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MICROLOCAL STUDY OF IND-SHEAVES I:
MICRO-SUPPORT AND REGULARITY

by

Masaki Kashiwara & Pierre Schapira

Abstract. — We introduce the notions of micro-support and regularity for ind-sheaves,
and prove their invariance by quantized contact transformations. We apply these

results to the ind-sheaves of temperate holomorphic solutions of D-modules.

prove that the micro-support of such an ind-sheaf is the characteristic variety of the
corresponding D-module and that the ind-sheaf is regular if the D-module is regular
holonomic. We finally calculate an example of the ind-sheaf of temperate solutions

of an irregular D-module in dimension one.

Résumé (Etude microlocale des Ind-faisceaux I: micro-support et régularité)

Nous introduisons les notions de micro-support et régularité pour les ind-faisceaux
et prouvons leur invariance par transformations de contact quantifiées. Nous appli-
quons ces résultats aux ind-faisceaux des solutions holomorphes tempérées des D-
modules. Nous prouvons que le micro-support d’un tel ind-faisceau est la variété
caractéristique du D-module correspondant et que le ind-faisceau est régulier si le
D-module est holonome régulier. Nous calculons enfin un exemple du ind-faisceau

des solutions tempérées d’un D-module irrégulier en dimension un.

1. Introduction

Recall that a system of linear partial differential equations on a complex mani-
fold X is the data of a coherent module M over the sheaf of rings Dx of holomorphic
differential operators. Let F' be a complex of sheaves on X with R-constructible coho-
mologies (one says an R-constructible sheaf, for short). The complex of “generalized
functions” associated with F' is described by the complex RHom (F,Ox), and the
complex of solutions of M with values in this complex is described by the complex

RHomp, (M, RHom (F,Ox)).
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144 M. KASHIWARA & P. SCHAPIRA

One may also microlocalize the problem by replacing RHom (F,Ox) with
phom(F,Ox). In [4] one shows that most of the properties of this complex, espe-
cially those related to propagation or Cauchy problem, are encoded in two geometric
objects, both living in the cotangent bundle T*X, the characteristic variety of the
system M, denoted by char(M), and the micro-support of F', denoted by SS(F').

The complex RHom (F,Ox) allows us to treat various situations. For example
if M is a real analytic manifold and X is a complexification of M, by taking as F
the dual D’(Cps) of the constant sheaf on M, one obtains the sheaf By; of Sato’s
hyperfunctions. If Z is a complex analytic hypersurface of X and F = Cz[-1] is
the (shifted) constant sheaf on Z, one obtains the sheaf of holomorphic functions
with singularities on Z. However, the complex RHom (F,Ox) does not allow us to
treat sheaves associated with holomorphic functions with growth conditions. So far
this difficulty was overcome in two cases, the temperate case including Schwartz’s
distributions and meromorphic functions with poles on Z and the dual case includ-
ing C*°-functions and the formal completion of Ox along Z. The method was two
construct specific functors, the functor THom of [2] and the functor ® of (5]

There is a more radical method, which consists in replacing the too narrow frame-
work of sheaves by that of ind-sheaves, as explained in [6]. For example, the presheaf
of holomorphic temperate functions on a complex manifold X (which, to a subana-
lytic open subset of X, associates the space of holomorphic functions with temperate
growth at the boundary) is clearly not a sheaf. However it makes sense as an object
(denoted by O%) of the derived category of ind-sheaves on X. Then it is natural
to ask if the microlocal theory of sheaves, in particular the theory of micro-support,
applies in this general setting.

In this paper we give the definition and the elementary properties of the micro-
support of ind-sheaves as well as the notion of regularity.

We prove in particular that the micro-support SS(-) and the regular micro-support
SSieg(+) of ind-sheaves behave naturally with respect to distinguished triangles and
that these micro-supports are invariant by “quantized contact transformations” (in
the framework of sheaf theory, as explained in [4]).

When X is a complex manifold and M is a coherent Dx-module, we study the
ind-sheaf Sol*(M) := RHom, (M, O%). We prove that

(i) SS(Solt(M)) = char(M),
(i) if M is regular holonomic, then Sol*(M) is regular.

Finally, we treat an example: we calculate the ind-sheaf of the temperate holomorphic
solutions of an irregular differential equation.

This paper is the first one of a series. In Part II, we shall introduce the microlocal-
ization functor for ind-sheaves, and in Part III we shall study the functorial behavior
of micro-supports.
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MICROLOCAL STUDY OF IND-SHEAVES I 145

2. Notations and review

We will mainly follow the notations in [4] and [6].

Geometry. — In this paper, all manifolds will be real analytic (sometimes, complex
analytic). Let X be a manifold. One denotes by 7: TX — X the tangent bundle
to X and by m: T*X — X the cotangent bundle.

For a smooth submanifold Y of X, Ty X denotes the normal bundle to Y and Ty X
the conormal bundle. In particular, Tx X is identified with X, the zero-section. For
a submanifold Y of X and a subset S of X, we denote by Cy (S) the Whitney normal
cone to S along Y, a conic subset of Ty X.

One denotes by a: T*X — T*X the antipodal map. If S C T* X, one denotes by
S the set S ~ T%X, and one denotes by S* the image of S by the antipodal map.
In particular, 7*X = T*X ~ X, the set T*X with the zero-section removed. One
denotes by 7: T*X — X the projection.

If S is a locally closed subset of T* X, we say that S is R*-conic (or simply “conic”,
for short) if it is locally invariant under the action of R*. If S is smooth, this is
equivalent to saying that the Euler vector field on T* X is tangent to S.

Let f: X — Y be a morphism of real manifolds. One has two natural maps

(2.1) T'X X xy T'Y —T'Y
d ™

(In [4], f4 is denoted by ’f’.) We denote by ¢; and g2 the first and second projections
defined on X x Y.

Sheaves. — Let k be a field. We denote by Mod(kx ) the abelian category of sheaves
of k-vector spaces and by D®(kx) its bounded derived category.

We denote by R-C(kx) the abelian category of R-constructible sheaves of k-vector
spaces on X, and by D§_(kx) (resp. D% _p_.(kx)) the full triangulated subcategory
of Db(kx) consisting of objects with R-constructible (resp. weakly R-constructible)
cohomology. On a complex manifold, one defines similarly the categories D2__(kx)
and va_c_c(k x) of C-constructible and weakly C-constructible sheaves.

If Z is a locally closed subset of X and if F' is a sheaf on X, recall that Fz is a
sheaf on X such that Fz|z ~ F|z and Fz|x<z ~ 0. One writes kx z instead of (kx )z
and one sometimes writes kz instead of kx .

If f: X — Y is a morphism of manifolds, one denotes by wx/y the relative dualizing

complex on X and if Y = {pt} one simply denotes it by wx. Recall that
wx =~ orx[dimg X]

where orx is the orientation sheaf and dimpg X is the dimension of X as a real mani-
fold. We denote by D’y and Dx the duality functors on D®(kx), defined by

DfX(F) = RHom (F, k‘x), Dx(F) = RHO’ITL(F,LUX).
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146 M. KASHIWARA & P. SCHAPIRA

If F is an object of D?(kx), SS(F) denotes its micro-support, a closed conic
involutive subset of 7*X. For an open subset U of T*X, one denotes by D®(kx;U)
the localization of the category D®(kx) with respect to the triangulated subcategory
consisting of sheaves F' such that SS(F)NU = @.

We shall also use the functor phom as well as the operation + and refer to loc. cit.
for details.

O-modules and D-modules. — On a complex manifold X we consider the struc-
tural sheaf Ox of holomorphic functions and the sheaf Dx of linear holomorphic
differential operators of finite order.

We denote by Modcon(Dx) the abelian category of coherent Dx-modules. We de-
note by D®(Dx) the bounded derived category of left Dx-modules and by D, (Dx)
(resp. D{ (Dx)), D% (Dx)) its full triangulated category consisting of objects with
coherent cohomologies (resp. holonomic cohomologies, regular holonomic cohomolo-
gies).

Categories. — In this paper, we shall work in a given universe U, and a category
means a U-category. If C is a category, C" denotes the category of functors from
C°P to Set. The category C” admits inductive limits, however, in case C also admits
inductive limits, the Yoneda functor h": C — C” does not commute with such limits.
Hence, one denotes by lim the inductive limit in C and by “lim” the inductive limit
in C/.

One denotes by Ind(C) the category of ind-objects of C, that is the full subcategory
of C" consisting of objects F' such that there exist a small filtrant category I and a
functor a: I — C, with

F~ “li_r)n” a, ie., F~ “li_r)n” F;, with F; € C.
iel
The category C is considered as a full subcategory of Ind(C).

If p: C — (' is a functor, it defines a functor I¢: Ind(C) — Ind(C’) which commutes
with “lim”.

If C is an additive category, we denote by C(C) the category of complexes in C
and by K(C) the associated homotopy category. If C is abelian, one denotes by D(C)
its derived category. One defines as usual the full subcategories C*(C), K*(C), D*(C),
with * = 4+, —, b. One denotes by @ the localization functor:

Q: K*(C) — D*(C).

We keep the same notation Q to denote the composition C*(C) — K*(C) — D*(C).
Let a,b € Z with a < b. One denotes by Cl*¥(C) the full subcategory of C(C)
consisting of objects F'® satisfying F"* = 0 for i ¢ [a,b]. There is a natural equivalence

Ind(Cl*?l(C)) = Clebl(Ind(C)).
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MICROLOCAL STUDY OF IND-SHEAVES I 147

Ind-sheaves. — Here, X is a Hausdorff locally compact space with a countable
base of open sets and k is a field. One denotes by I(kx) the abelian category of
ind-sheaves of k-vector spaces on X, that is, I(kx) = Ind(Mod®(kx)), the category
of ind-objects of the category Mod®(kx) of sheaves with compact support on X. We
denote by D*(I(kx)) the bounded derived category of I(kx).

There is a natural fully faithful exact functor

Lx: MOd(kx) — I(kx),
F+— “lim” Fy (U open).
uccx
Most of the time, we shall not write this functor and identify Mod(kx) with a full
abelian subcategory of I(kx) and D’(kx) with a full triangulated subcategory of
D*(I(kx))-
The category I(kx) admits an internal hom denoted by Zhom and this functor
admits a left adjoint, denoted by ®. If F ~ “lim” F; and G~ “li_r)n” Gj, then
i J
Zhom (G, F) ~ lim “lim” Hom (G;, F;)
i i
G ® F ~ 44h_¥>n” “li_l',-)n” (GJ ® E).
i J
The functor tx admits a left adjoint
ax: I(k:x) — MOd(kx),
To F = “lim” Fj, this functor associates ax (F) = lim F;. This functor also admits a
i€l i€l
left adjoint
,Bx: Mod(kx) — I(kx),

and both functors ax and Bx are exact. The functor Bx is not so easy to describe.
For example, for an open subset U and a closed subset Z, one has;

Bx (kxu) ~ “lim” kxv (V open),

vccU
Bx (kxz) ~ “im” kyy (V open).
zZcv
One sets
Hom (G, F) = axThom (G, F) € Mod(kx).
One has

Homy; (G, F) = I'(X; Hom(G, F)).

The functors ZThom and Hom are left exact and admit right derived functors RZhom
and RHom.
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148 M. KASHIWARA & P. SCHAPIRA

Let f: X — Y be a morphism of topological spaces (Y satisfies the same assump-
tions as X). There are natural functors

F71 Uky)) — I(kx)

fe: Ikx) — I(ky)

fu: kx) — I(ky).
The proper direct image functor is denoted by fi instead of fi because it does not
commute with ¢, that is ¢ty fi # futx in general..

These functors induce derived functors, and moreover the functor Rjfy admits a
right adjoint denoted by f*:

f71: D’I(ky)) — D(I(kx)),
Rf,: D*(I(kx)) — D°(I(ky))
Rfu: D°(I(kx)) — D°(I(ky))
f': D*(I(ky)) — D*(I(kx)).

Y
)

Let ax: X — {pt} denote the canonical map. We also introduce a notation. We set
IT(X; ) = ax.(),
RIT'(X;-) = Rax,()-

Ind-sheaves on real manifolds. — Let X be a real analytic manifold. Among all
ind-sheaves, there are those which are ind-objects of the category of R-constructible
sheaves, and we shall encounter them in our applications.

We denote by R-C°(kx) the full abelian subcategory of R-C(kx) consisting of
R-constructible sheaves with compact support. We set

IR—c(kx) = Ind(R-C®(kx))

and denote by Dfp__(I(kx)) the full subcategory of D°(I(kx)) consisting of ob-
jects with cohomology in IR—c(kx). (Note that in [6], IR—c(kx) was denoted by
Ir—c(kx).)

Theorem 2.1. — The natural functor D*(IR—c(kx)) — Dbp_.(I(kx)) is an equiva-
lence.

There is an alternative construction of IR—c(kx ), using Grothendieck topologies.
Denote by Opy the category of open subsets of X (the morphisms U — V are
the inclusions), and by by Opy__ its full subcategory consisting of open subanalytic
subsets of X. One endows this category with a Grothendieck topology by deciding
that a family {U;}; in Opy,, is a covering of U € Opy_, if for any compact subset K
of X, there exists a finite subfamily which covers U N K. In other words, we consider
families which are locally finite in X. One denotes by X, the site defined by this
topology.
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MICROLOCAL STUDY OF IND-SHEAVES I 149

Sheaves on X, are easy to construct. Indeed, consider a presheaf F' of k-vector
spaces defined on the subcategory OpY, of relatively compact open subanalytic sub-
sets of X and assume that the sequence

0—FUUV)— FU)®F(V)— FUNYV)
is exact for any U and V in OpY, . Then there exists a unique sheaf F on X,, such

that F(U) ~ F(U) for all U € Op%,,- Sheaves on X, define naturally ind-sheaves
on X. Indeed:

Theorem 2.2. — There is a natural equivalence of abelian categories
IR—-C(kx) = MOd(kxsa),

given by
IR—C(’C)() 5 F+— (OpCXsa 535U — HomIR_c(kx)(kXU,F)).

As usual, we denote by C§ the sheaf of complex-valued functions of class C*°, by
Dbx (resp. Bx) the sheaf of Schwartz’s distributions (resp. Sato’s hyperfunctions),
and by Dx the sheaf of analytic finite-order differential operators.

Let U be an open subset of X. One sets C¥(U) =T'(U;C¥).

Definition 2.3. — Let f € C¥(U). One says that f has polynomial growthat p € X if it
satisfies the following condition. For a local coordinate system (z1,...,Z,) around p,
there exist a sufficiently small compact neighborhood K of p and a positive integer
N such that

(2.2) SUpc gy (dist(z, K ~ U)) V| f(z)] < oo.

It is obvious that f has polynomial growth at any point of U. We say that f is
tempered at p if all its derivatives have polynomial growth at p. We say that f is
tempered if it is tempered at any point.

For an open subanalytic set U in X, denote by C;’(o’t(U ) the subspace of C§(U) con-
sisting of tempered functions. Denote by Db (U) the space of tempered distributions
on U, defined by the exact sequence

0 — I'x.w(X;Dbx) — I'(X;Dbx) — Dby (U) — 0.
It follows from the results of Lojasiewicz [8] that U — C¥(U) and U +— DbY (U) are

sheaves on the subanalytic site X;,, hence define ind-sheaves.

Definition 2.4. — We call C}O’t (resp. DbY) the ind-sheaf of tempered C*°-functions
(resp. tempered distributions).

One can also define the ind-sheaf of Whitney C*°-functions, but we shall not recall
here its construction. These ind-sheaves are well-defined in the category Mod(8xDx).
Roughly speaking, it means that if P is a differential operator defined on the closure
U of an open subset U, then it acts on C3**(U) and Db (U).
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150 M. KASHIWARA & P. SCHAPIRA

Let now X be a complex manifold. We denote by X the complex conjugate manifold
and by X® the underlying real analytic manifold, identified with the diagonal of X x X
We denote by Dx the sheaf of rings of finite-order holomorphic differential operators,
not to be confused with Dxr. We set

Ok = RThom zp,_(B0%, Dbiyz).
One can prove that the natural morphism
RThom gp, (B0, Cxi") — RThom g, (8O, Dbx)

is an isomorphism. One calls O% the ind-sheaf of tempered holomorphic functions.
One shall be aware that in fact, O% is not an ind-sheaf but an object of the derived
category D®(I(Cx)), or better, of D*(8xDx). It is not concentrated in degree 0 as
soon as dim X > 1.

Let G € D§_,(Cx). It follows from the construction of O% that:

RHom (G, 0%) ~ THom (G, Ox),

where THom (-, Ox ) denotes the functor of temperate cohomology of [2] (see also [5]
for a detailed construction and [1] for its microlocalization).

3. Complements of homological algebra

The results of this section are extracted from [7]. Let C denote an abelian category.
We shall study some links between the derived category D?(Ind(C)) and the category
Ind(D®(C)).

Definition 3.1. — Let C be an abelian category. A system of strict U-generators in C

is a U-small family {G;;3 € I} of objects of C such that for all X € C and all i € I,
H Gi, X

the object GEB ome( ) exists and for all X € C, there exists ¢ € I such that the

A

@ HOmC(Gi,X)

morphism G, — X is an epimorphism.

In this section, we shall shall always make the hypothesis
(3.1) C has enough injectives and a system of strict generators.

This implies in particular that D?(C) is a U-category.
We define the functor J: D?(Ind(C)) — (D®(C))" by setting for F € D*(Ind(C))
and G € D*(C)

(32) J(F)(G) = Home(Ind(C))(G7 F).

Theorem 3.2

(i) The functor J takes its values in Ind(D®(C)).
(ii) Consider a small and filtrant category I, integers a < b and a functor I —
Cla¥(C), i — F;. If F € D*(Ind(C)), F ~ Q(“lim” F;) and G € D(C), then:
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MICROLOCAL STUDY OF IND-SHEAVES I 151

(8) J(F) = “lim’ Q(F),
(b) Hom ps 1nq(c)) (G, F) = h_§T_>IH°me(C)(G, E).

(iii) For each k € Z, the diagram below commutes.

D*(Ind(C)) ¥ — Ind(D*(C))
Ind(C)

Lemma 3.3. — Assume that C has finite homological dimension. Let p: X —Y be a
morphism in Ind(D®(C)) and assume that ¢ induces an isomorphism

TH*(p): THF(X) & TH*(Y)
for every k € Z. Then ¢ is an isomorphism.

Theorem 3.4. — Let +: D*(Ind(C)) — D®(Ind(C’)) be a triangulated functor which
satisfies: if F € D*(Ind(C)), F ~ Q(“lim” F;) with F; € Cl*¥(C), then H*y(F) ~

“lim” H kw(Q(F;)). Assume moreover that the homological dimension of C' is finite.

Then there exists a unique functor Ji: Ind(D®(C)) — Ind(D?(C’)) which commutes
with “lii>n” and such that the diagram below commutes:

D?(Ind(C)) —— D*(Ind(C"))

(U
J
Ind(D?(C)) —— Ind(D?(C")).

Remark 3.5. — The functor J: D*(Ind(C)) — Ind(D®(C)) is neither full nor faithful.
Indeed, let C = Mod°(kx) and let F' € Mod(kx) considered as a full subcategory of
I(kx). Then

Hom pu 1k y) (kx, F[n]) =~ H™ (X F).
On the other hand,

Homy, 4 poMode(kx ))) (J (kx), J(F[n])) = lim H™(U; F).
vccx

Let 7 be a full triangulated subcategory D®(C). One identifies Ind(7) with a full
subcategory of Ind(D?(C)).

Let F € Db(Ind(C)). Let us denote by 77 the category of arrows G — F in
Db(Ind(C)) with G € T. The category 7r is filtrant.

Lemma 3.6. — For F € D*(Ind(C)), the conditions below are equivalent.
(i) J(F) € Ind(7),
(ii) for each k € Z, one has H*(F) ~ “lim” H*(G).
G- FeTp
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152 M. KASHIWARA & P. SCHAPIRA

Definition 3.7. — Let T be a full triangulated subcategory of D®(C). One denotes by
J~1Ind(7) the full subcategory of D®(Ind(C)) consisting of objects F' € D*(Ind(C))
such that J(F) € Ind(7).

Proposition 3.8. — The category J~'Ind(7T) is a triangulated subcategory of D®(Ind(C)).

We will apply these results to the category I(kx) = Ind(Mod®(kx)). Hence J is
the functor:
J: D*(I(kx))—Ind(D®(Mod®(kx))).
By the definition one has
J(F) =~ “lim” J(Fy) for any F € D*(I(kx)).
uccx
As a corollary of Theorem 3.4, one gets:

Proposition 3.9. — For G € D%(kx) and F € DY(I(kx)), assume that J(F) =~
“lim” J(F;) with F; € DP(kx). Then there are natural isomorphisms:

(33) J(G®F) = “lim” J(G® F),
(3.4) J(RZThom (G, F)) ~ “li_r'x}” J(RTZhom (G, Fy)).

3

4. Micro-support and regularity

Let v be a closed convex proper cone in an affine space X. One denotes by ~° its
polar cone,

7° ={§ € X*;(x,£) > 0 for all z € v}.

Let W C X be an open subset. We introduce the functor ®, w: D*(I(kx)) —
D®(I(kx)) as follows. Denote by ¢1,q2: X x X — X the first and second projections
and denote by s: X x X — X the map (z,y) — x — y. One sets

(I)%W(F) = qu!!(ks‘l'yﬁql_lWﬂqi,_lW ® q2_1F)
One writes ®., instead of ®, x. Define the functor ®_ y, by replacing the kernel

ks—l'yﬂql_IWﬂqz_lW
situated in degree 0. We have a distinguished triangle in D*(I(kx))

Oy w(F) — F — & (F) &L,
Note that if F' € D®(kx), then

supp(®,,w(F)) C W,

®.,(F) — F is an isomorphism on X x Inty°,
S5(@(F)) € X x7°,

SS(2, w(F)NW x Inty° = 2.

with the complex ks_lmql_lvqu-lw — kg-1(gy in which kg-1(g) is
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Lemma 4.1. — Let F € D*(I(kx)) and let p € T*X. The conditions (1a)—(4b) below
are all equivalent. Moreover, if F € D¥:_.(I(kx)), these conditions are equivalent to
(5a).

(1a) Assume that for a small and filtrant category I, integers a < b and a functor
I - C[“’b](Mod(kx)), i+— F;, one has F ~ Q(“l_i_1_>n” F;). Then there exists a conic

open neighborhood U of p in T*X such that for lngzy i € I there exists a morphism
i — j in I which induces the zero-morphism 0 : F; — F; in Db(kx;U).

(1b) There ezxist a conic open neighborhood U of p in T*X, a small and filtrant
category I, integers a < b and a functor I — Cl*¥(Mod(kx)), i — F;, such that
SS(F;)NU = @ and F ~ Q(“lim” F;) in a neighborhood of m(p).

(2a) Assume that for a smalt and filtrant category I, integers a < b and a functor
I — D¥(kx), i — F; one has J(F) ~ “lim” J(F;). Then there exists a conic open
neighborhood U of p in T*X such that fo;eény 1 € I there exists a morphism i — j
in I which induces the zero-morphism 0 : F; — F; in D®(kx;U).

(2b) There exist a conic open neighborhood U of p in T*X, a small and filtrant
category I, integers a < b, a functor I — D%(kx), i — F; and F’ isomorphic to F in
neighborhood of m(p) such that SS(F;)NU = & and J(F') ~ “lim” J(F;).

(3a) There exists a conic open neighborhood U of p in T*X such that for any
G € Db(kx) withsupp(G) cC n(U), SS(G) C UUT% X, one has Hom py 144 (G, F)
=0.

(3b) There exists a conic open neighborhood U of p in T*X such that for any G €
Db(kx) with supp(G) cC 7(U), SS(G) C U*UT%X, one has RIT'(X;G® F) = 0.

Assume now that X is an affine space and let p = (x9;&o).

(4a) There exist a relatively compact open neighborhood W of xg and a closed
convex proper cone y with & € Inty® such that @, w(F) ~0.

(4b) There exist F' € D*(I(kx)) with F' ~ F in a neighborhood of o and F' has
compact support, and a closed convex proper cone v as in (4a) such that ®,(F') ~ 0
in a neighborhood of xg.

(5a) Same condition as (3a) with G € D%_(kx).

Proof. — The plan of the proof is as follows:

(2a) <= (3a) < (2b)

[

(1a) (5a) (16)

o

(3b) == (4a) =—=> (4b)
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(2a) = (1a) follows from F ~ Q(“li_rﬁl” F) = J(F) ~ “li_f)n” J(Q(F;)).

7 1

(la) = (3b). Let F' =~ Q(“lim” F;) and let i € I. There exists i — j such that the

7
morphism F; — Fj in Db(kx) is zero in Db(kx;U). Hence, there exists a morphism
F; — FJ; in DP(kx) which is an isomorphism on U and such that the composition
F; — F; — F}; is the zero-morphism in D?(kx). Consider the commutative diagram
in which the row on the bottom is a distinguished triangle in D®(kx) and SS(F;;) N
U=0o:
F;

T )

Fij — F. j—> F,,] E—
Since the arrow F; — F,’J is zero, the dotted arrow may be completed, making the
diagram commutative. Hence, we may assume from the beginning that for any ¢ € I
there exists ¢ — j such that the morphism F; — Fj factorizes as F; — F;; — F; with
SS (F”) NnNU =@.

We may assume X is affine and U = W x X where W is open and relatively compact
and A is an open convex cone. Then SS(G ® F;;) NU = @, and the sheaf G ® Fj;
has compact support. Hence, RI'(X; G ® F;;) ~ 0 which implies H/ RII'(X;G® F) ~
“lim” HIRT'(X;G® F;) ~ 0 for all j. We conclude therefore RI['(X;G® F) ~ 0.

1

(3b) = (4a). Let F = Q(“lim” F}), with F; € C12%(Mod(kx)). Set

K3

He = {z; (z — zo; §0) > —¢}
and let K CcC 7(U) be a compact neighborhood of zy. Then there exist an open
convex cone v and an open neighborhood W of z( satisfying the following conditions:

W C H.NK,

(x+v)NH, CWforallz e W,

WxycUUT%X.
Set

Ge = kgiroynn, G = EP Ge

ceW
Since supp(G) CC 7(U) and SS(G) C W x v°4, we get by the hypothesis:
“liny” H*RT(X;G ® F;) ~ 0.

1

Hence,

—

? zeW

“lim” ( @D H*RI(X;G, ® F,»)) ~ 0.
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Hence one obtains:
for any ¢ € I, there exists i — j such that H*RT(X;G, ® F;) —
H*RI'(X; G, ® F}) is zero for any z € W and any k € Z.

On the other-hand,

H*®,,w(F))s ~ H*RT(X; G, ® F;).
Therefore, for any 7 € I there exists ¢ — j such that for any k¥ € Z, the morphism
H*(®., w(F;)) — H¥(®,,w(F})) is the zero morphism, and this implies

HY®@y w(F)) ~ “lim” H*®, w(F;) ~ 0.

7

This gives the desired result: ®, w(F) = 0.
(4a) = (4b) is obvious by taking Fy as F’.
(4b) = (1b). Let W be an open relatively compact neighborhood of o such that

Flw ~ F'|lw and ®,(F')|w ~ 0.
Then one has a distinguished triangle:

- +1
qu”(ks_l(w\{O})ﬂql_IW ® gy IFI) - <D’Y(F,)W - F!,/V )

and hence one obtains qu!!(ks_l(,y\{o})nquw[l] ® ¢ 'F') ~ Fj. Let F/ =
Q(“lim” F;) with F; € Cl*¥(Mod(kx)), and take a finite injective resolution

1
I of ks_l(,y\{o})nql—lw[].]. Since I ® F; is a finite complex of soft sheaves,
RQ1g(ks_1(7\{0})nql—1W[1] ® g; ' F;) is represented by F! := q1,(I ® ¢; ' F;). Hence one
has
un!(ks—l('y\{O})ﬂql_lw ® qQ_IF,) = Q(“]:i_-l’_l_)l” ‘Fz,)

3

Since SS(F}) N W x Inty° = &, we obtain the desired result.

(1b) = (2b) is obvious.

(2b) = (3a). Let J(F) ~ “lim” J(F;). If G € D®(kx), we get the isomorphism:
i

Hom i1y )) (G, F) = lim Hom p (G, Fy).
i

We may assume that X is affine and U = W x X where W is open and ) is an open
convex cone. Then the micro-support of RHom (G, F;) is contained in SS(F}) + A"
and this set does not intersect X x A. Since RHom (G, F;) has compact support,
Hom (G, F;) is zero.

(3a) = (2a). We may assume that X is affine, p = (29; &) and U = X’ x Inty°, with
&o € Inty° for a neighborhood X’ of zo. Let V' be an open neighborhood of zg and
let W = {z; (x — z0;&) > —e}. Then by taking V' and e small enough, the sheaf
@, (Hw)v satisfies the condition in (3a) for any H € Db(kx). Let J(F) = “lim” J(F;).
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Theanome(kx)(G,E) ~ 0 for any G = ®,(Hw)v. Let i € I and choose H = F;.

1
There exists ¢ — j such that the composition (®.(Fyw))y — F; — F} is zero. The
morphism (@, ((Fiw))v — F; is an isomorphism on U’ := (VNW) x Inty°. Therefore,
F, — Fj is zero in D®(kx;U").

(3a) = (5a) is obvious.

(5a) = (3b). (Assuming F' € Db .(I(kx)).) Let (2a-rc) denote the condition (2a)
in which one asks moreover that F; € D,%f;bg(k x ). Define similarly (la-rc). Then the
same proof of (3a) = (2a) = (la) = (3b) can be applied to show (5a) = (2a-rc) =

(la-rc) = (3b). g-ed.

Definition 4.2. — Let F € D*(I(kx)). The micro-support of F, denoted by SS(F), is
the closed conic subset of 7*X whose complementary is the set of points p € T*X
such that one of the equivalent conditions in Lemma 4.1 is satisfied.

Proposition 4.3

(i) For F € D*(I(kx)), one has SS(F) N T%X = supp(F).

(ii) Let F € Db(kx). Then SS(txF) = SS(F).

(iii) Let F € D*(I(kx)). Then SS(axF) C SS(F).
(iv) Let Iy — F» — F3 *L, be a distinguished triangle in D*(I(kx)). Then
SS(F;) C SS(F;)U SS(Fy) +f {i,5,k} = {1,2,3}.

Proof

(i) supp(F) C SS(F) follows for example from (1b) of Lemma 4.1. The other inclusion

is obvious.

(ii) The inclusion SS(F) C SS(txF') follows from (2a) since J(F) is “lim” F'. The
—

converse inclusion follows from (1b).

(iii) is obvious, using condition (3b).

(iv) is obvious by (3b). q.e.d.

Remark 4.4. — Let F € D°(I(kx)). It is possible to define another micro-support
of F, denoted by SSo(F'), as follows. Let p € T*X. Then p ¢ SSo(F) if there exist
a small and filtrant category I, integers a < b and a functor I — Cl**(Mod(kx)),
i — Fj, such that p ¢ SS(F;) and F' ~ Q(“lim” F;) in a neighborhood of m(p). Clearly,
SSo(F) C SS(F). This inclusion is strict fn general. (As an example, consider the
ind-sheaf given in Proposition 7.3 below.) One checks easily that Proposition 4.3 (iv)
still holds when SS(F) is replaced with S.Sy(F).

Definition 4.5. — Let A;,i € I be a family of closed conic subsets of T* X, indexed by
the objects of a small and filtrant category I. One sets

lim A; = ﬂ U A;, where J ranges over the family of cofinal subcategories of I.
7
Jci jeJ
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In other words, p € T*X does not belong to lim A; if there exists an open neighbor-
hood U of p and a cofinal subset J of I such that A; NU = @ for every j € J.

It follows immediately from the definition that if J(F) ~ “lim” J(F}), then

4.1) SS(F) C lim SS(F;).
It follows from Proposition 3.9 that if G € D®(kx), one has the inclusions

SS(G® F) C lim (SS(G)+SS(Fy)),
4.
“2) { SS(RThom (G, F)) C lim (SS(G)*FSS(F)).

Example 4.6. — Let X = R? endowed with coordinates (z,y) and denote by (z,y; &,7)
the associated coordinates on 7*X. Let

Y = {(z,y);y =0},
U = {(z,y);2° <y},
Z. = {(z,y);2* <y < e}

Set F. = kz, and F = ky ® Bx(k{o}) ~ “lim” F,. Then

SS(ky) =Ty X = {(z,y;§,m); y =§ =0},
SS(F.) = {(z,4;0,0); 2> < y < e?}

U@, u:&m); vy =2, |z <e, €= —2an, n <0}
(@ y:ém);y=e% 2l <e, £=0, <0}
J{(Fe,e%€,m) 5 0 < € < —2en, n < 0},
SS(F) = {(z,y;§,m);z =y =¢§=0,n<0}.
On the other-hand, one has
SS(F) = lim SS(Fe),
RHom (ky, F) ~ ko) [—2],
lim (Ty XFSS(F.)) = T{py X,
Ty X+SS(F) = {(z,y;£,m);z =y = £ = 0}
G SS(RHom (ky, F)).
Note that SS(F) is not involutive.

Recall that subanalytic isotropic subsets of T*X are defined in [4]. Let us say for
short that a conic locally closed subset A of T*X is isotropic if A is contained in a
conic locally closed subanalytic isotropic subset.
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Definition 4.7

(i) We denote by D% _p_ (I(kx)) the full triangulated subcategory of D?p_ . (I(kx))
consisting of objects F' such that SS(F) is isotropic. We call an object of this category
a weakly R-constructible ind-sheaf.

(ii) We denote by D%_.(I(kx)) the full triangulated subcategory of D® g (I(kx))
consisting of objects F such that RHom (G, F) € D§__(kx) for any G € D§__(kx).
We call an object of this category an R-constructible ind-sheaf.

Note that the functor ax induces functors
ax: Dy _g_o(I(kx)) — Dy_g_c(kx),
ax: Dg_c(I(kx)) — Dg_c(kx)-
The last property follows from ax(F) = RHom (Cx, F).

Conjecture 4.8. — Let F € D% o (I(kx)) and let G € Db p_ .(kx). Then
RIhom (G, F) and G® F belong to D (I(kx))-

w—R—c

Example 4.6 shows that the knowledge of SS(F) and SS(G) does not allow us to
estimate the micro-support of RHom (G, F') by the one for sheaves, and that is one
reason for the definition below.

Definition 4.9. — Let F € D*(I(kx)).
(i) Let S C T*X be a locally closed conic subset and let p € T*X. We say that F
is regular along S at p if there exist F” isomorphic to F' in a neighborhood of 7(p), an

open neighborhood U of p with SNU closed in U, a small and filtrant category I and
a functor I — DI*P(kx),i — F; such that J(F') ~ “lim” J(F;) and SS(F;)NU C S.

(ii) If U is an open subset of T*X and F is regularlalong S at each p € U, we say
that F' is regular along S on U.

(iii) Let p € T*X. We say that F' is regular at p if F' is regular along SS(F) at p.

If F is regular at each p € SS(F'), we say that F' is regular.

(iv) We denote by SS;eg(F') the conic open subset of SS(F) consisting of points p
such that F'is regular at p, and we set

§Sie(F) = SS(F) ~ §Sreg(F).
Note that $Si;(F) = SS(F) for F in Example 4.6.

Proposition 4.10

(i) Let F € Db(I(kx)). Then F is regular along any locally closed set S at each
p ¢ SS(F).

(ii) Let Fy — Fy — F3 XL, be a distinguished triangle in D*(I(kx)). If Fj and Fy
are reqular along S, so is F; for {i,j,k} = {1,2,3}.

(iii) Let F € D%(kx). Then vxF is regular.
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Proof. — (i) and (iii) are obvious and the proof of (ii) is similar to that of Proposi-
tion 4.3 (iv). q.e.d.

It is possible to localize the category D®(I(kx)) with respect to the micro-support,
exactly as for usual sheaves.

Let V be a subset of 7*X and let Q@ = T*X \ V. We shall denote by D% (kx) the
full triangulated subcategory of D®(kx) consisting of objects F such that SS(F) C V,
and by D®(kx;Q) the localization of D®(kx) by D% (kx).

Similarly, we denote by D% (I(kx)) the full triangulated subcategory of D*(I(kx))
consisting of objects F' such that SS(F) C V.

Definition 4.11. — One sets
D*(I(kx; Q) = D*(I(kx))/ Dy, (I(kx)),
the localization of Db(I(kx)) by D% (I(kx)).

Let Fy and Fy are two objects of D®(I(kx)) whose images in D®(I(kx;<2)) are
isomorphic. There exist a third object F3 € D®(I(kx; <)) and distinguished triangles
in D*(I(kx)): F; —» F3 — G; =5 (i = 1,2) such that $S(G;) N Q = @. It follows
that SS(F1)NQ = SS(F3)NQ = SS(F2)NQ.

Therefore if F € D°(I(kx;S?)), the subsets SS(F) and SSi(F) of © are well-
defined.

5. Invariance by contact transformations

It is possible to define contact transformations on ind-sheaves. We shall follow the
notations in [4] Chapter VII.

We denote by p; and ps the first and second projections defined on T*(X x Y) ~
T*X x T*Y, and we denote by pg the composition of p, with the antipodal map on
TY.

We denote by r: X XY — Y x X the canonical map and we keep the same notation
to denote its inverse.

By a kernel K on X x Y we mean an object of D?(kxxy). To a kernel K one
associates the kernel on Y x X

K* :=r,RHom (K,wxxy/y)-
One defines the functor
(5.1) ®g: D(ky) — D%(kx)
G~ Rau(K ® ¢;'G).

Consider another manifold Z and a kernel L on Y x Z. One defines the projection
q12 from X xY x Z to X x Y, and similarly with go3, g13.
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One sets
(5.2) KoL =Rqs (a3 K ® ¢33 L)

Choosing Z = {pt}, one has ®x(G) = K o G for G € D®(ky).

Let Qx and Qy be two conic open subsets of T*X and T*Y, respectively. One
denotes by N(Qx,Qy) the full subcategory of D?(kxxy;Qx x T*Y) of objects K
satisfying;
(5 3) SS(K)Q(QX XT*Y)CQX XQ‘;,,

' p1: SS(K)N (Qx x T*Y) — Qx is proper.
Let us recall some results of loc. cit.

(i) Let K € N(Qx,Qy). Then the functor ®x induces a well-defined functor:
‘I)l;( . Db(ky; Qy) — Db(kx; Qx).

(if) Let L € N(Qy,z). Then K o L € N(2x,€z). Moreover, the two functors
ok . and % o ®% from DP(kz;Qz) to D®(kx;Sx) are isomorphic.

We construct the functor analogous to the functor @k for ind-sheaves by defining
(5.4) O : D(I(ky)) — D°(I(kx))
G~ Rqiy(K ® ¢;'G).
Applying Theorem 3.4, we get:

Lemma 5.1. — Let G € D*(I(ky)) and assume that J(G) ~ “lim” J(G;), with I small

[asy

and filtrant and G; € D*(ky). Then J(®k(G)) ~ “Ulim” J(®x(Gi))-

Now assume that dim X = dim Y and that there exists a smooth conic Lagrangian
submanifold A C Qx x Q¢ such that p;: A — Qx and p§: A — Qy are isomorphisms.
In other words, A is the graph of a homogeneous symplectic isomorphism x: Qy —
Qx.

Let K be a kernel satisfying the assumptions of Theorem 7.2.1 of loc. cit., that is:

K is cohomologically constructible,
(5.5) (p1 " (2x) Up§ ™! (Qy)) NSS(K) C A,
kn = phom(K,K) on Qx x Q%.
Theorem 5.2. — Assume (5.5).
(i) The functor ®x induces a well-defined functor:
34 . DY (I(ky; Qy)) — DP(I(kx; Qx)).
Similarly, the functor E)Ka induces a well-defined functor:

d~,: DP(I(kx;Nx)) — DP(I(ky;Qy)).

ASTERISQUE 284



MICROLOCAL STUDY OF IND-SHEAVES I 161

(ii) The functor
@4 : D (I(ky;Qy)) — DP(I(kx;Qx))

and the functor
3. : DY (I(kx;Qx)) — DP(I(ky;Qy))
are equivalences of categories inverse one to each other.
(iii) If G € D*(I(ky)), then SS(®k(G)) N x = x(SS(G) N Qy).
(iv) If G is regular at p € Qy, then ®x(G) is regular at x(p) € Qx. In other
words, SSi(Px(G)) NNx = x(SSic(G) NQy).

Proof
(i) Let G € D®(I(ky)) and assume that SS(G) N Qy = @&. Let us prove that
SS(®x(G)) NQx = @. Let px € Qx and let py = x~!(px). There exist an open

neighborhood Uy of py in Qy and an inductive system such that J(G) ~ “lim” J(G),
iel

and for any ¢ € I there exists ¢ — j such that the morphism G; — G; is zero in

D*(ky;Uy). Applying Lemma 5.1 we find that J(®x(G)) ~ “lim” J(®x(G;)). Since

(3

the morphism @k (G;) — ®x(G;) is zero in Db(kx;Ux), the result follows.
(ii) One has the isomorphism K o K* ~ ka, in N(Qx,x) and the isomorphism
K*o K ~ ka, in N(Qy,Qy). Hence, it is enough to remark that

(5.6) Ot o B Bl

which follows from the fact that the two functors EI;K o 510 and :I;KoK*, from
D*(I(kx)) to D*(I1(kx)) are isomorphic.

(iii) For an open subset Uy C Qy, set Ux = x(Uy). Then K € N(Ux,Uy) and
K satisfies (5.5) with € replaced with U. Let G € D*(I(ky)) with SS(G) = @ in a
neighborhood of py € Qy. By the proof of (i), SS(®x(G)) = @ in a neighborhood

of x(py).
(iv) The proof is similar to that of (iii). g.e.d.

6. Ind-sheaves and D-modules

Let now X be a complex manifold and let M be a coherent Dx-module. We set
for short

Sol(M) = RHom p,, (M, Ox),
Sol'(M) = RThom 4 o, (BxM,O%).

Theorem 6.1. — One has
SS(Sol*(M)) = char(M).
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Proof
(i) The inclusion char(M) C SS(Sol*(M)) follows from

SS(Sol(M)) = char(M), ax(Sol*(M)) ~ Sol(M).
and Proposition 4.3 (ii).

(ii) Let us prove the converse inclusion using condition (5a) of Lemma 4.1. Assume
that G € D§_.(Cx) satisfy SS(G) Nchar(M) C T% X. One has the morphisms

RHom (G, RIhomﬂXDX(ﬂXM,O&)) ~ RHomp (M, THom (G,0Ox))
— RHomyp, (M, RHom (G, Ox)).

It follows from [1, Corollary 4.2.5] that the second morphism is an isomorphism.
Hence the result follows from SS(Sol(M)) = char(M) and Lemma 4.1 (5a). q.e.d.

The following conjecture is a consequence of Conjecture 4.8.

Conjecture 6.2. — If M is a holonomic Dx-module, then Sol*(M) belongs to
Di_.(I(Cx)).-

Theorem 6.3. — If M is a regular holonomic Dx-module, then Sol*(M) — Sol(M)
is an isomorphism.

Proof. — This is a reformulation of a result of [2] which asserts that for any G €
D} _.(Cx), the natural morphism

RHom p, (M, THom (G, Ox)) — RHomp (M, RHom (G, Ox))

is an isomorphism. q.e.d.

We conjecture the following statement in which “only if ” part is a consequence of
the theorem above.

Conjecture 6.4. — Let M be a holonomic Dx-module. Then M is reqular holonomic
if and only if Solt*(M) is regular.

7. An example

In this section X = C endowed with the holomorphic coordinate z, and we shall
study the ind-sheaf of temperate holomorphic solutions of the Dx-module M :=
Dx exp(1/2) = Dx/Dx (220, + 1). We set for short

Sti= H°(Sol*(M)) =~ Zhom 4, 1, (Bx M, OY),
S:= H(Sol(M)) ~Homy (M,Ox).

Notice first that O% is concentrated in degree 0 (since dim X = 1), and it is a
sub-ind-sheaf of Ox. It follows that the morphism S* — S is a monomorphism.
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Moreover,
S = Cx x {0} - exp(1/2).

Lemma 7.1. — Let V C X be a connected open subset. Then I'(V;S*) # 0 if and only
if V.C X N {0} and exp(1/2)|v is tempered.

Proof. — The space I'(V;S) has dimension one and is generated by the function
exp(1l/z). Hence, the subspace I'(V;8*) ~ T'(V;S) NT'(V; O?) is not zero if and only
if exp(1/z) € T'(V; OY%), that is, if and only if exp(1/z)|v is tempered. q.e.d.

Let us set z = x + iy.

Lemma7.2. — Let W be an open subanalytic subset of P*(C) with co ¢ W. Assume
that there exist positive constants C and A such that

(7.1) exp(z) < C(1+ 2%+ y*)N on W.
Then there exists a constant B such that x < B on W.

Proof. — We shall compactify C C P!(C) by (RU {oo})2. If z is not bounded on W,
then there exists a real analytic curve v: [0,e[— (R U {00})? such that Rev(0) = oo
and y(t) € W for ¢ > 0. Writing v(t) = (z(¢),y(¢t)), one has

y(t) = cx(t)? + O(z(t)"™°).

for some ¢ € Q, ¢ € R and € > 0. Then (7.1) implies that exp(z) has a polynomial
growth when z — oo, which is a contradiction. q.e.d.

Let B, denote the closed ball with center (¢,0) and radius € and set U, = X \ B..

Proposition 7.3. — One has the isomorphism
(7.2) “lim” Cxy, — Thom g, 5 (Bx M, O%).
e>0

Proof. — It follows from Lemma 7.2 that exp(1/z) is temperate (in a neighborhood
of 0) on an open subanalytic subset V C X \ {0} if and only if Re(1/2) is bounded
on V, that is, if and only if V' C U, for some ¢ > 0.

Let V be a connected relatively compact subanalytic open subset of X \ {0}. Then
a morphism Cy — Cx o} - exp(1/z) factorizes through a morphism Cy — S* if and
only if it factorizes through Cy,. Hence we get the isomorphism (7.2) by Theorem
2.2. q.e.d.

Remark 7.4. — In fact one can show
H'(Sol'(M)) = HY(Sol(M)) ~ Cy.
The isomorphism H!(Sol(M)) = Ox /(2%0, + 1)Ox = Cy is given by

(Ox)o 3 v(z) — }{v(z)z_2 exp(—1/z) dz.
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Note that ¢(2):=2"2exp(—1/z) is a solution to the adjoint equation

(=0,2% +1)p(z) = 0.

The distinguished triangle

St — Solt(M) — HY(Solt(M))[-1]

gives a non-zero element of Ext?(Co,St) = Ezt?(Co,Cx) ~C.
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7]

(8]
9]

(10]

References

E. Andronikof, Microlocalisation Tempérée, Mémoires, Soc. Math. France 57 (1994).
M. Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. RIMS, Kyoto
Univ. 20 (1984) pp. 319-365.

M. Kashiwara and T. Oshima, Systems of microdifferential equations with regular sin-
gularities and their boundary values problems, Annals of Math. 106 (1977) pp. 145-200.
M. Kashiwara and P. Schapira, Sheaves on Manifolds, Grundlehren der Math. Wiss.
292 Springer (1990).

M. Kashiwara and P. Schapira, Moderate and Formal Cohomology Associated with Con-
structible Sheaves, Mémoires, Soc. Math. France 64 (1996).

M. Kashiwara and P. Schapira, Ind-sheaves, Astérisque, Soc. Math. France 271 (2001).
M. Kashiwara and P. Schapira, Categories and Sheaves, to appear (2003).

S. Lojasiewicz, Sur le probléme de la division, Studia Mathematica 18 (1959) pp. 87-136.
M. Sato, T. Kawai, and M. Kashiwara, Hyperfunctions and pseudo-differential equations,
in Komatsu (ed.), Hyperfunctions and pseudo-differential equations, Proceedings Katata
1971, Lecture Notes in Mathematics Springer 287 (1973) pp. 265-529.

P. Schapira, Microdifferential Systems in the Complex Domain, Grundlehren der Math.
Wiss. 269 Springer (1985).

M. KASHIWARA, Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-

8502, Japan e FE-mail : masaki@kurims.kyoto-u.ac. jp

P. SCHAPIRA, Université Pierre et Marie Curie, Case 82, Analyse Algébrique, UMR CNRS 7586,

4, Pl. Jussieu, 75252 Paris Cedex 05, France e FE-mail : schapira@math. jussieu.fr
Url : http://www.math. jussieu.fr/"schapira/

ASTERISQUE 284


mailto:masaki@kurims.kyoto-u.ac.jp
mailto:schapira@math.jussieu.fr
http://www.math.jussieu.fr/~schapira/

