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LOGARITHMIC SOBOLEV INEQUALITY
AND SEMI-LINEAR DIRICHLET PROBLEMS
FOR INFINITELY DEGENERATE ELLIPTIC OPERATORS

by
Yoshinori Morimoto & Chao-Jiang Xu

Abstract. — Let X = (X1,..., Xm) be an infinitely degenerate system of vector fields,
we prove firstly the logarithmic Sobolev inequality for this system on the associated
Sobolev function spaces. Then we study the Dirichlet problem for the semilinear
problem of the sum of square of vector fields X.

Résumé (Inégalité de Sobolev logarithmique et problémes de Dirichlet semi-linéaires pour
des opérateurs elliptiques infiniment dégénérés)

Soit X = (X1,...,Xm) un systéme de champs de vecteurs infiniment dégénérés.
On montre d’abord I'inégalité de Sobolev logarithmique pour ce systéme de champs de
vecteurs sur les espaces de fonctions associés, puis on étudie le probléeme de Dirichlet
semi-linéaire pour des opérateurs somme de carrés de champs de vecteurs X.

1. Introduction

In this work, we consider a system of vector fields X = (X3, ..., X,,) defined on an
open domain Q C R%. We suppose that this system satisfies the following logarithmic
regularity estimate,

m
(L.1) I(log A)*ullF2 < C 4 D IXjulla + llullfz p, Vue C(Q)

j=1
where A = (e + |D|?)!/2 = (D). We shall give some sufficient conditions for this
estimates in the Appendix, see also [5, 10, 12, 14, 15, 21]. The typical example is
the system in R? such as X; = O0z,, X2 = e"’“'_l/s@zz with s > 0. Remark that if
s > 1, the estimate (1.1) implies the hypoellipticity of the infinitely degenerate elliptic
operators of second order Ax = Z;’;l X7 X;, where X7 is the formal adjoint of X;.

If I" is a smooth surface of €, we say that I' is non characteristic for the system

of vector fields X, if for any point o € I', there exists at least one vector field of
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246 Y. MORIMOTO & C.-J. XU

Xi,...,Xm which is transversal to I" at zo. Let now I" = Uje I be the union of
a family of smooth surface in Q. We say that I' is non characteristic for X, if for
any point xg € I', there exists at least one vector field of X3, ..., X,, which traverses
Ij at o for all j € Jo = {k € J;zo € I%}. For this second case, the typical
example is X; = O;,, X2 = exp(—(2? sin®(n/x;))~1/2%)0,,, we have I} = {z; = 1/5},
Jj € Z~ {0}, Iy = {x; =0}, and X, is transverse to all I'j,j € Z.

Associated with the system of vector fields X = (Xi,...,X,,), we define the fol-
lowing function spaces:

HY () = {u € L2(Q); Xju € L2(9),5 = 1,. m}

Take now 2 CC (2, we suppose that 99 is C*° and non characteristic for the system
of vector fields X. We define H ,(?) = {u € Hx(R);ulaq = 0}, we shall prove in
the second section (see Lemma 2.1) that this is a Hilbert space.

Our first result is the following logarithmic Sobolev inequality.

Theorem 1.1. — Suppose that the system of vector fields X = (X1,...,Xm) verifies
the estimate (1.1) for some s > 1/2. Then there exists Co > 0 such that

(12) [ pitog (pEL) < cof Yool + ol
j=1

l[oll 2
for allv € Hy ().

Comparing this inequality with that of finite degenerate case of Hérmander’s sys-
tem, for example, for the system X; = 8,,, X2 = z¥0,, on R?, we have (see [4, 7, 24])
1/2
[vllze < C (10101122 + 2102012 + lIv]|Z2)
for all v € C§°(2), with p = 2+ 4/k. Consequently, if k£ go to infinity, we can only
expect to gain the logarithmic estimates as (1.2). That means that we are not in the
elliptic case of [17].

Similarly to the elliptic and subelliptic case (see [3, 24]), by using the Sobolev’s
inequality, we study the following semi-linear Dirichlet problems

Axu = aulog |u| + bu,

1.3
(13) ulaq =0,

where a,b € R. We have the following theorem.

Theorem 1.2. — We suppose that the system of vector fields X = (X1,...,Xm) sat-
isfies the following hypotheses:

H-1) 89 is C* and non characteristic for the system of vector fields X ;

H-2) the system of vector fields X satisfies the finite type of Hormander’s condition
on Q except an union of smooth surfaces I' which are non characteristic for X.

H-3) the system of vector fields X wverifies the estimate (1.1) for s > 3/2.
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INFINITELY DEGENERATE ELLIPTIC OPERATORS 247

Suppose a # 0 in (1.8). Then the semi-linear Dirichlet problem (1.3) posses at
least one non trivial weak solution u € H}(,O(Q) N L*®(Q). Moreover, if a > 0, we
have u € CX(QNT)NC°(QANT) and u(x) >0 for allz € A\ T.

As in the elliptic case, we do not know the uniqueness of solutions (see [3]). The
regularity of this weak solution near to the infinitely degenerate point of I" is a more
complicated problem, which will be studied in our future works.

The structure of the paper is as follows: The second section consists of the proof of
Theorem 1.1. The third section is devoted to the proof for the existence of weak solu-
tion of Theorem 1.2, we introduce a variational problem and prove that the associated
Euler-Lagrange equation is (1.3). In the fourth section we study the boundedness of
weak solution of variational problems, which is a difficult step as in the classical case
for the critical semilinear elliptic equations (see [20]). In the appendix we give some
sufficient conditions for the logarithmic regularity estimates.

2. Logarithmic Sobolev inequality
We study now the function spaces Hy ((f2), see the similar results in [22].

Lemma 2.1. — Suppose that 052 is C*®° and non characteristic for the system X, then
H)lm(ﬂ) is well-defined, and a Hilbert space. Moreover the extension of an element

of H ¢(Q2) by 0 belongs to HL(Q).

Proof. — For the well-definedness, we need to prove the existence of trace for v €
H3 (). We know that the trace problem is a local problem, so after the localization
and straightened, we transfer the problem to the case: v € L*(R%),8,,v € L*(R%)
with support of v is a subset of {|(z’,z4)| < ¢,zq = 0}, of course we can take the
smooth function approximate to v, then we have

zd
v(z',zq) —v(z',c) = / Oz v(2’, t)dt,
c
which prove that

(2.1) lo(, za)llZ < clldzgvllZz,

for all 0 < z4 < c. This shows that the trace v(z’,0) € L2(R%71).

We shall prove now H () is a closed subspace of Hx (€). Let {v;} be a Cauchy
sequence of H ,(Q). Since it is also a Cauchy sequence of H (), there exists a
limit vo € H (), and so it suffices to show that v|gq = 0. Applying (2.1) to v; — v,
we have

195, 0) = 000+ )12 < ellBaav; — v0) 2,
which implies ||vo(-,0)|z2 = 0. We have proved that H (1) is a Hilbert space. The
extension problem is the same as classic case. This is also a local problem, if we extend
v by 0 to 4 < 0 and denote that function by ¥, then v,8;,v € L%(R%),v|z,=0 = 0
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248 Y. MORIMOTO & C.-J. XU

implies that 7,8,,7 € L2(R?), and the tangential derivation has nothing to change.
So we have proved the Lemma.

Since Llog L is not a normed space, we need the following Lemma, see also [19]
for some detail of function space L log L.

Lemma2.2. — Let o2 >0, B > 0 and let {v;,j € N} be a sequence in L? satisfying
[ w5 i1og sl < B

Then {|v;|?|log|v;||°*} is uniformly integrable for any 0 < o1 < o1. Therefore there
exists a convergent sub-sequence {v;, } such that

lim /Ivjk|2|10glvjk||”‘ =/|vo|2|10g|vo||"‘,
k—o0
and
[ ol 10g w1 < B.

Proof. — We prove that, for any € > 0, there exists § > 0 such that if £ C Q,
u(E) < 4, then

[ toPrioglus i <, v
E

But for any € > 0, there exists to > €2 such that
1

g2—01 t

<e, Vt=to.
log

Take now & = e(t2log” to) ™!, uw(E) < 6, and

Aj = En{|vj] <to}, Bj = EN{lv;| > to}-
then

[ sPlioglusli™ < 108" ton(A,) <<,

v
and

[ wiitogulie << [ fo;Pliogloyli™ < e
B; B;
where M = sup; [, |v;|*|log|v;||°. The proof of the Lemma is complete.

Proof of Theorem 1.1. — We are following the idea of [4]. Take v € Hx (), we
use the same notation for the extension by 0, As in the classical case, there exists
a mollifier family {p.,e > 0} such that p. * v € C§°, lim.—,0p *v = v in L? and
X (pe*v)l|z2 < C{[[Xvl|z2+|vllz2}, [[(log A)*(pe*v)[l 2 < C{l|(log A)*vl| L2 +[[v]|L2}
with C independent on ¢. By using (1.1) and Lemma 2.2, we need only to prove the
following estimate:

(2.2) /Q|v|2log25_1 (ﬁl—> < Coll(log A)*v||%2,

l[oll 2
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for all for v € C§°(Q).
By the homogenization, we prove (2.2) for v € C§°(?) and |jv||zz = 1. Since
2s — 1 > 0, we have

/ o2l log vl >~ < CI0 + / [o[2 log?* 1 (Jo])
Q |lv|>e

<Co+ / [o[? 1og?* =1 (Ju]).
Q

Since 2 is bounded, v € L>°(f2) and 2s—1 > 0, we have by the definition of Lebesgue
integration

g ol = = [ X 1og = (il > A)
Q
= / <2)\ logZ* ™1 (\) + (25 — 1)(—»—2 log28—2<)\)) p(v] > A)dA,
0
where yu(-) is the Lebesgue measure. Since A3/(\)? < A, log()\) > 1, we have that

(2.3) / o[l log [v]**~* < Co + C. / Aog? L () u(Jo] > A)d.
Q 0

So we need to estimate the second term of right hand side of (2.3). For A > 0 we set
V=171,A + V2,A with 511,4 = 6(5)1{|£|<e"‘}' Then

pflvl > A} < p{lv,al > A/2} + pflva,al > A/2}.

For the first term we have
~ d
lv1,allzee < 151,40l < [ollz2ll1gecenylliz < Cae??.

Choose now Ay = 2log (A\/4Cy), we have pf{|v1 a,| > A/2} = 0, hence

o0 o0
/ AMogZ 1A\ u(Jv] > A)dX < Co + Cs/ MogZ* = \u(Jv] > A)dA
0 e
<Co+C, / Nog2 ™" Mu(Jus, 4, | > A/2)dA
25— 1)‘

> 1o
< Co +2C; / g—||v2,AA||isz

o0 l 25— lA
< Co +2C, / L / 15(¢)|2dgdA.
{6eR%;|¢|>eAN}
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250 Y. MORIMOTO & C.-J. XU

Now |¢| > e?> implies that A < 4C4(|¢|)%/2. By using Fubini theorem we have
ACA(ED? pg2e=1 )

| Mog*hu(iel > Nar < Go +26. [ ot [ 8 Ajnde
0 R e A

< Co+20, [ Tog™ (4C(le)*)Io(¢) e

<. [ 1og™ (6D R(E)de = Cllog A)*vlE» oy
Here we have used the fact
/ log? (|E)[5(¢) 2dé > / 06 [2de = 1.
R4 R4

Thus we have proved (2.2) by using (2.3).

In the proof of existence of weak solution for the variational problem of section 3, we
need also the first Poincaré’s inequality. We study the following Dirichlet eigenvalue
problems:

A —
(2.4) XU = Ay,
ulag =0.

We have

Lemma 2.3. — Under the hypotheses H-1), H-2) and H-3), the first eigenvalue A\; of
problems (2.4) is strictly positive. This is equivalent to

1 m
(25) leliEs < 5 21Xl Vo € Hko(®).

=1

1/2
By using this lemma, in H (), we can use | X¢||1z = (}:;":1 ||Xj<p||%2) as
norm.

Proof. — We set

A= inf [ Xpll72} -
loll 2=1, pEHY o(Q) { 12}

Suppose that A; = 0, then there exists {;} C Hj (() such that || X¢j|lz2 — 0
and [p;llz2 = 1. By using (1.1), Hx () is compactly embedding into L?(2). The
variational calculus deduce that there exists wo € H (), [lvollz2 = 1,0 > 0 verifies

Axpo = 0.

Since Ax is hypoelliptic on Q and 89 is non characteristic for X, we have ¢y €
C>=(Q), ¢olan = 0 (see [6, 9, 11, 16]). Under the hypothesis H-2), Bony’s maximum
principle (see [2]) implies that ¢y has not the maximum point in Q \ I', and the
maximum of ¢y propagates along the integral curves of X1, ..., X, in the interior of
Q. Since I' is non characteristic for the system X;, ..., X,,, for any point of I", there
exists at least one vector field of X1, -, X,, which is transversal to I". Hence if the
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INFINITELY DEGENERATE ELLIPTIC OPERATORS 251

maximum of g attains at a point of I" in the interior of {2, then the maximum of ¢g
propagates along the integral curve of that vector field which traverses I', that means
the maximum of ¢ attains at a point of Q \ I', so it is impossible. Now it is only
possible that the maximum of g attains at 99, but ¢o|laq = 0, which implies that
o = 0 on Q. This is impossible because ||¢o||L2 = 1, so that we prove finally A; > 0.

3. Variational problems
For a € R, we study now the following variational problems

3.1 I, = inf I (v),
31) ol L2=1,veH} () @)

with
(o) = 1 X0l — a [ o loglo.
We have firstly the existence of minimizer of I,(v).

Proposition 3.1. — Under the hypotheses H-1), H-2) and H-3), I, is an attained min-
imum in Hy ().

Proof. — We prove firstly I,(v) is bounded below on {v € H ((9), ||lv]lz. = 1}.
Hypothesis H-3) and Theorem 1.1 give that

3.2 21062 (1) <y (1102 2

(32) | ptog* () < co (1xolmy + ol

for all v € Hy (). Now if a = 0, we have Ip(v) > A for all v € {v €
H (), [lvllz2 = 1}. If a # 0, we have

1 Cola)? 1 Co . Colal?
2 2, Co o, Co
o [ bl ogloll < 5o [ i ogloll + 4 < Lixulzagey + (G2 + oY,

for all v € {v € Hy ((), [|[v]lz> = 1}. We have that

L(v) = || Xv]2s — |af /Q [of? [ log [o]

1 Co C0|a|2
> Xl - gxol: - (5 + S

1 Co Co|a|2
2 — — —_
oM (2 t )

for all v € {v € Hy (), |[v]lz> = 1}.

Let now {v;} C {v € Hx ((), [[vll2 = 1} be a minimizer sequence of I,, then

(_C_'g + Colaf?

1
2 9 ) + Ia(Uj) > §||ij||iz

SOCIETE MATHEMATIQUE DE FRANCE 2003



252 Y. MORIMOTO & C.-J. XU

It follows that {v;} is a bounded sequence in H (€2). Then there exists a subsequence
(denote still by {v;}) such that v; — vo in H ((Q) and v; — v in L*(2) which give
that

11;2{;& [ X0 220y > 1 XvollZ2(y, Jlglgo lvillzz) = llvoll L2y = 1.

By using (3.2), {J, |v;|?log®v;} is bounded, the Lemma 2.2 implies that there exists
a subsequence of {v;} such that

lim / (vjtzlogvj=/ [vo|? log vo.
i—oo Ja Q

But we have also a direct proof of this convergence

‘/|vj|2logvj—/ |v0|210gv0‘
Q Q

1
= '/(vj - Uo)/ ve(2log vy + l)dtdx‘
Q 0
1

1/2
<0l = uls [ ([ 1082l + s
0 Q

1 1 1/2
<Clios = wlze [ (lvalzz+ [ ([ o flog* sl do) ") a
0 0 Q
1
1/2
< Clloy =volls | (Ivules + (IXvuls + ol + el og? vl ) )t

where vy = v; + t(v; — vo), and we have used (3.2) for the function v; € H)lf,O(Q)'
Since {v;} is a bounded sequence in H (), and [lv; — vo|2 — 0, the right hand
side of above estimate go to 0 if 5 — oco. We have proved finally Proposition 3.1.

We study now the Euler-Lagrange equation of variational problems (3.1).

Proposition 3.2. — The minimizer u of variational problem (3.1) is a non trivial weak
solution of the following semilinear Dirichlet problem

Axu = aulog |u| + I u,

3.3
(3.3) ulon = 0.

Proof. — The minimizer u obtained in Proposition 3.1is in {v € Hx (), ||v||z> = 1}
and u > 0. u is a weak solution of (3.3) is equivalent to

(3.4) /ZXqujgo—a/wploglw—Ia/u<p=0,
Qi3 Q Q

for all ¢ € H) (). For fixed ¢ € H}(,O(Q) and € € R with |¢| small enough, we put
Ue = utep, Ue = ue/|luel L2,
then % € {v € H ¢(), ||vllz2 = 1}, so that
H(e) = Iy (ue) = I, (u) = I,
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INFINITELY DEGENERATE ELLIPTIC OPERATORS 253

and

H(e) = — Lo (u.) + alog |ucll 2.

llu ell2
By direct calculus,

H(e) = en ”“e)/ usp+ o / ustp

+———< /Xue ¢ - 2a/uscp10g|us|—a/ue<ﬂ)
”us”Lz Q Q

We have to prove the continuity of H’(¢) at € = 0, since u., Xu. € L*(Q), we need
only to prove

lim/u5<plog|u5|=/u<plog|u(.
e—0 [ Q

this can be deduced by Lebesgue dominant theorem if we use the fact |tlogt| <
t2 +e71,Vt > 0 and ¢ can be approximated by bounded functions. So that we have,
for any € € R, with |e| small enough

I(tc) = H(e) = H(0) + H'(0)e + 8(¢)e > La(u) = H(0),

where d(¢) — 0 if € — 0. We get finally H'(0) = 0, this is true for all p € Hy ((9),
we have proved Proposition 3.2.

Theorem 3.1. — Let a,b € R,a # 0, under the hypotheses H-1), H-2) and H-3), the
Dirichlet problems (1.8) has at least one non trivial weak solution u € Hy (), u > 0,
[lu]l L2 > 0.

In fact, if % is a weak solution of problem (3.3), for ¢ > 0 we set u = cu, then
llullpz =¢>0,u>0,ue H)l(,o(ﬂ) and in the weak sense

Axu = aulog|u| + (1o —logc)u.
Choose ¢ = efa=b > 0, we get (1.3).

Following this direction, we can study the high order nonlinear eigenvalue problems.
Suppose that we have the logarithmic Sobolev inequality

k+1 |v|
[ oProgstt (TEL) < o (1000 + o)
Q vl
For a;,...,ax € R, we study the variational problems
k : k
= in I v),
Q1,...,Qk ”'U"L2=1,’UEH;(,0(Q) al,...,ak( )

with

I 0 (0) = [ Xol2ay - Za, / o[ log o],
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254 Y. MORIMOTO & C.-J. XU

As in the proof of Proposition 3.1, we need to prove that there exists a subsequence
of {v;} of minimizer sequence such that

lim / Ivj|210gkvj=/ [vo|? log® vo,
i=oo Ja Q

which was already shown in the Lemma 2.2.

By similar calculus as in Proposition 3.2, we can prove that for any ai,...,ax € R,
there exists I(’fl,_, . Such that the following semilinear Dirichlet problems

X )
Axu= ZFI ajulog’ |u| + I(’fl,_‘ apls
ulag = 0,

has at least one non trivial solution in Hy (), with u > 0 and ||u| 2 = 1. Moreover,
we have similar regularity results as Theorem 1.2.

4. Boundedness and regularity of weak solutions

By using the interpolation inequality, the condition H-3) and the Logarithmic
Sobolev inequality (1.2) give that, for any N > 1, there exists Cn such that

1
) 2 1og? |v] < = || Xv|? 2
(41) | v*10g* (i) < X0l + On ol

for all v € Hx ().

Theorem 4.1. — Let u € Hy ((Q2),u > 0, ||ul| 12 # 0 be a weak solutions of equation
(4.2) Axu = aulogu + bu.
Then u € L>*(Q).

It suffices to show that there exists A > 0 such that the estimate
(4.3) flullzr <A

holds for any p > 2. In fact, if Q. = {z € Q; |u(z)| > A+ €} for € > 0 then it follows

from (4.3) that |Qe] < ( —0 (p— o0) and hence we have ||u||z= < A.

A
A+e

We prove this by the following three propositions. To get the estimate as (4.3), we
shall use u?~1 or u?»~1log®™(uP) as test function for the equation (4.2) for p > 1,
m € N, but we don’t know if u?~1log?™(u?) € H ¢(Q), so we replace the func-
tion u by ugy with ug(z) = u(z) if z € {z € Q;|u(z)| < k} and uy(z) = k if
z € {z € Q;|u(z)| > k} for k > 1, p > 1. Then it is easy to check (see [22] and The-
orem 7.8 of [8]) that u?,’c’)_l log2m(u’(”k)) € Hx () forallp>1,meN. If p=1, we
use u (log™ u)?k) € Hk () as test function. To simplify the notation, we shall drop

the subscript and use u?P~!log?™ (u”) as test function.
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INFINITELY DEGENERATE ELLIPTIC OPERATORS 255

Proposition 4.1. — Letu € H (), u >0, |lul|z2 # 0 be a weak solution of equation
(4.2). Suppose that for some po > 1, there exists Ay such that

llullL2p0 < Ao
Then
@8 [IX@"F+ [ @ g (@) <20:-+ 1ol + 2po(ll +log o),
where the constant Cs is given in (4.1) and & = u/||u|| p2s0.
Proof. — We have u € H)l(,o(ﬂ)a ||@]| 2r0 = 1, and @ is a weak solution of equation
(4.5) Axu = aulogu + (b — log ||ul| 2r0 ).

Take u?P°~1 as test function, we have

2po — 1 ~ ~ ~ ~
—p02 /IXu"0|2 = ~a-/u2”° log u?° + (b — log ||u||szo)/ u’re
Do Q Po Jo Q

which shows that
~ 1 [ - 1
(4.6) / | XaPo|? < 3 /u2”° log? uP° + (§|a|2 + pol|b| + po log Aop).
Q
On the other hand, the logarithmic Sobolev inequality (4.1) gives

poy2 12 [ 1] Lx (upoy 12 Po |2
gt (phrs) < GIX @I + Call .

Note that ||u?°|| L2 = [|ul|?%,, and & = u/||ul| 2p0, we have
~ ~ 1
(47) [ @ 0@ < GIX@IEs +Co
Q
Adding (4.6) and (4.7), we have the desired estimate (4.4).

Proposition 4.2. — We have for any m € N
@8) [ IX@)Plog™ @) + [ T log (@) < ME™P(m, po)(m!),
Q Q
where P(m,po) = p§’ if m < /Ba, P(m,po) =py™ if m > \/po, and
M > (2|Q] + 4C5 + 2C4 + 10 + 6|a|? + 8|b| + 8log Ag)*/2.

Proof. — For m = 1, this is (4.4). We prove now (4.8) by induction, suppose that
(4.8) is true for some m € N, then we prove it for m + 1. From now on we drop the
tilde of u and subscript of p to simplify the notation. Take u?’~1log®™(u?) as test
function in (4.5), we have

2p—1 2
P /lXu”lzlogzm(u”)+7m/ | XuP|? log®™ ! (uP)
Q Q

p?
=§/u2”log2m+1(u”)+(b—log ||u|[sz)/ u2p10g2m(u”),
Q Q
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256 Y. MORIMOTO & C.-J. XU

which gives
/S;[Xu”lzlogzm(up) < %/QlXu]”I2 logzm(u”)+2m2/Q|Xup|210g2m-2(u”)
+ % /Qu2” log™*2(uP) + (la|? + p|b| + plog Ao) /Q u? log®™ (uP)
so that
(4.9) L | X uP|? log®™ (uP) < %/Quzp log?™ 2 (uP)
+ (4m? + 2(|a|® + p|b| + plog Ag)) MZ™ P(m, p)(m!)2.

We study now the term [, u?? log”™*?(uP), we cut Q = Q; UQF U Q5 with Q; =
{z € Q;u(z) <1} and

Q7 = {z € Qu(z) > 1,|log™ (u(z)?)| < |[u?log™ (uP)|| g2},
Q; ={z € Qu(z) > 1,|log™ (u(z)P)| > ||uPlog™ (uP)||L2}

Then
/ u?P log?™+2(uP) < |0 (m + 1)1)>.
Q

For the second term, (4.4) give

/ w2 log?™ 2 (u?) < ||uP log™ (uP)|2 / w2 log(uP)
QF Q

< (202 + |a]? + 2p|b| + 2plog Ag) M7™ P(m, p)(m!)?,

and for the third term, we use the logarithmic Sobolev inequality (4.1) for N =4,

/ u?? log?™ 2 (uP) < / (uP log™ uP)? log? (ML)
o _

; Q; [|u? log™ (uP)|| 2

1
< ZHX(u” log™ uP)||22 + CylluP log™ uP||2.
1
<3 [ K@) (w) 4 m? [ 1X@)Plog™(w7) + s [ wPlog™(u?)
Q Q Q
1
<5 [ IX@IR 108 (w2) + (s + m®)ME™ P, p) ).
Q

Adding those three terms, we get

(4.10) /Q WPlog?™ () < 3 / X ()] log?™ (u?) + [ ((m + 1)!)?

+ (2C2 + C4 + m? + |a|? + 2p|b| + 2plog Ag) ME™ P(m, p)(m!)>.
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Adding (4.9) and (4.10), we get

(4.11) / u? log?™+2(uP) +/ |X (uP)|? log®™ (uP) < (2|9 + 4C2 + 2C4
Q Q
+ 10 + 6]a|? + 8]b| + 8log Ag) MZ™P(m + 1,p)((m + 1)1)2.
We have proved Proposition 4.2.

Proposition 4.3. — Let u € H} X,0(92),u >0, ||u|| Lz # 0 be a weak solution of equation
(4.2). Suppose that for some pg > 1 and Ag > 2 we have

llull L2po < Ao-
Then for
My > (2|9 + 4C, + 2C4 + 10 + 6]a|? + 8|b] + 8log Ap)*/?,
and § = 1/2M;, we have

(4.12) / 2po (1+6) <A2P0(1+5)( (W(llm)l/a)
Q

Proof. — For any § > 0, the estimate (4.8) gives that

/Iupg(1+¢5)|2dx /l’d”°~5”°|2daz /l~p0 5 log(@Po) d )1/2

/ ’~p0 ilo—g(ﬁ'pi))ﬁl I)1/2 < i (/ ﬁZpo@?_%(gg;_))z_mdx)l/z

m=0 Q
< mZ::O %(/{)’V?Po IOng(UPO d-’E) mZO(SmMImP(m,pO) < po\/p_o é(éMl)m

For § = 1/2M;, we have finally

/ W20 (4) g < 42V f20(14)
Q

Since for any py > 1,
2/3

4]73\/56 = 4e2VPologpo < ( 12)2;70

We have proved (4.12) if Ap > €2, and Proposition 4.3.

The same calculus give also

2po(1+6) ( L 1/3
(4.13) /Q |X (w9 2de < (1+ 8)2(4M)* Ag (++ (b))
We put now for k € N,

1/3 i/3
Pk =p0(1+5)k,Ak = 1+p0 2] 1( T+8) ) 7
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then Proposition 4.3 implies that
P . 1/3
/ u2p0(1+6)k+1a _ / 2Pk (145) < Aipk(1+ )(1+(‘7,_-,,C '1+5i) )
Q o)

- i/3
2p0(148)* (14957 ShH (k7)) '°)
X Ay )

with § =1/2M; and

(4.14) M > (2| +4Cz + 2C4 + 10 + 6[a|? + 8|b| + 8log Ax)
We have now for 6 = 1/2M; < 1/4,

logAk -1/3 u < 1 )j/3 -1/3 > ( 1 )j/3
=1+ <1
logdo ' 1° ]z___:l 1+9) TP ; 1+9)

1/2

( 1 )1/3
— 144 _
=1+pﬁm___T—U§<1+QMV%ﬁ<5ML

So we can choose M; independent on k
(4.15) My = (2]Q] + 4C2 + 2C4 + 10 + 6|al? + 8|b| + 401og Ao) .
We have proved for any k € N,

k
/u2p0(1+6) < (A(s)M1
Q

For pg = 1, we have Ay = e'2. So we have proved (4.3) with A = e5°M1 if ||u|| ;2 = 1.
Now the proof of the Theorem 4.1 is complete.

)2170(1+5)’c

Theorem 4.2. — Let u € Hx o(Q),u > 0, |lullp2 # 0 be a weak solution of equation
(4.2), suppose that a > 0, I and O is non characteristic. Then u € C®°(Q2\T)N
CO(QNT) andu(z) >0 forallz € QN T.

Proof. — Suppose zo € Q2 \ I', then there exists a neighborhood Vy C Q \ I' of o,
for ¢ € C§° (Vo) we shall prove that v = pu € C*°(V}). It follows from equation (4.2)
that,

Axv = apulogu + bpu + thiju + pou = fo+ ZXjfj,
Jj=1 j=1
with p; € C*(W), f; € L>*(Vy),j = 0,...,m. Since the system of vector fields X
satisfies the finitely type Hérmander’s condition on Vp, the regularity result of [23]
(see also [22, 24]) implies that u € C*(V}) for some € > 0. If u(x) > o > 0 for z € Vj,
we have ulogu € C¢(Vp) since tlogt € C°(t > «). Then we prove by recurrence
that u € C*®(Vp). For xp € 9Q N\ I', we have also u € C¢(Vp N ), but we know only
ulogu € C°(Vp N Q), so we can’t get the C™ regularity of u near to the boundary
09Q. Now we finish the interior regularity of Theorem 4.2 by the following lemma.
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Lemma 4.1. — Suppose that u € C°(Q1),u > 0 is a non trivial weak solution of
equation (4.2) on an open set Q; C Q, let a > 0, then u(z) > 0 for all x € Q.

Proof. — Suppose that u(zg) = 0 for some zo € 1, then we have f = aulogu + bu
continuous on 1, and f(xg) = 0, then for any € > 0, there exists a small neighborhood
Up C Q1 of zg such that 0 < u(z) < € on Uy. Since a > 0, we have for € small enough,
f(z) <0 on Uy, so that Axu < 0 on Up, but zo is a minimum point of u, as in the
proof of Lemma 2.3, the maximum principle of Bony ([2]) implies that v = 0 on Uy,
so that u is a trivial solution by continuous of u in ;.

5. Appendix: Logarithmic regularity estimate

In this section we shall give sufficient conditions in order that the sum of squares

of real vector fields
Dx = XX,
=1
satisfies the logarithmic regularity estimate (1.1). We start by the following simple
model operator in R?
Lo = Dil + Dwz(g(wl)Dwz)v

where C™ > g(t) > 0if t # 0 and g(0) = 0. In what follows we do not require that
g(z) is written as g = ¢? for some ¢ € C*, and we consider a little more general

logarithmic regularity estimate than (1.1). The following proposition is essentially
due to the device of Wakabayashi (see Example 5.1 of [21]).

Proposition 5.1. — Let f(t) and g(t) be non-negative continuous functions and satisfy
f(t),g9(t) >0 ift # 0. Assume that there exists an € > 0 such that

t 1/s
f(r)dr

5.1 limsup [£&——— log g(t)| < e.
(5.1) nsup 70 [log g(t)|

Then for any compact set K in R? there exist constants Cy > 0 independent of € and
C. > 0 such that

(5.2) |1V £ (21)(log A)*ul[* < Coe™ (Low, u) + Cel[ul|?

for all u € C§°(K).

Remark. — The typical example satisfying (5.1) is g(t) = exp(—2|t|~'/*), stated in
Introduction with f = 1. It is known that (5.1) is also necessary for (5.2) with
neglecting constant factor of € if f(t) and g(t) are monotone in each half axis Ry.

SOCIETE MATHEMATIQUE DE FRANCE 2003



260 Y. MORIMOTO & C.-J. XU

The necessity is shown by way of another sufficient condition for (5.1), given by Koike
[10], as follows:

limsup p(f; )| log g(t)| < ¢,
t—0

where p(f;t) = sup +/f(7)|t — 7| if £¢ > 0. This condition is equivalent with
SETSEL

(5.1) except for constant factor of € under the monotonous condition. We refer [14]
and references therein concerning details for the estimate (5.2).

Proof. — If F(t) = fot f(7)dr then it follows from (5.1) that there exists a ty > 0
such that

(5.3) g9(t) <1 and |F(t)|(—logg(t))® < 2%/ f(t) if |t| < to.
Since g(t) > 0 for ¢t # 0, one can find a Ag > 0 such that
(5.4) if A > Ao then Qy :={t; g(O)X < 1} C {t;]¢| < to}.

Note that for v(t) € C§°(R!) we have

IV £(£)(log X)*v||* = ([D, F(t)](log X)**v, v)
< 2|(Dyw, F(t)(log A)**0))|
1 S
55 | F/(8) (log A)**v]|?
by the Schwartz inequality. Choosing another sufficiently large Ao > 0 if necessary,
we may assume

< 82| Dy +

1 . .
@F(t)z(log N <A< g(t)A? in Q§ Nsupp v if A > Ao.
If A > Ao then it follows from (5.3) and (5.4) that
F(t)*(log \)** < F(t)*(— log g(t))?* (log \)** < 4 f(t)(log A)** in Q.

Above two estimates give

1 1
—55 |[F(t)(log X)**v* < —/ f(t)(log/\)zsleQdHst/ 9(t)\*[v]*dt.
8¢ 2 Q Q5

Therefore we have

1V/7()(log A)°wl|* < 16> (|| Devl|? + (9(t)A%v, v))
if A > Ao. The estimate (5.2) is obvious if we consider the partial Fourier transform
v(z1, ) of u(z1,z2) with respect to z, variable.

In the rest of this section we shall give a sufficient condition for general operator
Ax, by using Sawyer’s lemma (see below), as in [15]. For the sake of simplicity,
we confirm ourself to the logarithmic regularity estimate (1.1). Let X; denote the
repeated commutator

[Xjn [ijv [Xjen T [Xjk—l’Xjk] o ”]
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for J = (j1,.--,Jk),Ji € {1,...,m}, (and set |J| = k). For k > 1 put
G((E,k) = génstlirll Z I-XJ(J:’ §)|27 g(t’]v k7 .’L‘o) = G((exth])(.’lfo),k),
1<k

where (exptX; )(:co) is the integral curve of X starting from xo € l" Here we recall
that T = {z E Q; 3¢ € S¢1 satisfying Xy(z,€) = 0,V J}. Let gI’ (xo) denote the
mean value il II /, 1 g(t, J,k,xo)dt on the interval I. Then we have the following:

Proposition 5.2. — If s > 0 and if there exists an € > 0 such that

. 1/s i,k . _ i,k })

(65, nf o (sup {111 log g} (wo)ls I C () and g7 (wo) < 3}) <
w>0,1<jsm

for any o € T, then there exist constants Cyp > 0 independent of € and Cc > 0 such

that
(5.6) l(log A)*ullZ2 < Coe™ (Axu,u) + CellullZz,
for any u € C°(Q).

Remark. — The condition (5.5) admits the case where all integral curves of X; inter-
sect I' in any small neighborhood of g, such as the following:

Xy =8y, X = exp (— (22sin®(n/21)) "/**) 8y,
In this example, I' is composed of hypersurfaces I'; = {z1 = 1/j} (j € Z \ {0}) and
Ty = {z1 = 0}. Since |z; sin /x| is approximated to 7j|z; —1/j| near I'; by Taylor’s
formula, (5.5) is satisfied for zo € I';. Let xo € I'p. If the interval I contains the
point 1/j and its length is larger than a half of 1/j, then g}’k(a:o) is comparable to

that with X replaced by exp(—|z1|71/%)d,,. If the length of I is not larger than a
half of 1/j, we can use the preceding result in the case of zo € I';.

Proof of Proposition 5.2. — It follows from (5.5) that there exist some j € {1,...,m},
6 >0, k€ Nand p > 0 such that

. 2s X
llog g7 (w0)| < (2e)11172 i 1.C (—p,1) and g7*(z0) < 6.

Take the new local coordinates = (z1,2’) in a neighborhood of zg such that zo =
(0,0) and the line ' = constant vector in R%~! is the integral curve of X; starting
from (0,2'). Since G(z; k) is continuous, we have

. 2s .
[l0g97*(0,2)| " < (4)* |17 i I € (~p,w)lo'| < p and g}*(0,0') < 5

by taking other small 1, d > 0 if necessary. For a moment we consider z’ as parameters.
Let A be a large parameter satisfying A > 1 /6. If g}’k(O, ')A < 1 then we have
—loggy (0 z’) > log A and hence

(5.7) (log A)** < (4e)**(1™ + g7%(0,2")X%) for VI C (—p, ).
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When gI"k(O, ')A > 1, this is also true for A > )¢ if )¢ is chosen sufficiently large,
depending on . By means of the following lemma of Sawyer, we see that (5.7) implies

(5.8) / (log A)2* [v(t) 2dt < Coe* / (D) + Gt o'; k)A2[o(t)2)dt

for all v(t) € C3((—p, 1)), where Co > 0 is a constant independent of .

Sawyer’s lemma (see Remark 5 in [18]). — Let Iy be an open interval in R and let
V(t),W(t) >0 belong to L (Io). Then we have the estimate
(5.9) / Vo)l(@)2dt < C / W) + [ (O)) dt

for all v € C}(Ip) with a constant C > 0 if and only if
(5.10) Vi < A{3War + 2|I|72} for any interval I with 31 C Ip.

holds with a constant A > 0. Moreover, if C and A are the best constants (5.9) and
(5.10) then A < C < 100A. Here 31 denotes the interval with the same center as I
but with length three times.

In fact, if we set V(t) = (log \)®* and W (t) = g(¢; 4, k, (0,2')) A2 = G(t,2'; k)A?, it
is obvious that (5.8) follows from (5.7) if we replace 3 by I. It is well-known that

(5.11) > 1A X ull? < C{(Axu,u) + [lull*}
lJI<k
for some 0 < o = o(k) < 1/2. If we set

a(z1,2,€) = (Y 1Xula,©)PIEI72+)

| 71<k

=0’
in our local coordinates near xo, then we have q(z;,2’,¢') — G(z;k) > 0 on &' € S§%—2
and

[ Deull + (¢* (¢, 2", D"u,u) < C{(Axu,u) + [|ul|®},
where ¢* denotes the pseudo-differential operator of Weyl symbol in Ri,_l. If
q(t,a', &) = q(t,2',¢&)|€'|72°, then in view of the Littlewood-Paley decomposition
in Rg,_ ! we may replace the second term by (§¥(t,z’, D')A\*u,u), provided that the
support of the partial Fourier transform of u(t,z’) with respect to z’ is contained
in {A\/9 < |¢/| < 2A1/9}. Though G is not smooth enough in general, the Wick
approximation of g* gives

(@ (t, 2, D")X*u,u) > (G(t,2"; k)N ?u, u) = Cllul?,

(see Proposition 2.1 of [13] and Proposition 1.1 of [1]). Hence (5.8) leads us to (5.6)
for u with supp u contained in a small neighborhood of xy. Finally, the usual covering
argument shows (5.6) for the general u.
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