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RANDOM TREES, LÉVY PROCESSES 
AND SPATIAL BRANCHING PROCESSES 

Thomas Duquesne, Jean-François Le Gall 

Abstract. —  We investigate the genealogical structure of generai critical or subcritical 
continuous-state branchin g processes. Analogously to the coding of a discrète tree by 
its contour function, this genealogical structure is coded by a real-valued stochastic 
process called the height process, which is itself constructed as a local time functional 
of a Lévy process with no négative jumps. W e présent a  detailed study of the height 
process and of an associated measure-valued process called the exploration process, 
which plays a key rôle in most applications. Unde r suitable assumptions, w e prove 
that whenever a séquence of rescaled Galton-Watson processes converges in distribu-
tion, their généalogies also converge to the continuous branching structure coded by 
the appropriate height process. We apply this invariance principle to various asymp-
totics for Galton-Watson trees. We then use the duality properties of the exploration 
process to compute explicitly the distributio n o f the reduce d tree associate d with 
Poissonnian marks in the height process, and the finite-dimensional marginals of the 
so-called stable continuous tree. This last calculation generalizes to the stable case a 
resuit o f Aldous for the Brownian continuum random tree. Finally , we combine the 
genealogical structure with an independent spatial motion to develop a new approach 
to superprocesses wit h a gênerai branching mechanism . I n this setting, w e dériv e 
certain explicit distributions, such as the law of the spatial reduced tree in a domain, 
consisting of the collection of ail historical paths that hit the boundary. 
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Résumé (Arbres aléatoires, processus de Lévy et processus de branchement spatiaux) 
Nous étudions la structure généalogique de processus de branchement critique s ou 

sous-critiques à espace d'états continu. De manière analogue au codage d'un arbre dis-
cret par son contour, cette structure généalogique est codée par un processus aléatoire 
appelé le processus des hauteurs, qui est lui-même construit comm e une fonctionnelle 
de type temps local d'un processu s de Lévy sans saut négatif. Nous présentons une 
étude détaillée du processus des hauteurs et d'un processus à valeurs mesures associé 
appelé le processus d'exploration . Sous des hypothèses convenables, nous montrons 
que si une suit e d e processus d e Galton-Watson convenablement changés d'échelle 
converge en loi, leurs généalogies convergent aussi vers la structure de branchement 
codée par le processus des hauteurs. Nous appliquons ce principe d'invariance à di-
vers théorèmes limites pour les arbres de Galton-Watson. A l'aide des propriétés de 
dualité du processus d'exploration , nous calculons la loi de l'arbre rédui t associ é à 
des marques poissonniennes dans le processus des hauteurs, et les lois marginales de 
dimension finie de l'arbre contin u stable . Ce dernier calcu l généralise au cas stable 
un résulta t d'Aldou s pour l'arbr e brownie n continu. Finalement , en combinant l a 
structure généalogique avec un déplacement spatial, nous développons une nouvelle 
approche des superprocessus ave c un mécanisme de branchement général . Dans ce 
cadre, nous obtenons certaines distribution s explicites , dont cell e de l'arbre spatia l 
réduit dans un domaine, qui décrit toutes les trajectoires historiques ayant atteint la 
frontière. 
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INTRODUCTION 

The main goal of this work is to investigate the genealogical structure of continuous-
state branchin g processe s i n connectio n with limi t theorems fo r discrèt e Galton-
Watson trees. Application s are also given to the construction and various properties 
of spatial branching processes including a gênerai class of super processes. 

Our starting point is the récent work of Le Gall and Le Jan [32] who proposed a cod-
ing o f the genealogy of gênerai continuous-state branching processes via a real-valued 
random process called the height process. Recall that continuous-state branching pro-
cesses are the continuous analogues of discrète Galton-Watson branching processes, 
and that the law of any such process is characterized by a real function ip  called the 
branching mechanism. Roughly speaking, the height process is a continuous analogue 
of the contou r proces s of a discrète branching tree , which is easy to visualize (se e 
Section 0.1, and note that the previous informai interprétation o f the height process 
is made mathematically précise by the results of Chapter 2) . I n the important spé-
cial case of the Feller branching diffusion (ip(u)  = u2), th e height process is reflected 
linear Brownian motion: Thi s unexpected connection between branching processes 
and Brownian motion, or random walk in a discrète setting has been known for long 
and exploited by a number o f authors (see e.g. [3], [11], [18], [39], [42]). Th e key 
contribution o f [32] was to observe that fo r a  gênerai subcritical continuous-state 
branching process , there i s an explici t formula expressing the heigh t process as a 
functional of a spectrally positive Lévy process whose Laplace exponent tp is precisely 
the branching mechanism. This suggests that many problems concerning the geneal-
ogy of continuous-state branching processes can be restated an d solved in terms of 
spectrally positive Lévy processes, for which a lot of information is available (see e.g. 
Bertoin's récent monograph [5]). It is the principal aim of the présent work to develop 
such applications. 

In the first two sections below, we briefly describe the objects of interest in a discrète 
setting. In the next sections, we outline the main contributions of the présent work. 



2 INTRODUCTION 

0.1. Discrète trees 

Let 
oo 

U= |J Nn 
71=0 

where N = {1,2 , . . . } an d by convention N° =  { 0 } . I f u —  (ui,... ,un)  G Nn, w e 
set \u\  =  n, so that \u\  represent s the "génération" of u. If u = (ui,.. .um)  and v = 
(vi,..., vn)  belong to U, w e write uv = (u\,... um,  vi,..., vn)  for the concaténation 
of u and v. In particular u0  =  0u = u. 

A (finite ) roote d ordered tree T is a finite subset of U such that: 

(i) 0  e  T. 
(ii) I f v G T and v = uj fo r some u eU an d j G N, then u € T. 
(iii) Fo r every u e T,  ther e exists a number fcn(T)  ^  0  such that uj  €  T i f and 

only i f U j ^ f c u ^ -
We dénote by T the se t o f ail rooted ordered trees. I n what follows , w e see each 
vertex of the tree T as an individual of a population whose T i s the family tree. The 
cardinality # ( T ) o f T is the total progeny. 

If T is a tree and u G T, we define the shift of T at u by 0UT = {v G U : uv G T } . 
Note that 6^r G T. 

We now introduce the (discrète ) height function associated with a tree T. Le t us 
dénote by u(0) = 0, it(l), w(2),... , ^ ( # ( T) —  1) the éléments of T liste d in lexico-
graphical order. Th e height functio n H{T)  =  (Hn(T);0  ^  n  <  # ( T ) ) i s defined 
by 

tfn(T) =  Mn)| , 0 < n < # ( T ) . 

The heigh t functio n i s thus the séquenc e o f the génération s o f the individual s of 
T, whe n thèse individuals are visited in the lexicographica l order (se e Fig. 1 for an 
example). I t is easy to check that H(T) characterize s the tree T. 

The contour function gives another way of characterizing the tree, which is easier 
to visualize on a picture (see Fig. 1). Suppos e that the tree is embedded in the half-
plane in such a way that edges have length one. Informally, we imagine the motion of 
a particle that starts at time t = 0 from the root of the tree and then explores the tree 
from the left to the right, moving continuously along the edges at unit speed, until it 
cornes back to its starting point. Sinc e it is clear that each edge will be crossed twice 
in this évolution, the total time needed to explore the tree is C(^) : ~ 2(#(T) —  1) . 
The value Ct of the contour function a t time t is the distance (o n the tree) between 
the position of the particle at time t and the root. By convention Ct = 0 if t > Ç(T). 
Fig. 1 explains the définition of the contour function better than a formai définition. 
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FIGURE 1 

0.2. Galton-Watson trees 

Let ji be a critical or subcritical offspring distribution. Thi s means that n is a 
probability measure on Z+ such that 

oo 

k=0 
kfi(k) ^ 1 . 

We exclude the trivial case where /i(l) = 1. 
There is a unique probability distribution QM on T such that 
(i) Qv(k0  = j) =  j  G  Z+ . 
(ii) Fo r every j >  1 with >  0, the shifted trees 0\T,..., ôjT are independent 

under the conditional probability Q/x(- | k0 = j) an d their conditional distribution 
is Q^. 

A random tree with distribution QM is called a Galton-Watson tree with offspring 
distribution fi,  or in short a //-Galton-Watson tree. 

Let 71 , 7*2,... be a séquence of independent /i-Galton-Watson trees. W e can asso-
ciate with this séquence a height process obtained by concatenating the height func-
tions of each of the trees 71,72, Mor e precisely, for every k ^ 1 , we set 

Hn =  ff„-(#(rl)+...+#(T»_1))Cr*)  if #(Ti) + --- + #(Tfc_1) < n < #(T1) + - • - + #(Tfe). 

The proces s (Hn,n  ̂0 ) codes the séquence of trees. 
Similarly, we define a contour process (Çt , £ ^  0 ) coding the séquence of trees by 

concatenatine; the contour functions 

(Ct(7i),« € [0,C(T0 + 2]), (Ct(T2),t 6 [0,C(T2) + 2]), etc. 
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4 INTRODUCTION 

Note that Ct(Tn ) =  0  for t G  [Ç(%i),Ç(%i) + 2] , and that we are concatenating th e 
fonctions (Ct(Tn), t G  [0,Ç(%i) + 2]) rather than the fonctions {Ct(Tn),t G  [0,C(Tn)]). 
This is a technical trick that will be usefol in Chapter 2  below. We may also observe 
that the process obtained by concatenating the fonctions (Ct(Tn),t G  [0, ((Tn)}) would 
not détermine the séquence of trees. 

There is a simple relation between the height process and the contour process: See 
Section 2.4 in Chapter 2  for more détails. 

Although the heigh t proces s is not a  Markov process, excep t in very particula r 
cases, i t turn s out t o b e a  simple functional o f a Markov chain, whic h is even a 
random walk. Th e next lemma is taken from [32], but wa s obtained independently 
by other authors: See [7] and [4]. 

Lemma. — Let 71,72,... b e a séquence of independent fji-Galton-Watson trees, an d 
let (Hn,n ^ 0 ) be the associated height process. Ther e exists a random walk V on Z 
with initial value Vo = 0 and jump distribution u(k) = fi(k-{-l) , for k = — 1,0,1, 2,..., 
such that for every n ^ 0, 

(1) Hn = Card{/c G { 0 , 1 , . . . , n - 1 } : Vk = inf V7}. 

A detaile d proof of this lemma would be cumbersome, and w e only explain the 
idea. B y définition, Hn is the génération of the individua l visited at tim e n, fo r a 
particle that visits the différent vertices of the séquence of trees one tree after anothe r 
and in lexicographical order for each tree. Writ e Rn for the quantit y equa l to the 
number o f younger brothers (younge r means greater in the lexicographical order) o f 
the individua l visited at tim e n plus the number o f younger brothers o f his father , 
plus the number o f younger brothers o f his grandfather etc . The n the random walk 
that appears in the lemma may be defined by 

VN = Rn - ( j - 1 ) i f #(71) + • • • + #(7}_i) <  n < #(71) + • • •  + #(7}) . 

To verify tha t V  is a random walk with jump distribution v , note that because of 
the lexicographical order of visits, we have at time n no information on the fact that 
the individual visited at that time has children or not. I f he has say k ^ 1  children , 
which occurs with probability /i(/c) , the n the individua l visited at tim e n + 1  will 
be the fîrs t o f thèse children, an d ou r définition s giv e iîn+ i =  R n + (k — 1 ) and 
Vn+i =  V n + (k — 1) . O n the othe r han d i f he has n o child, which occurs with 
probability /i(0), then the individual visited at time n -h 1 i s the first of the brother s 
counted in the définition of Rn (or the ancestor o f the next tree if Rn = 0) and we 
easily see that Vn+i = Vn — 1. W e thus get exactly the transition mechanis m of the 
random walk with jump distribution u . 

Let us finally explain formula (1). Fro m our définition of Rn and Vn, it is easy to see 
that the condition n < inf {j >  k : V3 < Vk} holds iff the individual visited at time n is 
a descendant o f the individual visited at time k (more precisely, mî{j >  k : V3 < Vk} 
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0.3. THE CONTINUOUS HEIGH T PROCESS 5 

is the tim e o f the first  visit afte r k  o f an individua l that i s not a  descendant of 
individual k).  Pu t i n a différent way , the conditio n Vk  = inf^^ n Vj  holds iff the 
individual visited at time k is an ascendant of the individual visited at time n. I t is 
now clear that the right-hand sid e of (1) just counts the number of ascendants of the 
individual visited at time n, that is the génération of this individual. 

0.3. The continuous height process 

To define the heigh t proces s in a continuous setting, w e use an analogue of the 
discrète formula (1) . Th e rôle of the random walk V in this formula is played by a 
Lévy process X =  (Xt,t ^  0 ) without négative jumps. W e assume that X doe s not 
drift t o +oo (this corresponds to the subcriticality o f /x in the discrète setting), and 
that the paths of X ar e of infinité variation a.s. : Th e latter assumption implies in 
particular that the process X starte d at the origin will immediately hit both (0 , oo) 
and (—oo,0). Th e law of X ca n be characterized by its Laplace functional ip,  which 
is the nonnegative function o n IR+ defined by 

E[exp(-XXt)} =  exp(t^(A)). 

By the Lévy-Khintchine formula and our spécial assumptions on X, the function ï/j 
has to be of the form 

= aX  + (3X2 + J 7r(dr)  (e~Xr - 1  + Àr), 
where a, /3 ^ 0  and n is a cr-finite measure on (0, oo) such that J 7r(dr)(r Ar2) < oo. 
We write 

St = supXs , It  = inf Xs . 

By analogy with the discrète case, we would like to define Ht as the "measure" of 
the set 
(2) {s  ^ t  : Xs = in f Xr}. 

However, under our assumptions on X, the Lebesgu e measure of this set i s always 
zéro, and so we need to use some sort of local time. The key idea is to introduce for 
every fixed t > 0 the time-reversed process 

X® =  Xt - X{t_s)_  ,  0 ^5^*, 

and its associated supremum 
5W = supXW. 

We observe that via time-reversal s —>  t  — s, the se t (2 ) corresponds to {s  ^ t  : 
= Xs^}.  Thi s leads to the rigorous définition of H: Ht is defined as the local time 

at leve l 0, at time t of the process —  X^\ Thi s définition makes sensé because 
S<*> - X^  ha s the same law over [0, t] as the so-called reflected process S  — X fo r 
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6 INTRODUCTION 

which 0 is a regular point under our assumptions . Not e that the normalization of 
local time has to be specified in some way: Se e Section 1.1. Th e process (Ht,t ^ 0) 
is called the ip-height process, or simply the height process. 

Why is the ̂ -height process H an interesting object of study? I n the same way as 
the discrète height process codes the genealogy of a séquence of independent Galton-
Watson trees, we claim that the continuous height process represents the genealogical 
structure of continuous-state branching processes, which are the continuous analogues 
of Galton-Watson processes. This informai claim is at the heart of the developments 
of the présent work . Perhap s the best justification for it can be found in the limit 
theorems of Chapter 2  that relate the discrète and continuous heigh t processes (see 
Section 0.4 below). Anothe r justification is the Ray-Knigh t theorem for the height 
process that will be discussed below. 

The goa l of Chapter 1  is to présent a  self-contained construction an d to dérive 
several new properties of the V'-height process. Although there is some overlap with 
[32], ou r approac h i s différent an d involve s new approximations. I t i s importan t 
to realiz e that Ht  is defined as the loca l time at tim e t  o f a process which itself 
dépends o n t.  Fo r this reason, i t i s not clea r whether th e path s of H hav e any 
regularity properties. Als o H is not Markov , except in the very spécial case where 
X ha s no jumps. T o circumvent thèse difficulties, we rely on the important too l of 
the exploration process: For every t ^  0 , we define a random measure pt  on R+ by 
setting 

(3) (Puf) = 
J[o,t] 

dsIstf{Hs) 

where 
If = in f X 

X+G4 
and the notation dsI^ refers to intégration with respect to the nondecreasing function 
5 — » 7ts. Th e exploration process (pt,t  ^  0 ) is a Markov process with values in the 
space M/(M+) of finite measures on R+. I t was introduced and studied in [32], where 
its définition was motivated by a model of a LIFO queue (see [35] for some applications 
to queueing theory). 

The exploration process has several interesting properties. In particular it is càdlàg 
(right-continuous with left limits ) and it has an explicit invariant measure in terms 
of the subordinator wit h Laplace exponent ip(X)/X  (see Proposition 1.2.5). Despite 
its apparently complicated définition, the exploration process is the crucial tool that 
makes it possibl e to answer most questions concernin g the heigh t process . A  first 
illustration of this is the choice of a "good" lower-semicontinuous modification of Ht, 
which is obtained by considering for every t > 0 the supremum of the support of the 
measure pt (beforehand, to make sensé of the définition of pt, one needs to use a first 
version of H that can be defined by suitable approximations of local times). 
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0.3. THE CONTINUOUS HEIGH T PROCESS 7 

An important feature of both the height process and the exploration process is the 
fact that both Ht and pt dépend only on the values of X, or of X — 7, on the excursion 
interval of X — I away from 0 that straddles t. For this reason, it is possible to define 
and to study both the height process and the exploration process under the excursion 
measure o f X —  I  awa y from 0 . Thi s excursion measure, whic h is denoted by N, 
plays a major rôl e throughout thi s work, and many results are more convenientl y 
stated under N. Informally , the height process under N codes exactly one continuous 
tree, in the same way as each excursion away from 0  of the discrète height process 
corresponds to one Galton-Watson tree in the séquence (cf. Section 0.2). 

As a typical application of the exploration process, we introduce and study the local 
times of the height process, which had not been considered in earlier work. Thèse 
local times play an important rôl e in the sequel, in particular i n the applications to 
spatial branchin g processes . Th e local time of H a t leve l a  ^  0  and a t tim e t is 
denoted by an d thèse local times can be defined through the approximation 

am µEs 
x<1 x<1 

sup le 1 •s 
f 
0 

l{a<Hr<a+e}dr ~ L°s = 0 

(Proposition 1.3.3) . Th e proof of this approximation dépends in a crucial way on 
properties of the exploration process derived in Section 1.3: Since H is in gênerai not 
Markovian nor a semimartingale, one cannot use the standard methods of construction 
of local time. 

The Ray-Knight theorem for the height process states that if 

Tr = mf{t > 0 : Xt = - r } , fo r r >  0, 

the process (Lj* , a > 0) is a continuous-state branching process with branching mech-
anism ip  (in short a ^-CSBP) started at r . Recal l that the ^-CSBP is the Markov 
process (Ya , a ^ 0 ) with values in R + whos e transition kernel s are characterized by 
their Laplace transform: Fo r À > 0 and b >  a , 

^ [exp-A^ |  Ya] = exp(-Yaub-a(\)), 

where Ut(\), t  ^ 0  is the unique nonnegative solution of the differential équation 
dut(X) 

&t = -i/j(ut(\)) ,  u0(X)  =  A. 

By analogy with the discrète setting, we can think of a s "counting" the number 
of individuals at génération a in a Poisson collection of continuous trees (those trees 
coded by the excursions of X —  I  awa y from 0  before time Tr). Th e Ray-Knight 
theorem corresponds to the intuitiv e fact that the population at génératio n a is a 
branching process. 

The previous Ray-Knight theorem had already been derived in [32] although in a 
less précise form (loca l times of the heigh t process had not been constructed). An 
important conséquence of the Ray-Knight theorem, also derived in [32], is a criterion 
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8 INTRODUCTION 

for th e pat h continuity of H: H  has continuous sample paths iff 

(4 ) 
/•OO 

11 
d\ 

sd +d 
< OO . 

This condition is in fact necessary and sufficient for the a.s. extinction of the î -CSBP. 
If it does not hold, the paths of H have a very wild behavior: The values of H over 
any nontrivial interval [s,t]  contain a half-line [a , oo). O n the other hand, (4 ) holds 
if (3  >  0, and in the stable case =  cÀ7 , 1  < 7 < 2  (the values 7 G (0 ,1] ar e 
excluded by our assumptions). 

In view of applications in Chapter 4, we dérive précise information about the Hôlder 
continuity of H. W e show that if 

7 = sup{r ^ 0  : li m À  rip(X) = +00}, 
A—>oc 

then th e heigh t proces s H  i s a.s . Hôlde r continuous wit h exponen t r  fo r an y 
r G (0,1 — 7_1), and a.s. no t Holder continuous with exponent r if r > 1 — 7-1. 

0.4. Prom discrète to continuous trees 

Chapter 2  discusses limit theorems for rescaled Galton-Watson trees. Thès e re-
sults demonstrate that the t/j-height process is the correct continuous analogue of the 
discrète height process coding Galton-Watson trees. 

It is well known [27] that continuous-state branching processes are the only possible 
scaling limits of discrete-time Galton-Watson branching processes. One may then ask 
for finer limit theorems involving the genealogy. Precisely, starting from a séquence of 
rescaled Galton-Watson processes that converge in distribution towards a continuous-
state branching process, can one say that the corresponding discrète Galton-Watson 
trees also converge, in some sensé, towards a continuous genealogical structure? The 
results of Chapter 2 show that the answer is yes. 

To b e spécifie , conside r a  séquence (fip)  o f (sub)critical offspring distributions . 
For ever y p >  1 , let Yp  be a (discrete-time) Galton-Watson process with offspring 
distribution /x p started a t Y£  =  p. Suppos e that the processe s Yp  converge after 
rescaling towards a ^-CSBP, where ij; satisfie s the conditions introduced in Section 
0.3. Preciselv . we assume that there is a seauence 7^ îoo such that 

(5) Ht A >GH PYKJK 
sd 
p—>oo (Y* A >  0 . 

where F i s a Î/;-CSBP , an d the symbol (d) indicates convergence in distribution in 
the Skorokhod space. Let Hp be the discrète height process associated with [iv in the 
sensé of Section 0.2. Then Theorem 2.2.1 shows that 

(6) Ht A >GH PYKJK (fd) 
p—>oo 

Ht A >  0 ) , 

where H is the ̂ -height process and (fd ) indicates convergence of finite-dimensional 
marginals. A key ingrédient of the proof is the observation due to Grimvall [21] that 
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the convergence (5) implies the convergence in distribution (afte r suitable rescaling) 
of the random walks Vp with jump distribution vp(k)  = iip(k + 1) , k  = — 1,0,1,..., 
towards the Lévy process with Laplace exponent îp. The idea is then to pass to the 
limit in the formula for Hp in terms of Vp, recalling that the ̂ -height process is given 
by an analogous formula in terms of the Lévy process X. I n the spécial case (3 = 0 
and under more restrictive assumptions, th e convergence (6) had already appeared in 
[32]. 

In view of applications, the limiting resuit (6 ) is not satisfactory because the con-
vergence of finite-dimensional marginals is too weak. I n order to reinforce (6) to a 
functional convergence , it is necessary to assume some regularity of the paths of H. 
We assume that condition (4) ensuring the path continuity of H holds (recall that if 
this condition does not hold, the paths of H have a very wild behavior). Then, we can 
prove (Theorem 2.3.1) that the convergence (6) holds in the sensé of weak convergence 
on the Skorokhod space, provided that the following condition is satisfied: Fo r every 
J>0, 

(7) liminfP[^7p]=0]>0 . 

Roughly speaking this means that the rescaled Galton-Watson process ( p - 1^ t])t^ o 
may die out at a time of order 1, as its weak limit Y does (recall that we are assuming 
(4)). Th e technical condition (7) is both necessary and suffîcient for the reinforcement 
of (6 ) to a functional convergence . Simple examples show that this condition cannot 
be omitted in gênerai. 

However, in the important spécia l case where JJLP =  fi  for every p, we are able to 
show (Theorem 2.3.2) that the technica l conditio n (7 ) is always satisfied. I n that 
case, mus t be of the form ip(u) = eu1 with 1 < 7 < 2, so that obviously (4) also 
holds. Thus when jnp = fi for every p, no extra condition is needed to get a functional 
convergence. 

In Section 2.4, we show that the functional convergence derived for rescaled discrète 
height processes can be stated as well in terms of the contour processes (cf.  Section 
0.1). Le t Cp = (Cf ,t >  0) be the contour process for a séquence of independent jip-
Galton-Watson trees. Under the assumptions that warrant the functional convergence 
in (6) , Theorem 2.4.1 shows that we have also 

{l-'C^t >  0 ) ^ (Ht/2,t>  0) . 

Thus scaling limits are the same for the discrète height process and for the contour 
process. 

In the remaining part of Chapter 2 , we give applications of (6) assuming that the 
functional convergenc e holds. I n particular, rathe r than considering a séquence of 
/Xp-Galton-Watson trees, we discuss the height process associated with a single tree 
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conditioned to be large. Precisely , let Hp  be the height process for one /ip-Galton-
Watson tree conditioned to non-extinction at génération [7PT], for some fixed T > 0. 
Then, Proposition 2.5.2 gives 

Hz1 m .,.t>o) 
sss (Ht,t>0), 

where the limiting process is an excursion of the -0-height process conditioned to hit 
level T. Thi s is of course reminiscent o f a resuit of Aldous [3] who proved that in 
the case of a critical ofïspring distribution fi with finite variance, the contour process 
of a  /x-Galton-Watson tree conditioned to have exactly p vertices converges after a 
suitable rescaling towards a normalized Brownian excursion (see also [19] and [36] 
for relate d results including the convergence of the height process in Aldous' setting). 
Note that in Aldous' resuit, the conditioning becomes dégénérâte in the limit, since 
the "probability " that a  Brownian excursion has lengt h exactly one is zéro. Thi s 
makes it more difficult to dérive this resuit from our approach, although it seems very 
related to our limit theorems. Se e howeve r Duquesne [10] for an extension of Aldous' 
theorem to the stable case using the tools of the présent work (a related resuit in the 
stable case was obtained by Kersting [26]). 

The en d of Chapter 2  is dévoted to reduced trees. W e consider again a single 
/Xp-Galton-Watson tree conditioned to non-extinction at génération [7PT] . Fo r every 
k < [7PT] , we dénote by z^^pT^ th e number of vertices at génération k that have 
descendants a t génératio n [jpT].  Unde r the assumptions and a s a  conséquence o f 
Proposition 2.5.2, we can prove that 

(z^T],o^t<r (fd) 
p—• OO 

(Z{,0^t<T) 

where the limi t ZT  ha s a  simple définition in terms o f H: Zj  i s the numbe r of 
excursions o f H abov e level t  tha t hi t leve l T . Thank s t o th e propertie s o f the 
height process and the exploration process that have been derived in Chapter 1 , it 
is possible to calculate the distribution o f the time-inhomogeneous branching process 
(Zj\t >  0). This distribution i s derived in Theorem 2.7.1. O f course in the stable 
case, corresponding to \iv =  /x for every th e distribution of ZT had been computed 
previously. Se e in particular Zubko v [50] and Fleischmann and Siegmund-Schultze 
[17]. 

0.5. Duality properties of the exploration process 

In th e application s developed in Chapters 3  and 4 , a key rôle is played by the 
duality propertie s of the exploratio n process p.  W e first observe that formul a (3) 
defining the exploration process can be rewritten in the following équivalent way 

pt(dr) = f3h0lHt](r) dr -+ 
s^t,X3-<l 

(Iî-X.-)5rf.(dr) 
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where SHS i s the Dirac measure at Hs, and we recall that 7ts = infŝ r<-£ Xr. W e then 
define another measure % by setting 

Vt(dr) = 01[OtHt](r)dr + £  (Xs  - Ist)8Hs(dr). 
S^t,Xa-<I* 

To motivât e this définition, we may corne back to the discrèt e setting o f Galton-
Watson trees. I n that setting , th e valu e at tim e n o f the discrèt e height process 
Hn is the génération of the n-th visite d vertex by a "particle" that visits vertices in 
lexicographical order one tree after another , an d the analogue of pt give s for every 
k ^  Hn  the number of younger (i.e. coming later in the lexicographical order) brothers 
of the ancestor a t génération k of the n-th visite d vertex. The n the analogue of rjt 
gives for every k ^ Hn  the number of older brothers of the ancestor at génération k 
of the n-th visited vertex. 

It does not seem easy to study directly the Markovian properties or the regularity 
of paths of the process (rjt,t  >  0) . Th e right point of view is to consider the pair 
(pt, rft), which is easily seen to be a Markov process in M/(R+)2. The process (pt,Vt) 
has an invariant measure M determined in Proposition 3.1.3. The key resuit (Theorem 
3.1.4) then states that the Markov processes (p, n) and (rj,p)  are in duality under M. 
A conséquence of this is the fact that (rfr , t > 0) also has a càdlàg modification. More 
importantly, we obtain a crucial time-reversal property: Under the excursion measure 
TV of X —  7, the processe s (ps,n5; 0 ^  s  ^  a)  and ( n ^ . ^ . , 0 ^  s  ^  a) 
have the same distribution (her e a stands for the duratio n o f the excursion under 
N). Thi s time-reversal property plays a major rôle in many subséquent calculations . 
It implie s in particular tha t the law of H under N i s invariant under time-reversal. 
This property is natural in the discrète setting, if we think of the contour process of 
a Galton-Watson tree, but not obvious in the continuous case. 

0.6. Marginals of trees coded by the height process 

Let u s explain more precisely how an excursion of the -0-heigh t process codes a 
continuous branching structure. We consider first a deterministic continuous function 
e :  R+ —> R+ such that e(t)  > 0 iff 0 < t  <  a, fo r some a = a(e) > 0. Fo r any 
5, sf > 0, set 

me(s, sf)  = in f e(t). 
sAsf ̂ .t^sVs' 

Then e codes a continuous genealogica l structure via the followin g simple prescrip-
tions: 

(i) T o each s G [0,cr] corresponds a vertex at génération e(s). 
(ii) Verte x s is an ancestor of vertex s' if e(s) =  me(s,s/). I n gênerai, me(s,sf) i s 

the génération of the last common ancestor to s and sf. 
(iii) W e put d(s,sf)  = e(s) + e(sf) —  2me(s,s')  and identify s  and s'  (s  ~ s')  i f 

d(s,s') =0. 
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Formally, the tree coded by e can be defined as the quotient set [0 , a]/ ~ , equipped 
with the distance d and the genealogical relation specified in (ii). 

With thèse définitions, the line of ancestors of a vertex s is isometric to the segment 
[0, e(s)]. I f we pic k two vertices s and s' , thei r line s of ancestors shar e a common 
part isometric to [0 , rae(s, s')], an d then become distinct. I n gênerai, if we consider 
p instants ti,...,tp  wit h 0 ^  t\  ^  •  • •  ^  tp  ^  cr , we can associat e wit h thèse p 
instants a genealogical tree #(e, t\,..., tp), which consists of a discrète rooted ordered 
tree wit h p leaves , denoted b y T(e , ti,..., tp)  an d mark s hv(e\  t±,...,  tp)  ^  0  for 
v G  T(e, ti,..., tp),  that correspond to the lifetimes of vertices in T(e, ti,...,tp). Se e 
subsection 3.2.1 for a précise définition. 

In the second part of Chapter 3 , we use the duality results proved in the first part 
to calculate the distribution o f the tree 9(H,  n, . . ., rp) under certain excursion laws 
of H  and random choices of the instants ri , . . ., rp. W e assume that the continuity 
condition (4) holds. W e first consider Poissonnian marks with intensity À , and the 
height process H under the excursion measure N of X — I. Le t ri , . . . , TM be the marks 
that fall into the duration interva l [0,cr] of the excursion. Theore m 3.2.1 shows that 
under the probability measure N(-  | M ^ 1) , the tree 9{H,  n,... , T M ) i s distributed 
as th e famil y tre e o f a continuous-time Galton-Watso n process startin g with one 
individual at time 0 and where 

- lifetime s have an exponential distribution with parameter /*//(/0_1(A)) ; 
- th e offsprine; distribution i s the law of the variable £ with generatine; function 

E[rc] = r + ^ ( ( l - r ^ - H A ) ) 
^((l-r^-HA)) dsls W 

In th e quadratic case , we get a critical binary branching E[r^]  =  \{1 + r2). Th e 
resuit in that case had been obtained by Hobson [22]. 

We finally specialize to the stable case ^(A) =  A7 , 7 € (1, 2]. B y scaling arguments, 
we can then make sensé of the law =  N(- | a = 1) of the normalized excursion 
of H. Using the case of Poissonnian marks, we compute explicitly the law of the tree 
Q(H, ti,...,tp) unde r iV(i), when (ti,..., tp)  are chosen independently and uniformly 
over [0 , l]p. I n the quadratic case if)(u) = u2, H is under a  normalized Brownian 
excursion, and the corresponding tree is called the continuum random tree (see Aldous 
[1],[2],[3]). B y analogy, in our more gênerai case I/J(U)  — u1, we may call the tree 
coded by H under th e stable continuum random tree. Our calculations give what 
Aldous calls the finite-dimensional marginals of the tree . I n the case 7 =  2 , thèse 
marginals were computed by Aldous (see also Le Gall [31] for a différent approac h 
closer to the présen t work) . I n that case , the discrèt e skeleton T(H,  ti,..., tp)  i s 
uniformly distributed ove r ail binary rooted ordered trees with k leaves. When 7 < 2, 
things become différent a s we can get nonbinary tree s (th e reason why we get only 
binary trees in the Brownian case is the fact that local minima of Brownian motion 
are distinct) . Theore m 3.3.3 shows in particular tha t i f T i s a tree with p leaves 
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0.7. THE LÉVY SNAKE 13 

such that ku(T)  ^ 1  for every u € T (thi s condition must be satisfied b y our trees 
T(e, t i , . . ., tp)) then the probability that T(H, ti,...,tp) =  T is 

p! 
( 7 - 1 ) ( 2 7 - ! ) • • • ( ( ? - 1 ) 7 - 1 ) sddcx 

| ( 7 - 1 ) ( 7 _ 2 ) . . . ( 7 - / ^ +  l )| 
sdvo 

where A/r = {v  G T :  kv > 0} is the set of nodes of T. I t would be interesting to 
know whether this distribution on discrète trees has occurred in other settings. 

0.7. The Lévy snake 

Chapters 1-3 explor e the continuous genealogical structure coded by the ̂ -height 
process H. In Chapter 4, we examine the probabilistic objects obtained by combining 
this branching structur e with a  spatia l motio n given by a càdlàg Markov process 
£ with state space E.  Informally , "individuals" do not onl y reproduce themselves, 
but the y als o move in space independently accordin g to the law of £. Th e 
superprocess i s then a Markov process taking values in the space of finite measures 
on E, whose value at time t is a random measure putting mass on the set of positions 
of "individuals" alive at time t. Not e that the previous description is very informai 
since in the continuous branching setting there are no individual particles but rather a 
continuum of infinitésimal particles. Récent accounts of the theory of superprocesses 
can be found in Dynkin [13], Etheridge [15] and Perkins [40]. 

Our coding of the genealogy by the height process leads to introducing a Markov 
process whose values will give the historical paths followed by the "individuals" in the 
population. Thi s a generalization of the Brownian snake introduced in [28] and stud-
ied in particular i n [31]. To give a précise définition, fix a starting point x G  E, con-
sider the -0-height process (H8,  s > 0) and recall the notation ra#(s, s7) = inf[ss/] Hr 
for s  ^  s' . W e assume that the continuity condition (4) holds. The n conditionally 
on (H8,  s ^ 0 ) we consider a time-inhomogeneous Markov process (W8i  s ^ 0 ) whose 
distribution i s described as follows: 

- Fo r every s ^ 0 , Ws = (Ws(i), 0 ^ t  < Hs) is a path of £ started at x  and with 
finite lifetime Hs. 

- I f we consider two instants s and s',  the corresponding paths Ws and War  are 
the same up to time rriH(s, sf) and then behave independently. 

The latter property is consistent with the fact that in our coding of the genealogy, 
vertices attached to s and s' have the same ancestors up to génération ra#(«s, s'). See 
Section 4.1 for a more précise définition. 

The pai r (ps,Ws)  is then a  Marko v process wit h value s i n th e produc t spac e 
M/(R+) x  W, where W stands for the se t o f ail finite càdlàg paths in E.  Thi s 
process is called the Lévy snake (wit h initial point x). I t was introduced and studied 
in [33], where a form of its connection with superprocesses was established. Chapte r 4 
gives much more detailed information about it s properties. I n particular, w e prove 
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the strong Markov property of the Lévy snake (Theorem 4.1.2), which plays a crucial 
rôle in several applications. 

We also use the local times of the height process to give a nicer form of the connec-
tion with superprocesses. Writ e Ws for the left limi t of Ws at its lifetime Hs  (whic h 
exists a.s. fo r each fixed s), and recall the notation Tr  = inî{t ^  0  : Xt =  —r} . Fo r 
every t ^ 0 , we can define a random measure Zt  on E by setting 

(Zuf) = 
sd 

>0 
dsLlf(Ws). 

Then (Zt,t  ^  0 ) is a (£ , ^-superprocess wit h initial value rôx. Thi s statement is 
in fact a  spécial case of Theorem 4.2.1 which constructs a (£ , -0)-superprocess with 
an arbitrar y initia l value . Fo r this more gênerai statement, i t i s necessary t o use 
excursion measures of the Lévy snake: Under the excursion  measure  Nx , the process 
(ps,s ^ 0 ) is distributed accordin g to its excursion measure N,  an d (Ws,s  ^ 0 ) is 
constructed b y the procédure explained above, taking x for initial point. 

As a second application, we use local time techniques to construct exit measures 
from an open set and to establish the intégral équation satisfied by the Laplace func-
tional of exit measures (Theorem 4.3.3). Recal l that exit measures of superprocesses 
play a fundamental rôl e in the connections with partial différential équations studied 
recently by Dynkin and Kuznetsov (a detailed account o f thèse connections can be 
found in the book [13]). 

We then study the continuity of the path-valued proces s Ws with respect t o the 
uniform topology on paths. Thi s question is closely related to the compact support 
property for superprocesses. I n the case when £ is Brownian motion in RD, Theorem 
4.5.2 shows that the condition 

sd 

ev 
dd 

/o 
Mu) du) 

-1/2 
dt < oc 

is necessary and sufïicient for Wt to be continuous with respect to the uniform topology 
on paths. The proof relies on connections of the exit measure with partial differential 
équations and earlier work of Sheu [45] , who was interested i n the compact support 
property for superprocesses. I n the case of a gênerai spatial motion , assuming only 
that £  has Hôlde r continuous paths , we use the continuit y propertie s of H derived 
in Chapter 1  to give simple sufïicient condition s ensuring that the same conclusion 
holds. 

Although we do not develop such applications in the présent work, we expect that 
the Lévy snake will be a powerful tool to study connections with partial differentia l 
équations, in the spirit of [30], as well as path properties of superprocesses (se e [34 ] 
for a  typical application of the Brownian snake to super-Brownian motion). 

In th e las t two sections of Chapter 4 , we compute certain explici t distribution s 
related to the Lévy snake and the (£ , -0)-superprocess, under the excursion measures 
NX. W e assume that the path-valued proces s Ws  is continuous wit h respect t o the 
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uniform topology on paths, and then the value WS{HS) can be denned as a left limit 
at the lifetime, simultaneously for ail s ^ 0 . If D is an open set in E such that x ç D, 
WP rnnsirlpr thp first. pvit. t.împ 

TD = inf{s ^ 0  : r(Ws) < 00} 

where r(Ws) = inî{t G  [Q,Ha] :  Ws(t) <£ D}.  Writ e u(y) = Ny(TD < 00) < 00 for 
every y e D. Then the distribution of WTD under Nx(- Pi {To <  oc}) i s characterized 
by the function u and the distribution Hx o f £ started at a; via the formula: For every 
a ^ 0, 

Nx (UTn<oo^a<HT^F (WTd  (t , 0 ^ t  < a 

= II, . l/„^T\tt(£a)F(£r,0 < r ^ a ) exr 
r 

^0 
^(u(Cr))dr , 

where r stands for the first exit time of £ from D, and ^(r) =  ip(r)/r. Theore m 4.6.2 
gives more generally the law of the pair (WT d , PTD) under NX(- fl {TD < 00}). I n the 
spécial case when £ is Brownian motion in Rd, the function u can be identified as the 
maximal nonnegative solution of \Au =  ip(u) in Z) , and the law of WTD is that of 
a Brownian motion with drift Vu/u  u p to its exit time from D.  Thi s considerably 
extends a resuit o f [29] proved in the quadrati c branchin g case by a very différent 
method. 

The last sectio n of Chapter 4  investigates reduced spatial trees , again under the 
assumption that the path-valued process Ws is continuous with respect to the uniform 
topology on paths. We consider a spatial open set D with x G D, and the Lévy snake 
under its excursion measure Nx (in the superprocess setting this means that we are 
looking at ai l historical paths corresponding to one given ancestor a t tim e 0) . W e 
condition on the event that {TD  <  00}, that is one at least of the paths WS exits D, 
and we want to describe the spatial structure of ail the paths that exit D, up to their 
respective exit times. This is an analogue (and in fact a gêneralization) of the reduced 
tree problem studied in Chapter 2. In the spatial situation, ai l paths Ws that exit D 
will be the same up to a certain time a t which there is a branching point with 
finitely many branches, each corresponding to an excursion of the height process H 
above level mo durin g which the Lév y snake exits D. I n each such excursion the 
paths Ws that exi t D  wil l be the same up to a  level strictly greater than m >̂ , at 
which there is another branching point, and so on. 

To get a full description of the reduced spatial tree, one only needs to compute the 
joint distribution o f the path =  WTD(-  A  m^), tha t is the common part to ail 
paths that do exit D, and the number N&  o f branches a t the first branching point. 
Indeed, conditionally on the pai r (WQ^ATD) , th e "subtrees of paths" that originate 
from the first branching point wil l be independent an d distributed accordin g to the 
full reduce d tree with initial point =  W ®(mD) (see Theorem 4.7.2 for more 
précise statements). Theore m 4.7.2 gives explicit formulas for the joint distribution 
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of (W^JND),  agai n in terms of the function u(y)  = NY(T]j < oo) <  co. Precisely , 
the law of the "first branch" i s given by 

Nx(1{Td<oo)F(W0D)) 

x 
roc 

rd 
dbnx\l{b<T}u{Çb) 8{u{Çb)) exp [ 

d 

d 
^>(U)-^(U,(l-r)U} sqio< 1< 

where 0(r) =  i/j'(r) — ip{r). Purthermore the conditional distribution of N&  give n WQ 
dépends only on the branching point W$  an d is given by 

WX\TNd \TD<oo,W(?]=r 
^>(U)-^(U,(l-r)U} 

#07 -7,/ , C/,0 0 < r <  1, 

where U = U(WQ) an d 7 ,̂(0,6) = Ha)-ip(b) 
a—b In the stable case ^(u) = u7, the variable 

ATD is independent of WQ an d its generating function is (7 — 1)_1((1 — r)7 —  1 + jr). 
In th e spécia l case i/)(u)  = u2, the previous resuit wa s used by Mselati [38] to 

investigate absolute continuity properties of the law of the exi t measur e of super-
Brownian motion, in view of applications to the semilinear partial differential équation 
Au = u2. Agai n in the quadratic branching case, our description of the reduce d spatial 
tree is reminiscent of the récen t work of Salisbury and Verzani [43],[44] wh o stud y exit 
measures of super-Brownian motion conditioned to hit a  number of specified points 
on th e boundary. Thi s conditioning leads to a spatial tree described by a branching 
particle backbone process with immigration of mass along the paths of the particles. 
Acknowledgment —  We would like to thank Yves Le Jan for allowin g us to use several 
ideas that originated in his work in collaboration with one of us. W e als o thank the 
référée for several useful remarks. 
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CHAPTER 1 

THE HEIGHT PROCESS 

1.1. Preliminaries on Lévy processes 

1.1.1. Basic assumptions. —  I n this section, we introduce the class of Lévy pro-
cesses that will be relevant to our study and we record some of their basic properties. 
For almos t ail facts about Lév y processes that we need, we refer to the récent book 
of Bertoin [5] (especially Chapter VII) . 

We conside r a  Lév y proces s X  o n the rea l line . I t wil l b e convenien t to as -
sume that X  i s the canonica l process on the Skorokho d space D(R+,M) of càdlàg 
(right-continuous with left limits ) real-valued paths. Unless otherwise noted, the un-
der lying probability measure P  i s the law of the proces s started at 0 . W e dénot e 
by (Gt,t  €  th e canonical filtration, completed as usual by the class of ail P-
negligible sets of Goo • 

We assume that the following three properties hold a.s.: 
(Hl) X  ha s no négative jumps. 
(H2) X  doe s not drift to +oo. 
(H3) Th e paths of X ar e of infinité variation. 
Thanks to (Hl) , the "Laplac e transform" E[exp—XXt]  i s wel l define d for every 

À  ̂0  and t > 0, and can be written as 
E[exp-\Xt] =  exp(^(A)), 

with a function ip  of the form 

^(A) = a0A + (3\2 + 
(0,oo) 

7r(dr) (e~Xr -  1  + l{r<i}Ar), 

where ao G R, (5 > 0  and the Lév y measure n  is a Radon measure on (0 , oo) such 
THAT J(o,oc)(1 Ar2)7r(dr) < oc. 

Assumption (H2 ) then holds iff X ha s first moment s and i£[-X"i ] ^ 0 . Th e first 
moment assumption i s équivalent to saying that TT  satisfies the stronger integrability 
condition 

(0,oo) 
(r A r2) 7r(dr)  <  o o . 
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Then ip can be written in the form 

(8) t/>(\) =a\  +  (3X2 + 
'(0,oo 

7r(dr) ( e - A r -l + Ar), 

Note that ip is then convex and that we have E[Xt] = —tipf(0) = —ta. The condition 
i£[Xi] < 0 thus holds iff a ^ 0 . The process X i s récurrent or drifts to — oc according 
as a = 0 or a >  0. 

Finally, according to [5] (Corollary VII.5), assumptio n (H3 ) holds iff at leas t one 
of the following two conditions is satisfied: /3 > 0, or 

'(o,i) 
r 7r(dr) =  oo. 

Summarizing, we assume that X i s a Lévy process with no négative jumps, whose 
Laplace exponent Î/J has the form (8) , where a ^ 0 , (3 ^ 0 and TT is a cr-finite measure 
on (0 , oo) such that / (r A r2)7r(dr) <  oo, and we exclude the case where both (3 = 0 
and Ĵ 0  ̂r7c(dr) < oo. 

Remark. —  Only assumption (Hl ) is crucial to the connections with branching pro-
cesses that are presented in this work. Assumptio n (H2) means that we restrict our 
attention to the critical or subcritical case. W e impose assumption (H3 ) in order to 
concentrate on the most interesting cases: A simpler parallel theory can be developed 
in the finite variation case, see Section 3 of [32]. 

We will use the notation Ty  = inf{ £ ^ 0  : Xt =  —y}  for y G  R. B y convention 
inf 0 = +oo. 

Under our assumptions, the point 0 is regular for (0, oo) and for (—oo, 0), meaning 
that mf{t  >  0 : Xt >  0} = 0  and inî{t  >  0  : Xt <  0} = 0  a.s. (se e [5], Theore m 
VII. 1 and Corollary VII.5). W e sometimes use this property in connection with the 
so-called duality property: For every t > 0, define a process X^ =  (xi*\o <  s ^ t) 
by setting 

X?) =Xt-  X(t_s)_  ,  i f 0 < s < t, 

and X[l) =  Xt. The n (Xs(t),0 ^ s  ^ t)  has the same law as (X8,0 ^  s  ^ t). 
Let S  and / b e respectively the supremum and the infimum process of X, defined 

by 
S* =SUDX. .  L  =  in f X,. 

s^t s^t 
If w e combine the dualit y propert y wit h the regularit y of 0 for bot h (0 , oo) an d 
(—00,0), we easily get that the set 

{s >  0 : Xs_ =  Is or Xs_ =  5S_} 

almost surely does not intersec t {s  >  0  :  AXS ^  0} . Thi s property wil l be used 
implicitly in what follows. 
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1.1.2. Local times at the maximum and the minimum. — Bot h processes 
X —  S and X —  I ar e strong Markov processes, and the results recalled at th e end 
of the previous subsection imply that the point 0 is regular for itself with respect to 
each of thèse two Markov processes. We can thus deflne the corresponding Markovian 
local times and excursion measures, which both play a fundamental rôl e in this work. 

Consider first X —  S. W e dénote by L = (Lt,t  ^  0 ) a local time at 0  for X —  S. 
Observe that L  i s only defined up to a  positive multiplicative constant, that wil l 
be specified later. Le t TV * be the associated excursion measure, whic h is a cr-finite 
measure on D(R_|_,R). I t will be important for our purposes to keep track of the final 
jump under A/"* . Thi s can be achieved by the followin g construction . Le t (a^fy) , 
j G J, b e the excursion intervais of X — S away from 0. In the transient case (a > 0), 
there is exactly one value j G  J such that bj = +oo. For every j G  J let UJ3 G D(R+, R) 
be defined by 

LU3 (s) = X(aj+s)Abj -  Xaj  ,  s  > 0. 

Then the point measure 

je. 
d(La,,"') 

is distributed a s ly^y AT  (dldw), where M dénotes a Poisson point measure with in-
tensity dl  N*(du), an d rj = inf{/ : Af([0, l] x {a = +oo}) ^ 1} , if 

cr(oj) =  inîit >  0 : cj(r) = uj(t) for every r > t 

stands for the duration of the excursion ou. Thi s statement characterizes the excursion 
measure N*,  up to the multiplicative constant already mentioned. Note that XQ = 0 
and XT  = Xa ^ 0  for t ^ a , TV * a.e. 

Consider then X —  L I t i s easy to verify that the continuous increasin g process 
—/ i s a local time at 0  for the Marko v process X —  I.  W e will dénote by N th e 
associated excursio n measure , whic h can be characterized i n a  way similar to N* 
(with the différence that we have always —ioo = +°o a.s., in contrast to the property 
Loo < oo a.s. i n the transient case). W e already noticed that excursions of X —  I 
cannot start with a jump. Hence, Xo — 0, N a.e. It is also clear from our assumptions 
on X tha t a < oo, Xt >  0 for every t G (0, a) and Xa_ =0, N  a.e. 

We will now specify the normalization of AT*, or equivalently of L. Le t m dénote 
Lebesgue measure on R. 

Lemma 1.1.1. —  We can fix the normalization of  L, or  equivalently of  N*, so  that, 
for every  Borel subset B of  (—oo,0), 

(9) N* sx 
Jo 

dslB(Xs)\ =m(B). 
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20 CHAPTE R 1. THE HEIGHT PROCESS 

Proof. —  For every x G R, write Px for the law of the Lévy process started at x. Also 
set r = inî{s ^ 0  : Xs ^ 0}  and recall that (Xt,t  >  0) is Markovian under iV* with 
the transitio n kernel s of the underlyin g Lévy process stopped when hitting [0 , oo). 
Thanks to this observation, it is enough to prove that, for every e > 0, there exists a 
constant c(e) such that for every Borel subset B of (—oo, —e), 

E-e 
s 

10 
dslB(Xs) \  = c(e)m(B). 

Consider first the transient case. By applying the strong Markov property at hitting 
times of négative values, it is easy to verify that the measure on (—oo, — e) defined by 

B —• E_e roc 
to 

dslB(Xs) 

must be a multiple of Lebesgue measure. However , writing TQ = 0,Tf,.. . ,T^, etc. 
for the successive visits of — e via [0, oo), we have 

sd 
•OO 

0 
dslB(Xs) \  = 

oo 

i=0 
E-£ L{Tf <oo} 

,Âi+l 

sd 
dslB(Xs)\ 

EAfQdslB{Xs)\ 
P_£[r = oo] 

The desired resuit follows. 
In the récurrent case, the ergodic theorem gives 

1 
n 

n 

'o 
dslB(Xs) a.s. 

n—>oo 
dv 

sd 

Jo 
dslB(Xs)\, 

whereas the Chacon-Ornstein ergodic theorem implies 

f^dslB(Xs) 
Jf" dslr2et_e){Xs 

a.s. 
n—>cx 

m(B) 
s 

The conclusion easily follows. 

In what follows we always assume that the normalization of L or of N* i s fixed as 
in Lemma 1.1.1. 

Let L-1(£ ) =  inf{s,L s >  t}.  B y convention, XL-i^ =  +oo if t ^  Loo . The 
process (XL-i^,t  ^  0 ) is a subordinator (th e so-called ladder height process) killed 
at an independent exponentia l time in the transient case. 

Lemma 1.1.2. —  For every À  > 0, 

E[exp-XXL-i{t)] =exp(-^(A)), 

where 
sdk, = MX) 

A 
= a  + p\ + 

roo 

ds 
(1 - e"Ar)7r([r , oo)) dr. 
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Proof. —  By a classical resuit of fluctuation theory (see e.g. [6] Corollar y p.724), we 
have 

£[exp-ÀXL-i(t)] = exp(-c^(A)) , 
where c is a positive constant. We have to verify that c = 1 under our normalization. 

Suppose first that TT ̂  0 . The n notice that th e Lév y measur e C7r([r , oo))dr of 
XL-i(t) i s the "law " of X^ unde r N*(-  D {Xa >  0}). However , for any nonnegative 
measurable function /  o n [0, oo)2, we get by a predictable projection 

N* \J{AXa, Xa) l{xCT>o} j = AT * 

0<S^(T 
f(AXs,Xs)l(x,>0i) 

= N*( 
Jo 

ds i TT(dx) f(x, Xs-  + X)  l{Xs_+rr>0} ) 

dd 
sd 

—oo 
dy /  n(dx)  f(x,y +  x)l{y+x>0}> 

usine; Lemma 1.1.1 in the last equality. It follows that 

(10) N*(f(AXa,X„) l{x„>o})  = 7r(dx) 
nX 

lo 
dzf(x.z), 

and we get c = 1 by comparing with the Lévy measure of XL-i^ty 
In the case 7r = 0, X i s a scaled linear Brownian motion with drift, and the same 

conclusion follows from direct computations. • 

Note that we have in particular P[L-1(£ ) < oo] = e~at, which shows that L QO has 
an exponential distribution with parameter a  in the transient case. 

When /3 > 0, we can get a simple expression for Lt. Fro m well-known results on 
subordinators, w e have a.s. fo r every u ^ 0, 

m{{XL-i{t)]t ^  u,  L~l(t) <  oo}) = 0(u A Lœ). 
Since the sets {XL-i(ty,t ^  u , L-1(£) <  oo } and {Sr;r  ^  L_1(u) } coincide excep t 
possibly for a countable set, we have also 

(11) m({Sr;r^t})=pLt 
for ever y t ^ 0  a.s. 

The nex t lemma provides a useful approximation of the local time Lt. 

Lemma 1.1.3. —  For every x > 0, 

lim 
e[0 

1 
S , 

Sr;r 

' u 
l{S3-xs<e}ds = xAL00 

in the L2-norm. Consequently, for every t ^ 0 

lim -
Sr;r^t} 

ds 

J0 
l{Se-Xa<e}dS = Lt 

in probability. 
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Proof. —  It is enough to prove the first assertion. Let M be as previously a Poisson 
point measure on M+ x  D(M_l,R) wit h intensity dlN*(duj),  an d 

rj = inî{l : j\f([0, l] x {a = +oc} ) ^  1}. 

For every x > 0 set 

Je(x) = 
1 
e 

Àf(dldu) l{Kx} 
sd+xs 

0 
l{_£r0](u;(s))ds. 

Then, 

EUJx)} = x 
e 

AT* 
ddv 

Jo 
.(_££](Xs)ds) =  x 

by (9) . Furthermore , 

E[J£(x)2] = (E[J£(x)})2+xe-2N 
sd 

Jo 
l{_£^0](Xs)ds^ ) , 

and 

N* 
sd 

JO 
L(_e,0](Xfl)ds) ) = 2 TV* 

Sr;r 
l(-e,o] (^s)l(-£,o] (Xt)dsdt 

= 2  AT* 
'0 

dd 
dsl(-e,o] (Xs)EXs 

sd 

lo 
dtl(_£n)(Xt)\) 

< 2e  su p Ey 
0^y>-e R0 

sd 
dU(_c,0](^t) h 

using the same notation r  =  inf{£ ^ 0  : Xt ^  0}  as previously. We then claim that 

(12) SUP Ey 
0>y>-£ 

dv 

JO 
dtl{_£,0](Xt)\ =o (e) 

as e —• 0. Indeed, by applying the strong Markov property at Ty , we have for y > 0, 

N*(Ty <  OO) E-y 
dv 

JO 
dtl(-£M)\ <iV * 

sx 

drd 
dtl(-eto](Xt)) = e, 

and the claim follows since N*[Ty < oo] | +o o as y j 0. From (12) and the preceding 
calculât ions, we get 

limJB[(Je(x)-x)2]=0. 

By Doob's inequality (o r a monotonicity argument), we have also 

lim E[ su p (J£{z)  - z)2}  =  0. 

The lemma now follows, since the pair 
x 
sd 

rL-\x) 

lo 
1{5S-XS<£}^,L00J 

has the same distribution as (  J£(x A n), ri). 
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As a conséquence of Lemma 1.1.3, we may choose a séquence (e*. , k = 1,2,... ) of 
positive real numbers decreasing to 0, such that 

(13) Lt = li m 1 

k—*oc Sjç 

sd 

Jo 
-{Ss-Xs<ek}ds , P a.s . 

Using monotonicity arguments and a diagonal subsequence, w e may and will assume 
that the previous convergence holds simultaneously fo r every t ^  0  outside a  single 
set of zéro probability. In particular, if we set for UJ G D([0,£],R), 

&+(UJ) = limin f — 
fc^oo £k Jo 

s 
{sup[0)S] u)(r)-cj(s)<ek}d>S, 

we have Lt = $>t(XSi 0 < s < £), for every t > 0, P a.s . 
Recall the notation fo r the process X time-reversed at time t. 

Proposition 1.1.4. — For any nonnegative measurable functional F  o n the Skorokhod 
space B(R+,R) , 

A 
sd 

Jo 
i tF (x i%,s>0) ) : E 

rL oc 

/0 
dxF(XsAL-Hx),s ^ 0 ) . 

Proof. — We may assume that F  i s bounded an d continuous . Fi x t >  0  and if 
UJ G D([0,£],R), se t Tmax(u; ) =  inf{ s G [0,£] : sup[0,s] w(r) =  sup^j co(r)} and let 
OUJ G B(R+,R) b e defined by 0uj(t) = uj(t A Tmax(u;)). Le t z > 0. Excursio n theory 
for X — I shows that, for every e > 0, 

N 
sd 

Jo t E[l{St_Xt<£} l{Lt^z} F o 0(X8, s ^ t)}d 
1 
£ 

sdv 

•Jo 
t E[l{St_Xt<£} l{Lt^z} F o 0()} 

In deriving this equality, we also apply to the time-reversed process X^ the fact that 
the local time Ls does not increase after th e (first ) tim e of the maximum over [0,t]. 
Then, 

1 
£ 

dd 

/0 
t E[l{St_Xt<£} l{Lt^z} F o 0(X8, s ^ t)} 

sd 
1, 
dv 

sd 

lo 
t E[l{St_Xt<£} l{Lt^z} F o 0(X8, s ^ t)}wW 

_ 1 
£ „ 

dv 

Jo 
dt E[l{St_Xt<£} l{Lt^z } F o 0(X8, s ^ t)} 

= E 1 
ss 

>L-\z) 

0 
dtl{St-Xt<e}F°0(Xs,S^t)\ 

We then take £ = £k and pass to the limit k —> oo, using the L2 bounds provided by 
Lemma 1.1.3. Note that the measures 

1 
sdv l[0,I,-i(*)](*) 1{St-Xt<ek}dt 
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converge weakly to the finite measure l[0^L-i  (z^(t)dLt. Furthermore , 6(Xs,s  ^ t) = 
(XsAtl s ^ 0) , dLt  a.e. , a.s., and it is easy to verify that the mapping t —* FoQ(Xs, s ^t) 
is continuous on a set of full dL -̂measure. We conclude that 

N 
sdv 

/o 
dtl{$t(XW)^z} F(xi%lS>0i i = E\ 

x + 14 

'0 
F(XsAUs^0) dLt\ 

= E 
•zALoo 

Jo 
E(XsAL-Hx)ls^ 0 ) dx 

and the desired resuit follows by letting z —->• oo. 

1.2. The height process and the exploration process 

We write si^ = sup|0jS] X^ ( 0  ̂s < t) for the supremum proces s of X^\ 

Définition 1.2.1. —  The height process is the real-valued process (Ht,t ^ 0) define d 
as follows. Firs t HQ  = 0 and for every t > 0, HT is the local time at level 0 at time t 
of the process X (t) - S (t). 

The normalizatio n of local time is of course that prescribed by Lemma 1.1.1. 
Note that the existence of a modification of the process (Ht,t  > 0) with good 

continuity properties is not clear from the previous définition. When /3 > 0 however, 
we can use (11) t o see that 

(14) sd +x1 1 
sd n ( { / t 5 ; ^ t } ) , 

where for 0  ̂s  ̂£, 
T? = în f X». 

Clearly the right-hand sid e of (14) gives a continuous modificatio n of (Hut ^ 0). 
When (3 = 0, this argument does not apply and we wil l see later that there may exist 
no continuous (o r even càdlàg) modification of (Ht, t > 0). 

At th e présent stage , we will use the measurable modification of (Ht,t  ̂0 ) with 
values in [0, col obtaine d by taking 

(15) H? =  Q+(X¥K0 <s£t)= limin f 
k—•oo 

1 
sd 

d 

Jo 
l{Xs<IÎ+ek}ds, 

where the £kJs are as in (13). Th e liminf in (15) i s a limit (and is finite) a.s. for every 
fixed t  > 0. The following lemma shows that more is true. 

Lemma 1.2.1. —  Almost surely for every 0,  we have 

H° = lim 
/c—>oo £jç 

î 
sd 

S 
Uxr<i:+ek\dr <  oo, 

for every  s < t such that Xs- ^  1%, and  for s = t if AXt >  0. 
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Proof. —  Let s  and t be as in the statement. The n there must exis t a  rationa l 
u G (s, 00) such that Xs- ^  J*. W e can then apply to the time-reversed process 
the approximation resuit (13) at times u and u — s respectively. Th e desired resuit 
follows. • 

We dénote by M/(R+) th e space of ail finite measures on R+, which is equipped 
with the topology of weak convergence. 

Définition 1.2.2. —  The exploration process is the process (pt,t   ̂0 ) with values in 
M/(R+) define d as follows. Fo r every nonnegative measurable functio n / , 

(16) (PtJ) = 
/[o,t] 

dsIstf{H°) 

where the notation dsI^  refers to intégration with respect to the nondecreasing func -
tion S  —• J*. 

Since we did not exclude the value +00 for H° (as defined by (15)), it may not be 
obvions that the measure pt is supported on [0, 00). However , this readily follows from 
the previous lemma since the measure dsI  ̂is supported on the set {s < t : Xs- ^ /*} 
(to which we need to add the point t if AXt > 0). 

Notice that if u and v belong to the set {s  ̂t  : Xs- ^ an d if u ^ v, then for 
every r G [0, u) the condition Xr < I£ + Sk implies Xr < Il + an d by construction 
it follows that H° < H%. Usin g the previous remark on the support of the measure 
dsIt, we see that the measure pt is supported o n [0 , H°\, for every t ^ 0, a.s. 

The total mass of pt is 

(pt,l) =  Itt-I? =  Xt-It. 
In particular pt = 0 iff Xt = It-

It wil l be useful to rewrite the définition of pt in terms of the time-reversed process 
Dénote by =  (L^} , 0 ^ s  ̂t)  the local time at 0 ofX^-S  ̂(i n particular 

iJt° = L[t]).  Not e that for t > 0 fixed, we have H° = -  Lst]  for every s G [0,t ] 
such that Xs- < a.s . (compare (13) and (15)). Hence , for every t ^ 0, 

(17) {Puf) = 
t[o,t] 

[l{St_Xt<£} l{Lt a.s.. 

If p is a nonzero measure in M/(R+), w e write supp p for the topological support 
of/i an d set #(/x) = sup(supp/i). B y convention H(0) = 0. By a preceding remark, 
H(pt) ^  i f ° for every 0 , a.s. 

Lemma 1.2.2. —  For e?;en/ £ ^ 0 , P[H{pt) =  iff] = 1. Furthermore,  almost  surely 
for every  t > 0, we have 

(i) Pt({0})  =  0; 
(ii) suppp t = [0,H{pt)] if  pt ^ 0/ 
(iii) H(ps)  = H° for every s G [0,£) SÎZC/ I that Xs- ^  J* and  for s = t if AXt >  0. 
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Proof. — It is well known, and easy to prove from the strong Markov property, that 
the two rando m measures dSs and dLs hav e the same support a.s . The n (17) implies 
that supppt =  [Q)H° ] a.s. fo r every fixed t > 0. I n particular, P[H ° =  H(pt) ] = 1. 
Similarly (17 ) implie s that P[pt({0} ) >  0 ] = 0 for every fixed t > 0. However , if we 
have pt({0}) >  0  for some t >  0 , our définitions and the right-continuity of paths 
show that the same property must hold for some rational r > t. Propert y (i) follows . 

Let u s now prov e (ii) , which is a little more délicate. W e alread y noticed that (ii ) 
holds for every fixed t, a.s., hence for every rational outside a set of zéro probability. 
Let t  > 0 with Xt > It, and set 

7t = sup{s < t: Il < Xt} . 

We conside r two différen t cases. 
(a) Suppos e first that Xlt- <  Xt, whic h holds in particular if AXt >  0. Then note 

that 

(pt,f) = 
sd +d1 

dsPtf{H°s) + { X t - X ^ ) f { H ° t ) . 

Thus we can find a  rational r >  t  sufncienty close to £, so that pr and pt have the 
same restriction to [0, H%). Th e fac t that property (ii) holds for r implies that it holds 
for £ , and we see also that H° = H(pt ) i n that case. 

(b) Suppos e that Xlt- — Xt . The n we se t for every e > 0, 

(p£tJ) = 
J[0M 

dsl? l{ls<Xt-e} f(H°). 

Prom the remarks following the définition of pt , i t is clear that there exists some a ^ 0 
such that p\ is bounded below by the restriction of pt to [0,a) , and bounded above 
by th e restriction of pt to [0 , a]. Als o note that pt = lim j p\ as e | 0 . Now , fo r every 
e > 0, we ca n pick a rational r > t so that >  Xt — £, and we have by construction 

pl=per+Xr-Xt 

Prom the rational case, the support of peTvXr~Xt must be an interval [0 , a], and thus 
the same is true for p\. By letting e [ 0, we ge t (ii ) for t. 

We alread y obtained (iii ) fo r s = t  when AXS >  0 (see (a) above). I f s G  (0,£ ) 
is such that Xs- ^ If , w e wil l have also Xs- ^ If . for any rational r G  (s,t). The n 
H° ^  H ° = H(pr) , an d on the other hand, i t is clear that the measures ps and pr 
have the same restriction to [0 , H°). Thu s (ii) implies that the support o f p s contain s 
[0, H°), an d so H(ps) ^  H° . Thi s gives the desired resuit since the reverse inequality 
always holds. • 

Proposition 1.2.3. — The process (pt, t ^  0 ) i s a  càdlà g strong Marko v process in 
M/(R+). Furthermore , {pt, t ^  0 ) is càdlàg with respect to the variation distance on 
Unité measures. 
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Proof. —  We first explain how t o define the process p started a t an arbitrary initial 
value p G M/(R+). T o this end, we introduce some notation. Le t p G M/(R+) an d 
a >  0. I f a < (/i , 1), we let kap  be the unique finite measure on R+ suc h that, for 
every r ^ 0, 

kap([0,r}) = p([0,r}) A((p,l)  -  a). 
In particular , (fc a)Lt, 1) = (p,  1) — a. I f a ^ (/i, 1) , we take kap =  0. 

If p G M/(R+) has compact support and v G M/(R+), we define the concaténation 
[p, v\ G M/(R+) b y the formula 

j [p,  v](dr) f(r) =  f p(dr)  / (r) + J u{dr) f(H(p) +  r). 
With this notation, the law of the process p started a t p  G M/(R+) i s the distri-

bution of the process p  ̂defined by 

(18) pt  = [k-Itp,pt] ,  *>0 . 

Note that this définition makes sensé because k-itp ha s compact support, for every 
t >  0 a.s. 

We then verif y tha t the process p has the stated properties . Fo r simplicity, w e 
consider only the case when the initia l value is 0, that i s when p is defined as in 
Définition 1.2.2 . The right-continuity of paths is straightforward from the définition 
since the measures l[0^](s)dsIf,  converg e to l[0^(s)dsIf  i n the variation norm as 
t' l  t.  Similarly , we get the existence of left-limits from the fact that the measures 
l[oyt'}(s)dsI£, converg e to l[0^(s)dsIf  i n the variation norm as t' ]  t, t' < t. W e see 
in particular that p and X hav e the same discontinuity times and that 

(19) fH=fH -+&Xt8Ho. 

We no w turn to the strong Markov property. Le t T be a stopping time of the 
canonical filtration. W e will express pr+t  i n terms of pr an d the shifte d process 
x[T^ =  Xx+t —  XT- W e claim that a.s. fo r every t > 0 

(20) pT+t  = [k_ImpT,p[T)] 
(T) (T) 

where p\ J  and 1} J  obviously dénote the analogues of pt and It when X i s replaced 
by X(T\  Whe n we have proved (20) , th e strong Markov property of the process p 
follows by standard arguments, using also our définition of the process started a t a 
gênerai initial value. 

For th e proof of (20) , write 

{PT+tJ)= f d sI^+tf{H°s)+ f dsPT+tf {H°). 
«/[0,T] J(T,T+t] 

We consider separately each term in the right-hand side. Introduce 
u = sup{r G (0,T] :  Xr_ < jf+J , 
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with the usual convention sup0 =  0. W e hav e =  fo r s G [0,-u) and I^+t — 
W i fo r s G [Î/, T]. Since XT — I?+t =  ~liT\ & then follows from our définitions that 

(21) 
'[0,T] 

dsIîr+tf{H°s) 

sdv 
J[0,u 

dsPT f{H°s) + l{„>0}(/?+t - Xu_)f{H°u)  = (k_Iïr)PT, /)• 

Also notice that the measures pu and k_  t (T) PT  coincide, except possibly at the point 
H°. I n any case, H(pu) = H{k_I(T)pr), an d we have also H° = H(pu) by Lemma 
1.2.2 (iii) . 

Now observ e that for dsI^+t almost every s G (T, T+t], w e have H° = H° +  H°'Sp, 
with an obvious notation. T o see this, pick a rational r > T + t such that >  Xs-
and argue on the time-reversed process a s in the proof of Lemma 1.2.1. Hence, 

(22) 
J(T,T+t] 

daIî+tf(H?) 

sdv sd v daIl+tf{HZ+H°a±l?) = p(tT\dx)f(H^x). 

Formula (20) follow s by combining (21) and (22). • 

We no w corne back to the problem of finding a modification of the height process 
with good continuity properties. B y th e first assertion o f Lemma 1.2.2, (H(pt),t  ^ 0) 

is a modification of (H£,t ^ 0). From  now  on,  we  will  systematically use  this mod-
ification an d write Ht = H(pt). Fro m Lemma 1.2.2 (iii), w e see that formula (16) 
defining (pt,  t ^ 0) remains true if H° i s replaced by Hs. Th e same applies to formula 
(19) givin g the jumps of p. Furthermore , the continuity properties of the process pt 
(and especiall y the form of its jumps) imply that the mapping t —•  H(pt)  = Ht is 
lower semicontinuous a.s . 

Let u s make an important remar k at this point. Write 

gt =  sup{s  ̂t  :  Xs = Is} 

for th e beginnin g of the excursion of X —  I tha t straddles t.  The n a simple time-
reversal argument shows that a.s. fo r every t such that Xt — It > 0, we have 

llTYl 
k—»oo 

1 

sd 

r9t 
Jo 

l{Xs<IÎ+ek}ds = 0 

and thus we ca n replace (15) by 

H? =  liminf-
k—+oo 

1 

sdv 
0 

J9t 
•{xa<i;+ek}d>s 

Recalling (16), w e see that, a.s . fo r every t  > 0 such that Xt  —  h >  0, we can 
write pt and Ht  as measurable fonctions of the excursion of X —  I tha t straddles t 
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(and of course pt = 0 and Ht = 0 if Xt =  It). W e can thus define both the height 
process and the exploration process under the excursion measure N.  Furthermore , 
if (aj,f3j),  j  G J, dénot e the excursion intervais of X —  I, an d if ujj, j  G J, dénot e 
the corresponding excursions, we have Ht = Ht-aj(oJj) and pt = pt-aj(^j) fo r every 
t G (ctj,/3j) and j G J, a.s . 

Since 0 is a regular point for X —  I, w e also see that the measure 0  is a regular 
point for the exploration process p. I t is immédiate from the previous remark that the 
excursion measure of p away from 0 is the "law" of p under N. Similarly , the process 
—/, which is the local time at 0 for X —  I, i s also the local time at 0 for p. 

We now state and prove a useful technical lemma about the process H. 

Lemma 1.2.4 (Intermediate values property). — Almost surely for  every  t  <  t',  the 
process H takes ail  values between  Ht and Ht> on  the time interval [t,t'\. 

Proof —  First consider the case when Ht > Ht'. By using the lower semi-continuity 
of H, we may assume that t is rational. Fro m (20), we have pt+s = [k_jWPt, P^] fo r 
every s > 0, a.s. Hence , if 

7r = inf{s > 0 : JW = - r } , 

we have pt+lr = krpt, and so Ht+lr = H{krpt) for every r > 0, a.s. However , Lemma 
1.2.2 (ii ) implie s that the mapping r — > H(krpt) i s continuous. No w note that for 
r =  0, Ht+lr =  Ht, whereas for r — Xt —  I\t = —I^-t we have t + jr ^  t'  and our 
définitions easily imply pt+<yr ^  pt'  and Ht+lr < Hf. 

Consider then the case when Ht < Hf. B y lower semi-continuity again, we may 
assume that t' is rational. I n terms of the process time-reversed at time t', we have 
Ht, =L$'). Se t 

(Tr = inf{s ^ 0 : ^  r} , 
which is well defined for 0  ̂r  <  Xt> —  h'- Sinc e the subordinator S^-i^t)  is strictly 
increasing, we see that the mapping r —* L&J is continuous for r G [0,Xf — / * ' ] , a.s . 
Now note that 

HV-ar = - L%> 

for every r G [0,.XV — If], a.s . Fo r r =  Xt>  —  I\, = S^f}t, we have t' — o~r ^  t  and 
Ht'-ar ^ Ht  by construction. Th e desired resuit follows. • 

The next proposition is a corollary of Proposition 1.1.4. We dénote by U a subor-
dinator defined on an auxiliary probability space F0) , with Laplace exponent 

E°[exp-XUt] =  exp(-t(/3À + ^ ( 1 - e~Xr)  ?r([r, oo)) dr)) =  exp(-*(^(À) -  a)) . 

For every a ^ 0 , we let Ja  be the random élément of M/(M+) define d by Ja(dr) = 
l[o,a](r) dUr. 
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Proposition 1.2.5. —  For every nonnegative measurable function $ on  M/(R+), 

Ni 
d 

lo 
dSsf{a-Ls). 

sd 

Jo 
dae-aaE°[$(Ja)]. 

Let 6^0. Then  ps({b}) = 0 for every s ^ 0,  N a.e.  or  P a.s. 

Proof. —  We have pt = E(X^\, s ^ 0) , with a functional S  that is made explicit in 
(17). W e then apply Proposition 1.1.4 to obtain 

N 
se 

Jo 
dt$(pt)) =E 

dd 

dr 
da$oS(IsAL_i(û),0 0 ) . 

However, for a < Loo , 

(S(XsAL-i(û),O0),/) =  qlq 
rL-\a) 

R0 
dSsf{a-Ls). 

The firs t assertio n i s no w a  conséquenc e o f Lemm a 1.1.2 , whic h show s tha t 
P[a <  Loo] = e~aa and that , conditionall y on {L~1(a)  <  oo} , Si,-i(r) =  XL-i^, 
0 < r <  a has th e sam e distributio n a s U  (we also use th e fac t tha t (Ua  — Ua-r, 
0 < r ^  a)  has the same distribution a s (Ur,0  < r ^ a)). 

Consider now the second assertion. Not e that the case b = 0 is a conséquence of 
Lemma 1.2.2 (i) . So we may assume that b > 0 and it is enough to prove the resuit 
under the excursion measure N.  However , since b is a.s. no t a jump time of U, the 
right side of the formula of the proposition vanishes for = /i({6}). Th e desired 
resuit follows, using also the fact that p is càdlàg in the variation norm. • 

We dénote by M the measure on M/(M+) define d by: 

dSsf{a-Ls). 
b 

Jo 
dae-aaE0[$(Ja)]. 

Proposition 1.2.5 implies that the measure M is invariant for p. 
The last proposition of this section describes the potential kernel of the exploration 

process kille d when it hit s 0. W e fix p, e M/(R+ ) an d le t p^  be a s i n (18 ) the 
exploration process started a t p.  W e use the notatio n introduce d i n the proo f of 
Proposition 1.2.3. 

Proposition 1.2.6. —  Let TQ = inf{s ^ 0 , p% =  0}. Then, 

G Jo 

br 
ds$(p») = 

d +d 

Jo 
dr M(d0)$([fcr/z,0]). 

Proof. —  First not e that To = î ^ i ) b y an immédiate application of the définition 
of pM . Then , dénote by (otj,/3j), j G J the excursion intervais of X —  I awa y from 0 
before time T/u n, and by CJ7, j G J th e corresponding excursions. A s we observed 
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before Proposition 1.2.5, we have pt =  pt-aj(^j ) fo r every t G (aj,/3j) , j  G J, a.s . 
Since {s > 0 : Xs = Is} has zéro Lebesgue measure a.s., it follows that 

E 
x 

br 
d8*(pÇ)\=E 

jeJ' Jo 

r>Pj-OLj 
dr§([k-Ia.p,pr{uj)}) . 

By excursion theory, the point measure 
Siaj ,u>j (dude) 

x2 1d 
is a Poisson point measure with intensity l[_^^^(u)duN(dw) . Hence, 

E\ 
»T0 

0 
xb41r-+brd 

•</M> 

lo 
duN\ 

o 
dr $([kup, pr])j 

and the desired resuit follow s from Proposition 1.2.5. 

1.3. Local times of the height process 

1.3.1. The construction of local times. —  Ou r goal is to construct a  local time 
process for H at each level a ^ 0 . Sinc e H is in gênerai not Markovian (and not a 
semimartingale) we cannot apply a gênerai theory, but stil l we will use certain ideas 
which are familiar in the Brownian motion setting. In the case a = 0, we can already 
observe that Ht — 0 iff pt = 0 or equivalently Xt — It = 0. Therefore the process —I 
is the natural candidate for the local time of H at level 0. 

Let u s fix a >  0 . Sinc e t — » p t i s càdlàg in the variation norm, it follow s that 
the mapping t — • pt((a, oo)) i s càdlàg. Furthermore , i t follow s fro m (19 ) that the 
discontinuity times of this mapping are exactly those times t such that AXt >  0 and 
Ht > a, and the corresponding jump is AXt. 

Set 

Tt =  inf{s > 0 : /  1{Hr>a } d r > t} = inf{s > 0 : /  l{Pr((a,oo))>o } dr > t} . 
Jo J o 

From Proposition 1.2.5, we get that f0° ° l{Hr>a} dr =  o o a.s., s o that the random 
times rta are a.s. finite . 

When a > 0, we also set 

t? =  inf{s ^ 0  : f  l{Hr^a } dr > t} 
Jo 

and we let Ha be the cr-field gênerated by the càdlàg process ( X ^ , p ^ \ t ^  0 ) and 
the class of P-negligible sets of .  We also define Ho as the cr-field generated by the 
class of P-negligible sets of Goo-

Proposition 1.3.1. — For every t ^ 0 , let p^ be the random measure on R+ define d by 

( P t J ) = f  Pr?{dr) f{r -a) . 
J(a,oo) 

The process (p%,t ^ 0 ) has th e same distribution a s (pt, t ^  0 ) and is independent 
0fUa. 
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Proof 

First step. —  We first verify that the process ((/?£, 1), t > 0) has the same distribution 
as ((pt, l) ,£^0) . 

Let s  >  0. W e introduce two séquences of stopping times Sk, Tefc, k ^ 1 , defined 
inductively as follows: 

5] =  inf{s ^ 0  : p5((a, oo)) ^ e}, 
T£/e = inf{S^5£fc:ps((a,oo))=0} , 
S*+1 = inf{5 > T£fc : ^((a, oo) ) >  e} . 

It i s easy to see that thèse stopping times are a.s. finite, and Sk  |  oo , Tk î  o o as 
k j  oo. 

From (20) applie d with T = S*, we obtain that, for every k > 1, 

(23) T * - inf {s > S* : Xs = XSk -  pSk  ((a, oo))} . 

Formula (20) als o implies that, for every 5 G [0,Tk —  S£], 

(24) psj+a((a,oo)) = (p5j((a,oo)) + J<*J)) + (X<sJ) - J5(5Î)) 

= ^Sf+ a -  (XSk  -  Asj ((a,oo))). 

We set 
y*M = P(5f+s)AT^((«,oo))-

As a straightforward conséquence of (23) an d (24) , conditionally on Gs*> the- process 
yk,e jg distributed a s the underlying Lévy process started at pSk((a, oo)) and stopped 
at its first hitting time of 0. 

We then claim that, for every t ^ 0, 

(25) li m su p pSk((a,  oo)) = 0, a.s . 
xb+d41sdvss 

Indeed, by previous observations about the continuity properties of the mapping s —> 
ps((a, oo)), we have 

sup pSk((a, oo)) ^ £  + sup{AXs;s ^t,Hs >  a,ps((a,oo)) ^  5}. 
xg+ssks<kq 

However, the sets {5 ^ t;AXs  >  0,HS >  a,ps((a, 00)) <  e} decrease to 0 a s s [  0, 
and so 

lim (  sup{AXs; s ^ t,Hs  >  a, ps((a, 00)) ^  e } j =  0, 

a.s., which yields the desired claim. 
Set 

Zb£ =  Y^€ -  in f Y}>e£Y.k>e. XXJ.X 
Then, conditionally on ÇSk, Zk'£ is distributed as an independent copy of the reflected 
process X —  7, stopped when its local time at 0 hits psk((a, 00)). 
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Dénote by U£ = (U£,s  ̂0 ) the process obtained by pasting together the paths 
(Z^'e,0 ^  s  ^ Tç  —  S*). B y the previous remarks, IIe  is distributed a s the reflected 
Lévy process X —  I. 

We then set 
rt oo 

r«'e = inf{t ̂  0 : / 53l[sf ï ï î ] (r)dr>s}. 
Jo k=i 

Observe that the time-changed process (pr*,e((a, oo)), s > 0) is obtained by patching 
together the paths (Y]*>£, 0  ̂s  ^ —  S*). Moreover , we have for every k ^ 1, 

sup {Y^  -  Z^)  =  Psi ((a, oo)) = Y0k'°. 

From (25), we conclude that for every t ^ 0, 

(26) li m (sup \u; - pTa..((a,cx)))|) = 0. 

Notice that r^£  j . rj1 as e j 0  and recal l that for every e > 0, £7£ is distributed a s 
the reflected Lévy process X —  I. W e then get from (26) that the process (p" , 1) = 
pra((a, oo)) is distributed as the reflected procès -X —J, which complètes the first step. 

Second step.  —  We will now verify tha t pa  can be obtained as a functional o f the 
total mass process (pa,l ) i n the sam e way as p is obtained from (p , 1). I t wil l be 
enough to argue on one excursion of (pa , 1) away from 0. Thus , le t (u,v)  be the 
interval corresponding to one such excursion. W e can associate with (u, v) a  unique 
connected component (p,  q) of the open set {s,H3  > a}, such that r^+r =  p + r for 
every r G [0 , v — u), and q = T%_. B y the intermediate values property, we must have 
Hp = Hq = a. 

We also claim that Xr > Xp for every r G (p,  q). I f this were not the case, we could 
find r  G (p,q) such that Xr =  mf{Xs1p  ̂s  < r} , which forces Hr ^ Hp  = a and 
gives a contradiction. 

The previous observations and the définition of the process p imply that, for every 
r G (p , q), the restriction of pr to [0 , a] is exactly pp = pq. Defin e 

o;(r) = X(p+r)A(? - -X p = (p(p+r)Ag , 1) - (pp , 1) = (p^n+r)Av , 1), 

so that u; is the excursion of (pa, 1) corresponding to (u,v).  Th e construction o f the 
process p implies that, for 0 < r < # — p = v — u, 

Pp+r = [pp,pr{u% 

and so, for the same values of r, 

p£+r = PrM -

This complètes the second step of the proof. 

dsqkql lwqkq<sk 
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Third step. —  It remains to prove that pa is independent of the <7-field Ha- For e > 0, 
dénote by th e cr-field generated by the processes 

(X(T£+8)AS!+1iS ^ °) 

for k  =  0,1,.. . (b y convention =  0) , and the negligibl e sets of Goo- From our 
construction (i n particular th e fact that Xs  >  XTk for s  G [S^T*)) , i t i s easy to 
verify tha t the processes (P(T*+ s)asJ+1 's ^  ^  ar e measurable with respect to H a, 
and since Ht > a  for t G (S* ,Tefc), it follows that fta C H£a. 

By the arguments of the first step, the processes Zk'e are independent conditionally 
on Ti^i  an d the conditiona l law of Zk,£ i s the la w of an independent cop y of the 
reflected process X —  7, stopped when its local time at 0 hits P£fc((a, oo)). I t follows 
that the process U£ of the first step is independent of 7i ,̂ hence also of Ha. By passing 
to the limi t e  —> 0 , we obtain that the total mass process (pa, 1) is independent of 
7ia. As we know that pa can be reconstructed as a measurable functional of its total 
mass process, this complètes the proof. • 

We let la = (la(s), s > 0) be the local time at 0 of (pa, 1), or equivalently of pa. 

Définition 1.3.1. —  The local time at level a and at time s of the height process H is 
defined by 

Las=la(£ l{Hr>a]dr). 

This définition will be justified below: See in particular Proposition 1.3.3. 

1.3.2. Some properties of local times. —  Th e next lemma can be seen as dual 
to Lemma 1.1.3. 

Lemma 1.3.2. —  For every t ^ 0, 

lim 1 
£ 

sd 

0 
1{//S<£} ds = -It 

in the Lx-norm. 

Proof. —  We use arguments similar to the proof of Lemma 1.1.3. Recal l that Tx = 
inf{£ > 0 : Xt = — x}. W e first establish that for every x >  0, 

(27) lim -
sd 

sdv 
llHs<e\ ds = X , 

in probability . Not e that Propositio n 1.2.5 give s for any nonnegative measurable 
function q 

N 
rcr 

JO 
isg(Hs)) = 

dd 

fo 
dae~aag{a). 
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Let u;J, j G J dénote the excursions of X — I away from 0 and let (aj,/3j) b e the cor-
responding time intervais. We already noticed that Hs = Hs-aj(uji) fo r s G (aj,/3j). 
Hence, using also the previous displayed formula, we have 

(28) E 1 
dx 

x 

sx 
l{Hs^e} dé x 

X 
s' 

d 
sd 

Jo 
t{Hs^e}ds) = X 

sd 

dx+ 1s 
a 

^ x 

and in particular, 

(29) lim 
e-+0 

1 
.S 

dv 

sdv 
l{ks<e} ds = X. 

We then want to get a second moment estimate. T o this end, it i s necessary to 
introduce a suitable truncation. Fix K >  0. A slight modification of the proof of (29) 
gives 

(30) limE 
£-»0 

ri 
.£ 

sd 

/o 
{Hs<e} l{Xs-Is<K}ds\ =  X. 

If dénote s the height process for the shifted process X  ̂=  Xs+t — Xs, the bound 
H^s <  Ht (for 0 < s ^ t) is obvious from our construction. W e can use this simple 
observation to bound 

N 
sdvd 

Jo 
[l{St_Xt<£} l{Lt^z} F o 

sdc+x2 
sdv 

Jo [l{St_Xt<£} l{Lt^z 
r<7 

Js 
x 1d3 

< 27 V 
sd 

o 
t<£} l{Lt^z} F o 

•a 

Is 
dtl{H^e} 

= 27 V 
sd 

Ci 
ds llHs<e\ 1{X.S<̂ > EXs 

sdv 

'0 
dtlsHt<£\ 

^ 2sN 
R0 

ds l{Hs<e} 1{XS<K}  X8 (by (28)) 

= 2e 
sd 

o 
dyE[XL-i(y) l{L-i(y)<oo,XI<_1 , ,^K}. (Proposition 1.1.4) 

^2e2E[XL-He)AK] 
= o(e\ 

by dominated convergence. A s in the proof of Lemma 1.1.3, we can conclude from 
(29) and the previous estimate that 

lim 
£-•0 

1 
6 

sdv 

0 
l{Hs^e}l{Xa-IaÇK} ds = X 

in the L2-norm. Since this holds for every K >  0, (27) follows. 
From (27) and a monotonicity argument we deduce that the convergence of Lemma 

1.3.2 holds in probability. To get L^convergence, we need a few other estimâtes. First 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002 



36 CHAPTER 1 . THE HEIGH T PROCES S 

observe that 

(31) E 
sd 

sd 
l{Hs^e}ds 

sd 

Jo 
dsP[Hs ^e\ = 

>t 

sdv 
dsP[Ls ^ e }= E[L (e ) At] ^ C e, 

with a  constant C  depending only on t (i n the las t boun d w e applied to L  1  an 
estimate valid for any subordinator). Then, 

E 
sd 

R0 
x +ds2q s2x 

2-
- 2 E 

J{0<r<s<t} 
drdsl{Hr^£}l{Hs^£} 

<C 2E 
{0<r<s<t 

drdsl{Hr^e}l{H(r)r<ey 

= 2 E 
sd 

0 
irl{Hr^e}E 

ct — r 

'0 
dsl{Hs^£} 

< 2 E 
vr 

rz 
dr l{Hr^e} 

2 

As a conséquence of the last estimate and (31) , the variables e 1  /Q l{#s^£}<is , £ > 0 
are bounded in Lr. Thi s complètes the proof of Lemma 1.3.2. 

We can now give a useful approximation resuit for local times of the height process. 

Proposition 1.3.3. — For every t ^ 0, 

lim sup EI sup s  1 
â O 1  ŝ t 1 JO 

ehg 
l{a<//r<a+£} dr - La s = 0 . 

Similarly, for every t ^ 0, 

lim sup E su p e 
£-*0a>£ L  s<t 1 0 

d 
l{a-e<Hr^a\ dr - = 0 . 

There exist s a  jointly measurable modificatio n of the collectio n (L^a ^ 0 , s ^  0) , 
which is continuous an d nondecreasing in the variable s, an d such that, a.s. fo r any 
nonnegative measurable function g on an d any s ^ 0, 

(32) 
Jo 

g(Hr) dr = 
R+ 

g(a) Las da. 

Proof —  First consider the case a = 0. Then , p° = p and L® = l°(t) — —It . Lemma 
1.3.2 and a simple monotonicity argument, using the continuity of giv e 

(33) lim E \ sup \£ 
e-̂ 0 1 ŝ t JO 

sd 
l{o<ifr^£} dr - L° s = 0. 

For a  > 0, set AS = •t 
Jo 

i{i/s>a} ds. Note that 

{a < Hs ^ a  + £} = {ps((a , oo)) > 0} D {ps((a + e, oo)) = 0 } , 
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and so 
d 

Jo 
l{a<Hr^a+e} dr = 

t 

0 
l{ps((a,oo))>0}n{ps((a+£,oo))=0} ds 

ss 
st 

0 
l{p?((e,oo))=0}<fr 

sd 
sd 

0 
l{o<H?^e}dr, 

where H" = H(p%). The first convergence of the proposition then follows from (33) , 
the trivial bound A% ^  t  and the fact that p° has the same distribution a s p. 

The secon d convergence is easily derived from the firs t on e by elementary argu-
ments. Le t us only sketch the method. Fo r any fixed ô  > 0, we can choose So > 0 
sufficiently smal l so that for every a  ̂0 , e G (0, eo], 

(34) E k 1 
sd 

sd 
l{a<Hr^a+e} dr - L% dx+ 1 

Then, if 0 < e < SQ A a, 

sd z 
ed 

o 
l{a-£</fr^a} dr - e0  1 

qs 
[l{St_Xt<£} l{ < 2 (J. 

However, if e is very small in comparison with £Q, one also gets the bound 

E eô1 
s 

sd 
l{a-£<Hr^a-£+£o} dr - (eo - 1 

sd 

'o 
[l{St_Xt<£} l{Lt^z} 

We get the desired resuit by combining the last two bounds and (34) . 
The existenc e of a  jointly measurable modification of the process (LJ, a  ^ 0 , s ^ 0) 

that satisfles the density of occupation time formula (32 ) follow s from the first asser-
tion of the proposition by standard arguments. • 

From now on, we will only deal with the jointly measurable modificatio n of the 
local times {L^,a   ̂0 , s ^ 0 ) given by Proposition 1.3.3. W e observe that it is easy 
to extend the définition of thèse local times under the excursion measure N.  Firs t 
notice that, as an obvious conséquence of the first assertion o f Proposition 1.3.3, we 
have also for every a  ̂0 , t ^ 0 

(35) s + 1 
e^0 

SUD 
sx+ :s d 

e-1 
IT 

l{a<Hu^a+e} du - {L%  - L" ) = 0, 

Then, let V be a measurable subset of D(K_|_,M) such that N[V]  <  oo. For instan 
we ma y take V =  {sups^0^ > fo r <5 >  0. B y considering the first excursion 
X —  I that belongs to F, and then using (35) , w e immediately obtain the existen 
under N of a continuous increasing process, still denoted by (L£, s ^ 0) , such that 

(36) limTV 
e^O 

lv su p 
3<t 

e'1 
•S 

10 
^{a<Hr^a+e} dr - L"\ = 0 . 
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The next corollary will now be a conséquence of Proposition 1.1.4. We use the notation 
introduced before Proposition 1.2.5. 

Corollary 1.3.4. — For any nonnegative measurable function F  o n D(]R+,R), an d ev-
ery a > 0, 

N 
d 

vd 
dLasF(X{rsLr>0) = E[l{L-i(a)<00 } F(XrAL-i(a),r > 0)]. 

In particular, for any nonnegative measurable function F  o n M/(R+) , 

N r 

JO 
dL«F(ps) = e- a aE°[F(Ja)}. 

Proof —  We may assume that F i s bounded and continuous. The n let h be a non-
negative continuous function o n M+, which vanishes outside [S , A], fo r some 0 < S < 
A < oo. Fo r the first identity, it is enough to prove that 

N 
sd 
Jo 

dLash(s)F(X{rt,r>0) = E[l{L-Ha)<oo } h{L-\a))F(Xr*L-i{a),r >  0)]. 

Notice that th e mappin g s  — • (x[s\ t ^  0 ) is continuous except possibl y o n a 
countable se t tha t i s not charge d b y the measur e dLas. Fro m (36) , applied with 
V =  {CJ,O~(LU ) > ô} , and then Proposition 1.1.4, we get 

TV 
f<7 

Jo 
dLash(s)F(X{rZ,r>0)) 

= limTV 
sd 

1 
xg 

sdv 

lo 
ds l{a<Hs<a+e} h(s) F ( X X„ r > 0) 

= li m 
£̂ 0 

n 
S 

E 
(a+e)AL00 

aALoo 
dxh(L-1(x))F(XTAT.-I(^,t >  0) 

= E[l{L-i , a)<oo} hiL-^a)) F(XrAL-i{a), r ^  0)], 

which complètes the proof of the first assertion. The second assertion follows from the 
first one in the same way as Proposition 1.2.5 was derived from Proposition 1.1.4. • 

We conclude this section with some remarks that will be useful in the application s 
developed below. Le t x > 0 and le t (aj ,(3j), resp . ujj , j G J, dénot e the excursion 
intervais, resp. th e excursions of X — I before time Tx. Fo r every a > 0, we have P 
a.s. 

(37) Ln-I — J- X 
dv 

[l{St_Xt<£} 

A first inequality is easily derived by writing 

a 
dv 

o 
dsLas l{xs>/s} = 

sd 
[l{S XG X R 

dd+ 41 
l{Lt^z} F o 
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where the last equality follows from the approximations of local time. Th e converse 
inequality seems to require a différent argument in our gênerai setting. Observ e that, 
by excursion theory and then Proposition 1.2.5, 

E\L% 1 ^  li m inf S 
x+ 1 

1 
fd 

sd 

sd 
ds l{a<Hs<a+ek} 

= li m inf E 
sd sdv 

1 
sd dv 

sd 
dsl{a<Hs(cjj)<a+ek} 

= li m inf x N 
k—>oo 

1 
sd 

t><7 
dd 

dsl{a<Hs<a+£k} 

= li m inf x 
Sk a 

r»a+£fc 
dbe~ab 

= xe-aa 

whereas Corollary 1.3.4 (wit h F = 1) gives E [l{St_} F o = xN(L%) =  xe-aa. 
This readily yields (37). 

Let us finally observe that we can extend the définition of the local times Laa to the 
process p started at a gênerai initial value p G M/(R+). I n view of forthcoming appli-
cations consider the case when p is supported on [0, a), for a > 0. Then, the previous 
method can be used to construct a continuous increasing process (L*(p**), s ^ 0) such 
that 

l{Lt^z} F lim 1 "S 

0 
drl{a<H(pï)<a+e} 

in probability (or even in the L1-norm). Indeed the arguments o f the proof of Propo-
sition 1.3.1 remain valid when p is replaced by p ,̂ and the construction an d approx-
imation of Lg(p^) follow. Recal l the notation r0 = inf {s ^  0  : p% =  0} and observe 
that ro = Tx i f x = (p, 1). Le t (oij,f3j), Wj, j G J be as above and set Tj = H(k-i p). 
Then we have 

(38) l{Lt^z} F o 
dd 

[l{St_Xt<£} 

The proof is much similar to that of (37): The fact that the left side of (38) is greater 
than the right side is easy from our approximations of local time. The equality is then 
obtained from a first-moment argument, using Proposition 1.2.6 and Fatou's lemma 
to handle the left side. 

1.4. Three applications 

1.4.1. The Ray-Knight theorem. —  Recal l that the ̂ -continuous-state branch-
ing process (in short the ^-CSBP) i s the Markov process (Ya,a   ̂0 ) with values in 
R + whos e transition kernel s are characterized by their Laplace transform: Fo r À > 0 
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and b  > a, 
E[exp-XYb |  Ya] = exp(-Yaub-a(X)), 

where ut(X), t ^ 0  is the unique nonnegative solution of the intégral équation 

(39) ut(X) + 
d 
d 

ip(us(X)) ds = À. 

Theorem 1.4.1. —  Let x > 0. The  process (L^  ,  a ^ 0) is a ip-CSBP started at x. 

Proof. —  First observ e that Lj.  i s Wa-measurable. Thi s is trivial for a = 0 since 
L% =  x. Fo r a > 0, note that, if 

T£ = mi{s > 0 : X?a = - x }, 

we have 
dx 

Jo 
dsl{a-£<Hs^a} = 

sd 

o 
ds l{a-e<H7a^a}-

and the right-hand side is measurable with respect to the cr-field 7ia. Th e measurabil-
ity of Lj, wit h respect to Ha then follows from the second convergence of Proposition 
1.3.3. 

We then verify that the function 

ua(X) = N[l - e"AL* ] ( a > 0), u0(X)  = X 

solves équation (39) . Fro m the stron g Marko v property o f p under the excursion 
measure N,  we get for a > 0 

ua(X) = XN "a 
R0 

dL«e-A(L«-L«)> = XN 
'o 

dLasF(ps)), 

where, fo r p  G  M/(R+), F(p)  =  E[exp(-XL^Q(p^))].  B y Corollary 1.3.4, we can 
concentrate on the case when p is supported on [0,a), and then (38) gives 

F (fi) = exp d 
d 

o 
duNU-expi-XH -H(k-Uii)\\\ 

= ex p ( - / i ( ^ ) 7 V ( l - e x p ( - A L r r ) ) ) 

Hence, using again Corollary 1.3.4, 

ua(X) =  XN 
d 

Jo 
dLasexp(- ps(dr)ua-.r(><))) 

= Xe~aaE°  exp dx Ja(dr) Wa-r(A)) 

= À  exp xx 
x 

R0 
drip(ua-r(X))). 

It i s a simple matter t o verify that (39 ) follows from this last equality. 
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By (37 ) and excursion theory, we have 

(40) E[exp(-\L%x)] =  exp(-xN(l -  exp(-AL£)) ) =  exp(-arwa(A)). 

To complète the proof, it is enough to show that for 0 <. a < 6, 

(41) E[exp(-XLbTJ | Ha) = exp(-^_a(A) LaTJ. 

Recall the notation pa  from Propositio n 1.3.1, and dénote by Lcs th e local times o f 
H? = H(p^). Fro m our approximations of local times, it is straightforward to verify 
that 

rb rb—a 
^T* —  L'A", •> 

where Aas —  f* dr l{fjr>a} a s previously. Write U = L%x to simplify notation. I f = 
inf{t ^  0 : la(t) > r}, we have A%x =  Tfi (note that la(A^x) =Uby construction , and 
that the strong Markov property of X a t time Tx implies la(t) >  la(A^x) for every 
t> A?p).  Hence, 

£[exp(-AL^J |  Ha] = E[exp(-\LbT-«a) \ Ha) = £[exp(-AL^a)]u=c/, 

where in the second equality, we use the fact tha t the process (Lr~a, w ^  0 ) is a 
functional of pa, and is thus independent o f Ha (Propositio n 1.3.1), whereas U — 
is ^-measurable. Sinc e pa has the same distribution as p, L™a and L^Ta also have 
the same law, and the desired resuit (41) follows from (40) . • 

Corollary 1.4.2. —  For  every a  ̂0, set 

v(a)=N[ su p Hs  > a) 
x + 1 

Then, 
(i) V  f? du = oo , we  have v(a) = oo for every a > 0. 
(n) / / /; du ip(u) < oo,  the function (v(a),a  >  0) is determined by 

via) 
du 

ip(u) 
= a. 

Proof. —  By the lower semi-continuity of H, the condition supo^^ Hs  > a holds iff 
Aaa >  0, and our construction shows that this is the case iff Laa > 0. Thus, 

v(a) = N(L% > 0) = li m Nil -  e~AL- ) = li m uJ\), 
À—>oo A—>OG 

with the notation of the proof of Theorem 1.4.1. From (39), we have 
g 

fua(\) 
du 

fz = a, 

and the desired resuit follows . 
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42 CHAPTER 1 . THE HEIGHT PROCESS 

1.4.2. The continuity of the height process. — W e now use Corollary 1.4.2 
to giv e a  necessary an d sufïicien t conditio n for the pat h continuit y o f the height 
process H. 

Theorem 1.4.3. —  The  process H has continuous sample paths P a.s.  iff oo 
1 

du 
DV < OO . 

Proof. —  By excursion theory, we have 

P 
x +13s 

SUD H*  > a = 1  — exp(—xv (à)). 

By Corollar y 1.4.2 (i) , we see that H cannot have continuous paths i fWRWD= oo . 
Assume that wWW<  oo . Th e previous formula and the property v(a) < o o 

imply that 
(42) limiï* =0 

uo 
P a.s . 

Since v(a) [ 0 as a j oo , we also get that the process H is locally bounded, a.s . 
The pat h continuity of H will then follow from Lemma 1.2.4 if we can show that for 
every fixed interval [a, a + h], h > 0, the number of upcrossings of H along [a,a + h] is 
a.s. fînit e on every finite time interval. Set 70 = 0 and define by induction for every 
n ^ 1, 

Sn = inf{t >  7n_i :  Ht > a + h}, 
7n = inf{£ ^ Sn  : Ht < a}. 

Both ôn  an d jn  ar e (^)-stoppin g times. Not e that Hln  ^  a  by the lowe r semi-
continuity of H. O n the other hand, as a straightforward conséquence of (20), we 
have a.s. fo r every t ^ 0, 

[l{St_Xt<£} l{Lt^z} F o 
where H^lr^  stand s for the heigh t process associated with x[ln^ =  Xln+t  —  Xlri. 
Therefore £n+ i — 7n ^  Kn,  i f Kn = inf{t  ^  0  :  H[lri^  ^  h}.  Th e strong Markov 
property implies that the variables Kn are i.i.d. .  Furthermore , Kn  > 0 a.s. b y (42) . 
It follow s that Sn  t 00 as n ] 00, which complètes the proof. • 

It i s easy to see that the conditionXSSD< 00 is also necessary and sufïicient for 
H t o have continuous sample paths N a.e . O n the other hand, we may consider the 
process p started at an arbitrary initial value p G M/(Rd) , a s defined by formula (18) , 
and ask about th e sample path continuity of H{ps). Clearly , the answer will be no 
if the support o f p is not connected. For this reason, we introduce the set Mj which 
consists of ail measures p  G  M/(R+) suc h that H(p) <  00 and supp/x =  [0,fZ"(/i)] . 
By convention the zéro measure also belongs to M®. 

From (18) and Lemma 1.2.2, it is easy to verify that the process p started at an 
initial value p G  M® will remain foreve r i n Mj, and furthermor e H(ps)  will have 
continuous sample paths a.s. Therefore , w e may restrict the state space of p to M®. 
This restriction will be needed in Chapter 4. 
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1.4.3. Hôlder continuity of the height process. —  I n view of applications in 
Chapter 4, we now discuss the Hôlder continuity properties of the height process. W e 
assume that the condition du/x/j(u ) < oo holds so that H has continuous sample 
paths by Theorem 1.4.3. We set 

7 = supjr ^ 0  : li m À rip(\) = +oo}. 
À—>-oo 

The convexity of I/J implies that 7 ^ 1 . 

Theorem 1.4.4. — The height process H i s P-a.s. locall y Hôlder continuous wit h ex-
ponent a for any a G  (0,1 — 1 /7), and is P-a.s. no t locally Hôlder continuous with 
exponent a i f a > 1 — 1/7. 

Proof. — We rely on the following key lemma. Recal l the notation fo r the local 
time at 0 of X® - #(t ) (cf . Section 1.2). 

Lemma 1.4.5. — Let t ^ 0  and s > 0. The n P a.s. , 

Ht+S- in f H r = H(pW) , 
re[t,t+s] 

H t - inf H r = W R , 
r€[t,t+s] 

where R = inf{r >  0 : X ^ > (in f 0 =  00). 

Proof. — From (20), we get, a.s. fo r every r > 0, 

(43) Ht+r = H(k_impt) + H(pW). 
From this it follows that 

inf H r = H(k T(t)pt ) 
re[t,t+s] 

and the minimum is indeed attained a t the (a.s . unique) time v E [t, t + s] such that 
Xv — .  The first assertion of the lemma now follows by combining the last equality 
with (43) written with r = s. 

Let us turn to the second assertion. I f Lt ^ the n on one hand Xv =  Iv and 
Hr = Hv — 0, on the other hand, R = 00, and the second assertion reduces 

to Ht = L*f * which is the définition of Ht. Therefor e we can assume that It < 
Let 

u = sup{r G [0, t] :Xr- < l L s } . 
As in the proof of Proposition 1.2.3, we have 

Hu = H(k_ (t)pt) inf H„ . 
re[t,t+s] 

On the other hand , the construction o f the heigh t process shows that the equality 
Hr = L^ —L̂ ]_r holds simultaneously for ail r G  [0, t] such that Xr_ < Il (cf. Lemma 
1.2.1). In particular fo r r = u we get 

H t - inf H r = H*-H.. = L { ^ -  ( W - L { ' \ . ) =  W . Hr = H*-H..sqs. 
re[t,t+s] 
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To complète the proof, simply note that we have t — u = R on the event {It < It+S}-
• 

To simplify notatio n we set <p(À ) = X/xp~1(\).  Th e right-continuous invers e L~l 
of L is a subordinator wit h Laplace exponent cp:  Se e Theorem VII.4 (ii ) in [5], an d 
note that the constant c in this statement is equal to 1  under our normalization of 
local time (compare with Lemma 1.1.2). 

Lemma 1.4.6. —  For every t ^ 0 , s > 0 and q > 0, 

E[\Ht+s - inf Hrm^CQtp(l/s)-* , 
r€[t,t+s] 

and 
E[\Ht- in f Hr\q]  ^Cqip(l/s)-q 

re t,t+s 
where Cq  = eT(q 4- 1) is  a finite constant depending only  on  q. 

Proof. —  Recall that H (p.) =  H* =  L*. From Lemma 1.4.5 w e have 

E[\Ht+s ~ inf Hr\q]  = E[Lqs] = q 
re[t,t+s] 

r»+oo 

0 
x^PlLs >  x]dx . 

However, 

P[LS > x] = P[s > L~1(x)] ^  eE[exp(-L-1(x)/s)}  =  eexp(-x<p(l/s)). 

Thus 

E\\Ht+* - in f H\q]  € eq 
[t,t+s] 

.+00 

r 
0 

xq~x exp(-x<p(l/s)) dx =  Cq<p{l/s)-q 

This complètes the proof of the first assertion . 
In orde r to prove the secon d one, firs t not e that ffi  i s independent o f Qt and 

therefore also of the time-reversed process Writin g ra — inf{r ^  0  : Sr > a}, we 
get fro m the second assertion of Lemma 1.4.5 

E\\Ht - inf 
r€[t,t+s] 

Hr\q] ̂  
[0,+oo) 

P[-Iseda]E[LlJ. 

Note that 

E[L%\=q 
+ 00 

r 
0 

xq~xP\LTa >  x)dx, 

and that P[LTa  > x] = P[SL-i(x\ <  al. I t follows that 

E\\Ht -  in f Hr\q]<q 
re[t,t+s] [0,+oo) 

P[-Is e  da] 
sd 

0 
dxx^PlSL-ir^Ka] . 

An intégration by parts leads to 

E\\Ht- in f Hr\q]^q 
re[t,t+s] 

+ 00 

0 
dxxq~x 

R[0,-foo) 
P[SL-i(x) e  db]P[-Is  >  b] . 
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However 
P[-Is >b}  = P[Tb < s] < eE[exp(-Tb/s)} =  e exp( -^ -1 (V^) ) 

since we know ([5] Theorem VII.l) that (Tb,b  ^ 0 ) is a subordinator wit h exponent 
Y Recalling Lemma 1.1.2, we get 

E\\Ht- in f Hr\q]^eq 
r€[M+s] 

dd 
0 

dxxq-1E[exp(-xlj-1(l/s)SL-Hx))} 

= eq 
+00 

0 
dxx**-1 exp(-x/(5^_1(V5)) ) 

= cq<p(VsTq-
This complètes the proof of Lemma 1.4.6. 

Proof of Theorem 1.4-4-  —  From Lemma 1.4.6 and an elementary inequality, we get 
for ever y t > 0, s > 0 and q > 0 

E[\Ht+s - Ht\q]  < 2«+1Cq<p(l/8)q. 

Let a  €  (0, 1 - 1/7) . The n ( 1 - a)'1  <  7 and thus A-*1-0)" ^(A ) tends to 00 as 
A —> 00. It easily follows that AQ:~1'0~1(A) tends to 0 and so \~aip(\) tend s to 00 as 
A —• 00. The previous bound then yields the existence of a constant C depending on 
q and a such that for every t ^ 0 and s G (0,1], 

E[\Ht+s-Ht\q]^Csqa. 
The classica l Kolmogorov lemma gives the first assertion of the theorem. 

To prove the second assertion, observe that for every a > 0 and A > 0, 
P[HS < Asa] = P[LS < Asa] = Pis < L'UAs")] . 

Then use the elementary inequality 

PlaKL^fAs")] < e 
e - 1 

£;[ l -exp(-L-1(A5A)/5)] , 

which leads to 
P\Ha <  As"} ^ e 

e - 1 
( l - e x p ( - ^ > ( l / S ) ) ) . 

If a >  1  — 1/7, w e can find a séquence (sn)  decreasing to zéro such sJJ<p(l/sn) tends 
to 0. Thus, for any A > 0 

lim P\Han  <  As?] =  0 , 
n—>oo 

and it easily follows that limsups aHs  =  00, P a.s., which complètes the proof. 
s-+0 
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C H A P T E R 2 

C O N V E R G E N C E OF GALTON-WATSON TREES 

2.1. Preliminaries 

Our goal in this chapte r i s to study th e convergence i n distribution o f Galton-
Watson trees, under th e assumption tha t the associated Galton-Watson processes , 
suitably rescaled, converge in distribution to a continuous-state branchin g process. 
To give a précise meaning to the convergence of trees, we will code Galton-Watson 
trees by a discrète height process , and we will establis h th e convergenc e of thèse 
(rescaled) discrète processes to the continuous height process of the previous chapter. 
We will also prove that similar convergences hold when the discrète height processes 
are replaced by the contour processes of the trees. 

Let u s introduce the basic objects considered in this chapter . Fo r every p ^  1 , 
let fip be a subcritical or critical offspring distribution. Tha t is, \ip is a probability 
distribution on Z+ = {0 ,1 , . . .} such that 

oo 
]Pfc/ip(fc) <  1.W ID 
k=0X s 

We systematically exclude the trivial cases where /ip(l) =  1  or pp(0) =  1. W e also 
define another probability measure vp  on { —1,0,1,...} by setting vp(k)  =  nP(k + 1) 
for ever y k > — 1. 

We dénote by Vp — (V£, k = 0,1,2,... ) a discrete-time random walk on Z with 
jump distribution vv  and started a t 0. W e also dénote by Yp = (Ykp,k = 0,1,2,...) 
a Galton-Watson branching process with offspring distribution fip started at Y0P = p. 

Finally, we consider a Lévy proces s X =  (Xt,t  ^  0 ) started a t th e origi n and 
satisfying assumption s (Hl ) an d (H2 ) o f Chapter 1 . A s in Chapter 1 , we write ip 
for th e Laplace exponent of X. W e dénote by Y =  (Yt,t ^ 0 ) a ̂ -continuous-stat e 
branching process started a t Y o = 1-

The followin g variant of a resuit due to Grimvall [21] plays an important rôl e in 
our approach. Unless otherwise specified the convergence in distribution of processes 
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is in the functiona l sensé , that i s in the sensé of the weak convergence of the laws 
of the processes on the Skorokhod space B ( R + , R ) . W e will use the notation — • to 
indicate weak convergence of finite-dimensional marginals . 

For a G R, [a ] dénotes the integer part of a. 

Theorem 2.1.1. — Let (7^, p = 1,2,... ) b e a nondecreasing séquenc e o f positive inte-
gers converging to 00. Th e convergence in distributio n 

(44) fp_1y;?..,,t>o (d) 
p—>oo 

(Yut^Q) 

holds if and only if 

(45) fp_1y;?..,,t>o 
(d) 

p—>oc 
(Xut>0) . 

Proof. — By standard results on the convergence of triangular arrays (see e.g. The-
orem 2.7 in Skorokhod [46]), the functional convergenc e (45) holds iff 

(46) fp_1y;?..,,t>o 

Fix any séquence p\ <  P2 < •  • •  < Pk < '  * * such that 7Pl < jP2 < •  • •. I f j =  jPk 
for som e fc  ̂1 , set C j = pk, =  VP k and le t Oj be the probabilit y measure on 
R define d by 0 j { ^ ) =  vPk(n ) for every integer n ^  —  1. The n (46) is équivalent to 
saying that 

fp_1yWk,s;s;J J o—• oo 
for any choice of the séquence p\ <  P2 < •  • •. Equivalentl y the convolutions (0j)*JCj 
converge weakly to the law of X\. B y Theorems 3.4 and 3. 1 of Grimvall [21], this 
property hold s iff the convergenc e (44) holds along the séquenc e (pk) > (Not e that 
condition (b) in Theorem 3.4 of [21] is automatically satisfie d her e since we restrict 
our attention to the (sub)critica l case.) This complètes the proof. • 

2.2. The convergence of finite-dimensional marginals 

From now on, we suppose that assumptio n (H3 ) holds in addition t o (Hl ) and 
(H2). Thu s we can consider the height process H = (Hut > 0) of Chapter 1 . 

For every p ^ 1 , let Hp = (H%, k  ̂0 ) be the discrèt e height process associate d 
with a  séquence o f independent Galton-Watso n trees with offspring distribution fi p 
(cf. Section 0.2). A s was observed in Section 0.2, we may and wil l assume that the 
processes Hp and Vp are related by the formula 

(47) Hdl = Cardl? G 10,1 k  - 1 ) : VF = in f VF\ . 

The following theorem sharpens a resuit of [321 • 
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Theorem 2.2.1. —  Under  either of the convergences (44 ) or  (45), we have also 

(48) 
1 

7P [P7p*] ; , t^ 0 (fd) 
p—>oo 

(iït ,t^0). 

Proof. —  Let fo  be a  truncation function , tha t i s a bounded continuou s functio n 
from R into R such that fo(x) = x for every x belonging to a neighborhood of 0. By 
standard results on the convergence of rescaled random walks (see e.g. Theore m II.3.2 
in [23]), the convergence (45) holds iff the following thre e conditions are satisfied: 

(Cl) lim pjf 
o—>oo 

oo 

k=-l 
k 

f o ( - ) M K ) = - a + 

roo 

Jo 
(fo(r) -r)n(dr) 

(C2) lim p7P 
p—>oo 

oo 

k=-l 

Wfp_1y;?..,,t>o 

r0 
fo(r)27r(dr) 

(C3) lim p7P 
p—•oo 

oo 

fc=-l 

F smùs XQSS /»oo 

d 
h(r) 7r(dr), 

for any bounded continuous function h  on R that vanishes on a neighborhood of 0. 
By (47) and time-reversai, H% has the same distribution as 

A ^ = C a r d { j G { ! , . . . , £ } :F/ = su p vn. 
0<l<i 

Without loss of generality, the Skorokhod représentation theorem allows us to assume 
that the convergence 

(49) fp_1y;?..,,t>o I — - (Xt,t>0) 
p—>oo 

holds a.s. i n the sensé of Skorokhod's topology. Suppose we can prove that for every 
t >  0, 

(50) 1™ ^"lAKpt]=i* 

in probability. (Her e L = (Lt,t  ^  0 ) is the loca l time process of X —  S  a t leve l 0 
as in Chapter 1. ) Then a simple time-reversal argument implie s that 7~1if^tj als o 
converges in probability to =  Ht, with the notation of Chapter 1 . Therefore the 
proof of Theorem 2.2.1 reduces to showing that (50 ) holds. 

We firs t conside r the cas e where J|Q ̂  r7r(dr) = oo. W e introduce th e stopping 
times (rF)k^o defîned recursively as follows: 

r0P=0, 
= inf{ n >T*:VXZ V*  }. 

Conditionally on the event { r^ < oo}, the random variable 1/tP <oo>(̂ P p ~ ~ VPp ) 
is independent o f the past of Vp up to time an d has the same law as 1{t P<00yV̂ P. 
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Also recall the classical equality (cf. (5.4) in [32]) : 

(51) F[rf <oo , V?P=j]=vp([j,oo))  , j>0. 

For every u > ô > 0, set: 

K(Ô, U) = 
fOO 

lo 
7r(dr) 

wx 

Jo 
dxl(s,u](x) = 

poo 

x 
7T{dr)((r-ô)+ A(u-S)) 

sx + 1sl 

Kp(Ô, u) r ks) dd 

3^0 
sd =d6sj,k; 

= P\pô  < V*P < pw | rf < 00], 

Lfu =  Card{s < t : ASS G (J, u]} , 

= Card { j <k:VPj+pô<  V?+1  < ^ +  pu} , 

where =  sup{V^p,0 < z < j}. Not e that K(S,U)  | oo as £ j 0 , by our assumptio n 
I(o 1) r7r(dr) =  oo. Prom the a.s. convergenc e of the processes P~lV[Plpt], we have 

(52) lim 
p—+oo 

sdf 
[P7P*] sd r a.s. 

(Note that P[ASS  =  a  for some s >  0] = 0  for ever y fixed  a >  0, by (10). ) B y 
applying excursion theory to the process X —  S  and using formula (10) , one easily 
gets for every u > 0 

(53) lim K(Ô,U)  1L8+'U  = Lt ,  a.s . 

We claim that we have also 

(54) lim 7 P Kp(£, ?i) = 
p—>oo 

/•OO 

sd 
f(r - J)+ A (u - <J)) 7r(dr) = K(Ô,  U). 

To get this convergence, first apply (C3) to the function h(x)  = (x — ô)+ A (u — ô). I t 
follows that 

lim P7P 
p—>oo 

oo 

fc=-l 
Vp{k) (k • J)+ A (u - ô) = K(Ô,  U). 

On the other hand, it is élémentary to verify that 

sd 
oo 

k=-l 
i/Jk) 

d 

dv 
-ô) f A (u - 6) - 7 P ^ ( f r °°) ) 

pô<j^.pu 
sdx 

k^ôp 
Vp(k) 

and the right-hand sid e tends to 0 by (C3). Thus we get 

lim 7„ 
p *LX J pS<j^pu 

fp_1y;?..,,t>odd 
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Furthermore, a s a simple conséquence of (Cl) and the (sub)criticality of pp, w e have 
also 

(55) 
OO 

3=0 
fp_1y;?..,,t>o 

oo 

k=-l 
kisp(k) 

p—•oo 
» 1. 

(This can also be obtained from (51) and the weak convergence (45).) Ou r claim (54) 
now follows . 

Finally, we can also obtain a  relation between iP,ô,u 
k and A df 

[P7pt] ' 
Simply observe 

that conditional on {r|> < oo}, l^p'u is the sum of k independent Bernoull i variables 
with parameter KP(Ô,U).  Fi x an integer A > 0 and set Ap — jpA  + 1. Fro m Doob's 
inequality, we easily get (see [32], p.249 for a similar estimate) 

E SUD 
fc+ 1d 

1 
df 

'A™ 
< 3 

fp_1y;?..,,t>okws 
2 df S(A +  1) 

7P 
Kp(6,U) 1. 

Hence, using (54), we have 

(56) lim sup E 
p—•oo 

SUD 
d +d 

1 
d 

fp_1y;?..,,t>o lip,ô,u\ 
3 

|2 vr 8 ( A + 1 ) 

K(Ô, U) 

To complèt e th e proof , le t e  >  0  an d first  choos e A  larg e enoug h s o tha t 
P[Lt ^  A  — 3e] <  e. I f u >  0  is fixed, we can us e (53 ) and (56 ) to pic k S  >  0 
small enough and then vo = Vo(S) so that 

(57) P \K{5,u)~lLt' -  LA > e  \ < e 

and 

(58) P sup 
ffvt 

1 
HP 

(AY' -  KJÔ.U)  K'  '  ) ffh dff if p > p0. 

From (52) and (54) , we can also find pi(S) so that for every p > pi, 

(59) P 1 
yPKp(S, u) 

ip}ô,u 
'[plpt] 

fp_1y;?..,,t>o > e < e. 

By combining the previous estimâtes (57), (58) and (59) , we get for p ^ po Vpi 

(60) P 1 
1P 

ghh 
\Plr>t\ cdd > 3e <3e +  p[\rïpt]>i%i]. 

Furthermore, b y using (58) and then (57) and (59) , we have for p sufBciently large, 

PfrS < [P7»*ll ^ £ + P 
1 

-JPKP(Ô, u) 
dfgg 

[Plpt] > A-e\ 

< 3e  -h P[Lt >  A - 3e] 
^ 45 
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from our choice of A. Combinin g this estimate with (60) complètes the proof of (50) 
in the case rir(dr) =  oc. 

It remains to treat the case where m{dr) < oo. I n that case, (H3) implies that 
f3 > 0, and we know from (11 ) that 

Lt = -m({Ss;s^t}) . 

Furthermore, (10) and the assumption jQ r7r(dr) < oc imply that for any t > 0 , 
Card{s G [0,t]; ASS  > 0} < oo , a.s . 

For ever y ô > 0 and t ^ 0 , we set 

sf =  st-
se[o,t] 

l{s,oo)(ASs)ASs . 

By the previous remarks, we have a.s. fo r 6 small enough, 

(61) S? =St-
s€[0,t] 

ASs=m({Ss:s<t\) = 6Lt. 

Let u s use the same notation r^, VA  as in the case JQ r-ïï(dr) = oo, and also set for 
any m  ̂1, 

and 
dPm =  l{TIK<OO}(VTl-V^P ) 

qô,p _ 

dx+ 4 
fp_1y;?..,,t>o 

The convergenc e (49) implies that 

(62) 1 
P 

µWSqddXWD 
x+ 4 

(Ss,s > 0) , a.s. , 

and, for every t ^ 0, 
1 
P DV 

fp_1y;?..,,t>oFDF p—+oo a€[0,t] 
1(5500)(A5S)A5S , a.s . 

Thus we have 

(63) lim 
p—*-oc 

1 
sd qls x +d = 5t 5 a.s . 

The desire d convergence (50) i s then a  conséquence of (61), (63 ) and the followin g 
resuit: Fo r every e > 0, 

(64) lim limsu p P\\-S?f 
0—>U p—»o o p [P7 Pt] dv 

sd 

7P Abp; . ] i>£]=°-

To prove (64), set 

a i lv .6)=E dri/wp^-x T T <O O ; 

aof». = E  (cSY  IIAP^X  I rf < oo . 
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Observe that 

E\(d{l{dp^ôp} ~oti{p,S))2  | rf < oo ^ a2(p,S) . 

Let A  > 0 be an integer and let Av = ^A +  1 as above. By Doob's inequality , 

E\ SUD 
x+1r 

Tm<00 

|S*if-mai(M)|2 
' m 

^ 4Apa2(p,£ ) . 

Since 
sup 

x +fd41 
dx+4d 

55pP — mai(», J)| = su p 
x+ 1d 

6" —  a i (p , d)AY . 

we have 

(65) E SUD 
sd+x4 

1 

P 3 
«i(p, 

vr 
sd ss 

p2 a2(p,S) . 

We now claim that 

(66) lim ^a1(p,ô)=0  + 
p—•oo p 

1 
2 (0,oo) 

(r A ô)2ir(dr) —> [3 
o—>u 

and 

(67) lim li m sup ao(p , S)  =  0 . 
<5̂0 p^o o P* 

To verify (66), note that, by (51) , 

(68) 1P 
P *i (P> <*) 

7P 
P 

rMjvM, oc» 
sqfp_1y;o 

V°° i / (k) ±  A M U* A M +  I 

2 fp_1y;?..,,t 

We no w apply ( C l ) and (C2 ) with th e truncatio n functio n fo(x)  =  (x  A 6) V (S). 
Multiplying b y p- 1 th e convergence in ( C l ) and adding th e one in (C2) , w e get 

lim p 7 „ 
p—• oo 

oo 

sd 
up(k) 

k 

P 
A ô 

k 

P 
d 

1 

P 
= 2(5  + 

(0 ,oo) 
(r Aô) 27r(dr). 

Comparing wit h (68 ) and using (55) , we immediately ge t (66) . Th e proof of (67) is 
analogous. 

By (65 ) and an elementary inequality , w e have 

E SUD 

x+d4d 

1 

p 
3 

xr 
7 P 

Y ( P ) | 2 d 
SAV 

P2 

x+ 4d Ap, 

1p' 

|2 fi--7n 

P 
a i (p ,<5) ) 2 . 

Thus, (66 ) and (67 ) imply that fo r any A >  0 

(69) lim li m sup i 
p—•oo 

SUD 

x+d4d 

1 

dx 
gô,p (3 

1P 

sdv = 0 

It follow s tha t 

lim li m sup P 
(5—0 o—'OC 

,1 

m 
QÔ,P 

[P7 P*] 

dc 
1P 

(P] 
'[pipty > s ^ li m sup 

p—•oo 

dd < bn Pt]] 
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However, 
P .v 

dv < \P7pt \ sd p 1 

p 
V [pipt] svr 1 

p 
s1 5,P 

TAp 7 •P 
Ap 

< O O 

and by (69) the right side is bounded above for p large by P î 
p 

sd V [pipt] sd 3 
7P 

Ap-1] x+x4 
where e$ —> 0 as J —• 0. In view of (62), this is enough to conclude that 

lim 
wfr 

lim sup 
p—>oo 

p r < \P1pA \ = 0 

and the desired resuit (64) follows. Thi s complètes the proof of (50) and of Theorem 
2.2.1. • 

2.3. The functional convergence 

Our goal is now to discuss conditions that ensure that the convergence of Theorem 
2.2.1 holds in a functional sensé. W e assume that the function ip satisfies the condition 

(70) OC 

1 
du 

xrsw < oo. 

By Theorem 1.4.3, this implies that the heigh t process (Ht, t ^  0 ) has continuou s 
sample paths. O n the other hand, if this condition does not hold , the paths of the 
height process do not belong to any of the usual functional spaces . 

For every p > 1 , we dénote by th e gênerating function o f an d by g^ = 
g(p) o • • • o g^ th e n-th iterat e of g&\ 

Theorem 2.3.1. — Suppose that the convergences (44) and (45) hold and that the con-
tinuity condition (70) i s satisfied. Suppos e in addition that for every S > 0, 

(71) lim inf 
p—•oo 

sd 
IS-YP] (0)p > 0. 

Then, 

(72) ^-1 TJP t ^ 0 (d) 
p—>oo 

x+xwd 

in the sensé of weak convergence on E)(R+, 

Let us make some important remarks . Conditio n (71) can be restated i n proba-
bilistic terms as follows: Fo r every S > 0, 

lim inf 
p—>oo 

P\Y p 
[àlp\ = 01 > 0. 

(As wil l follow from our results, this implies that the extinction time of Fp, scaled 
by 7̂ "1, converges in distribution t o the extinctio n time of Y , whic h is finite a.s. 
under (70). ) I t is easy to see that the condition (71) is necessary for the conclusion 
(72) to hold. Indeed , suppose that (71 ) fails, s o that there exist s ô > 0  such that 
P [ Y ^ j =  0] converges to 0 as p — » oo, at least along a suitable subsequence. Clearly, 
this convergence also holds (along the same subsequence) if Yp starts at [ap ] instead 
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of p, fo r any fixed a  > 0. Fro m the définition of the discrète height process , we get 
that 

p sup 
x+ 4 

Hl >  [ôlp] d+d4 
p—»oo 

where =  inf{ & ^ 0  : Vkp = -j}. Fro m (45), we know that (P7p)_1ïj?p ] converges 
in distribution t o Ta.  Sinc e Ta l 0  as a [ 0 , a.s., w e easily conclude that, for every 
e > 0, 

P SUP7P X H1ti 
drgr 

07»] 
7P 

—> 1  . 
p—>oo 

and thus (72) cannot hold. 
On the other hand, one might think that the condition (71) is automatically sat -

isfied unde r (44 ) and (70) . Le t us explain why this is not th e case . Suppos e for 
simplicity that ip  is of the type 

^(A) =a\  + 
(0,oo) 

7r(dr) (e~Xr -l +  \r), 

and for every e > 0 set 

xfp_1y;?..,,t>o 
r(e,oo) 

7r(dr) ( e " A r -l +  Ar). 

Note that ip£(\) ^ C£\  and so ^ ( A ) " 1 ^ = oo. Thus , if Y£ is a ̂ £-CSBP started 
at 1 , we have Yf >  0 for every t > 0 a.s. (Gre y [20], Theorem 1). It is easy to verify 
that 

Ar-l + Ar). 
dfr 

Ar-l + Ar). 

at least in the sensé of the weak convergence of finite-dimensional marginals. Le t us fix 
a séquence (ek)  decreasing to 0. Recall from [27] that every continuous-state branch-
ing process ca n b e obtained a s a  weak limit of rescaled Galton-Watso n branching 
processes. Thu s for every /c, we can find a subcritical or critical offspring distributio n 
z/fc, and two positive integers Pk  ̂k  and 7& ^  k,  in such a way that if Zk =  (Zj,j >  0) 
is a Galton-Watson process with offspring distribution starte d at ZQ  = pk, the law 
of the rescaled process 

msir = (Pk) -1 nrk 

is arbitrarily clos e to that of Y£h. I n particular, we may assume that P[Zl ' >  0] > 
1 — 2~fc, and tha t th e rescale d processe s Z^  converg e to Y  i n the sensé of weak 
convergence of finite-dimensional marginals. B y Theorem 3.4 of [21], this convergence 
also holds in the functiona l sens é in the Skorokho d space. However , the extinction 
time of Z^> converges in probability to +oo, and so the condition (71) cannot hold. 

There is however a very important spécia l case where (71) holds. 
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Theorem 2.3.2. — Suppose tha t pp =  f i for ever y p an d tha t the convergenc e (44 ) 
holds. The n the condition (71) is automatically satisfie d an d the conclusion of Theo-
rem 2.3.1 holds. 

As we will see in the proof, under the assumption of Theorem 2.3.2, the process X 
must be stable with index a G  (1,2]. Clearl y condition (70) holds in that case. 

Proof o f Theorem 2.3.1. —To simplify notation , w e set H[P> ) =  7~1iJ^t j an d 
VtP>* = _̂1̂ îp7Pt]* * n v*ew °f Theorem 2.2.1, the proof of Theorem 2.3.1 reduces to 
checking that the laws of the processes ( H ^ , t  > 0) are tight in the set of probability 
measures on D(R+,IR). B y standard results (see e.g. Corollar y 3.7.4 in [14]) , i t is 
enough to verify the following two properties: 

(i) For every t > 0 and rj > 0, there exists a constant K > 0 such that 

lim inf 
p—•oo 

P[H[p) ^ K ] > l - r ) . 

(ii) For every T > 0 and S > 0, 

lim 
n—•oo 

lim sup P 
p—*oc 

sup 
l̂ î 2n te[(i-l)2-nT,i2-nT] 

sup \mp> - mp ) 
*(i-l)2-nT 

> ô = 0 . 

Property (i ) is immédiate from the convergenc e of finite-dimensional marginals. 
Thus the real problem is to prove (ii). W e fix ô > 0 and T > 0 and first observe that 

P sup 
x+ 4d 

sup 
t€[(i-l)2-nT,i2-nT] 

\mp) - H™ ±{i-l)2~nT > s 

^ Ai(n,p ) + A2(n,p) 4 A3(n,p) 

where 

Ai(n,p) =  J sup 
l̂ î 2n 

H (p) 
2~nT sdv H (p) 

(i-l)2-n7 > 
ô 
5 

A2(n,p) = P sup 
te[(i-1)2"" T,i2~nT] 

H (p) 
t > H (p) 

(i-l)2-"T 4 
45 
5 

for some 1 ^  i  ^ 2n 

A3(n,p) = P inf 
te[(i-l)2-nT,i2~nT] 

H •(p) svr 
sdv vr 

i2-nT svr 
AS 

5 
for some 1  ̂i  ^ 2n 

The te r m A\ is easy to bound. B y the convergence of finite-dimensional marginal! 
we have 

lim SUD A-\ (n, v) ^  P 
p—»00 

SUP \Hi2-n T - H(i_l)2-nT \ ^ 
•l̂ î 2n 

6-
5. 

and the path continuity of the process H ensures that the right-hand side tends to 0 
as n —> oo. 
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To bound the terms A2 and As, we introduce the stopping times rjf\ k  ^ 0  defined 
by induction as follows: 

< P) = 0 

Tk+l (p) = in f >  T k 
dvr : 2#> > 

x+ 4d 
inf x+fla <5 

5" 

Let i  € { 1 , . . . , 2n} be such that 

(73) sup 
te[(i-l)2-nT,i2-nT] 

x+ lsmrd 
(i-l)2~nT + 

46 
5 ' 

Then it is clear that the interval [(2 — 1)2 nT , %2 nT]  must contain at least one of the 
random times rjf\ k  ^ 0 . Let b e the first such time. By construction w e have 

sup 
*€[(t-l)2-»T,r)w) 

wx+qao (i-l)2~nT + (5 
5' 

and since the positive jumps of ar e of size 7_ 1, we get also 

(p) 
r(p) dv rr 

(i-l)2~nT + 
sv 
5 + - l sv+14 (P) 

(i-l)2~nT + 
25 
5 

provided that 7P > 5/6*. Prom (73), we have then 

sup 
x+glr1crAr-l + Ar). 

x+f52zsd 
i 

+ 
6 
5' 

which implies that .(p) 
dv ^ z 2 nT.  Summarizing , we get for p large enough so that 

1P > 5/6 

(74) A2(n,p) < P (p) 
'A; < T  and r .(P) 

'fc+i 
(p) 
A; < 2_n T for some k > 0 . 

A similar argument give s exactly the same bound for the quantity As(n,p). 
The followin g lemma is directly inspired from [14 ] p. 134-135. 

Lemma 2.3.3. —  For every x > 0 and p ^ 1 , set 

Gp{x) = r (P) 
dv < T  and r (P) 

fc+i - r 
(P) 

vr 
< x  for some k ^ 0 

ana1 
î faO = supP 

/ĉ O 
(P) 

r < T  and r (P) 
r rx .(P) < x 

Then, for every integer L ^ 1, 

GJx) ^  LFJx)  +  LeT 
'OO 

0 
dye'^F^y) 
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Proof. — For every integer L ^ 1 , we have 

GJx) < 
L-l 

k=0 
P[rlp) <  T and - (p) 

r d (p) 
re < s ] + Pfr (P) 

L <T1 

< s] + Pfr dolq 1 vr sd exp l re 
L-l 

sv 
d (P) 

fc+i — T sd dv 

^ LFJx ) + eT 
L-l 

k=0 
E 1{r^<T} < s] + Pfrx dd+x4 1/L 

Then observe that for every k G { 0 , 1 , . . ., L  — l j, 

E 1 x+x4 exp —L y(p) sdv dvr dx+4d6s 
x 

_(p) 
rfc+l 

xvr 
dyLe~Ly 

sv "OO 
0 

dyLe-^Fp(y). 

The desired resuit follows. 

Thanks to Lemma 2.3.3, the limiting behavior of the right-hand sid e of (74) wil l 
be reduced to that of the function Fp(x) . To handle Fp(x) , we use the next lemma. 

Lemma 2.3.4. — The random variable s rj^x —  rjf^ ar e independen t an d identically 
distributed. Unde r the assumptions of Theorem 2.3.1, we have 

lim 
xiO 

lim sup P 
p—+OG 

.(P) 
Fi ^ x ] = 0 . 

We nee d a simple lemma. 

Lemma 2.3.5. — Let V be a random walk on Z. For every n ^ 0 , set 

(75) H° =  Cardlfc € 10,1,..., n - 1 | :  Vk = in f VA . 

Let T be a stopping time of the filtration (J7^ ) generate d by V. The n the process 

TTO _ 
< s] + Pfr 

inf H°k,n>0 

is independent o f T° an d has the same distribution a s (H°n  ̂0). 

Proof. — By considering the flrst time after r  wher e the random walk V attains its 
minimum over [r , r + n], one easily gets 

inf 
x+d2sr 

m = Cardlfc € { 0 , 1 , . . . , r- 1 : 14 = in f V i 
k ĵ̂ r+n 

Hence, 

< s] + Pfr 
< s] + Pfr 

inf H Z = CardiA: G (r r  + n - 1 ) : VL = in f V i 

= CardiA ; G { 0 ,. . . , n — 1} : d+xr inf V T 
k€.ĵ .T+n 

k ĵ̂ n 
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where VT dénotes the shifted random walk V£ = VT+n — VT. Sinc e VT is independent 
of TT and has the same distribution as V, the desired resuit follows from the previous 
formula and (75) . • 

Proof of Lemma 2.3.4- —  Fix k ^ 1  and set for every t ^ 0, 
d=sd dv 

sv sd inf 
< s] + Pfr 

dv 

As a conséquence of Lemma 2.3.5, the process (H[p\t ^  0 ) is independent of the past 
of u p to the stopping time rjf^ and has the same distribution as (H[p\t  >  0) . 
Since by définition 

r a i - r « = i n f { t > 0 : H W > d 

the first assertion of the lemma follows. 
Let u s turn to the second assertion. T o simplify notation, we write 6' = S/5. Fo r 

every rj >  0, set 
V}p V}p =  in f {t ^  0  : V}p) vr 

d 
dp 

Then, 

P[r[p) < x] = P supHip>>6' 
S^X 

d cx sup H(p)  > S' 
xWW 

+ P[T^  <  x\. 

On one hand, 
limsupP[Tip) < x] ^ P[Tn  < x], 
p—xx> 

and for any choice of rj > 0, the right-hand side goes to zéro as x j 0 . On the other 
hand, the construction of the discrète height process shows that the quantity 

sup 
sqd+d4 

is distributed as 7p 1(MP  — 1) , where Mp is the extinction time of a Galton-Watson 
process with offspring distribution starte d at \prj\.  Hence , 

P sup H™  >  5' 
x+r2s 

= 1  - 9$ •p] + l (0)^1, 

and our assumption (71 ) implies that 

lim (li m sup P 
77-»o p—>oo 

sup Hip)  >6f\ 
dkds+ 4 

= 0. 

The second assertion of the lemma now follows . 

We can now complète the proof of Theorem 2.3.1. Set: 

F(x) = limsupF„(x) , 
p—>oo 

G(x) = lim sup Gp(x). 
p—>oo 
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Lemma 2.3.4 immediately shows that F(x)  j  0  as x |  0 . O n the other hand, we get 
from Lemma 2.3.3 that for everv inteecer L ^ 1 , 

G(x) < L F(x) + LeT 
dd 

lo 
dye'^Fiy). 

It follow s that we have also G(x) j 0 as x j 0. By (74), this gives 

lim 
n—>-oo 

lim sup A2(n,p) 
p—*oo 

= 0 , 

and th e sam e property hold s for As(n,p).  Thi s complètes the proo f of (ii ) and of 
Theorem 2.3.1. • 

Proof of Theorem 2.3.2.  —  We now assume that vv = v for every p and so =  gn-
We firs t observ e that the proces s X  mus t be stable. Thi s is not immédiate , since 
the convergenc e (45) a priori implies only that v  belong s to the domai n o f partial 
attraction of the law o f X\, whic h is not enough to conclude that v is stable. However , 
the conditions (Cl ) -  (C3) , which are équivalent to (45) , immediately show that the 
séquence 7̂ /7^+1 converges to 1  as p —• 00. The n Theorem 2.3 in [37] implies that 
v belong s to the domain of attraction of the law of X\, an d b y classical results the 
law o f Xi mus t be stable with index a G  (0, 2]. W e can exclude a G  (0,1] thanks to 
our assumptions (H2) an d (H3 ) (th e latter is only needed to exclude the trivial case 
îp(\) =  cA) . Thu s a  G  (1,2] and =  c\a  fo r some c > 0. A s a conséquence of 
(39), w e have E[e~XYs) =  exp—(A_a + câS)~1/a1 wher e 57 = a  —  1 . I n particular, 
p[Yô = 0]= exp-(câô)-1^ >  0. 

Let g  — gi be the generating function o f JJL. W e have g'(l) =  Ylk ji(k)  =  1, because 
otherwise this would contradict (45) . Fro m Theorem 2 in [16] , p.577, the functio n 

x+ds 
n(k) 

must be regularly varying as x —• 00, with exponent —a.  Then note that 

g(e-x) -  1  + A = 
OO 

k=0 
li(k) (e~Xk  -  1  + Afc) = A 

pOO 

'0 
dx(l - e~Ax) 

k^x 
x+d5 

An elementary argument shows that g(e x)  — 1 + A is also regularly varying as A —> 0 
with exponent a.  Pu t differently , 

g(r) =  r + {l- r)aL(l  -  r ) ,  0   ̂r  < 1 , 

where the function L(x)  is slowly varying as x —• 0. This is exactly what we need to 
apply a resuit of Slack [47]. 

Let z[p^ b e a  random variabl e distributed a s ( 1 — g[ô7p](0)) time s th e valu e a t 
time [Sjp]  of a Galton-Watson process with offspring distribution fi started with one 
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individual at time 0 and conditioned to be non-extinct a t time [Sjp].  Theorem 1 o f 
[47] implie s that 

rev (d) 
p—+oo 

u 

where U > 0 a.s. I n particular, we can choose positive constants CQ an d c\  so that 
P[z[p^ >  CQ] > ci for ail p sufficiently large. On the other hand, we have 

1, 
P 

p (d) 1 
p(l-0w7pl(O)) zr +  ---  +  ZW 

where z[p\ Z)^  ,  • • •  are i.i.d., and Mp  i s independent o f the séquence (Z - )  and has 
a binomial B(p, 1  — #[<57p](0)) distribution. 

It i s now easy to obtain the condition (71). Fi x 6 > 0. Clearly it suffices to verify 
that the séquence p(l — g[ôlp\ (0)) is bounded. I f not th e case, we can choose a séquence 
(pk) suc h that pk{l — g\8lp  ](0)) converge s to oo. From the previous représentatio n 
for th e law of p  it then follows that 

P 
1 

Pk 
-Pfe 
[<*7Pfc] xd14d > 1. 

sdvb 
From (44) , we get tha t P[Ys  >  c0ci ] =  1 , whic h give s a  contradictio n sinc e 
P[YÔ =  0] > 0. This complètes the proof of (71) . 

Finally, since (70) holds , we can apply Theorem 2.3.1. • 

2.4. Convergence of contour processes 

In thi s section, we show that the limit theorems obtained in the previous section 
for rescale d discrète height processes can be formulated as well in terms of the contour 
processes of the Galton-Watson trees. The proof relies on simple connections between 
the height process and the contour process of a séquence of Galton-Watson trees. 

To begin with, we consider a (subcritical or critical) offspring distribution /x , and a 
séquence of independent /i-Galton-Watso n trees. Le t (Hn,n > 0) and (Ct,t  ^ 0 ) be 
respectively the height process and the contour process associated with this séquence 
of trees (see Section 0.2). W e also set 

Kn = 2n- Hn. 

Note that the séquence Kn is strictly increasing and Kn > n. 
Recall that the value at time n of the height process corresponds to the génération 

of th e individua l visited at tim e n, assumin g that individual s are visited in lexico-
graphical order one tree after another . I t i s easily checked by induction on n that 
[Kn, i^n+i] is exactly the time interval during which the contour process goes from 
the individual n to the individual n -h 1. From this observation, we get 

SUD 
te[Kn,Kn+1] 

\Ct — Hn\  ^  \Hn+i  — Hn\  +  1. 
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A more précise argument fo r this bound follows from the explicit formula for Ct in 
terms of the height process: For t G [Kn,Kn+i], 

Ct = (Hn - ( t- Kn))+ ï î t e [Kn ,Kn+1- i ) , 
Ct = (Hn+1 - {Kn+ 1 - * ) ) + if te [Kn+1-i,Kn+1] , 

Thèse formulas are easily checked by induction on n. 
Define a random function /  : M+ —> Z+ by setting f ( t ) = n i S t£ [Kn,Kn+i) . 

From the previous bound, we get for every integer m  ̂1, 
(76) sup C i - Hf(t ) \  ̂su p 

t€[0,m t(E[0,Km] 
Ct - Hf(t ) \  ̂1 + sup \Hn+! - Hn\ . 

xrre 
Similarly, it follows from the définition of Kn that 

(77) sup / ( t ) -
tG[0,m] 

t 
2 

sv sup 
te[o,Km] 

\f(t) ~ 
t 
2' 

1 
2 

SUD H„ 4- 1. 

We now corne back to the setting of the previous sections, considering for ever 
p ^ 1  a séquence of independent Galton-Watson trees with offspring distribution ji% 
For every p ^ 1 , we dénote by (Cf,t ^ 0 ) the corresponding contour process. 

Theorem 2.4.1. — Suppose that the convergences (45) and (72) hold. Then, 

(78) k;s(flt/2,t>0).slq 
(à) 

p—•OO 
(flt/2,t>0). 

In particular, (78 ) holds under the assumptions of Theorem 2.3.1 or those of Theorem 
2.3.2. 

Proof. — For every p ^  1 , write fp for the analogue of the function /  introduce d 
above. Also set ipp(t) = {pip)^1 fP{p^pt). B y (76), we have for every m  ̂1, 

(79) SUD 
dr 

1 
7P 

dv dv 
1 
7p 

TTP 
PlPVp(t) 

dv 1 
7P 

+ 1 
7p n̂ mp7P 

sup x+f25srwx —y 0 
p—•OO 

in probability, by (72). 
On the other hand, we get from (77) 

(80) sup \<pp(t) -
vrev 

t. 
2 

1 
-4P7p fc^mp7P 

sup ddv 1 
P7p P̂ oo 

0 

in probability, by (72). 
The statement o f the theorem now follows from (72) , (79 ) and (80) . • 

2.5. A joint convergence and an application to conditioned trees 

The convergences in distribution (72 ) and (78 ) hold jointly with (44) and (45) . 
This fact is useful in applications and we state it here as a corollary. 

As previously, we consider for every p a séquence of independent /ip-Galton-Watson 
trees and we dénote by (Hp,n > 0) the associated height process and by (Cf , £ ^ 0) 
the associated contour process. The random walk Vp with jump distribution vp(k) = 
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pp(k-\-1) is related to Hp via formula (47). Finally , for every integer k  ̂0, we dénote 
by Y £ the number o f individuals at génération k in the first p trees of the séquence, 
so that, in agreement with the previous notation, (Yp, n ^  0 ) is a Galton-Watson 
process with offspring distribution p p started at Y Q =  p. 

Recall that (L%, a  ̂0, £ ^  0 ) dénote the local times of the (continuous-time) 
height process associated with the Lévy process X. Fro m Theorem 1.4.1, we know 
that ( L ^ , a ^ 0) is a ^-CSBP and thus has a càdlàg modification. 

Corollary 2.5.1. — Suppose that the assumptions of Theorem 2.3.1 are satisfied. Then , 

dvr -1T/P 
[piptV jp [pipt . (Xt,Ht,Ht;t>0) (d) 

p—>oo 
(Xt,Ht,Ht;t>0) 

in distribution in E>(M+,R3). W e have also 

xr •1V% 
sd a > 0 (d) 

»—•oo 
( L ^ , a ^ 0 ) 

in distribution in D(R+,R). Furthermore , thès e two convergences hold jointly, in the 
sensé that, for any bounded continuous function F o n D(R+,R3) x B(R+,R), 

lim E 
p—>oo 

9 dvr 
[P7P*]' 

vred H? 
[P7P*]' 

(Xt,Ht,Ht;t>0) dk µX <w 

= E[F{{X U Hu Ht)t>o, (LaTl)a^)]. 

Proof. - T o simplify notation, writ e Vt{p) = p -^ t] > H{tp) = j ^ Hf t] , c[p) = 

%1C2P1 t and Ya =  P ' ^l al' ^  (45) ' (72 ) and (78)' W e kll0W that eaCh °f the 
three séquence s of the laws of the processes V^p \ H^p\ i s tight, and further-
more an d converg e in distribution toward s a continuous process . B y a 
standard resuit (see e.g. Corollary II.3.33 in [24]), we get that the laws of the triples 
( V ( p \ H ( p \ C ^ ) ar e tight in D(R+,R3). Le t (X,H*,H**) b e a weak limit point of 
this séquence of triples (with a slight abuse of notation, we may assume that the first 
component of the limiting triple is the underlying Lévy process X ). B y the Skorokhod 
représentation theorem , we may assume that along a subsequence, 

(v(p>.mpKc^>) —• (X.H*.H**) 
a.s. in P(R_j_, R3). However , the convergence (49) and a time-reversal argument imply 
that 

lim H[p ) = L[l) = Ht 
p—•oc 

in probability. Thi s is enough to conclude that H? = Ht. Similarly , the proof of 
Theorem 2.4.1 shows that 

lim (dp) - i ï p )) =  0 
p—>oo 

in probability. Thi s yields H** =  H£ = Ht and we see that the limiting triple is 
equal to (X, H, H) an d does not dépend on the choice of the subsequence. Th e first 
convergence of the corollary now follows. 
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By (44) , we know that 

(y0(p),O0) ^  (Ya,a>0) 
p—•OO 

where Y i s a  T/J-CSB P started a t 1 . Sinc e we also know that (L^ , a ^ 0 ) is a  ip-
CSBP starte d a t 1 , the secon d convergenc e in distribution i s immédiate , an d th e 
point i s to verify that this convergence holds jointly with the first one. T o this end, 
note tha t th e law s of the pair s ((V^\H^\C^),Y^)  ar e tigh t i n th e spac e of 
probability measure s on D(R+,R3 ) x  D(R+,R). B y extracting a  subsequence and 
using the Skorokhod représentation theorem, we may assume that 

((y(p),if(p),c(p)),r(p)) p—•oc ( ( x , # , # ) , z ) , 

a.s. i n B(R+, R3) xD(R+,R). Th e proof will be finished if we can verify that Za = , 
the local time of H at level a and time T\. T o this end, let g be a Lipschitz continuous 
function fro m R+ into R+ with compact support. The preceding convergence implies 

(81) lim 
p—•oo 

'OO 
g(a)YM da  = 

/•OO 

0 
g(a)Za da ,  a.s . 

On the other hand, let Tp be the hitting time of — p by Vp. The convergence of 
towards X easil y implies 

(82) lim 
(,Ht;t>0) 

1 
-Tp =  inf {t ^  0  : Xt = - 1} =  Ti ,  a.s . 

Then, from the définition of the height process of a séquence of trees, we have 
'OO 

lo 
g(a)YWda = 

sd 
0 

d+d 1 
p 

d6 +d1d 

= 
1 

m 

oo 

k=0 

7P_1(H1) 

erexc 
9(0) 

dgr 

3=0 
qd+ 4d \da 

= 1 
P 

Tp-1 v 

3=0 

(Xt,Ht,Ht;t>0) 

x+ 1d 
g(a) da 

d= 
1 

Plp 

Tl-\ 

3=0 
g(^Hp) +  0 1 

Pli 
Tp) 

= 
(PTp)-1^ 

0 
(Xt,Ht,Ht; p 

YPlpS] )ds + 0 1 
Plp •TS) 

and in view of (82) this converges to 
dv 

dq 
g(Hs)ds = 

poo 
0 

g (a) Lj> da. 
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Comparing with (81), we conclude that 
dredx 

'0 
g(a)Zada = 

r*oo 

0 
g (a) LTx da. 

This implies that Za  = an d complètes the proof. 

As a n application , w e now discuss conditioned trees. Fi x T >  0  and o n some 
probability space, consider a /xp-Galton-Watson tree conditioned on non-extinction at 
génération [7pT] , which is denoted by Tp. Le t Hp = {Hp^n ^  0 ) be the associated 
height process, with the convention that Hp = 0 for n ^ Card(Tp) . 

Proposition 2.5.2. —  Under  the  assumptions of  Theorem 2.3.1,  we  have 

(Xt,Ht,Ht;t>0)dlq (d) 
p—•OO 

dlxmrx 

where the  limiting process H is  distributed as  H under N(- \  supHs > T). 

Remark. —  We could have stated a similar resuit for the contour process instead of 
the discrète height process. 

Proof. —  Write Sip) = %l%yps] t o simplify notation . Als o let iïjp) = 7p 1#£7l>8] 
be as above the rescale d height proces s fo r a séquence of independent /j,p-Galton-
Watson trees. Set 

R(P =  inf{s ^ 0  : dv 
llpT] 
7P dd 

XX= sup{ s ^ R(p  :  =  0}, 
= in f {s >  :  H™ =  0}. 

Then without loss of generality we may assume that 
= H [p) 

(G p̂)+s)AJD )̂ ' s ^ 0. 

This i s simply saying that th e firs t tre e wit h height a t leas t [jpT]  i n a  séquence 
of independent //p-Galton-Watso n trees is a /ip-Galton-Watson tree conditioned on 
non-extinction at génération [7PT]. 

Set 

RT =  inf{s^0 :  Hs = T } , 
GT = sup{s ^RT:HS =  0}, 
DT =  inf{s >  RT: Hs = 0}, 

and note that we may take Hs = ^(GT+S)ADT) b y excursion theory for X —  I. 
We now clai m that the convergence in distribution of toward s H follows from 

the previous corollary, and more precisely from the joint convergence 

{V{p\H{p)) (d) 
p—>oo 

(X,H). 
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It i s again convenient to use the Skorokho d représentation theore m and to assume 
that the latte r convergenc e holds a.s. W e can then prove that converge s a.s. 
towards H. 

To this end we need a technical lemma about th e height process. W e state it in 
greater gênerality than needed here in view of other applications. 

Lemma 2.5.3. —  Let b > 0. Then  P a.s.  or  N a.e.  b  is not a local maximum nor  a 
local minimum of  the height process. 

Proof. —  Le t 

D = {b > 0 : P[ sup Hs  = b] >  0 for some rationals q > p > 0}. 
p^s^.q 

Clearly D  is at mos t countable . However , from Proposition 1.3.1 an d the relation 
between the height process and the exploration process, it immediately follows that 
if b  G D then b — a G D for every a G [0, b). This is only possible if D = 0. Th e case 
of local minima is treated in the same way. • 

It follow s from the lemma that we have also RT = inf{s ^ 0  : Hs > T}. The n the 
a.s. convergenc e of R(P = towards H easily implies that R(P = converges to RT a.s., and 
that 

lim sup R(P =  ̂GT  , 
p—»oo 

liminf D{p) > DT . 
p—>oo 

To get reverse inequalities, we may argue as follows. Recal l that the support of the 
random measure dls  is exactly the set {s  : Hs — 0}, so that for every fixed s > 0, 
we have IS > IRT a.s. o n the se t {s  <  GT}- I f liP^ =  i n f { V ^ ,  r ^  s} , the a.s . 
convergence of t o X implie s that liP^ converges to IS uniformly on compact sets, 
a.s. I t readily follows that a.s . o n the set {s  < GT} we have I{SP)  >  I{P}P)  for ail p 

sufficiently large . Hence a.s. fo r p large, we have s < G  ̂o n the set {s  < GT}- We 
conclude that G^ —>  GT  a.s., an d a similar argument give s — • DT- Fro m the 
preceding formulas for an d H, it follows that — » H a.s. Thi s complètes the 
proof of the proposition. • 

Remark. —  The methodology of proof of Proposition 2.5.2 could be applied to other 
conditioned limit theorems. Fo r instance, w e could consider the rescaled height (or 
contour) process of the \xv-Galton-Watson tree conditioned to have at least pjp vertices 
and dérive a convergence towards the excursion of the height process H conditioned 
to hav e length greate r tha n 1 . W e will leave such extensions to the reader . W e 
point ou t her e that i t i s much harder to handle degenerate conditionings. T o give 
an importan t example , consider the cas e where pp = \i for every p. I t i s natural 
to ask for a limit theorem for the (rescaled) height or contour process of a /x-Galton-
Watson tree conditioned to have a large fixed number of vertices. The previous results 
strongly suggest that the limiting process should be a normalized (i.e. conditioned to 
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have length equal to 1) excursion of the height process H. This is indeed true under 
suitable assumptions : Whe n fi is critical with finite variance, this was proved by 
Aldous [3] in the case of the contour process and the limit is a normalized Brownian 
excursion as expected. Aldous ' resuit has bee n extended by Duquesne [10 ] to the 
case when ji is in the domain of attraction o f a stable law of index 7 G (1,2] . I n 
this more gênerai setting, the limit is the normalized excursion of the stable height 
process, which is discussed in Section 3.5 below. 

2.6. The convergence of reduced trees 

Consider a  /x-Galton-Watso n tree, whic h describes th e genealog y of a Galton-
Watson process with offspring distribution \i  starting with one individual at time 0. 
For every integer n ^ 1 , dénote by P^n>) the conditional probability knowing that the 
process is not extinct at time n, or equivalently the height of the tree is at leas t n. 
Under ,  we can consider the reduced tree that consists only of those individuals 
in the générations up to time n that have descendants a t génération n. Th e results 
of the previous sections can be used to investigate the limiting behavior of thèse re-
duced trees when n tends to 00, even in the more gênerai setting where the offspring 
distribution dépends on n. 

Here, we will concentrate on the population of the reduced tree at every génération. 
For every k  G {0 ,1 , . . . ,n} , w e dénote by Z% th e number o f individuals in the tree 
at génératio n k  whic h have descendants a t génératio n n.  Obviously , k — • Z% i s 
nondecreasing, Zfî  = 1 and Z%  i s equal to the number o f individuals in the original 
tree at génération n. I f g dénotes the generating function of ji and gn, n  ^ 0  are the 
itérâtes of g, it is easy to verify that (Z%,  0 < k < n)  is a time-inhomogeneous Markov 
chain whose transition kernel s are characterized by: 

£(«)rr^+1 I  Zni = 9(r(l -  gn-k-i(0))  +  gn-k-i(0)) -  gn-k(0) 
1 -gn-k 0 , 0   ̂k  <  n. 

The process (Z%,0   ̂k  ^ n ) (under the probability measure P<n) ) will be called the 
reduced process of the /i-Galton-Watson tree at génération n. I t is easy to see that 
for every k G { 0 , 1 , . . ., n — 1} , Z%  can be written as a simple functional o f the height 
process of the tree: Z%  counts the number o f excursions of the height process above 
level k that hit level n. 

Consider as in the previous sections a séquence (/ip,p = 1,2,... ) o f (sub)critical 
offspring distributions, an d for every integer n ^ 1  let Z^p^n =  (Z^'n,0 ^  k  ^ n)  be 
the reduced process of the //p-Galton-Watson tree at génération n. For every T > 0, 
we dénote by iV(T) the conditional probability N(- \ sup{Hs, s ^ 0 } ^ T)  (this makes 
sensé provided that the condition (70) holds, cf. Corollary 1.4.2). 
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Theorem 2.6.1. — Suppose that the assumptions o f Theorem 2.3.1 hold and let T > 0. 
Then. 

R X+D2 
hpt] 

0 ^ t < T (fd) 
p—• oo 

(Z t r , 0<*<T) , 

where the limiting process (Zj\ 0  ^t < T ) i s defined under Nçr) a s follows: Fo r every 
t E  [0,T) , Z f i s the number of excursions o f H  above level t that hit level T. 

A mor e explicit description of the limiting process and of the associated tree will 
be give n in the next section. 

Proof —  We us e the notation o f the proof of Proposition 2.5.2. I n particular, th e 
height process of the /ip-Galton-Watson tree conditioned on non-extinction at génér-
ation [7PT ] i s (Hp,k ^ 0 ) and the associated rescaled process is =  7~1if^ sy 

We ma y and will assume that H{sp ) i s given by the formula 
X+ 4D (p) 

;G^)+S)AJD^,) 

and that (HsP^, s ^ 0 ) converge s a.s. i n the sensé of the Skorokhod topology, towards 
the process Hs — i?(GT+S)ADT whos e law is the distribution of H under N T̂y 

Now w e observe that the reduced process Z ĵ7pT^ can be expressed in terms of 
H^p\ Mor e precisely, it is clear by constructio n that for every k G  { 0 , 1 , . . . , [ypT] —  1} , 
r?(p),hPT] .g ^e number of excursions of Hp abov e level k that hit level [7PT]. Equiv-
alent!^ for every t such that hpt] < hpT] , 

Zlp) : = Z (p)AipT\ 
hpt] 

is the number of excursions of abov e level pyp£]/7P that hit level [jPT]/jp . 
Let t  >  0 . Usin g the fac t tha t t , resp . T , is a.s. no t a  local minimum, resp. 

maximum, of H (Lemma 2.5.3), it is easy to deduce from the convergence — > H 
that the numbe r o f excursions of abov e level [7P£]/7 P that hi t leve l [7PT]/7 P 
converges a.s. t o the number o f excursions of H above level t that hi t leve l T. I n 
other words, z[p^ converge s a.s. t o Z j. This complètes the proof. • 

2.7. The law of the limiting reduced tree 

In thi s section, we will describe the la w of the proces s (Zf, 0 ^ t  <  T ) of the 
previous section, and more precisely the law of the underlying branching tree . We 
suppose that the Lévy process X satisfies (70 ) i n addition to (Hl) -  (H3) . Th e rando m 
variable Zj (considere d under the probability measure A^(T) ) count s the number of 
excursions of H above level t that hit level T. 

Before stating ou r resuit, w e recall the notation of Section 1.4. Fo r every À  > 0 
and t > 0, 

ut(X)=N(l-exp(-XLt(7)) 
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2.7. THE LAW OF THE LIMITING REDUCE D TRE E 69 

solves the intégral équation 

ut(X) + 
D 

'o 
ip(us(X)) ds = À 

and 
v(t) =  ut(oo) = NlLi >0)  = N(supHs> t) 

R 
is determined by X 

'v(t) 

dx 
Mx) 

= t. 

Note the composition property utous =  ut+s, and in particular Ut(v(r)) =v(t  +  r). 

Theorem 2.7.1. —  Under  N(T), the  process (Zf,0  ^t<T)isa  time-inhomogeneous 
Markov process whose law is characterized by the following identities: For  every X > 0, 

(83) AT(T)[exp-AZtT] = l -
« t ( ( l - e - A ) v ( T - t ) ) 

v(T) 
and ifO <  t < t' <  T, 
(84) N(T){exp-\ZÏ |  Zj] =  (N{T_t)[exp-XZ T-t 

t'-ti 
VR 

Alternatively, we  can describe the  law of the process (Zf,0  ^ t  < T) under  N(T) by 
the following properties. 

- =  1  if and only if r G [0,7T), where  the  law of is  given by 

(85) N{T)[yr>t] = 
i>{v{T)) 

1>(v(T - t)) 
0 < t < T, 

where i>(x)  = x 1ib(x). 
- The  conditional  distribution of  ZT knowing  77* is  characterized by 

(86) N{T) zT 
r IT 

| 7t =  t) = r tf(U)-11,(17,(1-r)U) 
^'(U)-^(U,0) 0 < r < 1 

where U = v(T — t) and  for every a,b^ 0 , 

li>(a,b) = {TP{a)-i>{b))/{a-b) if  a^b, 
X+52 if a  = b . 

- Conditionally  on  7T = t  and  Z'F  =  k,  the  process (Z£_r, 0 <  r  <  T  — t) is 
distributed as  the sum of k independent  copies  of  the process {Zj  *, 0 < r <  T — t) 
under N(T-t)-

Proof. —  One can give several approaches to Theorem 2.7.1. In particular, the time-
inhomogeneous Markov property could be deduced from the analogous resuit for dis-
crète reduced trees by using Theorem 2.6.1. W e will prefer to give a direct approach 
relying on the properties of the height process. 

Before stating a key lemma, we introduce some notation. W e flx t G  (0,T). Not e 
that the définition of Zj als o makes sensé under the conditional probability .  W e 
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70 CHAPTER 2 . CONVERGENCE O F GALTON-WATSON TREE S 

dénote by (e\,i  =  1,... , Zf) th e successiv e excursions of H abov e level t that hit 
level T — t, shifted in space and time so that each starts from 0 at time 0. Recall the 
notation La  for the local times of the height process. We also write fo r the local 
time of H at level t at the beginning of excursion e*. 

Lemma 2.7.2. —  Under N^f conditîonally  on  the local time L^, the  point measure 

X 

i=l 
X+D4 

is Poisson with  intensity  1[O,L* ](£)d£N(de P i {sup#s >  T  — t}). In  particular, un-
der N(t) or  under N^p)j  conditionally  on  Zj, the  excursions (e*, i = 1,... , Zj) are 
independent with distribution  N^-t) • 

Proof. —  We rely on Proposition 1.3.1 an d us e the notation o f Chapter 1 . Unde r 
the probability measure P, dénote by /*, i = 1,2,... th e successive excursions of H 
above level t that hit T, and let t\ b e the local time of H at leve l t at the beginning 
(or the end) of excursion /*. Then the /*'s ar e also the successive excursions of the 
process Hls =  H(pl) that hit leve l T —  t, and the numbers £\ are the corresponding 
local times (of H1) a t leve l 0. B y Proposition 1.3.1 and excursion theory, the point 
measure 

oo 

i=l 
X+F 

is Poisson with intensity d£N(df  fl {supi7s >  T  —  t})  an d i s independent o f the 
cr-field Ht-

On the other hand, let Ai be the local time of H at leve l t at the end of the first 
excursion of H away from 0 that hits level t. Fro m the approximation of local time 
provided by Proposition 1.3.3, it is easy to see that Ai is 'ftt-measurable. B y excursion 
theory for X —  I, the law under N(t\ of the pair 

T1 
zï 

i=l 
RG+ 41 

is the same as the law under P of 

(Ai, 
D6+F4 

X+F4 

The first assertion of the lemma now follows from the preceding considérations. 
The second assertion state d under N(t)  is an immédiate conséquence of the firs t 

one. Th e statement under N(T) follow s since JV(T) = N^(- \  Zf ^  1) . • 

We return to the proof of Theorem 2.7.1. Not e that (84 ) is an immédiate consé-
quence of the second assertion of the lemma. Let us prove (83). B y the first assertio n 

ASTÉRISQUE 281 
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of the lemma, Zj i s Poisson with intensity v(T  — £)L^, eonditionall y on unde r 
Nçty Hence, 

Nit)[e-xz?} = N(t) e-Llv(T-t)(l-e-x)~ 

= 1 - 1 
vit) 

N 1 _ e-L>(T-i)(l-e-A) 

= 1  - 1 
V(t) 

•ut({l-e-x)v{T-t)). 

Then observe that 

DR [1 - e~xz?] DV 
1 

v(tY 
Nil -  e~xz*  )  = v(T) 

vt) 
N(T)[l-e-xz?]. 

Formula (83) follows immediately. 
It is clear that there exists a random variable suc h that Zj =  1 iff 0 < t < JT, 

iV(r) a.s . (7 r is the minimum of the height proces s between the first and the last 
hitting time of T). Le t us prove (85). By (83), we have, 

Nmhr >t]=  li m exN(T)[e~xz?] = 
A—>00 

lim ex 
À—»-oc 

1 - « t ( ( l - e - > ( T - t ) ) \ 

Recalling that ut(v(T —  t)) = v(T), we have as e —> 0, 

^(wa(A))d5 = log^MA)) - log^(A) dut 
m 

(v(T-t))+o(e), 

and it follows that 

NiT)[lT >t]  = 
v(T -1)  dut 

v(T) d\ (v(T-t)). 

Formula (85 ) follows from that identity and the fact that, for À > 0, 

(87) dut 
dX (A) = tf(«t(A)) 

V(A) 
ro verify (87) , differentiate the intégral équation for Ut(X): 

DR 
ÔX (A) = 1 -

o 
dus 
dX 

(A) iP'{us(X))ds 

which implies 
dut 
DV (A) = exp D 

SD 

o 
tl>'(ua(\))ds . 

Then note that ê  logip  (ut(X)) = —  ip'(ut(X)) and thus 
DV 

7o 
^(wa(A))d5 = l o g ^ M A )) - log^(A) . 

This complètes the proof of (87) and (85) . 

We now prove the last assertion o f the theorem. Recal l the notation introduce d 
before Lemma 2.7.2. Clearly it sufflces to prove that the following property holds: 
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(P) Under N(T)  »  conditionally on 7T = t and Z^T = n, the excursions eJT,..., ê T 
are i.i.d. according to the distribution N^-t)-

We can deduce property (P ) from Lemma 2.7.2 via an approximation procédure. 
Let u s sketch the argument . Fo r any p ^ 2  and any bounded continuous functiona l 
F on R+ x  C(R+,R+)P, 

(88) ^(wa(A))d5 = log^MA)) - log^(A) 

= li m 
DV 

n-1 

DD 
iV(T) 1{ZjT/n=p;0-l)T/n<7T^T/n} F(jT/n,e{ Tin ...,eiT/n) 

Note that the event {7 ^ ^ jT/n}  contain s XD+41D As a conséquence of the 
second part of Lemma 2.7.2 (applied with t = jT/n) w e have 

DV 1{ZjT/n=PMT<,jT/n} F(jT/n,e{T In . , e f /n) 

= N(T) l{ZjT/=p-lT^jT/n} 

X N{T-jT/n){dfi)... N{T_jT/n)(dfp)  F (JT/n, / 1 , . . . , fp) 

We want to get a  similar identity where the even t {^T  ^  jT/ri)  i s replaced by 
{lT ^  (j  —  ])T/n} =  {Zfj_i)T/n  ^ 2 } . A  slightly more complicated argumen t 
(relying on two applications of Lemma 2.7.2, the first one with t = (j — l)T/n  an d 
then with t = T/n) show s similarly that 

N{T) IjZ7!, =p:-vT<(j-l)T/n}F(jT/n, JT/n DXR 

= N{T) {ZjT/n=PnT^(j-l)T/n} 

X N{T-3T/n)(dh)... N{T_jT/n)(dfp)  F(jT/n, fu ..., fp) 

By making the différence between the last two displays, we see that the sum in the 
right side of (88) exactly equals 

n-l 

j = l 
N{T) 1{ZJT =p;(j-l)T/n<lT^jT/n} 

XSD N(T-jT/n){dfl) • • NiT-jT/n) (dfP) F(jT/n, 

Using an easy continuity property of the mapping r —>  N^,  w e get from this and 
(88) that 

N(T)\l,ZT=p]F(7T,er,.-.,elT)} 

= N(T)\l{ZT=p}  I N(T_1T){dh)... N{T_1T)(dfp)F(lT,  h,...JP) 

ASTÉRISQUE 281 



2.7. THE LAW OF THE LIMITING REDUCED TREE 73 

which complètes the proof of property (P ) and of the last assertion of the theorem. 

We finally verify (86) . Firs t observ e from (85) that the density of the law of JT 
under N(T\ i s given by 

M * ) = 1>(V(T)) h(T - t) 

where 

h(t) = v(W(v(t)) 
<P(v(t)) 

-1.D 

On th e other hand, fix^e  (0,T) , and note that {yT  > <5 } = {Zj  =  1}. B y the last 
assertion of Lemma 2.7.2 we have for any nonnegative function / , 

N(T)[f(yr,Z^T) 1{7T>5 } I 1T >S] = N(T-s)\f(lfT-. X+D4DR 

Hence, if (Of(k), k  = 2,3,...), 0  < t < T dénotes a regular version of the conditional 
law o f Z^T knowin g that 7T =  t, we have 

D 

lô 
dth(T-t) 

oo 

k=2 
9f(k)f(t,k) = 

DC 

0 
dth(T-S-t) 

oo 

k=2 
ef-6(k)f(t + s,k) 

RE T 

DV 
dth(T-t) 

oo 

k=2 

nT-5 
t-5 (*)/(*, fc) 

This shows that we must have Oj = 0j~ôô for a.a. t  G  (S, T). B y simple arguments, we 
can choose the regular versions Of(k) in such a way that 9j{k) =  Or-tik) fo r every 
k >  2, T >  0 and t  G  (0,T). 

We can then compute 7V(T ) [e~XL° ] in two différent ways . First , 

^(T)[e-Ai"] = l -
JV(l -e-Ai" 

v(T) 
= 1  - uT(\) 

v(T) • 

Then, using property (P ) once again, 

N(T)[e-XL°] = V(r) fNiT-t)[e .-AL?-' li=7T 

7T 

R 
DV 

DV 
XGR 

oo 

/c=2 
Or-t(k) 1 

X+D4 
t;(T-*) 

SDV 

By comparing with the previous display and using the formula for hr(t), w e get 

D 

R 
R ^'(v(*)M*) 

^ ) ) 
- 1 

oo 

k=2 
X+D52EO ut(\)\k 

V(t) RE 
v(T) -  uT(X) 

SX+ED 
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We can now differentiate with respect to T (for a proper justification we should argue 
that the mapping t —• 0t i s continuous, but w e omit détails). I t follows that 

rb'(v(T))v(T) 
1>(v(T)) 

i 
oo 

fc=2 
h(k) ( l uT(\)\k 

v(T) . 

= - 1 + 
V{v{T))v{T) ,R(P = D L S L S ^ { U T { \ ) ) - U T ( X W MT 

X+D5 i,(v(T)) 
Hence, oo 

k=2 
0T(k) uT(X)\k 

v(T)J 
= 1  - *P(uT(\))-uT(\W(v(T)) 

i/>(v(T))-v(T)il>'(v(T)) * 

If we substitute r = 1 — v(T) - in this last identity we get 

oo 

k=2 
0T(k)rk =  1- M(l -  r)v(T))  -  ( 1 - r)v(TW(v(T)) 

*P(v(T)) - v(T)if>(v(T) 

Formula (86) follows after straightforward transformations o f the last expression. 
The proof of Theorem 2.7.1 is now complète. Observ e that the (time-inhomoge-

neous) Marko v property o f the proces s (Zf,0  ^  t  <  T)  i s a  conséquence o f the 
description provided in the second part of the theorem, and in particular o f the spécial 
form of the law of 7T and the fact that the law of Z^T under N(?) [* I 7 T > S] coincides 
with the law of Z^~*s unde r N(T_s)- ^ 

Let us discuss spécial cases of the theorem. Whe n ip(u) = cua, with c > 0  and 
1 < a < 2, we have v(t) = (c(a —  l)t)_1^a_1 \ an d formula (85 ) shows that the law 
of 7T is uniform over [0,T] . Thi s is the only case where this property holds: I f we 
assume that 7T is uniform over [0, T], (85 ) implies that tp{v{t)) = C/t for some C > 0. 
By differentiating log v(t), we then get that v(t) = C't~c an d it follows that tp is of 
the desired form. 

Also in the stable case ip(u) — cua,  formul a (86 ) implies that Z^T  is independent 
of 7T, and that its distribution i s characterized by 

X RE DV 
(1 - r)a  - 1  + ar 

a- 1 
Of course when a = 2, we recover the well known fact that Z^T = 2. When a G (1,2), 
we get 

Nm[Zl=k} = a ( 2 - a ) ( 3 - a ) - - - ( f c - l - a ) 
k\ 

X+GLR 

To conclude let us mention that limiting reduced trees have been studied extensively 
in the literature. I n the finite variance case, the uniform distribution fo r JT appears 
in Zubkov [50], and the full structure of the reduced tree is derived by Fleischmann 
and Siegmund-Schultze [17]. Analogou s results in the stable case (and in the more 
gênerai setting o f multitype branching processes ) can be found in Vatutin [48] and 
Yakymiv [49]. 
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CHAPTER 3 

MARGINALS OF CONTINUOUS TREES 

3.1. Duality properties of the exploration process 

In this section, we study certain duality properties of the process p. In view of forth-
coming applications, the main resuit is the time-reversal property stated in Corollary 
3.1.6 below. Howeve r the intermediate results needed to dérive this property are of 
independent interest . 

We work in the gênerai setting of Chapter 1 . I n particular, th e Lév y process X 
satisfies assumptions (Hl) -  (H3) , and starts at 0  under the probability measure P. 
Since the subordinato r SL-i^  ha s drif t (5  (Lemma 1.1.2) , i t readil y follows from 
formula (17 ) that th e continuou s par t o f pt is (31[otHt](r)dr.  We can thus rewrite 
Définition 1.2.2 in an équivalent way as follows: 

(89) pt(dr) = /?l[0>jfft](r)dr+ 
0<s^t 

Xs-<ItS 

{Ist-Xs_)ôHs{dr)-

We then introduce another measure-value d process {rjt,t  ^ 0) by setting 

(90) r]t(dr) = (3l[0jHt]{r) dr+ 
0<s^t 

Xs-<If 

(Xa-Ii)6Hm{dr). 

In the same way a s pt, the measure rjt  is supported on [0,2?$]. W e will see below that 
rjt is a.s. a  finite measure, a  fact that is not obvious from the previous formula. I n 
the queueing System interprétation o f [32], the measure pt accounts for the remaining 
service times for ail customers présent i n the queue at time t. I n this interprétation, 
rjt describes the services already accomplished for thèse customers. 

We wil l see that in some sensé, the process {rjt,t  ^ 0 ) is the dual of {put ^ 0). 
It turn s out that the study of {rjt,t > 0) is significantly more diffîcult than that of 
{pt,t ^  0) . W e start with a basic lemma. 
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Lemma 3.1.1. — For each fixed value of t >  0 , w e have (r?t,l ) <  oo , P a.s . o r T V 
a.e. Th e process (rju t ^  0) , which takes values in M/(R+) , i s right-continuous i n 
probability under P. Similarly , (rjt,t > 0) is right-continuous i n measure under TV. 

Proof. — Let us first prove that {rjt , 1) < oo, P a.s . I t is enough to verify that 

0<ŝ t 
^Xsl{Xs_<Its} < oo 

P a.s . B y time-reversal, this is équivalent to 

(91) 
X+F4R 

AXS l{xs>ss_} < oo 

P a.s . However , for every a > 0, 

F. 
0<ŝ L~1(a) 

(AXS A 1) l{xs>ss_} = ar((AX f f )Al) l {x„>0}) 

= a w(dx) 
nX 

0 
iz(z A 1) 

^ a 7r(dx) (x A x ) 

< o c 

using (10 ) in the second equality. This gives our claim (91) and the first assertion of 
the lemma under P. Th e property (77$ , 1) < 00, TV a.e., then follows from arguments 
of excursion theory, using in particular th e Markov property of X under TV . 

The preceding considérations also imply that 

lim 
1.10 0<s<t 

AXS l{xs>ss-\ =  0 

in P-probability. Via time-reversal, it follows that the process rjt i s right-continuou s 
at t = 0 in probability under P. The n let to > 0. We first observe that rjto({Hto}) =  0 
P a.s . Thi s follows from the fact that there is a.s. n o value of s G (0, to] with Xs > Ss-
and Ls = 0. Then, for t > to, write u = u(t) for the (first ) time of the minimum of X 
over [to,t] . Formul a (90) implies that rjt is bounded below by the restriction of r)to to 
[0, Hu), and bounded above by rjto +î j^0, wher e (yflltQ, 1) has the same distribution 
as {rjt-t0,1) (mor e precisely, rfilto i s distributed a s r?t-t0> up to a translation by Hu). 
The right-continuity i n P-probability of the mapping t — • rj t a t t  = t o follows from 
this observation, the property r}t0({Ht0} ) =  05 the a.s . lowe r semi-continuity of Ht, 
and the case to = 0. 

The right-continuity in measure under TV follows from the same arguments. • 

Rather than investigating the Markovian properties of (rjt,t >  0) we will consider 
the pai r (pt,rjt) . W e first introduc e som e notation. Le t (/x, v) G  M/(R+)2, an d let 
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a >  0. Recall the notation of Proposition 1.2.3. In a way analogous to Chapter 1, we 
define ka(p,u) e M/(R+)2 by setting 

K(l*,v) =  fa") 
where ~fi = kap  and the measure V is the unique élément of M/(R+) such that 

(n + v)\[o,H(ka»)} =  kap + V. 

Note that th e différenc e p\[o ,H{kan)] ~  * s a nonnegative multiple of the Dirac 
measure at H(kap),  so that V and ̂ |[o,H(fea/x)] may onry differ a t the point H(kap). 

Then, if0i = (/xi,z/i) G M/(R+)2and02 = (1x2,̂ 2) e M/(R+)2, and if #(/xi) < 00, 
we define the concaténation [6\, 62] by 

[01,02] = ([/^i,H,^) 

where (1/, / ) = / vi (ds)l[0iHitJtl)]{s)f(s) + / ^(ds)  f  (H(in) +  s). 

Proposition 3.1.2 
(i) Le t 5 ^ 0 an d t >  0 . Then,  for  every nonnegative  measurable  function f  on 

M/(R+)2; 
£?[/(pfl+t,77,+t) | & ] = n?/(/9a,rçfl) 

w/iere II^((/i, 1/), dp'du') is  the distribution of  the pair 

[k-It(^v),(pur)t)} 
under P. The  collection  (II0 , t > 0) is  a Markovian semigroup on  M/(R_j_)2 . 

(h) Let  s > 0 and t >  0. TTien , /or even/ nonnegative measurable  function f  on 
M/(R+)2, 

N(/(ps+t,77S+t)l{s+*<<x} | G s) = l{s<a}ïï-tf(ps,Vs) 
where Ut((p,  v),  dp'du') is  the distribution of  the pair 

[k-it(p,v),(pt,Vt)} 
under P(- fl { T^ i } > t}). The  collection  (Tlt,t  >  0) is a submarkovian semigroup on 
M/(R+)2. 

Proof 
(i) Recal l the notation of the proof of Proposition 1.2.3, and in particular formula 

(20). Accordin g to this formula, we have 

(92) ps+t  = [k_I(s)ps,pits)] 

where the pai r (l[s\p[s^)  i s defined i n terms of the shifted proces s X^s\ whic h is 
independent of Qs. W e then want to get an analogous expression for rjt. Precisely, we 
claim that 

(93) (pa+t,7fc+t) = [fc_7(-)(pa,7?a), (Pt3\vt8))] 
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with an obvious notation. Not e that (92 ) is the equality of the first components in 
(93). 

To deal with the second components, recall the définition of ï]s+t 

r)s+t{du) = pl[o,Hs+t]{u) du+ 
0<r<s+t 
*r-</;+t 

(Xr-ra+t)6Hr(du). 

First consider the absolutely continuous part. By (92), we have 

Ha+t = H(k_&)p8) +  H(p[s)) = H(k_l(s)Ps) + H(ts) 

and thus 

f dul[0iHa+t](u)f(u) 

DR rf«l[0Jff(Jb_/{,)p,)](«)/(w) + du l[0jjfir(«)](w) f(H(k_I(S)ps) +  u). 

This shows that the absolutel y continuous par t o f rjs+t i s the sam e as that o f the 
second component of the right side of (93). 

Then the singular part of r)s+t i s equal to 

(94) 
X+RR 
xr-<i:+t 

(Xr-Fs+t)ôHr+ 
a < dld<ed 
Xr- <Is+t 

(xr-i:.t)sHr. 

Note that, if r G (s, s +1] i s such that Xr- <  7J+t, we have Hr = H(k_j(S) ps) + 
(see th e proof of Proposition 1.2.3). Thank s to this remark, we see that the second 
term of the sum in (94) i s the image of the singular part of rj  ̂unde r the mapping 
u —> H(k T(s)ps) + u. 

To handle the first term of (94), we consider two cases. Suppose first that Is < 
Then set, 

v = SUp{r G (0, s] : Xr_ < I*a+J. 

In th e first term of (94), w e need only consider values r G  (0, v]. Not e that Hv  = 
H(k As)ps) an d that the measures pv  and k_T(S)ps  ar e equal except possibly at the 
point Hv (see again the proof of Proposition 1.2.3). Then, 

0<r<v 
X+G4R 

(Xr-Irs+t)5Hr = 
0<r<v 

XGR6++D1 

(Xr-rs)SHr 

coincides with the restriction of the singular part of r?s to [0,ifv ) =  [0 , H(k_T(S)ps)), 
On the other hand, r]sjtt{{Hv}) is equal to 

Xv - Fs+t  = Vs({Hv}) + Ps([0,H(k_lMPa)]) - (k_&)Ps,  1) 
Ât lt 
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since by construction 

Vs({Hv}) =  Xv - Ivs , 

P,([0, ff(fc_7(.)pa)]) = Pa([0,Hv]) = rs - is, 

(k^pps, i) = xs-is + 4S) = j«+t - is = rs+t - is. 

By comparing with the définition of fca(/x, z/), we see that the proof of (93 ) is complète 
in the case Is < Jf+t. 

The cas e Is > I§+t i s easier. I n that case k_I(S)ps =  0, and even k_I(S)(ps,r]s) = 
(0 ,0 ) (not e that rjs  gives no mass to 0 , a.s.). Furthermore , th e first sum i n (94) 
vanishes, and it immediately follows that (93 ) holds. 

The firs t assertion in (i) is a conséquence of (93) and the fact that X^ i s indepen-
dent of Qs-

As for the second assertion, it is enough to verify that, for every s, t > 0 we have 

(95) [k_I(S)[k^Is(jj,^),  (p^rjs)},  (p[s\r]{ts))]  =  [fc_/a+t(/i, v), {pa+t,7fc+4)]. 

Note that the case \x = v = 0 is just (93) . T o prove (95), we consider the same two 
cases as previously. 

If J|+t > Is, or equivalently —1^ <  (Ps,l), the n Is = I8+t an d so fc_/s(//, z/) = 
k-is+t(fji,v). Furthermore , it is easy to verify that a.s. 

k_lis)[k-Is(iJJ,is),(ps,ris)] = [fc_Ja(/z,i/),fc_ (s)(ps,r)s)]. 

Hence 

[k-Is (/i, i/), (ps, T/S)] , (p{ta\rftS))] = [[*-/- (M> *_/(• ) (p*> (Pt*\ %W)] 

= [*-/aSDDDsd[*_/(-) (p*,XDSD (Pt5) > »7ta))]]» 

and (95 ) follow s from (93) . 
Finally, i f Ia+t ̂  I3, or equivalently —  1  ̂>  (ps,l) , i t easil y follows fro m our 

définitions (and from the fact that r)s({0}) = 0 a.s.) that 

k_IIS) [k-Ia (p, v), (p5 , rjs)] =  k-Is+t (p, v), a.s . 

Furthermore, the property Jf+t < Is also implies that (Pt S\vi^) = (Ps+tî̂ s+t)» and 
this complètes the proof of (95) . 

(ii) First note that, for s, t > 0, the identity (93 ) als o holds N a.e . on {s -f t < a} 
with the same proof (the argument i s even simpler as we do not need to consider the 
case Ia+t ^ Is). Also observe that N a.e. o n {s < <J}, the condition s +1 < a holds 
iff -l[s)  <XS  =  (ps , 1) , o r equivalently t <  T g^ =  inf{ r ^  0  : X^s) =  -(ps, 1 } } . 
The first assertion i n (ii ) follows from thèse observations and the Markov property 
under N. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002 



80 CHAPTER 3. MARGINALS OF CONTINUOUS TREES 

The secon d assertion in (ii ) follows from (95 ) and the fact that 

{T(M>1> >s +  t} = {Is+t>-(n,l)} 
= {ia > I » n {i(ts) > I ) - xs} 

= { / . > - ( / . , i ) } n { ^ ; i ) l W ) > t } . 

The previou s proposition shows that the process (ps,rjs) i s Markovian under P. 
We now proceed to investigate its invariant measure . 

Let Af(dsd£dx)  be a Poisson point measure on (M+)3 with intensity 

dsir(d£) \ [Qj}(x)dx. 

For ever y a > 0, we dénote by Ma the law on M/(M+)2 o f the pair (pa,va)  defined 
by 

(/*a, / ) = /  N(dsdtdx)  lr0lal(s) + P 
SDV 

GR 
dsf(s) 

<*«,/> = N(dsdldx) l[0fa](s) (t ~ X)f(s) + 0 
DX 

DR 
dsf(s). 

Note that Ma is invariant under the symmetry (// , v) —*  (y,  p). W e also set 

M = 
'OO 

DV 
dae"ûa Ma. 

The marginal s of M coincide with the measure M of Chapter 1. 

Proposition 3.1.3. —  Let $ be  a nonnegative measurable function on  M/(R+)2. Then, 

CRE G 
DV 

dt<f>(pt,rjt)) = M(dpdv)$(p,v). 

Proof. —  This is an extension of Proposition 1.2.5 and the proof is much analogous. 
Consider (under P) the countable collection of instants Si,i E I such that XSi >  SSi-. 
It follow s from (10 ) that 

(96) SDV 
i€l 

à(LSiAXSi,xSi-sSi.) (dsdidx)) (à) C, lro c](s)N(dsd£dx) 

where £ is an exponential variable with parameter a  independent o f M (C = oo i f 
a =  0). Recal l from Chapter 1  the définition of the time-reversed process A s in 
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(17), we can rewrite the définition of pt and rjt in terms of the reversed process X :̂ 

(p t , f )=P 
XR 

o 
drf(r)+ 

0<s<t 
D+ 4D 

( ^ ) - ^ ) / ( i f , - 4 t ) ) , 

(Th,f)=P 

DX 

'o 
drf(r)+ 

0<ŝ t 
qlqldldl 

^(wa(A))d5 = log^MA)) 

Hence we can write (pt,Vt) = T(Xs^\,s ^  0) with a measurable functional T  that is 
made explicit in the previous formulas. Propositio n 1.1.4 now gives 

N "(7 

DD 
dt$(Pt,T]t)) = E 

D 

0 
da^oT(XsAL-iia):s ^ 0) 

However, T(XsAL-Ha),s  ̂0) = (//0,^a), with 

CPaJ)=P 
a 

'o 
drf(r) + 

DV 
l[0,a](LSi)(XSi-SSi-)f(a-LSi) 

D +D4D DV 

0 
drf(r) + 

dr 
l[0fa](i.J (AXS î - (XS i - S9i-) ) f(a - L9i) . 

Now use (96) to complète the proof. 

For every t > 0, we dénote by lit the image of the kernel Yit under the symmetry 
(//, v) — > [y , / / ), tha t is 

^(wa(A))d5 nÉ((l / , /x) ,dI /V)*(^,y)-

Theorem 3.1.4. — T/ie kernels lit and lit ô e dualit y under M. 

This means that for any nonnegative measurable functions $  and  ̂on M/(R+)2, 

M ( M ^ ) =  M(tffït$). 

Proof. — We first consider the potential kernels 

U = 
D 

0 
dtUt , U = 

D 

DV 
dtÛt 

and we prove that 

(97) M(<S>UV) = M(#17$). 

This is équivalent to saying that the measure 

M(dfidu) £/((//, u), dp'dp') 

is invariant under the transformation (// , v, / /, v') — • (i/ , / /, z/, /z). 
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To this end, we first derive an explicit expression for the kernel U. By the definition 
of the kernels n t, we have

U9{ji,v) = E [ j ^ A) di $([£_/, ( / ^ ( P t ,  *?*)])]•

This is computed in a way similar to the proof of Proposition 1.2.6, using Proposition 
3.1.3 in place of Proposition 1.2.5. It follows that

(98) v) = J (J '  ] dr J  M(dn’di/) «O, (/*', S)]).

We then need to get more information about the joint distribution of ((//, z/), /cr(/i, i/)) 
under M(d/xdz/)l[0,{A4,i)](r’)iir. Recall the notation A/*, ¿¿a, va introduced before the 
statement of Proposition 3.1.3. Write

N  = à(si,£i,Xi) 
iei

for definiteness, in such a way that
(/̂ a5 ) ~  (/̂ T-a “I” ^  $Si ? P'W'a H- ^  ̂ %i) $si )5

S ^ CL Si ĈL
where ma denotes Lebesgue measure on [0, a]. Since Ma is the law of (/xa, z/a), we get

(99) J  Ma{dfxdu) J  dr F{{ii,v),kr{iJ,,v))

= E \_j dr F{{Ha,Va),kr(^a,Va))\̂

= E \p j  dsF((/llo,Z;a),(/ia|[0,S],^O|[0,S]))]

+ £ :[ $ Z  /  dy F ((fXo.,l'a),(fJ-a\[0,si) +yÔsi ,Va\lO,si) +  (¿i ~  ))]
Si^a''0

using the definition of kr.
At this point, we recall the following well-known lemma about Poisson measures.

Lemma 3.1,5. — Let E be a measurable space and let A be a a-finite measure on E. 
Let Ai be a Poisson point measure on [0,a] x E with intensity dsA(de). Then, for 
any nonnegative measurable function $>,

E [  M(dsde)<S>((s,e),M)} = e \ [  ds [  A{de) $((*, e), M  + 5(s,c)) 
L J -1 L Jo Je

Thanks to this lemma, the second term in the right side of (99) can be written as

E ds 7T (d£) dx dy 
Jo J Jo Jo

F((na +  xSs, Va + ( t -  x)5s), (Mo|[0,S) +  yôs, l'ai[0,s) + (t ~ V)Ss))
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We now integrate (99) with respect to e aada.  Afte r some easy transformations, we 
get 

M(dudv) 
X+D4 

D 
drF((p,v),kr(p,v)) 

XRDX M(dp1dv1)M(dp2dv2) 1̂ 1), (A*2, ^2)], (A*I, ^1)) 

+ M(dnidv1)M{dii2dv2) 7r(d£) 
D 

R 
dx X 

r0 
dy 

F([(/xi, i/i), (x£0 + M2, (^ - ^)^ o + ^2)], [(^i, ^1), (y8o, (£ - y)S0)]). 
Recalling formula (98) for the potential kernel U, we see that the measure 

M(dpdv) U((fi, y),  dy!dy') 
is the sum of two terms. The first one is the distribution under 

^M(d/Xi^i)M(d/i2^2)M(d//3^3) 
of the pair 

(/i,z/) = [(/ii , 1/1), (/x2, ̂ 2)] , ( M ' X ) = [(Mi^iM/^,*^)] . 
The second one is the distribution under 

M(dpidiy1)M(dp2, diy2)M(dp3dîy3)7r(d£)l^0<y<x<eydx dy 

of the pair 

(/i, v) = [(/xi, 1/1), (arf0-f/J2, (^-a;)<Jo+^2)], Qx' , *0 = [(^î , ^1), (2/50+/i3, (^-2/)^o+^s)]. 
In thi s form , i t i s clear that M(dpdv)  U((p, z/) , dp'dv') has the desire d invariance 
property. This complètes the proof of (97). 

Consider now the résolvent kernels 

UJ(a,u),da'du') = 
DR 

0 
dte~ptUt((y,u),dfj/f,duf). 

By a standard argument (se e e.g. [9], p.54), (97) also implies that, for every p > 0 , 
M($>Upy) =  M(WP$), or equivalently 

(100) 
DR 

Jo 
dte-ptM($Ilty) = roc 

r 
0 

dte-ptM(Wlt$). 

Recall that our goal is to prove the identity M ( $ I I ^) = M(\I>IIt$) for every t >  0 . 
We may assume that th e function s 3 > and \I > are continuous an d both dominated 
by e~a^^  fo r some a > 0. Th e latter conditio n guarantees that M($ ) < 00 an d 
M(\£) <  00. From the définition of 11^ and the right-continuity in probability of the 
mapping t —> (pt,Vt)  (Lemma 3.1.1), it is easy to verify that t  — » IIt^(/x, v) is right-
continuous ove r (0, 00). Th e same holds for the mapping t — > M ^ I I ^ ), an d the 
statement of the theorem follows from (100) . • 

For notational reasons, we make the convention that ps = rjs =  0 if s < 0. 
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Corollary 3.1.6. — The process (rjs,s ^ 0 ) has a càdlàg modification under N or un-
der P. Furthermore , th e processes {ps,r]s',s ^ 0 ) and (rj(a_s)_ , p(c7_s)_; s ^ 0 ) have 
the same distribution under N. 

A conséquenc e of the corollar y is the fac t tha t th e processe s (Ht, t ^  0 ) and 
(H(a_t)\y0,t ^  0 ) have the same distribution (sa y in the sensé of finite-dimensional 
marginals when H is not continuous) under TV. In view of the results of Chapter 2, 
this is not surprising, as the same time-reversal property obviously holds for the dis-
crète contour process. Th e more précise statement o f the corollary will be useful in 
the next sections. 

Proof. — The second part of the corollary is essentially a conséquence of the duality 
property stated in the previous theorem. Since we have still little information about 
regularity propertie s o f the proces s r} , w e will procee d with some care. W e first 
introduce the Kuznetsov measure K , which is the cr-finite measure on R x D(R+,R) 
defined by 

K(drduj) =  drN(dcv). 

We then define 7(7", oo) = r, J(r, LU) — r + CT{UJ) and, for every t G R, 

pt(r,u) = Pt-rM ,  rjt(r,u) = Vt -r(v) 

with th e conventio n explained before the statemen t o f the corollary . Not e that 
(pt,rjt) ^  (0,0 ) iff7<*<<5 . 

It readily follows from Proposition 3.1.3 that, for every t G  R, the distribution of 
(pt,rjt) under K(-n{(pt, 77J  ̂(0,0)} ) is M. Le t tu . . . , tp G R with ti <  t2 < •  • •  < tp. 
Using Proposition 3.1.2 an d inductio n o n p, w e easily get that th e restrictio n t o 
(M/(R+)2\{(0,0)})^ o f the distribution of the peuple ((ptl,r/tl),... , (ptp,rjtp)) ™ 

M(dpidi/i) nt2_tl((pi,vi), dp2dv2)... H^-t^((p>P-i^p-i),dppdi/p). 

By Theorem 3.1.4, this measure is equal to 

M(dppdvp) Utr-tp-AiHp, Vp), dpp-idi/p-i)... Ut2-tl ((^2, ̂ 2), dpidui). 

Hence the tw o p-tuples ((ptl,rytl),... , (ptp,rjtp)) an d ( (V-^P- t J ^ •  •> (ïî-tpiP-tp)) 
have the same distribution, i n restriction to (M/(R+)2\{(0,0)})p , unde r K. Sinc e 
(PnVt) 7 ^ (0,0) iff 7 <  t  <  (5 , a simple argument show s that w e can remove the 
restriction and conclude that thèse two p-tuples have the same distribution under K. 
(This distribution is <7-finite except for an infinité mass at the point (0,0)p. ) 

In particular, (ptl,... , ptp) and (f)_tl,... , fj_tp) hav e the same distribution under 
K. Le t F be a bounded continuous function on M/(R+)P, such that F(0, . . . , 0) = 0. 
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Suppose that 0 < t\ < £2 < • • • < tp and let u < v. Then we have 

K(l[UjW](7)F(p7+tl,... ,p7+tp)) 

= h m 
k£Z, kee[u,v] 

K[1{Pke=^P(k+i)s^}F(f)ke+t1^ • ->Pke+tp)) 

and the similar formula 

K ( 1 M H % . ( I % . « , ) ) 

= li m 
fceZ, kee[u,v] 

K(1{rj_k£=0,ri_{k+1)£mF(r)-ke-t1, • • • ,rç_fce_tp)), 

using the right-continuity in Af-measure of rjt. Hence the vectors (7, /ô7+tl,..., P7+*p) 
and (—5,rj$_tl,...  ,rjs_tp) hav e the same distribution unde r K. I t follow s that th e 
processes (pt,t  ^  0 ) and (r)a-t,t  ^  0 ) have the sam e finite-dimensional marginals 
under N. Sinc e we already know that (pt,t  ^ 0 ) is càdlàg, we obtain that (rjt,t  ^ 0) 
has a càdlàg modification under N. Th e time-reversal property of the corollary follows 
immédiately from the previou s identification o f finite-dimensional marginals. Thi s 
property implies in particular tha t 770+ =  rja- = 0 N a.e. 

It remain s to verify that {rjt,t  ^ 0 ) has a càdlàg modification under P. O n each 
excursion interval of X — I away from 0, we can apply the resuit derived above under 
the excursion measure N.  I t remains to deal with instants t such that Xt =  It, for 
which rjt =  0. T o this end, we note that, for every s > 0, 

N sup (ris,  1) > s 
S€[0,<T] 

= N SUP (ps, 1) > S 
sE[0,a] 

< 00. 

Hence, for any fixed x > 0, we will have (77̂ , 1) ^ s  for ail s 6 [OjTj excep t possibly 
for s  belongin g to finitely many excursion intervais o f X —  I.  Togethe r with the 
continuity of 77 a t time s 0 and a  under N, this implies that P  a.s . fo r every t such 
that Xt = It, the right and left limit s of 77̂  bot h exist at time t and vanish. • 

3.2. The tree associated with Poissonnian marks 

3.2.1. Trees embedded in an excursion. —  W e first give the définition of the 
tree associated with a continuous functio n e  : [a , b] —• R+ and p instants £1,... ,tp 
with a  ̂ti  ^  Î2  ̂•  • •   ̂tp   ̂b. 

Recall from Section 0.1 the définitio n of a (finite ) roote d ordered tree, an d th e 
notation T for the collection of thèse trees . I f v is an individual (a vertex) in the 
tree T G T, the notation kv(T)  stands for the number o f children of v. Individual s 
v without children, i.e. such that kv(T) = 0, are called leaves. Fo r every p > 1 , we 
dénote by Tp the set of ail (rooted ordered) trees with p leaves. 
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If T1 , T2 , . . ., Tk ar e k  trees, the concaténation of T 1 , . . ., Tfc, whic h is denoted 
by [T1 , T2, . . ., Tk], is defined in the obvious way: For n ^ 1 , (ii,...,  in)  belongs to 
[T1, T2, . . ., Tk] if and only if 1 <  %x ^  k  and (i2,. . . , in) belongs to Tix. 

A marked  tree  is a pair 0 = (T , G T } ), wher e hv  ̂0  for every v £ T. Th e 
number /iv is interpreted as the lifetime of individual v, and T is called the skeleton 
of 0. We dénote by Tp the set of ail marked trees with p leaves. 

Let 0 1 =  (T\{hl,v  G T }) G Tpi,...,0fc =  ( r f c , { ^ , ^ G Tk}) G TPfc, an d 
/i ^ 0. The concaténation [01,02,... , 0fc]̂  is the élément of TPl+...+Pfc whose skeleton 
is [TX,T2,.. . ,Tfc] an d such that the lifetimes of vertices in T*, 1  < i  ^  k  become 
the lifetimes of the corresponding vertices in [T1, T2, . . ., Tfc], and finally the lifetime 
of 0 i n [0\Q2,...,0k]h i s h. 

Let a, b G M+ with a ^ b  and let e : [a, 6] —• R+ be a continuous function . Fo r 
every a  ̂u  ^ v  ^ 6 , we set 

m(u, i;) = in f e(t). 

Let ti , . . ., tp G M+ be such that a ^ t\  ^  £2  ^  •  • •  < tp ^  6 . We will now construct a 
marked tree 

0(e,ti,...,tp) = (T(e,t1,...,tp),{hv(e,t1,...,)tp),v  G T }) G Tp 

associated with the function e and the times ti , . . ., tp. We proceed by induction on p. 
If p = 1, T(e,*i) =  { 0 } an d h0(e,t1) = e(t{). 

Let p ^ 2  and suppose that the tree has been constructed up to order p — 1. Then 
there exists an integer k G { 1 , . . . ,p — 1} and integer s 1 < i i < i2 < • • • < û ^  p — 1 
such that ra(£ï,^+i) = m(ti,tp) if f z G { n , .. . , û}- Fo r every ^ G {0,1,...,/c}, define 
e£ by the formulas 

e°(t) = e(t)-m(tutp), t  G [£;fc+i,£p]. 
e'(t) = e(t) - m(tutp),  t  G [£;fc+i,£p]. 1  ^ ^  ̂fc - 1 . 
ek(t) = e(t) - ra(£i,tp), t G [£;fc+i,£p]. 

We then set: 

0(e,ti,... ,tp) = [0(e°,ti,.. . j t i j ^ e ^ t ^ + i , . .. ,£i2),.. . ,Q(ek,tik+i,...,£P)]m(ti,tp)-

This complètes the constructio n o f the tre e by induction. Not e that k  -f 1 is the 
number of children of 0 i n the tree 0(e, £1,..., £p), and m(£i, tp) is the lifetime of 0. 

3.2.2. Poissonnian marks. — W e consider a standard Poisson process with pa-
rameter À  defined under the probability measure Q\.  W e dénote by T\ < r2 < •  • • 
the jump times of this Poisson process. Throughou t this section, we argue under 
the measure Q\  <g) N, which means that we consider the excursion measure oî X —  I 
together with independent Poissonnia n marks with intensity À  on R+. T o simplify 
notation however, we will systematically write AT instead of Q\ 0 N. 
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Set M = sup{z ^ 1  : Ti  ̂a} , which represents the number o f marks that fal l in 
the excursion interval (by convention, sup0 = 0). Then, 

N ( M >  1) = N(l -  e~Xa ) = V_1(A) , 

where the secon d equality follow s fro m the fac t tha t the Laplac e exponent o f the 
subordinator T X is ^ ~ 1 ( X) (se e [5], Theorem VII.l). 

From now on, we assume that the condition < oo holds, so that H has 
continuous sampl e paths (Theorem 1.4.3). W e can then use subsection 3.2. 1 to de-
fine the embedded tree 0(H,TI , . .. ,TM) unde r N(- \  M ^  1) . Ou r main goal is to 
détermine the law of this tree. 

Theorem 3.2.1. — Under the probability measure N{-\M ^  1) , the tree 0(H, n,. . ., TM ) 
is distributed a s the family tree of a continuous-time Galton - Watson process starting 
with one individual at Urne 0 and such that: 

- Lifetime s of individuals have exponential distributions with parameter ipf(V*-1(A)); 
- Th e offspring distribution i s the law of the variable £ with generating function 

Eh-*] =  r + 
^(wa(A))d5 = log^ 
#(/(Pr) Wi}) = A 

Remark. — As the proof wil l show, the theorem remains valid without the assump-
tion that H has continuous paths . W e will leave this extension to the reader. Apart 
from som e technical détails , i t simply requires the straightforward extensio n of the 
construction o f subsection 3.2. 1 to the case when the function e  is only lower semi-
continuous. 

The proo f of Theorem 3.2.1 requires a few intermediate results . T o simplify no-
tation, w e will write r =  n . W e start with an important applicatio n of Corollary 
3.1.6. 

Lemma 3.2.2. — For any nonnegative measurable function f  o n M/(R+), 

#( / (Pr) W i } ) = A M(diidv)f(u)e-^~lw 

Proof. — We have 

N{f{Pr)UM>n) =  AA T 
™<7 

DR 
dte-xtf(pt) = \ N \ 

D 

D 
d t e - x ^ f ( V t ) ) , 

using the time-reversal property of Corollary 3.1.6. At this point, we use the Markov 
property of X under N: 

N 
D 

/o 
#(/(Pr) Wi}) = A = N 

D 

'0 
dtf(Vt)EXt[e-XT°] 

We have already noticed that for x > 0, 

Ex[e~XT°] = E0[e-XT* DDR+ EX 
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Since Xt = (pt, 1) under TV, it follows that 

N( / (p r ) l {Aoi} ) =  ATVi 
RE 

D 
dtf(m)e-<">M' (A) = À M(dudî/)/Me-('1'1>* ^  ', 

using Proposition 3.1.3. Since M is invariant under the mapping v)  —• (z/, thi s 
complètes the proof. • 

We no w set 
DRED inflige :  n ^  5   ̂ T M ! 

oo 
if M >  2 
if M ^ 1 

Then K represents the lifetime of the ancestor in the tree 0(H, n, . . ., TM) (assumin g 
that the event {M ^ 2 } holds). T o give a formula for the number of children £ of the 
ancestor, set 

r{K) =  inî{t ^r.Ht^K}  , T{k) = inî{t ^  r  :  Ht < K}. 
Then, again on the event { M ^ 2} , £ — l i s th e number o f excursions of H abo 
level if, on the time interval [t{k)IT[k)]I whic h contain at least one of the Poissonni* 
marks. Thi s identification follows readily from the construction o f subsection 3.2. 1 

The nex t propositio n give s th e join t distributio n o f th e pai r (K,  £) un d 
N(- fi {M ^  2}) . 

Proposition 3.2.3. — Let r G [0,1] and  let h be  a nonnegative measurable  function < 
[0, oo] , with  h(oo)  = 0. Then, 

N(r^h(K) I  JIO 1) 

= (r^,(^-1(A)) + 
#(/(Pr) Wi}) = A 

DF+ 4D 
DD 

0 
dbh(b)e-b*'U>-1M). 

The basi c idea of the proo f is to apply the Marko v property to the process p at 
time r. T o this end, we need some notation. W e write P* fo r the probability measure 
under which p starts at a n arbitrary measur e p  G M / ( R D ) an d i s stopped when it 
hits 0. A s usual, Ht = H(pt). Unde r P*, the process Xt =  (pt, 1) is the underlying 
Lévy process started at (/x , 1), stopped a t T o = inf{ £ ^ 0  : Xt =  0}. W e keep the 
notation It  fo r the minimum process of X. W e let (a,j,bj),  j  G J b e the collection 
of excursio n intervais of X —  I awa y from 0 and before time To. For every j £  J we 
define the corresponding excursion by 

LUj(t) =  X(a.+t\Ab. -  Ia.  , t > 0. 
From excursion theory, we know that the point measure 

DG+R 
X+R4 

is Poisson under P*, with intensity l^0^^(u)duN(du)  (cf.  the proo f o f Proposi-
tion 1.2.6) . O n the other hand, by properties of the exploration process derived in 
Chapter 1 , we know that P* a.s. fo r every s G [0,TQ] such that Xs — Is = 0 (and in 
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i2"(fc<M1l>_UA0 

particular fo r s = aj, j 6  J) w e have ps = k^^_jsp an d thus Hs = H(k^^^.jsp) . 
Observe also that the image of the measure l^^^^{u)d u unde r the mapping u —> 

is exactly p(dh). B y combining thèse observations, we get : 
(P) Th e poin t measur e YljeJ ^ { H a i s Poisso n unde r P*, wit h intensit y 
p(dh) N(dw) . 

Finally, assume that we ar e also given a collection V\ o f Poisson marks with inten-
sity À , independently of p under P*, and set 

L =  mî{Haj :  j 6  J, (a, , 6,- ) n P A / 0 } , (in f 0  =  oo) , 
C = Card{j G J :  Haj = L and (aj,bj ) D V \ ^ 0}. 

Then the Markov property of the exploration process at time r shows that, for any 
nonnegative measurable function h  on [0 , oo] suc h that h(oo ) =  0, 

(101) N i ^ M ^ y r ^ h i K ) ) =  7V(1{AOI}E; T [r<h(L)}) . 

To verif y this equality, simply observe that those excursions of H above level K on 
the time interval [^{k)^[k) \ tna t contain one Poissonnian mark, exactly correspond 
to those excursions of the shifted process (pT+t, 1) abov e its minimum that start from 
the height K and contain one mark. 

The nex t lemma is the key step towards the proof of Proposition 3.2.3. 

Lemma 3.2.4. — Let a ^  0  and le t p E  M/(R+) b e such that supp/i =  [0 , a] an d 
l_i[dt) — /31[0?a](£)d£ -h ps{dt) , wher e ps i s a countable sum of multiples of Dirac point 
masses at élément s o f [0, a] . Then , i f r £  [0,1 ] and h is a  nonnegative measurabl e 
function o n [0 , oo] suc h that ft(oo) = 0, 

(102) E*u[r<h(L)]=0rip-\\ ) 
DR 

dbe^>-xMM°>>» h(b ) 

+ 
A*(M)>0 

(l_r)M{s})^-i(A) _  ,-M ({5})^-1(A) ^-/x([0,S))^-1(A) w ^ 

Proof. — First not e that it is easy to dérive the law of L under P*. Le t b € [0,a] . 
We hav e by property (P ) 

P* [ L >  b ] =  P* [(o^ , bj ) HV x =  0 fo r every j e J s.t . Ha j < b] 
= Erjfexp(-/i([0,6])iV (l-e-A-))] 

= exp(-/z([0 ,&])V>-1(A)). 

In particular , atoms of the distribution o f L in [0 , oo) exactl y correspond to atoms 
of /x , an d the continuous part of the distribution o f L is the measure 

(3i>-1(X)exp(-fi([0,b})ij-1(X))lM(b)db. 

We the n need to distinguish tw o cases : 
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E;[vî\l =  s}-
e_(l_r)/i({s})V;-i(A)) _  e-M({s})V;-1(A) ) 

#(/(Pr) Wi}) = AC 

(2) I f L is not an atom of /i, then automatically £ = 1. This is so because the values 
Haj corresponding to indices j suc h that p({Haj}) =  0 must be distinct, by (P) and 
standard properties of Poisson measures. 

The lemm a follows by combining thèse two cases with the distribution of L. • 

Proof of Proposition 3.2.3.  —  By combining (101), Lemma 3.2.2 and (102), we obtain 
that 

N(l{M>1}i*-1h(K)) =  A1+A2 

where 

AX =8r \tl>-1(\) 
•00 

'0 
dae~aa MJdudv)e-(v^ ' W 

D 

X 
dbe-^W^^Mb), 

and 

A2 =  A 
roo 

*0 
dae~aa Mafdudrie-W* 1(A) 

x 
Ms})>o 

(l_r)M({s})^-i(A) _ —/X({S})Î/;_ (A ) _-/x([0,5))^-1(A) W X 

To compute Ai, we observe that for u > 0 and 0  ̂b   ̂a , 
Ma(e~n(/x(̂ ])+K[o,a])) = Mo(e"u(M+I/)([0'b )̂Ma(e~WI/((b'a]) ) 

= e-0<a+b)  _b 7r(d£)£(l - e-u£)) 

x exp (  —  (a — b) 7r(d£) 
D 

'0 
dx(l-e-ux)} 

= eaaexp{-bi/;'(u)-(a-b) D FR 
u S 

using the easy formulas 

n(d£)£(l - e~u£)  = i/>'(u) -a-2(3u, 

<d£) i 
SD 

'0 
dx(l -  e~ux)  = 

1 
u 

(i/jOu) —  au — /3u2). 
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(1) Let s G [0, a] be an atom of p. B y the preceding formula, 
p* = s] = ( ! _ e-M({«»V'-1(A)))e-M([0,S))^-1(A) > 

Note that the excursions ujj that start at height s are the atoms of a Poisson measure 
with intensity p({s})N. Usin g also the independence properties of Poisson measures, 
we get that, conditionally on {L = s}, £ is distributed a s a Poisson random variable 
with intensity /i({s}),0 ~1(À), conditione d to be greater than or equal to 1: 
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It follow s that 

Ai =f3r\ip-1(\) 
DS 

DV 
da 

SD 

VR 
db/l(6)e-^'«'~1(A))-(a-6)(VV'-1(A)) 

= Rnlrl(\Y 
>oo 

0 
dbh(b)e-b^^-^l 

To evaluate A2, first observe that, with the notation precedin g Proposition 3.1.3, 
we have 

A2 = X 
SVR 

'o 
dae~aaE 

{ssia} 
M(dsdedx) h(s) (e-d -r)**-1™ - e - « * " ' W ) 

xexpf - ^ ( A ) / 
XD1 

Mds'de'dx'W -x')  + 
'{s'<s} 

N(ds'de'dx')x'))\. 

From Lemma 3.1.5, it follows that 

A2 = A 
DD 
0 

dae~aa 
R 

0 
d6ft(6)Ma(e-W^6'>+,/«0»a»»^ (A) ) 

X ir(d£) 
D 

0 
dx(e~(1"r)xî/,"1(A) - e~Xî/,~1(A))e-^-x)v,~1(A ) 

= ^"1(A) 
•oo 

0 
dbh(b)e-h*'«>-1W) 

x 7r(d£) 
o 

d6ft(6)Ma(e-W^6'>+,/«0»a»»^ (A)) d6ft(6)Ma(e 

where the last equality is obtained from the same calculations as those made in eval-
uating Ai. Furthermore , straightforward calculation s give 

7T(d£) 
X 

RE 
dx{e-^-r)x^~^x) -  e-a;V'"1(A))e-(€-x)V-1(A ) 

= ^ - 1 ( A ) ) - ^ " 1 ( A ) + 1S 
X+F4 Md-rU-UX^-X). 

By substituting this in the previous display and combining with the formula for Ai, 
we arrive at the resuit of the proposition. • 

Proof of Theorem 3.2.1.  —  It i s convenient to introduce the random variable A de-
fined by 

A = K if M > 2 
XR if M = 1 
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On the event { M =  1 } we also set £ = 0. We can easily compute the law of the pair 
(A, £). Indeed , by applying the Markov property at r a s previously, we easily get 

N(h(A)l{M=1}) =  N(h (HT)l{M=1}) 

= N (h(HT)e-</*'1>,l' 1(A) ) 

= A 
D 

'o 
dae-aah(a) M{d^dv) e-«M,D+<»',i»^-1(A)) 

= A 
oo 

0 
dah(a)e-1'W W) a 

By combining with Proposition 3.2.3, we get 

N(r*h(A)l{M>1}) 

= (nT1 W d T 1 ^ ) ) +  ^((1 - r ) i p - \ \ ) ) ) 
"OO 

'0 
dbh(b)e-h*'«>-1M). 

This formul a entail s tha t w e have the followin g propertie s under N( - | M  ^  1) : 
The variables A and £ are independent, A  is exponentially distributed wit h param-
eter ip/(ip~1(X)) , an d th e generatin g functio n o f £ is as stated i n Theore m 3.2.1. 
To complèt e the proof , i t remain s t o verif y th e "recursivit y property" of the tre e 
0(iï,7i,... , T M ) , tha t is to verify that under N( - |  M ^ 2) , the shifted tree s corre-
sponding to each individual in the first génération are independent and distributed as 
the whole tree under iV(- \  M > 1) . Thi s is a conséquence of the following claim. 

Claim. — Let (OLJ,[3J), j —  1,... , £ be the excursion intervais of H above level A that 
contain a t leas t one mark, ranke d in chronological order, an d for every j =  1,.. . , £ 
let hj(s) = i2 "(aj+s)A/3j — A 6 e the corresponding excursion. Then , conditionally on 
the pair (A , £), th e excursions hi,..., hç are independent and distributed according to 
the law of (Hs,ŝ  0 ) under N(- | M ^ 1 ) . 

To verify this property, we first argue under P* as previously. Precisely, we consider 
the excursions Uj for ail j £  J suc h that Haj = L and (a^ , bj) Pi V\ ^  0 . W e dénote 
by a5i,... thès e excursions, ranked in chronological order. Then property (P) and 
familiar properties of Poisson measures give the following fact. For every k > 1, under 
the measur e P*(- | C — &) » the excursions cDi,...,a5fc are independent, distribute d 
according to N(- \  M ^ 1) , and thèse excursions are also independent of the measure 

Haj>L 
X+F41R 

Let œl •= inf{s > 0 : Hs = L } . Excursio n theory for X — I allow s us to reconstruct 
the process (XsA(TL, s ^ 0 ) as a measurable function of the point measure in the last 
display. Hence we can also assert that, under P* (• | £ = /c) , u5i,..., uJk are independent 
of (XsA(TL, s ^ 0) . I n particular, they are independent of L = H(k^i)-itrLp) . 
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We now apply thèse properties to the shifted process XT+. under N(- |  M ^ 1) . W e 
slightly abuse notation and keep denoting by . . . , iïç the excursions of XT+. — IT+. 
that contain a  mark (s o that (  =  £ — l  o n the event M ^ 2) . By construction, for 
every j G { 2 , . .. ,£} , th e function h j i s the height process of u5j_i. Henc e it follows 
from the previous properties under P* tha t under N(- | £ = k) (for a fixed k  ̂2) , the 
processes h2,.. . ,hk ar e independent, hav e the distribution give n in the claim , and 
are also independent o f the pair (/ii , A). Hence , for any test functions Fi , . . . , F&, G, 
we get 

N{Fl(h1)...Fk(hk)G(A)\Ç =  k) 
= N(F2(H ) |  M ^ 1 ) • • • N{Fk(H) \  M ^ 1 ) iV(F1(/i1)G(A) |  £ = fe). 

Now from Corollary 3.1.6, we know that the time-reversed process Hx dk - W>^ 0) 
has the sam e distribution unde r N a s the proces s (H8, s ^ 0) . Furthermore , thi s 
time-reversal opération will leave A and £ invariant an d transform th e excursion h\ 
into the time-reversal of ,  denoted by (provide d we do simultaneously the similar 
transformation o n the underlying Poissonnian marks). It follows that 

JV(Fi(hi)G(A) |  £ = fc) = JV(Fi(ftfc)G(A) |  f = fc) 
= N(Fi(hk ) |  £ = k)N(G(A) | f = fc) 
= N(Fi(H ) |  M ^ 1)AT(G(A ) | M > 1). 

By substituting this equality in the previous displayed formula, we obtain the claim. 
This complètes the proof of Theorem 3.2.1. • 

3.3. Marginals of stable trees 

We firs t reformulat e Theore m 3.2.1 in a way more suitable fo r our applications . 
Recall that Tp is the set o f ail (rooted ordered) trees with p leaves. I f T G Tp w e 
dénote by £r th e set o f ail leaves of T, and set Afr = T\£r - Recal l the notatio n 
kv =  kv{T ) for the number o f children of an élément v of T. W e write T* for the 
subset of Tp compose d of ail trees T  such that kv(T ) ^  2  for every v G A/r- By 
construction, the skeleton of the marked trees 9(e, ti , . . ., tp) alway s belongs to T*. 

Theorem 3.3.1. — Let p ^ 1 . Then , for any nonnegative measurable function $  o n 
Tp, an d every À > 0, 

N(e~Xa 
{ti<--<tp<a} 

dt1...dtvQ(0(H,tu...,tv))) 

XR 
TGT; X+D4 

\ é ^ ( i b - H \ ) ) i 
k ' 

X 

v6T 
dhv exp X+Gd6ft(6)Ma(e 

DVR 
hy *(T, (hv)ver) . 
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Proof. — By élémentary properties of the standard Poisson process, the lef t sid e is 
equal to 

\ -*N(Q(0{H,TU. . . ,Tm))1{m=p}) 

with the notation of the previous section. Thi s quantity ca n be evaluated thanks to 
Theorem 3.2.1: From the generating function o f the offspring distribution, w e get 

P[£ =  0] = A 
tf-WW'-KA)) 

P[Ç = 1 ] = o 

P[Z =  k} = 
1 ^»-1(A)fc-1|Vw(V'"1(A)) | 
fc! X+ 4DR for ever y fc  ̂2. 

Hence the probability under N (- \  M ^ 1 ) that the skeleton of the tree 0(H, T\ , . . ., TM ) 
is equal to a given tree T G  T* is 

veAfr 

1 ib-sdsd^X^-M^Htb-ifX))^ 
kv\ ^ ( ^ - i ( A ) ) 

A 
^ ( X W ( ^ ( X ) ) . X 

p 

XR 
1 

1 ^»-1(A)fc-1|Vw(V'"1(A))| Xp ' 1 
À* » 

- A,-y . 

V ^ W ^ C A ) ) ! ) 

Recalling that N (M ^  1 ) = t/*-1 (A) , and using the fact that the lifetimes hv ,v£T are 
independently distribute d accordin g to the exponential distribution wit h paramete r 
^'(ip_1(A)), w e easily arrive at the formula of the theorem. • 

By lettin g A  —> 0  in the preceding theorem, we get the following corollary, which 
is closely related to Proposition 3.2 of [33]. 

Corollary 3.3.2. — Suppose that J 7r(dr)rp < oo. Then , for any nonnegative measur-
able function onTp , 

N 
'{t1<---<tp<a} 

dt1. . . tp$(e (H , tu . . . , tp)) 

BR 
T<=T* X+ 4 

BR 
veT 

dhv exp — a 
DVR 

hy $(T, (hv)veT) , 

where, for every k = 2,... ,p, 

CX+S 
|^fc)(0)| 

fc! 
1 ^»-1(A)fc-1 

1 

fc! 
rkir(dr). 

Remark. — The formul a o f th e corollar y stil l hold s withou t th e assumptio n 
/ 7r(dr ) rp <  oo but i t has to be interpreted properl y since some of the numbers (3k 
may be infinité. 
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From now on, we concentrate o n the stable case ip(u) =  u1 for 1 < 7 < 2. Then 
the Lévy process X satisfies the scaling property 

Vw(V'"1(A))| (d) |Vw(V'"1(A))| 

under P. Thank s to this property, i t i s possible to choose a regular version of the 
conditional probabilities AT(N ) : = N(- \ a = u) in such a way that for every u > 0 and 
À > 0, the law of (X~l^X\t,t ^  0 ) under N^u) i s N(uy Standard arguments then 
show that the height process (H3, s ^ 0) is well defined as a continuous process under 
the probability measures N(uy Furthermore , i t follow s from the approximation s of 
Ht (se e Lemma 1.1.3) that the law of (H\s,s > 0) under N(Xu) is equal to the law of 
(\l~^Hs,s > 0) under 7V(N). 

The probabilit y measure i s called the law of the normalized excursion. The 
tree coded by the process (Ht, Q < t  ^  1 ) under (i n the sensé of Section 0.6) 
is called the stable continuum rando m tree . Th e next theorem identifies its finite-
dimensional marginals, in the sensé of Aldous [3]. 

Theorem 3.3.3. — Suppose that ip(u) =  fo r some 7 G (1,2). The n the law of the 
tree 0(H, t\,..., tp) unde r the probability measure 

p! l{o<ti<t2<-<tP<i}*i "-dtP 
is characterized b y the following properties: 
(i) Th e probability of a given skeleton T e T* is 

p! 

X+SD4 
kv\ 

XR 
| ( 7 - l ) ( 7 - 2 ) . . . ( 7 - ^ +  l)l 

( 7 - l ) ( 2 7 - l ) . . . ( ( p - l ) 7 - l ) 

(ii) Ifp ^ 2 , then conditionally on the skeleton T, the lifetimes (hv)v&r hav e a density 
with respect to Lebesgue measure o n KÎ given by 

r ( p - i / 7 ) 
T(ÔT) 

y\T\ •1 

RE 
duu^-^q 7 

D 
hv,l —  u 

where S? = p — (1 — 1/7)|T| — I/7 > 0, and g(s, u) i s the continuous densit y at time s 
of the stable subordinator wit h exponent 1 — 1  whic h is characterized by 

D 
'0 

due-Xuq(s,u) = exp(-sA1-1/7). 

If p = 1, then T = { 0 } an d the law of h0 ha s density 

7r ( l - l / 7 ) ? (7 f t , 1 ) 

with respect to Lebesgue measure o n 1R+. 
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Proof. —  For every u > 0, let 0(u) be the law of the tree 9(H, si,...,sp) unde r the 
probability measure 

plu p  l{Sl<S2<.:<sp<u} ds!... dsp N{u)(ckj). 

By the scaling properties of the heigh t process (see the remarks before Theorem 3.3.3). 
we have, for every u > 0 and every T G T*, 

e{u)({T}xRl) =  e(1)({T}xRl). 

Hence, by conditioning with respect to a in Theorem 3.3.1, we get 

(103) 1 » 
p! 

e{u)({T}xRl) = e(1)({T}xRl) SsqkqkZSD 
VRE 

| ^ ) ( ^ - i ( A ) ) | 
RES 

From this, we can compute © ( ^ ( { T} x  K+) by observing that, for every k  ̂1, 

V(fc)(V>_1(A)) = 7(7 - 1 ) • • • (7 - k + 1) A 1 - ^, 

and 

N{ave~Xa) = dP 
VR 

D+D41DR V 
dP 
d\P 

XR1+C 1/1 
7 7 

- r ,1 
V7 

X+V1Rqkqkq 

If w e substitute thèse expressions in (103), the terms in A cancel and we get part (i ) 
of the theorem. 

To prove (ii), fix T e  T*, and le t D  be a bounded Bore l subset of R+. Writ e 
p<?{du) for the law of a under N. The n by applying Theorem 3.3.1 with $ =  1{T}X D 
and $ = 1{t}xRT , w e get 

(104) pa{du)e-XuupQ{u) ( { M » e r &D\T) 

VR pa{du)e~Xu v? 
X+B41 

dhvé'(ib-1a))lTl ex p - ^ ( V _ 1 ( A ) ) hv 
v€T 

By scaling (or inverting N(l — e X(T) = A1/7), we have pa(du) = eu 1  -y  du. It follows 
that 

•oo 

0 
due~Xu uv~l-lh ^(u)({hv}vereD\T) 

D 
7 i T i r ( P - i / 7 ) 

RD Dver 
dhv exp | _7Al-l/7 

veT 
hv), 
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where ÔT = P — ( 1 — 1/7)|T | — 1/7 a s in the theorem. Suppos e first that p ^ 2 . To 
invert the Laplace transform, observ e that the right side can be written as 

7 |T | r (p- i /7) 
r(Sr) 

r»00 

R0 
due-Xuu8T~1 x 

BT 
'0 

du'e-Xu' 
D CTD 

dhv q("y 
veT 

hv,u)\ 

BT 
7 m r ( p - i / 7 ) 

T(6R) 

DF 

R0 
due~Xu 

Dver 
dhv 

C 

0 
dr rÔT 1 (7(7 

BT 
hv,u- r) 

The first formula of (ii) now follows. I n the case p — 1 , we get 
r*oo 

/0 
due-^tr1/-* e(u)(h0 G  D) = 7r(i -1 /7) 

' D 
dh exp(-7A1-1/7/i), 

and the stated resuit follows by inverting the Laplace transform. 

Remarks 
(a) Th e previous proof als o readily gives the analogu e of Theorem 3.3.3 i n the 

case ij)(u)  = u2,  which corresponds t o the finite-dimensional marginals o f Aldous' 
continuum rando m tre e (se e Aldous [3], or Chapte r 3  of [31]). I n that case , th e 
discrète skeleton of 6(H, ti,..., tp)  is with probability one a binary tree , meanin g 
that kv = 2 for every v G A/r- Th e law of T(H, ti,..., tp)  is the uniform probability 
measure on the set of ail binary trees in T*, so that the probability of each possible 
skeleton is 

p\ 
2P'1 (1 x 3 x x  (2p-3)) ' 

This formula can be deduced informally by letting 7 tend to 2 in Theorem 3.3.3 (i) . 
To obtain th e analogu e of (ii) , not e that there is an explici t formula fo r q(s,u) 

when ip(u) = u2: 
q(s,u) = s 

V+11T 
e-s2/(4u) 

Observe that when the skeleton is binary, we have always \T\ = 2p—l. It follows that 
the powers of À cancel in the right side of (104), and after straightforward calculations, 
we obtain that the density of (hv)ver o n E^3-1 is 

22p-1T(p-l/2)q(2 hv, 1 = 2p(lx3x---x(2p-3) ) hy exp - Hy 
2> 

Compare with Aldous [3] or Chapter 3 of [31], but note that constants are différent 
because tp(u) = u2 corresponds to a Brownian motion with variance 2t (also the CRT 
is coded by twice the normalized Brownian excursion in [3]). 

(b) We could get rid of the factor 
FB 

BTDF 
k ' 
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in Theorem 3.3.3 by considering rooted (unordered) trees with p labelled leaves rather 
than rooted ordered trees : See the discussion at the end of Chapter 3 of [31]. 



CHAPTER 4 

THE LÉVY SNAKE 

4.1. The construction of the Lévy snake 

Our goal is now to combine the branching structure studied in the previous chapters 
with a  spatia l displacemen t prescribe d b y a  Marko v process £. Throughou t this 
chapter, w e assume that H  has continuous paths (the condition J°° du/ril){u) <  oo 
holds) although many of the results can presumably be extended to the gênerai case. 

4.1.1. Construction of the snake with a fixed lifetime process. —  W e con-
sider a Markov process £ with càdlàg paths and values in a Polish space whos e 
topology is defined by a met rie ô.  For simplicity, we will assume that £ is defined on 
the canonical space D(R+,i£) of càdlàg functions fro m R+ into E. Fo r every x G E, 
we dénote by Ux the distribution o f £ started at a; . I t is implicitly assumed in our 
définition o f a Markov process that the mapping x —>  Ux  is measurable. W e als o 
assume that £ is continuous in probability under (equivalently , £ has no fixed dis-
continuités, ILX[ÇS ^  Çs-]  =  0 for every s > 0). On the other hand, we do not assume 
that £ is strong Markov. 

For x  e E,  we  dénote by Wx the space of ail F-valued killed paths started at x. 
An élément of Wx is a càdlàg mapping w : [0, Q —>  E such that w(0 ) =  x.  Her e 
C G (0, oo) i s called the lifetim e of the path. Whe n there i s a risk of confusion we 
write £ = £w. Not e that we do not require the existence of the left limi t w(£—). By 
convention, the poin t x  i s also considered as a killed path with lifetime 0 . W e set 
W = UX€JE>Vx and equip W with the distance 

KAC' 
d(w,w') = <*(w(0), w'(0)) + |C - C' | + /  dt(dt(w&,  w ^) A  1), 

./o 
where dt  is the Skorokho d metric on the spac e D([0,£],£") , an d w^t  dénote s the 
restriction of w to the interval [0,t] . I t i s then elementary to check that the space 
(W, d) is a Polish space. The space (E, S) is embedded isometrically in W thanks to 
the previous convention. 
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Let x  G E and w G Wx. If a G [0, Çw) and b  G [a, oo), we can define a probability 
measure Ra^(w, dwf) on Wx by requiring that: 

(i) Ra,b(w,dw')  a.s. , w'(t) = w(*), Vt G [0,a); 
(ii) Ra,b(w,dw')  a.s. , £w, = 6; 
(iii) th e la w of (w'( a - h £),0 ^  t  <  b  — a)  under Ra^(w,dw')  is th e la w of 
0 ^ / ; < 6 - a)  under nw(a_). 

In (iii) , w(0— ) = x  b y convention . I n particular , Ro^(w,dw')  is th e la w of 
(£t,0 ^ t  < b) under nx, and .Ro,o(w, dw') = (^(dw') . 

When w(£w —) exists , we may and wil l extend the previous définition to the case 
a = Cw 

We dénote by (W5,s ^ 0 ) the canonica l process on the produc t spac e (W)R+ . 
We will abuse notation and also write (Wsis > 0) for the canonical process on the 
set C(M+,W ) o f ail continuous mapping s from R+ into W. Le t us fix x G E and 
wo G Wx, and let h G C(R+,R+) b e such that h(0) = ÇWQ. Fo r 0  ̂s  ^ s' , we set 

mh(s<s')= in f /i(r). 

We assume that either wo(Cw0_) exists or 771̂ (0, r) < /i(0) for every r >  0. Then , 
the Kolmogorov extension theorem can be used to construct the (unique) probability 
measure Q^Q o n (WX)R+ suc h that, for 0 = so < si < • • • < sn, 

Qt0[Ws0£A0,...,WSrieAn] 

= Uo (wo) 
Ai X---xAn 

^mh(So,si),̂ (si)(wO,dWi) . . .•Rmfc(fln_1,an),h(an)(wn-l,dWn). 

Notice that our assumption on the pair (wo , /i) is needed already for n = 1 to make 
sensé of the measure Rmh(s0,Sl),h(si)(wQ>dwi)' 

From the previous définition, it is clear that, for every s < s', Qw 0 a-s- > 

W8>(t) = Wa(t), Vt<mh{s,s'), 

and furthermore Çws  —  Ms)> Cwv —  h(s').  Hence, 

d{Ws,Ws>) ^  \h(s)  -  h(s')\  + \(h(s) A h(s')) -  mh(s,  s')\ = (h(s) V h(s')) -  mh(s,  s'). 

From this bound, i t follow s that the mapping s —• Ws  is Q%Q a.s . uniforml y con-
tinuous on the bounded subsets of [0, oo) D Q. Henc e this mapping has Q^Q  a.s . a 
continuous extensio n to the positiv e real line. W e abuse notation an d stil l dénote 
by Qw0 tne mduced probability measure on C(R+,WX) . B y an obvious continuity 
argument, we have Çws =  h(s), for every s ^ 0 , Q^0 a.s. , and 

Ws,(t) = W8(t), Vt  <  mh(s,s'),  V s < s', Q*0  a.s . 

We will refer to this last property as the snake property. Th e process (WSjs > 0) is 
under Q^Q a  time-inhomogeneous continuous Markov process. 
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4.1.2. The définition of the Lévy snake. —  Followin g the remarks of the end 
of Chapter 1 , we now consider the exploration process p as a Markov process with 
values in the set 

M® = { p E  M/(R+) :  H(p) <  oo and supp/ / - [0 , #( / / ) ]} U {0} . 

We dénote by PM the law of (p3,s ^ 0) started at p. We will write indifferently H(ps) 
or Hs. 

We then define G as the set of ail pairs (p , w) G  M® x W such that £w = H(p) , 
and at least one of the following two properties hold: 

(i) M{#( /* )} ) =  0; 
(ii) w(£ w —) exists. 

We equip © with the product distanc e o n M® x W. Fo r every y e w e also set 
©2/ = {(M,w)G6:w(0 ) =  2/} . 

From now on until the end of this section, we fix a point x e E. 
Notice that when H(p) >  0 and p({H(p)}) =  0, we have inf[0,s] H(pr) <  H(p) for 

every s >  0 , PM a.s. T o see this, not e that Is <  0  for every s >  0 , P-a.s., by the 
regularity of 0 for (—oo,0) , for the underlying Lévy process. Then , P-a.s. fo r every 
s >  0 we can pick r E (0 , s) such that Xr = Ir <  0. Formul a (18) then shows that 
p% = k-irp an d our assumption p({H(p)} ) =  0 implies that H(pt^ ) <  H(p) , which 
gives the claim. 

Using the last observation and the previous subsection, we can for every (p, w) E Ox 
define a probability measure P^w on B(R+, M/(R+) x  W) b y the formula 

F^(dpdW) =  J>^dp)Q»^(dW) , 

where in the right side H(p) obviously stands for the function (H(ps), s ^  0) , which 
is continuous a.s . 

We will write Px instead of Po,x when p = 0. 

Proposition 4.1.1. — The process (ps,Ws ) i s unde r P^w a  càdlà g Marko v process 
in Gx. 

Proof. — We first verify tha t PM) W a.s. th e proces s (p8,W8 ) doe s no t visi t 0£ . 
We must check that WS(HS— ) exists whenever ps({Hs}) >  0 . Suppos e thus that 
ps({Hs}) >  0 . Then , we have also pSf({Hs}) >  0, and so Hs> > Hs , for ail s' >  s 
sufficiently close to s. In particular, w e can find a rational si >  5 such that HSl > Hs 
and inf[SjSl ] Hr = Hs, which by the snake property implies that WSl(t ) =  Ws(t ) for 
every t G  [Q,H3). However , from the constructio n o f the measures Q^, it i s clear 
that a.s. fo r every rational r  >  0, the killed path Wr must have a left limi t at every 
t G (0,Hr] . W e conclude that WS(HS-) = WSl(Hs-) exists. 

The càdlàg property of paths is obvious by construction. T o obtain the Markov 
property, we consider nonnegative functions f i , . . . , f n on M9 and g\,..., gn on Wx. 
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Then, if 0 < Si < • • • <  sn, 

EM,w[/i(pSl)3i(WSl). ..fn{psJgn{Wsj\ 
+E A(ps1)-../n(psn)< ?w(P)blW1)..^n(WsJ] 

=E /l(pS!).../n(pSn) ^mH(p)(0,Sl),ff(pSl)(w,(iWi) 

' ' ' i?mH(p)(sn-Mn),%n)(Wn-l, dwn) ^l(Wi) . . . gn(wn) 

—D fi{psl)gi{WSl)... /„-i(pSn_1)5„-i(WSn_ 1 

X+D fn(Psn-sn-i) RrnH{p)(0,sn-sn-1):H(pSn-Sri_1) (WSn_1,dw)gn(w) 

where in the last equality we used the Markov property for s  ^ 0 ) at time sn_i. 
We get the desired resuit with a transition kernel given by 

QrG(//,w) = QKJAZ RrnH(p)(0,r),H(pr)(w,dw')G(pr,w') 

DV REVC+ Q^(p)(dW)G(pr,Wr). 

In wha t follow s w e will often use the convenien t notation Ws  =  (ps,Ws).  B y 
our construction , th e conditiona l distribution unde r P^w of (Ws,s ^  0 ) knowin g 
(ps,s > 0) is Q^p\ I n particular, i f we write (s = (ws for the lifetime of W3, w e 
have 

Cs = H(ps) = Hs for every s ^ 0 , PM,w a.s. 

4.1.3. The strong Markov property. — W e dénote by (.T^s^o th e canonical 
filtration o n D(R+, M/(R+) x  W) . 

Theorem 4.1.2. —  The process (Ws,s  ^  0 ; PM)W, (/i , w) G  6 )̂ is  strong Markov  with 
respect to the filtration (P8+). 

Proof. —  Let (/x,w) G  Bx. I t i s enough to prove that, if T is a bounded stopping 
time of the filtration then , for any bounded TT+-measurable functional F, for 
any bounded Lipschitz continuous function / o n Qx, and for every t > 0, 

E^[Ff(WT+t)} = EM ,W[FEWt[/(^)11-

First observe that 

V*.V\F f(WT+t)] = li m 
n—>oo 

dk dls dk 

klqkd djkd 
^u,w[^ 1 r fc-1 <T ̂ - k -i f(wî+t)) 

= li m 
n—• oo 

oo 

k=l 
DD n D ^S ,kdsks XR n J n 
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In th e firs t equality , we used the righ t continuit y o f paths, and i n the secon d one 
the ordinary Markov property. W e see that the desired resuit follows from the next 
lemma. • 

Lemma 4.1.3. —  Let t >  0, let T be  a bounded stopping Urne  of  the filtration (Ĵ s+) 
and let f be  a bounded Lipschitz  continuous  function  on @x. Then  the mapping 
s —• Qtf(Ws) is  PMjW a.s. right-continuous at  s = T. 

Proof of Lemma 1^.1.3. —  We use the notatio n Ys  = (ps,l) . Recal l that Y  i s dis-
tributed under PM5W as the reflected Lévy process X —  I started at (/x , l ). Le t s > 0. 
By the right-continuity of the paths of Y, i f s > T is sufïiciently close to T, we have 

s1(s) = YT- in f Yu  < e, e2(s)  = Ys - in f Yu  < s. 
u€[T,s] ue[T,s] 

On the other hand, we know from (20 ) that pr+r —  [k£lpr, Pr^], an d it follows that 
k£lpr = k£2ps.  Furthermore , mf[Ti8]H(pu)  = H(k£lpT)  =  H(k£2ps),  an d b y the 
snake property, 

Ws(u) =  WT(u), yu  G [0,H(keiPT)). 
Let us fix w = (/x, w) G Ox, and set 

Ve(w) = {w =  (/ / ,w' ) G Ox; 3ÊI,£2 £  [0,e) , k£lp  = k£2p!, 
and w'(u) =  w(u), Mu  € [0, H(k£lp))}. 

In vie w of the preceding observations, the proof of Lemma 4.1.3 reduces to checking 
that 

(105) lim sup 
w'eve(w) 

|Qt / (w ' ) -Q*/ (w) | = 0 . 

We will use a coupling argument t o obtain (105) . Mor e precisely, if w' G Ve(w), 
we wil l introduce two (random) variables W(i) and W(2) such that w^) , resp. W(2) , 
is distributed accordin g to Qt(w , • ) , resp . Q^w',-) ? an d W(i ) and W(2) are close to 
each other. Le t us fix w' G Ve(w) and let S\,e2 G [0,e) be associated with w' as in 
the définition of Ve(w). Fo r definiteness we assume that e\ ^  e2  (the other case is 
treated i n a symmetric way). Le t X^ b e a copy of the Lév y process X starte d at 
0 and le t 1^  an d p^  b e the analogue s of / an d p  for X^\ W e can then define 
W(i) = (/i(i),W(i) ) by 

M(i) = [*_r(D/x, « ] 

w(1){r) = 
w(r) 
tM(r-H(k_jWri) 

if r  <  H{k (DP), 1t 
if H(k_j(i)p)  <  r < H(p{1)), 

where, conditionally on X^l\ =  (£^^(t), t >  0) is a copy of the spatial motion £ 
started at w(H(k_j(i)p)— ). Clearly , w^) is distributed accordin g to Qt(w, • ) . 
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The définition of W(2) is analogous but we use another copy of the underlying Lévy 
process. Precisely , w e let Z be a copy of X independen t o f the pair (X^,^1^),  an d 
if T*(Z) : = inf{r ^ 0 : Zr = e\ - £2} , we set 

X +D= Zs 
el-e2 +  X\ (i) -T.(Z) 

if 0  < s < T*(Z) , 
if s>T*(Z) . 

We then take, with an obvious notation, 

V>(2) =  [k_j(2)V<'iPt2)}-

The définitio n of W(2) is somewhat more intricate. Le t b e the (a.s . unique) time 
of the minimum of ove r [0,t].  Conside r the event 

A(e,eue2) =  {T.(Z) +  TW <*,Jt(1) <-e\. 

Notice that T*(Z) i s small in probability when s is small, and 1^ <  0 a.s. I t follows 
that P[A(e ,6i,e2)] ^  1  — oj(e), where the function a(e ) satisfies a(e ) — • 0 as £ —• 0. 
However, on the event A(e,6i,e2), we have l[2>} =  e\ — e2 + a nd s o 

k_ (2)pf  = k_ ( D /c£2/ / = fc_ (i) =  k_ 

Also recal l tha t fro m th e définitio n o f Ve(w) , w e have w'(r ) =  w(r ) for ever y 
r <  H(k£lp), henc e for every r < H(k_T(i)p) whe n Aie,61,62) holds . 

We construct W(2) by imposing that, on the set A(e,6i,e2), 

w(2)(r) = « 
w'(r) —  wir) iîr<H(k rWu')  = H(k ra )/x), 
^ ( r - H i k . ^ ) ) s s k s if H(k_  (i)/i) ^ r < H(p{2)), 

whereas on £1, £2)°, we take 

w(2)(r) = 
w'(r) if Xr < tf(fc_/(2)//), 
£(2)(r-tf(fc_kqkq/(2)//)) if i f (^_/(2 ) / i , )^r<if( / i (2)) , 

where, conditionally on X^2\ £(2 ) is independent o f f̂ 1) an d distribute d accordin g 
to the law of £ started at w'(H(k_ wp')—).  Not e that, in the first case , we use the 
same process £^ a s in the définition of W(i). I t is again easy to verify that W(2) is 
distributed accordin g to Qt(w/, • ) . 

To complète the proof, note that the distance in variation dvar(/Lt(1), /i(2)) is equal 
to dva,T(p^\ pf1^) o n the set -^(^,^1,^2)- Furthermore, from the construction o f X^2\ 
on the set A(e,e\,e2),  w e have also 

(2) Pt = .(1) 
rt-Tm(Z)' 

and thus dvar(/i(i),/i(2)) = dVar(Pt^>i°t-T*(Z)) * s sman m probability when s is small, 
because t  i s a.s . no t a  discontinuity tim e of p^\ I n addition , agai n o n the se t 
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A(e,ei,e2), th e paths w^) an d W(2 ) coincide on the interval [0 , if(/Z(i)) A  H(fjL(2))), 
and so 

d(w(1),w(2)) < \H(p{2)) - iï(/u(1)) | = \H(p[%t(z)) - H(p^)\ 

is small in probability when e goes to 0. Th e limiting resuit (105) now follows from 
thèse observations and the fact that P[A(e,e\,£2)c] tend s to 0 as e goes to 0. • 

4.1.4. Excursion measures. —  W e know that p  =  0  i s a  regula r récurren t 
point for the Markov process ps, and the associated loca l time is the process L°s  o f 
Section 1.3. I t immediately follows that (0,x ) is also a regular récurrent point for 
the Lév y snake (ps,Ws), with associated loca l time L^. W e will dénote by Nx the 
corresponding excursion measure. I t is straightforward to verify that 

(i) th e law of (ps,s  ̂0 ) under Nx is the excursion measure N(dp); 
(ii) th e conditiona l distributio n o f (Ws,s  >  0 ) under knowin g (ps,s  ^  0 ) 

iSQ?(p). 
From thèse propertie s an d Propositio n 1.2.5, we easily get for any nonnegative 

measurable function F  on MffRx) x  W, 

(106) DC 
DV 

'o 
dsF{ps,Ws) RE 

/•OO 

XR 
da e~aa E° ® UX[F(Ja, (£r, 0  ̂r  ^ a))] 

Here, as in Chapter 1 , Ja(dr) stands for the measure l[o,a](r)dUr,  where U is under 
the probability measure P°  a subordinator wit h Laplace exponent ip(X)  —  a, where 
<0(A) = ip(X)/X.  Note that the right side of (106) gives an invariant measure for the 
Lévy snake (ps,Ws). 

The strong Marko v property o f the Lév y snak e can b e extended to the excur -
sion measures in th e followin g form . Le t T b e a  stopping tim e o f the filtration 
(.F5+) such that T >  0, Nx a.e., let F b e a nonnegative TT+-measurable functional 
on D(R+,M/(R+) x  W) , an d le t G  be any nonnegative measurable functiona l o n 
D(R+,M/(R+) x  W). Then, 

NX[FG(WT+S,s> 0) ] = Nx[FF^T[G]i 

where P^) W dénote s th e la w under P^ w of the proces s (Ws,s  ^  0 ) stopped a t 
inf{s > 0,ps =  0} . Thi s statement follow s fro m Theorem 4.1.2 by standard argu-
ments. 

4.2. The connection with superprocesses 

4.2.1. Statement of the resuit. —  I n this section, we state and prove the basic 
theorem relating the Lév y snake with the superproces s wit h spatial motio n £ and 
branching mechanism ip. This connection was already obtained in a less précise form 
in [33]. 
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We start with a few simple observations. Le t K(ds) be a random measure on R+, 
measurable with respect to the cr-field generated by (ps, s ^ 0) . Then , from the form 
of the conditiona l distribution o f (Ws,s ^ 0 ) knowing (ps,s ^  0) , it i s easy to see 
that, for any nonnegative measurable functional F  on Wx, 

XR K{ds)F{Wa) X+ 4 K{ds)nx[F(^r,0^r <Ha)) \ 

and a  similar formula holds under Nx. Thi s identity implies in particular tha t the 
left limi t WS(HS—) exists K,(ds) a.e., a.s . (o r Nx a.e.) . W e will apply this simple 
observation to the random measure dsLas associated with the local time of H at level a 
(cf. Chapter 1) . To simplify notation, we will write Ws = WS(HS— ) when the limit 
exists, and when the limit does not exist , we take W s = A , where A is a cemetery 
point added to E. 

In order to state the main theorem of this section, we dénote by Za = Za(p , W) 
the random measure on E defined by 

(Za, f ) = 
DV 

0 
dsLasf(Ws). 

This définition makes sensé under the excursion measures Nx. 

Theorem 4.2.1. — Let p, e Mf(E) an d let 

DXR 
X+ 4RD 

be a Poisson point measure with intensity /ji(dx)Nx(dpdW). Se t Zo = \i and for every 
a > 0 

Za = 
VR 

X+ 4DR 

The process (Za,a ^ 0 ) is a superprocess wit h spatial motion £ and branching mech-
anism ip, started at /i. 

This means that (Za, a >  0 ) is a Markov process with values in Mf(E) , whos e 
semigroup is characterized by the following Laplace functional. Fo r every 0 ^ a  < b 
and every function /  G  #&+(£) , 

J5[exp-(Z6,/> |  Za] = exp-(Za,u6_a) 

where the functio n (ut(y), t ^  0, y G  E) is the uniqu e nonnegativ e solution of the 
intégral équation 

(107) ut(y)+ny 
DVR 

/o 
ip(ut-r(Çr))dr) = Hn(/(6)) . 

The proof of Theorem 4.2.1 is easily reduced to that of the following proposition. 
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Proposition 4.2.2. —  Let 0 < a < b and let f G Bb+(E). Then, 
(108) Nx(exp-(ZbJ)  |  (Zr,0 < r < a)) = exp-(Za, w6_a> 

w/iere /or every t > 0 and y E E, 
ut(y)=Ny(l-exp-(Zuf)). 

Furthermore, if  we set u0(y) =  f(y), the  function (ut(y),t  ^  0 ,y G E) is  the unique 
nonnegative solution of  the intégral équation  (107) . 

Remark. —  Although N x is an infinité measure, the conditioning in (108) makes sensé 
because we can restrict our attention to the set {Za   ̂0 } = {L% >  0} which has finit e 
N -̂measure (cf.  Corollary 1.4.2). A  similar remark applie s in several places below, 
e.g. i n the statement of Proposition 4.2.3. 

Given Proposition 4.2.2, it is a straightforward exercis e to verify that the process 
(Za,a >  0 ) of Theorem 4.2.1 has the finite-dimensional marginals o f the superpro -
cess with spatial motion £ and branchin g mechanis m ^ , started a t p . I n fact th e 
statement of Propostion 4.2.2 means that the laws of (Za,a > 0) under Ny, y  G E 
are the canonical measures of the superprocess wit h spatial motion £ and branchin g 
mechanism i/;, and given this fact, Theorem 4.2.1 is just the canonical représentatio n 
of superprocesses . 

The remaining part of this section is devoted to the proof of Proposition 4.2.2. W e 
will proceed in two steps. I n the first one, we introduce a  cr-field £ a that contain s 
a(ZUl 0 ^ u  ^ a) , and we compute Nx(exp —(Zb, f) I  £a)  m the form given by (108). 
In the second step, we establish the intégral équation (107) . 

4.2.2. First step. —  Recal l the notation of Section 1.3 

ras =  inf{ r 
DR 

r0 
dul{Hu<a} >  s}. 

Note that <  o o for every s  ^  0 , Nx a.e. Fo r a >  0 , we let £ a b e the cr-fiel d 
generated by the right-continuous proces s (p?a , ;  s ^ 0 ) and augmented with the 
class of ail sets that are N^-negligible for every x e E.  Fro m the second approximation 
of Proposition 1.3.3, it is easy to verify that LaG i s measurable with respect to the a-
field generated by (Pr^s ^  0) , and in particular with respect to £a (cf. the beginning 
of the proof of Theorem 1.4.1). 

We then claim that Za is £a-measurable. I t is enough to check that, if g is bounded 
and continuous on Wx, 

0 
dVtglWs) 

is £a-measurable. However , by Proposition 1.3.3 , this intégral i s the limi t in Nx-
measure as e —> 0 of 

1 
e 

D 
0 

dsl{a-£<Hs^a}g{Ws). 
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For e  < a, this quantity coincide s with 
1 
€ 

DR 

0 
ds lia -  s  < H^a <  a]  g(W^ 

and the claim follows from the définition of Ea. 
We then décompose the measure Z\, according to the contributions o f the différent 

excursions o f the proces s H  abov e level a.  Precisely , we let (ai,  fa), i G / b e the 
excursion intervais of H above a over the time interval [0, a]. W e will use the following 
simple facts that hold TV a.e.: For every i G / an d every t > 0, we have 

DRD 

X 
l{Hs^a}ds > 

Pi 

0 
l{Hs^a}ds 

and 
ra ^  ja Lpi+t >  ^8i-

The first assertion is an easy conséquence of the strong Markov property of p, recalling 
that ps({a}) =  0 for every s ^ 0 , N a.e. T o get the second one, w e can use Proposition 
1.3.1 and the définition of the local time La to see that it is enough to prove that 

r0i+t 

Jo 
l{Hs>a}ds > 

Pi 

DV 
l{Ha>a}d>S 

for ever y t >  0 and i G I. Vi a a time-reversal argument (Corollar y 3.1.6), it suffices 
to verify that, if a% =  inf {s > q : Hs > a}, we have 

CRD 

0 
l{Hs^a}ds > 

DV 

VR 
l{Hs<^a}ds 

for ever y t > 0 and every rational q > 0, N a.e . o n the set {q  < a% <  oo}. Th e latter 
fact is again a conséquence of the strong Markov property of the process p. 

As wa s observed in the proof of Proposition 1.3.1, for every i G /, fo r every s G 
(ai, fa),  the restrictio n o f ps to [0,a ] coincides with pai  = p^i.  Furthermore , th e 
snake property implie s that, fo r every i G /, th e paths Ws, ai <  s <  fa take the 
same value xi at time a, and this value must be the same as the left limit Wa. = 
(recall our assumption that £ has no fixed discontinuities). W e can then define the 
pair (p\Wl)  G D(R+,M/(R+) x  W) by setting 

(PÎ>9) = J(a.oo) Pai+s(dr)g(r -  a if 0  < s < fa - ai 
X+G4R if s  — 0 or s ^ fa — ai, 

and 
Wls(r) =  Wai+S(a + r), Cw * =  Hai+S - a 
Wî =  Xi 

if 0  < s < fa- ai 
if s  = 0 or s ^ pi  — ai, 

Proposition 4.2.3. —  Under  Nx, conditionally  on  £a,  the  point measure 

DV 
X+4 
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is a Poisson point measure with intensity 

Za(dy)Ny(>). 

Proof. —  Let the process p£ be defined as in Proposition 1.3.1. Not e that under N 
the définition of p£ only makes sensé for t < f° ds  l{#s>a}- Fo r convenience, we take 
p% =  0 if t ^ f°  ds  l{Hs>a}- W e also set 

Pt = PT? , Wt  = Wr". 
With thèse définitions, the processe s p% i G  I  ar e exactly the excursions of the 

process p° away from 0. Fo r every i G  /, introduce the local time at the beginning 
(or the end) of excursion p1: 

è =  Laa.. 
By Proposition 1.3.1 and standard excursion theory, we know that conditionally on 
the process pt, the point measure 

iei 
X+G4 

is Poisson with intensity l[o,L%](t)d£  N(dp) (recal l that Laa  i s measurable wit h re-
spect t o th e cr-fiel d generate d b y p) . Not e tha t Propositio n 1.3. 1 i s formulate d 
under FX: However , by considering the firs t excursio n of p away from 0 that hits 
the se t {sup# s >  a} , w e can easily dérive the previous assertion fro m Proposition 
1.3.1. 

Define Las  =  L%a  (not e that this is a continuous process) , and le t 7a(r) be the 
s 

right-continuous invers e of La: 
7a(r) = inf{s > 0 : L% > r}. 

Then, if / i s any nonnegative measurable function on E, we have Nx a.e. 

(109) (Za,f) = 
oo 

0 
dLatf(W.) = 

/»oo 
Jo 

dLasf(Ws) = 
T A 

o 
d£f(Wia{£)). 

Notice that bot h processe s La  and 7 a ar e measurabl e wit h respect t o the cr-fiel d 
generated by p (for L°, this follows again from Proposition 1.3.3). 

Consider now the processes W  and Wl , i  e  I.  Th e following two properties are 
straightforward conséquences of our construction : 

(i) Th e law of W under Qf{p) i s Q^f*. 
(ii) Unde r Qx^P\ conditionally on W, the "excursions" W%, i  G I are independent 

and the conditional distribution o f W% i s Qx}P \ wher e xi = —  W^^iy 
To verif y th e secon d expression fo r Xi, note that i f Ag = f£  dr l{#r^a}> w e have 
Wfr =  W^a  (becaus e Â%i+t  > Â%.  for every t  >  0) and Â%.  = ^a(t) (becaus e 
Lg.+t > Lfi. = £i fo r every t>0). 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002 



110 CHAPTER 4. THE LÉV Y SNAKE 

As a  conséquence of (i), the conditional distribution (unde r Nx)  of W knowing p 
dépends only on p. Hence , W and the point measure Yliei ^SP*) ar e conditionally 
independent give n p under Nx. 

Let F  be a nonnegative measurable function on B(R+, M/(R+) x  W). W e use the 
previous observations in the following calculation: 

Nx(G(p,W) exp( -
X 

F{p\Wl))\ 

X+14 N(dp)Q^(G(fi9W) exp( -
DR 

F(piiWi))S 

=D N(dp)Q»^(G(p,W) 
iei 

XFR 
XG 

X+ 4D 

= Nx[G(p,W) 
%ei 

XRX 
X6S 

(e-F(p\-)) 

= Nx(G(p,W)  ex p S 
D 

o 
D N(dp) DG 

G+4 
e{u)({T}xR 

The secon d equality follow s fro m (ii ) above. I n the las t one , we used th e condi-
tional independence o f W an d o f the poin t measure Yliei ̂ {^\pi)-> give n P > and th e 
fact that the conditional distribution o f this point measure is Poisson with intensity 
l[oiL%]{t)dtN[dp). Usin g (109), we finally get 

Nx(G(p,W) exp( -
RD 

(1)({T}xRl) 

= Nx[G(p,W)  ex p (-
R 

o 
d£N^ 

BR 
e{u)({T}xRl) 

= NjG(p,W)  exp( - Za(dy)Ny(l-e-F))). 

This complètes the proof. 

Let /  b e a nonnegative measurable functio n o n E, and let 0 ^ a  < b. With the 
preceding notation, it is easy to verify that a.s . 

(Zb,f) = 
S 

0 
dLbsf(Ws) 

D 
i€l 

BR 

DV 
dLbsf(Ws) 

SD 
iei 

•oo 

0 
dLb-a{pl)f{Wl) 

B 
iei 

{Zb-a{p\W%f). 
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As a conséquence of Proposition 4.2.3, we have then 

Nx[exp-(Zb,f) |  SA] = exp-(Za,ub-a) 
where 

MV) =  - exP -(Zr, /)]• 

4.2.3. Second step. —  I t remains to prove that the function (ur(y),r  >  0,y G E) 
introduced at the end of the first step solves the intégral équation (107). B y définition, 
we have for a > 0, 

ua(y) = Ny(l- exp - •oo 
'o 

dLasf(Ws)\ 

X+B4 DB 

'o 
dLasf{Ws) exp B 

•oo 

f 
s 

dLarf(Wr))) 

(110) X+B4 /«OO 

B 
dLas f(Ws)E*PstWs exp — 

•oo 

/o 
dLar f(Wr) ) 

where we recall that P* w stands for the law of the Lévy snake started at (p,  w) and 
stopped when ps first hit s 0. I n the last equality, we replaced exp — dL*  f(Wr) 
by it s optional projection, using the strong Marko v property of the Lév y snake to 
identify this projection. 

We now need to compute for a fixed (p,w) G 0X, 

X+B4 exp — 
•oo 

0 
dLarf(Wr)\. 

We will dérive this calculation from a more gênerai fact, that is also useful for forth-
coming applications. Firs t recal l that Yt  = (pt, l) is distributed unde r P^ W a s the 
underlying Lévy process started at (// , l) and stopped when it first hits 0. We write 
Kt =  infr<^Y^, an d we dénote by (ai,  Pi), i  E I th e excursion intervais of Yt — Kt 
away from 0. For every i E / , we set hi = Hai = H^. Fro m the snake property, it is 
easy to verify that W3(hi)  = w(hi~) fo r every s G (ai,Pi), i  G /, P*? W a.s. W e then 
define the pair (pl,  W1) by the formulas 

(Pld) =  J(hu00) Pa^s(dr)g(r -  hi) 
X+B4R 

if 0   ̂s  ^ Pi  - ai 
if s  > pi - ai, 

and 
WUt) =  Wai+S(hi + t), (i  = Hai+S - hi 
w: =  w(hi~) 

if 0  < s < Pi - ai 
if s  = 0 or s ^ Pi  — ai. 

Lemma 4.2.4. — Let (/x,w) G Sx. The  point measure 

iei 
C+B4R 

is under P* W  a Poisson point measure with intensity 
p(dh)Nw(h_)(dpdW). 
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Proof. —  Consider first the point measure 

te/ 
X+NB4 

If Is = Ks — (/i, l ) , w e have hi = H(pai) = H(k-iai p).  Excursio n theory for Ys — Ks 
ensures that 

te/ 
X+B41R 

is under F* w a  Poisson point measure with intensity l[o ,(/i,i)](^) duN(dp). Sinc e the 
image measure o f l[o,(^,i)](^ ) du under the mapping u —•  H(kup)  is precisely the 
measure p, it follows that 

te/ 
X+BN4 

is a Poisson point measur e wit h intensity p(dh)  N(dp). T o complète the proof , i t 
remains t o obtain th e conditiona l distribution o f (Wl,i G I) knowin g (p8,s ^ 0) . 
However, th e for m of the conditiona l law easil y implies that unde r Q^ , th e 
processes W%, i  G I ar e independent, an d furthermore th e conditional distribution o f 
Wl i s Q%[hi_y where H\ = H (pi). I t follows that 

iei 
X+B4R 

is a Poisson measure with intensity 

p(dh) N(dp) BR 
BED (dW) = p(dh)^(h_)(dpdW). 

This complètes the proof. 

We apply Lemma 4.2.4 to a pair (// , w) such that H(p) ^ a  and p({H(p)})  =  0. 
Then, it is easy to verify that P* w a.s. 

X 

Jo 
dLar f(Wr) = 

te/ 

-Pi 

ai 
dLar f(Wr) = 

te/ 

DR e{u)({T}xRl 

and thus, by Lemma 4.2.4, 

( m ) E;IW exp — 
1 
0 

dLarf(Wr) \ - ex p DB p(dh) NMh, [1 - ex p -(Za-h, f)}). 

We now corne back to formula (110) . A s a conséquence of Proposition 1.2.5, w e 
know that ps({a}) = 0 for every s ^ 0 , a.e . W e can thus use (111) to get 

ua(y) = Ny 
>oo 

'o 
dL% f(Ws) exp Ps(dh) t*w.(h-)[l-ew-(Za-h,f)])) 

(112) SVB 
BR 

'0 
dLasf(Ws)exp BR Ps(dh)ua-h(Ws(h-)))). 

Let Ja, P°  be as in (106). 
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Lemma 4.2.5. —  For any nonnegative measurable function F onOy, 

Ny 
X+6B 

BR 
dLas F(pa, Ws)) =  e~aa E° ® ny[F(Ja, (£r, 0 < r < a))]. 

Proof. —  If F(ps, Ws) dépends only on ps, the resuit follows from Corollary 1.3.4. In 
the gênera i case, we may take F such that F(ps,Ws)  =  Fi(ps)F2(Ws), an d we use 
the simple observation of the beginning of this section. • 

From (112) and Lemma 4.2.5, we get 

ua(y) = e~aa E° 0  Uy  [ / (&) exp ( - Ja(dh) Ua-h{£h-) 

= n J / ( e a ) e x P ( -
BR 

r 
0 

ib{ua-r(£r)) dr ) 

The proof of (107) is now completed by routine calculations. W e have 

Ua(y) = ny[m)}-ny /(&) 
BR 
0 

dbip{Ua-b(£b)) ex p X 
B 

BR 
) = e(1)({T}xRl) 

= IIy[/(&) ] "I ly 
D 
0 

dbî/j{ua-b(Çb)) 

BRD f(Ça-b) exp BR 
ra—b 

R0 
^(w0_6_r(£r))drj 

e{u)({T}xRl) = e(1)( 
B 
0 

db 1p(ua-b(€b)) Ua-b(Çb) , 

which gives (107) and complètes the proof of Proposition 4.2.2. 

Remark. —  By combining the previous arguments, especiall y Lemma 4.2.4, with the 
duality properties of p (see the dérivation of (137) below), we could have obtained the 
following resuit. Let / an d g be nonnegative measurable functions defined respectively 
on E and on Mf(E). Le t V be a subordinator with Laplace exponent ip'{\) — a defined 
under the probability measure F0. Then, for every a > 0, 

(113) Nx\ Za(dy)f(y)g(Za)) 

= e~aa  E° 0 I I , X+F4R BR N{dsdpdW) Za-s(p,W))\\, 

where J\f(dsdpdW) is under Pfiç a Poisson point measure on R+ xJ)>(R+, M/(R+) xW) 
with intensity 

l[0M(s)dVsNzs(dpdW). 
Formula (113) identifies the Palm distributions associated with the random measure 

Za under Nx. I t should be compared with the results of Chapter 4  of [8], in particular 
Proposition 4.1.5. I n the stable cas e considered in [8], V i s a stable subordinator, 
which arises analytically in the dérivation of the Palm measure formula. Her e V can 
be interpreted probabilisticall y in terms of the measure-valued processes p and r\. A s 
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(113) wil l not be needed in the applications below, we will leave détails of the proof 
to the reader. 

4.3. Exit measures 

Throughout this section, we consider an open set D C E, and we dénote by r the 
first exi t time of £ from D: 

r =  in£{t > 0 : Çt £  D}, 

where inf 0 =  oo as usual. By abuse of notation, we will also dénote by r(w) the exit 
time from D of a killed path w G W, 

r ( w ) = i n f { t 6 [ 0 , C w ) : w ( t ) ^ D } . 

Let x £ D. The next resuit is much analogous to Proposition 1.3.1. 

Proposition 4.3.1. —  Assume that  Iix(r <  oo) > 0. Then, 

•oo 

'0 
dslSr(Ws)<HA =  OO , PX a.  s. 

Furthermore, let 

cr^ = inf{t >  0 
•t 

o 
drl{T(wr)<Hr} > sfi 

and let p  ̂G  Mj(M+) be  defined by 

X+F4R pao(dr) f(r -  r{WaD))  l{r>r(WCTD)}. 

Then the  process \  s ^ 0 ) has  the same distribution  under  Fx as  (ps, s ^ 0). 

Remark. —  We could have considered the mor e gênerai situation o f a space-
open set D  (as a matter o f fact, this is not really more gênerai as we could rer 
£t by (£,£*)) . Takin g D =  [0,a ) x E, w e would recover part o f the stateme i 
Proposition 1.3.1. Thi s proposition contains an independence statement tha t c 
also be extended to the présent setting. 

Proof. —  To simplify notation, we set 

X+BRT4 'S 

r0 
drliT(Wr)<Hr}' 

By using (106) , excursion theory and our assumption Hx(r  < oo) > 0 , it is a sim-
ple exercis e to verify tha t =  oo, Fx a.s., an d thus the définitio n of a® makes 
sensé for every s  ^  0 , a.s . Th e arguments the n are much similar to the proo f of 
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Proposition 1.3.1. Fo r every e > 0, we introduce the stopping times S*, T*, k ^ 1 , 
defined inductively by: 

Si =  inf{s ^ 0  : r(Ws) < oo and ps((r(Ws),  oo) ) ^ e}, 
Tç =  inf{s ^ S * : r{Ws) =  oo} , 
S^1 =  mf{s ^ T£k  :  r{Ws)  <  oo and ps((r(Ws),  oo) ) ^ e}. 

It i s easy to see that thèse stopping times are a.s. finite, and Sj?  | °° > |  o o as 
k î  oo. 

From the key formula (20) , we see that for 

Sk£ < s  <  inf{r >  S * :  (pr, 1) ^  />S*([0,T(W5J)]) } 

we have Hs > r(Wsk), an d the paths Ws and Ŵ f c coincid e over [0,r(W£fc) ] (b y the 
snake property), so that in particular r(Ws)  = r{WSk) < oo. O n the other hand, for 

s = inf{r > S* : (pT, 1) < psj([0,r(WS; )])} 
the path Ws is the restriction o f Wg* t o [0 , r(WJs-fc)) an d thus r(Ws) =  oo . From 
thèse observations, we see that 

T* = inf{r £ S* : <pr, 1) < psj([0,r(W5j)]) } 
and that conditionally on the past up to time 5^, the process 

= P (Si+8)AT*((T(WSk),00)) 

is distributed as the underlying Lévy process started at pSk({r(WSk), oo)) and stopped 
at its first hitting time of 0. 

The sam e argument a s in the proof of (25) shows that, for everv £ ^ 0, 
(114) lim SU D ûQk ((rfl^ofe), oo)) = 0, a.s . 

B6R1 X+G4R 
The remainin g part of the proof is very similar to the end of the proof of Propos: 

tion 1.3.1. Using (114) an d the observations preceding (114), we get by a passage t 
the limit e —• 0 that the total mass process \  1 ) = pGn ((r(WaD ) , oo)) has the sam 
distribution a s the process (ps , 1) . The n the statement of the proposition follows b 
an argument simila r to the second step of the proof of Proposition 1.3.1. C 

Let (P  = (£D(s),s > 0) be the local time at 0  of the process (pD,  1). Recal l th 
notation fro m the previous proof. W e define the exit  local time  from D by th 
formula 

L? = eD(A?) =  eD 
BR 

/0 
drl{T(Wr)<Hr})' 

Recall from (106) th e notation Ja , P°. 

Proposition 4.3.2. —  For any nonnegative measurable function $ on  M/(R+) x  W, 

XGB+ r*cr 

/o 
dL? HPs,  WS)  )= E°  ® nx l,T<00ie -aT$(JT,(er,0^r<T)) \. 
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Proof. —  By applying Lemma 1.3.2 to the reflected Lévy process (pD , 1), we get for 
every s > 0, 

XG+1GR lim 
XGR 

1 
€ 

'S 

0 
drl{0<H(p?)^e} 

in L1(FX). Prom a simple monotonicity argument, w e have then for every t ^ 0 

lim ~EX 
DVR 

sup 
X 

XG6+41 1 
S 

D 

RD 
(1)({T}xRl) = 0. 

Using the formulas L? = £D(Af )  and ^ ( p ^) =  T ( V ^ D ) + # (p f )  (th e latter holding 
on the set {H(paD)  >  T(WCTd)}, b y the définition of pD), we obtain 

lim Ea ; 
SG 

SUD 
DV 

XR 1 
e 

'S 

0 
l{r(^r)</fr^r(^r)+£} = 0 . 

Arguing a s i n th e dérivatio n o f (36) , we get , fo r an y measurabl e subse t V  o f 
D(R+,M/(R+) x  W) such that NX(V) <  oo, 

(115) lim Nx 
£-+0 

ly SU p 
s^t 

BR 1 
£ 

DV 

'0 
dr l{T(Wr)<Hr^T(Wr)+e} = 0 . 

We then observe that for any bounded measurable function F  on R+ x M/(R+) x W, 
we have 

(116) 
VR 

DR 
dsF(s,ps,Ws) = E ®Ilx 

HTF 

'o 
daF(L-l(a),Y,a, Ur,0  < r < a)) 

where the random measure £„ is defined under P by 

<Ea,0> = 
SV 

0 
dSsg(a - Ls). 

Indeed, we observe that the spécial case where F (s, p, w) does not dépend on w, 

SV SV 

Jo 
dsF(s,ps)) = E 

VR 

lo 
daFiL-^a)^) 

is a conséquence of Proposition 1.1.4 (se e the proof of Proposition 1.2.5), and it then 
suffices to use the conditional distribution o f W knowing (ps, s ^ 0). 

After thès e preliminaries, we turn to the proof of the proposition. W e let F b e a 
bounded continuous function on R+ x M/(R+) x W, and assume in addition that there 
exist ô > 0 and A > 0 such that F(s , p , w) =  0 if s ^ 6  or s ^ A.  A s a conséquence 
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of (115 ) an d (116) , we have then 

VBR VR 

/O 
dL? F(s,ps,Ws) ) 

= li m N x 
£->0 

1D 
£ 

ne 

0 
dr F(r, pr , Wr) l{T(wr)<Hr^r(wr)-fe } 

= li m 
£-»0 e 

1 VRDXRS 
'Lac 

lo 
daF{L-L{a), £„, (£r,0 < r <  a)) l{T<a^T+£ } 

= E®nx[ l{T<L x F(L_1(T),ET,($r, 0 < r <  r))] . 

From this identity, we easily get 

DV 
/O 

X+G4RD = E  <g> nx[l{r<Loo} $(£r, (£r, 0  < r < r))] . 

Recall that P[Lo o >  a ] = e~a a and , tha t conditionally on {Lo o >  a} , Ea has th e 
same distribution a s Ja. Th e last formula is thus équivalent to the statement of the 
proposition. • 

We no w introduce a n additiona l assumption . Namel y we assume that fo r every 
x G  D, the process £ is Ux a.s . continuou s at t = r, on the event {r < oo}. Obviously 
this assumption holds if £ has continuous sample paths, but there are other cases of 
interest. 

Under this assumption, Proposition 4.3.2 ensures that Nx a.e. th e lef t limi t Ws 
exists dLf a.e . ove r [0, a] an d belongs to dD. W e defin e under Nx th e exi t measure 
ZD fro m D by the formula 

(ZD,g) = 
VR 

VR 
dL?g(Ws). 

The previou s considérations show that ZD is a (finite) measure supported on dD. A s 
a conséquence of Proposition 4.3.2, we have for every nonnegative measurable function 
g on dD, 

Nx({ZD,g))-. -- nx(l{T<oo}e-aTg(tT)). 

Theorem 4.3.3. — Let g be a bounded nonnegative measurable function o n dD. Fo r 
every x e D set 

u ( x ) = N x ( l - e x p - ( Z D , g } ) . 

Then u solves the intégral équation 

u(x) + Ilx 
VRD 

w0 
<ftV(«(&))) =IIx( l { T<00 

Proof. — Several arguments are analogous to the second step of the proof of Propo-
sition 4.2.2 in Section 4, and so we will skip some détails. B y the définition of ZD , 
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we have 

u(x) = 1 — exp — 
VR 

f 
0 

dL?g(Ws)) 

X+V4R 
BR 

lo 
dL?g(Ws) ex p BR 

VR 

V 
dL?g(Wr))) 

C+4R 
'o 

dL?g(W,)E'Wt exp — 
RZ 

'0 
dL?g(Wrj\). 

Note that the définition of the random measure dL® makes sensé under IP̂ jW, provided 
that r(w) =  oo , thanks to Lemma 4.2.4 and the approximations used in the proof of 
Proposition 4.3.2. Using Lemma 4.2.4 as in subsection 4.2.3, we get if (//,w) G  Ox is 
such that r(w) =  oo, 

X+F exp — 
'OO 

'o 
dL?g(Wrj\ = exp BR u(dh)Nw(h_)(l-exp-

"a 
dL?g(Wr))) 

= ex p f - p(d/i) Nw(/l_) l-e-l*D>°>)) 

= exp(- li(dh)u(w(h-))). 

Hence, using also Proposition 4.3.2, 

C+R4DRE r»cr 
BX 

dLf g{Ws)  exp(- p8(dft)«(W. ( / » - ) ) ) 

= £ ° ® n J l{T<oo>e-aT3(^ ) exp( - JT(dh)u(eh-))\ 

= 1{t< OO}S(£T) ex p VR 
VRD 

f 
0 

dA^(u(&))) . 

The intégra l équation of the theorem now follow s by the same routine arguments used 
in the end of the proof of Proposition 4.2.2. • 

4.4. Continuity properties of the Lévy snake 

From now on until the end of this chapter w e assume that the underlying spatial 
motion £ has continuous sample paths. The construction o f Section 4.1 applies with 
the followin g mino r simplification . Rathe r tha n considering càdlàg paths, we can 
define Wx as the set of ail F-valued killed continuous paths started at x. An élément 
of W i s thus a continuous mapping w : [0, £) — • E,  and the distance between w and 
w' i s defined by 

(117) d(w, w7) = 5(w(0) , w'(0)) + |C - C' I + 
<AC' 

0 
dt (supô(w(r), w'(r) ) A  1). 

r^t 
Without ris k o f confusion, w e will keep the sam e notation a s in Section 4.1. Th e 
construction developed there goes through without change with thèse new définitions. 
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4.4. CONTINUITY PROPERTIES OF THE LÉVY SNAKE 119 

Our goal is to provide conditions on %j) and £ that will ensure that the process Ws 
is continuous with respect to a distance finer than d, which we now introduce. We 
need to consider stopped paths rather than killed paths. A  stopped (continuous) pat h 
is a continuous mapping w : [0, C] —• E, where ( ^  0 . Whe n C = 0, we identify w 
with w(0) G E. W e dénote by W* the set of ail stopped paths in E. Th e set W * is 
equipped with the distance 

d*(w,w') = IC-C' I + supô(w(t A() ,w(t AC7)) . 
VRD 

Note that (W*,d* ) i s a Polish space. 
If w  G W is a killed path such that C > 0 and the left limi t w = w(£—) exists, we 

write w* for the corresponding stopped path w*(t) =  w(t ) i f t < C? an d w*(£) =  w. 
When ( =  0we make the convention that x* = x. Not e that W * is well defined FX 
a.s., for every fixed s ^ 0. 

As in Chapter 1 , we set 

7 = sup{a  ̂0  : li m A~a^(A ) =  oo} ^ 1.D 
A—•OO 

Proposition 4.4.1. — Suppose that there exist three constants p > 0, q > 0 and C < oo 
siicft £/ia£ for every t > 0 and x £ E, 

(118) X+B4 sup J(x, £r)p D+F4 

Suppose in addition that 
X+45GR 1 

7 
> 1 . 

TTien £/ie left limit Ws — WS(HS—) exists for every s ^ 0,F X a.s . o r NX a.e . Further-
more the process (W*,s ^ 0) has continuous sample paths with respect to the distance 
d*, FX a.s. o r NX a.e . 

Remark. — Only the small values of t are relevant in our assumption (118 ) since we 
can always replace the distance ô by ô A 1. Uniformity in x could also be relaxed, but 
we do not strive for the best conditions. 

Proof. — It is enough to argue under FX. Le t us fix t > 0 and s G (0,1). Then, 

Ex[d*(W;,Wt*r] < 2"(Ex[\Ht+a-Ht\"]+Ex supô(W:(rAHt), WLJrAHt+s)r 
XRE 

To simplif y notation , se t m  =  rriH(t, t + s) =  inf[tjt+s j Hr. Fro m the conditional 
distribution of the process W knowing H, we easily get 

XR 
VRD 
sup S(W*(u A Ha), Wt*+S(u A Ht+S)f Hr,r > 0 

<2"(nxII€m su p <5(£0,£„) p 
- û .Ht—m 

X+G4R SUD 
• û Ht+s—m 

S(to,tu)p\\ 

^ C  2P (\Ht - m\ q + \Ht+s - m\q) , 
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using our assumption (118) in the last bound. B y combining the previous estimâtes 
with Lemma 1.4.6, we arrive at 

Ex[d*(W*, W;+Sr\ ^  22"+ 1 ( C X l / s ) - " + CCqip{l/8)-i), 

where (f(X) =  X/fip~1(X). No w choos e a G  (0,1 — ^ ) such that qa > 1. Notic e that 
we ma y also assume pa >  1 since by replacing the distance S  by S A 1, we can take 
p as large as we wish. Th e condition a <  1 — ^  and the définition of 7 imply that 
ip(X) ^ c\a  fo r every À  ̂1 , for some constant c > 0. Hence , there exists a constant 
C independen t o f t and s such that 

Ex[d*(Wt*,Wt*+sr] ^  C'(s?a  + s«"). 

The Kolmogoro v lemma then gives the existence of a continuous modification of the 
process (Ws* , s ^  0 ) with respect t o the distanc e d* . Th e various assertions of the 
proposition follow easily, recalling that we already know that the process (Ws,  s  ^ 0) 
has continuous paths for the distance d.  • 

4.5. The Brownian motion case 

In thi s section, we concentrate o n the case when the underlying spatial motion £ 
is Brownian motion in Rd.  W e wil l give a necessary an d sufficient conditio n for the 
process W* t o have a modification that is continuous with respect to the distance d*. 

To this end, we introduce the following condition on tp: 

(119) 
»oo 

'l 

VRE 

/0 
i/)(u) du -1/2 

dt < oc. 

Note that this condition is stronger than the condition du/îp(u)  < oo for the path 
continuity o f H. I n fact, sinc e ip  is convex, there exists a positive constant c  such 
ip(t) ^  et  for every t ^ 1 . Then, for t ^ 1, 

BR 
BR 

ip(u)du ^ tip(t)  ^ c " V(*)2 

and thus 
/•OO 

/l 

du 
X+B4 

D+D4D r»OQ 

1 

VRD 

VRD 
^(u)du ) 

-1/2 
dt. 

Also note that (119) hold s if 7 >  1. On the other hand, it is easy to produce examples 
where (119) does not hold although H  has continuous sample paths. 

Condition (119 ) was introduced i n connectio n wit h solutions o f Au =  ip(u)  i n 
domains of Rd. W e briefly review the results that will be relevant to our needs (see 
[25],[41] and als o Lemma 2.3 in [45]). W e dénote by Br the ope n bail of radius r 
centered at the origin in Rd. 
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4.5. THE BROWNIAN MOTION CAS E 121 

A. I f (119) holds, then, fo r every r  >  0 , there exist s a  positive solution o f the 
problem 

(120) \Au =  i/)(u) in Br 
U\dBr = OO 

Here the condition u\QBr = oo means that u(x) tends to +oo as x —> y,x G Br, for 
every y G 8Br. 

B. I f (119) does not hold, then for every c > 0, there exists a positive solution of 
the problem 

(121) \Au =  ip(u) in RD 
u(0) = c. 

Connections between the Lévy snake and the partial differential équation \A u = 
ip(u) follo w from Theorem 4.3.3. Not e that this is just a reformulation of the well-
known connections involving superprocesses. W e use the notation of Section 4.3. A 
domain D in i s regular i f every point y  of dD is regular for Dc, meaning that: 
\nî{t > 0 : Çt i D } = 0, Uy a.s. 

Proposition 4.5.1. — Assume that £ is Brownian motion in W1 . Le t D be a bounded 
regular domain in RD, an d let g be a nonnegative continuous function o n dD. The n 
the function 

u (x )=Nx( l - exp - (ZD,g ) ) 
is twice continuously differentiable in D and is the unique nonnegative solution of the 
problem 

(122) ±Au = ^(u) in D 
U\ÔD =  9  • 

Proof. — This follows from Theorem 4.3.3 by standard arguments. I n the context 
of superprocesses, th e resuit is due to Dynkin [12]. See e.g. Chapte r 5  in [31] for a 
proof in the case ip(u) = w2, which is readily extended. • 

We can now state our main resuit. 

Theorem 4.5.2. — Assume that £ is Brownian motion in M.d. Th e following conditions 
are équivalent. 

(i) N0(ZB r ^  0 ) < oo for some r > 0. 
(h) N0(ZB r ^ 0 ) < oo for every r > 0. 
(iii) Th e left limit Ws = W8(Ç8—) exists for every s ^ 0 , Po ô s., and the mapping 

s —• Ws is continuous, Po a.s. 
(iv) Th e left limit Ws = WS(ÇS—) exists for every s ^ 0 , Po a.s., an d the mapping 

s — » W* i s continuous for the m.etric d*, Po a.s. 
(v) Conditio n (119) holds. 
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Remark. —  The conditions of Theorem 4.5.2 are also équivalent to the a.s. compact-
ness of the range of the superprocess with spatial motion £ and branching mechanism 
tp, started at a  nonzero initial measure JJL  with compact support. Thi s fact, that fol -
lows from Theorem 5.1 in [45], can be deduced from the représentation o f Theorem 
4.2.1. 

Proof. —  The équivalence between (i) , (ii ) and (v ) is easy given fact s A . and B. 
recalled above. W e essentially reproduce arguments o f [45]. B y fact B. , if (v ) does 
not hold, then we can for every c > 0  find a nonnegative function vc such that vc(0) = c 
and \Avc =  tp(vc) in M.d. Le t r > 0 and À > 0. By Proposition 4.5.1, the nonnegative 
function 

u\,r(x) =  Nx(l - exp-X(ZBr,l)),  x  G  Br 
solves |ÀWA, r =  îp(u\,r)  i n Br with boundary conditio n À  on dBr. B y choosing À 
sufficiently large so that sup{^c(y), y G dBr} < À, and using the comparison principle 
for nonnegative solutions of \Au =  tp{u) (se e Lemma V.7 in [31]), we see that vc < 
u\^r in Br. In particular , 

c = vc(0) < uAïr(0) ^ N0(ZBr  ï 0) . 

Since c was arbitrary, we get No(ZBr /  0 ) = oo and we have proved that (i ) (v) . 
Trivially (ii ) (i) . 

Suppose now that (v ) holds. Let r >  0 . By fact A., we can find a function suc h 
that ^Aii(r ) =  ip(u(r))  in Br with boundary conditio n +oo on dBr. Th e maximum 
principle then implies that, for every À > 0, u\,r ^ ^(r) - Hence 

N0(ZBr # 0 ) = li m T uxA°) ^  u(r)(0 ) < oo 
At oo 

and (ii ) holds . We have thus proved the équivalence of (i), (ii ) and (v) . 
Let us prove that (iii ) = > (ii) . W e assume that (iii ) holds. Let r > 0. Then on the 

event {ZBr  ̂0} , there exists s G (0,a) such that Ws G  dBr. It follows that 

N0( su p \Ws\>r)  ^N0(2B r ^  0) . 
v«e(o,CR) J 

Let Ti = in f {s ^  0  : L® > 1} (in agreement with the notation o f Chapter 1) . The 
path continuity o f Ws ensures that P0 a.s. ther e ar e only finitely many excursions 
intervais (ai, fa) of Hs away from 0, before time Ti, such that 

sup \W8\  ^  r . 
se(ai,Pi) 

On the othe r hand , excursion theory implie s that th e numbe r o f such intervais is 
Poisson with parameter 

N0( su p \W8\>r). 

We conclude that the latter quantit y i s finite, and so No( ĵBr ^  0 ) < oo. 
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4.5. THE BROWNIAN MOTION CASE 123 

Note that (iv ) =>• (iii). Thus , to complète the proof of Theorem 4.5.2, it remains 
to verify that (ii ) (iv) . From now on until the end of the proof, we assume that 
(ii) holds. 

We use the following simple lemma. 

Lemma 4.5.3. —  Let D be  a domain in  M.d containing  0, and  let 

S =  inf{s ^ 0  : Ws(t) i  D  for some t G [0, Hs)}. 

Then N0(ZD ^ 0 ) ^ N0(S  <  oo). 

Proof. —  By excursion theory, we have 

F0[S > Ti] = exp(-N0(5 < oc)). 

Then, let r b e as previously the exit time from D. I f there exists s < Xi such that 
i~(Ws) <  Hs,  then the sam e property hold s fo r every s'  >  s  such that s'  — s  is 
suffîciently small , by the continuity of H and the snake property. Hence, 

{ 5 < 7 \ } C H 
Ti 

/0 
dsl{T(Ws)<Hs} >  0} , P0 a.e. 

It follow s that 

e{u)({T})({T}xRl) rTi 

B 
dslsT(ws)<Hs} =  C = ¥0[LS  = 0], 

where the second equality is a conséquence of the formula 

X+F= 41 ri 

o 
dsl{T(ws)<Hs}), 

together with the fact that £D(s) > 0 for every s > 0, a.s. 
Using again excursion theory and the construction o f the exit measure under No, 

we get 
Po[# ^  Ti ] ^ P0[L£ =  0] = exp H V ^ V O ) ) . 

By comparing with the first formula of the proof, we get the desired inequality. 

Let s > 0. We specialize the previous lemma to the case D = B£ and write S = Sf. 
Then, for every r > 0, 

Po[Sf 7* Tr]  = exp(-rN0(5^ <  oo)) ^ exp(-rN0(£fî £ ^  0)) . 

From (ii), it follows that Sf >  0, Po a.e. Als o note that Sf i s a stopping time of the 
filtration (Jrs+)  an d that {Wsf(t)  :  0 < t  <  Hsf} C B£ (if this inclusion were not 
true, the snake property would contradict the définition of Sf ) . 

Recall the notatio n ra#(s, s') =  inî[s^Hr  fo r s  ^  s' . W e define inductively a 
séquence (S^)n^i  o f stopping times (for the filtration (.Fs+)) by setting 

= inf{ s > S£n :  \Ws(t) - Ws(t  A  mH(S£n, s))\ >  £ for some t < G [0,H8)}. 

At this point we need another lemma. 
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Lemma 4.5.4. — Let T be a stopping tim e of the filtration (jr3+), suc h that T < oo, 
Po a.s. For every s  ̂0, define a killed path Ws with lifetime Hs b y setting 

Ws(t) = W8{mH(T,T+s)+t)-W8(mH{T,T+s)), 0 ^ t < H s : = HT+s-mH(T,T+s ) 

with the convention that Ws = 0 if Hs = 0. The n the process (Ws, s  ̂0) is indepen-
dent of TT+ an d has the same distribution as (W3,s ^ 0) under Po-

This lemma follows from the strong Markov property o f the Lév y snake, together 
with Lemma 4.2.4. The translation invariance of the spatial motion is of course crucial 
here. 

As a conséquence o f the preceding lemma , w e obtain tha t the random variables 
Sf, S2 — 5f,... , <Ŝ +1 —  S^,... ar e independent and identically distributed . Recal l 
that thèse variables are positive a.s. Also observe that 

{WSUl(t) - WSUl{ t A mH{Ssn, Ssn+1)) : t E [0, H5-+1)} C Be, 

by the same argument as used previously for {Wsf(t) :  t G [0,Hsf)} . 
Let a > 0. We claim that No a.s. we can choose Si > 0 small enough so that, for 

every s, s' G [0, Ta] such that s < s' < s + Si, 

(123) \Ws>(t ) - W8>(mH(s,s' ) At)\ <  3s, fo r every t G [0, Jïs/). 

Let us verify that the claim holds if we take 

Ô! = mî{S£n+1 -SEn;n>l ,Sen^Ta}> 0. 

Consider «s , sf € [0, Ta] with 5  ̂s' ^ « s + Si. Then two cases may occur. 
Either s , s' belon g to the same interval [5£,S£+1] . Then , fro m the définition of 

Sn+i we know that 

(124) \W8>(t ) - Ws>( t A mH(S£n, a'))\ <  £ for every t G [0, H8>). 

Since m// (s, s7)  ̂(5^ , s') we can replace t by t A ra(s, s7) to get 

\WS,(t A m/f (s, s')) - W8>( t A mH(S£n, s'))\ ^  e for every t G [0 , 

and our claim (123) follows by combining this bound with the previous one. 
Then we need to consider the case where s G [S£l_1, S„] and sf G (S^, S^+1] for some 

n ^ 1  (by convention 5g =0). I f ra#(s, s7) = m/f (5 ,̂ s7), then the same argument as 
in the first case goes through. Therefore we can assume that ra#(s, s7) < mi/(5^, s7), 
which implies miï(5^_1,5^) < mH{S^s') . Not e that the bound (124 ) still holds . 
We also know that 

(125) \Ws*n(t ) - Ws«.( i A m „ ( S £ _ i , O I ^  e for every t € [0,Hs.J. 

We replace t by t A mniS ,̂ s') in this bound, and note that Ws% (t A mniS^, s')) = 
Wa'(tArriH(S^, s')) for every t € [0, Hs^AHs*), by the snake property. I t follows that 

(126) \WS,( t A mH(Sen, s')) - Ws*n( t A m n i S ^ S ^ l ^ e f oi ever y t€ [0 ,H.,). 
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Similarly, we can replace t by £ Araf/(s, s') in (125), using again the snake property to 
write Ws* (MTOH(S,S ' ) ) =  Ws>(tAmH(s,sf))  (note that m/f(6'^_1, S„) < ra//(s,s') < 
mH{Sn,s')). I t follows that 

(127) \Wa>(t  A mH(s, s')) - W5 * (t A mH(S£-i> ^  £  for every t G [0 , 

Our claim (123) is now a conséquence of (124), (126) and (127) . 
We can already dérive from (123) the fact that the lef t limi t Ws exists for every 

s G  [0,Ta], P0 a.s. W e know that this left limi t exists for every rational s  G [0,Ta], 
P0 a.s. Le t s G  (0,Ta], and let sn  be a séquence of rationals increasing to s. The n 
the séquence mn (sn) s) also increases to Hs. If ra# (sn, s) = iifs for some n, then the 
snake property shows that Ws(t) — WSn(t)  fo r every t G  [0,HS) an d the existence of 
Ws is an immédiate conséquence. Otherwise , (123) shows that for n large enough, 

sup \Ws(t)-Ws(tAmH(sn,s))\^3e 
te[o,#a) 

and by applying this to a séquence of values of s tending to 0 we also get the existence 
of Ws. 

We flnally use a time-reversal argument. Fro m Corollary 3.1.6, we know that the 
processes (HtATa^t > 0) and (H(Ta_t)+,t  > 0) have the same distribution. B y consid-
ering the conditional law of W knowing H, we immediately obtain that the processes 
(WtATa,t ^ 0) and ( W ( y a ^ 0 ) also have the same distribution. Thank s to this 
observation and the preceding claim, we get that Po a.s. ther e exists ô2 >  0 such that 
for every s, sf G [0, Ta] with s ^ s'  ^ s  + S2, 

(128) \Ws{i)  - Ws(mH(s,s')  At)\ ^ 3e,  fo r every t G  [0,HS). 

To complète the proof, note that the snake property implies that 

W;(m„(a,a')) =  W;,(mH(s,s')), 

using a continuity argument i n the case ra#(s, s') = Hs A Hs'. Thus, if s < s' ^ Ta 
and s' — s < Si A S2, 

8uj>\W;(tAHa)-W;,(tAH8,)\ 

^ su p \W;(t)-  W;(tAmH(s,sf))\+  su p \w;,(t) - Wl.it  A  mH(s, s'))\ 
te[o,Hs] te[o,Hs,] 

= su p \Wa(t)-Wa(tAmH(s,s'))\+  su p \Wa>(t)  - Ws>{t  A mH(s, s'))\ 
te[0,Hs) t£[0,Ha,) 

^ 6e. 

This gives the continuity of the mapping s  —>  W*  with respect to the distance d*, 
and complètes the proof of (iv). • 
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4.6. The law of the Lévy snake at a first exit time 

Our goal in this section is to give explicit formulas for the law of the Lévy snake at 
its first exi t time from a domain. W e keep assuming that H  has continuous sample 
paths and in addition we suppose that the process W* ha s continuous sample paths 
with respect t o the metri c d* . Not e that the previou s two sections giv e suffîcien t 
conditions for this property to hold. 

Let D  be an open set i n E  an d x  e D.  W e slightly abuse notation b y writing 
T(W) =  inî{t e  [0 , Cw] ' w(t) £ D} for any stopped path w G W* . We also set 

TD =  inf{s > 0 : T(W*) <  oo} . 

The continuity of W* with respect to the metric d* immediately implies that T& > 0, 
Nx a.e . o r ¥x a.e . Furthermore , o n the even t {T D < oo } the path hit s the 
boundary of D exactly at its lifetime. Th e main resuit of this section détermines the 
law of the pair (pTD,  WTD) under NX(- Pi {TD < OO}) . 

Before stating this resuit, we need some notation and a  preliminary lemma. For 
every y € D, we set 

u(y) =  Ny(TD < oo) < oc. 
Recall that, for every a, b > 0, we have defined 

nf,fj(a,b) = fé(a) -  ib(b))  /(a - b)  i f a  4 6, 
\ T \  " / 1 if a  = b . 

Note that 7-0(a, 0) =  Ï/J(CL)  (b y convention ip(0) — ip'(0) =  a). Th e following formula s 
will be useful: Fo r every a, b ^ 0, 

(129) 7r(dr) 
DR 

lo 
de (1 - e-*-Kr-t)\  =  b)_a_0(a  +  b) 

(130) Tï{dr) 
r0 

d£e~a£(l - e-b^r-^)  = 7*(a, 6) - tb(a)  - Bb. 

The firs t formula is easily obtained by observing that, if a ^ 6 , 

'0 
d£(l -  e-<«-(r-<)* ) = 1 

a — b 
(r(a-b) +  (e~ra-e-rb)). 

The second one is a conséquence of the first one and the identity 

ip(a) = a + (5a + 7r(dr) BR 
0 

d£(l-e-a£). 

Recall from Section 3.1 the définition of the probability measures MA on M / ( R + ) 2 . 

Lemma 4.6.1. —  (i) Let  a >  0 and let F be  a nonnegative measurable  function on 
M/(R+) x  M/(R+) x  W. Then, 

BD DR 

r 
0 

dLIFip^Ws)] = e-aa Ma{dfj,dv)Ux[F(ji, !/,(&.,0 < r < a))] . 
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(ii) Let  /, g be  two nonnegative measurable functions on  R+. Then, 

N 
DRD 

VR 
dLas exp(-(ps,/ ) -  (ris,g)) = exp 

/o 
l^f(t),g(t))dt). 

Proof. —  (i) As in the proo f o f Lemma 4.2.5, we may restrict ou r attentio n t o a 
function F(ps,rjs,Ws)  = F(ps,r}s).  The n the desire d resuit follow s from Corollar y 
1.3.4 in the same way as Proposition 3.1.3 was deduced from Proposition 1.1.4. 
(ii) By part (i ) we have 

NI 
r*CT 

DR 
dL% exp(-<pa,/>-faa,0>) J =e-aa Ma(dpdu) e x p ( -- (v,g)). 

From the définition of Ma this is equal to 

exp — aa — p 
"a 

(f(t) +  g(t))dt-
VR 
0 

dt 7r(dr) 
VRE 

Jo 
<tf(l-e-</(*M'-Orft))Y 

The stated resuit now follows from (129) . 

Theorem 4.6.2. —  Assume that  u(x)  >  0. Let  a > 0, let  F be  a nonnegative mea-
surable function on  W7* and let  g be  a nonnegative measurable  function on  R+ with 
support contained in [0,a]. Then 

(131) Nx(l{TD<oo}l{a<HTD}F(WTD(t),0  < t ^ a)exp(-(prD,g)j) 

= Ux  l{a<T}u(Ça)F(Çr,  0  ̂r  ^  a ) exp ( 
»a 
0 

7l>(u>(tr),g(r))dr)\. 

Alternatively, the  law ofWrD under  Nx(- fi { TD <  oo}) is  characterized by: 

(132) Njl{TD<oo}l{a<HTD}F(WTD(t),0 <  t < a) 

= nx l{a<T}u(Ça,)F(Çr,  0  ̂r  ^ a ) exp E 
0 

V(«(€r))dr) , 

and the conditional law  of PTd knowing WTd is  the law of 

(31[o,HTD](r) dr + 
iei 

(vi - ii)  SRI 

where ^2  â(ri vt u) ^s  a Poisson point measure on  R+ with  intensity 
(133) l[o,i/rn](r-)l[o,«]We-^(lv^(r))rfr7r(^)d£. 

Proof. —  We wil l rely on results obtained i n Section 4.2 above. A s in subsectio n 
4.2.2, we dénote by (pl,Wl), i  E  I th e "excursions" of the Lév y snake above height 
a. W e let (ai,pi)  b e the time interval corresponding to the excursion (pl,Wl)  an d 
t =  L%. .  We also use the obvious notation 

TDÏW*) =  inf{s > 0 : r (Wf )  <  oo} . 
For ever y s > 0, set 

Gs = l{s<TD}F(W:)exp(-(ps,g)). 
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Then it is easy to verify that 

(134) 
iei 

Gcti 1{T£>(W*)«» } 

= l{TD<oo}l{a<HTD}F(WTD(t),0  < t < a)exp(-(pTD,g)). 

In fact , the sum in the left side contains at mos t one nonzero term, and exactly one 
iff TD  <  oo and a < HTD- O n this event, TD belongs to one excursion interval above 
height a, say (aj,(3j),  an d then the restriction o f prD t o [0 , a] coincides with paj (see 
the second step of the proof of Proposition 1.3.1), whereas the snake property ensures 
that the paths WTD and WA.  are the same over [0, a). Ou r claim (134) follows. 

Recall the notation W,p,ja(£)  introduce d i n the proof of Proposition 4.2.3. Th e 
proof of this proposition shows that conditionally on the cr-field Sa, the point measure 

DR 
X+G45RE 

is Poisson with intensity 
e{ue(1)({T}xRl) 

DF/D+ 
(dpdWD). 

Note that th e statemen t o f Proposition 4.2. 3 i s slightly weaker than this, bu t th e 
preceding assertion follows readily from the proof. 

We now claim that we can find a deterministic functio n A  and an £a-measurable 
random variable Z such that, for every j El,  w e have 

(135) Gai=A(Z,P,(t,Wi)i€l). 

Precisely, this relation holds if we take for every £  ̂0, 

A(Z,£, (è,Wi)ieI)  = 
DSQSL 

l{TD(W*)=oo} ^{Wr(t)£Dyr£[0,>ya(e)},t£[0,a]} 

x F(W*a(e))exp(-(p^a(e),g)). 

Note that the right side of the last formula dépends o n £, on (£l,  W%)i^i an d on the 
triple (W,p,  7a) whic h is £a-measurable, and thus can be written in the form of the 
left side . Then, to justify (135) , note that 

e)({T}xRl) 
DVRD 

l{TD(Wi)=oo} )1{Wr(t)€D,Vr€[0,7a(^)],t€[0,o]}' 

since ^fa(P) =  J^3 drl^Hr^ay as observed in the proof of Proposition 4.2.3. The latter 
proof also yields the identitie s 

Waj = Wf3j =  W7a(#) ,  paj  = pfy = P7a(̂ ) 

from which (135) follows. 
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Then, b y an applicatio n o f Lemma 3.1.5 t o the poin t measur e <^\p\W) > 
which is Poisson conditional on £a, we have 

D = 

je/ 
GOCJ l{TD(Wi)<oo} \ £a 

= NX 
BR 

A(Z,^,(^,Wi)ie/)l{TD(^)<oc} Sa) 

= NX 
•K 

o 
dl +D41 +1 {dp'dW')l{TD(w,)<oo}^{Z,i,{t\Wi)i&I\ DVR 

BR+1 
La , a 

0 
(Z,^,(^,Wi)ie/)l{T 

BR5D 
(TD < oo) CRE 

Now use the définition of A(Z,£, (t,  W%€l)  to get 

(136) N x 
je/ 

G<*j l{TD(W')«x>} 

= NX 
SVR 

Jo 
<Mu(W^(e)) 

+D 4D 
l{TD(Wi)=oo} i{TD(iy)>7°W} 

x ^(Wr.w)exp(-<p7.w,ff» ) 

= NX 
CR 

VRE 
dLasu(Ws)F(W;) eM-(ps,9))  1{s<TD } VR 

The las t equality is justified by the change of variables i =  L% and the fact that dL% 
a.e., 

Wy(L.)=WX =W. P~1A{L«) —  PA*  ~  Psi 

(where Aas = f* dr l{Hr^a} as previously) and similarly, dLas a.e. , 

X+B4R 
l{TD(Wi)=oc} 1{TD{W)>1«{L«)} - ^{W ?{t)eD,Vr^s, te[a,Hr)} 1{TD(W)>Â-} 

= 1{s<TD}-
To evaluate the righ t side of (136), we use a duality argument . I t follow s from 

Corollary 3.1.6 and the construction of the Lévy snake that the triples 
(ps,Las,Ws;0^s^a) 

and 
(Z,^,(^,Wi)ie/)l{TD(^) x P ID 

have the same distribution under Nx. Fro m this we get 

(137) Nx 
D 

VR 
dLasu(Ws)F(W:) exp(-(ps,g))l{s<TD} 

X+B4 VR 
VR 

dL"u(Ws)F(W*) exp(-(7ys,^))l/r(wM=0o,Vr>s} 
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Now we can use the strong Markov property of the Lévy snake (as in the second step 
of the proof of Proposition 4.2.2), and then Lemma 4.2.4, to get 

(138) RD ,<7 
Jo 

dLasu(Ws)F{WÏ) exp(-fas,S»lf md dio 

X+B4 
V 

0 
AL% u(Ws) F(W;) exp(-(r?S) g)) 1{t(W;)= OO} K..w.lTo =  oo] 

X+B4 
r»cr 

0 
dLa8u(Ws)F(w:) 

x exp(-(r]s,g)) 1{t{w,)=oo} ex p BR ps(dt)u(Ws(t)))Y 

Finally, we use Lemma 4.6.1 t o write 

RE r»cr 
R0 

dLasu(Ws)F(W:)lMW:)=oo} EXP(-(TFC,0)) ex p BR ps(d*)u(^(t)))) 

XB+4D Ma(d/id^) Ux ha<T}U{Ça)F{tr,0 < T  ̂d)  e"<^> exP( - //(dr)u(£r)) 

= e"aanx l{a<r}^(£a)F(£r, 0 ^  T  ̂A) Ma(dfidv)e-{">9) exp(- ju(dr)u(fr)) 

= 11 ^ l{a<r}^(^a)i?(£r , 0 < r <  a) exp B 
V 
VR 

7v>M£r),#(r))dr) . 

Formula (131 ) follows by combining this equality with (134) , (136) , (137 ) and (138) . 
Formula (132 ) i s the spécial case g = 0 in (131) . T o prove the last assertion, le t 

Ç(WTD »  dji) be the law of the random measure 

/31[o,HTn](r)dr+ 
iei 

(Vi - £i)  ôri 

where 51 £(ri i s a Poisson point measure on wit h intensity give n by formula 
(133). Then , for every a > 0, we can use (132 ) to compute 

NX(F(WTD(T),0 <  r < a)l{TD<oo}l{a</fTD } ((WTD,dv)e-^) 

= Ux  l {a<r}F(£R,0 ^ r ^ a)u(fa) exp FRE 
ra 

0 
e/)l{TD(^) 

x exp - 8 BR 
'0 

drg(r) -
V 

VR 
dr ir(dv) 

V 

VR 
(Z,^,(^,Wi)ie/)l{TD(^)D 

= Il x l{a<r}  F(£r,0 <  T < o )w(£a) exp 
DS 
0 

l^{u(ir),g{r))dr) , 

using (130) in the last equality. 
Set =  N X(- |  TD < oo) to simplify notation. B y comparing with (131) , w e see 

that for any nonnegative measurable functio n g  with support in [0,a] , w e have 

ND[E-(PTD,9) I W - , = C(WrD,d/*)e-<"•»>, 
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a.s. o n the se t {HTd  > a}.  Thi s is enough t o conclud e that Ç(WTD,dp)  i s th e 
conditional distribution o f prD knowin g WTD, provided that we already know that 
PTD({HTD}) =  0  a.s. Th e latter fact however is a simple conséquence of (106). Thi s 
complètes the proof of the theorem. • 

The case of Brownian motion. —  Suppos e tha t th e spatia l motio n £  is d-
dimensional Brownian motion and that D is a domain in RD. Then, it is easy to see 
that the function u(x)  = NX(TD  <  oo), x G D is of class C2  and solves \Au =  ip(u). 
In th e context of super processes, this was observed by Dynkin [12]. W e may argue 
as follows. Firs t not e that the se t of nonnegative solutions of |Au = ip(u)  i n a do-
main is closed under pointwise convergence (for a probabilistic proof, reproduce the 
arguments of the proof of Proposition 9 (iii) in [31]). The n let (Dn)  be a séquence 
of bounded regular subdomains of D, such that Dn C -Dn+i and D = lim | Dn.  Fo r 
every n ^ 0 , set 

vn(x) =  NX(ZD" 0 ) , un(x)  =  NX(TDN < oo) , x  G Dn. 

From the properties of the exit measure, i t is immédiate to see that vn ^  un.  O n the 
other hand, bv writing 

vn(x) =  lim î Nx( l -  exp-A(ZD- , 1)) , 
AToo 

we deduce from Proposition 4.5.1 and the stability of the set of nonnegative solutions 
under pointwise convergence that vn  is of class C2  an d solves ^Avn = î/j(vn) i n D. 
Since the functio n x  — • Nx(l  —  ex p —  \(ZDn, 1 ) ) ha s boundar y valu e À  on dDn 
(Proposition 4.5.1), w e also see that vn  has boundary value -f oo on dDn. 

Then, it follows from Lemma 4.5.3 and our assumption Dn C Dn+\ tha t vn(x) > 
un+\(x) fo r x G Dn. Since it is easy to see that un(x) decreases to u(x) as n —> oo, 
for ever y x E  D, we conclude from the inequalities un+i(x)  ^  vn(x)  ^ un(x)  that 
vn(x) als o converges to u(x) pointwise as n —• oo. Hence u is a nonnegative solution 
of |Au = ip(u)  in D. The preceding argument give s more. Let v be any nonnegative 
solution of \Av =  ip(v) in D. Since vn\Q£,n =  +oo, the comparison principle (Lemma 
V.7 in [31]) implies that v ^ vn  in Dn. B y passing to the limit n —• oo, we conclude 
that v ^ u.  Hence u is the maximal nonnegative solution of |Ait = ip(u) m  D. 

Suppose that u(x) > 0 for some x E  D. It is easy to see that this implies u(y) > 0 
for ever y y E D (use a suitable Harnack principle or a probabilistic argument relying 
on the fact that u(Çt) exp(— JQ* i/j(u(t;r))dr) is a martingale). B y applying Itô's formula 
to logw(£t), we see that II^ a.s . o n {t < r } , 

logu(Çt) = logu(x) + 
>t 

0 

Vu 
u 

[Çr) '  dÇr + 
1 

2 

DRE 

D 
A(\ogu)(Çr)dr 

= logu(x ) + 
DR 

0 
Vu 
u 

'dÇr + 
D 

X+B4R 1 
2 

Vui2 
u 

&.)) dr. 
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We can then rewrite (132) i n the form 

X ^{TD<oo}^{t<HTD\ F ( % ( r ) , 0 ^ ^ ) 

X+D4 l{t<r}exp 
R 

'o 

Vu 
D (60 X+G4 1 

2 „ 0 
Vu 
u 

|2 
(Z,^,(^,Wi)ie/)l{TD(^) 

An applicatio n o f Girsanov's theorem then shows that WTD  is distributed a s th e 
solution of the stochastic differentia l équation 

dxt = dBt + Vu 
u •{xtjdt 

Xn = X 
(where B is a standard d-dimensional Brownian motion) which can be defined up to 
its first hitting time of dD. Se e [29] for a discussion an d another interprétatio n of 
this distribution o n paths in the case I/J(U) = u2. 

4.7. The reduced tree in an open set 

We keep the notation and assumptions of the previous section. I n particular, we 
assume that W* ha s continuous sample paths with respect to the distance d*,  D is an 
open set in E, x G  D, TD = inf{s > 0 : r(W*) < oo} and u{x)  =  NX(TD < oo) < oo. 
To avoi d trivialities, we assume that u(x)  >  0, and w e recall the notatio n = 

| TD < OO) . W e will assume in addition that 

(139) sup u(y) <  oo veddK 
for ever y compact subset K  o f D. Thi s assumption hold s in particular whe n £ is 
Brownian motion in RD, under the condition (119) (us e translation invariance and the 
fact that u(0)  <  oo when D is an open bail centered at the origin). 

We also set: 
LD =  sup{s > 0 : T(W*) <  oo}, 

and 
rriD — in f Hs. 

xw ds< sdls < sl 
As a conséquence of the first lemma below, we will see that ÎTID  < HTDI A-S-

Our goal is to describe the genealogical structure of the paths Ws that exit D, up 
to their first exit time from D, under the probability measure T o be more précise, 
ail paths Ws such that r(W*) < oo must coincide up to level TUD- At level rap there 
is a branching point with finitely many branches, each corresponding to an excursion 
of H above level TUD during which W hits Dc. I n each such excursion, the paths Ws 
that hit Dc  will be the saine up to a level (strictly greater than mo) a t which there 
is another branchin g point, and so on. 

We will describe this genealogical structure in a recursive way. W e will first dérive 
the la w of the commo n part to the paths Ws that d o exit D.  Thi s common part 
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is représentée! by a stopped path W®  in Wx with lifetime Ç,WD =  mn-  The n we 
will obtain th e distributio n o f the "numbe r o f branches" a t leve l mp , tha t i s the 
number o f excursions of W above height TTID  tha t hit Dc.  Finally, we will see that 
conditionally on W0D, thèse excursions are independent an d distributed accordin g to 
v̂?£>(* | TD < oo). Thi s complètes our recursive description since we can apply to 

each of thèse excursions the results obtained under Nj?. 
Before coming to the main resuit of this section, we state an important lemma. 

Lemma 4.7.1. —  The point TD is not isolated in {s ^ 0  : r(W*) <  oo}; Nx a.e. on 
{TD <  oo} . 

Proof. —  We start with some preliminary observations. Let (/i, w) G  ©x be such that 
p({H(p)}) =  0 and w(t)  G D for every t G  [0, H(fi)). A s an application of Lemma 
4.2.4, we have 

P * [ T D < o o ] =  l - e x p -
f[0,H(»)) 

NwW(TD <œ)p(dt) 

= 1  — exp — 
'[0,tf(/x)) 

u(w(t))p(dt). 

By the previous formula, the equality P* w[TD = 0 ] = 1  can only hold if 

(140) 
[0,H(/i)) 

u(w(t)) fi(dt) —  oo. 

Conversely, condition (140) also implies that P* W[T^ = 0 ] = 1. To see this, first note 
that our assumption (139 ) guarantees that for every e > 0, 

f[OtH(fi)-e] 
u(w(t)) fi(dt) <  oo, 

and thus we have also under (140 ) 

XB4R++DR u(w(t)) fj,(dt) =  oo. 

Then write \i£ for the restriction of [i to [0 , H(JJL) —  e], and set 

Se = mî{sZQ:(ps,D =  (l*e,l)}. 
Lemma 4.2.4 again implies that 

P£,w[TD<Se] = l-exp-
X+B4RD u(w(t))u(dt) =  1. 

Since S£ j 0  as e j 0 , P* W a.s. , w e get that P*W[T D —  0] = 1 , which was the desired 
resuit. 

Let us prove the statement of the lemma. Thanks to the strong Markov property, 
it i s enough to prove that P*T ^ WT^  [TD = 0 ] = 1 , Nx a.e. o n {TD < oo}. Note that 
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we have prD({HTD}) =  0 and WTd(t)  €  D for every t < HTD, NX  a.e. on {T& < 00}. 
By the preceding observations, it is enough to prove that 

(141) 
X+B4R 

u(WTD(t))pTD(dt) =  00 , a.e . on {TD < 00}. 

To this end, set for every s > 0, 

Ms = NX(TD <  00 | Ts). 

The Marko v property at time s shows that we have for every s > 0, NX a.e. , 

Ms = 1{Td^S} + l{a<TD}V*PaiWa[TD <  00] 

= l{Tr><* } + 1{s<TD} 1 — exp — u(Ws(t)) ps(dtf 

Since the proces s (ps)  is right-continuous fo r the variatio n distance o n measures , 
it i s easy to verif y tha t th e proces s l{s<TDy(l  — ex p — J u(Ws(t)) ps(dt)) i s right-
continuous. Becaus e (Ms, s > 0) is a martingale with respect to the filtration (^s) , a 
standard resuit implies that this process also has left limits at every s > 0, NX a.e. In 
particular th e left limi t at TD 

lim 
D+G4R 

Ms = lim 
sîTD,s<TD 

1 — exp — u(Ws(t)) ps(dt) 

exists Nx a.e . o n {TD < 00}. I t is not hard to verify that this limit is equal to 1: I f 
Dn =  {y e D  : dist(y,£>c) >  n-1} and Tn  = TDn, we have Tn <  TD and Tn  î TD 
on {Te  <  00}, and =  NX(T D <  00 | Trn)  converges to 1 as n —> 00 on the set 
{TD <  00} because To is measurable with respect to the cr-field V TTN-

Summarizing, we have proved that 

(142) lim 
stTD,s<TD 

u(W8(t)) pa(dt) =+00 

Nx a.e . o n {T D <  00}. Then , fo r ever y rationa l a  >  0 , conside r on the event 
{ T D <  00} n {HTd >  a}, the number a(a ) defined as the lef t en d of the excursion 
interval of H above a that straddles Tp . A s a conséquence of the considérations in 
subsection 4.2.2, the following two facts hold on {TD < 00} D {HTd >  a}: 

pa(a) i s the restriction of pTD t o [0 , a) 
WA(A) (t) = WTd (t) ,  fo r every t G [0, a). 

Thus, we have also on the same event 

r 
u(Wa.M)) pa.aAdt)  = J[0,a) 

u(WTD(t))PTD(dt). 

Now on the event {Try < 00} we can pick a séquence (an) of rationals strictly increas-
ing to HTD-  W e observe that a(a„) als o converges to TD (if S is the increasing limit 
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of a (an)» the snake property implies that Ws = WTD G DC and so we have S ^  TD, 
whereas the other inequality is trivial). Therefore , using (142) , 

oo = li m 
n—>oo 

(Z,^,(^,Wi)ie/)l{TD (dt) =  lim 
n—>oo [0,an) 

w(WrD(t))PTD(cft), 

which yields (141) . 

Lemma 4.7.1 implies that TD < LD, a.s . Sinc e we know that PTD({HTD}) =  0, 
a.s., an application of the strong Markov property at time TD shows that < 

HTD ,  a.s . W e define WQ a s the stopped pat h which is the restriction of WTD to 
[0,771 ]̂. The n we defin e the excursions of W above level in a wa y analogous to 
subsection 4.2.2 . I f 

RD =  sup{s ^ TD  :  Hs =  mD] ,  SD  =  inf{s ^ LD  :  Hs =  mD], 

we le t (aj,6j) , j  E  J  b e the connecte d component s o f the ope n set (RD,SD)  H 
{s ^  0  : i/s >  m/)}. Fo r each j G J, w e can then define the process W dkd kSXDDD 
by settin g 

Waw(r) = Waj+s(mD + r), C^o ) =  Haj+S - mD  i f 0 < s < b3-, -  a3 
W^J) =  i f s = 0 or s > bj - a3. 

By a  simple continuity argument, the set {j  G J :  T D ( W ^ )) <  oo } is finite a.s., and 
we set 

ND =  Card{j G J :  TD(W{J)) <  oo} . 

We write WD^, WD>2, ..., fo r the excursions suc h that TD{W^) <  oo, 
listed in chronological order. 

We are now ready to state our main resuit. 

Theorem 4.7.2. —  For every  r ^ 0,  set 0(r) =  ip'(r) —  ip(r). Then  the  law of  is 
characterized by  the  following formula, valid  for any  nonnegative  measurable function 
F on  W* : 

(143) Nx(1{Td<oo}F(W0D)) 

XRD1D 
oo 

0 
dbIlx\l{b<T}u(Çb) 6(u(Çb)) exp B 

D 

VR 
^'(u(£r))dr)F(£r,0<r O ) . 

The conditional  distribution  of  ND knowing  is  given by: 

(144) X+B4 \W0D] = r 1>'(U)-ii,(U,(l-r)U) 
(Z,,Wi)ie/)l{TD(^) 

0 < r < 1, 

where U  —  U(WQ). Finally,  conditionally on  the pair (WQ,ND), the  processes 
WD'X, WD'2,  ...,  W D'ND are  independent and  distributed  according to  N£,D . 
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Proof. —  Our first objective is to compute the conditional distribution o f TUD knowing 
WTD . T o this end, we will apply the strong Markov property of the Lév y snake at 
time Tr>. W e have for everv b > 0 

Nf [mD >  b  | PTD, WTD]  =  W*PTD,WTD inf Ha>b\. 
X+4RD2 

By Lemma 4.2.4, the latter expression is equal to the probability that in a Poisson 
point measure with intensitv 

prD (dh) NWtd {h) (dpdW) 

there is no atom (hi,p7,1  W1) such that hi < 6 and TD{W1)  <  oo. W e conclude that 

Nf [mD >b\pTo, WTD)  =  exp -
[0,6] 

prD{dh)NWTfh)(TD <  oc) 

(145) = ex p — 
[0,6] 

PTD{dh)u(WTD(h)). 

Recall that the conditional law of PTD knowing WTD is given in Theorem 4.6.2. Using 
this conditional distribution w e see that 

NÏ[mD>b\ WTD}  = exp -P 
DV 

'o 
dau(WTD(a))) E exp-

r-i<6 
( « < - W ^ T D ( r i ) ) L 

where  ̂ô(r.iVii£.)  is a Poisson point measure with intensity (depending on WTD) give n 
by (133) . B y exponential formulas for Poisson measures, we have 

E exp — 
X+B4 

(vi-£i)u(WTD(ri)) 

= ex p — 
,6 

BRD 
dr 7r(dv) ^ e - M ^ W ) ^ _ e-(v-£MWTD(r))y 

By substituting this in the previous displayed formula, and using (130), we get 

(146) N2[mD>b\WTD]=exp D 
DR 

VR 
dr W(u(WTn (r)))  -  *(u(WTn  (r)))) . 

Hence, if 9(r) =  V'(r ) ~~ ^(r) as m the statement of the theorem, the conditional law 
oîrriD knowing WTD has density 

llo,HTD)(b)0(u(WTD(r)))exp SDV 
rb 

<0 
0(u(WTD(r)))dr). 
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It follow s that 

X 'l{TDssss<oo} F(WQD) 

dLasu(Ws)F{WÏ) exp(-fas,S»lf md dio 

= Nx[1{Td<oo} 
>HTD 

o 
dbO(u(WTD(b))) exp S 

D 

'0 
e(u(WTD(r)))dr 

x F(WTD(t),0^t^b)) 

DV 
r»oo 

/O 
dbNTj l{TD<oo}l{b<HTD) ^0(u(WTD{b))) exp D 

R 
6(u(WTD(r)))dr 

x F ( W r „ ( t ) , 0 < t < 6 ) ) 

VR 
VR 

0 
d& IIX L{6<R}W(&)^(^(6) ) exp( ~ 

DV 

VRD 
^ H r ) ) * ) f K r , 0 ^ r < 6 ) , 

using (132) i n the last equality. This gives the first assertion o f the theorem. 
We no w tur n to the distribution o f W e us e again the strong Markov property at 

time TD and Lemma 4.2.4 to analyse the conditional distribution o f the pair (TUD^ND) 
knowing (prD, WrD) . Conditiona l on {prD , WTD),  le t ]T<fyi»,pi,wri) be a Poisson point 
measure with intensity 

PTD(dh)NWTnih)(dpdW). 

Set 

m = mï{hi :  TD(Wl) <  oo} , 
M =  Cardji :  hi = m and TD(W*) < oo} . 

Then Lemma 4.2.4 and the strong Markov property show that the pairs (m, 1  + M ) 
and (mu , N&)  hav e the same distribution conditiona l on (prD , Wr^,) - Recal l that the 
conditional distribution o f (o r of m) is given by (145). 

Now not e that: 
- I f PTD{{^]) =  0, then M = 1 because the Poisson measure Sfy^p^w*) cann° t 

have two atoms at a level h such that pTD({h}) = 0. 
- Le t 6 ^ 0 be such that ( W ) >  0- The event {m =  b} occurs with probability 

exp -
J [0,6) 

pTD{dh)u(WTD{h))\ (l _  e-PTD({b})u(WTD(b))\ 

Conditionally on this event, M is distributed a s a Poisson variable with paramete r 
c = pTD({b})u(WTD(b)) an d conditioned to be (strictly) positive, whose generating 
function is 

e-c(l-r) _ e-c 
l-e~c 
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Since the continuous part of the law of m has density 

pu(WTD(b)) exp 
J[0,b) 

pTD(dh)u(WTD(h))) 

we get by combining the previous two cases that 

(147) N?[f(mD)rN° PTD,WTD] 

= (3r2 
XRD 

0 
dbf(b)u(WTD(b)) ex p - [0,6) 

pTD(dh)u(WTD(h)) 

+ r 
PTD({b})>0 

f(b) ex p VRD 
'[0,6) 

pTD(dh)u(WTD(h))) 

X fe-PTD({b})u(WTD(b))(l-r) _  e-PTD{{b})u{WTD{b)) 

We now need to integrate the right side of (147) with respect to the conditional law 
of pTD knowin g WTD . We get 

(Z,^,(^,Wi)ie/)l{TD(^)CSWX 

where 
(148) 

XB+D1D 
VRD 

'o 
dbf(b)u(WTD(b)) exp VR 

[0,6) 
pTD{dh)u{WTD{h))\\WTD 

= Pr2 D+4 

0 
dbf(b)u(WTD(b)) ex p DGR 

'[0,6) 
6{u{WTD{h)))dh), 

by the calculation used in the proof of (146). W e then compute A2. T o this end, let 
J\f{dbdvdt) b e (conditionally on WTD ) a  Poisson point measure in wit h intensity 

lf0,iÏT„1(6)lro,„i(€)e-ft'(̂ W>d67r(dt;)d£. 

From Theorem 4.6.2, we get 

A2 = rN° Nidbdvdt) f(b) e (3 /Qb da U(WTd (a))-f{a<b} M(dadv'd£')(v'-£')U(WTD (a)) 

x (e-{v-i)u(WTD{b))(l-r)  _ e-(v-l)u(WTD(b)) WTD 

From Lemma 3.1.5 and (once again) the calculation used in proving (146), we arrive 
at 

A2 = r 
XGR 

r0 
dbf(b) exp| BR 

J [0,6) 
e(u(WTn(a)))da 

x 7r(dv) 
rv 

0D 
M e-tu(WTD (6)) fe-(v-t)(l-r)u(WTD (6)) e-(v-£)u(WTD(b))\ 
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From (130), we have 

' 7r(dv) 
V 

0 
d£e-eu(wTD(b)) (v_̂)(i_r)n(u/TDqkqkqkqkqk(6)) _ -(v-e)u(wTD(b)y 

= il>\u(WTD(b)))-^(u(WTDmdLasu(Ws)F{WÏ) exp(-fas,S»lf m 

By substituting this identity in the previou s formula fo r A2,  and then adding the 
formula for Ai, we arrive at: 

^[f(mD)rN° |  WTD] 

= r 
*HTD 

o 
dbf(b) exp DR 

•6 

o 
dae(u(WTD(a)))\ 

x U\u(WddddddTDm-l*WWTD{b)),{l-r)u{WTD{b)))) 

= Nf[ / (mD)r 
rP'(u(WTD(mD))) - ^{u{WTD{mD)),  ( 1 - r)u{WTD{mD))) 

V(u(WTD{mD))) -  ^{u{WTD{mD)),Q) 
DBR 

In the last equality we used the conditiona l distribution o f knowin g WTD, an d 
the fact that 6{u) — I/J'(U) — ip(u) =  ip'(u) - 7-0 (11,0). 

Finally, if U =  u(WTD(rriD)) =  U{WQ), w e have obtained 

N f f r ^ I  WP] =  r 
iP'(U)-^(11,(1-r)U) 

(Z,^,(^,Wi)ie/ 

which is formula (144) of the theorem. 
It remains to obtain the last assertion of the theorem. Here again, we will rely on 

Lemma 4.2.4 and the strong Markov property at tim e TD . W e need to restate the 
resuit of Lemma 4.2.4 in a slightly différent form. Le t (/i, w) G  <dx  with p({H(p)}) =  0 
and w(t) G D for every t < H(p). Unde r P*,W, we write Yt = (pt, 1), Kt = infr<^ Yr 
and It  =  Kt —  (// , 1). I f (a*,/^) , i  E  I ar e the excursion intervais of Y —  K  away 
from 0, we introduce the "excursions" (p^, W1), i G / a s defined before the statement 
of Lemma 4.2.4. The starting height of excursion [pi,  W1) i s hi = Hai = H(k-ia.p). 
The proof of Lemma 4.2.4 shows that the point measure 

iei 
(Wi)ie/)l{TD(^) 

is Poisson with intensity l[o,</z,i>] {u)du N^H(kufj,)) (dp dW) (this is slightly more précise 
than the statement of Lemma 4.2.4). 

We then write ii,i2, • • • for the indices i E  I such that TD(W1) <  oo, ranked in such 
a way that IAII  <  IAI2 < •  • •. Ou r assumption (139 ) guarantees that this ordering is 
possible, and we have clearly ^  h{2  ^  •  • •. B y well-known properties of Poisson 
measures, the processes Wn, W12,... ar e independent conditionall y on the séquence 
hix, hi2,..., an d the conditional distribution o f WH is y 

If we apply the previous considérations to the shifted process (pTD+s, WTD+S\ S  > 0), 
taking p = pTD an d w = WTD  and relying on the strong Markov property at TD , we 
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can easily identify 
X+B4RDXCS 
ND = 1 + sup{/c ^ 1  : hik = fe^} 

W (Z,^,(^,Wi)ie/)l{TD(^) 1 + sup{/c ^ 1 : hik = fe^} 

By a preceding observation, we know that conditionally on (m^) , Nr>),  th e processes 
WN,..., W*^- 1 ar e independent an d distributed accordin g to ^^mDy 

Combining this with the strong Markov property at time TD, we see that, condition-
ally on (ND,  Wj3), the processes WD'2,...,  WD'ND  ar e independent an d distribute d 
according to N^D (recal l that W$  =  WTD(TO£>)) . A n argument simila r to the end 
of th e proo f of Theorem 3.2.1 (relying on independence propertie s o f Poisson mea-
sures) also shows that, conditionally on W®),  th e vector (WD>2,...,  WD,N°)  i s 
independent o f WDI1. Purthermore , dénot e by WD>£ the time-reversed processes 

XG+ 1D DRG+ 
(<r(WD>')-s)+' 

The time-reversa l property already used in the proof of Theorem 4.6.2 implies that 
the vector s (WDI1,...,  WD*ND)  an d (WD>ND,.  ..,  W0'1)  hav e the sam e conditional 
distribution give n WQ).  Hence, the conditional distribution o f W0,1, o r equiv-
alently that of WDIL,  i s also equal to N£L>. Thi s complètes the proo f of Theorem 
4.7.2. 

Remarks 
(i) B y considering the spécia l case where the spatia l motion £t i s deterministic , 

£t =  t,  an d E  =  R+, x =  0 and D  =  [ 0 , T ) fo r some fixed T >  0 , we obtain a n 
alternative proof of formulas derived in Theorem 2.7.1. In particular, formula (86 ) is 
a spécial case of (144). Similarly , (85) can be seen as a spécial case of (146) . 

(ii) I n the stable case ip(u) = cua, the variable No i s independent o f ,  and its 
law i s given by 

X+B4RDS S (1 -  r)a - 1  +  ar 
a - 1 

Of course when a = 2 , we have ND = 2. 
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N O T A T I O N I N D E X 

X Lév y process (Sect. 1.1.1) 
P probabilit y measure under which X start s from 0 
ip Laplace functional of X (Sect . 1.1.1) 
ip(u) = au + pu2 J(0,oo) 7r(dr) (e-™ - 1  + ru) 

ip(u) = au 4>M 
x 

ip(u) = au x x+d1d X 
St =  sup Xs 

dgr 
h =mîXs 

s^t 
If = inf Xr 

s^r^t 
Tx = inf{t ^0:Xt  =  -x} 

N excursio n measure of X —  I (Sect . 1.1.2) 
TV* excursion measure of X —  S (Sect . 1.1.2) 
a duratio n of the excursion under N or under N* 
Lt loca l time of X —  S at level 0 
L-1(£) =  inf{s ^ 0  : Ls > t} 
XS —  XT+S —  XT 
Xs proces s time-reversed at t: Xs^ —  Xt — X(t_s\_ 
Ht heigh t process (Sect. 1.2) 
H (fi) =  sup(supp(/x)) 

pt exploration process (Sect. 1.2) 
M/(]R+) se t of ail finite measures on M+ 
kan "killing opérât or" on measures (Sect . 1.2 , Sect. 3.1) 
[fi, v\ concaténatio n of the measures fi and v (Sect. 1.2) 
p*1 exploratio n process started at fi  G M/(R+) 

law o f p** 
M invarian t measure of p (Sect. 1.2) 
L% loca l times of the height process 



146 NOTATION INDE X 

ut{\) =  N(l -  exp(-ÀL'J ) 
v(t) =  N(supHs >  t) 

X+G4 
7^,(a,6) = = w(Cw-)X 

a —ss b 
Tjt diia l of the exploration proces s (Sect. 3.1) 
M invarian t measure of (p, 77) (Sect. 3.1) 
T se t o f ail finite rooted ordered trees (Sect. 0.1) 
kv(T) numbe r of children of the vertex v in the tree T 
hv mark (lifetime) o f v 
0(e, ti,..., tp)  tre e associated with the function e  and th e times ti,...,tp 
£ Markov process in E (Sect . 4.1) 
lia; law of £ started at x 
W se t o f ail jK-valued killed paths 
C = Cw lifetime of the killed path w 
W = w(Cw-) 
rrih(s,sf) = in f h(r) 

Ws — (ps,Ws)  Lév y snake (Sect. 4.1) 
PM?W law of the Lév y snake started at (/x , w) 
Qs transitio n kernels of the Lév y snake 

excursion measure for the Lév y snake 
P* w law of the Lév y snake started at (//,w ) an d stopped at in f {s > 0 : ps — 0} 
= w(Cw-) DRD 

Jo 
dLasf(Ws) 

r(w) =  inf ^  0  : w(t) £ D} 
exit local time from D  (Sect . 4.3) 

ZD exi t measure from D  (Sect . 4.3) 
W* se t o f ail i£-valued stopped paths 
TD =  inf {s ^  0  : r(W*) <  00} 
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approximation of local time 
for the height process, 36 
for the Lévy process, 21 

conditioned Galton-Watson tree, 65 
continuous-state branching process, 39 
contour function, 2 
contour process, 3 
convergence of rescaled contour processes, 62 
convergence of rescaled Galton-Watson pro -

cesses, 48 
convergence of rescaled height processes 

finite dimensional marginals, 49 
functional convergence, 54 
stable case, 56 

duality property of exploration process, 10, 81 
excursion measure 

of Lévy process, 7, 19 
of Lévy snake, 14, 105 

exit local time, 115 
exit measure, 117 
exploration process, 6, 25 
first-exit distribution, 127 

Brownian case, 131 
generalized Ray-Knight theorem, 40 
height function, 2 
height process 

continuous, 6, 24 
discrète, 3 
Hôlder continuity, 43 
path continuity, 42 

invariant measure 
for exploration process, 30 
for exploration process and its dual, 80 
for Lévy snake, 105 

Lévy measure, 17 
Lévy process, 17 
Lévy snake, 13, 101 

uniform continuity, 119 
uniform continuity in Brownian case, 121 

local time 
at the maximum, 19 
at the minimum, 19 
of the height process, 34 

partial différential équation, 121 
reduced tree 

convergence, 67 
for a Galton-Watson tree, 67 
spatial, 15, 132 

snake property, 100 
stable continuum tree, 12, 95 
strong Markov property of Lévy snake, 102 
superprocess, 106 
time-reversal property, 84 
tree 

associated with Poissonnian marks, 87 
coding by a function, 11 
embedded in a function, 85 
finite-dimensional marginals , 12, 95 
Galton-Watson, 3 
rooted ordered, 2 


