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MICROLOCAL ANALYSIS, BILINEAR ESTIMATES AND
CUBIC QUASILINEAR WAVE EQUATION

by

Hajer Bahouri & Jean-Yves Chemin

Abstract. — In this paper, we study the local wellposedness of a cubic quasilinear
wave equation. The Strichartz estimate used for the solutions of linear variable
coefficients wave equations are not relevant here. We prove bilinear estimates for
solutions of linear wave equations with variable coefficients. The main tools are Bony’s
paradifferential calculus and the microlocalization in the sense of Weyl-Hormander
calculus.

Résumé (Analyse microlocale et équation d’onde quasilinéaire cubique). — Dans cet
article, nous étudions ’existence et 1’unicité locale de solutions pour une équation
d’onde quasilinéaire cubique. Les classiques estimations de Strichartz ne sont pas
adaptées dans ce cas. Nous démontrons des estimations bilinéaires pour des solutions
d’équations d’ondes & coefficients variables. Les deux outils principaux sont le calcul
paradifférentiel de Bony et la microlocalisation au sens du calcul pseudodifférentiel
de Weyl-H6rmander.

Introduction

In this paper, our interest is to prove local solvability for equations of the type

Ofu— Au— Z 97*9;0ku = 0

1<j,k<d
(EC) Agj,k — Qj’k(au’au)

(u, O¢u) =0 = (uo,u1).
where Q; x are quadratic forms on R, In all this work, we shall state, for a real

valued function u on [0, 7] x R¢,

Vul Gy, 0p), 00 (B, 000, Og) and gV P gro 0.
1<j,k<d
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94 H. BAHOURI & J.-Y. CHEMIN

When no confusion is possible, we shall also state
def
v = (Vug, ua).

This problem of course is a model one. The general problem consists in considering
equations of the type

BPu—Du— Y g*0u= S Q;(d¢"*,0u)
1<5,k<d 1<j,k<d
Agj’k = Qj7k(8u, (9’LL)

(ua atu) [t=0 = (uo, ul).

where Q ;,x are quadratic form on R?*! and where all the quadratic forms are supposed
to be smooth functions of u. This simply complicates a little the estimates without
any relevant new phenomenon. In the frame work of equation (FC), it makes sense
to work with small data and this simplifies the proofs.

Energy methods allow to prove local wellposedness for initial data (ug,u1)
in H2+% x H2~%. More precisely, we have the following theorem.

Theorem 0.1. — If d > 3, let (uo,u1) be in H2 2 x Hi~% such that ||’y||H%_1 is
small enough. Then, a positive time T ezists such that a unique solution u of (EC)
ezists in C([0, T);H2+3) N c([o0,T); H%~%). Moreover, a constant C erists (which
of course does not depend on the initial data) such that

> -2
T>Clhly

[N

Let us recall that H? is the usual Sobolev space on R and that H® is the homo-
geneous one and we shall state

def ST
1% [ lerf©Pas.
Rd
This is an Hilbert space when s < d/2.

The goal of this paper is to go below the regularity H @/2+1/2 for the initial data.

Let us have a look to the scaling properties of equation (EC). If u is a solution

of (EC), then uy(t, ) def u(At, Az) is also a solution of (EC). The space which is

invariant under this scaling is H??2_ So the above theorem appears to require 1 /2
derivative more than the scaling. The goal of this work is to try to go as closed as
possible to the scaling invariant regularity.

Some results in that direction have been proved by the authors (see [4] and [5]) and
also by D. Tataru (see [27] and [28]) for quasilinear wave equations of the following
type

(B) { 02u — Au — G(u) - V2u = F(u)Q(du, du)
(u, Opur) t=0 = (uo, u1)

ASTERISQUE 284



MICROLOCAL ANALYSIS AND CUBIC QUASILINEAR WAVE EQUATION 95

where G is a smooth function vanishing at 0 and with value in K such that Id + K is
a convex compact subset of the set of positive symmetric matrices. Let us recall this

results. Let us notice that the scaling of the two equations (F) and (EC) is the same.

) d 1 1
Theorem 0.2. — If d > 3, let (ug,u1) be in H® x H*~1 for s > sq with sq = §+5+6 .
Then, a positive time T exists such that a unique solution u exists such that

du € C([0,T); H*=1) n L2([0, T); L™).
Moreover, a constant C' exists such that

T3+ > Clly|| 7L,

This theorem has been proved with 1/4 instead than 1/6 in [4] and then improved
a little bit in [5] and proved with 1/6 by D. Tataru in [28]. Strichartz estimates for
quasilinear equations are the key point of the proofs. Recently, S. Klainerman and
S. Rodnianski have announced a better index. Their proof is based on very different
methods. In this case, the energy methods give the classical index s > d/2 + 1 and

T > Cllvll go-1-

The goal of this work is to do the analogous in the case of Equation (EC). The
result will be the following.

d 1
Theorem 0.3. — If d > 5, let (ug,u;) be in H® x H*™! with s > 3 + 6 such
that ”7”}‘1%‘1 is small enough. Then, a positive time T exists such that a unique

solution u of (EC) exists such that
Ld_1
du € C([0,T); H*™ ") N L3 (B4, ?)
where 34%,2_ 5 denotes the Besov space defined in Definition 1.1. Moreover, for any

positive o, a constant C,, exists such that

lta -1
Te™* > Ca"'Yl|Hg_%+a-

The case of dimension 4 is a little bit different. The theorem is the following.

1
Theorem 0.4. — Ifd =4, let (ug,u1) be in H® x HS™! with s > 2+ G such that ||y|| g

is small enough. Then, a positive time T exists such that a unique solution u of (EC)
exists such that

du e C([0,T); H*") N LA(Bgly) and 8g € LH(L™)
.d_1
where B¢, * denotes the Besov space defined in Definition 1.1. Moreover, for any
positive «, a constant C,, exists such that
t+a -1
T > Calt 7y g

Remarks
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96 H. BAHOURI & J.-Y. CHEMIN

— If we think in term of small data (i.e. of initial data of the type e(ug,u1)),
then energy methods give a life span in e~2. The above theorem gives a life span of
order e 6% for any positive a.

— As we shall see, the case when d > 5 can be treated only with Strichartz estimates
simply because laws of product in Besov spaces imply that if du belongs to L%(BE 9 %)
then 8g is in LL(L>).

— The case when d = 4 requires bilinear estimates. This fact appears in the
statement of Theorem 0.4 through the following phenomenon: the fact that du is
in L%(Bé’/;) does not imply that the time derivative of g belongs to LL.(L*°). Of
course this condition is crucial in particular to get the basic energy estimate. But we
have been unable to exibit a Banach space B which contains the solution u and such
that if a function a is contained in B, then dA~1(a?) belongs to Li.(L>°).

— In all that follows, the dimension d will supposed to be greater or equal than 4.

Acknowledgments. — We want to thank S. Klainerman for introducing us to this
problem and also for fruitful discussions. We thank J.-M. Bony for very important
discussions about the concept of microlocalized functions.

1. Method of the proof and structure of the paper

As we shall use Littlewood-Paley theory all along this work, let us begin by recalling
some basic facts and definitions related to it.

1.1. Some basic facts in Littlewood-Paley theory. — Let us denote by C the
ring of center 0, of small radius 3/4 and of big radius 8/3. Let us choose two non
negative radial functions x and ¢ belonging respectively to D(B(0,4/3)) and D(C)
such that

(1) X(€) + ) e(279) =D p(27%) =1,

q€N q€eZ
(2) lp— gl > 2 = Supp (27%) NSuppp(27*) = 2,
(3) q>1= Supp x NSuppp(2™%) = &,
and if C = B(0,2/3) + C, then C is a ring and we have
(4) lp—ql >5=2°CN2C = .
Notations

h=F1p and h=F1y,
Agu = p(27D)u = 294 / h(2%y)u(z — y)dy,

Squ = Z Apu = x(27ID)u = 29¢ /Tz(2qy)u(:c —y)dy.

p<g—1
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MICROLOCAL ANALYSIS AND CUBIC QUASILINEAR WAVE EQUATION 97

We shall often denote Aju by ug. Let us recall the definition of Besov spaces.
Definition 1.1. — Let s be a real number, and (p,r) in [1, 00]2. Let us state

1@ 18gull2r) sezller 2y

If s < d/p then the closure of the compactly smooth functions with respect to this
norm is a Banach space and we have that H® = B3 , and the norm |-/ 3, _ is equivalent

to |- [ls-

def
s, %

Notation. — We shall also state

def def def
llalls = lalls5, » 1l (2) = |lbllocry > 1bllcee) = |1bllLe(o,71:)

def
and ||bl|7,s = “b”L;O(Bg'Z)'

Here we want to explain the problems we have to solve in order to prove Theo-
rem 0.4. As in the case of Equation (E), the basic fact is energy estimates. This
implies the control of

T
/O 18(t, ) v

In the case of Equation (E), it is obtained by Strichartz estimates. This will be the
case here when d > 5 but this will not be the case when d = 4. Let us have a look
on a model problem to understand this difficulty. Here we essentially follow ideas of
S. Klainerman and D. Tataru (see [22]).

Let us assume that u is the solution of the constant coefficient wave equation and
let us estimate

T
/O 10A= (8;u(t, )Oku(t, ) | Lo dt.

AN (0jult,)Bku(t,")) = A1 (0:0judkul(t,-)) + A1 (0;udOkul(t,)),
we have to control expression of the type
T
/ ||A_1(6t8ju6ku(t, '))”Loodt.
0
When d > 3, we have (see Lemma 2.1) that
| A~ (Budsudgu(t, ) gass < Cllou(t, N _y-

So we get that

2

T
/ |A~Y (Bud5udku(t, )) | Ledt < T)Oul2 4.
0 2

SOCIETE MATHEMATIQUE DE FRANCE 2003



98 H. BAHOURI & J.-Y. CHEMIN

Then the proof of Theorem 0.1 is routine. If we want to go below this H g+3 regu-
larity of the initial data, we shall use Strichartz estimates. Let us introduce Bony’s
decomposition which consists in writing

ab—ZSq 1aA b+ZS_1bAa+ > Agadg b

—-1<j<1
q
When d > 4, we have
d_1 g
16%uq] 3, (o) < C20E=HHRD) | 1o,
Then it is not difficult to prove that

HA—I (zq: S _182u8uq)

The symmetric term can be treated exactly along the same lines. The so called

remainder term
2
S o uqauq_j)
—-1<5<1
q

iy SO

is much more difficult to treat particulary in dimension 4. The reason why is the
following. When d is greater or equal to 5, the Strichartz estimates tells us that

14k
18%ugl 2 zey < 27335 g .
So thanks to Bernstein inequality, we infer that

2,01 (3 Aptun,jou)| | <cor(E2) ST 202 g e

~1<5<1 Lr (L) ~1<<1
92p—No g2p—No
<0 Y2 2P0 D oy ey o
1<Kl
g2p—No

Convolution and Cauchy-Schwarz inequalities implies that

1A7H (0% udu) ||y oy < ClIVIG

The case of dimension 4 is much more delicate. In dimension 4, the Strichartz estimate
is
10 gl 12, zoy < 27375y 2.
So the series 02uq0uq—; does not converge in Li.(L3) because the only estimate we
have is
8/3 2
||‘9 UqgOug— J”L1 (3 & < 298/ l17qllz2

< C2P3d |3 with > dg=1.
q
To overcome this difficulty, we follow an idea of S. Klainerman and D. Tataru: the
precised Strichartz estimate which will allow to prove bilinear estimates.
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MICROLOCAL ANALYSIS AND CUBIC QUASILINEAR WAVE EQUATION 99

1.2. Bilinear estimates and precised Strichartz estimates. — To explain the
basic ideas of bilinear estimates, let us consider the case of constant coefficient case.
In this paragraph, we essentially follow the ideas of [22]. What a bilinear estimates
lookes like is described by the following proposition.

Proposition 1.1. — Let u; and us two solutions of
{ Bfuj - A’U,j =0
(0u;) =0 = ;-

Then, if d > 4, we have
10ATIQ(8u18u2)l| Ly (L) < CerlMillg—rpellvalla 1.

Remark. — We find a gain of half a derivative about the regularity of the initial data
compared with purely Strichartz methods.

The precised Strichartz estimates is described by the following proposition proved
in [22].

Proposition 1.2. — A constant C exists such that for any T and any h < 1, if Supp u;
and Supp F(Owu(t,-)) are included in a ball of radius h and in the ring C, we have

—_ 1/2
lull L2,y < C(h?2log(e+T)) / (Ile(0) [l 22 + [|0:u(0) | L2 + IO ul L1 (£2))-

To prove Proposition 1.1, let us recall that we want to estimate the

12,21 ( Y AgbPun,-j6u)]

—1<5<1
q2p—No

LL(L=)

With a rescaling of the equation, we can assume that ¢ = 1 and let us state h = 2P~9.
Let us define (¢, )1<u<n, a partition of unity of the ring C such that

Supp ¢, C B(&y, h).

Then, using the fact that the support of the Fourier transform of the product of two
functions is included in the sum of the supports of their Fourier transform, a family
of function (¢, )1<v<n, exists such that Supp ¢, C B(—¢£,,2h) and

(5) x(h~1D)(8%vdv) = ZX h~1D)(8%¢,(D)vd¢, (D)v).

Applying Proposition 1.2 gives

Nn
X (R~ D)(8*vd)| Ly (1) < Ch4log(e +T) Y _ [l ¢u (D)l z2ll ¢ (D) 2.

v=1

SOCIETE MATHEMATIQUE DE FRANCE 2003



100 H. BAHOURI & J.-Y. CHEMIN

The Cauchy Schwarz inequality implies that

IX (A~ D)(8*v0v)|l 3. (<)

Np 1/2 s Ny, 1/2
< Ch*2log(e +T) <E ||¢V(D)7||2Lz> (Z Il¢u(D)7HzL2) :
v=1

v=1
The almost orthogonality of (5,, (D)1)1<v<n, and (¢, (D)y2)1<v<n, implies that
(6) Ix (A D)(0*v0v)| 11,1y < Ch*~?log(e + T)|yll L2Vl 2-
So after rescaling, we get that

”A,,A—l( 3 Aqa2qu_jau)H

-1<j<1
g2p—No

L3(L*)

< 2r(d—9) Z log(e + 2qT)22q||’Yq”L2”7:1—1’”L2-
~-1<j<1
q2p—No

If v € H%~ 1% then we have
HA”A_I( Z Aq52“Aq—j3u)| < (2PT)~° Z 9—(a-p)(d—4+e)

~
L (Lo
—-1<5<1 (L) -1<5<1
g2p—No q2p—No

x 20(871) (29T)¢ ||y, || 220D (1) (29T) || yy 5 | 2.

So the series convergences in L1 (L) for large p. The case when p is small (low
frequencies) is nothing but Sobolev embeddings.

The real problem we have to solve in this work is to prove this bilinear estimate in
the context of quasilinear wave equation. To do this, we follow the lines of [4] and [5].

As we shall use geometrical optics technics, we need to deal with smooth functions
in time also. This leads to the following iterative scheme introduced in [5]. Let us
define the sequence (u(™),en by the first term u(®) satisfying

2u® — Au® =0
{ (u(o)vatu(o))ltzo = (SOU’O’ S()’U.l),
and by the following induction
" (D), 8u D) g = (Sny1uo, Sny1u1)
with
Gor For1)G, with GiF ' A1Q; 4 (Bu™, u™).

where 6 is a function of D(] — 1,1[) whose value is 1 near 0. Let us point out that
the sequence (u("))neN does depend on T. We introduce some notations which will

ASTERISQUE 284



MICROLOCAL ANALYSIS AND CUBIC QUASILINEAR WAVE EQUATION 101

be used all along this work. If « is a (small) positive number, let us define

d 1
sadif§+6+a and N%(’y)d——e—f

Let us introduce the assertions we are going to prove by induction.

-Ifd>5,

1
T |y]|s0-1-

Au™ , < CpN&
o [ 12 istomstsh, < oV
n d 1
18u™|recy < Elyllor forany se [sa —1,5+ 5];
—ifd=4
f|ou™|| a_1 < CoNg(v)

L2([0,T};BE, 2)
(Pr) & 110Gn rllLr(o,1)L0) < 2
3 d 1]

<
[0y <l foramy se [S4ad il

All what follows in this paper consists in proving that if

Il ¢-2 + N2 ()

is small enough, (Pp) is true and (Py,) implies (P,+1). Then the proof of Theorems 0.3
and 0.4 is pure routine of non linear partial differential equations.

To do this, we shall localize in frequency and transform equation R,, into an equa-
tion where the space-time frequencies of the metric which defines the d’Alembertian
are very small with respect to the level frequencies we work with. This is the purpose
of the second section.

In the third section, we show how the proof can be reduced to “microlocal”
Strichartz and bilinear estimates. By microlocal estimates, we mean estimates that
are valid only a time interval whose length depends on the size of the frequencies
we work with. To prove the complete estimates (with a loose of course), we use D.
Tataru’s version of the method we introduced in [4] which consists in a decomposition
of the interval [0, 7] on intervals where microlocal estimates are true.

In the forth section, we recall the method of approximation of solutions of (vari-
able coefficients) wave equation by the method of geometrical optics. This is the
opportunity to study precisely the link between the solutions of the Hamilton-Jacobi
equation

{ 61'(1)(7—? y? T}) = F(T7 y76y(I)(T? y’ n))
®(0,y,m) = (yln)

and the flow of Hr and also properties of this flow which will be useful in the seventh
section.
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102 H. BAHOURI & J.-Y. CHEMIN

The fifth section is devoted to the following problem: in the proof of the equivalent
of Inequality (6), we use the fact that the support of the Fourier transform is preserved
by the flow of the constant coefficient wave equation; this is no longer true in the
variable coeflicient case. So this information is not relevant because it is not preserved
by the flow of the equation. The purpose of this fifth section is to define the concept
of microlocalized function near a point X = (z,£) of the cotangent space T* R? (the
cotangent space of R?). This notion is due to J.-M. Bony ([7]) and means that the
function is concentrated in space near the point z and in frequency near the point £
with of course the limit on the uncertainty principle. The good framework of this is a
simplified version of Weyl-Hérmander calculus which is also presented in this section.
Properties of the product of microlocalized functions is also studied.

In the sixth section, we prove that for solutions of a variable coefficients wave
equation, microlocalization properties propagates nicely along the Hamiltonian flows
related to the wave operator.

In the seventh section, we apply the three previous sections to prove the microlocal
bilinear estimates. This proof consists in a second microlocalization, which means
that we have to decompose again the interval on which we work. The reason why is
that interaction in the product and propagation of microlocalization are badly related.

2. Littlewood-Paley theory and Paralinearization of the equation

All along this work, we shall need to study the quadratic operator A~!((Du)?).
Let us summarize now some basic properties of this operator in the following lemma.

Lemma 2.1. — A constant C exists such that

1A™(8adb)|l a2 < Cllall ;-

||VA_1(6a8b)||Bz/l4 < C||3a"B

NI

3 1190]]

41 and

2

d_1.
4-2
By

d_ -
4
4,2 2

Moreover, for any o greater than 3/2, a constant C exists such that
A7 (8adb)|| ory < C(l10all-1/2[100]l ra-s + [10all gro-1 10l 5-1/2).-
And, for any o greater than g - %, a constant C exists such that
1A™1(8adb)|| ory < C(I10all , 43 100]l o-r + [10all gro-1 1] . 43 ).
BA,Z B4,2
From this lemma, we give the following corollary.

Corollary 2.1. — A constant C ezists such that, if (Py,) holds, then

I1Gnrllze < ClvllG ;-
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MICROLOCAL ANALYSIS AND CUBIC QUASILINEAR WAVE EQUATION 103

Moreover, if d > 5, then

10Gn.1ll L1 (1) < CNE(7).

The proof of this lemma and its corollary is an exercice on Littlewood-Paley theory
and we omit it.

Theorem 2.1. — For any s > 3/2, a constant C exists which satisfies the following
properties. Let us consider two functions u and v whose partial derivatives belong to
the space L (H*~1)NLA(C~Y/2) and a function F in LL(H*"'). Let us assume that

Gi,”;’ ‘i_f.fa(T”l.)A—le’k(a'U, 8’0) € L’}‘(Loo)

and that
O}u— Au—Gyr-V?u=F.
Then we have
Ofug — Aug — Sg-1Gy,7V?ug = Ry(Vu, 0v) + F,
with

IRg(Vu(t), 8u(t))ll 2 < Ceq()2™ 4™V (IIVGo,r(t)llze | Vu(t)lls-1
100 ls=110v(E)ll g-1/2 I VU)ll g-1/2) -

with as in all that follows Zcﬁ(t) =1.
q

To prove this theorem, we use paradifferential calculus. More precisely, we apply
Bony’s decomposition which consists in writing

Gor(t)V?u(t) = Ri(t) + Ra(t) with

(7 Ri(t) def Z Sq/_leyTvzuq/ and
ql

Ro (t) d=ef

Z Sq:+2V2qu/ Gu,T-
ql
The first term Rq(t) is easy to estimate. As the support of the Fourier transform of

the function Sq/_leyTVZuq/ is included in a ring of type 29'C, , we have
AgR(t) = Z Aq(sq’—IGv,Tvzuq’)
lg—q’|<N:
(8) = Sg-1Gu,rVuq + Z [Ag, Sy—1Go 1] VVuy
lg—q’'|<N1

+ Y (Sg-1Gur — S4-1Gu 1) VAU
lg—q'|<N:

SOCIETE MATHEMATIQUE DE FRANCE 2003



104 H. BAHOURI & J.-Y. CHEMIN

As for instance in [4], we have
I[Ag, Sg—1Go 1] VPug
|(Sq=1Go,r = Sq—1Go,1) Vuy
So it turns out that
9)  [|AqR1(t) = S4-1Gu. V21| 12 < Ceg2™ 9V VGy r(t) | Lo | Vu(t) la-1-

The second term is a little bit more delicate to estimate. Because the support of the
Fourier transform of Sy/41V2uA, G, 7 is included in a ball of center 0 and radius C29',
we have that

s < Ce2 VG, r(t) | [ Vut)lo—1  and

€2~V Gy (1) oo | Vu(t) 1.

C
C

L
12 S

ARa(t) = D Ag(Sy42V?ulyGur)
q' 29— N1

By definition of C'/? and using Bernstein inequalities, it is obvious that
1Sq41V2ull e < 272 Vu(t)l|g-r/e.
Using Lemma 2.1, we get that
18 Go,rllLz < Ceg (£)277 F2)|00(t) | ¢ -1/21100(E) | o1
when s is greater than 3/2. So the theorem is proved.

Now we are going to state two corollaries of this theorem.

Corollary 2.2. — If (Py,) is satisfied, then for any s € |3/2,s4], a constant C exists
such that

100 Dl -1 < [7llo-1 (1 + CCONFMIOU™ V| 13 - )-

To prove it, let us first deduce by standard energy estimates from Theorem 2.1
above applied with v = u(®*1) and v = u(™ that

d —2q(s— n
ZNouf D B)lF2 < C2)272D (J0Gn,r (1) = [9u™D (1) 2,
+ Ol a1 10w Ol o172 I VD @) g2 |00 D O] ).
By multiplication by 22¢(*~1) and summation we have that
d . n
20w D@2, < C(10Gn Ol [0u D D]
+ CY =10 Ollg-1s2 | Tu D @)l -0 D B o1 )

Using Gronwall lemma, it turns out that

t
0w @)1 exp(~C [ 10Gn2(¢)]lmdt)
0

t
< lhlls_1+C|17||s-1/0 10u™ (") g-1/2VuTHD (E) | -1 2t .
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MICROLOCAL ANALYSIS AND CUBIC QUASILINEAR WAVE EQUATION 105

Using Cauchy-Schwarz inequality, we get

t
0w @) - exp(=C [ 10Gn (¢ =)
0

< lls-1+ C“’Y“s—l||au(n)||L§,(c'v—1/2)||vu(n+1)"L§(c"—1/2)~
Using (P,,), we get that

t
0w @)1 exp(~C [ 10G(t) =t
0

< Ylls-1 + CCONEM) I ls-1 Va1 (-1/)-
The fact that ) ,
t
Oy Gnr(t') = Tal (T) Grn + 004G,
together with induction hypothesis and corollary 2.1 implies the result.

The second corollary treats the case of low frequencies.

Corollary 2.3. — A constant C exists such that under the hypothesis (Py), we have,
foranyr > 2,

10Su™D|

i [¢] a
aioh S C(29T)5~* N (7) (1 + CCoNF(M0uT™ V| 12 (5172 )-
T 2

Using Bernstein inequalities and Corollary 2.2, we get that

d4_ 1 -
24D |0uf 25 1) < CT2OD [0V 1

2

< C(2PT) 32042 g (412,
< C(2PT)5~22Ng (1) (1 + CCoNF(M0u™ V| 12 -72)) "
Thus as

d_1
198,00, ey <O 2 22 ouf T 10y
T 2

p<g—1
we have proved the corollary.

Let us now do a precised paralinearization in the spirit of [4].

Theorem 2.2. — A constant C exists which satisfies the foliowing properties. Let us
consider two functions u and v whose partial derivatives belong to L(H®=~1) N
LZ(C~Y?) and a function F in LL(H®*"'). Let us assume that G, belongs
to LL.(L*) and that
Btzu —Au—Gyr- Viu=F

Then for any § € [0,1], we have

Ofug — Aug — S3(Gy,1) - V2uq = R}(Vu,0v) + F,
with

&3 def o(1+d)
qu - Sq&—(1—6)log2T——Nob and
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IRg(Vu, 00) 1y, (12) < €277V (14 (2°T) ) (10Gu,7ll L, (200 | Vull e (701
+ “a'l’”L;o(Hs—l)||a”||L2T(C—1/2)“VUHLg(C—l/a)-

The proof of this theorem is based essentially on Theorem 2.1 and Corollary 2.2.
Using Theorem 2.1, it is obvious that

R)(Vu,8v) = Ry(Vu, 8v) + (82 — Sg-1)(Gu,1) - Vuy.
As we have
1(Sg = Sq=1)Go,rll L3 (L) < C279(29T) 2(|0Gy 7| L (L0,
we get the theorem applying Theorem 2.1.

As a corollary, we have

Corollary 2.4. — A constant C ezists such that under the hypothesis (Pp) we have for
any 6 in the interval [0, 1],

(BCPr.) ud — AUV — 3G r) - V2uY = Ri(n)
T,q 8u(n+1) _ _(n+1)
q t=0 = Vq
with
5, def o(1+d)
qu - Sqé—(l—é)long—Nob and

_g(2_ _1l_g _ o
IR ()l La.(z2y < C279E7D(29T) 87 (1 4 (29T) " ~°) N2 (7)

x (14 CONEMNNT D 13 -272))-

3. Reduction to microlocalized estimates

By microlocalization of the estimates, we mean that we shall prove estimates that
are valid on time intervals whose length depend on the frequency parameter. These
techniques have been introduced in [4] and used in [5] and improved by D. Tataru
in [28]. For technical reasons, we prefer to work at frequencies of size 1.

3.1. The statement of the microlocal estimates. — In all that follows, we shall
consider a family of smooth functions G = (Ga)a>a, defined on I, x R? such that
G is small enough and such that, for any k& > 0, the following quantities

def

(10) IGllo = Sup IVGallLy 2y + Al IV*GallLy (1) and
def
(11) 161 %" sup [IAIA*[T¥2Gallzy =y for K >1.
Ao A
are finite. Let us denote by P, the operator
Pyv ¥ 020 — Av - 3" GhB000.

k2
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Theorem 3.1. — Let C be a ring of R? and &g a positive real number. Let us consider

two families of smooth metrics GO def (G%))A>AO such that for any k, ||GD||x is
finite and such that ||GY||o is small enough. For any positive real number € < o,
a constant C. exists which satisfies the following properties. Let fi and f2 be two
functions in L} (L?) and 71 and v two functions of L?; let us assume that the
Fourier transform of those functions have their support included in C. Let us assume
that

Ia] < AZC.

Then if vi,n and v,z are solutions of

@, . — £
(Ep) Py vja fi
V’UijIT—_-O = 7.7
we shall have the following properties:
—if d > 5, we have
||Uj,A||L§A(L4) < C(llvllzz + ||fj||L}A(L2))-
—ifd =4,
”Uj,A”LgA(LG) < C(llvillez + ”fj”L}A(L?))-

—if d > 4, then we have, for any h < 1 and any € > 0,

||X(h_1D)(U1,AU2,A)||L}A(L°°) < Cch* ¢ log(e + |Ia|)
x (Imllze + ||f1“L}A(L2))(“72||L2 + ||fz||L;A(L2))~

Let us point out at this step that when h is small enough, this estimate is nothing
but the Sobolev embedding. Using Bernstein inequality, we can write

”X(h—lD)(Ul,A'UZA)”L}A(L°°) < hdllvl,A’Uz,AllL}A(Ll)
< WA lvrallzg: @ llva allzs 22

< R Ial (Il + ||f1“L}A(L2))(“'72”L2 + “f2”L}A(L2))'

So when hé|I5| < h~27¢ the inequality of above Theorem 3.1 is proved. In all that
follows, we shall assume that

(12) IIAl > h2e,

The proof of this theorem will be the purpose of sections 4 to 7 and this is in fact
the core of this work.
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3.2. The local estimates. — From this microlocal statement, let us deduce now
the following local result.

Theorem 3.2. — Let (G1))1¢j<2 be two metrics such that ||6G'(j)”L1T(Loo) < Cy. For
any €, a constant C, exists (which of course depends on d) such that if u;, are
functions whose Fourier transform is supported in a ring 29C and are solutions of
(Ex) Bfugj) - Augj) - GW -V2u¢(1j) = fiq
A ‘ ’
VuEIJ)[t=O = Y4.q

where GO & Sg/ ’G@ and where vi.q and f;q have Fourier transform supported in
a ring 29C, then we have

—-ifd =25,
d__1__ :
20 R0 U g 1)
d_ 1 : _

< G278 T3+ (10uf | Lgp 2 + (29T) N fy all ooy

—ifd=4,
1_ : 1 ; -
24(3 k)”81+ku<(1])”L§,(L6) < Cqu(QqT)G+€(Hauflj)”L?(LZ) +(27) 1/3”fj,q||LlT(L2));
—ifd >4, foranyp <gq,
- 1+k,,(1 2
[x(27"D)(0 ”t(z )‘9”51 ))“LIT(Lw)
< Cs2p(d_2)2q(l+k)(2qT)%+s(||3u¢(,1)||L°T°(L2) + (2qT)—1/3”f1,q||L;(L2))
x (10u$P N Lge L2y + 0T) 3| f2,qll 3 (22))-

To start with, let us observe that after a rescaling of the above Theorem 3.1, we
get that, for any subinterval I = (t~,t%) of [0, 7] such that

(13) U< T2 and VG |pyzee) + V2G|l 13 (1o < 0,

we have
—ifd>5,

(14) 10"+ *ulD | 21y < C2UEH4E) (10D (7)1 2 + 1 fjall 3 22)) -
—ifd =4,

(15) 10"+ ul || 16y < C2UEH0) (110wl () |22 + 1 F gl 2 22y)-

—if d > 3, for any p < ¢ and any € > 0,
[z D) (O a3y < OB T2
(16) x ([|ouSD ()2 + ||f1,q||L}(L2))(||‘9u¢(;2)(15_)||L2 + | f2,allL3z2y)-
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Let us observe that in the case when 2PT < 1, the above inequality (16) is obtained
by Bernstein inequality.

Then the method consists in a decomposition of the interval [0, T'] in subintervals I
on which the above microlocalized estimates are true. The key point is a careful
counting of the number of such intervals. This method has been introduced by the
authors in [4] and improved by D. Tataru in [28].

Let us state ng ) def S8GWY). Using the fact that
19269 c3am) < TP IVGD 1y
Condition (13) becomes
I .
(1) 1 <T@T) and @1 |96 530 < 0

But as seen in Corollary 2.4, there is a loose on the remainder. The decomposition is
the opportunity to compensate this loose. To do so, let us consider a parameter A in
the interval [0, 1] which will be determined later on. We impose on the interval I that

I fiallzrz2y < Allfiallor ey
This constraint joint to the condition (17) can be sum up by
== | /
e [ Wt 5 [ I fie@)llLedt
T(29T)! 2= J; Al s, q||L1 (L2) 5a@lle

(18) + ey 1969 Ollmds <o

We shall prove that such a finite decomposition exists (and also control the number
of intervals) by induction. Let us assume that an increasing sequence (t;)ogjgk of
points of [0, T] such that t, < T and, for any j <n —1,

—————l ¢ j t
)‘”f],q” T( 2) X 2,9 L2

tiv1 —t; s [ G)
+ T (297) / ||VG6 #)||Ledt = €0
t

7

1
W@jﬂ —tj)+

As the function

1 1

Fi(t) défw(t—t k) +

—————— i) L2dt
/\”qu”L,}(Lz) b ” JQ( )"L

t— ¢ ;
+ @) [ VG W) pedt
L

is a increasing function on the interval [t, T, either the interval [t, T'| satisfies Con-
dition (18), or a unique 41 exists in the interval |tx, T'[ sucht that Fy(tk+1) = €o.
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Now let us estimate the number of intervals. At least one of the three terms of the
left inside of the above inequality is greater or equal to €¢/3. So either

&0
W(tj+l —t) >3
or
1 tit1 €0
S — ; > 2,
SV / F3a(Ollzede >
or

tivy —ts ti+1 .
By [ Ve Ot > D
T ¢; 3
In the third case, we get that for any positive real number A,

3 1 ti+1 .
=t —t)A+ @ o [ VG W)l > 1
3

It turns out that in any case,

L ) ! T e ®llad
—_— 1, —t-+~————/ i)l L2dt
T(T) == T Nl S, PN
tit1 .
tig1 —t;)A+ (29T)° = / 9 (1| poodt > 2
+ (tjiy1 —t5)A+( )3AT . VG ()| poodt 3

So by summation we infer that the number N of intervals is finite and that

C 1 3AT
N < __(2qT)26-1+e 4+ 4 -
€o Agg €5
As usual, the best choice in the above inequality is the one that ensures that all the

terms are (almost) equivalent. So here, we choose

1 .
+ (2qT)5ﬁ||VG<(sJ) 21 (Loe)-

2
3
So the number of intervals N is less than C (2‘7T)%+E. So let us denote by (Ig.¢)1<e<n

the partition of the interval [0, T] and state Iy, = (tq,¢,tq,¢+1). Using (18) and (14),
we can write

AT = (29T)%% ) A= (29T)"%/? and 4=

N
20 o D B 1y = 02 IR ST 0 D, )
=1 q,
< C'22‘7(%_1)N(||5’u<(1j)||L5-,<>(L2) + (2‘17“)"1/3“1‘1',«1||L1T(m))2

As N is less than C(2"T)%+E, we have, when d > 5,
d_1_ ;
20(1=4=R) a1 +ky ()| 12 1)

d_ 1 i —
< G227 @)+ (J0uf | ey + (29T) 72 gl Ly
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The case when d = 4 can be treated exactly along the same lines and is thus omitted.
In order to prove the bilinear estimate, let us write, using (16) and (18),

N

%@ P D)@ **uMu®)l 1 (pooy < D X277 D)@ HFu{DuP| o @)
=1

< 2722000 0T N (06 | e uy + (29T) 2 frall iy o))
x (109 gz + @UT) N fjall oy en)

< G2 @210 T) 12 (10u) | e 1) + (29T) ™ fy g e )
x (106Dl an) + )Pl fiallpen):

So Theorem 3.2 is proved. Let us state the following corollary.

Corollary 3.1. — If N%(vy) is small enough and Cy large enough, then assertion (Py)
implies assertion (Ppy1)-

Let us first investigate the case when d > 5. Assertion (P,,) and Theorem 3.2 imply
that

200 8)ouf |5 1y < o2 20T) 8¢
X (||3U¢(1n+1)uL;°(L2) + (QqT)—l/s||R3(")“L1T(L2))~
Corollaries 2.2 and 2.4 imply that, if 297 > C},
d__ 1 E—a o n
29028 0u{™ | 13 1oy < Ce(2T) ™ *NE(7) (1 + CCONFMNOU V| 12 (6-1/))
When 24T < C4, we use Corollary 2.3 to write that

0uDl, o3, < ONFO)(1+ CONFMOU™ Dl 1301

cd_1 .
As the space B, * is continuously embedded in C~'/2, we have, if Ng(v) is small
enough and Cj large enough,

19u 1) < CoNp(v)

i
and so using Corollary 2.3 we get (Pp+1) for d > 5.
In the case d = 4, following exactly the same lines we obtain that

(19) ”au(n-kl)“L%(Bé‘/ze) < CON’IO"!(’Y)
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We have to control [|0Gnt1,rlLs (L) Let us use Bony’s decomposition as in the
introduction. We get

DpGnpar = ApA~H VUMDV D)
3
= ZA%") with
j=1
AD € AATST S, 0Vur DTy

q

AR L A,A 1 > 81 Vu oVt and
q

AP AN S vV,

q
—1€e<1
To estimate the norm || - lz1. (o) of A;l), let us observe that we have, for k € {0,1},

[18q-10"Vul™ | 12 1oy < > 27K AG VU] 2 (1 oy

q'<q-2

(k+2 +1
< S0 2D AL VU  1a 1ey.
q'sq—2

So by convolution inequality on the series, we get that
2790 3) |15, _10* Va2 1y € £3(Z).

As the support of the Fourier transform of Sq_18Vu("+1)Vu((I"+1)

of the type 2‘15, we get that

Z IIAS)IIL;@w) < CCoNF(7)%.
D

is included in a ring

The term Ag‘)) can be estimated exactly in the same way. As seen in the introduction,
the remainder term will required the use of bilinear estimates. Using the fact that
the support of the Fourier transform of 6Vu¢(1"+1)VugT;1) is included in ball of the
type 29B, we have that

||A;(r;3)”L1T(L°°) < CE(QPT)_2(Q_E)N%(7)2 Z (2q—PT)—2(a—e)'
q2p—No

So choosing for instance € = /2, we have that

S 1AP Ly (pey < CaNR (7).
p/2PT>C
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But, for low frequencies in p, we simply observe that, by Bernstein inequality and
Corollary 2.2, we have
+1
1Ay ) < CT2? 37 10Vl an IVugs oz o
g2p—No
<SCT2?|y)2 o0 Y. g—a(1+3+2a)

q2p—No
< O(2PT)3 2 Ng(7)".
So we have
180G +1,7ll L1 (z) < CNF(7)?
and Corollary 3.1 is proved.

Now the proof of Theorem 0.3 (i.e. the case of dimension greater or equal to 5) is
pure routine of non linear hyperbolic partial differential equations.

3.3. The existence and uniqueness when d = 4. — The case of dimension 4
requires some attention. Let us first assume that v belongs to H §-%3. So it is
clear that on an interval [—T,T] the length of which depends only on ||'y||H% 1
and ”’YHH%‘“%“‘“’ the sequence (Ou(™),en is bounded in L?(H%“%). So energy
methods (because the initial data is more regular) allow to claim that a solution u
exists on [T, T] such that

Ou e LP(HE™3).
Moreover, we have on this interval the following estimates:

l|Oull

10GullLr(o,7);L) < 2

< CoN
2oy 3 S0 7(7)

3 1
I18ullz.-1 < €|7lls—1 forany se [5 +a,24 2+ a].

This solution is unique because of the result based on energy methods. Now let us
consider intial data (ug,u;) which satisfy the hypothesis of Theorem 0.4. So if we
consider initial data (S,ug, Spu1), a solution %™ associated to (S,ug, Spui), exists
on an interval [—T, T] such that

20 ou™ < CoNg
@O NOEN ey < CONE()
(21) 10Gzm |1 (jo,7);,0) < 2
~ 3 1
(22) H@u(n)HT,s-l < ey|ls—1 forany se [-2- +a,2+ 5 + a].

In order to prove that (4(™),en is a Cauchy sequence and thus the uniqueness part
of Theorem 0.4, we shall prove the following lemma which clearly concludes the proof.
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Lemma 3.1. — Let u?) be two solutions of (EC) on the interval [~Ty, To) such that
ou) € C([~To, Tol; H*=" )N L%, (Bgy) and g, € Lk (L™).
Then if T is small enough, we have that

196 = U ey < 2D =P

As in the iterative scheme, let us introduce a time cut-off. Let 6 be a smooth
function such that Supp 6 C] — 2,2[ and 6 has value 1 near [—1,1]. So on the inter-
val [—T, T, the function u(¥) is the solution of

8 — Au) — N GEE OBl =0

(EC) 1<k, 2<d
(u, 6tu)h::o = (uo,u1).
with
ot 0( 12 ) ke b At = ouD oy
ud,r T I\ )Iun W Gt = Qre(0u’, 0u'?).

From now on in this section, we shall always work in the interval [-T, T'] with 2T < Tp.
Let us define w = u(!) — 4. Then on the interval [~T,T], w is the solution of

OFw — Aw — Z GZ;‘;),TBkOew = Fi2
1<k, 0<d
(w, Byw) g = (ugl) _ ugz),u(ll) _ u(12))
with
def 2,,(2)
F1,2 = (Gu(z) - Gu(l)) BAVALTASEN
We shall use the fact all the time in this paragraph that the two solutions u(?) satisfies

186Dl 12 (¢-1/2) < C||3u(j)||LzT(B;/26) < NE(YYW) and  [|0G,0) rllrs (=) < Co.

Moreover, we state

def def rrof o def
IS YD sue1 + 17 PNlsa=1, T = NE(yV) + NE(v?) and 4= 41 — 4@,

Let us use computations done during the proof of the paralinearization theorem 2.1.
Thanks to Formulas (7) and (8), we get that the function wy, = Aqw is solution of

6t2wq — Awg — q_lGu<1>’TV2wq = Ry(t)
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with
4 .
Rq = AqFl,g(t) + z R‘(IJ) where
Jj=1

def
REII) = Z [Aq’sq’-lGu(‘),T]V2wq'
lg—q'|<N:

def 2
R,(f) = Z (Sq/_lauu)yT— q—lGu(l),T)V Aquq/
lg—q'|<N1
def
R((13) = Aq Z V2’wq1Aql+gGu(1)’T
a'>9-N;
le{_lvo»l}

def
R<(14) = Ay Z SQ’—lvzwq’Aq’Gu(1)7T‘
lg’—ql< N1

It is obvious that, if s, — 2 > 1, we have for any j € {1,2, 3},
IRY (t)ll2 < cq(t)C27C=" 2| VG 1 (B) ]| oo 18w ()50 —2-
Using Lemma 2.1, we have
/(5,3
1Ag Gy 7(B)llz < Cegr (127 G280 ()| ¢ -1/2118u™ ()| groa—1-
Thus
IR (#)ll2 < Ceq()27 9D |0w(t)| ¢ -s/2 100D (@) =172 100D () 50 -1
Using the properties of u(?) on the interval [T, T] imply that
(23)  [[Rg(B)llz2 < g(t)C27 1D (VG ) (1) | oo [|Ow(t) [l -2
+ Y Pllsa-1l10w®) | =372 100D @) g-1/2 + 1 F1,2(t) |50 -2)-
So using Gronwall lemma, we infer that for any ¢ in [-T,T],
18wl Loe (rsa-2y S (IMllsa—2 + 17 Nsa=10Wl L2 (&-372) 180DVl 12 (172
+ 1P 2l L1 (mrea-2)) exP (0G0 7l Ly (1)) -
So the properties of the solution «(!) imply that
(24) 110wl oo grea-2y < CIAllsa—2 + TTTI0W L2 (5-s/2) + | F12ll s, (r0a-2))  and
(25) [|RqllLy(z2) < 279D (|02 + ITr|| 0wl Lz (-3/2) + B2 20l Ly, (mroa-2)) -

Because the L2 norm in time with value in C~3/2 of w appears in the right side of
the above inequality, we have to use the Strichartz estimates. Applying Theorem 2.2
with 6 = 2/3, and (25), it turns out that w, is solution of

Btzwq — Awg — CNr’u(l),TV?wq = Eq(t)
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with éu(l)’T def 53/ 3Gu(1),T and (dropping the case of low frequencies)

(26) ||§q||L1T(L2)
< Cg—q(sa—2)(2qT)1/3(”1”3‘2_2 + FFT”8U’”L2T(C'—3/2) + HFl,gHLlT(HSQ_z)).
Now thanks to Theorem 3.2 applied with £ = /2, we infer that
2“’5/6H3quIL2T(Le)
< @UT) 2 (T84 g2 + THIOW] g -sr2) + TH NPl 1y 100-2))-

As 2793/2||0wg|| 12 (o) < 27%/6||8wyl| 12,(1s) it turns out that, if Tz is small enough,
(dropping the case of low frequencies),

(27) 0wl L3 (52 < CTo+* ([ Yllsa—2 + ClIF12l Ly (roa2))
and thus with (24),
(28) 10wl pee (rsa-2) < CIUMsa—2 + P2l Ly (rea—2))-

The estimate of the term Fj o is more delicate than the others. Using Bony’s decom-
position, we get that

4
Fip =Y FY with

j=1
FO €7, 0 AT1Q(0w, 0u® + u?)

F® R(V2u® AT1Q(0w, 0ulV) + ou?)
3) def
F®) < TA—IQ(Taw,(8u(1)+6u(2))+Q(T8u(1)+6u(2

u(2)

)’3w)v2’u(2) and

def
FW = TA-1(QR(0w,5u))+QR(Bw,0u@)) V>

The terms F) with j < 3 will require only Strichartz inequalities to be controled.
So law of product in Besov spaces implies that

1Q (8w, du™ + du®) ()], -5 < C(Ilaw(t)|lgazs(||3u(1)(t)||sc.—1
H10UD W) a0-) + 100D -2 Oll /0 + 10D @) 50))
Using the properties of u(!), we get that
IFO@)sa—2 < CFTllaw(t)llgazﬁ||3U(2)(t)||3;(;
+ Cllaw(t)llsa—z(liau(l)(t)lligze + ||5u(2)(t)||f;;:e)-

By integration, using the properties of the two solutions and (24), (27) and (28), we
get that, if T' is small enough,

(29) IF DN Ly (frea-2y < Clllsa—2 + Pl FrL2ll 3 (1502 )-
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The term F(® is estimated exactly along the same lines. The term F(®) is the
analog to the paraproduct term in the first section. Let us write that

< Clloul gro (10w gy + 106 5.

As the same estimate is true for T, a) 4 g,(2) Ow, using the estimate (27), it turns out
after times integration, and if T is small enough, that

(30) “F(3)”L1 Hsa—2) < C(“l”sa—z +FT||F1,2||L1 (Hsa—2 )
7 T )

The estimate of the term F(4) requires the use of the bilinear estimate stated in
Theorem 3.2. The key point is obviously to estimate

def -
Bpg = [JAVIAN 1(6"1’qa“q—j)||L;.(Lo<>)-

Theorem 3.2 applied with e = a and f = fiq implies that

14 o —lia, 3
Bpq < Ca2?((2TT)3 F|0wgl g (an) + (29T) 1Ryl g 1))

2__¢

x (@) 10ud g 2y + (29T)HHHIRG™E WD) 1y 1) )

1
As sq =2+ 6 + a, Theorem 2.2 and properties of the solution u(!) imply that

&
2

a . o 2 __ .
(29T || 0u) || oo 2y + (29T) 63| RS ™ 2 (uD)|| 1 13y < Ca279(29T) /Ty,

Theorem 2.2 and estimation (28) imply that
(297) 8% % || Quwgl e (12) + (2°T) 4 F (| Byl g 22)
< O )" (lyln-2 + | Fi.zll 1 s1ea )
So it turns out that
Dpq < Ce(29T) " TrT5 (|12 llsu—2 + [ Fr2ll s 52y

So dropping the case of low frequencies (treated exactly along the same lines as in the
proof of Corollary 2.3), we get that

(31) AT R(8w, du)|| Ly (L= < CTrT5+* (|l4lsu-2 + IF12ll L (fr5a-2))-

Using the properties of the solution u(? and the properties of the action of the para-
product, we deduce from the above inequality that

IEON 11 frsa-2) < CTT(I2llsa—2 + [ Fr2ll L2 groa—2))-
Together with the inequalities (29) and (30), we get that

||F1,2||L;(Hsa—2) < C”l“sa—2 + CFT||F1,2||L1T(ysa_z).
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So if I'r is small enough, we have
1Fs2ll 24 (rea-2) < Cllalleuz.
Plugging this estimate into (28) implies that
||5w||L;°(Hsa-2) < Clllsa—2-

So uniqueness (and in fact stability) is proved.

4. Approximation of the solution and geometrical optics
4.1. The Hamilton-Jacobi equation. — The following proposition (and its

proof) is a small modification of Proposition 6.1 of [4].

Proposition 4.1. — Let F be a real valued smooth function on R x RYN bounded as
all its derivatives such that

F(,G) =%(I¢? +G(¢,¢)"* forall ¢eC.

For any positive real number €, a positive real number « exists such that, if ||Gllo < «
and A > o™, for any n, a solution ®5 of the equation

I toren) Z oy T it B, 2,0 F( a2

. d
ezists and is smooth on Iy xR% x R, Moreover, the family defined by ® dof (®A)A>A,
satisfies the following properties: for any couple of integer (k,£), a constant C
(independent of €) exists such that

(32) sup [|(0y0,®a —1d)||peo(r, xm2¢) < Ce,
A>Ao
(33) sup |In|AF||05V @ || Lo (1) xr2ey < Cree  and
=40
(34) AS:/I\’ 185 2@A | oo 1y xr24) < CHAl
Z10

In section 6, we shall use the link between the solution of the above Hamilton-
Jacobi equation and the Hamiltonian flow of the function —Fx on T™ R%. This link
is classical but here we need precise estimates with respect to the metric Gp. It is
described by the two following lemmas.

Lemma 4.1. — Let ) be the solution of the above Hamilton-Jacobi equation (HA./] A)
and Uy the Hamiltonian flow of —Fa(7,Y) i.e. the solution of

av
—=(19,m) = —Hey (7, Ua(Y))

‘I}A(Oa Y, 77) = (ya 77)
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Then we have
(On®A) (7, ¥4 (7,y,m),m) =y and
(8, @A) (1, ¥ (7,9,m),m) = YL (7, y,7)-

To prove this, we have simply to remember that by construction of the solution of
Hamilton-Jacobi equations (see for instance [3]), we have

{9 (ry,0), 2 (rw,m), 7€ In} = {(n5 @), 5im) , 7€ a}.
So we deduce immediately that

(35) (ay(I)A)(Ta ‘Ilil\(Tv Y, 77)7 77) = ‘I/X(T1 Y, 7’)
Now let us compute

4; ((a,,,m)(f WY (1,9,m),m))-

The chain rule implies that

Yk

\IJA
dT (T’ y? 77)

d
A = (a 677] <I)/\)(T’ \IlA(Ta y,n + Z(an] aykq)l\)(T vy (T y,n )a 77)
k=1
By differentiation of (f{\j A) with respect to 1, we get that, for any 7 € R,

d

6’ranj (I)A(T7 ﬂ? 7’) = Z(afk FA)(T) ?77 a@'q’A (Ty ﬂ, n))afy'k 877,' q)A(T7 gv 77)
k=1

Applying this identity with § = ¥4 (7,y,7n), we get

d

(67'ar/j (I)A)(Tv ‘I’%(T, Y, 77)’ 77) = Z(aCk FA) (Tv \Iljy\(Ta Y, 77)7 (a?j‘I)A)(T, \II?/J\(T7 Y, 77)7 77))
k=1

X (a@c 87]j QA)(Ty \IJ?/J\(T7 Y, 77)7 77)
Using identity (35), we infer that

d

(8700, 82) (7, UK (T, 95m),m) = Y (8 Fa) (r, U4 (7,9, 1), ¥R (7, 9,7))
k=1

X ((9'1],c 87“ q)A)(Ta \IJ?\(T, Y, 77)7 77)
Then we deduce that

Y

dv
Z aﬂaaykq)l\) 7 lI,A(T Y "7)777)( d,’j_\ (19,m) + (B¢, Fa) (7, ¥a(T,y, 77))

As for 7 = 0, we have 9,®(0,¥%(0,y,7),n) = 3,®(0,y,n) = 0,(y|n) = y, the first
lemma is proved.
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The second lemma, is more technical and is related to properties of the hamiltonian
flow with respect to a large class of metrics (i.e. of positive quadratic forms) on T* R
It will be crucial in section 6.

Lemma 4.2. — A constant Cy exists such that for any couple of positive numbers (r, h)
such that |In| > h™2 we have the following properties. If

def dy* dn® .
ga(dy?, d?) & A+ 55 with K=ClIxlh

then, provided we choose C large enough, we have:

— for any couple (Y, Z) and for any T € I, we have

(36) Cio 0a(Y = Z) < ga(UA(,Y) = WA(T, Z)) < CogulY — Z);

— for any couple of points (Yo, Z;) of T* R¢ such that
9a(Zr — WA(7,Y0))/? > Cor

if (z,m) € By, (Yo,r) and if (y,¢) € By, (Z-,r) then
1
Ya (VW(I)A(T, Y, 77) — %, vy(I)A(Ta Y, 77) - C) 2 E()ga (Z‘r - \IIA(TvyvO))'

Remark. — The choice of the metric g, will become clearer in section 6. But anyway,
it is essentially the only choice of a metric such that the above inequalities are true.

Let us prove the first point of this lemma. By differentiation of the equation of the
Hamiltonian flow, we have

ad;(D\IIA(T,Y) —1d) = —~DHp, - (D¥A(r,Y) - 1d) — DHg,.

By Gronwall lemma, we get, for any 7 € I,,

IDUA(T,Y) ~Td ||,z Rty < / sup  [|DHpy(r,Y)llz,. (e metydr
I, YeT* R4

X exp/ sup || DHEp,(7,Y )z, (7« r)dT
In YeT* R4

where

def
”Auﬁga(T*Rd)ze sup ga(A‘Z)l/z-
ZeT* RY
ga(Z)<1
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By definition of the Hamiltonian of F and of the metric g,, we infer that, if Z = (2, (),
C

0u(DHz, (rY) - 2) < -5 (IVGA(r, w21+ 1P
C
4 (I92GA (Il + IV G ) CP)
2
L (vl + 5z ||v2cA<T,~>||%m)

C 2
i ( o+ VGl )

h2
< (5 + 1960 e + 2197600 e )30(2)

< Clel?

So it turns out that

h K

sup_ IDHE, (1Y), ey < O 3 + IVGA(r = + 5 192G, o ).
YeT* R4 K h
By integration and by definition (10) of [|G||o, we get that
NG K
[ s IDHAEY e, modr < O TR 1010 (14 777 )
Ipn YeT* R4 ' AI

If € is any positive real number, let us choose

4C 4C €

K=—|I h th 1+ =)< —-

(37) —|Ialk and [[Gllo such that Gllo(1+—) < 75
Then, we have, for £ small enough,

sup HD‘I’A(T, Y) - Id ”cga (T* Rd) < €
(1,Y)EIAxT* R4

Using Taylor formula, we write that
2
9a(YA(1,Y) = Y — (1, 2)+2) "
< sup ||DYA(T,Y) —1d|lz, (7 r$)9a(Y — Z)?

YeT* R?
TEIA

<ega(Y — Z)V2.
Using the inequality of the triangle and choosing € = 1/2, we get that, for any 7 € I,,
any couple (Y, Z) of points of T* R%, we have

12 _ 3

1
59a(Y = Z)? < go(TA(T,Y) = Up(1,2)) /" < 59a(Y — z)\2,

To prove the second point of this lemma let us write, with of course the obvious
notation Yy = (yo,n0) and Z, = (2,,(;), that

1
—IZIVW(I)A(ﬂyvn) - an)A(T 27y 770)'

—||VV QpllLely — 2| + — ||V2‘1>A||L°°|7l Mol
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Estimates (33) and (34) imply that

1 Cly —z| | |l
Elvnq)A(Tv Y, 77) - VYICDA(Ta 27 7’0)‘ < '_T(—T + 7'" - 770|
<

Cr.
Along the same lines, we have
1
TIVy@a(7,y,m) — Vy@a(T, 2r,m0)| < Cr.
h

So using the inequality of the triangle and the fact that (z,7) is in By, (Yo, ) and (y, ¢)
in Bg,(Z;,r), we infer that

1/2
(38)  a(Vy®a(T,y,1) — 2, Vy®a(r,9,m) — €)"/

1/2
> 9a(Vn@a(T, 27,M0) — Yo, Vy@a(T, 2, m0) = ¢r) 2 _4r.
Let us define Zj ef U (7, Z;) = (20, (o) and let us assume that

92(0,¢0 — m0) < B°94(Z0 — Yo)

for some ( in the interval ]0,1[ that will determine later on. Then, using esti-
mates (32)-(34) as above, we obtain that

1/2
9a(Vo®a(r,y,m) — 2, V, @4 (r,y,m) — )V
2 9a (V,—,q)A(T, 2 CO) — Yo, qu)A(Tv ZT?CO) - C‘r)l/2 -Cr— C/Bga(ZO - Y0)1/2'

Using Lemma 4.1, we infer that

1/2
9a (VnCI)A(Tv Y, 77) -z, qu)A(Ta Y, 77) _C) / 2 ga(ZO —Yo, O)I/Z_CT_Cﬁga(ZO _}/0)1/2'
But, as g4(20 — ¥0,0) = (1 — 82)ga(Z0 — Yo), we get that

9a(Va@a (T, 9,1) — 2, Vy@a (1, 5,m) — )% > (1 = B2)/2 - CB) ga(Z0 — Yo) /2 — Cr.

Let us choose for instance (3 so small that
(- -0p>
Then, if g4(Zo — Yo)/? > Cor with Cy large enough, we have that
9a(Vn®a(r,9,m) — 2,V @a(1,5,m) — €)% > iga(Zo - Yp)'/2.

Now let us assume that

94(0,¢0 — m0) > B%9a(Zo — Yo)-
Going back to Inequality (38) and using Lemma 4.1, we claim that

\V 1/2
ga( nq)A(T,y,’f]) -z, vaA(T’ Y, 77) _ C) /
> 64 (0, V@ (7, 27, m0) — Vy®a(7, 27, G0)) /% = O

ASTERISQUE 284



MICROLOCAL ANALYSIS AND CUBIC QUASILINEAR WAVE EQUATION 123

Using estimate (32) and choosing ¢ small enough in it, we have that
lvy‘I’A(T, Zr,M0) — v3;‘I)A(7" zﬂ§0)| 2 (1 - “Vyvnq’f\ —1Id ||L°°(IA><T* Rd))|C0 — 7ol
1
> =|Co — nol-
5% = mol

So by definition of the metric g, it turns out that

1/2

Ga (vn(I)A(Ta Y, 77) -2, qu)A(Ta Y, 77) - C) 2 gga(ZO - Y0)1/2 -Cr.

This concludes the proof of the lemma if Cp is large enough. To be able to handle
interactions between pair of points of type (z,£)—(z, —£), we shall need to control the
time variation of the Hamiltonian flow. This will be crucial in section 7. The following
lemma determines the subintervals of I such that the flow does vary very few.

Lemma 4.3. — Let J be any subinterval of In. Then, we have

J 1
sup  go(UA(7,Y) — \IIA(T’,Y))I/Z < C(f_ll_Il__ + E“VG’AHLMLOQ)).
(r.7)es? [ al

YeT* R?

To prove this, let us observe that by definition of the Hamiltonian flow, we have
UA(T,Y) = Up(r,Y) = —/ He, (7", WA (7", Y))dr".
So we immediately get that, for any (7,7') € J,

ga(\I’A(T,a Y) - \IJA(Ta Y))1/2 < / sup ga(HFA (TH7 Y))l/sz”'
J YeT* R4

But by definition of the Hamiltonian vector field and the metric g,, we have
1 1
ga(HFA (T7 Y)) = FlanFA(ﬂ Y)|2 + ﬁlayF/\(Tv Y)|2

By definition of F and of K, we infer that

1
h|IA|

So an immediat integration concludes the proof of the lemma.

1
ar(Hrs(r YD < O G+ FIV A o ).

4.2. The approximation of the solution. — Before stating the theorem, let us
recall the concept of symbols we introduced in [4].

Definition 4.1. — Let us denote by S~ the set of families of functions o = (oA)A>a,
such that

— the function o, is smooth on I x R% xC in C;
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— for any integer k, the quantity defined by

N), _y def N+i1 A i
g (0) E sup ANT|07 Vo oo (1, xmet xc)
J+i'<k
ASAo
is finite.
— An element of S~ is a symbol of order —N.

Now we are able to state the approximation theorem.

Theorem 4.1. — Let us assume that ||G||o is small enough. Then, for any integer N,
two symbols o* (with value in R?) belonging to S° and a constant C exists such that
the following properties are satisfied.

Let (vA)azA, be the family of solutions of (Er) with f = 0 and with initial data
v = (v°,~41); if we state

(39) ) < | TRk (r,yn) A m)dn,
then, if

(40) [Ia] < A%7€

we have

(41) IV (oA = ZF (v) = Zx (M)llLgs 22y < CA™N]lylIze-

The proof of this is done in [4] and [5].

4.3. The precised Strichartz estimate. — The theorem is the following.

Theorem 4.2. — Let C be a ring of R® and let us assume that ||G||o is small enough.
For any positive real number €, a constant Ce exists which satisfies the following
properties. Let f be a function in L}, (L?) and «y a function of L?; let us assume that
those two functions have their support included in C and of diameter less than h. Let
us assume

INE Yt

Then if vy is the solution of

(EA){ Pyop =f

67}/\]1‘:0 =79.

we have

- 1/2
||VUAI|L§A(L°°) < Ch\=2/2(log(e + |In|)) / (Ivll 2= + ||f”L}A(L2))-
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To prove this theorem, we shall use the classical TT* method. Following [5] and
using the fact that the support of the Fourier transform of 7 is included in the ball of
center & and radius h denoted by B(&p, h), let us write that, for any f € D(Ip x RY),
we have

(Za(), f) = (3, Anf) with
Apf def ei@A(T,w,E)O.A(T’ z, €)X(§ —hfo

) (7, 2)drdz.
where x is a function of D(R?).

(Za(), ) < Ill2llAnfll L2(B(go,hy) -
By definition of Ay we have

[AsfOI = / 2O wOG 1 (7, 7', 2,9,€) (7, 2) (7', y)drdr dudy

where

GAn(T T, 3,9,6) € oa(T,2,6)5a (7", E)X(§ _h§0 )7(5 —hé“o )

First, let us decompose A, as follows

[AAF()I° = Baf(€) + Caf(€) with
Baf(&) def / ei((p/\(Tvxvé‘)_@A(T,,yvs))aA(T’ 2, y, &) f(r,2) f (7', y)drdr’ dady.

|T—7'|h2 21
The estimate about Cjf is very easy. As the support of Cp f is included in the
ball B(&o, h) we have

/ (CAS €l < ChsupICaf(©)

<ont [ e e drar

_ h?
< Ch? 2/mllf(Tv')llLl(Rd)llf(T,7 ')”LI(R")deT,

< Chd_z”f”%;/\(y(nd))-

Now we shall assume that |7 — 7/|h2 > 1. Let us follow [5]. Using Taylor formula, we
write that

CDA(Tv z, 5) - (I)A(Tlvy’é.) = (‘T - y)@A(Tv T’,.’L‘,y,f) + (T - T/)E/A(Ta T’»%y, é) with

_ 1
@ I = [ GEE )y e - ), O

1
0P
Oa(r, 7', z,y,8) = / B—xA(T/ +t(r —7'),y+ t(z — y),€)dt.
0
Stating the change of variables

n= 61\(7-, le z,y, &)7
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we get, denoting by F the inverse of the above diffeomorphism,
I?A(Ta ', z,y) = /ei(z_y)"ei(r‘T/)‘I'A(T"’I’I’y’")a,\,h(7’, 7', x,y,m)dn with

def ~
UA,h(Ta Tlam, Z/,77) = UA,h(Ta Tl’x,:%FA(Ta T’,way,ﬂ))JA(T,T/,CU,y, FA(TaT/axayan)))
and

\IJA(Ta Tla z,Y, 77) = ‘AI;A(T) Tla z,Y, FA(T? Tlv z,Y, 77))

where Jp denotes the Jacobian of this change of variables.
Now let us change the variable

n="o + hC with To dzef @A(T’ Tlvxvy’ 60)

Then we have
I?A(T, i z,y) = hdeih(’”—y)"OKA(T, 7', z,y) with

Ka(T, 'z, ) def / e'ih(w"‘y)cei("'-T’)‘I’A("'y"'/y1,y7ﬂ0+hC)aAyh(7-, Tz, y,¢)d¢

where all derivatives of o , are bounded with respect to (. Let us study of the form
of the function ¥,. Using Taylor formula, we can write (dropping the fact that ¥a
depends on 7, 7/, z and y)

1
YA (o + h¢) = Yal(no) + (Vi ¥a(mo)lC) + hz/ D?¥ 4 (1o + sh¢)ds (¢, €).
0
Using the inequalities (32) and (33) it turns out that, for any s, h and {, we have
Vo eR?, |D*Ua(no + sh¢)(8,60) — [D(no+she): 0] < 18]

As ¢ belongs to the unit ball of R%, and h can be choosen small enough, we have that
the quadratic form

1
Q(hC) dg/o D2, (no + sh()ds

is a non negative quadratic form of rank greater or equal to d—1. Then stating z—y =
(1 — 7')z, we can write the phase

i(r = T)h(z + VEA(m0)IC) + (T — T)R?Q(RC)(, €).-
Then we can choose coordinates such that the phase function is
d
(7 — 7Yz + VMG +i(r = 7)Y a4 (hO)CE
j=1

where for any j > 2, the functions a; are smooth with bounded derivatives and
1/2 < aj < 2 except possibily one of them. Then following the basic proof of the
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stationnary phase theorem we get that
~ he
/
Ka(n 7 29| < Ol my@r
h2
It — 7'|@=272 ’

As d > 4, we have that
h2
[1Bas©las < €
lr—rh231 |T
< Chi~%log(e + IIAl)“f”ig (L1 (R))"
A

Thus Theorem 4.2 holds.

5. The concept of microlocalized functions

127

——'r’l(d_m”f(ﬂ M@yl f (7, L weydrdr’

In this section, we present the concept of microlocalized functions introduced
by J.-M. Bony in [7]. This concept is related to the Weyl-Hormander calculus
(see [11], [9]). But the problem we investigate here allows us to use a simplified

version of it.

1. A simplified version of pseudo-differential calculus. — In this para-
graph, we shall consider a positive quadratic form g on T R such that the symplectic

conjugate quadratic form g° defined by

T, W)?
¢(1) 4 sup LT
W0 g(W)
satisfies the uncertainty principle
9’29

Here [+, -] denotes the basic symplectic form on T™* R defined by
d
[(,€), ()] = Z &y —n'z;).

In all this paper, we are going to be in the case when

2
g(dz,d€) = + fz .

In this case, we have
=X2g with A= Kh.

The uncertainty principle means that A > 1
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We shall mesure the length of derivatives of smooth functions on 7* R? with respect
to this metric g. More precisely, let us define, for any smooth function ¢ on T* R,
def
el = sup sup [DMp(X)(Th,, Te)l-

<7 (Te)igegk
XeT* R ¢(Ty)<1

Now, to a function ¢ in D(T* Rd), we associate the operator P defined by

(Pu)a) = m) ¢ [ IOy, uly)dyde,
T+ R4

The choice of this quantization process makes the computation of section 6 simpler.
Let us remark that if the function ¢(z, &) is equal to ¢1(x)p2(£), then

oPu = F (p2(F(pru)).
Moreover we have

FlpPu)(€) = / W o(y, E)u(y)dy.

Rd
Later on in this paper we shall need to decompose L? functions whose Fourier trans-
form is supported in the ring C using these operators . Let us state the following
lemma which will be useful.

Lemma 5.1. — A sequence (X,),cz exists such that two sequencies (p)vez
and (VY )vez exist which satisfy the following properties.

— the support of ¢, is included in a ball B, def By(Xy,7),
— A sequence (C;)jeN exists (which depends only on r and not in the parameters K
and h) such that
VveZ, el < Cj

— the functions ¢, are not supported in B, but confined, which means that a sequen-
ce (CN)NeN ezists such that

d
VveZ, ||¢U||N791X :ef sup (1+)‘29(X_BV))N sup |Dk’(/),,(X)(T1, "Tk)l < Cn,
N (Te)1gegk
XeT* R? 9(Te)<1
— For any function u of L? whose Fourier transform has a support included in C,
we have
> ePuPu= Y ePu=u.
veEZ vEZ

Such partitions of unity are “compatible” with L? in the following sense.
Lemma 5.2. — A constant C exists such that

C7Hlullfs < D lePullze < Cllulfe and Y l1wJulls < CllulZa.
v v

Those two lemmas are proved in [8).
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Lemma 5.3. — For any N, a constant Cn and an integer kn exist which satzsfy the
following properties. Let ¢ and ¢ be two functions on S(T* Rd) and Y and Y two
points of T* R%. Then a function 6 exists in S(T* R%) such that

P=¢P¢" and |bllngy + 10y 5 <ONlSlINgxldly, 5

This lemma is proved in [9].
Of course, the operators ¢ does not completely fit with any L? space when p # 2.
Nevertheless we have the following lemma.

Lemma 5.4. — Let ¢ be a function of S(T™* Rd). The operator P maps LP into LP
for any p in [1,00]. More precisely, a constant C and an integer N exists such that

VXo € T*RY, [l9®allze < Cllolln,g,x, llall -

This lemma can be seen as a corollary of Lemma 4.3 of [10]. For the convenience
of the reader, we give here a self contained proof based of course on integrations by
part. We have

pPa(z) = / e ==Y o(y, €)a(y)dydé
T* R4

i(x— —d
B /T Re® @ (14 2Jo — yI?) T (1d —h?A¢) o (y, €)a(y)dydt.

So it turns out that

loPa(@)] < Clielladg,xo (/ (1+ k2|2 — yP?) ~“|a(y)|dyde

{(v,6) / B522l<r}
—d —d
" /T o (TR = olF) (14 KR~ Gof?) Ia(y)ldyd£>-

So the lemma is proved, as thanks to the uncertainty principle, Kh is greater or equal
to 1.

Remark. — The points X, are exactly the points of the lattice
(43) 2 € (carK Z%) x (carh Z°NC).
Now we can defined the concept of microlocalized function.

Definition 5.1. — Let Xy be a point of T™* R? and (Co,r) a couple of positive real
numbers. A function u in L?(R%) is said to be (Cp,r)-microlocalized in X, if a
sequence of integers (kn)nen exists such that, for any integer N, the quantities

Co, def

MRy () = sup NMNg(X = Xo)V  sup  [lpPulre
9(X—X0)1/2>Cor @ED(B,y(X,r))
”‘P”k}\pﬂgl

are finite. Here, By(X, ) denotes as in all that follows the set of points of T* R such
that g(Y — X)V/2 < r.

SOCIETE MATHEMATIQUE DE FRANCE 2003



130 H. BAHOURI & J.-Y. CHEMIN

A basic example of microlocalized functions is given by the following proposition.

Proposition 5.1. — A sequence of integers (kn)nen and a sequence of positive real
numbers (Cn)neN ezist such that the following properties are satisfied. Let Xy be a
point of T* R, ©o a function in D(B,(Xo,7)) and u a function of L>(R%). Then the
function pBu is (3,7)-microlocalized in Xy and, for any N, we have

3,
Mo .o (958) < Onllollin gllull 2.

This proposition can be seen as an immediat corollary of the general theory of
Weyl-Hoérmander calculus, for instance as a corollary of Theorem 2.2.1. of [9]. But
as a warm up for the next section, we are going to give a proof of it in our particular
situation.

By definition of ¢, we have, for any function ¢ belonging to D(B,y(X,T)),

FlePefu)©) = @m [ | e 0Iem=epty, ou e, myu(e)dadyd.

Let us do some integrations by part with respect to some derivatives of g-length less
than 1. It is obvious that

(K%M, + h2An)(e—i(yI§—n)—i(ZIn)) = —A2g(y — 2,& — n)e " WE—m—izIn)

Using the fact that derivatives in (y,n) of g-length less than 1 of g(y — 2,£ — 1) is less
than g(y — z,& — n)/2 it turns out that

F(pPegu)(€) = (2m)~¢ f e~ WM =GN K (y, 2, €, n)u(z)dzdydn  with
R3d

_N
IK(y,2,&m)| < Crn (L4 Ng(X — Xo)) " llllan+nolleollan+no
1

a2 2 2 2\No
(r2 + h2ly — 2|2 + K2[¢ —n|?)
Using the fact that A = Kh > 1 and convolution inequalities, we get that
-N
[ F (P05 u)llLe < Cron (1 + X29(X = Xo)) ™" llpll2n+no llpollan-+ nollull 22

This concludes the proof of the proposition.

In all that follows, the concept of uniformly microlocalized families of functions
will be a basic tool.
Definition 5.2. — Let g def (9a)aca be a family of metrics, X def (Xa)aca a family of

points of T* R¢ and (Co, 1) a pair of positive real numbers. A family of functions U def
(ta)aca in L2(R?) is said to be uniformly (Cp,r)-microlocalized in X with respect
to g if, for any integer N,

def
M5 q(U) = sup My, (ta) < .
a

ASTERISQUE 284



MICROLOCAL ANALYSIS AND CUBIC QUASILINEAR WAVE EQUATION 131

5.2. A lemma about the product. — We want here to study the interaction
between two (typical examples of) microlocalized functions. More precisely we are
going to prove the following lemma.

Lemma 5.5. — A constant Cy exists such that, for any integer N, a constant Cn and
an integer ky exist which satisfy the following properties.

Ifuy and ug are two L? functions on R, if x is a function of D(Rd) supported in
an euclidian ball of radius r, if p1 and @2 are two functions of D(T™ Rd) respectively
supported in By(Y1,7) and in By(Yz,r), then if

g(Y1 — Y2)/2 > Cyr,

for any N, we have

Ix(h™" D) (0P ur03 ug)|| 1.1
, _N
< COn|l@1llkn gllP2llin,g (1 + Ng(Y1 = Y2)) 7 [lua| L2 luz| L2

where ¥ ¥ (y,—n) if Y = (y,7).
Let us suppose first that

+ 1 .
|771 - 7]2' > 59(}/1 _ Y2)1/2.

By definition of the operator ¢P, the support of the Fourier transform of pPu; is
included in the (euclidian) ball of center n; and radius rh. So, it is clear that, if Cy
is large enough,

Supp F (¢7u1ps’uz) C {n € R? / || > 2rh}.
So it turns out that
X(h™'D)(p7u1p3 uz) = 0.
Now we have to study the case when

ly1 — yo 1
LAl N
K -

By definition of the operator <pJD , we have

g(Y1 = Ya)'/2.

(44) (pPurpFus)(z) = (27f)_2d/ gi(@—yln)+i(z—z[C)
Bg(Y1,’I‘))(Bg(Y2,1‘)

X 01(Y)p2(Z)u1(y)uz(2)dY dZ.

The fact that
(Id —h2A,)el @M = (1 4 h2|z — y|?)ei@—ulm)
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So by repeated integration by parts, we get

|(pPurpPuz)(z)| < / 1+ Rz —y2) N1+ Rz — 2P~V
Bg(yl ,’I’)XBg(Yg,’I‘)

|(1d =R Ay)V o1 (V)] |(Id —h?A¢)N 02(2)] |u1 (y)us(2)|dY dZ.
The inequality of the triangle implies that
|z =yl + 12 —v2l > |y1 — 92| and |z —y[+ |z —2| > [y1 — 2| - 2rK.
So, if Cy is greater than 12, we have that
|z —y|+ |z — 2| > %|y1 —y2|+ K.
So we infer that, for any N,
|(pPur905 u2) ()| < Cn(1+ R?[yr — y2*) "Vl llant2dllp2llon+24 Z(z)  with
I(a) = Can™ / (14 e = y?) (1 + Al — 2%) ™ (v)ua(2) dyd=.

By Cauchy-Schwarz inequality, we have that
2
IZ(z)]> < Cah™ [ | /(1 + 2z — y?) "L+ B2z — 2[?) "¢ u;(2) Pdydz
j=1

So using again Cauchy-Schwarz inequality, we get that

IZ1l L2 (mey < Calluallzzlluzll Lz

So the lemma is proved.

6. The propagation theorem

One of the important point of this study is that the (approximate) flow of the
operator Pj preserves the microlocalization of functions. The aim of this section is
to state and prove a theorem of propagation of microlocalization.

Theorem 6.1. — A constant Cy exists which satisfies the following property.

Let us consider a point Yo = (yo,m0) of T* R% such that ny belongs to C, a smooth
function ¢ supported in B,, (Yo,r) and a function v of L?. Then I (¢P~)(r,-)
is (Co, r)-microlocalized near UE(t,Yy). Moreover, for any integer N, a constant C
and an integer k exist (which depend only on N ) such that

MG vy g TR (BPN(T) < Clilga 72

In the following proof of this theorem, we shall drop the exponant * for sake of
simplicity of the notations. By definition of the microlocalized functions, we have to
estimate the following quantity

T Y F (02 Ta(6P)(7, )
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where Z, is a point of T* R? such that 9a(Z7 — \IIA('r,YO))l/ 2 > Cyr. By definition,
we have

JEK) = /Rd K(¢, 2)y(2)dz with

K¢, 2) % / e~ WIOF@Alrym=ilzIn) o (y o (7, y, n)d(2,m)dydn.
de

The proof consists in integrations by parts in the above integral. Let us define the
vector © by

def _
0= (@y7 677) = (lIAI 1/2 (VWQA(Ta Y, 77) - Z)v |IAII/2 (qu)A(Ta Y, 77) - C))
and the vector field £ by
def 1 gy = .
Lf = Tlelz(f—uhl l/zeyanf—Z|IAll/29nayf)-

It is obvious that
L'(e—i(yIC)Jri‘PA(T,y,n)—i(dn)) = e~ tWIO)+i®a(r,y,m)—i(z|n)

So as usual, we have, for any integer IV,
K¢ 2) = / e WIOFeAlrym=ilzin) (L YN (7 (y, C)aa (T, y, m)(2, 1)) dydn.
de

Let us state the following technical lemma which will allow us to estimate the repeated
action of the differential operator L.

Lemma 6.1. — For any integer N, a family of functions (Lo, N)|aj<N €Tists such
that Lo n(Y,Y) is a smooth function from T* R® x(T* RYMN and such that
(45) 109 Layn (Vs M|z (v meymny < Cvyjr(1+ [V =N +I8D/2,

Moreover, they satisty

CONF= Y Lan(©,(0°0)5<n)0*f

|al<N
where & denotes differentiation of length 1 for the metric g, defined by
~ def _
Ja(dy®,dn®) = |Ia| 7 dy® + | Inldn® = Aga(dy?, dn).

The metric g, is the interpolation between g, and g7 = A?g,. To prove this lemma,
let us notice that the two vectors

[Ia|~Y20, and |Iz]'/?8,

are of g,-length 1. Proposition 4.1 and the fact that |I4| < A?~¢ implies that, for any
positive integer k, a constant cx (which depends only on constants of Proposition 4.1)
such that

(46) ll5’°@HLw(zA xT* R4) N Ck-
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Now, we write that :Lf = Lf + Lof with

d O, d O,
Lo d:efi<|IAI_1/2 Z‘:aﬂj (ﬁ) + |Ia]2 Zlaw (TI%P))
j= =

So thanks to (46), we have
c
1+]6]F
But, by definition of L, it is obvious that £ is of the form
Z Lo, 1(©)5°f
le|<1

where L, satisfy (45) for N = 1. So the lemma is proved for N = 1. The lemma
follows by an omitted (and straightforward) induction.

1L0(©, )|z <

Now, let us go back to the proof of the propagation theorem. The point is to prove
that derivatives of g,-length 1 of

Yz, (y7 C)GA (Tv Y, 77)‘25(2, 77)

are bounded uniformly to the involved parameters. Thanks to Leibnitz formula, we
have

5;’55 ((PZ.,. (ya C)UA (7-7 Y, 77)‘15(27 77))
= Y CuP e 0z, (y, )8 B an (T, y,m)OE P (2, m).

a1 Ka

B1<pB

The metric g, is choosen such that it is greater than the metric g, and the metric ga
defined by
def dy?

gn(dy?,dn*) = —5 + dr”.
Then, it is obvious that, for any integer k, we have
sup 18282 (2. (u, Qo (r, y, M(z,m) | < Ci.

lat+BI<k
(7,Y,Z)eIpax (T* R%)?

So thanks to Lemma, 6.1, it turns out that, for any N, a constant Cn exists such that

O S )| R o

So by definition of ©, we infer that, for any integer IV, a constant C exists such that

dydn
|,C(C,Z)| <Cn ly—z+|<TK ~ v
[n—no|<rh (1 + ga(vnq)A(Tv y,m) = 2, Vy®a(T,y,m) = C))

with of course
|2 —yo| <rK and |(— (| <rh.
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But, as K = C|Ix|h and A = Kh, we have
a(dy?,dn?) > chga(dy?, dn?).
So we have that

IK(¢, 2)| < Cn

dydn
ly—2-|<TK N
ﬁl—ﬂoK:“h (1 + Aga (VWQA(T7 Y, 77) — 2z, VyQA(T’ Y, 77) - C))

Now let us apply Lemma 4.2. As go(Z., ¥(T, Yo))!/? is greater than Cor, as (z,7)
belongs to By, (Yo,7) and (y,¢) to By, (Z;,r) then

1
ga(vnQA(T»yan) -z, qu)A(T» Y, 77) - C) 2 Eoga(zﬂ ‘IJA(T7YE)))'
So we have, if g,(Z., ¥a(T,Ys))!/? is greater than Cyr,

Cn

K(¢, 2)| <
| (C Z)l (1+/\ga(Z-r—‘I’A(7',YO)))N

dydn
ly—z-I<rK N’
moicr (1+Aga(Vo@a(r,y,m) = 2, V,@a(r,y,m) =€)
As (y, ¢) belongs to By, (Z;,r), we have that

ga(Z‘r - \I’A(Tv YO))I/2 2 ga((yv C) - \I’A(Tv Y()))1/2 -T

Lol

Stating Z Qef U (7, Z,), we have, thanks to the assertion (36) of Lemma 4.2 and
as (z,m) belongs to By, (Yo,r),

9a(Zr — UA(1,Y0))/? > Cga(Zo — Yo)'/?
|z — 20|
>C——— —Cr.
I T
So it turns out that

—-N —-N
KGN < On (14 20a(Zr = U1, 16))) (14 A0 ((2,0) = (20, ¥3 (. ) )
/ dydn
X .
|ly—2-|<rK N
[n—nol<Th (1 + )\ga (V'I']@A(’“ Y, 77) -2, qu)A(T’ Y, 7]) - C))
Let us state the change of variables

{y’ = [|712(Vy®@a(r,y,7) - 2)

77/ = |I|1/2 (qu)A(T, y»ﬂ) - ()

Using estimates (32), we infer that the jacobian of this change of variables is closed
to 1. Then it turns out that

-N
IK(6,2) < On (14 Aga(Zr = (1, Y0))) (14 Mga((2,) = (0, W37, Vo)) )

-N
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But Schur’s lemma, implies that

171 < (sup [ixe z)ldz) <sup [ e z)|d<)||v||%z-
( z

Immediate integrations imply that

[ K6, 21dz < O (14 3gu(Z, — Ul ¥e)) NI112 and

[ K¢, 2l < Cn {1+ 20a(2, = atr,¥a)) N2
So, for any N, we have
171122 < O (1+ Aga(Zr — Ta(r, ¥6)) " vl
As go(Z; — WA (1,Y)))Y/? is greater that Cor, then
Ma(Zr = UA(7,Y0)) > CorAga(Z; — Ua(T, Y0))'/2.
So Theorem 6.1 is proved.

In the next section, the following corollary will be useful.

Corollary 6.1. — A constant Cy exists which satisfies the following property.

Let us consider a point Yo = (yo,7m0) of T* R® such that 1o belongs to C, a smooth
function ¢ supported in By, (Yo,T) and a function v of L?.

For any integer N, a constant C' and an integer k exist (which depend only on N)
such that, for any a, if ga(Ya (7, Yo) —Y) > Cor, for any function ¢ in S(T* R?), we
have

1P (ZE (P17, ) 2 < O N (14 ga (WA (T, Y0) = ¥)) ™ [0llkg,y 1llk,ga 17l 22

The proof of this corollary is a simple combination of Theorem 6.1 and Lemmas 5.3
and 5.4.

7. The conclusion of the proof

This section is the conclusion of the proof of theorem 3.1. The strategy is the
following. First, we apply Lemma 5.5 about the product and the propagation theo-
rem 6.1 to concentrate on real interaction (see the proof in the constant coefficient
case). Because of the fact that variable coefficents do not respect the localization in
frequency space, we need at this step of the proof to decompose the interval I4.

In this section, we shall state

T (1,9) xR D) TV (1) (1, 9) TP (12)(7,9)).

The equivalent of Identity (5) that appears in the constant coefficient case is the
following lemma.
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Lemma7.1. — Let J = (TJ,Tj') be a subinterval of Ip such that
[T < Bl and VG gy < RIVGR Ly (1),
Then two families (¢,) and (0,,) of confined symbols exist such that, for any integer N,
Vﬂ, ”¢M”Nga \I’(l)(TJY)—i_“a”‘”Nga ‘I,(Z)(ij) CN
and, for any N, a constant Cn exists such that

1T = Tlwspey < OnRA™N (IalR)R 21 2|yl 2.

with

I Y Y XY (6PTL (¢RuPn) (r, ) x 02T (bR wE) (7, ) and
o
IJ'/EAM

A {1 ) 9a(WQ (75, Y,) = ¥V (11, 7,)) 2 < Cr).

Let us admit this lemma for a while. Let us simply notice that the number of
elements of A, is finite and bounded indepently on u and J.

Now we shall decompose the interval Iy on subintervals J such that the above
lemma can be applied. To do this let us introduce the following function on the
interval Ip

def 1/2
H(r) % (Z 120 (oPwPy) (r, ->||%w) (Z 129 (oLl (r, ~>||%w)
© ©

Using precised Strichartz estimates, we get that

1/2 -
129 (2P llnz, zoey < C(logle + [In]) /*R=D72 Loy | .

So, using Cauchy-Schwartz inequality, we get that
1/2 1/2
H(r)dr < Cllogle+ D)W (L Wl ) (S Inls)
B u

Lemma 5.2 implies that

; H(r)dr < C(log(e + [TaD)h? Iyl Z2 1720l

1/2

Ip

As in section 3, we decompose I in intervals J such that

71 < AlIal, VG N3y < AIVEP Ny (z) and /J H(r)dr <h | H(r)dr
A

Let us estimate || J|| 11 (L) Lemma 5.4 implies that

IZ(T)llze < leI (@PP%) (1) || e 122 (922 2) (7, )| oo

pobt!
WEAL
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By Cauchy-Schwarz inequality, we infer that
IZ(7)llze < H(r).
So by construction of J, we get that
171l Ly )y < Ch(log(e + [IaD) A2 [vall 2 172l c2-

Exactly along the same lines as in section 3, the number of intervals J is less
than Ch™. As |Ip| > h™2*¢ and A = |I5|h?, the theorem is proved if we apply
Lemma 7.1 with N large enough.

But we have to prove Lemma 7.1. First, let us write

Jr)y = > gr(r) with
v,V p!

T () E (b D) (PVP T (R v PN (7, e Bw DT (929 Ra) (7 ))-
Propagation theorem 6.1 and its corollary 6.1 imply that, if
ga(Yy = ¥Q(75,Y,))""* > Cor,
then
lePwP T (ePwP ) (e < ONAN (ga(Y — ¥P(71,Y,))
So using Bernstein inequality and integrating on the interval J, if

9o (Yo = 89 (r5,Y,0)"? > Cor,

—d—1
4275l 2

we get that
(47) 1750 ey ey < ONRUIARDAT2ATN (14 gu(Ys = ¥R (71, Y,0)) ™
X w27l 2 9 vell L2
Lemma 5.5 implies that if g,(Y; — Y;+)'/? > Cor, then for any N we have
”\7::;::(7')”L1(Rd) <ONAN (14 ga(V = Yo)) ™ P yi 2l 22 2
Using Bernstein inequality, we get by integration that
(48) I (D= < OvANAY (14 ga(Ys ~ o))
Let us define
s B[R
A {(1/, Vi ')/ ga(Yy — \115\1)(7:;,1/“))1/2 <Cr and
9a(Yy = U (r1, V)2 < Cr and  go(Y, - Y,)V/2 < Cr}.

Thanks to Inequality (36) of Lemma 4.2, and thanks to the fact that the point (X,)
are the points of the lattice Z defined in (43), the number of indices v such that

9a(Y, =¥V (r, v )2 < Cr

—d-1
197l e llvell 2
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is finite and independent of the interval J. So plugging the estimates (47) and (48)
together we get, if (v,V,pu, 1) € A,

1T Ly oy < Ky i w )NV R(IA R g0l 222l e with

Cf On Ay, (Y, — 8D (75, Y,)) 4 1A, (Yo — U2 (1, Y,0)) "
XAga(Y,,—Y,,/) d-1

KN(V? V 7“7 /’L )
But we have that
s;pzu:Aga (X -Y,) 4 l<oo

Applying Schur’s lemma and then Lemma 5.2, it turns out that
v,V v,v’
Z jﬂ»l‘, L},(Loo) g Z “\7“,”,/ “L‘IJ(LOO)

(v’ 1" )EA (v ! EA

1/2 1/2
< cNA-NhUIAnh%hd-Z(Z s n%z) (Z ||w£72n%z)
u u

< ONA™VR(IAIR®) 2yl L2 e 2

Now let us state def
de! v,
J= Z J, !
(vv',u,p')EA
and check that it satisfies the conclusions of the lemma. Let us define

BY €y ) 9u(¥, — 9 (rs, )" < C1},
C, ¥ (v /v e BY /g.(V, - YVu)V2 < Cr},
A, w3 ec.nBYY.
Let us notice that, thanks to Inequality (36) of Lemma 4.2, we have
Ay {1/ 90 (¥ (75, Y) — 8P (r,,¥,))? < O}

Now let us state

def def
o0 LS oDyl and 62 L ST oD

veB® V'EC,

We apply Lemma 5.3 to conclude the proof.
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