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BOHR-SOMMERFELD QUANTIZATION CONDITION FOR 
NON-SELFADJOINT OPERATORS IN DIMENSION 2 

by 

Anders Melin & Johannes Sjöstrand 

Abstract. — For a class of non-self adjoint /i-pseudodifferential operators in dimension 
2, we détermine ail eigenvalues in an /i-independent domain in the complex plane and 
show that they are given by a Bohr-Sommerfeld quantization condition. No complète 
integrability is assumed, and as a geometrical step in our proof, we get a KAM-type 
theorem (without small divisors) in the complex domain. 
Résumé (Condition de quantification de Bohr-Sommerfeld pour des opérateurs non-
autoadjoints en dimension 2) 

Pour une classe d'opérateurs /i-pseudodifférentiels non-autoadjoints, nous déter­
minons toutes les valeurs propres dans un domaine complexe indépendant de h et 
nous montrons que ces valeurs propres sont données par une condition de quantifi­
cation de Bohr-Sommerfeld. Aucune condition d'integrabilité complète est supposée, 
et une étape géométrique de la démonstration est donnée par un théorème du type 
KAM dans le complexe (sans petits dénominateurs). 

0. Introduction 

In [MeSj] we developed a variational approach for estimating déterminants of 
pseudodifférential operators in the semiclassical setting, and we obtained many results 
and estimâtes of some aesthetical and philosophical value. The original purpose of 
the présent work was to continue the study in a somewhat more spécial situation 
(see [MeSj], section 8) and show in that case, that our methods can lead to optimal 
results. This attempt turned out to be successful, but at the same time the results 
below are of independent interest, so the relation to the preceding work, will only be 
hinted upon here and there. 

Let £) be bounded and holomorphic in a tubular neighborhood of R4 in C4 = 
x C?. (The assumptions near oo will be of importance only in the quantized case, 
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182 A. MELIN & J. SJÔSTRAND 

and can then be be varied in many ways.) Assume that 

(0.1) R4 Hp ï(0) ^ 0 is connected, 

(0.2) on R4 we have |p(x,£)| > 1 
C 

fo r | (x ,0 I^C, 

for some C > 0, 

(0.3) dRep(x,£), dlmp(x,£) are linearly independent for ail G p 1(0) fl R4. 

It follows that p_1(0) fl R4 is a compact (2-dimensional) surface. Also assume that 

(0.4) |{Rep,Imp}| is sufficiently small on p 1(0) fl R4. 

Here 

l a , b} = 
2 

1 

da db da db * 
<d£j dxj dxj d^jJ 

= Ha(b) 

is the Poisson bracket, and we adopt the following convention: We assume that p 
varies in some set of functions that are uniformly bounded in some fixed tube as above 
and satisfy (0.2), (0.3) uniformly. Then we require |{Rep,Imp}| to be bounded on 
p_1(0) H R4 by some constant > 0 which only dépends on the class. 

If we strengthen (0.4) to requiring that {Rep, Imp} = 0 on p~1(0) PI R4, then 
the latter manifold becomes Lagrangian and will carry a complex elliptic vector field 
Hp = lÏRep + iHimp. It is then a well-known topological fact (and reviewed from the 
point of view of analysis in appendix B of section 1) that p_1(0)nR4 is (diffeomorphic 
to) a torus. If we only assume (0.1)-(0.4), then Hp is close to being tangent to 
p_1(0) fl R4 and the orthogonal projection of this vector field to p_1(0) fl R4 is still 
elliptic. So in this case, we have still a torus, which in gênerai is no more Lagrangian. 

In section 1 we will establish the following resuit: 

Theorem 0.1. — There exists a smooth 2-dimensional torus V C C4, close to p~1(0)C\ 
R4 such that <j|r = 0 and Ij(T) G R, j = 1,2. Here Ij(T) = J^. £ • dx are the actions 

along the two fundamental cycles 71, 72 C T, and a — X^i^O A dxj is the complex 
symplectic (2,0)-/brra. 

If we form 
L = {exptHp(p); p G T, t G C, \t\ < 1/C}, 

where tHp = tHp + tHp is the real vector field associated to tHp, then, as we shall see, 
L is a complex Lagrangian manifold C p~1(0) and L will be uniquely determined near 
p_1(0) D R4 contrary to T. As a matter of fact, we will show that there is a smooth 
family of 2-dimensional torii Ta C p_1(0) with <j|r = 0 , depending on a complex 
parameter a, such that the corresponding La form a holomorphic foliation of p_1(0) 
near p~1(0) fl R4. The La dépend holomorphically on a and so do the corresponding 
actions Ij(Ta). We can even take one of the actions to be our complex parameter a. 
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BOHR-SOMMERFELD QUANTIZATION CONDITION 183 

It then turns out that Im ^ ^ 0, and this implies the existence of a unique value of 
a for which Ij(Ta) G R for j = 1,2. 

Theorem 0.1 can be viewed as a complex version of the KAM theorem, in a case 
where no small denominators are présent. As pointed out to us by D. Bambusi and S. 
Graffi, the absence of small divisors for certain dynamical Systems in the complex has 
been exploited by Moser [Mo], Bazzani-Turchetti [BaTu] and by Marmi-Yoccoz. 

The proof we give in section 1 finally became rather simple. Using spécial real 
symplectic coordinates, we reduce the construction of the Fa to that of multivalued 
functions with single-valued gradient (from now on grad-periodic functions) on a torus, 
that satisfy a certain Hamilton-Jacobi équation. In suitable coordinates, this becomes 
a Cauchy-Riemann équation with small non-linearity and can be solved in non-integer 
Cm-spaces by means of a straight-forward itération. 

The fact that Ij(T) G R implies that there exists an IR-manifold A c C 4 (i.e. a 
smooth manifold for which <j|A is real and non-degenerate) which is close to R4 and 
contains T. The reality of the actions Ij(T) is an obvious necessary condition and the 
sufficiency will be established in section 1. When p(x,Ç) —• 1 sufficiently fast at oo, 
A will be a critical point of the functional 

(0.5) A —> /(A) := 

J 1\ 
log \p(x,Ç)\v(d(x,Ç)), 

where ji is the symplectic volume élément on A. This was discussed in [MeSj] and 
in section 8 of that paper we also discussed the linearized problem corresponding 
to finding such a critical point. The reason for studying the functional (0.5) is 
that /(A) enters in a gênerai asymptotic upper bound on the déterminant of an 
/i-pseudodifferential operator with symbol p. Our quantum resuit below implies that 
this bound is essentially optimal. 

Now let p(x, £, z) be a uniformly bounded family of functions as above, depending 
holomorphically on a parameter z G neigh (0, C) (some neighborhood of 0 in C). Let 
P(z) = pw(x, hD, z) be the corresponding /i-Weyl quantization of p, given by 

(0.6) pw(x,hD,z)u(x) = 
1 

(2nh)2 
eï(*-y>op (X + v 

2 
0,z u(y)dyd0 

It is well known (see for instance [DiSj]) that P(z) is bounded: L2(R2) —> L2(R2), 
uniformly with respect to (z,h). Moreover, the ellipticity near infinity, imposed by 
(0.2), implies that it is a Fredholm operator (of index 0 as will follow from the con-
tructions below). Let us say that z is an eigen-value if pw(x,hDJz) is not bijective. 
The main resuit of our work is that the eigen-values are given by a Bohr-Sommerfeld 
quantization condition. We here state a shortened version (of Theorem 6.3). Let 
I(z) = (Ji(z), J2(2)), where Ij(z) = Ij(T(z)) G R and T(z) C p~l($,z) is given by 
Theorem 0.1. I(z) dépends smoothly on z, since T(z) can be chosen with smooth 
2-dependence. 
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184 A. MELIN & J. SJÔSTRAND 

Theorem 0.2. — Under the above assumptions, there exists 60 G (|Z)2 and 6(z;h) ~ 
Oo+Oi(z)h+02(z)h2-\ mC°°(neigh(0,C);R2), suchthatforz in an h-independent 
neighborhood of 0 and for h > 0 sufficiently small, we have 
1) z is and eigen-value iff we have 

(BS) I(z) 

2ith 
= k — Q{z\ /i), for some k G Z2. 

2) When I is a local diffeomorphism, then the eigen-values are simple (in a natural 
sensé) and form a distorted lattice. 

Classically, the Bohr-Sommerfeld quantization condition describes the eigen-values 
of self-adjoint operators in dimension 1. See for instance [HeRo], [GrSj] exercise 12.3. 
In higher dimension Bohr-Sommerfeld conditions can still be used in the (quantum) 
completely integrable case for self-adjoint operators and can give ail eigen-values in 
some interval independent of h. See for instance [Vu] and further références given 
there. This case is also intimately related to the development of Fourier intégral 
operator theory in the version of Maslov's canonical operator theory, [Mas]. 

When dropping the integrability condition, one can still justify the BS condition 
and get families of eigen-values for self-adjoint operators by using quantum and clas-
sical Birkhoff normal forms, sometimes in combination with the KAM theorem, but 
to the authors' knowledge, no resuit so far describes ail the eigen-values in some 
/i-independent non-trivial interval in the self-adjoint case. See Lazutkin [La], Colin 
de Verdière [Co], [Sj4], Bambusi-Graffi-Paul [BaGrPa] Kaidi-Kerdelhué [KaKe], 
Popov [Pol, Po2]. It therefore first seems that Theorem 0.2 (6.3) is remarkable in 
that it describes ail eigen-values in an /i-independent domain and that the non-self-
adjoint case (for once!) is easier to handle than the self-adjoint one. The following 
philosophical remark will perhaps make our resuit seem more natural: In dimension 1, 
the BS-condition gives a séquence of eigen-values that are separated by a distance 
~ h. In higher dimension n ^ 2, this cannot hold in the self-adjoint case, since an 
/i-independent interval will typically contain ~ h~n eigen-values by Weyl asymptotics, 
so the average séparation between eigen-values is ~ hn. In dimension 2 however, we 
can get a séparation of ~ h between neighboring eigen-values for non-self-adjoint oper­
ators, since the number of eigen-values in some bounded open /i-independent complex 
domain can be bounded from above by 0(h~2) by gênerai methods. 

In section 7, we study résonances of a Schrôdinger operator, generated by a saddle 
point of the potential and apply Theorem 6.3 and its proof. In this case, the résonances 
in a dise of radius Ch around the corresponding critical value of the potential were 
determined in [Sj2] for every fixed C > 0, and this resuit was extended by Kaidi-
Kerdelhué [KaKe] to a description of ail résonances in a dise of radius hô, with ô > 0 
arbitrary but independent of h. We show that the description of [KaKe] extends to 
give ail résonances in some /i-independent domain. 
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BOHR-SOMMERFELD QUANTIZATION CONDITION 185 

To prove Theorem 6.3, we use the machinery of FBI (here Bargman-) transfor­
mations and the corresponding calculus of pseudodifferential operators and Fourier 
intégral operators on weighted L2-spaces of holomorphic functions (see [Sjl, Sj3], 
[HeSj], [MeSj]). This allows us to deflne spaces H (A) when A is an IR-manifold 
close to R4 in such a way that if (R4) becomes the usual L2(R2) with the usual 
norm. Viewing pw as an operator: H (A) —> H (A), the corresponding leading symbol 
becomes p\K. We apply this to the IR-manifold A{z) which contains T{z) and get a 
réduction to the case when the characteristics of p (in A(z)) is a Lagrangian torus. 

Contents of the paper 

0. Introduction. 
1. Construction of complex Lagrangian torii in p_1(0) in dimension 2. 
Appendix A: Réduction of elliptic vector fields on a torus. 
Appendix B: 2-dimensional manifolds with elliptic vector fields. 
2. Review of Fourier intégral operators between H& spaces. 
3. Formulation of the problem in H$> and réduction to a neighborhood of £ = 0 

in T*r0. 
4. Spectrum of elliptic first order différential operators on To. 
5. Grushin problem near £ = 0 in T*To. 
6. The main resuit. 
Appendix A: Remark on multiplicities. 
Appendix B: Modified 9-equation for (Ii(z),h(z)) 
7. Saddle point résonances. 
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1. Construction of complex Lagrangian torii in p-1(0) in dimension 2 

We shall work in R4 = T*R2 and its complexification C4, equipped with the stan­
dard symplectic form a = Y^j=i d£j A dxj. Let T C R4 be a smooth two-dimensional 
manifold, and assume that there exist real-valued real-analytic functions pi and p2 
defined in some tubular real neighborhood of T, which vanish on T and have linearly 
independent differentials at every point of T. We shall assume that 

(1.1) <j|r is small, 

in the sensé that \{a,tAs)\ ^ e for ail p e T and ail t,s e TP(T) with \t\, \s\ < 1, where 
e > 0 is sufficiently small. Here we use the standard norm on R4. It is tacitly assumed 
that nothing else dégénérâtes when e tends to 0; the tubular neighborhood is inde­
pendent of 5, and pj and ail their dérivâtives satisfy uniform bounds there. Moreover 
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186 A. MELIN & J. SJÔSTRAND 

\pi | + \P21 is bounded from below by a strictly positive constant near the boundary of 
the tubular neighborhood and we have a fixed positive lower bound on \X1dp1-\-X2dp2\  
uniformly in Ai, À2 with |Ai|2 -h |A212 = 1. Under thèse additional uniformity assump-
tions, (1.1) is équivalent to saying that the Poisson bracket {^1,̂ 2} = (o~,HPl A HP2) 
is small (0(e)) on T. Indeed, if p G T, then the symplectic orthogonal space to TpT 
is the space spanned by HPl, HP2 and to say that the Poisson bracket is very small 
is équivalent to saying that the tangent space and its symplectic orthogonal are close 
to each other. (Alternatively, we may notice that there is a new symplectic form 
a£ in a tubular neighborhood of T with o~£ — a = 0(e), cr£|r = 0.) In what follows 
we extend p\ and p2 to holomorphic functions in a complex neighborhood of T and 
complexify T (the complexification is sometimes denoted Te)- Then cr\r = 0{e) in 
a full complex neighborhood of the original real manifold and with a new e that we 
can take equal to the square root of the previous one. Since the complex vector field 
Hp = HPl + iHP2 is close to be tangent to T and HPl,HP2 are linearly independent, 
it can be projected to an elliptic vector field on T. It is then a well-known fact (that 
we recall in Appendix B) that T is (diffeomorphic to) a torus. 

We shall say that a multi-valued smooth function is grad-periodic if its differential 
is single-valued. Let Xi,^2 be grad-periodic, real and real-analytic on T such that 
(#i, X2) induces an identification between the original torus and R2/L for some lattice 
L = Zei 0Ze2- Extend x\ to a real-analytic, grad-periodic (and real-valued) function 
in a tubular neighborhood of T in R4 in such a way that dx\ vanishes on the orthogonal 
plane of TPT (w.r.t. the standard scalar product on R4) at every point p ET. (We 
could even get a unique extension by requiring that xi be constant on the sets Lp 
of points in the (small) tubular neighborhood, which are closer to p ET than to any 
other point in T.) If a\r is sufficiently small, then |ifPlxi| + \HP2xi\ ^ 0, so HXl 
is transversal to T. Let H C R4 be a real-analytic closed hypersurface in a tubular 
neighborhood of T which contains T and is every where transversal to HXl. Extend 
X2 real-analytically first to a grad periodic function on if, and then to a full tubular 
neighborhood in R4, by requiring that 

(1.2) {xux2} = 0. 

We further extend x\ and X2 to grad-periodic holomorphic functions in a complex 
neighborhood of T. This will allow us to identify Te with a complex neighborhood 
in C2/L of R2/L. We notice that a\Fc = f{x)dxi A dx2, where f(x) = 0(s) and / 
is holomorphic in a full complex neighborhood of R2/L in C2/L. Since a is exact 
and 0(e) when restricted to T, there are real-analytic functions 71 and 72 on T, with 
values in R (hence single-valued) such that 

(1.3) cr|r = d(7idxi +72^2), 7i>72 = 0(e), 

in the C°°-sense. Since the Hamilton fields HXl and HX2 commute in view of (1.2) 
and Jacobi's identity and span a space transversal to T at every point of T, we may 
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BOHR-SOMMERFELD QUANTIZATION CONDITION 187 

fine! real-valued and real-analytic functions £1 and £2 in a neighborhood of T in R4 
such that 

(1.4) £iir = 7j> Hx.Çk = -ôjk. 

Proposition 1.1. — (ire symplectic coordinates for R4 m a neighborhood ofT. 

Proof. — Locally we may find (£1,^2) such that (#,£) are symplectic coordinates. 
Since HXj^k = —ôjk = HxjÇk, it follows that £j — £j = gj(x) is a function of x only. 
Then 

(1.5) 
2 

1 

d£j A dxj -
2 

1 
d£j A j = 

2 

1 

d(gj(x)) A dxj. 

Since the restriction to T of the left-hand side vanishes in view of (1.3) and (1.4) it 
2 2̂ 

follows that J2i d(gj(x)) A dxj = 0. Hence 2Z1 d£j A obj = cr. Since we know already 
that (xi,x2) is a coordinate System for T it follows that (x,£) is a coordinate System 
in a tubular neighborhood. • 

In the coordinates T takes the for m 
(1.6) £ = 7(z), 7 = W , xeR2 /L , 

where we view 7 also as an L-periodic function in R2. Considering p — p\ + ip2 as a 
function in the new coordinates we get ? 

(1.7) p{x,£) = Pi{x,Ç)+ip2{x,Ç) 

d 
2 

1 
OjfaOféj - 7 * 0 * 0 ) + 

vrd 
hk(x,0(£j - 7J0*0)(& - 7 * M 

vr 
2 

1 

ai(x)£4 + 0(\£ - Mx)\2) - r(x), r(x) = ^ 0 * 0 7 / 0 * 0 = O(e) 

in the sensé of holomorphic functions in a fixed tubular complex neighborhood of 
R2 x {£ = 0}. With this point of view p is L-periodic in x. 

We look for torii in a complex neighborhood of T of the form 

(1.8) R> : £ = 41 {x), x S R2/L, 

where <f> is complex-valued and grad-periodic with V<j> € Cm for some 0 < m S R \ N . 
We want 1^ C p~x(0), so ̂ > has to satisfy the Hamilton-Jacobi équation 

(1.9) p(x,<j>'(x)) = 0. 

Using (1.7) we can write this as 

(1.10) Z<p + F(x, <p'(x) - j(x)) - r(x) = 0, 

where Z = YX aj(x)& and F(x,0 = C(£2), r = 0{e). Look for <p in the form 

(1.11) (j) = Slf), £ « 6 « 1. 
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188 A. MELIN & J. SJÔSTRAND 

Then ip has to solve 

(1.12) drd 
i 

e 
±eG(x,ip' 1\ 

e 

r(x) 

e 
0. 

We look for solutions ip with ipf = 0(1), and we rewrite (1.12) as 

(1.13) Zip + eG(x, ip' 7. 

vr 
vrd r(x) 

vrd 
= 0, 

where 

(1.14) d+d:ldlkdd d 1 
è2 

f(x. m 

is holomorphic and uniformly bounded with respect to s when |Ima;|, |£| = 0(1). 
Changing the x-coordinates and L conveniently, we may (by applying Theorem 

B.6), assume that 

(1.15) Z = A{x) d 
dfx' 

x = xi + ixo, 

where A is real-analytic and non-vanishing. (We now view L as a lattice in C.) After 
division by A(x), (1.13) becomes 

(1.16) dé 

ax 
±eG(x,ip' - 7. 

e 

r(x) 

€ 
= 0 

with new functions G = Gnew, r = rneW) obtained from the earlier ones by division 
by A(x) (and therefore satisfying the same estimâtes as before). 

We look for solutions ib of the form 

(1.17) îp = p̂er + + bx, 

where V w is periodic with respect to L and a, b G C. We shall apply an itération 
procédure and get a corresponding solution for each a in the unit dise D(0,1). So, 
let u(x) = îpper -h bx belong to the space of grad-periodic functions on C/L with 
antiholomorphic linear part. Then (1.16) becomes 

(1-18) 
du 

dx 
+ eGa{x,uf - 7 

e 
e)-

r(x) 

e 
= 0 

where 

Ga{x,£\E) = G(x,Ç + adx;£), 

and dx dénotes the complex cotangent vector given by the differential of x. Notice 
that Ga dépends holomorphically on a. 

Fix m G R+ \ N, and solve (1.18) for u' G Cm by the natural itération procédure 
= 0, 

(1-19) duj+i 
dx 

+ £Ga(x,Uf, -dvrd 
r(x) 
vrd 

= 0, j^0. 
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BOHR-SOMMERFELD QUANTIZATION CONDITION 189 

Write Uj(x) = Uj,peT(x) + bjX. If Uj has already been determined, then considering 
the Fourier séries expansion of ĵ+i5per, we see that 

(1.20) fy+i = -T{eGa{x,v!j 7 ~ 
£ 

r(x) 
s J 

KO), 

where ^ ( 0 ) dénotes the 0:th Fourier coefficient of the function v with respect to L. 
We see that per is uniquely determined modulo a constant through the équation 

(1.21) duj+i ,per 
dx 

+ £Ga(x,u'j -
-"V 

£ 
N -

r(x) 

£ 
+ 6i+i = 0. 

For j = 0, we get &i = 0(£ + | ) . Applying a basic resuit about the boundedness 
in Cm(R2/L) of Calderon-Zygmund operators (see [BeJoSc]) and considering also 
Fourier expansions, we get the bound 

K.perllc» «S 0(ë+ =). 

For j > 1, we write 

(1.22) bj+1 - bj+eTiGafau'j - J;?) - Gafau'^ - Z;e))(0) = 0 

and 
(1.23) 

dx 
Wj+i,per ~ ĵ,Per) + e(Ga(x, u'j --;?)- Ga(x, v!^ - - ; ? ) ) + (fy+i - bj) = 0. 

From (1.22) we get 

\bj+1 - bj\ < C ( ? ) ( i m ï p e r " ^-l,perllc- + \bj ~ V i l ) , 

and using this in (1.23) together with (1.22), we get 
(1.24) 

K+l,per - *4perllc- + ~ bj\ < 0(g)(||^jper - ^_i,perllc™ + \bj ~ 

So, if £ (and s) is small enough, our procédure converges to a solution 

(1.25) U = UPER + bx 

of (1.18) with 

(1.26) Kerllc- + |6| = 0(ë+ |). 

Summing up we have for a given m: 

Proposition 1.2. — Let C ^ 1 be large enough. For 0 < e <C £ small enough and for 
\a\ < 1, the équation (1.18) has a solution u of the form (1.25) with \b\ + ||̂ Perllcm ^ 
1/C. This solution is unique modulo constants and satisfies (1.26). 

Proof of the uniqueness. — Let upeT + bx and u = uper-\-bx be two solutions of (1.18). 
Then as above, we have 

Ker - KerWc™ + \b - b\ ^ 0(ë)(\\u'peI ~ %er\\c~ + |6 - b\), 

and the uniqueness follows. 
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190 A. MELIN & J. SJÔSTRAND 

This means that we have solved (1.9) with 

(1.27) (j) = e(uper + ax + bx), 0 < e « s « l , 

where \a\ < 1, and b,upeT dépend on the choice of a (and of e). In (1.27) it is further 
assumed that x\,x2 are chosen so that (1.15) holds. 

We next show that </>' dépends holomorphically on a, and for that we again con-
sider (1.18), where we recall that Ga dépends holomorphically on a. This is actually 
immédiate because the preceding itération argument trivially extends to the case of 
functions of a: u = uper(#, a) + b(a)x, with 

(1.28) 23(0,1) 3 a .—> (uper(., a), 6(a)) G Cm x C 

holomorphic. Hence (after imposing the extra condition that ^per(0) = 0) we have 

Proposition 1.3. — uper, b and hence (j) dépend holomorphically on a. 

Now let p = pz dépend holomorphically on a spectral parameter z G D(0,1) 
and assume that pz = 0(1) uniformly in some fixed tubular neighborhoood of R4. 
Assume that po fulfîlls the assumptions of p above. Choose coordinates (x, £) as above 
for p = po. We now look for C pjx(0) of the form (1.8), and (1.10) becomes: 

(1.29) Zcj) + F(x, (j)'{x) - 7(x); z) - r(x, z) = 0, 

where F(x,£;2), r(x,z) dépend holomorphically on z. If we restrict the attention to 
\z\ < 0(e), then the previous considérations go through and we get a solution 

(1.30) 4> = 4>a = <f>a,z(x) = e(upeT(x, z, a) + ax + b(z, à)x) 

depending holomorphically on z,a with \z\ < ^, \a\ < ^ , and 

(1.31) ||«^r(.,«,o)||c«. + |6| = 0(l) . 

We shall now extend <\> to the complex domain in x. Let <j>{x) G Cfc+1(C2) dénote 
an almost holomorphic extension of (/>, where k is a positive integer and m has been 
chosen larger than k. (Here we consider 0 as a grad-periodic function in R4.) Then 
p(x,dx<fi(x)) vanishes to the order k on R2, and the corresponding manifold A^ = 

{(x,dx(/>(x)); x G C2} is to that order a complex Lagrangian manifold at the points 
of intersection with R2 x C2. This intersection is nothing else but in (1.8). 

The complex Hamilton field Hp is transversal to R2 x C2 at the points of and 
we form the now out 

(1.32) A0 = {exptSp(p); p G I>, t G C, \t\ < 1/0(1)}. 

Here tHp = tHp + tHp is the real vectorfield (in the complex domain) which has the 
same action as tHp as differential operators acting on holomorphic functions. Since 
tHp is tangential to A^ to the order k at T^, we see that A^ is tangential to A^ there. 

In particular TpA^ is a complex Lagrangian space for every p G T^. Since exptHp 
are complex canonical transformations, the same fact is true for the tangent spaces 
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-̂ exptH (p)^<t> = (exptHp)*TpA<f> at an arbitrary point exptHp(p) G A^. Hence Â> is 
a complex Lagrangian manifold. Restricting the size of \t\ in (1.32) we see also that 
the projection A^ 3 (x, £) i-> x is a holomorphic diffeomorphism, so A^ is of the form 
{£ = </>'(x); |Imx| < ^|xy} for a function 0 which is a holomorphic extension of the 
previously constructed one. 

Let A C p_1(0) be a relatively closed complex Lagrangian manifold in a neigh-
borhood of p~X(0) Pi R4 and assume that A contains a torus T which is £-close to 
p~1(0)nH4 in C1, for e <C e <C 1. Let be the coordinates constructed above. If 
p e T, we know that TPT is e-close to R2, x {£ = 0}, so TPA is £-close to C2 x {£ = 0}. 
Using that A is locally invariant under the Ciïp-rlow, we see that A is of the form 
{(x, (j>'(x))\ |Imx| < ^} in a neighborhood of p_1(0)nR4, where (fi is holomorphic and 
grad-periodic with </>' — 0(s), s = 0{e1/2). Moreover, we have the eiconal équation 
p(x, (fi'{x)) = 0 and restricting it to R2, we get (1.9), and Proposition 1.2 shows that 
(fi = <f)a for some a. Hence in a neighborhood of p_1(0) D R4, A coincides with A</> in 
(1.32). 

The parameter dependence of (fi in (1.27) behaves as expected: Clearly the holo­
morphic extension <p(x,a,z) dépends in a C1-fashion of a (and possibly z), and we 
know that it is holomorphic in a and z when x is real. Then | | , | | are holomorphic 
in x and vanish for real x. Conséquently they vanish for ail x. Summing up we have 
shown: 

Proposition 1.4. — The function (fi in (1.27) dépends holomorphically on (x,a, z) in a 
domain 

\lmx\ < 1 
o i r 

M 
1 

vrd 
\z\ < e 

c a r 

We shall next show (in the z-independent case) that the A â form a complex 
fibration of p_1(0) in a région where |£| < ë^ry, |Imx| < QJYJ- Let flrst x be real. 
From Propositions 1.2 and 1.3, we see that 

(1.33) d 
da p̂en 

d, 

da 
+d11d+d1e+d 

and consequently for (fi in (1.27), we get for the x-differential (fifx = dx(fi: 

(1.34) 
d 

da 
j)'x = edx + 0{e + e2). 

In order to treat the case of complex x, we notice that the géométrie arguments 
leading to Proposition 1.4 together with the form ^ Oj(x)£j +£_1F(x, £— J; e) — r(x) je 
for the Hamiltonian for show that -uper = 0(e + e/e) also in the complex domain, 
and hence by the Cauchy inequality (in a) that (1.34) holds also for |Imx| < QJ^J-
This shows that 

(1.35) a > — > 4 4 e ^ O r , . ) ) - ! ( ( ) ) 
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is a local diffeomorphism and hence that the A â form a foliation of p 1(0) D {(x, £) : 
|£| < (5py> |Imx| < QJYJ} in the natural sensé. (Recall that s can be close to a fixed 
constant so we get a foliation in {(#,£) : |£| < ô^ï)' l̂ mxl < ô[ï)}-) 

We next consider the actions associated to a torus. Let 7j(a) be a closed curve 
in T(pa (assuming e > 0 fixed) which corresponds to ej in the natural way, where we 
recall that Z — A(x)-$=, x G C/L, and take L = Zei 0 ZE2- If CJ is a (1,0)-form with 
holomorphic coefficients, such that du = a near , then we define the actions 

(1.36) ±eG(x,ip' dd 
7J (a) 

a;. 

Thèse only dépend on the homotopy class of jj (a) in Y(j)a, and we can even deform 
7j(a) from this set into the complex, provided that we stay inside the complex La-
grangian manifold A^a. Also notice that if UJ is another (l,0)-form with the same 
properties, then 

d 
u — vrd 

vr 
only dépends on the homotopy class of 7 as a closed curve in the intersection of the 
domains of définition of UJ and UJ. In particular, 

(1.37) L{T4>a,w)-L(T4>a,Z) = Cj 

is a constant which is independent of a (and of z if we let p dépend holomorphically 
on z). If UJ and UJ are both real in the real domain then Cj in (1.37) is real. 

For the spécial x-coordinates above, we let £ be the corresponding coordinates 
constructed in the beginning of this section and we choose 

(1.38) UJ = 

2 

1 
£j dx j . 

Then 

-fj(r^a^) = 0a(ej)-0a(O) 

dépends holomorphically on a, and from (1.11), (1.17) and Proposition 1.2 we get 

(1.39) Ij(T(f)a1uj) = e(aej + bej) = eaej + 0(e + s2). 

For UJ we can choose the fundamental 1-form in the original coordinates on R4 
(formally given by the right-hand side of (1.38) for thèse original coordinates (#,£)). 
Thus 

(1.40) L (r0a, UJ) = Cj + eaej + 0(e + e2). 

From this we see that we can use, say, Ii(T(f)a,uj) G Cj -h D(0,e/O(l)) as a new 
holomorphic parameter instead of a. In the z-dependent case, we can replace the 
parameters (a,z) by (h,z) = (Ii(T(f)a,uj),z) and the correspondence (a,z) H-> (h,z) 
is biholomorphic. 
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The advantage of using h instead of a as a parameter, is that the family A â is 
now independent of the way we choose the coordinates (x, £) in the beginning of this 
section, so we get an intrinsic parametrisation. From (1.40) it follows that 

(1-41) 
dh eo . 
dî\ e\ 

±eG(x,ip' 

so Im ^ 0, and we have a unique value a = 0(e + s/e) for which I\ and I2 are 
bot h real. 

There are two related reasons why we want to select T(f)a, with both I\ and I2 real. 
The first reason is géométrie: r<£a is a small déformation of a real torus T C R4 and 
we want to find an I-Lagrangian manifold A C C4 which is a small déformation of 
R4 and which contains r^a. If we have such a A, the cycles 7j(r^a), j = 1,2 become 
boundaries of some 2-dimensional dises Dj C A and we get 

±eG(x,ip' xds LU = 

vrd vr 
a G R, 

since cr|A is real. 
Conversely, let f be a two-dimensional torus which is a small perturbation of T 

with 

(1.42) <7,f = 0, ImJ,-(î>) = 0, j = l,2. 

We can construct an I-Lagrangian manifold A D T as a small perturbation of R4 in 
the following way: After applying a complex linear canonical transformation, we may 
replace R4 by A$0: £ = f ^f-(#), x G C2, where $0 is a strictly plurisubharmonic 
quadratic form (see [Sjl, Sj3]), so that F becomes a small perturbation of a torus 
T C A$0. The canonical 1-form UJ is now transformed into some other globally defined 
1-form UJ with holomorphic coefficients satisfying du = a, but the actions Jj(r,cD) do 
not change if we replace UJ by £ • dx, so 

(1.43) 
vrd 

i-dx G R, j = 1,2. 

We can write this as 

(1.44) 
vrd 

-Imfé-dx)) = 0, 

where — Im£ • dx is a primitive of —Ima, so — Im£ • dxj~ is closed. (1.44) then implies 
that it is exact: 

(1.45) -Im£ • dx\^ = dej), 

where 0 is a smooth real-valued function on T. We now view 0 as a function on 
the x-space projection 7rx(T) of T, which is also a smooth torus and represent T by 
£ = £(x), x G 7rx(r). Then with the obvious identifications, (1.45) becomes 

(1.46) -Im(£(z) • dx)\n (f) = d<f>, on 7rx(r). 
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We ean find real smooth extensions $ of <j> to C2 with an arbitrary prescription of 
the conormal part of the derivative, so we can choose $ satisfying 

(1.47) -Im(£(x) • dx) = d$(x), Vx G 7rx(T). 

This means that 
I Z 
2% 

x)dx + 
1 

2i 
(x)dx = X G 7Tx(r), 

or that 

(1.48) d+d1rd+d 2<9$ 

i dx 
(x), X G 7Tx(r). 

Since T is close to T, §f (x) is close to on 7rx(T), and we may choose the extension 
$ so that ^ — is small everywhere. The I-Lagrangian manifold A = A$ given by 
£ = 1 §f ^hen nas ^ne desired properties when R4 is replaced by A$0, and applying 
the inverse of the above mentioned complex linear canonical transformation, we get 
the désired A in terms of the original problem. 

The second reason, why we want Ii(T(f)a,oj) and l2(T(pa1uj) to be real cornes from 
the Bohr-Sommerfeld, Einstein, Keller, Maslov quantization condition. The actions 
Ij(T(pa,uj) coincide with the corresponding actions 77-(A0a,o;), and if we want A â to 
correspond to an eigenstate of some pseudodifferential operator with leading symbol 
p and eigenvalue o(h), it is natural to impose a quantization condition of the type 

(1.49) Ij{k(j)a,bj) = 27rkjh, kj G Z, 

where we choose to ignore the Maslov indices, and where h > 0 is the small semi-
classical parameter. Since A(pa are not real Lagrangian manifolds (even after intro-
ducing A as a new real phase space), the quantization condition (1.49) will need an 
entirely new justification. 

Consider the case when p dépends on z and choose w = Ii{K(f)az,UJ) so that we can 
use the simplified notation A^^) for A â z. Also write v = (z,w). Recall that 

(1.50) Im dl2 
dh 

^ 0 

when z is kept constant. It follows that there is a unique smooth function z t-+ w(z) G 
C such that Ij(z,w(z)) are real for j — 1,2, where we write Ij(z,w) = Ij(h(z^,uj). 
We will be interested in the property 

(1.51) z i—> I(z,w(z)) = (Ii(z,w(z)),l2(z,w(z))) G R2 is a local diffeomorphism. 

This is équivalent to the property 

(1.52) v i—• (7i(AI/),72(Az/)) G C2 is locally biholomorphic. 

In fact, if ôz G C belongs to the kernel of the differential of the map (1.51) at some 
point, then (ôz, Sw) with ôw = ^ôz + ̂ ôz will belong to the kernel of the differential 
of (1.52) at the corresponding point. Conversely if (6z^ôw) is in the kernel of the 
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differential of (1.52) at some point (z.w) with w real (so that w = w(z)), then 
necessarily SW dw x 

dz°z d+d1rd for some 8z in the kernel of the differential of (1.51). 

Example. — Let p = + ^2(^2,£2) , where pj is real with pjx{0) being a 
closed curve in R2 on which dpj ^ 0. For E1 in a small complex neighborhood of 0, 
we put 

Aj(E) = 
d+d1rd 

dxj 

and notice that thèse one dimensional actions are real for real E and that A'-{E) ^ 0. 
With z,w e C close to 0, we get the complex fibration 

A* w = Ux,£) G C4;pi(xi,£i) = 202(^2,6) = z-w}. 

Then 

n1 = {u = az + v; a e C, v G iï£ 
z — w 

i 
and we see that (1.51) and (1.52) hold. 

Appendix A: Réduction of elliptic vector fields on a torus 

Let Z be a smooth complex elliptic vector field on T2 = (R/Z)2. After left multi­
plication by a non-vanishing function and possibly reversai of one of the coordinates, 
we may assume that with z = x\ + ix2: 

(A.l) Z = 
d 

dz 
9 

d 
vrd 

N l o c < i , gecx 

Let 

(A.2) n1 = {u = az + v; a e C, v G iï£er, v(0) = 0}, 

where 
HL. = ive HL(R2)\V(X + -y) = v(x).Vy € Z2> 

and v(k) is the fcth Fourier coefficient and Hs is the standard Sobolev space. Let 
W° = -ffper, and let || • || dénote the L2 norm on the torus (i.e. the H®ei norm) if 
nothing else is specified. We choose the norm in H1 with 

(A.3) 1 1 * = H2-
I dv m2 
\dz\\ 

= \a\2 + 
dv M2 

for u = az + v 6 H1. Since -§={az + v) = a + |§ (orthogonal sum), we see that 

(A.4) 
\du\ 
dz „,n = NI*1" 

Moreover •§= : H1 —> H0 is surjective, so in view of (A.4) it is unitary. It is also clear 
that £• : H1 H° is of norm 1: 

(A.5) du\ 
dz\ vrd 

d+d1rd 
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Since Wg-^Wu^^n0 < 1? we see that Z : H1 —> H° is bijective with inverse Z 1 
satisfying 

||Z ||WO_WI ^ 
1 

1 - llolloo* 
Consider the function 

(A.6) u = z-Z-1(g)€z + H1. 

It is clear that 

(A.7) Zu = 0, 

and it is the unique function in z + W1 which is annihilated by Z. It follows that the 
kernel of Z, acting on {u = linear function + î;; v G #per, ^(0) — 0}, is of dimension 1. 

LemmaA.1. — Zw ^ 0 everywhere. 

Proof. — Zu cannot be identically zéro since otherwise we would have both Zu = 0 
and Zu — 0, implying that u is constant; which is impossible. 

We have 

(A.8) [Z, Z\—aZ — aZ 

for some a G C££r. Then ZZu = —aZu, so 

(A.9) (Z + a)(Zu) = 0. 

It is well known that if is a null solution of a lst order elliptic équation on a 
connected domain and v is not identically zéro, then v cannot vanish to infinité order 
at any point, and (by looking at Taylor expansions) the zéros are ail isolâted. We 
can apply this to v = Zu. We also see that the argument variation of Zu, along a 
small positively oriented circle around a zéro is equal to 2-ïïk for some finite integer 
k > 0. Let T = dtt, where Q = z0 + (]0, l[+i]0,1[) and z0 is chosen so that Zu 
has no zéros on T. If Zu has at least one zéro in T2, then it has a zéro in Çl and 
var argr(Zw) > 0. This is in contradiction with the fact that Zu is periodic and hence 
that varargr(Zu) = 0. It follows that 

(A.10) Zu^O. 

If we view u as a map R2 —> R2, it follows from (A.7,10), that the corresponding 
Jacobian is everywhere ^ 0. It follows that u = m + iu2 is a diffeomorphism from C 
to C. Let 

(A.11) u(z + 1) — u(z) =: ei, u(z + i) — u{z) =: 

Then ei, e2 are R-linearly independent, and we let L — Zei+Ze2 be the corresponding 
lattice. Using that u : C —» C is a diffeomorphism, we see that the induced map 
[u] : T2 —» C/L is bijective. (Only the injectivity needs to be checked: Let x, y G T2 
with \u)(x) = [u](y) := Uq. We can find corresponding points x, y, Uq G C, such that 
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u(x) = uo, u(y) = ïïo + kiei + k2e2, kj G Z. Then k\ — k2i) = So, so by the 
injectivity of u, we have x = y — k\ — k2i and hence x — y.) 

If f(w) is a C1 function on C, then 

z(fMz))) -- df r 
dw w4 

df 
dw m = Z(u) 

df 

dw 
In other words, if we let lower * indicate push forward of vector fields, then 

(A.12) u.(Z) = Z{u) 
d 

dw' 
[u].(Z) = z(a) 

d 
Jw' 

Conversely, if L is some lattice and [t] : T2 -> C/L a diffeomorphism corresponding 
to a grad periodic function t with 

(A.13) tAZ\ = F- d 

aw 
F ^ O everywhere, 

then 

(A.14) Z(t) = 0. 

Since t G Cz + we know that 3 0 ^ a G C such that t = au. Consequently, 

(A.15) L = aL. 

Actually, we can see this more directly, by considering the biholomorphic map 
It follows from our constructions that if Z dépends smoothly (real-analytically) on 

an additional parameter w, then so does u. 

Appendix B: 2-dimensional manifolds with elliptic vector fields 

Let M be a smooth compact connected 2-dimensional manifold with an elliptic 
(complex) vector field Z. We shall see that M is diffeomorphic to a torus C/L in 
such a way that Z maps to a multiple of J L . Clearly Z :iJ1(M) —• H°(M) is a 
Fredholm operator. Let indZ = dimj\f(Z) - codimft(Z) = dimj\f(Z) - àimj\T(Z*) 
be the index, where Z* dénotes the adjoint of Z with respect to some positive density 
on M. Recall that the kernels JV(Z), JV(Z*) are contained in C°°(M), since Z and 
Z* are elliptic. 

LemmaB.l. — indZ = 0. 

Proof — Clearly indZ* = —indZ. On the other hand Z* = —Z + / for some 
/ G C°°(M) and since the index is stable under changes of the lower order part: 

ind Z* = ind (-Z) = ind Z = ind Z. 

Here the last equality follows from the fact that jV(Z) = Af(Z), K(Z) = K(Z). Then 
ind Z = -ind Z* = -ind Z, and hence ind Z = 0. • 

Because of the ellipticity, there is a unique a G C°°(M), such that 

(B.l) [Z, Z] = âZ- aZ. 
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LemmaB.2. — P \— — (Z + a)Z is a real differential operator. 

Proof. — P - P = (Z + a)Z - (Z + a)Z = [Z,Z] - (âZ - aZ) = 0. • 

Let us identify M with the zéro section in T*M and let p = pi +1P2 be the principal 
symbol of Z. Then pj are linear in £ and dpi,dp2 are independent at the points of 
M C T*M. Let \{dx) be the Liouville measure on M induced by pi,P2, so that 

(B.2) X(dx) A dpi A dp2 = dxdÇ at the points of M, 

where dxdÇ dénotes the symplectic volume. The principal symbol of Z is p(x, — £) = 
— s o if we take the principal symbols of (B.l), we get 

(B.3) {PiP} = iojp — zap. 

We use this to compute the Lie derivative CHv{X(dx)): Since Luv{dxdÇ) = 0, we get 
from (B.2), (B.3) at £ = 0: 

(A) A dp A dp -f A A dp A £#pdp = 0, 

£>HP (X) A dp A dp + X A dp A d{p, p} = 0, 

(A) A dp A dp — iaX A dp A dp = 0. 

Hence 

(B.4) £Hp(X) = iaX on £ = 0. 

But the restriction of Hp to £ = 0, can be identified with iZ, so (B.4) gives 

(B.5) £Z(A) = aAonM. 

Let A* and M dénote the adjoint and the transpose of A in L2(M, X(dx)). From 
(B.5), we get 

LemmaB.3. — Z* = —(Z + a), lZ = - ( Z + a). 

Proof. — We start with the gênerai fact that 

M 
£z(uA(dx)) =0 , 

for ail w G C°°(M). Using (B.5), we get 

(B.6) 
M 

(Z + a)uA(cfo) = 0. 

Replace uby uv: 

(B.7) 
/ M 

((Zu)v + u(Z + a)v)X(dx) = 0. 

It follows that lZ = - ( Z + a), Z* = *Z = - ( Z -h â). 
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We also have Z* = — (Z + a). Lemma B.2 gave us the real operator 
(B.8) P = —(Z + a)Z = —(Z + a)Z. 
Lemma B.3 shows that the operator is self-adjoint and ^ 0: 
(B.9) P = Z*Z = Z*Z. 
Moreover it is an elliptic 2nd order operator. From (B.9) it is easy to see that 
(B.10) Af(P) = M(Z) = j\f(Z) = Cl. 

The last equality follows from the other equalities since Zu = 0, Zu = 0 implies that 
u is constant. 

By a more direct argument, we have 

Proposition B.4. — Let f G C°°(M). Ifu^O, (Z + f)u = 0, then u(x) ^ 0 for every 
x G M. We have dimj\f(Z + / ) ^ 1. 

Proof — Applying a classical resuit of Aronsjajn about the strong uniqueness of 
nullsolutions of second order elliptic équations, we know that u cannot vanish to oo 
order at any point. Let xo be a zéro and choose local coordinates x\,x2 centered at 
Xn, such that 

Z = 1/ d 1 d \ 
2 \ dx\ i dx2' 

f 0(\x\) d d 
dxi ' dx2) 

Let m be the order of vanishing of u at xo, so that u(x) = um(x) + (9(|x|m+1), where 
um(x) is a homogeneous polynomial of degree m. Then we get 

ÔUm 
dz = 0, with z = xi + ixo, 

so um(x) = Czm for some C ^ 0. Hence xo is an isolated zéro. Moreover, vararg^w = 
27rm, if 7 is a simple closed loop around Xo (contained in the coordinate neighborhood) 
which is positively oriented with respect to the directions (Re Z, Im Z). We can now 
triangulate M in such a way that every zéro of u is in the interior of one of the 
triangles. If A is one of the triangles, then vararg^Aî/ ^ 0 with strict inequality 
precisely when D contains a zéro of u. Since every boundary segment is common to 
two différent triangles, but with opposite orientations, we see that 

A 
var diTgdAu = 0, 

when we sum over ail the triangles in the triangulation. It follows that u cannot have 
any zéros. 

The second statement is now clear: Let 0 ^ UQ G j\f(Z+f), so that UQ is everywhere 
différent from 0. Let u G JV(Z + / ) and let x0 G M. Then v(x) := u(x) -u(x0) 

u0(x0) UQ(X) 
belongs to j\f(Z + / ) and vanishes at one point (xo). The first part of the proposition 
implies that v vanishes identically, and hence that u is a constant multiple of UQ. This 
shows that the dimension of j\f(Z + / ) is at most equal to 1. • 
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Proposition B.5. — There exists a non-vanishing function b 6 C°°(M) such that 
[bZ,bZ]=0. 

Proof. — We develop the commutation relation to solve and get: 

0 = bb[Z, Z] + b[Z, b]Z + b[b, Z]Z 

= bb(âZ - aZ) + bZ{b)Z - bZ(b)Z 

= (bbâ - bZ{b))Z - (bba - bZ{b))Z 

= b(ab - Z{b))Z - b(ab - Z(b))Z, 

so b should solve 

(B.ll) (Z - a)b = 0. 

Notice that if (B.ll) holds for some non-vanishing b, then 

_1 1 
Z "b~ b* 

exp(xivi) 

SO 

(B.12) (Z + a\ = 0, Le. Z*c = 0, c = 
1 

b 
Conversely, (B.12) implies (B.ll). 

We have seen that Z has index 0 and has a 1-dimensional kernel. Then the same 
holds for Z* and Proposition B.4 shows that j\f(Z*) is generated by a non-vanishing 
function c. It suffîces to take b = 1/c. • 

Theorem B.6. — There exists a diffeomorphism k : C/L —> M such that bZ corre­
sponds to J=. Here L = Zei 0 Ze2 is a lattice (so that ei,e2 G C are H-linearly 
independent). 

Proof. — Write bZ = \{yi +^2), where 1/1, v2 are real commuting vector fields which 
are pointwise linearly independent. Fix a point xq G M and consider the map 

K : C ~ R2 3 x 1—• exp(xii/i + x2is2)(x0) G M. 

Notice that exp(#iz/i + x2v2) — exp(xivi) 0 exp(x2^2) = exp(x2^2) 0 exp(xivi) by 
commutativity. Let 

L = {xe R2;K(x) = x0}. 

L is a discrète Abelian subgroup of R2 and hence of the form 0, Ze with e ^ 0, or 
a lattice Zei 0 Ze2 with ei,e2 R-linearly independent. K induces a diffeomorphism 
k : H2/L —> M, so R2/L must be compact and hence L is a lattice. Clearly the 
inverse image of bZ is | ( ^ + ^âx^) = 1k z = Xl + *X2' 
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2. Review of Fourier intégral operators between H$ spaces 

We shall not review ail the aspects of Fourier intégral operator calculus (see [MeSj] 
for a similar discussion), and for simplicity, we restrict the attention to the Toeplitz (or 
Bergman projection) point of view. Let $ be a smooth real-valued function deflned 
near some point x$ G C n . Assume that $ is strictly plurisubharmonic (s.pl.s.h.). 
Then 
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(2.1) A$ := {(x, f §f (x)); x G neigh(x0, C n )} 

is I-Lagrangian and R-symplectic. Assume that Y C A$ is a smooth Lagrangian 
submanifold (i.e. Lagrangian for the real symplectic form cr\A ) . If we identify T with 
its projection TTXT in C n then on T the fundamental 1-form £ • dx can be identified 
with UJ = ?<9$|r and hence this is a closed one-form in T. Here 

(2.2) Imuj =dvdrevr 

so Imuj is exact. We notice that TTXT is totally real. In fact, if u G C n and u,iu are 
both tangential to TTXT at a point x, then 

Ui = (u, ? f t ( ï ) u + #^(a;)«)) and C/2 = (tu, f (*^(a;)*« + *^(z)m)) 

are both tangential to T at (x. 2 d$(x) ^ 
': dx • 

, It follows that 

(2.3) 0 = a(UltU2) = <t(UuU2 - iUr) = 4<$^(x)û,u), 

which implies that u = 0. Locally in irxT we may then find a primitive <p oî UJ and 
extend (/>(:r) to an almost analytic function in Cn so that d(p(x) = 0(dist (x,Trxr)°°). 
Then at the points of 7rxr, we have d<f> = jd$, so at those points, we get 

Ui = (u, ?ft(ï)u + #^(a;)«)) and C/2 = ( 

Atter moditymg 0 by an îmagmary constant (assummg 1 connected) we have that 
Im0 -h $ vanishes to the second order on T. Since this function is s.pl.s.h. it follows 
that 
(2.4) $(x) + Im0(x) ~ dist (X,-KX(T)) near ^ (r ) . 

Let $(2/) be a second smooth s.pl.s.h function defined near yo G C n . Let £0 = 

f H ( x o ) , rço = f ^ r O / o ) , and let K : neigh((y0,tjû),Aj) -> neigh((x0,£0),A$) 
be a smooth canonical transformation (with A$, A^ considered as real symplectic 
manifolds). 

On x Cy7^, we choose the complex structure for which holomorphic functions 
are holomorphic in (x,£;I7,7/) in the usual sensé. A corresponding "holomorphic" 
symplectic form is then given by 

(2.5) dÇ Adx — dfj Ady. 

We notice that the form (2.5) and the more standard form d£ A dx — drj A dy have 
the same restriction to A$ x A|, since drj A dy\^ is real. The manifold A$ x A^ is 
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I-Lagrangian and R-symplectic for the form (2.5), and we can view it as a "Aj?" for 
our non-standard structure, with F = $(#) + $(y), since it can be represented as 

vrd 2d$ 
i dx 

dvr -rj = 
2d$ 

i dy 
:(y). 

The earlier discussion for Lagrangian manifolds can then be applied with T equal 
to graph («), and we conclude that there is a function ifi(x, y) such that 

(2.6) dx,yil> vanishes to infinité order on 7rX)3/(r), 

(2.7) Ô^(X ,î/) = 
2d<P 

% dx 
», dy^{x,y) = 

2 9$ 

i dy 
for (x,y) e 7rx,y(r), 

(2.8) $(x) + + Im^(x, y) - dist ((x, y), ^ ( T ) ) 2 . 

When $ = <Ë> and K; = id is the identity, we can choose tp(x,y) to be the unique 
function (up to 0(\x — y\°°)), which satisfies (2.6) and ip(x, x) = 2$(x). In the gênerai 
case, we deduce from (2.6), (2.7) that on 7rXiy(T): 

(2.9) +dldld+d 
2 3$ 

i dx 
(x)dx -i 

2d§ 

i dy 
dy. 

If we restrict tp to 7TXty(T) and identify it with a function on T, we get 

(2.10) dW>ir) = €dx ~ vdy, (x,É; y, rç) g r . 

Since £dx and rjdy are primitives of o\ Â  and ctj A respectively, we can interpret (2.10) 
as stating that ty\ is a generating function for For the moment, we make a local 
discussion and ail our domains can be assumed to be simply connected. Later this will 
no more be the case and we have to consider what happens when we follow the locally 
defined function ip around a closed loop in T, of the form 7 = {(«(p),p); p G 7}, 
where 7 is a closed loop in the domain of K in A^. We have 

Im (edx){ A = Im (40$) = -d$, MA. 
which is exact, since we will always require <Ê> and $ to be single valued. Similarly 
ïm(rjdy)\. is exact. Hence 1A. 

(2.11) 
dv 

dtp = 
KO7 

Re (Çdx) 
j1 

Re (r)dy). 

So the undeterminacy in ip is real (as can also be seen from (2.8)) and following 
around a closed loop as above, ip changes by a real constant, which is the différence 
of two real actions. 

The implementation of Fourier intégral operators is now fairly routine, and we will 
not go into ail the détails. (See [Sjl].) Formally such an operator is of the form 

(2.12) Au(x) = h~n e^x'v)a(x,y; h)u{y)e-^{y) L(dy), 
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where L(dy) is the Lebesgue measure and a is a symbol of order m in 1/h: 

(2.13) V ^ a = Ofc(l)ft-m, 

(2.14) ÔSga, fya = 0(/Tmdist ((x,y), irx,y(r))°° + h°°). 

See also section 3 of [MeSj]. 

3. Formulation of the problem in i7$ and réduction to a neighborhood of 
£ = 0 in T*r0vrd 

Let $o be a s.pl.s.h. quadratic form on C " . Let P(x,Ç;h) be holomorphic and 
bounded in a tubular neighborhood V of A$0 and assume that 

(3.1) \P(x,Ç;h)\ > -, (a:,0 €K, \(x,0\>C. 

Also assume (for simplicity) that 

(3.2) P ~ 
OO 

0 

Pw(x, hDx; xs 

in the space of bounded holomorphic functions on F. Then |po Pw(x, hDx; ̂  V ^ J O ^ O ^ 
|(x,0l > c . 

If we take the Weyl quantization, we know (see [Sj3], [MeSj]), that 

(3.3) Pw(x, hDx; h) = 0{l) : H*0 — 

where 

(3.4) iï*0 := Hol(Cn) H L2(Cn; e"2*0^!^*)), 

and Hol (Cn) dénotes the space of holomorphic (entire) functions on C n . 
Since 3>o is a quadratic form, we can infer (3.3) solely from the fact that P is a 

symbol of class 5° on A$0, i.e. from the fact that Vfc(P|A ) = Ok(l) for every k G N. 
However the fact that P is bounded and holomorphic in a tubular neighborhood of 
A$0 allows us to consider other weights as well. Let $ G C1,1(Cn;R) (the space of 
C1 functions with Lipschitz gradient) with <Ê> — $o bounded and sup | ̂  — | small 
enough. Then, 

(3.5) Pw(x,hDx]h) = 0(l) : H* —> H*, 

where H<$> is defined as in (3.4). In fact, in the standard formula, 

(3.6) Pw(x,hDx;h)u = 1 
(2<7rh)n **,É)€A*F 

(x—y)t : (x + y 
2 

l;h\u(y)dyd£ 

we deform to the contour 

(3.7) vrd 2 
i Jo 

r1 A$ 

ver 
te + (1 - t)y)dt 

i x — y 
C(x-y 

(x) = (1 + |z|2)1/2. 
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In the following, we also assume for simplicity that $ G C°°, that Vfc$ is bounded 
for every k ^ 2, and that $ is uniformly s.pl.s.h. We also assume that n = 2 and that 
there is a smooth Lagrangian torus r c A$, such that p<$> = Po\A satisfies 

(3.8) p;1(o) = r 

(3.9) dp®, dp$ are independent at every point of T. 

Let T0 = (R/27rZ)2 be the standard 2 torus and view r0 as a maximally totally 
real submanifold of X := To+iR2. In X x C2 (equipped with the standard symplectic 
form) we consider 

(3.10) A*, : £ 
2 5$, 
$i(x) = $i(x) = 

1 

2 
Imz)2. 

$i is s.pl.s.h. so A$j is I-Lagrangian and R-symplectic. According to section 1 and 
the beginning of section 2, there is a smooth "real" canonical transformation: 

(3.11) K : neigh(r, A<ê) —• neigh(r0 x {0}, A ^ J , 

mapping T onto r0 x {0}. Let i/>(x,y) be a corresponding function defined as in 
section 2 for (x, y) in a neighborhood of 7rX)2/(graph(̂ )). Strictly speaking, it is clear 
how to define ip locally up to a constant and up to a function which vanishes to 
infinité order on 7 ^ (graph («)). To see that we can get a corresponding grad-periodic 
function, we first define -0 on the projection of the graph of K with dip single-valued, 
then let a dénote a single-valued almost holomorphic extension of this differential. 
For (x,y) G neigh (7rX}3/(graph («))), let 7 ^ : [0,1] —» C4 be the shortest segment 
from a point 7^,^(0) in the projection of the graph to 7^(1) = (x,y), and put 
ip(x,y) = iphx y(0)) + f OL. Then ijj is grad-periodic and Imip is single-valued. 

Let jj, j = 1, 2 be fundamental cycles in T, so that K O 7̂  are fundamental cycles 
in To x {0}. Define 7̂  = {(tt(p),p); p G 7^}. Then (2.11) is applicable and gives: 

(3.12) 
dr 

$i(x) = Re(r1dy) = -Ij(r), 

where the last equality defines the action which does not dépend on the choice 
of global primitive of a\ A ,̂ since A $ is diffeomorphic to R4. Here as in (2.11) we view 
^ as a function on graph(ft). Since dip is single valued, this means that if we start 
from a point (x, y) close to some point (xo,yo) € (To x 7ry(T)) n 7rXj3/(graph(K;)), and 
follow a closed curve [0,1] 3 t \-> (x(t),y(i)) which remains close to ^^(graph^)) 
and with x(t) close to a fundamental cycle 70,j in To, then we get a new value of 

"ip(x(l),y(l))" satisfying 

(3.13) ^(x(l),y(l))=^(x(0)1tf(0))-/i(r). 
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We now implement K by a Fourier intégral operator of the form (2.12) with a of 
class S^1(neigh(7ra;ïî,(graph(/c)))): 

(3.14) a(x,y;h) -
oo 

U 

aj(x,y)hj in C^ne igh^^graph^) ) ) ) , 

with cij of class C°°, and 

(3.15) dxCLj, dydj = 0(dist((x,2/),7rx,y(graph(^)))°°). 

We also choose a elliptic, i.e. with ao non-vanishing. (Notice that unlike -0, a is single 
valued.) 

Let U C A$, V C A$1 be small neighborhoods of T and To x {0} respectively, with 
tt(17) = V. Then putting a suitable cutoff in (2.12) (equal to 1 near the projection of 
the graph of K and replacing $ by <£), we get an operator 

A = 0(1) : L2(ir(U);e-**'hL(dy)) — L2(7r(V);e~2^hL(dx)), 

where the subscript h indicates that we have a space of multi-valued Floquet periodic 
functions v : 

(3.16) v(x(l)) = e~u^hv(x(0)), 

if [0,1] B t H-> x(t) is a closed curve which is close to the jth fondamental cycle in r0. 
We also see that ||ZLlu||L2 < 0{hx)\\u\\L2. 

The complex adjoint A will be a Fourier intégral operator associated to K~1 by 
the same gênerai procédure, and it is a routine matter to see that a can be chosen so 
that A* A, AA* are formally the orthogonal projections 

L2(TT(£/); e-2*/*L(dy)) - H(ir{U), * ) , L2(7r(V); e~2^lHL{dx)) -> HH{*(V)), $i), 

where H(TT(U),$) := HO1(TT(*7)) n L2(TT(U); e~2^fHL) and is defined similarly. 
(See [MeSj].) This implies that if u G H(w(U),&) and 17 CC 7r(*7), then 

\\A*All - u\\L2(fj 2*/hL(d u = C)(^00)||^||L2(7R(l7),e-2^/^L(D2/))5 

and similarly for AA*. 
We also have Egorov's theorem which permits us to find Q G S^(V) such that if 

go is the leading symbol, then 

(3.17) q0oK= po, 

(3.18) Qw(x,hDx)A =$i(x) = ^Q*" = P'M*, 

in the sensé that 

| | (q<M _ AP^u\\LÎ,y.^/hL(dx)) < 0(fc°°)||u||H(l,:.), 

when F CC TT(V), and similarly for the second relation. Here Qw is defined as in 
(3.6) after replacing Q by {xQ){^L^\ h), where x is suitable cut-off, and where we 
identify T0 + iR2 with C2/(2TTZ2). 
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Finally we shall take a unitary transform 

(3.19) B: tf(r0 + *R2,$i) -+L2(r0) , 

and similarly on the corresponding spaces of Floquet-periodic functions, that will be 
the inverse of a Bargman transform. Since $1 only dépends on Imz, we may view 
this function also as a function on C2. We recall that the Bargman transform 

(3.20) Tu(z;h) = C2h-^2 e 2h(z yï2u(y)dy = k(z - y; h)u(y)dy, 

(with the last equality defining the kernel k in the obvious way) is unitary: L2(R2) -
#(C2, $1) for a suitable C2 > 0. The inverse is given by T-1 = T*, with 

(3.21) T*v(x; h) = C2h~3/2 e-^z~x^-^^v{z)L{dz) 

dvrd k(z — x; h)e l*^v(z)L(dz). 

If we identify L|(r0) with the #-Floquet periodic locally square integrable functions, 
for 6 = (Ii(r)/27rM2(r)/27rft) on R2, and view Hh(TQ + iR2,$i) similarly, we see 
that T générâtes an operator B* from I/2(r0) to 0-Floquet periodic holomorphic 
functions on C2, given by 

(3.22) B*u(z) = 
'R2 

k(z - y; h)u(y)dy = 
Jy^E i/e(27rZ)2 

k{z-y + u)e^e^u{y)dy, 

where E C R2 is a fundamental domain for (27rZ)2 (SO U(Z + v) = e l(6^u{z), 
v e (2TTZ)2). Put 

(3.23) t(z,y) = 
$i(x) =xx 

k(z-y + v)é<6^ 

so that 

£(z + i/, y) = e'W^eiz, i/), £(z, y + v) = é^l{z, y). 

The adjoint B is given by 
(3.24Ï 

Bv(x) = 
$i(x) =xss 

£(z,x)e-2^z)/hv(z)L(dz) = k(z-x)v(z)e-2*^zVhL(dz), 

so B coincides with T*. Recall that T*T = 1 on L2(R2). It is easy to see that this 
relation extends to L2(Fq) and we get 

(3.25) BB* = 1.X 

To check that B*B is also the identity on Hh(To + zR2,^i), we first recall that 
TT* is the identity on #(C2,$i) and when we compute TT* in a straight forward 
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mariner, we get the orthogonal projection: L2(C2,e 2^^hL(dz)) —• H(C2,$i): 

TT*v(z) = // k(z - y; h)k(w - y; h)v(w)e-2*l{w)/hL(dw)dy 

= Ch~2 ei^z^v(w)e-^w)L(dw)1 

where 

(3.26) ipi{z,w) = 
d 

vr 
(z-w)2 

is the unique function which is holomorphic in z, antiholomorphic in w and satisfies 
ipi(z,z) = *i(z). Recallthat -$>1(z) + 2Re^1(z,w)-$i(w) ~ - \z-w\2, so TT* is a 
bounded operator on Hh{To+ïR2, $1). If u is a normalized élément of this space, then 
by solving a correcting d-bar problem for x(x/R)u(x), we see that there is a séquence 
of functions ur G #(C2,$1), R = 1,2,..., with H^Hi^c2,^) = Oh(l)R1/2, such 
that 

\\u~ uR\\L2(B(0,R/2),e-2*i/hL(dx)) ^ Oh{l)e R/C°h, 
for some Cb > 0. Using that TT*ur = we see that TT*u = u. Hence 5*5 = 1. 
We have then checked that B*B = 1, BB* = 1, so 5 is unitary. 

We recall that B is associated to a canonical transformation from to T*(r0). 
This allows us to view the previously defined K also from a neighborhood of T in A$ to 
a neighborhood of To x {0} in T*r0. We therefore have a Egorov's theorem and using 
U := BA, we get an équivalence between classical /i-pseudodifferential operators 
acting in H(TT(U),$) and /i-pseudodifferential operators microlocally defined near 
£ = 0 in T*Tq, acting on Floquet periodic functions u(x), satisfying: 

(3.27) u(x + ej)=e-iWhu(x), 

where ci = (2TT,0J, e2 = (0, 2TT). 
Let I/^(ro) be the subspace of L2OC(R2) of 0-Floquet periodic functions: u(x — k) = 

eie'ku(x), k G (2TTZ)2, 0 G ( R / Z ) 2 . 

Proposition 3.1. — Let Pw = Pw(x, hDx\ h) : H<$> —> H® be defined as in the beginning 
of this section and assume that F C A$ is a Lagrangian torus satisfying (3.8), (3.9). 
Then there exists a smooth canonical diffeomorphism 

K : neigh(r, A*) —• neigh(R0 x {0},T*R0) 

with K,(l ) = 1 0; where 1 o = {tt/zirL)^ is the standard torus. 
Moreover, there exists an operator U : H$ —> L2^27r^(r0),/ = (A(R),hfî)), with 

the following properties: 
V \\U\\c(H^I/2irh(r0)) = uniformly, when h -> 0. 
2) U is concentrated to graph(/ç) in the sensé that if N G N and xi G 5(T*ro,l), 
X2 G C£°(C2) are independent of h and 

suppxi xsuppx2n{K(y,77),y); Q/,77) G neigh (f, A$)} = 0, 
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then 

(hD)Nx7(x,hD) oUoïl* oX2= 0(h°°) : L\e~^lhL{dx)) —> L2I/2vh{T0). 

Here 11$ is the orthogonal projection L2(e~2®/hL(dx)) —> fsee [MeSj],). 
3) U is microlocally unitary: For every X2 £ CQ°(neigh (7rx(T), C2)), independent ofh, 
we have (U*U - 1)U^X2 = 0(h°°) : L2(e~2*/hL(dy)) -> L2 (e~2® / h L(dy)). For every 
Xi G C£° (neigh (r0 x {0},T*ro)), independent ofh, we have (UU* - l)xï(x,hD) = 
O(h^):L2I/2nh(T0)^L2I/2nh(T0). 
4) We have a Egorov's theorem: 3Q(x,£; h) ~ qo(x,£) + hqi(x,Ç) H G S(TTo, 1), 
lyzift ço ° « = Po neigh (T, A$), sitc/i i/iat Q™/7 = UPW microlocally, Le. (QWU — 
UP™)n*X2 = 0(h°°), XÏ(QWU - UPW) = 0(h°°), for Xi,X2 as in S). 

5) If P, $ dépend smoothly on z G neigh (0, C), then we can find U,K, depending 
smoothly on z in a possibly smaller neighborhood ofO. 

4. Spectrum of elliptic fîrst order differential operators on T0 

Let P = Z + q be a first order elliptic differential operator on To with smooth 
coefficients, Z denoting the vector field part. After applying a diffeomorphism, we 
may assume that 

(4.1) P = A(x] 
vr 

vrd 
+ <?(z), 

on C/L, L = Zei© Ze2, where ei, e2 are R linearly independent and A G C°°(C/L) 
is non-vanishing. Further, q G C°°(C/L), and this function will later dépend on a 
spectral parameter. It will be convenient to introduce B(x) = 1/A(x). The équation 
Pu = v becomes 

(4.2) d 

«m 
+ Bq\u = Bv. 

Let <p E C°°(C/L) and conjugate by e*: 

e-* 
d 

dx 
+ Bq)e4'e~'l,u = Be-'pv, 

i.e. 

(4.3) 
d tdé 

dx \dx 
Bq (e^u) = Be^v. 

Let 6 be the periodic solution (unique up to a constant) of 

(4.4) dé 
dx 

+ Bq = Bq{0), 

where Bq is the Fourier transform, defined on the dual lattice 

(4.5) L* = Ze* 0 Ze^ (e*,eFC)R2 = 2irôjtk. 
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Then (4.3) becomes 

(4.6) 
d 

vrd+d 
)(e^ù)(v) = T{Be^v)( 

We want to solve (4.2) (4.6)) in the space of 0-Floquet periodic functions, where 
6 G C/L*, that is in the space of functions satisfying the condition 

(4.7) u(x -(,) = ei{i'e>*2u(x), W G L. 

Writing 6 = 6ie\ + 62^2 modL*, we get 

(4.8) u(x - e,) = e2"e^u(x) 

so the relation between 6 in (4.7) and the Ij(T) in (3.27) is given by 

(4.9) 0i = 
ws+s1s 

2irh 
modZ. 

Let HQ(C/L) dénote the space of 0-Floquet periodic functions on C, which are of 
class Hioc (standard Sobolev spaces). The Fourier séries représentation of such a 
function (with convergence at least in the sensé of distributions) becomes 

(4.10) f(x) = 

$i(x) =x 

)(e^ù)(v) = T{B 

veL*-o 

](y)e^vx+vx\ 

where we used that (u, x)R2 = Revx in the last step. The corresponding expression 
for df/dx becomes: 

(4.11) 
dfdv 
dx 

veL*-o 

1 
2 

f(u)e^x+l/x). 

We now consider (4.2), (4.6) for u G HQ, V G Hg, and identify Fourier coefficients, 

(4.12) (ii/ + Bq(0))(e^ù)(v) = T{Be^v)(y), v G L* - 0, 

where we write Tu = u. We get, 

Proposition 4.1 
(a) If 2Bq(0) -6 <£L*, then P in (4.1) is bijective H] -» HQ. 

(b) If 2Bq(0) — 0 G L*, then P in (4-1) is CL Fredholm operator, of index 0 with 
one-dimensional kernel given by 

Ker (P) = C exp[(Bq(0)x - Bq{0)x) + 0(x)], 

where </> solves (4-4)-

Before continuing, let us compute eï, e%. We have 

ces 
^2 e2> 

sces 
c+s1 

= 4TTJ, 

so 
sces 
s++s1e 

= 27T; 
2i 

eie2 — eie2 i 

1 e2 -e i 
-e2 ei 

ces 
2TT 

Imieieo) z 

1 e2 -ei 
-e2 e± 
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Hence 

(4.13) sss 2TT 

ilm (eie2) 
62, e2 = 

2TT 

ilm (eieo) 
ei. 

Next we introduce a complex spectral parameter z and let q be of the form 

(4.14) q(x,z) = q0(x) + zr(x). 

The z dependence is chosen to be linear, since the situation we examine in this section 
is the linearized case. Let us call the spectrum of P, the set of values z for which P 
is not invertible (case (b) in the proposition). Then the spectrum of P is the set of 
values z that satisfy 

(4.15) 2 

i 
Bqo(0) + z-Br(0)-Q€L*, 

or equivalently 

(4.15') 
2: 

i i 
Bq(0, z) £ 0 + L* 

and we get a non-degenerate (affine) lattice precisely when 

(4.16) Br(0) ^ 0. 

5. Grushin problem near £ = 0 in T*r0 

In the original problem, we shall restrict the spectral parameter z to some small 
dise. Performing the réduction of section 3, we are led to the operator 

Q = Qz = Q™(x, hD) = Qw(x, hD, z) 

on Tq = T2 with semiclassical Weyl symbol: 

(5.1) Q(x, £, z; h) ~ q0(x, £, z) + hq^x, £, z) + h2q2(x, £, z) + • • • , |£| < 0(1), 

with 

(5.2) qo(x,0,z) = 0, 

and ÇOJ 9iî • • • dépend smoothly on Further, we have the ellipticity property: 

(5.3) Mx,Ç,z)\~\t\. 

In the région |£| E]/i5, (9(1)], for (5 > 0 close to 0, we shall invert Q™ by ellipticity. 
In the région |£| ^ hô, we shall use 2nd microlocalization, which here only amounts to 
considering our operators in the "h = 1" quantization, after a cosmetic multiplication 
by h~1. The corresponding symbol (for the h = 1 quantization) is then 

(5.4) 1 
/i 

•(x,h£,z;h) ~ Qo(x,Ç,z) + hQi(x,Ç,z) + h2Q2{x,£i,z) + ••• , 
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where the RHS is obtained by Taylor expanding at £ = 0 and regrouping terms 
according to powers of h. We get 

(5.5) Qo(x,Ç,z) = 
2 

vrd 

dqo 
vrd 

x,0,z)Çj+qi(x,0,z), 

while the higher Qj will involve higher order Taylor expansions. Qj is a polynomial 
of degree at most j + 1 in £, and in particular, 

(5.6) Qj e ^ ( T T o ) . 

The expression (5.4) shall be considered only in the région \h(\ ^ hô, i.e. for |£| ^ 
h6"1, so (5.4) is a well-defined asymptotic sum for h —> 0 of symbols in 5j)0. The 
operator QO(#Î Ao^) is precisely of the type studied in the preceding section, the 
ellipticity follows from (5.3). 

From section 4 and Appendix A of section 1 we recall that Qo(x,Dx,z) can be 
reduced by a change of variable to A{x,z)-§= + q{x,z) on C/L(z), where A,g,L 
dépend smoothly on z, and that this operator: HQ —> HQ is invertible when 0 £ 
|^r(JB(-, z)q(-, z))(0) + L*(z) (with B = 1/A) and otherwise it has one dimensional 
kernel and cokernel. It will also be useful to recall that Qo can be further simplified 
by conjugation to 

[5.7) Q0(x,Dx,z) = Qn = d 
dx 

00{z), 

where 

(5.8) 0o(z) = 
2 

i 
3q(Q,z). 

A simplified version of the discussion below shows that j^Qz : HQ —> H§ is invertible 
(microlocally in |£| ^ 0(1)), when dist(0,0o(z) + L*(z)) ^ 1/0(1). We concentrate 
on the more interesting case when this distance is small. Since 0 is really defined only 
modulo L*(z), we décide to think of 0 as a complex number close to 6Q{Z). 

Let ee(x) = ce~l6'x with • indicating that we take the R2 scalar product, and 
c = c(z) is chosen to normalize eo(x) in HQ(C/L(Z)). Then 

(5.9) Qo(M) = 
'Qo(z) R-,e 
R+,e 0 

Hg x C —»5jxC 

is bijective, where 

(5.10) R+ju = (u\ee), R-,oU- = u-eo. 

We dénote the inverse by 

(5.11) £o(0,z) = 
E°(6,z) E\(e,z) 

\E0_(e,z)E°(6,z) 

This dépends smoothly on z and analytically on 6. By Beals' lemma, we know that 

(5.12) E° e oPl0srJ). 
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Moreover, 

(5.13) E°+(0,z)v+=v+e°+(0,z), E0_(9,z)v = (v\e0_(9,z)), 

where e\ € C|°, and E°_+ € C with 

(5.14) \BfL+{0,z)\~\0-00(z)\, 

and with 0o(z) defined in (5.8). More explictily, using (5.7), we have e°+ = e°_ — e#, 
E*L+(0, z) = i§- Bq(0). Recall or notice that Qo(z) : H} H% is invertible precisely 
for 0 ^ 6>o and that the inverse is given by E°(6, z) - E%(0, z)E°_+(0, z)~1E^(0, z). 

Now put 

(5.15) Q(0,z) = 
'{Qz{x,hDx;h) R-f 

R+,9 0 , 

formally as an operator Hl x C —» Ha x C, so that (in view of (5.4)) 

(5.16) Q(0,z)~ 
OO 

U 

h3Qj(0,z), 

with 

(5.17) Qi(0,z) = 'Q<(x,Dx,z) 0" 
0 0 

d+d1r 

For simplicity, we assume that the same conjugation that simplified Qo to the form 
(5.7) has been applied to h~1Qz. We invert Q formally by the asymptotic Neumann 
séries 

(5.18) £ = £0 - SQ(Q - Qo)S0 + £0(Q - Qo)£o(Q - Qo)£o 

vr 
OO 

0 
-Dk£o((Q-Qo)£o)k = 

OO 

0 
(-i)k(£o(Q - Qo))k£o-

Write Qh = ±Qz(x,hDx;h). Then 

(5.19) (Q-Qo)£o = 
Qh - Q0)E° (Qh - Qo)E°+' 

0 0 
and for k ^ 1: 

(5.20) ((Q-Qo)£o)fc = 
•{Qh - Qo)E°)k ((Qh - Qo)E°)k'1(Qh - Qo)E°+ 

0 0 

The gênerai term in the séries (5.18) becomes 

(5.21) (-l)k£o((Q-Qo)£o)k = 

(-l)kE°((Qh-Qo)E°)k (-l)k(E°(Qh-Qo))kE0+ 
(-l)kE°_((Qh - Qo)E°)k (-l)kE°_((Qh - Q0)E°)k-l(Qh - Q0)E°+/ 

Here (Qh — Qo)E°, E°(Qh — Qo) are (h — 1) pseudodifferential operators with sym-
bols in hSlQ + h2Sl0 + ••• . ((Qh - Q0)E°)k, (E°(Qh - Q0))k then have their 
symbols in 'hkSk>0 + hk+lSk^ + ••• . It follows that E°((Qh - Qo)E°)k has its 
symbol in hkSk^ + hk+1Sk\0 + ••• . Moreover, (E°(Qh - <2o))fc£>+ = v+ek+, 
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with e% in /îfcC£° + hk+1C$° + ••• and similarly for E°_{{Qh - Qo)E°)k. Finally 
E°_ ((Qh - Q0)E°)k-1(Qh - QQ)E% belongs to hkC + hk+1C + •••. Using ail this in 
the asymptotic séries (5.18), we get 

(5.22) e = 
E(Ô,z) E+(0,z) 

E-(6,z) E-+(6,z) 

where 
- E(0, z) is a 1-pseudodifferential operator with symbol in S^l + hS^Q H . 
- E+v+ = v+e+, E-u = (w|e_), with e± e C°° + hC°° + h2C°° + •••'. 
- E-+(ê, z) E C + hC + h2C H , more explicitly, 

(5.23) £_+(<?, z) ~ E°,(6, z) + hElAO, «) + ••• 

Formally, the spectrum of (acting on 0-Floquet functions) will be the set of values z 
for which E_+(0,z) = 0. 

We will now sum up the discussion of this section, and for that it will be convenient 
to return to the case of the standard torus IV Then the dual lattice "L*(z)" is simply 
Z2 and Qo(z) in (5.5) will be invertible HQÇTQ) —• i/gTo) precisely when 

(5.24) 0ÏOo(z) + Z2, 

where Ooyz) G R dépends smoothly on z. 

Proposition 5.1. — Let C > 0 be a sufficiently large constant. 
1. Fordist (#,#o(z)+Z2) > 1/C, z G neigh(0,C), there exists an operatorF(6,z;h) = 
0(1) :Hfj ->H$ such that: 
la) F is pseudolocal in the sensé that (hD)Nxi(x, hD)F\2{x, hD)(hD)N = 0(hN) : 
H$ —• H% for every AT G N and ail \j G Cg°(T*T0), j = 1, 2, independent of h with 
(suppxi x suppx2) H (diag (r*r0)2 U (r0 x {0})2) = 0. 
lb) There is a neighborhood V C T*TQ o/Tq x {0} such that 

1 ? F - 1 s+s4s+s ̂ 1 W-l = 0(fc°°) : #2 — flj, 

/or e?;en/ x G Co°(V), independent of h. The same holds with Fj^Q instead of \QF. 
(Notice that thèse compositions are welldefined modO(h°°) : HQ —> HQ.) 
2. For dist(0,0o(z) + Z2) ^ 1/C, we may assume (by Z2-periodicity in 6) that 
6 G R2, \6 — 0Q{Z)\ ^ 1/C. Then we have rank one operators = (u\ee,z), 
R-,eu- = u-fe,z, R+,e : H$ C, : C —• H$, with ee,z,fe,z e H°E n Cg° 
depending smoothly on 6,z, independent of h, and a bounded operator 

£ = E{9,z\h) E+(0,z;h 
E-(0,z;h) E-+(0,z-,h] 

= 0(1) : HQ x C —• HQ x C, 

with the following properties: 
2a) E is pseudolocal as in la. 
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2b) If C^°(T*To) is independent of h and T0 x {0} fl suppx = 0, then for every 
N e N : 

(hD)NYwE+ = 0(h°°) : C —• H%, E„Yw(hD)N = 0(h°°) : HS —• C. 

2c) E-+ has the asymptotic expansion (5.23) with \E^_^_(6,z)\ ~ \6 — 0o(z)\. 
2d) £ is an inverse of Q in (5.15) in the sensé that 

(Q£ - 1) <XW 0 
0 1 

ds+d1d 
0 1, 

(Q£ - 1) = 0{h°°) : Hg x C —• HQ x C, 

/or a// x € Cq°(V), independent of h. Here V is as in lb and we can replace Q£ by 
£Q in the preceding estimâtes. 

6. The main resuit 

Let $o De a strictly plurisubharmonic quadratic form on C2 and let P(x,Ç) = 
P(x,Ç,z;h) be a bounded holomorphic function in a tubular neighborhood of A$0, 
which dépends holomorphically on z e neigh (0, C), with the asymptotic expansion 

(6.1) P(x,Ç,z;h) ~ 
OO 

k=0 
pk(x,Ç,z)hh, 

in the space of such functions. Later, it will be convenient to assume that the sub­
principal symbol vanishes: 

[6.2) Pi(x,Ç,z) = 0. 

Also assume ellipticity near infinity: 

(6.3) \p(x,Ç,z)\ > 1/C, (x ,0 G A*0, |(x,OI > 

where p = po. (The boundedness assumption above could easily be replaced by 
some other symbol type condition, provided of course that we modify the ellipticity 
assumption accordingly.) 

Assume for z = 0, that E = p~x(0) D A$0 is smooth, connected and that 

(6.4) dpA&0, dPA& are linearly independent on E. 

Further assume that 

(6.5) {PA*n>PA*„} 1S Sma11 011 E> 

where we adopt the convention of section 1, that we have uniformity in the other 
assumptions. Recall also from section 1, that this implies that E is a smooth torus. 
Notice that the assumptions above will also be fulfilled for p = z) when z is close 
enough to 0. 

In section 1, we showed that p(-,z)_1(0) contains a smooth torus T(z), which is 
close to E and such that 

(6.6) )(e^ù)(v) = T{ 
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(6.7) /j(RW,w)€R, J = 1,2, 

where UJ = Çidxi + £2^2 and Ij(T(z),u) is the corresponding action along the jth 
fundamental cycle in T(z). (Any other global primitive of a gives the same actions.) 
T(z) is not unique, but thanks to (6.7) its image in the quotient space M{z) of 
p(-,z)-1(0) by the action of iïp(.,*), is unique. The full preimage of this image is a 
complex Lagrangian manifold A(z) which is also uniquely determined and which can 
be viewed as a complexification of the totally real manifold T(z). This is A^ in (1.32). 

It is easy to see that T(z) can be chosen to dépend smoothly on z. Also thanks to 
(6.7), we have T(z) C Az, where Az = Aq>z is an IR-manifold close to A$0 and we can 
view T(z) as a Lagrangian submanifold of this real symplectic manifold. Az can also 
be chosen to dépend smoothly on z, and we may assume that &z — $0 = 0(1) 

Let Ij(z) = Ij(T{z),uo), I(z) = (h(z)J2(z)) G R2. Let P(z) = Pw(z) = 
Pw(x, hDx, z\ h) be the corresponding Weyl quantization which acts on H$Z. Let U = 
U(z), Q = Qw{z) be as in Proposition 3.1, and dépend smoothly on z G neigh (0, C). 
Then Q0 = Q0(x,Dx,z) : HQ(T0) —• HQ(T0) (cf. (5.4)) is invertible precisely when 
0 £ 6o(z) + Z2, where 60 G R2 dépends smoothly on z (cf. (5.14)). We also recall 
from section 3, that we will naturally have 0 = I(z)/(2irh). We first consider the case 
when 

(6.8) His1 -m 
<2nh 

e0(z) + z2) 2 1 
C 

Let X2 G Co°(neigh(7rRR(R(0)), C2)) be equal to 1 in a neighborhood of 7rXR(0). As an 
approximate right inverse to h~1Pw(z), we take 

(6.9) J := MI*GII*(1 - X2) 4- n<s>U*FUÏl<s,X2, 

where F = F(z) is given by Proposition 5.1, with 6 = I(z)/(27rh)1 and G = G(z) 
is an asymptotic inverse to Pw away from 7rx(T) in the sensé of Tôplitz operators in 
section 3 of [MeSj], and 11$ is the orthogonal projection L2(e~2®/hL(dx)) —• H$. 
Then 

p m * G N * ( i - x2) = N*(I - X2) + o{h°°) : h* —• h*. 

On the other hand, if we use local unitarity of U, the pseudolocality of F and 4) 
of Proposition 3.1, we get 

1 
h 

Q0(x,Dx,z) : HQ(T0Q0(x,Dx, 1 

h 
d+dd41d+ed 

= n<pU*UIl<s>X2 = N$X2 modO(h°°) : H$ —• H*. 

It follows that 

(6.10) 
1 

h 
>w(z)J = n* = 1 modO(h°°) : H*> —• 

(Most of our operators as well as $ dépend on z, and this dependence is always 
smooth.) 
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In the same way we can show that 

(6.11) k = n#(i - X2)n*ftG + u^x2^u*fu 

satisfies 

(6.12) K 
1 

vr 
Pw = 1 modO(h°°) : H* —> H*. 

We conclude that under the assumption (6.8), the operator j^Pw : H<& —• has an 
inverse which is uniformly bounded, when h —> 0. 

We now consider the case when 

(6.13) dist vr 
2nh' 

0o(z) + Z2 vr 
1 
C1 

for some large fixed C > 0. Let k be the point in Z2 such that 

fc + 
I 

2nh 
•-Oo(z) < 

1 
C 

We apply the second part of Proposition 5.1 with 6 = k +1/(2nh). Let £, R+, R- be 
as there. Consider 

(6.14) V{z) = 
Q0(x,Dx,z) : HQ 

R+(z) 0 
H$z x C —• H<f,z x C, 

with 

(6.15) R+ = R+U, R- = 

As an approximate right inverse to V, we take (with E, E±,E-+ as in (5.22)) 

(6.16) d+d1rd <wi*g twi - X2) + n*c/*M/n*Y2 n*£/'£+ 
E-U Q0(x,Dx,z) : HQ(T0 

vr E E+ 
E— E (_ 

We need to check that 

(6.17) 
'±PE + lls,R-E- = 1, èP-Eo- + II*J?_.E_+ = 0, 

R+E = 0, R+E+. = 1, 

module- terms that are 0(h°°) in operator norm: 

- P E + n*iî_.E_ = n$(l - x2) + TPU^U*EUU^X2 + TL*U*R-E-V 
h h, 

= n*(i - x2) + n*u*-QEun<s,X2 + tuu*R-E-u 

= n#(i - x2) + u*u*-qeutux2 + u^u*R-E-UU^X2 

= n*(i - X2) + n*t/*tm»X2 = 

= i, 
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1 
hJ 

Q0(x,Dx,z) : HQ(T0 
1 

v 
°n^u*E+ + n^u*R-E-+ 

= n$[/*( 
i 

vr 
E+ + R-E-+) = n*t/*o = 0, 

R+E = i?+c/n$X2(/in$Gn$(i - X2) + TUU'EUTUXI) 

= o + mju*Eim*y« = R^Eun^o = o. 

R+E+ = R+UU^U*E+ = R+E+ = 1. 

So, 

(6.18) P&. = 1 + 0(/i°°) 

Similarly, we check that 

(6.19) £tV = l + <D(h°°), 

where 

[6.20) £i = 
n*(i - X2)n$ftG + niX2^u*Eu n*u*E+\ 

E-.U E-+ 

We sum up the discussion so far: 

Proposition 6.1. — Under the preceding assumption, there exists a smooth map 
neigh (0, C) >—> 9Q(Z) G R2, such that if we fix C > 0 large enough: 
1) For à\st{I{z)/{2T:h),80{z) + Z2) ^ (2C)"1, h~lPw{z) : H*, -» fcas a um-
formly bounded inverse. 
2) For 

(6.21) dist(J(z)/(27r/i),0o(*) + Z2) < 1/C, 

t/ie operator V(z) in (6.1 A) has a uniformly bounded inverse 

(6.22) Hz) = F(z) FUz)^ 
FM) F-+(z)j 

: H$z x C —y H^z x C 

Modulo terms that are 0(h°°) in operator norm, we have 

(6.23) F+(z) = U*(z)E+(k 
I(z) 

d+d1 
dd+d1 

F-{z) = E-\ dd 
I(z)d 
2nh 

z:h)U(z\ 

F-+(z) = E-+ vr Hz) 
2TT/I' 

z;h), 

^here k e Z2 is the point with \k — 0o(z) + I(z)/(27rh)\ < 1/C, and E+, E-, E-+ are 
pven in Proposition 5.1. 
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From (6.23) and (5.23) we get the following asymptotic expansion in case 2) of the 
proposition: 

(6.24} F-j.(z:h) ~ E° , 'k-t. 
I(z) 
2TI7I' 

+ hEU 
I(z) 

2TÏ7I 
,z) +••• . 

valid in the sensé that 

(6.25) 

where 

(6.26) 

\RN(z;h)\^CNhN+\ 

RN(z:h) = F-+(z;h) 
N 

0 
VEL+[k + 

I(z) 
2nh 

z). 

We shall next see that (6.24) can be differentiated with respect to z in the natural 
sensé. Indeed, it is clear that V{V(z) = 0(h~j) in operator norm for j = 0,1,2,... , 
so if we use that 

(6.27) VzT{z) = -T(z)VzV(z)T(z) 

and similar more elaborate expressions for V^(z) , we see that 

(6.28) Q0(x,Dx,z) : HQ(T0 

in operator norm for j = 0,1,2, In particular, 

(6.29) ViF-+(z:h) = 0(h-*), 

and the same estimate holds for each of the terms in (6.24). It follows that 
(6.30) (hVzyRN(z-h) = <D(l). 

Now combine (6.25,30) with elementary convexity estimâtes for the derivatives te 
conclude that 

(hVz)jRN(z;h) = 0(hN+1-% 
for every e > 0 (after an arbitrarily small increase of the constant C in (6.21)). Since 

RN(z;h) = hN+1E?+1\ k-
I(z. 

2-ïïh 
lz) +RN+1(z;h), 

we get 

(6.31) (hvzyRN(zih) = o(hN+1), 

for every j = 0,1,2, So we have proved that (6.24) can be differentiated with 
respect to z as many times as we want, in the natural way. 

In this context, it may be of some interest to notice that F_+ is holomorphic in z 
after multiplication by a non-vanishing factor. Indeed, from (6.27) and the fact that 
c\Pwlz) = 0, we get 

d*F-+ + F-(d*n*R-(z))F-+ + F-+(dïR+)F+ = 0. 

Since F_+ is scalar, this simplifies to 

(6.32) (d,+v(z))F-+(z) = 0, v(z) = F_(d,n*i?_(*)) + (^P+(z))F+ 
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If dzV(z) = v(z) (and this équation can always be solved after increasing C in (6.21)), 
we get 

(6.33) <h{ev^F-+) = 0. 

Since VJzv = 0(h~l~3), j > 0, we can restrict the attention to some dise of radius ch 
(after fixing k after (6.23)) and get 

(6.34) V{V = 0(/T'), j > 0. 

(Make the change of variable: z = ZQ + hw.) 
We recall a gênerai fact about Grushin problems, namely that Pw(z) is invertible 

precisely when F_+(z) is. We will say that z = zo is an eigen-value of z ^ Pw(z) 
if Pw(zo) is non-invertible. For such an eigen-value, we define the corresponding 
multiplicity m(zo) to be the order of zo as a zéro of the holomorphic function eyF_+. 
In the appendix A to this section we show that this multiplicity does not dépend on 
the way we construct the Grushin problem and also that it is the order of zo as a zéro 
of det Pw(z) in case P(z) — 1 is of trace class. 

We shall next use the assumption (6.2) and show that we have 0Q(Z) = Const. G 
(|Z)2. We shall do this by studying Floquet periodic WKB solutions in a neighbor­
hood of 7rx(E), and we start by reviewing some facts for such solutions when working 
with the Weyl quantization for the corresponding pseudodifferential operators. (Cf. 
Appendix a in [HeSj2].) 

Recall that the Weyl quantization of a symbol p on R2n is given by: 

(6.35] pw(x,hDx)u{x) 
1 

(2nh)' 
Q0(x,Dx,z) : H 'x + y 

2 
0)u{y)dyd0. 

Let 4>(x) be a smooth and real function. (The adaptation to the complex environment 
will be quite immédiate.) Then 

(6.36) e-i^x)pw(x, hDx)e^x)u{x) 

f 1 
(27T/l)n , 

e±((x-y).e-(4>(x)-<p(y)))p d+d1d 
2 

0)u{y)dyd0. 

Employ the Kuranishi trick: (j>{x) — (f)(y) = (x — y) • $(x, y), with 

*(z,2/) = 
-1 ; 

vr 

0 
dx 

(tx + (1 - t)y)dt, 

and notice that 

d+d1d+d1 d(f)/x + y\ 
dx\ 2 

+ 0((x-y)2). 
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Then, 

(6.37) e-^^pw(x,hDx)e^x)ud 
1d 

vrd 
(27rh)n 

* eHx-y).(e-*(x,y))p\ x + y 

2 
0)u(y)dyd0 

dv 1 
(2<irh)n , 

d+d1d6d (x + v 
2 

0 + $(x,y))u(y)dyd0. 

Here 

(6.38) P 
'x + y 0 + &(x.v) = p x + y 

2 ,0 + 
d(j> (x + y 
dx\ 2 

+ 0((x-y)2), 

and it follows easily (by double intégration by parts with respect to 0 for the con­
tribution from the remainder) that the /i-Weyl symbol of e~^^x^pw(x, hDx)e^^x^ is 
equal to p(x, 0 + §£(a;)) + 0(/i2). 

Suppose that <\> solves the eikonal équation 

(6.39) P x 
dv 

(x) = 0. 
dx 

We look for a smooth function a(x), independent of h, such that 

(6.40) e-Wx)pw(x,hDx)ei+Wa(x) = 0(h2), 

and get 

(6.41) p^(x,hDx)a(x) = 0(h2), 

where 

(6.42) Ps(x,£) = P\x,£ + 
d<t>, 
dxy 

vd 

Write 

(6.43) Q0,z) : HQ(T0 
n 

1 

dP4> Q0(x,Dx,z) : HQ(T0 

The remainder will give an 0(h2) contribution to (6.41) and the Weyl quantization 
of the sum is 

(6.44) 
1 
2 

n 

1 

(dP4> 
d+d12d 

x, 0) o hDx. 4- hDx. c 
vrd 

v+d1 
x,0)) = 

h 

i 
v\x 

d * 
dx> 

4 
1 
9 

div(i/)J 

where i/(x, ^ ) = X, 7^(x>0)âi~ can ^e identified with the restriction of Hp to A^: 
£ = <t>f{x). The équation (6.41) therefore boils down to the transport équation 

(6.45) d+d1 d > 
<9x 

4-
1 

2 
iiv(i/))a = 0. 

As in [DuHo] the last équation can also be written in terms of the Lie derivative of 
v acting on a half density: 

(6.46) Cv{a{x){dxx-'dxn)xl2) = 0. 
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Recall that A(z) C p{-,z) 1(0) is a complex Lagrangian manifold which can be 
viewed as a complexification of T(z). We can represent A(z) by 

(6.47) d+d1d d<l>, 
dx 

x,z), x e neigh (^(E)), 

where 0 is grad periodic, smooth in both variables, holomorphic in z and (cf. (2.4)) 
satisfies 

(6.48) ${x, z) + Im é(x, z) ~ dist (x, 7rxT(z))2, 

where $(-,z) = QZ, AZ = A$Z. If 71,72 C TTX(T(Z)) are two fundamental cycles, we 
also have 

(6.49) var7,0(-,*) = L{z), p(x, dé, 
dx 

x,z),z) = 0, 

with Ij(z) = IJ(T(Z),OJ). We look for a multivalued holomorphic symbol a(x) • 
a(x, z) (being the leading term in an asymptotic expansion) such that 

(6.50) Pw{x,hDx,z;h) 1 x, z)e^XiZ),h) = 0(h)ei<p{x'z)/h 

As reviewed above, (6.50) is équivalent to the transport équation 

(6.51) Cv{a(x){dx1/\dx2)1/2) = 0 

where v ~ Hp,~ . We only want to solve (6.51) to infinité order on TTX(T(Z)) which is 
I A(Z) 

maximally totally real, so we can restrict (6.51) to this torus by interpreting v ~ Hp 
as a complex vector field here. Once (6.51) is solved on the submanifold, we get it to 
infinité order there, by taking almost holomorphic extensions. 

Recall from section 1 that there is a diffeomorphism 
(6.52) Q : F(z) —> C/L(*), 
depending smoothly on z such that 

(6.53) v ~ H,, = A d 
dQ 

where A = A(Q, z) is smooth and non-vanishing. 
Write a(x)(dx1 A dx2)1/2 = b{Q){dQi A dQ2)1/2, Q = Qi+ iQ2. We notice that 

(dxi Adx2)1/2 
(dQ! A dQ2)V2 

is not necessarily single valued, but #i-Floquet periodic for some 6\ € \L*. Then 
(6.51) becomes 

CAjL(b(dQ1AdQ2)1/2)=0, 

and more explicitly 

(6.54) A d , 1 d 
dQ 2dQK 

A)b = 0, 
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since d i v ^ ^ = =̂= A. (6.54) can also be written 

(6.55) 
d 

dQ 
[A^2b) = 0, 

where we notice that Al/Z is a-Floquet periodic for some a G ^L*. 
We restrict the attention to solutions u = /i~1/2ae*^//l of (6.50) which are multi-

valued but u;-Floquet periodic in the sensé that 

uÇT-^x)^) = e2™*u(x,z), j = 1,2, u = (uuu2) G R2/Z2, 

where Tj is the natural action of the fundamental cycle 7j on the covering space of 
neiffh(7r^fr(z)),C2). Then, 

a(T7l(x),z) = é{2^+I^z))'ha(x,z\ 

so the restriction of a(-, z) to 7rx(r(z)) is oj + I(z)/(2-Kh) Floquet periodic if we identify 
7rx(T(z)) with the standard torus T0. Then b(Q, z) is u + + 0i Floquet periodic 
(as a function on T0) and hence Al/2b is u; + - 92 Floquet periodic for some 
02 G (|Z)2. We now require that a be non-vanishing. Then from (6.55), we see that 
A^l2b is periodic and hence u + - 62 =0, modZ2: 

(6.56) UJ = -
Kz) 
2irh 

h 09 in R2/Z2. 

Since U(z) is pseudolocal, we can define U{z)u mod 0(h°°) as a 02-Floquet periodic 
function on To which is microlocally concentrated to a small neighborhood of the zero-
section of T*T0 with the property that ||^(^)W||HO2 ~ 1- From (6.50), we get 

Qw(x,hDx,z;h)(U(z)u) = 0(h2) in H02. 

This implies that we are not in the case 1) of Proposition 5.1 for any C > 0 and 
consequently (since 02, 6(z) are independent of h), that 02 = 6{z) modZ2. We have 
proved under the assumptions above, in particular (6.2): 

Proposition 6.2. — 0Q in Proposition 6.1 is independent of z and belongs to (^Z)2. 

We have proved most of our main theorem below. The resuit will be most complète, 
under the additional assumption (1.51): 

(6.57) z i—y (Ii(z),I2(z)) G R2 is a local diffeomorphism. 

Theorem 6.3. — Let Pw(z) : H<$>0 —> H$0 satisfy (6.1-5), where $o is a strictly 
plurisubharmonic quadratic form on C2, and define I(z) = (Ii(z),I2(z)) as after 
(6.7). Let 0O G ^Z2 be defined as above. There exists 0(z; h) ~ 60 + 0i(z)h + 62(z)h2 + 
• • • in C°°(neigh (0, C); R2), such that for z in an h-independent neighborhood of 0 
and for h > 0 sufficiently small, we have: 
1) z is an eigen-value (i.e. Pw is non-bijective) iff we have 

(6.58) 
I(z) 
2irh 

= 6(z] h) — k, for some k G Z2. 
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2) If I is a local diffeomorphism then the eigenvalues form a distorted lattice and they 
are of the form z(k; h) = z0(k; h) + 0(h2), k G Z2, where 20(fc; h) is the solution of 
the approximate B S-condition: 

(6.59) 
I(zo(k;h)) 

2-Kh 
00-k. 

Thèse eigen-values have multiplicity 1 as defined after (6.34). 

Let 
ZFC = {2Gneigh(0,C); Hz) 

2-nh 
•k-60\< 1/3}, k G Z2, 

so that the Zk are mutually disjoint and ail eigen-values have to belong to the union 
of the Zk and so that every eigen-value in Zk has to be a solution of (6.58) with the 
same value ofk. Let Zk be a connected component of Zk. 
3) Assume (for a given sufficiently small h) that not every point of Zk is an eigen-
value. Then the set of eigen-values in Zk is discrète and the multiplicity of such an 
eigen-value z (solving (6.58)) is equal to vararg7(^^ + k — 0(w;h)) G { 1 , 2 , . . . } , 

where 7 is the oriented boundary of a sufficiently small dise centered at z. Here the 
orientation in the I is obtained from identifying the 6-plane with C so that we have 
the expression for E^__^_(0, z) after (5.14)-

Proof. — For k G Z2, let 

Qk(h) = {ze neigh(0, C); + k - 0O\ < 1/C}, 

for some fixed and sufficiently large C > 0. Then according to Proposition 6.1, ail 
eigen-values of Pw(z) are contained in the union of the Qk(h). Moreover the îîfc(ft) 
are mutually disjoint, and for k ^ £, we have that dist (fîfc(h), Qe(h)) ̂  c\k — £\h, for 
some constant c > 0. 

From (6.24) and the fact that this also holds in the C°°-sensé, we see that there 
exists a smooth function 

E-+(0,z\h) ~ E°_+(0,z) + hE1_+(e,z) + -.- , h—> 0, 

defined for 0 G neigh (0Q, C), such that 

(6.60) F-+(z;h) = E-+(k+ %%,z-,h), zenk(h) 

As remarked after (5.14), we may assume, with a suitable identification of the 
/-plane and C, that 

(6.61 i £ + ( M ) = (0-Ôo) 

where #0 = #0(2) now dénotes the complex number which is identified with the pre-
vious 6Q. We equip the /-plane with the corresponding orientation. 

Let 6(z; h) be the unique zéro close to 60, of the function 0 1—• E-+(0, z\ h). Then 0 
is smooth in z and has an asymptotic expansion as in the theorem. Clearly z G fîfe(ft) 
is an eigen-value iff k + = 0{z\ h), i.e. iff (6.58) holds. This proves 1). 
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The implicit function theorem gives everything in the statement 2) except perhaps 
that the eigen-values are simple. From (6.60) it is clear however that the eigen-values 
z(k;h) must be simple zéros of the holomorphic function ey^;/l^F_+(z; h) in (6.33), 
so 2) holds. 

We now make the assumptions of 3) and identify the /-plane with C as in (6.61). 
In view of (6.60), and Taylor's formula for 9 »-> E-+(0, z\ h), we get for w G H fî^: 
(6.62) F-+(w:h)=E-+(k + Ilw) 

2irh 
.w:h) - (Q(w; h),w; h) 

= A(w:h)(k- I(w) 
2irh 6(w:h)) + B(w:h)(k d+d 

d+dd 
-e(w,h)).. 

where A, B are smooth in w with bounded derivatives to ail orders. Moreover |̂ 4| ~ 1, 
\B\ <C \A\. Let z G Zk be an eigen-value (necessarily in fîfc, and let 7 be as in 3). From 
(6.62) and the fact that A dominâtes over B, it follows that F_+ and fc+ ̂ h~^(w:> ^) 
have the same argument variation along 7, and 3) follows. • 

We next compute the differential and the Jacobian of the map z »-> (Ii(z), I2{z)) 
and show that (6.57) ((1.51)) is équivalent to the property (4.16). We fix some value 
of z, say z = 0. Choose grad-periodic coordinates Qi,Q2 on T(0), so that 

(6.63) Hp = A(Q) d 
dQ 

on r(0) ~ C/L, L = Zei 0 Ze2: 

where A(Q) ^ 0 M Q. Extend Qi,Q2 to grad-periodic functions in a neighborhood of 
T(O) in A$z=0, and let Pi, P2 be corresponding "dual" coordinates, vanishing on T(0), 
so that (Qi,Q2;Pi,P2) are symplectic coordinates near T(0). 

Then 
p = -i4(Q)(Pi + iP2) + zr(Q) + 0(P2) + G(z2), 

wherer = |f(-,0). r(*) can be représentée by 
P = VQg(Q,z), 

where g = 0(z) is grad-periodic and 

p(Q,VQg,z) = 0, 

so that 

(6.64) w+w4w dg 
dQ 

f zr(Q) = 0(z2). 

Let Jj{z) be the actions in T(z) with respect to P\dQi + P2dQi. By Stokes' formula, 
Ij — Jj is independent of z and since the différence is real for z = 0, we know that 
Jj(z) are real. From this and (6.64) we see that 

(6.65) g = b(z)Q + b(z)Q + Oper + OU2), 

where oDer is periodic and 

b(z) = -zr/A(0), (6.66) 
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where the hat dénotes Fourier transform on C/L(0): r/À — T(r/A). It follows that 

(6.67) Jj(z) = b(z)ej + b(z)ê] + 0(z2). 

The map in (6.57) has the same differential as that of the map z i—> (Ji(z),J2(z)), 
and we get for z = 0: 

dh A dl2 = (eidb 4- eidb) A (e2db 4- e2db) = {e\e2 — e\e2)db A db, 

so for z = 0: 

(6.68) det 
d+dd4d+d4e 

d(zi,z2) 
2i(e1ë2-ë1e2)\F(dzP/A){0)\2. 

The équivalence of (6.57) and (4.16) follows. 
For z = 0, let ÀP5o be the Liouville measure on T(0) defined by 

Àp5o A dRep A dlmp = /i, 

where /x = \<j2 is the symplectic volume élément on A$z=0. In our spécial coordinates, 
we have 

p = 
2 

A(Q)(Pi+iP2) + 0(P2), 

for z = 0, and the Liouville measure becomes Àp?o = 4|A| 2L(dQ). The Hamilton 
field of #p on T(0) is = A(Q)-§=, which has the adjoints 

d+d41dr d 
dQ 

A(Q), H; = • •\A\2 d 

dû 

1 
A' 

with respect to the measures L(dQ) and \p,o(dQ) respectively. Using that the volume 
of C/L = T(O) with respect to L(dQ) is equal to \\{e\ë2 — e\e2)\, we see that the 
1-dimensional kernel of in L2(r(0), \p${dp)) is spanned by the normalized élément 

/:=|2z(e1ê2-ë162)|-1/2A 

and a straight forward calculation from (6.68) gives for z = 0 

(6.69) det 
d(hJ2) 
d(zuz2) 

= / dzpfXpn(dp)\ 
|2 

| ( l-n)^|2Ap,0(dp), 

where in the last expression we used the notation of (8.38) in [MeSj], so that 1 — II 
is the orthogonal projection onto the kernel of in L2(ÀP5o)-

Assuming (6.57), the density of eigenvalues, given in 2) of the theorem, is 

1d 
(2TT/I)2 

det 
d(lul2)\ 
d(zi,z2) 

+ o(l)V h—+0. 

Assume that P(-,z) —> 1 sufflciently fast at oo, so that detPw is well defined. Since 
the eigenvalue z{k\h) is a simple zéro of this déterminant and c^d^-log^l = ^5, 
z(k;h) will give the contribution \b*(z — z(k;h)) to dzdz\og|detPw(z)\ and hence in 
the sensé of distributions (or even the weak measure sensé), we have 

(6.70) 0z^log| det f^O*)^ 1d 
(2TT/I)2 

'7T| 

K2\ p-H-,z)(o) 
dzpf(z)\p,0(dp) +o(l) 

|2 
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where we now let / vary with z in the obvious sensé. This is in perfect agreement 
with (8.38) of [MeSj], where we computed dzc\I(z) for an (infinitésimal) majorant 
(27rh)~2(I(z) + o(l)) of log | det Pw(z)\. 

Appendix A: Remark on multiplicities 

Let Cl C C be open and simply connected. Let W be a complex Hilbert space and 
let 

V(z) = 
P(z) R-(z) 

R+(z) 0 
: H x CN —• H x 

dépend smoothly on z € il and be bijective for ail z. Assume that 

dP(z) = 
dP 

dRez 
dRez -f 

dP 
dlmz 

dlmz 

is of trace class locally uniformly in z. Write 

Q0(x,Dx,z) : HQ(T0 E(z) E+(z) 
E(z) E-Uz)) 

Recall that P(z) is invertible precisely when E-+(z) is and that we have 

(A.1) P(z)-1 = E(z) - E+{z)E_+{z)-lE-{z). 

Proposition. — Let 7 C SI be a closed C1-curve along which P(z) (or equivalently 
E \-(z)) is invertible. Then 

(A.2) tr - 1 

2m J1 
P(z)-1dP{z)\ = tr 1 

d+dr+d4 r 
7 

E_+(z)-1dE-+(z)) 

Proof. — From dS = —SdVS, we get 

(A.3) -dE = EdPE + E+dR+E + EdR-E-, 

-dE+ = EdPE+ + E+dR+E+ + EdR-E^+, 

-dE^ = E-dPE + E-+dR+E + E-dR-E-, 

-dE-+ = E.dPE+ + E-+dR+E+ + £_<£R_£_+ 

We get, 
tr P~ldP = tr (EdP) - tr (E+EZ\E-dP). 

Here by the cyclicity of the trace and the last équation in (A.3): 

- tr (E+EZÏE-dP) = - t r (EllE-dPE+) 

= tr (ElldE-+) + tr (EllE-+dR+E+) + tr (El}E-dR-E-+) 

= tr (ElldE-+) + tr (dR+E+) + tr (E-dR-). 

It follows that 

(A.4) tr (P^dP) = tr {EZ\dE-+) + w, 
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with 

(A.5) UJ = tr (EdP) + tr (dR+E+) + tr (£_oLR_). 

If we assume that V is holomorphic, then £ will be holomorphic and lu will be a 
(l,0)-form with holomorphic coefficients, hence closed, and the Proposition follows, 
since Q, is simply connected. 

In the gênerai case it suffices to verify that lu is still closed, as we shall now do. 
Using the obvious calculus of differential forms with operator coefficients, we get: 

duo = tr (dE A dP) - tr (dR+ A dE+) + tr (oLEL A dR-). 

Use (A.3): 

(A.6) -duj =tr {EdPE A dP) + tr (E+dR+E A cLP) -h tr (EdR-E- A dP) 

- t r (dP+ A EdPE+) - tr (d#+ A E+dR+E+) - tr (cLR+ A EdR-E-+) 

+tr (E-dPE A dP_) + tr (E_+dR+E A cLR_) + tr (E-dR-E- A di?_). 

The cyclicity of the trace implies that if /i is an operator 1-form, with trace class 
coefficients, then tr fi A ji = 0. It follows that the lst, 5th and 9th terms of the right 
hand side of (A.6) vanish: 

tr (EdPE A dP) = tr (EdP A EdP) = 0, 

tr (dR+ A E+dR+E+) = tr (dR+E+ A dR+E+) = 0, 

tr (E-dR-E- A = tr (E-dR- A E-dRJ) = 0. 

The terms no 2 and 4, no 3 and 7 as well as no 6 and 8 cancel each other mutually, 
becauce the cyclicity of the trace implies that tr (ji\ A112) = — tr (112 A Hi) for operator 
1-forms with one factor of trace class, and hence 

tr (E+dR+E A dP) = tr {E+dR+ A EdP) = tr (diî+ A EdPE+) 

tr (£7dR_ A £_c£P) = - t r (ELcLP A EdR-), 

tr A EdR-E-+) = tr (E-+dR+ A EdR-). 

Thus cL; = 0 and we get the proposition in the gênerai case. 

Now drop the assumption that dP(z) be of trace class, but assume that there exists 
an invertible operator Q(z) which dépends smoothly on z such that d(Q(z)P(z)) is 
locally uniformly of trace class. Then we have the invertible Grushin operator: 

Qlz)P(z) Q(z)RM) 

K+(z) 0 
with inverse EQ-1 £ V 

EO~l £ . 

The équation (A.2) then holds, if we replace P by QP in the left hand side. Notice 
that if we add the assumption that Q(z)P(z) — 1 be of trace class, then (A.2) (with 
QP replacing P) gives 

(A.7) vararg7det(Q(^)P(2:)) = var arg7 (det (E- +(2)). 
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Assume that P(z) is invertible for zo ^ z e neigh (z0,C), but that P(zo) is not 
invertible. Then it is easy to see that there exists an operator K of finite rank such 
that P(zo) + K is invertible, and hence also that P(z) + K is invertible for z in a 
small neighborhood of z0. Put Q(z) = (P(z) + K)'1. Then Q(z)P(z) - 1 = -Q(z)K 
is of finte rank and hence of trace class, so (A.7) applies. Let 

(A.8) ra(zo) = 7^vararg^(detQ(z)P(z)), 

where 7 is the oriented boundary of a small dise centered at z$. (A.7) shows that this 
integer is independent both of the choice of Q and of the Grushin problem, and by 
the définition this will be the multiplicity of Zq as an "eigen-value" of z 1—• P(z). In 
the main text, P(z) dépends holomorphically on z and then have m(zo) > 1. 

Appendix B: Modified 9-equation for (h(z),h{z)) 

We recall from section 1, that we have a holomorphic map 

(B.l) neigh ((0,0), C2) 3 (z,w) h— I(z,w) = (h(z,w)J2(z,w)) G C2, 

with 7(0,0) G R2 and with 

(B.2) lm(dwhdwh)^0. 

Let (/i(z, w), f2(z, w)) be holomorphic, non-vanishing such that 

(B.3) fi(z,w)dwIi(z,w) + f2(z,w)dwI2(z,w) =0 . 

This implies that 

(B.4) f1(z,w)dli + f2(z,w)dl2 =g(z,w)dz, 

where g(z,w) is holomorphic. 
From (B.2) it follows (as we saw in section 1) that there is a unique smooth function: 

neigh (0, C) 3 z 1—> z(w) G neigh (0, C), such that 

(B.5) i(z,w(z)) en2. 

Indeed, this follows from the implicit function theorem, for if we formally make in­
finitésimal incréments to z,w, we get 

dzIj ôz + dwIj ôw = dzIj 5Z + dwIj 6W, 

(B.6) 

and notice that 

dwh 6W - dwh ôw = -dzh ôz + dzh ôz, 

dwh $w - dwI2 $w = -dzI2 Sz 4- dzI2 Sz, 

det s+s1s+s1ss+s1 

d+d12r+d1d+r1 
= -2iJm(dwhdwI2)ïO. 
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Treating ôw,ôw as independent variables, we see that (B.6) has a unique solution 
(ôw, ôw) G C2 for a given ôz G C, and it is easy to see that ôw has to be the complex 
conjugate of 6W. The existence of the smooth function w(z) in (B.5) therefore follows 
from the implicit function theorem. 

Let Jj(z) = Ij(z,w(z)). (In the main text, we simply write Ij(z) = Ij(z,w(z)).) 
Restricting (B.4) to the submanifold, given by w = w(z), we get 

(B.7) fidJi + f2dJ2 = adz, 

with fj = fj(z,w(z)), g = g(z,w(z)). Taking the antilinear part of this relation, we 
get 

(B.8) fidJi + f2dJ2 = 0, Ô = c\. 

This can also we written 

(b.9) - j?) + /2(j2 - j20)) - ((a/i)(Ji - j?) + (3/2)(j2 - 4)) = 0, 

where J? are arbitrary real constants. Put 

HB.IO) u = MJi- J?) + f2(J2- J$). 

Using (B.2) and (B.3), we see that the two real functions Ji, J2 can be recovered from 
u by means of the formula, 

(B.12) 
Q0(x,D: HQ(T0 1 

2TIM(/i/2) v 
(Î2U- f2u), 

\ J2 - 4 = 
2^IM(/1/2), 

Q0(x,D HQ(T0 

(Notice that (fi,f2) = a(dwI2, —dwI\) for some non-vanishing a, so that Im (/1/2) 7̂  
0.) Then (B.9) gives 

(B.13) du + au + bu = 0, 

for some smooth (and even real-analytic) functions a, b. 
It follows from a classical resuit by Carleman [Ca] that if u solves (B.13) in a com­

plex domain and vanishes to infinité order at some point then u vanishes identically. 
Since a and b are real-analy tic we can show this différent ly: Treating u and u* =11 
as independent functions, we get 

(B.14) [du + a(z)u + b(z)u* = 0, 
du* + b(z)u + a(z)u* = 0, 

which is an elliptic System with real-analytic coefficients. Hence u is real-analytic and 
cannot vanish to infinité order at any point without vanishing identically. 

If u is not identically 0, let ZQ be a zéro of u and write the Taylor expansion as 

u(z)=pm(z-z0) + O(\z-z0\m+1), 
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where pm ^ 0 is a homogeneous polynomial of degree m. Substitution into (B.13) 
shows that pm is holomorphic, so 

B.15 uz) = C z - zn)m + 0(\z - zo\m+L), CÏO. 

This means that the map 

(B.16) neigh (0, C ) . — J(z) = (Jx(«), J2(z)) G R2 

is either constant or takes any given value J° only at isolated points, and if ZQ is such 
a point, then 

(B.17) \J(z) - J°\ ~ \z - zo\m 

Write (B.12) as 

(B.18) J(z) -J° = F(z) Reu> 
Im u) 

where F is a smooth invertible 2 x 2-matrix. Then from (B.15), we get 

(B.19) 
dJ(z) 

d(Rez.îmz) 
FM 

d(Reu,lmu) 

d(Rez,Imz) 
+ O(\z-z0\m), 

where the first term to the right is 0(\z — zo|m_1) an(i has an inverse which is 
0(\z — Zo\1~m). From this, we see that the critical points of J are isolated if J is 
not identically constant, and that 

(B.20) det 
dJ(z) 

<9(Rez,Im2:) 
is either ^ 0, Vz, or < 0, \/z. 

This means that we can introduce a natural orientation on the (Ji, J2)-plane such 
that the differential of J becomes orientation preserving. We can then define the 
multiplicity of a solution zn of J(z) = J° by 

(B.21) m(zn) = 
1 

2TT 
rar axgJJ(z) d+d1 

where 7 is the positively oriented boundary of a small dise centered at ZQ. 
In the main text of section 6, we write Ij(z) instead of Jj(z). It is also clear from 

our discussion, that the orientation of the J-plane is the same as the one we got in 
the proof of Theorem 6.3 from (6.61). 

7. Saddle point résonances 

Consider the operator 

(7.1) P = -
h2 

2 
\ + V(x), xGR2: 

where V is a real-valued analytic potential, which extends holomorphically to a set 
{x G C2; |Imx| < ^(Rex)}, with V(x) —» 0, when x —• 00 in that set. The résonances 
of P can be defined in an angle {z G C; — 26Q < argz < 0} for some fixed #o > 0 
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as the eigen-values of P\eieoRn' I*1 [HeSj], they were also defined as the eigen-values 
of P : #(Ag,1) —• H(AG,1) with domain H(Ag, (02)> and below we shall have 
the occasion to recall some more about that approach. (Such a space consists of 
the functions u such that a suitable FBI-transformation Tu belongs to a certain 
exponentially weighted L2 space.) 

Let EQ > 0. Let p(x,£) = £2 + V(x). We assume that the union of trapped 
i/p-trajectories in p~1(Eo) fl R4 (see [GeSj]) is reduced to a single point (xo,£o). 
Necessarily, £0 = 0 and after a translation, we may also assume that xo = 0. (Recall 
for instance from [GeSj] that a trapped trajectory is a maximally extended trajectory 
which is contained in a bounded set.) It follows that 0 is a critical point for V and 
that V(0) = EQ. Assume, 

(7.2) 0 is a non-degenerate critical point of V, of signature (1,-1). 

After a linear change of coordinates in x and a corresponding dual one in £, we may 
assume that 

(7.3) p(x,Ç)-E0 = 1̂ „2 
d+d1r + 4) + f f e2 - 4 ) + O((x,03), (x,0 — 0. 

Under the assumptions above, but without any restriction on the dimension and 
without the assumption on the signature in (7.3), the second author ([Sj2]) deter-
mined ail résonances in a dise D(Eo,Ch) for any fixed C > 0, when h > 0 is small 
enough. (See also [BrCoDu] for the barrier top case.) Under the same assumptions 
plus a diophantine one on the eigen-values of ^"(0), Kaidi and Kerdelhué [KaKe] 
determined ail résonances in a dise D(Eo, h5) for any fixed 6 > 0 and for h > 0 small 
enough. In the two dimensional case, their diophantine condition follows from (7.2), 
and we recall their resuit in that case. 

Theorem 7.1 ([KaKe]). — Under the assumptions from (7.1) to (7.2), let Xj > 0 be 
defined in (7.3). Fix S > 0. Then for h > 0 small enough, the résonances in D(Eo, hô) 
are ail simple and coincide with the values in that dise, given by: 

(7.4) z = £0 + f(27rh(k - 0O); h), k e N2, 

where 6Q = (—|, | ) G (|Z)2 is fixed, and f(0; h) is a smooth function of 0 G 
neigh(0,R2), with 

(7.5) /(Q; h) ~ MO) + hh(e) + h2f2(6) + • • • , h — 0, 

in the space of such functions. Further, 

MO) = 
vrd 

2TT 
[\161-i\2e2) + 0(62). 

The purpose of this section is to show that the description (7.4) extends to ail 
résonances in a fixed dise D(Eo,r0) with r0 > 0 small but independent of h, provided 
that we avoid arbitrarily small angular neighborhoods of ]0; +oc[ and -i]0, +oo[. The 
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main ingrédient of the proof will be Theorem 6.3, that we will be able to apply after 
some réductions, using [HeSj], [KaKe]. 

As in [KaKe], we choose an escape function (in the sensé of [HeSj]) G which 
is equal to #2̂ 2 m a neighborhood of (x,£) = (0,0) and such that HPG > 0 on 
p~1(Eo) \ {(0,0)}. Then for a small fixed t > 0, we take an FBI-transformation as 
in [HeSj] which is isometric: 

(7.6) T 
H(AtG,l) - L2(C2;e'2^hL(dx)\ 

H(AtG, (02) -> L2(C2,m2e'2^hL(dx)). 

Here m ^ 1 — 0(h) is a weight which is independent of h to leading order and m ~ 1 
in any fixed compact set. Moreover, 0 is a smooth real-valued function. For possibly 
only technical reasons, T has to take its values in L2(- • • ) 0C3 rather than in L2(- • • ), 
but as noticed in [KaKe], we may modify the définition of T in such a way that the 
last two components of Tu vanish identically in a neighborhood Q of 0 G C2, the point 
corresponding to = (0,0), and so that the first component of Tu(x) is given 
by a standard Bargman transformation in that neighborhood and is consequently a 
holomorphic function of x. We can also arrange so that <f> is a strictly plurisubharmonic 
quadratic form in Q. Hence Tu G H^Q) := L^iï) H Hol(fi), where Hol(îî) is the 
space of holomorphic functions on Q and Z^(fi) = L2(Q; e~2^x^hL(dx)). 

Kaidi and Kerdelhué showed that there exists a uniformly bounded operator 

V : HJQ) —> HAQ). 

which is a metaplectic operator, i.e. a Fourier intégral operator as in [Sjl] with 
quadratic phase and constant amplitude, with an almost inverse (the lack of exactness 
being due to the fact that we do not work on ail of C2 and consequently get cutoff 
errors) U = 0(1) '• H^(Ù) —> H</>(£}) with the following properties: 
(1) Q is a neighborhood of 0 and ip is a strictly plurisubharmonic quadratic form. 
(2) If </>_ ^ (f) ^ (j)+ are smooth, and <fr± are sufficiently close to </> in C2 and equal 
to <j> outside some neighborhood of 0, then there exist ip- ^ ip ̂  ^+ with analogous 
properties, such that 

(7.7) 
l-UV = 0(1) : Jfy+ (Î2) H*,(fi), 

1-VU = 0(1) : H^AQ) -» &A (fi). 

(3) If we choose </>± with 0_(O) < 0(0) < 0+(O), then ^_(0) < if>(0) < V + ( 
(4) There exists an analytic fr-pseudodifferential operator 

Qw(x,hDx\h) — H^/^ —> H^/^j 

with symbol Q(x, £; h) ~ qo(x, £) + hqi(x, £) H , holomorphic in a neighborhood of 
the closure of {(#, 2 # £ fi} such that 

(7.8) - FTP = 0(1) : #(AG+, (£>2) — (fi). 
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Here we extend <f>± to be equal to </> outside Q and define 

H(AG±,(02) = {ue H(Ac, (O2); Tu e L2{C2;m2e-2^'hL{dx)). 

The spaces #(Ag±, 1) are defined similarly. For simplicity, we have also introduced a 
new G; Gnew = £G0id, so that t = 1 from now on. Qw is realized by means of choices 
of "good" intégration contours as in [Sjl]. 
(5) We have 

(7.9) q0(x, 0 = iXmÇi +dd dd dddddd+ 0({x, 

Later on we shall also use that we have a local quasi-inverse S to T with 

(7.10) S = 0(1) :dddvede dd(O) — H(AG/G+/G_, (fl2), 

(7.11) 1 - TS = 0(1) : J W f i ) —• #*_(«)• 

(6) A last feature of the réduction in [KaKe] is that there exists a strictly plurisub-
harmonic smooth function <j> on 0, equal to ip outside any previously given fixed 
neighborhood of 0, with 

(7.12) ch(x) = 
1 

2' 
x\2 in some neighborhood of 0, 

(7.13) Qo x, 
2dô\ 
i dx 

^0 , x GO \ {0}. 

Moreover, 0 can be chosen with ip — (j) arbitrarily small in G1-norm. 
Notice that for x in a région, where (7.12) holds, we have 

(7.14) Qo ( 
2dé\ 
i dx 

= Ai|a;i|2-*A2|a;2|2 + 0(|x|3) 

We shall next discuss the invertibility of Qw — z for \z\ small, by applying Theorem 
6.3. For that, it will be convenient to globalize the problem. We recall that 0 = tp = 
^+ = ip_ = a quadratic form in Ù \ neigh (0), and we extend thèse functions to ail 
of C2, so that they keep the same properties. Extend Q to a, symbol in S°(A^) = 
G£°(Ar) with the asymptotic expansion 

(7.15) Q(x, £; h) ~ q0{x, f) + hqx(x, £) + • • • 

in that space, and so that 

7.16 k o ( z , £ ) l > 
l 
C" 

outside a small neighborhood of (0,0). 
Let x e C6°°(C2 x C2) with l \ x - y \^ddd dssddsdsdsdl|x-»|££> where we write / ~< 9 for 

two functions / , o, if supp / fl supp (1 — g) = 0. Put 

(7.17) Q™(x,hDx;h)u = 
1 

(2TT/I): 
sos+slslds+sdl a; + y 

2 
x, y)u(y)dyd9, 
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where we integrate over a contour of the form 

9 = 2 dé 
i dx 

x + y> 
2 + iC(x)(x- y), 

where C(x) > 0 is a smooth function which is > 0 near x = 0 and with compact 
support in Ù. Then, 

« ï = 0 ( l ) : J W + „ _ ( C a ) «ï = 0(l):JW+„ +x4x 
(7.18) 

ÔQ™ =«ï = 0(l):JW+„: d — L%_ 

Let II^_ = (1 - o>*(A^)_1d) : L$_(C2) -• #v>-(c2) be the orthogonal projection 
(see [MeSj], [Sj3]), and put 

(7.19) «ï = 0(l):JW+„+x4 

Then Qw = 0(1) : H^+/i>_ -«ï d= 0(l):JW+„ , Qw - Q™ = 0{h°°) : - L2 _ 
Consider the change of variables x = ux, hs < u < 1, for 0 < ô < \. Formally, we 

get 

(7.20) 1 
u2 

Qw(x,hDx;h) = 
1 

v+r 
Qw(n(x-,hDz);h), h = 

h 
M2' 

The corresponding new symbol is 

(7.21) 1 
M2 

rQ(Mz, 0 ; h) ~ -^çoG«(z, 0 ) + hqi(fJ.(x, £)) + fJ.2h2q2(fi(x, £)) + •• 

Write 4>(x)/h = (f>a(x)/h, with 

(7.22) «ï = 0(l):JW+„ 1 

M2 
d+d45r 1 

M2 
d+r54 

It follows that, 

(7.23) AT ={/ i-1(x ,0; (x .OeA-} . 

The same change of variables in (7.17) gives (with x = fix) 

(7.24) Q™(x,hDx:h)u 

dv 
1 

(2TT/I)2 
«ï = 0(l):JW+„ v«ï = 0(l):JW+„ «ï = 0(l):JW+„ 

drd+d 

2 
x,y))u(iiy)dyd9, 

where the intégration is now along the contour 

9 = 
2d(j)^ (x + y\ 
i dx V 2 

f iC(fix)(x - y). 

Recall from (7.9) that qo vanishes to the 2nd order at (0,0) and let qo(x,£) = 
#0,2 (#5 0+^o,3(^j £H De ^he Taylor expansion at (0,0), so that qoj is a homogenous 
polynomial of degree j . Then for in a /x-independent neighborhood of (0,0), we 
get 

(7.25) 1 
v+rd 

?o(/i(x, £)) = q0,2(x, 0 + Mo,3( ,̂ 0 + M2̂ o,4(̂ , 0 + • • • . 
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This expansion actually holds in a /x-1-neighborhood of (0,0), and outside such a 
neighborhood, we know that / x ~ 2 | < ? o ( / - O I is of the order of / i - 2 , while Vfc(/i^2go(M*)) = 
0(/ji~2+k). The sum of the other terms in the right hand side of (7.21) is 0(h) together 
with ail its derivatives. 

From (7.22), we see that V 2 ^ varies in a bounded set in C£°, when \i —> 0, and 
in view of (7.12), we know that 

(7.26) d+dmdrd+d 1 

2 
vrd 

for fxx in a neighborhood of (0 ,0) . Consider the restriction of g0,2 to At fl 
neigh((0,0)). Let w e C with 

(7.27) 
1 

2 
< \w\ < 2, - - 4- e0 < aigw < -e0, 

for some small but fixed e0 > 0. Then if p0 = Qo 2I A , we see from (7.14) that 
<t>n 

(7.28) PQ(x^)-w = 0 = 
dRepQ,dImpo are independent, 

and {Repo^Inipo} = 0, at (#,£)• 

Here the bracket is the Poisson bracket on the IR-manifold A t and the linear inde-
pendence is uniform with respect to / x . 

Let p = /z"2<7o(M'))|A~ • Then from (7*25)' (7-28)' we Set 
4>u 

(7.29) p(x,£)-w = 0--
dRep, cUmp are independent, 

and {Rep,Imp} = 0(/i), at (#,£)• 

Again the independence is uniform with respect to / x . 
This means that we can apply Theorem 6.3 to p~2Qw(x, hDx; h) — when /x is 

small and we use h as the new semi-classical parameter. Indeed, ail the assumptions 
are then fulfilled in a fixed neighborhood of (0 ,0) . Outside such a neighborhood, the 
symbol is only defined on A t , but elliptic and of a sufficiently good class to guarantee 
invertibility there. We also need to recall how Theorem 6.3 is connected to a Grushin 
problem. (To have a better notational agreement with Theorem 7.1, we replaced #, k 
by -0,-fc in (6.58).) 

Proposition 7.2. — For w in the domain (7.27), p~2Qw(x, hDx\h) — w : —• 
is non-invertible precisely when 

(7.30) w = K(27rh(k - 6Q),u;h), 

for some k £ Z2. Here On G (hZ)2 is fixed. 

(7.31) K(0, / x ; h) ~ Ko(0, li) + h2K2(0, / x ) + h3K3(0, / x ) + • • • , 

where K$(-,ii) is the inverse of the action map 

(7.32) w i—• Io{w,fi) 
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which is a diffeomorphism from a neighborhood of the closure of the domain (7.27) 
onto a neighborhood of its image. Kj dépend smoothly on (9, a). 

d+dr 

(7.33) dist (w, K{2irh(Z2 - 0O), W h)) > 
h 

2C" 

then the inverse of fj,~2Qw — w is ofnorm < h~xe°^lh. More precisely, we can define 
weights tp^, with ip^ — </>M of uniformly compact support in C2 \ {0}, and = O(fi) in 
C°°, depending smoothly on fi (and also on w), such that 

(èQw-w)-l=0{\/h):H,^H,, 

when (7.33) holds. 
If 

(7.34) \w - K{2irh(k - 0o),n;h)\ < 
h 

C" 
for some k G Z2 

then there exist operators 

(7.35) R+(w, n:h):H^—+ C, R_(w, n\h) :C —> H$, 

depending smoothly on w,fi, such that the corresponding norms of Vj,-R± are 0(h *) 
and such that 

(7.36) «ï = 0(l):JW+„ 
vr 0 

• H7 x C —> Hj 

has a uniformly bounded inverse 

(7.37) £ = 
E E+ 
E- E-+J 

Here E-+(w, p,; h) has an asymptotic expansion as in (6.24) where 9 i£° + (0, w,p) 
has a simple zéro at 0. 

We notice that the eigen-values w are even functions of p (if we make the change of 
variables also for négative p) and to infinité order in h, they are smooth in ji. Hence 

K(2<irh(k - 0O), M h) = K(2nh(k - 0O), -Mî h) + 0(h°°), 

from which we deduce that Kj(0, p) = Kj(9, —/x), j = 0,1,2,.. 
Introduce the Taylor expansion in a: 

(7.38) d+d1r+d4r 
oo 

£=0 

d+f41cf+d 

In (7.20) we put x = Xy, and obtain the isospectral operator 

(7.39) À2 
1 

(uA)2 
«ï = 0(l):JW+„s+s 
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The eigen-values are given by 

X2K(27rA(k - 0O), A//; 4 ) + 

so we get 

(7.40) K(27r/î(fc - 0O), A*; M = X2K(2nÀ(k - 0O), Xfi; À) + 0(h°°), 

for A ~ 1, \n\ < 1, k € Z2, and w = K{2-ïïh{k - 0o),fi;h) in the région (7.27). 
Combining this with (7.31), we get successively for j — 0,1,2,... : 

h'Kiie,!*) = \2KAÔ/\2<\u)(h/\2)j, 

for 6 in a domain with KO(9,jj) in the domain (7.27). Dividing by h?, we get 

(7.41) Kj(6,(i) = (\2)1-iKj(d/\2,\»). 

This relation can be used to extend the définition to a domain 

(7.42) 0 ^ |%2 ^ 1 
C" 

1*1 * o, 

with Ko{9,0) in the domain (7.27). Indeed, if (0,/x) satisfies (7.42), then we can take 
À ~ l̂ l1/2 and notice that |À/x| < 1. Also notice that 

(7.43) X#,l)=M2(1-^i(0/M2,M). 

Combining (7.38), (7.41), we get 

(7.44) «ï = 0(l):JW+„+xxcspwx+6smlp 

so if^ is positively homogeneous of degree 1 — j + L 
The scaling argument above allows us to describe ail eigen-values z of 

Qw(x, hDx\ h) in a domain 

(7.45) hs < \z\ 1 
vrd 

7T 
J 2 

•e0 < arg2: < -e0, 

for 0 < 5 < 1/2, by 

(7.46) z = p2K(2nA(k - 0O),M; + 0(/i°°), 

where we choose /x > 0 with |2:|//x2 ~ 1. 
We now return to the operator P in (7.1). Let z be as in (7.45) and consider the 

most interesting case when 

(7.47) Z 
U2 

- K(2nh(k - 6U. u: h) € 
h 

• C 
for some k € Z2, 

where /i is given as after (7.46) and h = h/fi2. We shall need the Grushin problem 
evocated in Proposition 7.2, but now for simplicity for the unscaled operator 

1 
h 

Qw-z) = 1 

h 

1 

M2 
Qw-w), w = 

z 
V2 
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(7.48) i[Qw-z)R-
R+ 0 , 

HR X C —. Hr X C. 

This is the same as in (7.36) except that we work in the original unscaled variables 
x = fix, so ip(x) = ^ ( x ) . Then xj; = 0 + 0(fi3) with \j) = 4> outside a /x-neighborhood 
of 0. Recall that 0 = ip outside a fixed neighborhood of 0. Also recall that i/j is a 
small perturbation of ip and that î/j = i/j outside a small neighborhood of 0. 

From the fact that (7.48) is globally bijective with a bounded inverse, we deduce 
that if u G iï^(fi), v+ G C and 

(7.49) 1 
vr Qw — z)u + R-U- = in fi, R+u = t>+, 

then 

(7.50) ||«||^(Sa) + |«_| < 0(1)(||Î;||^_(SS) + K l ) + C7(e-1/crfc)(||«||^(fi) + |«_|). 

Here we let 
fi0 ce fii ce fi2 ce fi3 ce fi 

be neighborhoods of 0 and Ùj be the corresponding neighborhoods of 0 in C2 such 
that Ùj = 7rxKly(7r~1Ctj D A^), where Ky is the canonical transformation associated 
to V. We may assume that ^,</>,rp coincide outside fii. In (7.50) it is understood 
that we realize Qw on dd ddd (see [Sjl]) and the last term in (7.50) takes into account 
the corresponding boundary effects. 

We let H(ï) be the space H {Ko, 1) equipped with the norm 

(7.51) IMIsm = \\VTU\\H,<™ + liru||Lî(c^ni)-

We will see that this is a norm and that we get a uniformly équivalent norm if we 
replace fii by fio or fi2. We define H((£)2) analogously. 

We shall study the global Grushin problem 

(7.52) 
fc(P-z)u + SUR-u- = v 

R±VTu = v+, 

for u-,v+ € C, u e H((Ç)2), v 6 H(l). 
Apply VT to the first équation, 

(7.53) 
i(Qw ~ z)VTu + R-U- = VTv + w, 

I R+VTu = v+, 

where 

(7.54) W = 
1 
h 

Q™VT - VTP)u + (1 - VU)R-U- + V(l - TS)UR-u-. 

Here we notice that we may assume that 

(7.55) lit — lb\ < En. 
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for eo > 0 fixed and arbitrarily small, provided that we restrict the spectral parameter 
to a sufficiently small ft-independent dise. Combining (7.54) and the earlier estimâtes 
on QWVT - VTP, 1-VU,1- T5, U, V, we see that 

(7.56) IMliMfia) < O^e-^iWTuWn^ + M ) , 

where C does not dépend on eo in (7.55). Applying this and (7.50) (with u, v replaced 
by VTu, VTv) to (7.53), we get the "interior" estimate 

(7.57) \\VTu\\H^2) + M < 0{l)(\\VTv\\H^3) + \v^\ + e-^Ch\\Tu\\H^Q)). 

On the other hand, if we restrict the the spectral parameter to a sufficiently small 
(/i-independent) dise, we get from [HeSj]: 

(7.58) \\m2Tu\\L2{c^Ql) 

< O(l)(||Tt,||^(c^a0) + e - ^ M + e-"Ch\\Tu\\H^o)). 

Indeed, we can apply the [HeSj] theory to the space H({£)2, Ag+), defined to be 

H(AG, (£)2) 88 a space, and with the norm ||ra2Tt/||L2 , where 0+ — 0 ^ 0 is small 

in C°°, strictly positive on Qo and equal to 0 in a neighborhood of C2 \ fîi. We then 
see that P — z is elliptic in this space away from a small neighborhood of (0,0), and 
(7.58) follows. 

If we use 
Tu = UVTu + (1 - UV)Tu, 

we get 

(7.59) | | r « | | H , ( n i ) < 0{l){e<°lh\\VTu\\H_m + e ^ U r ^ n ) ) . 

Here the last term can be replaced by e~1/Ch\\Tu\\H(i>(n^çt1) when h is small. More­
over, it is clear that 

(7.60) \\VTu\\H.{^2) = WVTuW^^ < 0 ( 1 ) 1 1 ^ 1 1 ^ ( 0 ^ ) . 

It follows that 

(7.61) \\VTu\\H.{Û2) + \\Tu\\H^ai) ~ \\VTu\\H,m + \\Tu\\H^Ql), 

and similarly with HTu^^n^) replaced by ||m2Tu||^(f2xn1)- Now add (7.57), 
(7.58) and use (7.61): 

(7.62) \\m2Tu\\L2{c^ni) + \\VTu\\Hf{ii) + |u_| 

^ 0(l)(||VTi;||^(fi) + \\Tv\\Ll(c2^2) + \v+\ + e - ^ H T u l l i j ^ ) ) . 

Here we can absorb the contribution from HT^H^^^Q^ to the last term, and get 

(7.63) \\m2Tu\\Ll(c^ni) + \\VTu\\H,{h) + |u_ | 

< 0(l)(\\VTv\\H_(?l) + ||Tt;||L,(C2xa2) + |t,+ | + e-^HTuIlH^no). 
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Now use (7.59) to estimate the last term. We can assume that en < 1/2C and get 
with a new constant C: 

(7.64) \\m2Tu\\Ll(c2^ni) + ||VTtt||H.(S) + |u_| 

^ 0(l)(\\VTv\\H (S) + ||Tt;||L5(cavn2) + |«+|). 

We have then proved: 

Proposition 7.3. — Let z be in the région (7.47) and (7.45) with \z\ < r and r > 0 
small enough. Then the problem (7.52) has a unique solution (u,u-) G H((Ç)2) x C 
for every (v,v+) G H x C, satisfying 

(7.65) NIS («>a) + K l ^ c?(1)(llvllJër(i) + K l ) -

Indeed, it is clear that (7.52) is Predholm of index 0 and (7.64) implies injectivity. 
(7.65) is just an équivalent form of (7.64). 

Proposition 7.4. — Under the assumvtions of Proposition 7.3, let 

d+d5rd F F+ 
d+d54r 

be the inverse of 
UP-z) SUR. 

R+VT 0 

Then 

(7.66) V*(F_+ - £_+) = 0(h°°) for every k G N. 

Proof — It is easy to see that V^F_+, V^£_+ are 0(h~NW), for every k G N with 
some N(k) ^ 0, so it suffîces to verify (7.66) for k = 0. Let u = E+v+, U- = E-+V+, 

= 1, so that 

(7.67) 1 
vrd 

Q — z)u + R-U- = 0, R+u = v+. 

Put u = SUïï. Then 
1 

vrd 
P - z)u + SUR-U- = 

1 
[PSU - SUQ)u. 

Here in analogy with (7.8), we have 

(7.68) PSU - SUQ = 0(1) : H*—• H(AG_) d+d5d+ 

and u is exponentially small in H^+(Q), so 

(7.69) 
1 . 
hK1 

' - z)u + SUR-U- =v, ||v||sm = d+df4d+dr 

Similarly, 

(7.70) R+VTu = v+ + iJ+CFTSC/ - =: v+ + w+ 
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and (VTSU - l)u is exponentially small in H^(Q), so \w+\ = 0{e~1^Ch). It follows 
form this and Proposition 7.3 that 

u- = F-+v+ + F-+w+ + F-v = 0{e-L>^n), 

and the proposition follows since U- = E-+v+. 

It is now clear that (7.46) describes ail eigen-values of P in the domain (7.45). 
If we further restrict the attention to 

(7.71) h02 < \z\ < h01 7T 

2 
•e0 < argz < -eo, 

with 0 < Si < 62 < 1/2, then \x in (7.46) is 0{hÔ1^2) and we can apply the Taylor 
expansion (7.38). Then (7.46) becomes 

(7.72) Z ~ n2 
00 00 

1 £=0 

h 
d 

d 
^(27r4(fc-0o))/i2'. 

Now use that Kjte is homogeneous of degree 1 — j + ^ to get the eigen-values in (7.71) 
on the form 

(7.73) z ^ 
00 00DDDD 

j=0 £=0 
Kjtt(2irh(k - 0o))hj, k G Z2. 

From Theorem 7.1 (of [KaKe]) we know on the other hand that the eigen-values 
in (7.71) are given by 

(7.74) Z ~ 
00 

vr 
hjfj(27Th(k-0o)), k G Z2, 

where fj G C°°(neigh (0, R2)) (with the same neighborhood for every j . Here k is not 
necessarily equal to k for the same eigen-value but if we start with some fixed small 
h and then let h —> 0, we see tht k = k + ko, where ko is constant. Approximating 
fj{0) for 0 = 2/ïïh{k — 0o) by the Taylor expansion at 0 = 27rh(k — 0o), we get a 
représentation (7.74) with new fjS for j > 1, where we may assume that k = k. 

If we introduce the Taylor expansion of each fj at 0, we see that (7.74) takes the 

form 

(7.75) Z ~ 
00 00 

j=0 £=0 

hjKu(27rh(k-0o)) 

where Kjj is a homogeneous polynomial of degree 1 — j + £ (which vanishes for 
1 - j + £<0) . 

Let Fj}£ = Kjj — Kj,£, so that Fj^(6) is smooth and positively homogeneous of 
degree 1 — j H- £ in the angle F, defined by — | -h £0 < axgFo,o(#) < ~£o- We then 
know that 

(7.76) 
00 00DDDD 

j=0 £=Q 
hjFjj£(27rh(k - 0O)) = 0{h°°) 
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for 2ith{k - 0O) £ V with h02 < \2nh(k - 0O)| < h01. We restrict the attention to the 
domain \27rh(k — #o)| ~ hs, where we are free to choose ô in ]0, | [ , and let h —> 0 for 
each fixed 5. We shall show that Fjj = 0 by induction in alphabetical order in (j,£). 
Assume that we already know that Fjj = 0 for j < jn and for j = jo, £ < £n. Here 
Oo ,4)eN2. Then (7.76) gives 

(7.77) Fj0lto{2irh{k - 0O)) = 0(1) max(^2^+<°), h1-**), 

for k e Z2 with (9 := 27rh(fe - 0O) in V and |0| ~ /i*5. In this région VFjoj0 = 
0(l)ft*(-*>+'°> and (7.77) implies that 

(7.78) FjOiio(0) = O(l)max(/i1+5^0-j0\/i25+5^°-^\/i1-^0) - 0(l)ft*(2+'°-*>>, 

if 5 > 0 is small enough depending on (̂ o, jo), and for |0| ~ h5, 0 £ V. Since Fj0>̂ 0 
is homogeneous of degree 1 + £o — jo? we see that Fj0^0 = 0 in V. Consequently, we 
have 

Proposition 7.5. — Kj^(0) i>s a homogeneous polynomial of degree l + £ — j (equal to 0 
for 1 +£-j < 0). 

Using this, we get 

Proposition 7.6. — Kj(0,l) extends to a smooth function in a j-independent neigh­
borhood ofO. 

Proof. — We study the asymptotics when V 3 0 —> 0, using (7.38), (7.41) and get 
with i±2 ~ |0|: 

Kj(0,l)=/,2^Kj(0/v2^)~ 

Omax(Oj'-l) 
lïV-fiKuiO/f)»2' 

nu 
^^max(0,j-l 

lïV-fiKuiO/f)» 

This expansion is also valid after differentiation and since Kjj are polynomials, we see 
that (7.38) is the Taylor expansion of a smooth function in a neighborhood of 0. • 

We now return to the description (7.46) of the résonances of P in (7.45) and use 
(7.41): 

(7.79) z ~ 
OO 

3=0 

xx 
27rh(k - 0O) 

M2 vr 
h3 

vr 

OO 

7 = 0 
Kj(27rh(k-90),l)h:} 

With fj(0) = Kj(0,ï), we get from this, Theorem 7.1 and the identification of the 
différent ks in (7.73), (7.74): 

Theorem 7.7. — The description of the résonances in Theorem 7.1 extends to the set 
of z in (7.45), provided that Ci there is sufficiently large as a function of en > 0 and 
that h > 0 is small enough. 
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