVG^Mlr.wr.oo, €£0. 

But as seen in Corollary 2.4, there is a loose on the remainder. The décomposition is 
the opportunity to compensate this loose. To do so, let us consider a parameter À in 
the interval [0,1] which will be determined later on. We impose on the interval I that 

\\fj,q\\LUL2) < M\fj,q\\L\,(L^)-

This constraint joint to the condition (17) can be sum up by 

1 
T'(2^T') vr 

dt + 
1 

M\fj,q\\L\.(L2) rd 
\\fi,&)\\vàt 

(18) + l/l 
T 

2qT)5 l|VGj,')(i)|U»dt<eo. 

We shall prove that such a finite décomposition exists (and also control the number 
of intervais) by induction. Let us assume that an increasing séquence (̂ )o<ĵ fc of 
points of [0, T] such that tn < T and, for any j ^ n — 1, 

1 
T,2qT\l-2ô-e T,2qT\l-2ô 

1 

M\fj,q\\LUL2) 

red 

dv 
WfoS)\\L*dt 

+ 
tn 4-1 — tj 

T 
2qT)s 

vrd 

Jtj 
\\VG{5j)(t)\\L°°dt = e0 

As the function 

Fk(t) def 1 

T(2qT)^~ 6 
:(t-tk)-

1d 

M\fj,q\\LUL2) 
I 

vr 
f<M')\\r2dt' 

+ 
t — tk 

T 
(2qT)5 

re 

vrd 
\/G{P(tf)\\Loodtf 

is a increasing function on the interval [£fc,T], either the interval [£/C,T] satisfies Con­
dition (18), or a unique tk+i exists in the interval ]£fc,T[ sucht that Fk(tk+i) = £o-
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Now let us estimate the number of intervais. At least one of the three terms of the 
left inside of the above inequality is greater or equal to eo/3. So either 

1 
T(2qT)^~ 2^~ € 

(tj+i -tj) ^ v 
3 

or 
1 

M\fj,q\\Li(L2) 

rd 

dv 
\\fjiq(t)\\L*dt> 

rd 
3 

or 
tj+i — tj 

T 
(2qT)s 

dr 

Jtj 
||VG^(t)|U«dt > 

vr 
3 

In the third case, we get that for any positive real number A, 

3 

vrd 
{tj+1-tj)A+(2qT)s 1 

AT 

•tj+i 

dr 
\\VG{5j)(t')\\L~dt' > 1. 

It turns out that in any case, 

1 
rp(2qT)^~ 

ssss- tj) 
dd1 

M\fj,q\\L^(L2) 

dvr 

dr 
\\fj,q(t)\\L*dt 

+ ( t i+1- t iM + (2*r) vr 
3AT 

vrd 

J Tj 
||VG^(t)||Loocft^ vre 

3 " 

So by summation we infer that the number N of intervais is finite and that 

xrd C 

vr 
c^qrp^ô—l+e 1 

vrd 
3AT 
F2 

f (2qT)s 
1 

AT 
\fj,q\\L^(L2) 

As usual, the best choice in the above inequality is the one that ensures that ail the 
terms are (almost) équivalent. So here, we choose 

AT = (2qTY/2 , A = (2qT)-6'2 and 6 = 
2 
3 

So the number of intervais N is less than C(2qT)* £. So let us dénote by (Iq,e)i4.£^N 
the partition of the interval [0,T] and state Iqj = (tqj,tqj+i). Using (18) and (14), 
we can write 

2a«(*-i-*)||d1+*ttssW)||is.(L.) \fj,q\\L^(L2) N 

1=1 
\\d1+ku^\\2L d+d52d4 

< C22"(5-1)iV(||^)||L=?(i2) + (2T)-1/3||/j.g|| L )2 

As N is less than C(2qT)3+£, we have, when d #s 5, 

2«(*-i-*sssss)||ôi+wwww*ttO)|| 

< Ce2«(*-1)(2«r)i+e(||du«)||1cP(L3) + (2'T)-1/3||sss/.ig|| ) 
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The case when d = 4 can be treated exactly along the same Unes and is thus omitted. 
In order to prove the bilinear estimate, let us write, using (16) and (18), 

||x(2-pI?)(ô1+FC41)«<2))||Li.(L~) 
N 

£=1 

\X{2-VD)(dl+kuWuM\\L] (L„) 

^ C£2v(d~2)2q(1+k\2qTfN l l ^ ) | U ? ? ( i 2 ) + ( 2 ' ' r ) - 1 / 3 | | / j ) g | | ^ ( L 2 ) 

x ||fc#'|U-(£a) + (2qT)-^\\fjjLUL*) 

< C£2^-2)2^1+fc)(2'T)i+2£(||^||Lo?(L2) + (2<T)-1/3||/ji(,||Li,(L2) 

x ( l lôu^lU-^) + (2«r)-1/3||/i,q||^(L2) 

So Theorem 3.2 is proved. Let us state the following corollary. 

Corollary 3.1. — If N^(j) is small enough and Cq large enough, then assertion (Vn) 
implies assertion (Vn+i). 

Let us first investigate the case when d ̂  5. Assertion (Vn) and Theorem 3.2 imply 
that 

2«(*-*) | |^<N+1)| |L2A4) ^ C£2<i-1){2QT)^+£ 

x {\\Hn+1)\\L*(L>) + (2^T)-1/3||^(n)|| ). 

Corollaries 2.2 and 2.4 imply that, if 2QT > Ci, 

2«(*-*)||0uiN+1>||,.3,M> < CA2«TY-aN?h)(\ + CCoN?h)\\d4n+1M\T2l^1/2,). 

When 2QT < Ci, we use Corollary 2.3 to write that 

||^n+1)|| 
\fj,q\\L^(L2) < CNÏ(J){I + c c o i v - ( 7 ) | | a ^ + 1 ) | | ^ ( è - 1 / 2 ) ) 

As the space d_l 
A O 4,2 is continuously embedded in C */2, we have, if NïïOy) is small 

enough and CQ large enough, 

||dt/n+1)|| •2(D4 2 <ddd a « 7 ) 

and so using Corollary 2.3 we get (Vn+i) for d ̂  5. 

In the case d = 4, following exactly the same lines we obtain that 

(19) \fj,q\\L^(L2) LUE1'6) < C0N!r(l)-
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We have to control \\dGn4-i}T\\L^(L°°)' Let us use Bony's décomposition as in the 
introduction. We get 

ApÔGn+i,T = ApA-1(3Vu<n+1>Vu<n+1>) 

vr 
3 

3=1 
] A '̂} with 

v+r1 def ApA-1 
9 

Sg_idVu(n+1)Wn+1> 

A<2> def ^A- ] 
<7 

y,_iVu(n+1>0Vu<n+1) and 

A ^ ^ A p A " 1 

d+f1r 

a v < + 1 ) v ^ 1 } . 

To estimate the norm || • ||Li rLoo\ of let us observe that we have, for k G {0,1}, 

\\Sq^dkVu(n^\\LliL^ < 
q'^q-2 

2q'k\\Aq,Vu^\\Ll{L^ 

rd 
q'^q-2 

2" ^>\\\^u^\\LULe 

So by convolution inequality on the séries, we get that 

2-«(fc+5)||sg_1dfcvu("+1>||I2(Lo0) e e2(z).d 

As the support of the Fourier transform of Sq-idVu^n+1^ Vuq + ' is included in a ring 
of the type 29C, we get that 

v 
2q'k\\Aq,Vu^\\Ll{L^ x+xx1x+x 

The term Ap2̂  can be estimated exactly in the same way. As seen in the introduction, 
the remainder term will required the use of bilinear estimâtes. Using the fact that 
the support of the Fourier transform of dVuqn+1^Vuqn^ is included in bail of the 
type 2qB, we have that 

2-«(fc+5)||sg_1dfcvu("+1>||I2(Lo0) e e2(z). 
q^p-No 

^2q-prp^-2(a-e) 

So choosing for instance e = a/2, we have that 

p/2PT^C 

2-«(fc+5)||sg_1dfcvu("+1>||I2(Lo0) e 
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But, for low frequencies in p, we simply observe that, by Bernstein inequality and 
Corollary 2.2, we have 

l |A(3)||Lw^^cr22p 
q^p-Nc 

l|ÔVu<n+1>|Us.(ia)|| Vu (n+1 
'q-£ +d1r+d1 

< CT22*||7|| 5A~ 1 
q^p-No 

2-g(l+è+2a) 

^ C(2pT)i-2aN£(j)2. 

So we have 

IIÔGn+LTllLi (L~) < CN^f 

and Corollary 3.1 is proved. 

Now the proof of Theorem 0.3 (i.e. the case of dimension greater or equal to 5) is 
pure routine of non linear hyperbolic partial differential équations. 

3.3. The existence and uniqueness when d = 4. — The case of dimension 4 
requires some attention. Let us first assume that 7 belongs to Hi~*. So it is 
clear that on an interval [—T, T] the length of which dépends only on ||7|| . d_1 
and ||7||^^_1+j+a, the séquence (du^)n^ is bounded in L5?(iJ2-2 ). So energy 
methods (because the initial data is more regular) allow to claim that a solution u 
exists on [—T, T] such that 

0uGL§?(J7*-i). 

Moreover, we have on this interval the following estimâtes: 

\\du\\ 
^([0,T];B|2 2; 

C C0N$(>y) 

\\dGu\\Li^0jT].Loo) ^ 2 

\\du\\T.s-i <: e IML-i for any s G 
f3 
2 

h a, 2 + 
1 
6 H-a 

This solution is unique because of the resuit based on energy methods. Now let us 
consider intial data (uo,ui) which satisfy the hypothesis of Theorem 0.4. So if we 
consider initial data (SnUo,Snui), a solution u^ associated to {Snuo,Snu\), exists 
on an interval [—T, T] such that 

(20) ||9S(n) 
L2([0,Tl;Bfl% 

< C0N?(>y) 

(21) \\dG^{n)\\Li^0^L^) ^ 2 

(22) ||0S(n)||r,,-i ^3 | |7 | | s - i for any se 
•3 
L2 

f a , 2 + 
1 

6 
f-a . 

In order to prove that (̂ n̂ )nGN is a Cauchy séquence and thus the uniqueness part 
of Theorem 0.4, we shall prove the following lemma which clearly concludes the proof. 
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Lemma 3.1. — Let u^' be two solutions of (EC) on the interval [—To,Tq] such that 

du® e C([-T0,T0]; H'"-1) D L2To{È^) and dguU) € L^0(L°°). 

Then ifT is small enough, we have that 

-0u<2>||1??(A.Œ_a) < 2||7W - 7 ( 2 ) | I h — 

As in the itérative scheme, let us introduce a time cut-off. Let 6 be a smooth 
function such that Supp# c] - 2,2[ and 6 has value 1 near [—1,1]. So on the inter­
val [—T,T], the function u^ is the solution of 

d+d1 d2u{j) - Au(i) -

d+d41d+ 

?kJKTdkdtu^=0 

(u,dtu)\t=0 = (u0,ui). 

with 

d+d1 
d+d1 

= 0 t > k,e with AgkJ5) =Qk,t(duV\duW). 

Prom now on in this section, we shall always work in the interval [—T, T] with 2T ^TQ. 
Let us define w = u^ — u^2\ Then on the interval [—T,T], w is the solution of 

d2w — Aw — 
d+d1d 

GkJ1)Tdkdtw = Fh2 

(w,dtw)lt=0 = (u\ -u\ \u\ -u\ }) 

with 

Fi,2 =F (Gu(2) - Gu(i)) • V2u(2). 

We shall use the fact ail the time in this paragraph that the two solutions u^ satisfies 

\\du{i)\\Ll(c-^) ^ C\\duU\l{ÈÏ,S) ^ JV£(7(j)) and \\dG^,T\\L^) < O,. 

Moreover, we state 

r ^ | | 7 ( 1 ) l k - i + ll7(2)lk-i, T T ' W N ^ + N ? ^ ) and 7 Hf 7 « ~ 7(2)-

Let us use computations done during the proof of the paralinearization theorem 2.1. 
Thanks to Formulas (7) and (8), we get that the function wq = Aqw is solution of 

d2Wq - Awq - Sq-lGu(l)^TV2Wq = Rq(t) 
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with 

Rq = AqFli2(t) 
4 

3 = 1 

Rqj) where 

d+d1 def 

d+d1d+ 
Aq,^_iGu(i))T]V2t(;g' 

d+d1 ief 

dd21d+d1 

(Sq'-lGu{i) T - Sq-lGu(i) T)V2AQUQ' 

d+d1 def dd 
q'>q-Nx 

^€{-1,0,1} 

V2uyAg/+jGu(i)ïT 

d+d def 
A* 

d+d1d++d1 

Sg/_iV2iiyAg/Gtt(i)fT. 

It is obvious that, if sa — 2 > 1, we have for any j G {1,2,3}, 

I I ^ W I U ' < c g ( i ) C 2 - ^ - 2 ) | | V G u ( 1 ) ) T ( t ) | U ~ | | ^ ( i ) | | S a _ 2 . 

Using Lemma 2.1, we have 

l|A^Gt4(1))T(i)||L2^Ccq,(t)2-9'(s«-")||ôU(1)(i)|lc-1/2||^(1)W||ijSa-1. 

Thus 

ll^4>(*)lli> < C'cff(*)2-«<---2)||^(*)|U_3/2||d«(1)(t)||rt_1/a||^1Ht)|U„_1. 

Using the properties of on the interval [—T, T] imply that 

(23) \\Rq(t)\\L. < Cî(«)C2-9(--2)(||VGtt(1>,r(*)IUco||ôu;(t)||.a-2 

+ ||7(1)H.<,-i||ôu;(«)llô-3/!i||ô«(1)(*)llc-i/> + ll^i,2(*)ll.a-2). 

So using Gronwall lemma, we infer that for any t in \—T,T], 

\\dw\\L~(H°a.-2) < (ll7lk-2 + ||7(1)||«a-lH*"ll£î,(6-3/a)l|ô«(1)|li,?,(6-i/a) 

+ lKl,2|IU(if»«-2)) exp(||<9Gu(i) x | |L i (LOO)). 

So the properties of the solution î 1) imply that 

(24) \\dw\\L„,A.a.a) < C(||7||.a-2 + ITT | | cH |L2 ,6_,/a) + ||Fi,2||Li and 

(25) I I ^ H u ^ ) < C 2 - ^ - 2 ) ( | | 7 | U Q - 2 + rrT||^||i,(6_3/2, + | |Fi ,2 | |Li(ff .a-a)) . 

Because the L2 norm in time with value in C~3/2 of w appears in the right side of 
the above inequality, we have to use the Strichartz estimâtes. Applying Theorem 2.2 
with 5 = 2/3, and (25), it turns out that wq is solution of 

d2Wq - Awq - Gu(i))TV2^ = Rq(t) 
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with T =f SV^G.AI) T and (dropping the case of low frequencies) 

(26) \\Rq\\LW 

C2-,( .Œ-2)(2,T)1/3( | . || + rrrlI^H ,n-»m + 11*1 , II,, ,*.„-,, 

Now thanks to Theorem 3.2 applied with s = a/2, we infer that 

2-q5/6\\dwq\\L2TiL6) 

^(2«T)-a/2(Tâ+«||7||SQ_2 + r^||a^||w_3/2)+TS+a||F1,2||L^_2)). 

As 2 93/2||dwg||z,2 ^ 2 95//6||dwg||L2 (L6) ^ tums out that, if TT is small enough, 
(dropping the case of low frequencies), 

(27) \\M\L*<C-V^ < C T ï + ° | | 7 | | , a _ 2 + C||fli2||,wA.Œ_a, 

and thus with (24), 

(28) I l^ l l r -^ . - -^ < C(ll7ll«„-2 + \\FI,2\\LUH.~-^)-

The estimate of the term is more délicate than the others. Using Bony's décom­
position, we get that 

^1,2 = 
4 

7 = 1 

FU) with 

d+d01 def TV2n(2) A~1Q(dw, dvS1' + <9tt( }), 

F(2) clet i?(V2M(2)j A-lQ(^jÔM(l) +ÔM(2)) ? 

|T(3) def 
±A-iQ(Tôw,(duM+duW)+Q(Ta,1)+ô,2)ldw) 

7V2> and 

d+d1r def, nA-1{QR{dw1dui1))+QR{dw,du^)))^2u<"2' 

The terms F̂ -7̂  with j ^ 3 will require only Strichartz inequalities to be controled. 
So law of product in Besov spaces implies that 

\\Q(dw,duW + duW)(t)\\ss ^ C(||Mt)||é-./.(||0u<1>(t)|k_1 

+ Wdu^m^-i) + \\dw(t)\\Sa-2(\\du^(t)\\È1/e + \\dU(2\t)\\È1/e )) 
6,00 6,00 

Using the properties of we get that 

\\F^(t)\\Sa-2 < CTT||ôu;(t)ll. è-5/6||^2»(i)||él/6 
36,OO ^6,00 

+ C\\dw(t)\\Sa^(\\du^(t)\\l^ + \\du^(t)fÈ.we). 

By intégration, using the properties of the two solutions and (24), (27) and (28), we 
get that, if T is small enough, 

(29) I I F ^ I L . ,,v„ < c k L o + sssssswTV F. o n ,,v.. 
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The term is estimated exactly along the same lines. The term F 3̂̂  is the 
analog to the paraproduct term in the first section. Let us write that 

\\T9w(duW + duW) lé"2, ^C||du;|U-s/AI 
"00,2 

d+d1 ,-1/2 00,2 
+ \\du™ ,-1/2 

>OO,2 
< c\\dw\\ -5/6 

6̂,2 
'\\duw <26 ||ÔU<2> \B1/6 ' 

D6,2 
As the same estimate is true for Tdu(i)+du(2)dw, using the estimate (27), it turns out 
after times intégration, and if T is small enough, that 

(30) I I ^ I I l ^ - - » ) < ^(ll7l|SQ-2 + rr||F1,2||^(^a_2)). 

The estimate of the term F^ requires the use of the bilinear estimate stated in 
Theorem 3.2. The key point is obviously to estimate 

A„ q def |APA 1(dwqduq-j)\\Li{LOo). 

Theorem 3.2 applied with e = a and f = Rq implies that 

AM < Ca2q (2qT)i^\\dwq\\L^(L,) 4- (2*T)-*+*| d+dd1d+d 

x((2«r)*+*||ftio)|| + (2«r ) -H* | | jR j -5 ( f i ( i ) ) | |L i i (La ; 

As sa = 2 + 
1 

6 
-h a, Theorem 2.2 and properties of the solution imply that 

(2«T)*+ï||au0)|| (La) + (29T)-è + f p | - f ;«W))iili.™ < 7a2-9(2'îT)-a/2rT 

Theorem 2.2 and estimation (2R) imnlv that 

(2"T)i+i\\dwq\\L¥iL2) + (2"T)-i+%l\Rq\\Ll 

^C(29r)-a/2(||7||SO_2 + ||FI)2|| 
UH*<*-2)) 

So it turns out that 

Ap,q < Ce(2«T)-arTTÏ+«(\\y\\Sa-2 + | |Fll2||,w-

So dropping the case of low frequencies (treated exactly along the same lines as in the 
proof of Corollary 2.3), we get that 

(31) I I A - 1 ^ , ^ ) ! ! ^ » ) < c r T r * + « ( | | 2 | | 8 < i _ 2 + \\F^\\LUA.a.t)). 

Using the properties of the solution and the properties of the action of the para­
product, we deduce from the above inequality that 

I I ^ ( 4 ) I I l i < crr ( | | 7 lk -2 + l l ^ l l u r * — ) ) • 

Together with the inequalities (29) and (30), we get that 

II-F1.2II n fùs~-2\ ^ { C||7l|8«,-2 + CTr Fll2|,ifÂ.a_av 
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So if TT is small enough, we have 

11^1,211^(^-2) < C\\2\\aa-2. 

Plugging this estimate into (28) implies that 

I I ^ H I l ^ h - - * ) < C|l7ll*A-2. 

So uniqueness (and in fact stability) is proved. 

4. Approximation of the solution and geometrical optics 

4.1. The Hamilton-Jacobi équation. — The following proposition (and its 
proof) is a small modification of Proposition 6.1 of [4]. 

Proposition 4.1. — Let F be a real valued smooth function on Hd x HN bounded as 
ail its derivatives such that 

F(C,G)=±(|C|2 + G(C,C))1/2 for ail C € C. 

For any positive real number e, a positive real number a exists such that, if \\G\\o ^ OL 
and A > a~l, for any ri, a solution $A of the équation 

(HJA) 
dr^A(r,y,r]) = F\(T, y, 92/$A(T, y, rj)) 
$à(0,2/,77) = (y\v) 

with FA(T, Z, C) def nç,GA(r,z)) 

exists and is smooth on IA X Rd x Rd. Moreover, the family defined by <Ê> D= ($A)A^A0 

satisfies the following properties: for any couple of integer (k,£), a constant Ck,e 
(independent of e) exists such that 

(32) SUp ||(a,0„*A - Id)||i,~aAxR") 
ÂAo 

^ Ce 

(33) SUD I 
ÂAC 

rA\Ak\\diV2+k^A\\L^lAXR^ < Cktte and 

(34) sup 
A^AQ 

IIC2^AIILOO(/aXr-)^C | /A| . 

In section 6, we shall use the link between the solution of the above Hamilton-
Jacobi équation and the Hamiltonian flow of the function —FA on T*Rd. This link 
is classical but here we need précise estimâtes with respect to the metric G A- It is 
described by the two following lemmas. 

Lemma 4.1. — Let <&A be the solution of the above Hamilton-Jacobi équation (HJA) 
and ^A the Hamiltonian flow of —FA(T,Y) Le. the solution of 

d^A 
dr 

(r,y,Ti) = -JffFA(r>*A(y)) 

*a(0,!/,w) = (y,ri) 
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Then we have 

(3t,*A)(r,^(r,2/,r/),ry) = y and 

(dy^AXr^K^y^)^) = *X(t,ïm/). 

To prove this, we have simply to remember that by construction of the solution of 
Hamilton-Jacobi équations (see for instance [3]), we have 

(r, * (t, y, 77), tf £(r, y, 77)) , r G JA y,y,(dy$A)(r,?/,77)) , r G JA 

So we deduce immediately that 

(35) (dM(r,n(r,y,v),v) = n(T,y,v)-

Now let us compute 

vrd i e f d 

dr 2-«(fc+5)||sg>||I2(Lo0) e e2(z). 

The chain rule imulies that 

Ai = (àTâni $A r, *^ r, y, 77,7?) + 
dd 

k=l 
dnidvM(T,M(T,y,n), n 

d^f 

dr 
d+d1d 

By differentiation of (HJA) with respect to 77, we get that, for any y G Rd, 

âr^.^A(r,y,7?) = 
vr 

fc=l 
(fla^AXr, y, <%$A(r, y, v))dykdVJ®A(T, y, 77) 

Applying this identity with y = ^A(r, y, 77), we get 

(arô»<*A)(r,*A(r,y,r?),»j) = 
d 

k=l 
Ï%FA) (t, *a(t, y, r?), (%<Ï>A)(t, *a(t , tf, V), v)) 

X (^AfA)(r'*A(T»»>'?)''?)-
Usine identitv (35). we infer that 

(dTdM(T,*VA(T,y,T,),t,) = 
d 

k=l 
'd(l,FA)(T,9*A(T,y,r,),9l(T,y,r,)) 

x (dykdVj$A)(T,yyA(T,y,r}),ri). 

Then we deduce that 

d+d= 
d 

k=l 
dddddcvu("+1>||I2(Lo0) e e2(z). 

d^\k 

dr 
(t, y, 77) + (dçkFA)(r, *A(r, y, 77) 

As for T = 0, we have «9^(0,tf^(0,y,77),77) = dv^A{0,y,rf) = ^(î/lrç) = y, the first 
lemma is proved. 
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The second lemma is more technical and is related to properties of the hamiltonian 
flow with respect to a large class of metrics (i.e. of positive quadratic forms) on T* Hd. 
It will be crucial in section 6. 

Lemma 4.2. — A constant Co exists such that for any couple of positive number s (r, h) 
such that \IA\ ̂  h~2 we have the followinq properties. If 

a J du2, dn2) 
def dy2 

d+d 
drj2 
h2 

with K = C\IA\h 

then, provided we choose C large enough, we have: 

- for any couple (Y, Z) and for any r G IA, have 

(36) i 

d+d 
aJY -Z)^ ga(*A(T,Y) - *A(r,Z)) ^ C0gJY - Z): 

- for any couple of points (YQ,ZT) o/T*Rd such that 

ga(ZT-^A(r,Y0))l/2^Cor 

if(z,rj) G B9a(Y0,r) and if (y,Q G B9a(ZT,r) then 

ga(Vr><ï>A(T,y,v) ~ z,Vv<f>A(T,y,rj) - Ç) ^ 
1 

vrd 
la{ZT-^A{T,Y0)) 

Remark. — The choice of the metric ga will become clearer in section 6. But anyway, 
it is essentially the only choice of a metric such that the above inequalities are true. 

Let us prove the first point of this lemma. By differentiation of the équation of the 
Hamiltonian flow, we have 

d 
dr 

(D*A(r, Y) - Id) = -DHFA • (2>*a(T, Y) - Id) - DHFA. 

By Gronwall lemma, we get, for any r G /a, 

| |£>*A(T,y)-Id||£go(T.Rd)< 
IA YeT* Rd 

sup \\DHFA(T,Y)\\Cga(T.Kd)dn 

x exp 
JIK YeT* Rd 

sup \\DHFA(T,Y)\\r {T*nd)dT 

where 

II^IUfla(T* Rd) 
def 

sup 
Z£T* Rd 

ga{A-zfi2. 
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By définition of the Hamiltonian of FA and of the metric ga, we infer that, if Z = (z,Ç), 

ga(DHFJT,Y) • Z) < 
C 

K2 
||VGA(r,.)||iooM2 + |C|2) 

G 
'h2 ||V2C?A(r,-)ll!~b|2 + ||VGA(T,.)||ioo|Cl2) 

vrd C\z? 
K2 

I|VGA(T,-)||2LOO-
K2 
h2 

V2GA(T, . ) | | !~ 

-I- ClCl2 
h2 

h2 
,K2 f | |VGA(T, - ) | | | » 

vrd 
'h2 
K2 

+ IIVGA(T,-)I|2 + 
K2 
h2 

|V2GA(r,.)|||=o 9a(Z). 

So it turns out that 

sup \\DHFA(r,Y)\\Cga{T,Rd)^C 
'h 
K 

Y6T* Rd 

H|VGA(T>-) | |L~ + 
K 

vrd 
V2GA(r, .)||loo 

By intégration and by définition (10) of \\G\\o, we get that 

'/A YeT* Rd 
sup DHFA(T,Y)\\r(T,Rcl)dT^C \I\\h 

K H i e i i o u 
K 

h\IA\' 
If e is any positive real number, let us choose 

(37) K = 
4C, 
£ 

IA\h and ||0||o such that ||£||0(l • 
4C> 

e > 

£ 
^ 4C 

Then, we have, for e small enough, 

(r.Y)elA xT* Rd 
sup \\D^A(r,Y)-ld\\r (T.Rd) <e. 

Using Taylor formula, we write that 

ga(i>A(T,Y) -Y- éA(T, z)+zy/2 

< sup | p*A(T )y ) - i d | | , ( r .R - )5o (y -z )1 /2 
YeT* Rd 

reiA 
^£9a(Y-Z)^2. 

Using the inequality of the triangle and choosing £ = 1/2, we get that, for any r € /A, 
any couple (Y, Z) of points of T* Rd, we have 

1 
2 

AY - Z)1'2 < sa(*A(T, Y) - *A(r, Z)) 1 /9 3 
^ 9 

9a{Y-Zf/2. 

To prove the second point of this lemma let us write, with of course the obvious 
notation YQ = (yo,Vo) and ZT = {zT,Ç,T), that 

1 
K V„$A T, V, 77 - V„$A(T, r̂,r7n) 

vrd 
1 

dv 
V*V1,$a| | l~IÎ/-«T| + 

1 
Kd V2$A||L~|r/-r7o|. 
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Estimâtes (33) and (34) imply that 

1 
K 

2-«(fc+5)||sg_1dfcvu("+1>||I2(Lo0) e e2(z). C\y-zT\ 

K K 
\v~Vo\ 

< Cr. 

Along the same fines, we have 

1 
h' 

7<,$A(r, y, 77) ~ VW$A(T,Zt,7?O)| ^ Cr. 

So using the inequality of the triangle and the fact that (z, 77) is in B9a (Y0, T) and (y, Q 
in B9a(ZT,r), we infer that 

(38) ga(yr,*A(T,y,Ti) - z,Vy^A(r,y,rj) - ()1/2 

^ 9a(Vr,&A(T, zT, ï]0) - y0, VY$A(T, zT, rjo) -Cr)1 2 - 4r. 

Let us define Z0 * def 1ifA1(r, Zr) = (zo, Co) and let us assume that 

ga(0,(o-Vo)^P29a(Z0-Yo) 

for some /? in the interval ]0,1[ that will détermine later on. Then, using esti­
mâtes (32)-(34) as above, we obtain that 

Qn O, v. ri) - z, V„<é>A (V, v. n) - C) 

> 0a(V^A(r,zT,Co) - 2/o, VY*A(T,2T,Co) - Cr) 1 ~ Cr - C(3ga(Z0 - Y0)1/2. 

Using Lemma 4.1, we infer that 

^ ( V ^ ^ ^ ^ - ^ V ^ ^ ^ ^ - C ) 1 7 2 > gaizo-yoïO^-Cr-CfigaiZo-Yo)1'2. 

But, as ga(z0 - y0,0) ^ (1 - (32)ga(Z0 - Y0), we get that 

ga(V^A(r, y, 77) - s, Vy*A(r, y, 77) - C) 7 > ((1 - £2)1/2 - C(3)ga(Z0 - Y^2 - Cr, 

Let us choose for instance /3 so small that 

( 1 _ £2)1/2 vr+d 1 
2 

Then, if ga(Zo — YQ)1/2 > Cor with Co large enough, we have that 

9a (VV$A(T, y, rj) - z, Vy$A(r, y, rj) - C) > 1 
4a 

<?a(z0 - y„)1/! 

Now let us assume that 

5a(0,Co-r?0) ^ (32ga(Z0-Y0). 

Going back to Inequality (38) and using Lemma 4.1, we claim that 

9a (V„$A(T, y, rj) - z, V„$A(T, y, /?) - c)i/2 

^ ga(0, Vy$A(T, ZT, ï]o) - Vy$A{T, ZT, Co)) 
1/2 

-Cr. 
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Using estimate (32) and choosing e small enough in it, we have that 

\Vy$A(T,zT,rio) - VY^A(r,2?r,Co)| > (l - V ^ V ^ A -Id||ROO/rAXT. r^)ICO -rçol 

d 
1 
2 

Co -Vol 

So by définition of the metric GA it turns out that 

9a (V„*A(T, y, rj) - z, Vy^A(r, y, rj) - Ç) 
rd 

2 
la(Zo-Yo)1,2-Cr. 

This concludes the proof of the lemma if Co is large enough. To be able to handle 
interactions between pair of points of type (x, £)-(x, —£), we shall need to control the 
time variation of the Hamiltonian flow. This will be crucial in section 7. The following 
lemma détermines the subintervals of I\ such that the flow does vary very few. 

Lemma4.3. — Let J be any subinterval of IA. Then, we have 

SUD QJ9A(T.Y) - ^A(T\Y))^2 < C 
(ry)eJ2 
YeT* Rd 

\J\ 
h\IA\ 

1 

h 
d+d1r+dr1r 

To prove this, let us observe that by définition of the Hamiltonian flow, we have 

*A(T',y)-*A(r,r) = -
or' 

Jr 
HFA(T",*A(T",Y))dr" 

So we immediately get that, for any (r, r') G J, 

0„(*A(r',r)-*A(T,y))1/2^ 
d+d1x+x1s+s 

sup aJUpArW^dr". 

But by définition of the Hamiltonian vector field and the metric GA, we have 

9aCHFA(T,Y)) = 
1 

K2 
\dr,FA(r,Y)\2 + 1 

h* 
dyFA(r,Y)\2. 

By définition of FA and of K, we infer that 

GAIHF^Y^^C 
1 1 

d+d12'(+f1d 
VGA(T,-)\\L~ 

So an immédiat intégration concludes the proof of the lemma. 

4.2. The approximation of the solution. — Before stating the theorem, let us 
recall the concept of symbols we introduced in [4]. 

Définition 4.1. — Let us dénote by S~N the set of families of functions a = (<JA)A^A0 

such that 

- the function aA is smooth on 7A X R-d xC in C; 
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- for any integer k, the quantity defined by 

d+d1 
d V def o~ ) = sup 

Â Ao 

A"+1«VVA||L~(JAXR-XC) 

is finit e. 
- An élément of S~N is a symbol of order — N. 

Now we are able to state the approximation theorem. 

Theorem 4.1. — Let us assume that \\G\\Q is small enough. Then, for any integer N, 
two symbols a± (with value in H2) belonging to 5° and a constant C exists such that 
the following properties are satisfied. 

Let (VA)A^A0 be the family of solutions of (E/\) with f = 0 and with initial data 
7 = ( 7 ° , 7 1 ) ; if we state 

(39) 2 a ( 7 ) 
def 

rd 
7<,$A(r, y, 77) ~ VW$A(T,Zt,7?O)| 

then, if 

(40) 

we have 

\IA\ < A 2 -

(41) ||V(VA -X+(7) -XA(7))||Lr (L2) < CA-"||7||L2. 

The proof of this is done in [4] and [5]. 

4.3. The precised Strichartz estimate. — The theorem is the following. 

Theorem 4.2. — Let C be a ring ofTLd and let us assume that \\G\\o is small enough. 
For any positive real number e, a constant Ce exists which satisfies the following 
properties. Let f be a function in L]A(L2) and 7 a function of L2; let us assume that 
those two functions have their support included in C and of diameter less than h. Let 
us assume 

I/aI ^ A2- . 

Then ifv\ is the solution of 

(EA) 
PAVA =f 

dvAW=0 = 7. 

we have 

I|Vi>a||L? < C7^-2>/2(log(e+ |/A|))1/2(||7||L2 + II/IIL}. 
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To prove this theorem, we shall use the classical TT* method. Following [5] and 
using the fact that the support of the Fourier transform of 7 is included in the bail of 
center £0 and radius h denoted by B(Ç0, h), let us write that, for any / G V{IA x Rd), 
we have 

<JA(7),/> = ( ' M A / ) with 

AAf def 7<,$A(r, y, 77) ~ VW$A( rex 
h 

f(r, x)drdx. 

where x is a function of T>(Rd). 

( X A ( 7 ) , / K H7llL»IÎ A/||L»(B«o,fc))-

By définition of AA we have 

WA/(£)|2 = ci(*A(r,aî,o-*A(r',yïO)2FAf/i(r, / , x, y, £)/(r, x)f(rf, y)drdr'dxdy 

where 
ss ~ VW$A(T,Zt,7?O)| def S+S4VW$A(T,Zt,7?O)| 

s+s1d d 

vr 
X 

d+d1 

vr 
First, let us décompose A A as follows 

I ^ A / ( O I 2 = B A / ( 0 + C A / ( 0 with 

« A / ( 0 def 
|T-T'|/I2^1 

c.(*A(r,xlO-*A(r/,y,0)arA(r, r', x, y, £)/(r, Z ) / (T ' , y)drdrl dxdy. 

The estimate about C'A/ is very easy. As the support of CAf is included in the 
bail B(Ço, h) we have 

\CAf(Ç)\d^Chdsup\CAf(0\ 
dr2 

d+x1r 
dd1r 

ll/(r,OllLi(R-)ll/(r,,-)llLi(R-)dTdT/ 

£ Chd~2 
h? 

1 + (T - T')2/l4 ' 
ll/(T,-)llLi(R-)ll/(r',-)llLX(R-)drdT' 

^ C'1 H/IL? (L'fR^U-

Now we shall assume that |r — r'|/i2 ^ 1. Let us follow [5]. Using Taylor formula, we 
write that 

*A(T, X, £) - $A(T', y, £) = (x- y)GA<T, r', x, y, £) + (T - T')*A(T, T', X, W, £) with 

(42) *A(T,T ' , *,</,£) = 
/•î 

./o 

5$ A 
d+r21 

{T' + t(T-T'),y + t(x-y),Ç)dt 

QA(T,T',x,y,£) = 
n 

v+edd 

ôx 
y + t{T-r'),y + t(x-y)^)dt. 

Stating the change of variables 

V = @A(T,T ,x,y,£), 
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we get, denoting by FA the inverse of the above diffeomorphism, 

XA(r,T,,x,t/)= / c^-^V(T-T,)*A^r/^^^aAffc(r,r,,x,y,T/)dî7 with 

o-A,h(r, r', X, y, 77) =f (7A,h(r, r', x, y, FA(r, r', x, y, r/)) JA(r, r', x, y, FA(r, r', x, y, r/))) 

and 

*A(r, r', x, y, r?) = #A(r, r', x, y, FA(r, r7, x, y, 77)). 

where JA dénotes the Jacobian of this change of variables. 
Now let us change the variable 

R) = FNO + HÇ with RJ0 def 3A(r, T',X,?/,£O) 

Then we have 

XA(r,r,,x,2/) = ^ ^ - ^ ^ ( T ^ X , * / ) with 

KA(r, T,,x,y) def 7<,$A(r, y, 77) ~ VW$A(T,Zt,7?O)| + 1DX6DXC+C1 

where ail derivatives of aA,h are bounded with respect to Ç. Let us study of the form 
of the function ^A- Using Taylor formula, we can write (dropping the fact that \I>A 
dépends on r, r', x and y) 

MVO + HÇ) = V A M + MVt,* A(TJÔ)IC) + H2 
1 

JO 
D2yA(m + SH<;)DS((,0-

Using the inequalities (32) and (33) it turns out that, for any s, h and Ç, we have 

V0 e Rd , |D2*A(»Jo + shC)(0,9) - I p ^ + ^ x e i 2 ! < e|0|2 

As C belongs to the unit bail of Rd, and h can be choosen small enough, we have that 
the quadratic form 

Q(hÇ) 
def • 1 

0 
D2^A{m + SHQDS 

is a non négative quadratic form of rank greater or equal to d — 1. Then stating x — y = 
(r — T')Z, we can write the phase 

i ( r - R')H(z + V*A(r?0)|C) + i(R - T')H2Q(HO(<;, C)-

Then we can choose coordinates such that the phase function is 

i(r - r')h(z + W A M K I + i(r - r')hz 
d 

3=1 

s+s1s+s1 

where for any j ^ 2, the functions are smooth with bounded derivatives and 
1/2 < Oj< 2 except possibily one of them. Then following the basic proof of the 
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stationnary phase theorem we get that 

\KA(T,T',x,y)\^C-
hd 

;|T - T'|/l2)(d-2)/2 

d+d1 
h2 

|T_r/|(d-2)/2 

As d ^ 4, we have that 

d+d1+d1r+d1r+dw 
|T-T'|/I2^ 

A.2 

|T_r/|(d-2)/2 
ll/(T,-)||Li(Rd)ll/(T,,-)llLi(Rd)^ 

<C^-2log(e+|/A|) | | / | | i2 (L1(Rd)). 

Thus Theorem 4.2 holds. 

5. The concept of microlocalized functions 

In this section, we présent the concept of microlocalized functions introduced 
by J.-M. Bony in [7]. This concept is related to the Weyl-Hôrmander calculus 
(see [11], [9]). But the problem we investigate here allows us to use a simplified 
version of it. 

5.1. A simplified version of pseudo-differential calculus. — In this para-
graph, we shall consider a positive quadratic form g on T* Hd such that the symplectic 
conjugate quadratic form gG defined by 

9°{T) d=Sf 
d+d12r 
SUD 

[T, W}2 
g(w) 

satisfies the uncertainty principle 

+d12r 

Here [•, •] dénotes the basic symplectic form on T* Hd defined by 

/(T,-)||Li(Rd)ll/( 
d 

3=1 

/(T,-)||Li(Rd)ll/( 

In ail this paper, we are going to be in the case when 

g(dx, d£) = 
dx2 
K2 

de 
h? 

In this case, we have 

Q° = \2g with À = Kh. 

The uncertainty principle means that À ^ 1. 
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We shall mesure the length of derivatives of smooth functions on T* R with respect 
to this metric g. More precisely, let us define, for any smooth function (p on T*Rd, 

d+d1r+d1 def SUD 
d1d 

X£T R 

sup 
d+d1r+d 
d+d1r 

\Dk<p{X){TU;Tk)\. 

Now, to a function (p in T>(T* Rd), we associate the operator (pD defined by 

(<pDu)(x) = (2ir)~d 
d+d1r 

e^x-y^ip(y,nu(y)dydC 

The choice of this quantization process makes the computation of section 6 simpler. 
Let us remark that if the function <p(x,Ç) is equal to <£i(#)<£2(£)> ^hen 

VDu = T-1((P2(f(ip1u)). 

Moreover we have 

H<PDU)(Z) = 
Rd 

e-iiyM<p(y,e)u(y)dy. 

Later on in this paper we shall need to décompose L2 functions whose Fourier trans­
form is supported in the ring C using thèse operators <pD. Let us state the following 
lemma which will be useful. 

Lemma 5.1. — A séquence {Xv)v^z exists such that two sequencies {}Pv)v^z 
and {^u)vez exist which satisfy the following properties. 

def 
- the support of\pv is included in a bail Bv = Bg(Xv,r), 
- A séquence (CJ)j€n exists (which dépends only on r and not in the parameters K 

and h) such that 
W E Z, \\(Pv\\j,g ^ Cj, 

- the functions tyv are not supported in Bv but confined, which means that a sequen 
ce (Cjv)A/EN exists such that 

Vi/e-z, MU\\N,Q,X def 
sup 
k^N 

XET* Ra 

(l+X2g(X-Bl/))N SUD 
d+d1r+d 
drg 

\DkMX)(Ti,;Tk)\^CN, 

- For any function u of L2 whose Fourier transform has a support included in C, 
we have 

v£Z 

/(T,-)||Li(Rd)ll/( 

dd+d12r 

(p„u = u. 

Such partitions of unity are "compatible" with L2 in the following sensé. 

Lemma 5.2. — A constant C exists such that 

/(T,-)||Li(Rd)ll/( 

<w 
\\<p?«\\h ^ ^IMIL2 and 

V 
^ « l l i ^ c i l * . 

Those two lemmas are proved in [8]. 
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Lemma 5.3. — For any N, a constant CN o,nd an integer kw exist which satisfy the 
following properties. Let (j> and <j> be two functions on S(T* Hd) and Y and Y two 
points ofT*Ild. Then a function 6 exists in <S(T*Rd) such that 

eD = <j)D4>D and \\e\\N,G,Y + \\e\\Ntgt9^cNmN,g,Y\\4>\\NIGIY 

This lemma is proved in [9]. 
Of course, the operators cpD does not completely fit with any Lp space when p ^ 2 . 

Nevertheless we have the following lemma. 

Lemma 5.4. — Let (p be a function 0/<S(T*Rd). The operator <pD maps Lp into Lp 
for any p in [1, oo]. More precisely, a constant C and an integer N exists such that 

VX0 € T*Rd, yva\\LP < C\\<p\\N,gix0\\a\\LP. 

This lemma can be seen as a corollary of Lemma 4.3 of [10]. For the convenience 
of the reader, we give here a self contained proof based of course on intégrations by 
part. We have 

(fDa(x) — 
IT* Rd 

e^x'y^ip(y,£)a(y)dydË 

d+d1 
JT* nd 

ei{*-y\0(i + h2\x- v\2)~d(Id-h2A*)dv(u^)a(v)dvd£. 

So it turns out that 

\^Da(x)\^Cy\\4d^Xo 
d+d1 dd+d1 

(l + h2\x-y\2) d\a(y)\dyd^ 

4-
T* Rd 

f l + h2\x - v\2)~d(l + K2\£ - £n|2) a\a(y)\dyd( 

So the lemma is proved, as thanks to the uncertainty principle, Kh is greater or equal 
to 1. 

Remark. — The points Xv are exactly the points of the lattice 

(43) Z d= (cdrK Zd) x (cdrh Zd nC). 

Now we can defined the concept of microlocalized function. 

Définition 5.1. — Let Xo be a point of T*Rd and (Co,r) a couple of positive real 
numbers. A function u in L2(Rd) is said to be (Co,r)-microlocalized in X0 if a 
séquence of integers (fc/V)JVEN exists such that, for any integer AT, the quantities 

d+d1r+d1 def sup 
g(X-X0)l/2^C0r 

X2Ng(X-X0)N sup 
<peT>(Bg(X,r)) 
dd1r+dd1 

hDu\\L2 

are finite. Here, Bg(X, r) dénotes as in ail that follows the set of points of T* Rd such 
that g(Y - X)1/2 < r. 
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A basic example of microlocalized functions is given by the following proposition. 

Proposition 5.1. — A séquence of integer s (k^NeN and a séquence of positive real 
number s (Cjv)jvgn exist such that the following properties are satisfied. Let XQ be a 
point ofT*Hd, (p0 a function in V(Bg(Xo,r)) andu a function of L2(Rd). Then the 
function <PQU is (S, r)-microlocalized in XQ and, for any N, we have 

MxQ,Ntg(<Pou) < CN\\<Po\\kNJ\u\\L2. 

This proposition can be seen as an immédiat corollary of the gênerai theory of 
Weyl-Hôrmander calculus, for instance as a corollary of Theorem 2.2.1. of [9]. But 
is a warm up for the next section, we are going to give a proof of it in our particular 
situation. 

By définition of y?^, we have, for any function (p belonging to V(Bg(X, r)), 

T^D^u){i) = {2n)-d 
fR3d 

e-Wt-ri-Mv)^ Ç)(p0(z, rj)u(z)dzdydrj. 

Let us do some intégrations by part with respect to some derivatives of g-length less 
than 1. It is obvious that 

(K2AV + tfAJfe-Wt-rt-Wri) = -X2g(y - - ^ - ^ t ë - i ) - ^ ) . 

Using the fact that derivatives in (y, 77) of #-length less than 1 of g (y — z, £ — 77) is less 
than g(y — z, £ — 77)xl2 it turns out that 

j V V ? * ) ( 0 = (27T)-d 
1<w+< 

e-i^-^-i^JC(y,z,^r))u(z)dzdydr] with 

|£(2/>2>£>rç)l < Cr,Ar(l + X2g(X-X0)) N\\(p\\2N+N0\\<Po\\2N+No 

x -
1 

(r2 + h?\v - z\2 + K2\£ - r>\2)N° 

Using the fact that À = Kh ^ 1 and convolution inequalities, we get that 

| j<W£V)| |L2 ^ Cr<N(l + \29(X -X0)) ||̂ ||2N+iVoll¥»0||2Af+iVol|«||L* 

This concludes the proof of the proposition. 

In ail that follows, the concept of uniformly microlocalized families of functions 
will be a basic tool. 

Définition 5.2. — Let dei ga)aeA be a family of met ries, X def XA)AEA a family of 

points of T* R and (Co, r) a pair of positive real numbers. A family of functions U = 
(ua)aeA in L2(Hd) is said to be uniformly (Co, r)-microlocalized in X with respect 
to q if, for any integer AT, 

w+w,x++x; def 
sup 
d+++d 

d 
Xa,N,ga< 

K ) < 00. 
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5.2. A lemma about the product. — We want here to study the interaction 
between two (typical examples of) microlocalized functions. More precisely we are 
going to prove the following lemma. 

Lemma 5.5. — A constant Co exists such that, for any integer N, a constant Cjy and 
an integer kjy exist which satisfy the following properties. 

Ifui and U2 are two L2 functions on Hd, if x is a function o/P(Rd) supported in 
an euclidian bail of radius r, if (fi and (f2 are two functions of U(T* Hd) respectively 
supported in Bg(Yi,r) and in Bg(Y2,r), then if 

g(Yi - *2)1/2 > C0r, 

for any N, we have 

Wx(h-lD)(ip?ulV>Pu2)\\T1 

< CNWvihsJwihsA1 + >?9{Yi - Y2)) N\\ul\\L,\\u2\\L, 

where Y 
def 

[y,-v) ifY = {y,ri). 

Let us suppose fîrst thaï 

d+dd1d+d1 

h 

1 
2* 

[Y1-Y2)1/2. 

By définition of the operator ipP, the support of the Fourier transform of <pfuj is 
included in the (euclidian) bail of center rjj and radius rh. So, it is clear that, if Co 
is large enough, 

SuppJF(^f Ul(p%u2) C{rje Hd I \rj\ ^ 2rh}. 

So it turns out that 

Y(h-1D)(v?Uiœ?Uo)=0. 

Now we have to study the case when 

12/1 -V2\ 
K 

1 

2 
(n-^2)1/2. 

By définition of the operator (pf, we have 

(44) {tfuW°u2){x) = (2n)~2d 
'B3(Yur)xB3(Y2,r) 

ei(x-y\r))+i(x-z\Q 

x ¥»i(y)¥>2(z)ui(î/)«2(«)dydz 

The fact that 

(Id -h2Ar,)ei{x-yM = (1 + h2\x - y\2)ei{x-yM 
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So by repeated intégration by parts, we get 

\(<PiUi<p%u2)(x)\ ^ 
fBg(Y1,r)xBg(Y2,r) 

(1 + h2\x - y\2)-N(l + h2\x - z\2)~N 

Kld-t fA^VQOI | ( I d - f c 2 A c ) W ^ u ^ d Y d Z . 

The inequality of the triangle implies that 

\x - yi\ + \x- 2/21 > - 2/21 and \x - y\ + |x - z\ ^ |yi - y2| - 2rK. 

So, if CQ is greater than 12, we have that 

\x — y\ + \x-z\^ 
1 

' 2 2/i -2/2I + 

So we infer that, for any AT, 

\(^Ul^u2)(x)\ < CAr(l + /i2|yi-2/2|2)"N||vi||2Jv+2d|b2||2Ar+2dî(a;) with 

dd+d1 def sd+sls (1 + h2\x - y\2)~d(l + /i2|x - z\2yd\Ul(y)u2^)\dydz. 

By Cauchy-Schwarz inequality, we have that 

|X(x)|2 ^ Cdh4d 
2 

3=1 
(1 + h2\x - y\2)-d(l + h2\x - z\2)-d\uAz)\2dydz 

So using again Cauchy-Schwarz inequality, we get that 

/(T,-)||Li(Rd)ll/( /(T,-)||Li 

So the lemma is proved. 

6. The propagation theorem 

One of the important point of this study is that the (approximate) flow of the 
operator PA préserves the microlocalization of functions. The aim of this section is 
to state and prove a theorem of propagation of microlocalization. 

Theorem 6.1. — A constant Co exists which satisfies the following property. 
Let us consider a point Yo = (yo,Vo) ofT*Hd such that rjo belongs to C, a smooth 

function (j) supported in B9a(Yo,r) and a function 7 of L2. Then X^(0D7)(r, •) 
is (Co,r)-microlocalized near \£^(T, Yb). Moreover, for any integer AT, a constant C 
and an integer k exist (which dépend only on N) such that 

d+d,r+d 
Vf(T,Yo),N,ga' 

(jf(^7)(r, .))^C| |0| |Ma| |7| |L2-

In the following proof of this theorem, we shall drop the exponant ± for sake of 
simplicity of the notations. By définition of the microlocalized functions, we have to 
estimate the following quantity 

+sld+d,; « Ï A ( 0 D 7 ) ( T , - ) ) 
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where ZT is a point of T*Rd such that ga(ZT - ^A(T, y0))1/2 ^ C0r. By définition, 
we have 

.7 (0 = 
dd 

/C(Ç, z)^(z)dz with 

/c(C,*) 
vr 

vrd 
e-t(y|C)+<*A(T,»,!,)-t(*|ii) / C)(J i « v)é(z. n)dvdn. 

The proof consists in intégrations by parts in the above intégral. Let us define the 
vector © by 

d+d 0d+d10def / |/A|-1/2fVn*A(T,î/,n)-^,|/Al1/2(Vu*A(T,î,,n)-C)) 

and the vector field C by 

dv def 1 

1 + |0|2 
/ - i\iA\-1/2eydvf - i\iA\1/2evdyf). 

It is obvious that 

£{e-i(y\0+i$A(T,y,r])-i(z\r))\ _ e-i(y\Ç)+i$A(T,y,ri)-i(z\r)) ̂  

So as usual, we have, for any integer JV, 

fC«,z) = 
dv 

e-iMO+i*A(T,„,v)-i(z\v),tc)N, ( yr)(TAiT ,y>r,)6(z,»)) du dn. 

Let us state the following technical lemma which will allow us to estimate the repeated 
action of the différent ial opérât or 1 C. 

Lemma 6.1. — For any integer N, a family of functions (£a,A/)|a|̂ Ar exists such 
that LaiN(Y, y) is a smooth function from T* Kd x (T* Rd)M^ and such that 

(45) \\4L~MY, OIL-CCT*R-)"*) < C W i + |y|2)-(^+l/3|)/2. 

Moreover, they satisty 

{tc)Nf = 

l«l<JV 

/(T,-)||Li(Rd)ll/(x+x1 

where d dénotes differentiation of length 1 for the metric ga defined by 

ga(dy2,dV2) ^ I / A P 1 ^ 2 + | /A |<V = Xga(dy2,dr,2). 

The metric ga is the interpolation between ga and gGa = X2ga- To prove this lemma, 
let us notice that the two vectors 

\IA\-1/% and \IA\1/2dy 

are of ga-length 1. Proposition 4.1 and the fact that |JA| ^ A2_£ implies that, for any 
positive integer fc, a constant ck (which dépends only on constants of Proposition 4.1) 
such that 

(46) l|dfc@llLcx>(/AxT*Rd) ^ Cfe. 
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Now, we write that lCf = £f + Lof with 

L0 def | /A|-1/2 
d 

3=1 

vrd 
v+r 

i + |e|2, 
+ |/AI1/2 

d 

3=1 

v+d d+vr 

î + i e i v 

So thanks to (46), we have 

||L0(e,-)L|L~ < 
c 

i + e 2 
But, by définition of £, it is obvious that C is of the form 

w+w1 
/(T,-)||Li(Rd)ll/( 

where £a,i satisfy (45) for N = 1. So the lemma is proved for N = 1. The lemma 
follows by an omitted (and straightforward) induction. 

Now, let us go back to the proof of the propagation theorem. The point is to prove 
that derivatives of g0-length 1 of 

<PzT{ViQoK(T,y,rj)<l>{z,'q) 

are bounded uniformly to the involved parameters. Thanks to Leibnitz formula, we 
have 

3 ^ (vzT (Y, (R, Y, R ^ M ) 

rev 
ai 
red 

a?^(vzT(»,CyA(r,tf,r/)^,»/))| < a?^(vzT(»,CyA(r,tf,r/)^,»/))| < 

The metric ga is choosen such that it is greater than the metric ga and the metric g\ 
defined by 

gA(dy2,dr]2) lef dyz 
A2 

+ dV2. 

Then, it is obvious that, for any integer k, we have 

sup 
|a+/3|<fc 

(T,Y,Z)£IAX{T* Rd)2 

|a?^(vzT(»,CyA(r,tf,r/)^,»/))| < CK. 

So thanks to Lemma 6.1, it turns out that, for any N, a constant Cjv exists such that 

?C)N{<PzMW(T,V,ri)<l>(z,ri)) 
CN 

(1 + |6|2)^/2 
So by définition of 6, we infer that, for any integer iV, a constant CN exists such that 

|/C(C,*)KCW f\y-zT\^rK 
\r]-rio\^rh 

dvdn 

H-^a(V^$A(r,2/,R7) -z,Vy$A(T,y,77) - C, 
N ' 

with of course 
\z-y0\^rK and |C-Cr|<rft . 
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But, as K = C|/A|/i and À = Kh, we have 

ga(dy2,drj2) ^ c\ga(dy2,drf). 

So we have that 

|/C(C,*)|<CW ]\y-zT\^rK 
d+d1rd+d1 

dydrj 

1 + A#a (VV$A(T, y, rj) - z, VY$A(T, y, rj) - Ç) J 

Now let us apply Lemma 4.2. As ga(Zr, *A(T, Yb))1/2 is greater than C0r, as (2,77) 
belongs to JBPa(io,r) and (y,C) to B9a(Zr,r) then 

^ ( V ^ A C T , y, rj) - z, Vy^A(r, y, rj) - Q ^ 
1 

Co 
a(ZR,#A(T,Yo)). 

So we have, if ga(ZTl ^A(T,1O))1/2 is greater than C0r, 

|£(C,*)|<-
CN 

{l + \ga(ZT-*A(T,Y0)))N 

X |y-zT|<r/C ' 
177—770 |̂ r/i 

dydrj 

l + \ga{Vr,$A(T,y,ri)-z,Vy$A(T,y,ri)-Ç)) 
N 

As (y,C) belongs to B9a(ZT,r), we have that 

ga(ZT - *A(r, y0))1/2 £ fla((», C) " *A(T, ^O))1/2 - r 

vr 
K-n(r,Y0)\ 

h 
— r. 

Stating ZQ * DEF ^A1(r, Zr), we have, thanks to the assertion (36) of Lemma 4.2 and 

as (Z,T?) belongs to B9a(Y0,r), 

ga(ZT-yA(T,Yo)y" > cga(z0 - y0)1/2 

dd1+d 
\Z-ZQ\ 

K 
-Cr. 

So it turns out that 

|/C(C,*)| < ^ ( l + Xga(ZT - *A(r,y0))) 
— A/ 

( l + Affa((Z,C)-(*0,*A(T,Fo))) 
-AT 

X 
d+d1r+ 
d+d1r+d 

dydrj 

1 + A#a (Vry^A^ y, rj) — z, Vy<&A(r, y, rj) — £) 
vrd 

Let us state the change of variables 

tf = \I\-V2(VMT,y,Ti)-z) 
r>' = \I\1/2(VMT,y,n)-C). 

Using estimâtes (32), we infer that the jacobian of this change of variables is closed 
to 1. Then it turns out that 

|/c(c,*)l < cN(i + \ga{zT - *A(r,y0))) 
-TV 

ri + Xga((zX)-(z0^Tl(r,Y0))) 
-N 
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But Schur's lemma implies that 

ÏÏJÏÏU < sup / \K(Cz)\dz sup / \K(Cz)\dC)\h\\i,. 
Z C 

Immédiate intégrations imply that 

| /C(C^) |^^Cw(l + A5a(ZT-*A(r,y0))) ^l/l^2 and 

| / C « , z ) K < CN(1 + Affa(ZT - *a(t,Ïo))) N\I\~d/2. 

So, for any TV, we have 

\\J\\L*<*CN{l + \ga{ZT-*K{T,Y*))) Nh\\L*. 

As ga(ZT - ^a(t , Fq))1^2 is greater that Cor, then 

\ga{Zr - *A(r,y0)) > C0rA â(Zr - *A(r, F0))1/2. 

So Theorem 6.1 is proved. 

In the next section, the following corollary will be useful. 

Corollary 6.1. — A constant Co exists which satisfies the following property. 
Let us consider a point YQ = (yo,Vo) °f T* ̂  such that 770 belongs to C, a smooth 

function (j) supported in B9a(Yo,r) and a function 7 of L2. 
For any integer N, a constant C and an integer k exist (which dépend only on N) 

such that, for any a, if ga(^A(T, YQ) — Y) ^ Cor, for any function ip in S(T* Hd), we 
have 

| |^( j f(^7)(r , -)) l lL2 < CX'N(1 +gA(*A(T,Y0) -Y))~N |M|fc,9,y ||̂ ||fc)9o ||7||La. 

The proof of this corollary is a simple combination of Theorem 6.1 and Lemmas 5.3 
and 5.4. 

7. The conclusion of the proof 

This section is the conclusion of the proof of theorem 3.1. The strategy is the 
following. First, we apply Lemma 5.5 about the product and the propagation theo­
rem 6.1 to concentrate on real interaction (see the proof in the constant coefficient 
case). Because of the fact that variable coefficents do not respect the localization in 
frequency space, we need at this step of the proof to décompose the interval /a-

In this section, we shall state 

J(r,y) def a?^(vzT(»,CyA(r,tf,r/)^,»/))| < +s*$ùd+dl 

The équivalent of Identity (5) that appears in the constant coefficient case is the 
following lemma. 
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Lemma 7.1. — Let J = (TJ,TJ) be a subinterval of IA such that 

\J\ < h|JA| and HVG^IUi^») ^ ft||VG^||Li (i»). 

Then two familles (0M) and of confined symbols exist such that, for any integer N, 

a?^(vzT(»,CyA(r,tf,r/)^,»/))| < HVG^IUi^») ^ ft||x6++wx 

and, for any N, a constant CN exists such that 

\\J - JWL^L-) < cNh\-N(\iA\h2)hd-2\\7l\\L2\\l2\\L2. 

with 

ddv def 

vrd 
vrd 

x{h~'D)dldldldldldldldld dlmd<yi) (r, 0 x 9° ( ^ 7 2 ) ( r , •)) and 

A, C { m 7 $ « ( * A ^ > * > ) - * A V ^ ) ) ' <CT}. 

Let us admit this lemma for a while. Let us simply notice that the number of 
éléments of is finite and bounded indepently on [i and J. 

Now we shall décompose the interval IA on subintervals J such that the above 
lemma can be applied. To do this let us introduce the following function on the 
interval IA 

H(T) 
def 

vrd 
i i i r > » 7 i ) ( T , - ) i i i » 

1/2 

vrd 
ll42)(^^72)(r,-)||ioc 

1/2 

Using precised Strichartz estimâtes, we get that 

I I ^ V M t . O I I L ? . ( L - ) < c-(iog(e + |/AI)): ll42)(^^72)(r,-)||ioc 

So, using Cauchy-Schwartz inequality, we get that 

'/A 
H(r)dT <C(log(e+|/A|))/id-2 

H' 

1 1 ^ 7 1 ||Ê2 
1/2 

vrd 

ll42)(^^7 
1/2 

Lemma 5.2 implies that 

vrd 
H(r)dr K C(log(e+ |/A|))/id-2||7l|||2||72||2L2. 

As in section 3, we décompose IA in intervais J such that 

\J\ < h\IA\, HVG^HiWi») < hWVG^h* (L») and 
vr 

H{r)dr ^ h 
fiA 

HMdr. 

Let us estimate Hi7||i,i (£«>). Lemma 5.4 implies that 

I I ^ M I I L - < 
/X,// 

d+d2 

J\ < h|JA| and HVG^IUi^») ^ ft||VG^||Li (i»). 
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By Cauchy-Schwarz inequality, we infer that 

| | J ( T ) | U ~ < H(T). 

So by construction of J, we get that 

WJWLXL-) < C/i(log(e+ |/A|))/id-2||7i||L2||72||L2-

Exactly along the same Unes as in section 3, the number of intervais J is less 
than C 7 i _ 1 . As |/A| ^ / i - 2 + £ and À = |^A|^2, the theorem is proved if we apply 
Lemma 7.1 with N large enough. 

But we have to prove Lemma 7.1. First, let us write 

J(r) = 

d+d1d+ 

drd 
drd 

(r) with 

J?" (r) = y(h-LD) v»*»T\l>(M"^ )(T. •\<ftté!iT?>(<D»,é»l>*>YT. •) . 

Propagation theorem 6.1 and its corollary 6.1 imply that, if 

ga{Yv-^{TJ,Yll))1'2^C0r, 

then 

\\<tftf^\<tftâii)(T)\\L> < cN\-N{9a{Yv - ^ ( r j , ^ ) ) - " - 1 ! ! ^ - ! ! ^ 

So using Bernstein inequality and integrating on the interval J, if 

ga(Yv-9V>(Tj,Yj)1/2>C0r 

we get that 

(47) | | « (Loo) < CNh(\IA\h2)hd~2X-N(1 + ga(Yv -^\rJ,Y,)))-d-1 

x I I ^ I I M I ^ t s I I L » 

Lemma 5.5 implies that if ga{Yv — Y»')1/2 > Cor, then for any N we have 

l l ^ ' ( T ) I L 1 ( ^ ) < ^ A - w ( i + 5 a ( ^ - n o ) - d " 1 l l < 7 i l U H I ^ 7 2 l U -

(48) 

Using Bernstein inequality, we get by intégration that 

\\<tftf^\<tftâii)(T)\\L>dddd < cN\-N{9a{Yv - ^(rj,^))-"-1!!^-!!^xss 
Let us defîne 

Affa(X) def l + ga(X) if ga(X)l/2>Cr 
1 s if ga{XY'2^Cr. 

and 

A def > y , / i , / a ' ) / 9a(Yv - ^ ( r j , ^ ) ) 1 / 2 ^ Cr and 

9a(Yv,-*f{TJ,YIA,))1l2<,Cr and ddd d- F^)1/2 < Cr). 

Thanks to Inequality (36) of Lemma 4.2, and thanks to the fact that the point (X^) 
are the points of the lattice Z defined in (43), the number of indices v such that 

gaissssssYv-VPfaYjy'^Cr 
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is finite and independent of the interval J. So plugging the estimâtes (47) and (48) 
toerether. we eret. if (u. v' u. af) 4 A. 

\\J:::,\\LK(L^ < KN(v,v',u,u')\-»h{\IK\h<)fta"K7i M V # 7 2 w i t h 

+wnxwkwxkjw def J\ < h|JA| and HVGddddd^IUi^») ^ ft||VG^||Li (i»). 
xAga{%-Yvsss,)-d-\ 

But we have that 
sup 
x rd 

Aga{X-Yv)-d'1 <co. 

Applying Schur's lemma and then Lemma 5.2, it turns out that 

w+w,w+w 

w+wn 
w+w w+wnw 

ww+wnwx 

rrV,v' 
ww+wn Lj(L~) 

^CN\-Nh(\IA\h2)hd-2 

w+w 
1 1 ^ 7 1 \\h 

1/2 

w+w 
w+ww,nw 

V 1/2 

<CA,A-JV/i(|/A|ft2)^-2||7i|UHl72lU2. 

Now let us state 
w++w 

d+dr1d+e 

rrV,v' 
d+d1 

and check that it satisfies the conclusions of the lemma. Let us define 

w+w 
def 

[v/ga{Yv-^l\rj^)) 1/2 ^Cr} 

w+w def W I3v e BP laa{% - Yv,)1'2 < Cr\ 

Au 
def 

{ / i ' . / B i / e ^ n ^ } . 

Let us notice that, thanks to Inequality (36) of Lemma 4.2, we have 

Au C {u!/ ga^\rj,Yu) - ¥2)(rj, Y»,))1'2 < Cr}. 

Now let us state 
w def 

dd+d1r 

tftf and ss 6° def 

redss 

d+ssd1d+r 

We apply Lemma 5.3 to conclude the proof. 
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