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SEMI-STABLE CONJECTURE OF FONTAINE-JANNSEN:
A SURVEY

by

Takeshi Tsuji

Abstract. — We give an outline of the proof of the semi-stable conjecture of J.-
M. Fontaine and U. Jannsen by O. Hyodo, K. Kato and the author. This conjecture
compares the two p-adic cohomologies: p-adic étale cohomology and de Rham co-
homology associated to a proper smooth variety over a p-adic field with semi-stable
reduction; it especially asserts that these two cohomologies with their additional
structures can be reconstructed from each other. Our proof uses syntomic cohomol-
ogy, which was introduced by J.-M. Fontaine and W. Messing, as a bridge between
the two cohomologies. In the appendix, we also show that the semi-stable conjecture
implies the de Rham conjecture thanks to the alteration of de Jong.

1. Introduction

In these notes, we will give an outline of the proof in [HK94], [Kat94a] and
[Tsu99] of the conjecture of J.-M. Fontaine and U. Jannsen ([Jan89] p. 347, [Fon94b]
§6) on the p-adic étale cohomology of a proper smooth variety over a p-adic field with
semi-stable reduction. Here we note that two other proofs were given by G. Faltings
[Fal] and then by W. Niziol [Niz98b] afterwards. (See after Theorem 1.1 below for
more details.) For the history of the p-adic Hodge theory, we refer the readers to the
introduction of [FI93] and [I1190]. Besides the proof of Cy;, a theory for p-torsion
étale cohomology in the semi-stable reduction case was developed by G. Faltings and
C. Breuil ([Fal92], [Bre98a] and [Bre98b]) after [FI93] and [I1190] were written.
See [BM] for a survey.

Let us recall the conjecture of Fontaine-Jannsen. Let K be a complete discrete
valuation field of characteristic 0 with perfect residue field k of characteristic p > 0
and let Ok denote the ring of integers of K. Let W be the ring of Witt-vectors with
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324 T. TSUJI

coefficients in k£ and let Ky denote the field of fractions of W. We choose and fix a
uniformizer 7 of K. Let K be an algebraic closure of K and set Gg := Gal(K/K).
We consider a proper scheme X over Ok with semi-stable reduction, that is, a regular
scheme X proper and flat over Og whose special fiber Y := X ®o, k is a reduced
divisor with normal crossings on X.

The conjecture of Fontaine-Jannsen, which is also called the semi-stable conjecture
or Cy for short, compares the p-adic étale cohomology HZ (X%, Qp) of the geometric
generic fiber X& 1= X ®o K of X, which is a finite dimensional vector space over
Qp naturally endowed with a continuous linear action of Gk, with the log crystalline
cohomology H{y, ...(X), which is a finite dimensional vector space over Ko endowed
with a semi-linear automorphism ¢ (called the Frobenius), a linear endomorphism N
(called the monodromy operator) satisfying Ny = ppN and a descending filtration
after @k, K. The log crystalline cohomology with its first two structures ¢ and N
does not depend on the choice of , but the filtration depends on it. More precisely,
the filtration on H., .. (X)®k, K is induced by the Hodge filtration on Hjj (X /K)

log-crys

through the isomorphism ([HK94] Theorem (5.1)):
P H{cr)lg-crys(X) B Ko K — Hglrll{(XK/K)

depending on the choice of 7. If X has a good reduction, H{7, ....(X) coincides with
the usual crystalline cohomology ([Ber74], [BO78]) of the special fiber tensored with
Ky over W, the monodromy operator vanishes, and p, (in this case the isomorphism
was proven by Berthelot and Ogus [BO83]) does not depend on the choice of .
Strictly speaking, when the conjecture was made, the log crystalline cohomology was

conjectural and it was constructed afterwards by Hyodo and Kato [Hyo91], [HK94].

Theorem 1.1 (Conjecture of Fontaine-Jannsen, Cy;). — With the notations and the as-
sumptions as above, Hi (X%, Qp) is a semi-stable representation of Gk and there
exist natural isomorphisms in M Fy (o, N):

Dst(Hgg(X_I?a Qp)) = legg—crys(X) (m € Z)'

See §2.2 for semi-stable p-adic representations and the filtered p-N modules in
MFg(p,N) associated to them. Furthermore these isomorphisms are functorial on
X and compatible with the product structures and with the Chern classes in HZ} and
HTY of a vector bundle on X .

Since the functor Dy is fully faithful (§2.2), the theorem implies that the two
cohomology groups with their additional structures can be reconstructed from each
other.

This conjecture was studied by many mathematicians [FM87], [Fal89], [KM92],
[HK94], [Kat94a], ... and completely solved by the author in [Tsu99]. See Theorem
A2 of these notes for the compatibility with the Chern classes. Afterwards, alternative
proofs were given by G. Faltings [Fal] and then by W. Niziol [Niz98a], [Niz98b]. In
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SEMI-STABLE CONJECTURE OF FONTAINE-JANNSEN: A SURVEY 325

fact, as an easy corollary of the proof of Theorem Al of these notes, which uses the
alteration of de Jong, we further see that the Ko-structure Hy, .. (X) with ¢ and N
on Hi}(Xk/K) and the isomorphism in Theorem 1.1 are independent of the choice
of a semi-stable model X of Xg.
We will explain the ideas of the three proofs of the conjecture. Every proof uses
a certain intermediate cohomology or a K-group. Set V™ := H} (X%, Qp), D™ :=
log-crys(X) and DR := K ®, D™ to simplify the notation.

I) The method of syntomic cohomology and p-adic vanishing cycles

The syntomic cohomology for X/Og smooth was first introduced by J.-M. Fontaine
and W. Messing [FM87] to prove the conjecture in the good reduction case. (See the
beginning of § 5 for the idea of the definition of the syntomic cohomology.) To prove
the conjecture in general, we use a log version ([Kat94a], [Tsu99]) Hy, . ., (X, 5a,)
(r,m > 0), from which there are maps to both étale and crystalline cohomologies:

A - B ar m m — —p7
vr(r) <A HE (X, S5,) ~25 Fil'(Bag ©x DR) N (Bax ®xp D™) V=007,

(cf. The proof of Corollary 2.2.9 for the last term).

Theorem 1.2 ([Kur87], [Kat94a] Corollary (5.5), [Tsu99] Theorem 3.3.4)
The homomorphism (A) above is an isomorphism if 0 < m < r.

By Theorem 1.2, we can invert the homomorphism (A) and obtain Theorem 1.1
using the fact dimg, V™ = dimg, D™ and Poincaré duality for the two cohomology
groups. The proof of Theorem 1.2 is based on the description of the p-adic vanishing
cycles:

15, RJeesZ/pZ(q) (Y := X Qoy k tx 2 Xx)

in terms of the logarithmic differential modules of the special fiber Y (endowed with
a natural log structure) by Bloch-Kato and Hyodo [BK86], [Hyo88]. In the case
r < p— 2, we have a good integral version of the syntomic cohomology and we can
reduce the proof of Theorem 1.2 to the mod p case and use the above description. This
was done by K. Kato and M. Kurihara in [Kur87], [Kat94a], and Cs; was proved by
K. Kato in the case dim X < (p —2)/2. However, in the general case, we don’t have
a good integral theory so far and the proof of Theorem 1.2 involves much complicated
and technical analysis of two kinds of adhoc syntomic complexes, which is the main
part of [Tsu99].

II) The method of almost étale extensions

Associated to a sufficiently small affine open formal subscheme {4 = Spf(A) of the
formal completion Xof X along the special fiber, we have a ring Be.ys with an action
of 71 (Spec(Ak)). G. Faltings defined an intermediate cohomology H™ (X%, Berys) by
gluing the Galois cohomology H™ (71 (Spec(Az)), Berys), to which there are canonical
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326 T. TSUJI

homomorphisms from the two p-adic cohomology groups as follows:

C
Bcrys ®Qp ym (—)> Hm(x?, Bcrys) & (Bst ®K0 Dm)N':O.

Theorem 1.3 ([Fal] § 3 8. Theorem, § 4 9. Theorem). — The homomorphism (C) above
is an almost isomorphism.

Roughly speaking, G. Faltings proved that the ramification along the special fiber
of any étale extension of Az is “almost” killed by adjoining to A all p-power roots
of a coordinate ([Fal88] I 3.1. Theorem, [Fal] § 2B). This allowed him to reduce the
calculation of some Galois cohomology of 7, (Spec(A%)) to some Galois cohomology
of a simple group Z,(1)¢ (d = dim Xg), and to prove Theorem 1.3.

IIT) The method via K -theory

There are regulator maps from a K-group to the two p-adic cohomology groups as
follows:

E J—
Vi) <2 Qelim “F/F Ky m(X, Z/p" L)’

B, Fil"(Byr @k D) N (Bgy ®, D™)N=00=7"

The homomorphism (F) is defined as the composite of a regulator map to the
syntomic cohomology and the homomorphism (B) above.

Theorem 1.4 ([Niz98b]). — The homomorphism (E) is surjective and the kernel of
(F) contains the kernel of (E) if r is large enough.

The proof is based on the comparison theorem of Thomason between algebraic
K-theory and étale K-theory.

This paper is organized as follows: In § 2, we review the definition of Hodge-Tate,
de Rham, semi-stable and crystalline p-adic representations including the definition
and some properties of the rings Berys, Bst and Bgr. In §3, we review the theory
of log structures in the sense of Fontaine-Illusie. §4 is devoted to explaining how
the usual crystalline cohomology and the comparison theorem of Berthelot-Ogus with
de Rham cohomology are extended to the semi-stable reduction case. §5 and §6
correspond to the main part of [Tsu99]; We survey the proof of the key comparison
theorem between syntomic and étale cohomologies. In § 7, we explain how we derive
the conjecture of Fontaine-Jannsen from the above key comparison theorem. In the
Appendix, we give an argument to derive Cyqr from Cg; using the alteration of de Jong.
The main references to each section are as follows: § 2 [Fon82], [Fon94al, [Fon94b].
§3 [Kat89]. §4 [HK94]. §5 and § 6 [FM87], [Kat87], [Kur87], [Kat94a|, [Tsu99),
[BK86), [Hyo88]. §7 [FM87], [KM92], [Kat94a], [Tsu99].

Notation. — Throughout these notes, we fix a complete discrete valuation field of
characteristic 0 with perfect residue field k of characteristic p > 0 and let Ok denote
the ring of integers of K. We choose and fix a uniformizer 7 of K. We denote by
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SEMI-STABLE CONJECTURE OF FONTAINE-JANNSEN: A SURVEY 327

(S, N) the scheme Spec(Ok) endowed with the log structure defined by the closed
point and by (s, Ny) its reduction mod 7 (see Example 3.1.1). Let W denote the ring
of Witt-vectors with coefficients in k and let Ky denote the field of fractions of W.
We denote by o the Frobenius of k, W and Ky. Let K be an algebraic closure of
K, and let & be the residue field of K, which is an algebraic closure of k. We set
Gk = Gal(K/K). Let C be the completion of K with respect to its valuation and
let O¢ denote its ring of integers. Gk acts continuously on C and O¢. We denote by
the subscript n the reduction mod p™ of schemes, log schemes etc.

2. The rings Bcrys, Bst, Bar and p-adic representations

Let [ be a prime. An [-adic representation of Gk is a finite dimensional (Q;-vector
space V with a continuous and linear action of Gx. Recall Gk = Gal(K/K). It is
well-known that I(# p)-adic representations and p-adic ones have completely different
natures. For | # p, if we assume [K : Qp] < oo, every l-adic representation of Gk
is quasi-unipotent, that is, after restricting to the Galois group of a suitable finite
extension K’ of K, it becomes tame and the action of the inertia group becomes
unipotent. It is still true without the assumption [K : Qp] < oo, if the representation
is the [-adic étale cohomology of an algebraic variety over K [Gro72]. However a p-
adic representation does not have such a simple structure in general; The image of the
wild part of the inertia group can have a large image in GL(V'). Furthermore, there
are p-adic representations of a type completely different from those realized as p-adic
étale cohomology, for instance, ¥* (a € Zy, \Z), where 1 denotes the composite of the
cyclotomic character Gx — Z;, with the projection Z; = pi,—1 x (1+pZp) — 1+ pZy.

Let Rep(Gk) denote the category of p-adic representations of Gk. In this section,
we will briefly review the notions of Hodge-Tate, de Rham, semi-stable and crystalline
p-adic representations, whose categories we denote by Rep, (Gk) with « = HT, dR, st
and crys respectively. The latter implies the former, that is, we have

Rep(Gk) O Repyr(Gk) O Repgr(Gk) D Repy(Gk) O Repe,ys(Gk)-

The de Rham, semi-stable and crystalline representations were defined by J.-
M. Fontaine by introducing the rings Bgr, Bst and Beys, and they correspond to all,
unipotent and unramified representations respectively in the I[(# p)-adic case. We
note that the representations ¢ (a € Z, \ Z) mentioned above are not Hodge-Tate.
Furthermore, to these kinds of representations, one can also associate K or Ky-vector
spaces with some linear or semi-linear structures, from which one can extract some
information on the representations.

2.1. The rings By, Bst and Bgr; their structures and properties

In this section, we will list structures and properties of the rings Berys, Bst and
Bgr defined by J.-M. Fontaine [Fon82], [Fon94a]. We will postpone a construction
of them to §2.3.
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328 T. TSUJI

Bar
(0)ar The ring Bgg is a complete discrete valuation field whose residue field is C.
We denote by B}'R its valuation ring and define a descending filtration on Bggr by
Fil' Bar := {z € Bar | v(z) > i} (i € Z), where v denotes the discrete valuation of
Bgr normalized by v4r(Bjgr) = Z.
(1)ar The ring Bgr is endowed with an action of Gk compatible with the
ring structure and the filtration such that the canonical homomorphism Bj; —
B&"R / Fil! B4r = C is Gk-equivariant.
(2)ar There exists a canonical G k-equivariant ring homomorphism K — B;R whose
composite with B;"R — B;'R / Fil' Bqr = C is the natural embedding. We regard K
as a subfield of BJ; in the following. (See Remark 2.1.2).
(3)ar There exists a Qp-linear canonical Gg-equivariant injective homomorphism
Qp(1) — Fil' Byr such that the image of a non-zero element is a uniformizer. Using
the field structure of Bgr, we obtain injective homomorphisms
(3~1)dR Qp(r) — Fil” Bgr (’I‘ € Z)
and isomorphisms
(3-2)dR grinR A Qp(’l) ®Qp grOBdR = C(Z) (’L (S Z)
For r € Z, we regard Qp(r) as a submodule of Fil” Byg in the following.

Using (3.2)4r and the following well-known theorem of Tate, we obtain
(4)ar BSK =K =K.

Theorem 2.1.1 ([Tat67] (3.3) Theorems 1,2). — H°(Gg,C(i)) = K (if i = 0), 0 (oth-
erwise).

Remark 2.1.2. — We don’t have a Gg-equivariant section of BIR — BIR / Fil! Bgr =
C, that is, Bar 2 C[[t]][t™!] (t € Qu(1),t # 0).

Bcrys
(0)crys The rin_g Berys is a Gk-stable subring of Bqgr containing Q,(r) (r € Z) and
Py = Frac(W(k)).
(1)erys The ring Berys is endowed with a Pp-semilinear injective endomorphism (called
the Frobenius) ¢: Berys — Berys such that
(1.1)erys pog=goyp forall g € Gk
(1.2)erys @(t) = p -t for t € Qp(1) C Berys NFil' Byr
(1.3)erys Fil” Bar N BESL = Q.
(2)crys The canonical homomorphism K ®k, Berys — Bar is injective.

We obtain the following (3)crys from (2)crys and (4)dr.
(3)crys Bg{r{s = ()GK = Kp. ‘
(4)crys For a non-zero element b € Berys if Qp-b (C Berys) is Gk-stable, then b € Py-t*
for some i € Z.
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SEMI-STABLE CONJECTURE OF FONTAINE-JANNSEN: A SURVEY 329

Bss

The rings Bqr and Bcys do not depend on the choice of a uniformizer 7 of K, but
By (with their structures) does. See Remark 2.1.3 (2).
(0)st The ring By is a Berys-algebra contained in Bgg stable under the action of Gk .
(1)st For each compatible system s = (sp)n>0 of p™-th roots of 7 in O, there is a
canonically defined element us of Bg; such that:
(1.1)s; The element u, is transcendental over Berys and Bgy = Berys[us)-
(1.2)st g(us) = ug(s) for g € Gk.
(1.3)s; For two systems s and &', if we set t = (s),5;1)n € Zp(1)(O%) C Borys, We
have ugy = us + t.
(2)st The ring By is endowed with an endomorphism (called the Frobenius) ¢: By —
B¢ extending the Frobenius on Beys and characterized by
(2.1)st @(us) = p - us for every s.

By (1.1)crys and (1.2)g, we have
(2.2)st pog=gop forall g€ Gg.
(3)st The ring By is endowed with a Beys-derivation N: By — By (called the
monodromy operator) characterized by (see Remark 2.1.3 (1)):
(3.1)st N(us) = —1 for every s.
By definition, it satisfies
(3.2)st N = ppN.

By (1.2)4;, we have
(83)st Nog=goN forall g€ Gg.

We obtain the following (4)s¢ from (1.3)crys and the definition of N above.
(4)st BY=0 = Beyys and Fil° Bgg N BE="V=0 = Q.
(5)st The canonical homomorphism K ®gk, Bs; — Bdr is injective.

From (4)ar and (5)s;, we obtain
(6)ss BS¥ = PE¥ = K.
(7)st For a non-zero element b of By, if Qp - b (C Bst) is Gk-stable, then b € Py - t*
(C Berys) for some i € Z.

Remark 2.1.3

(1) In [Fon94a], the monodromy operator of By is defined by N(us) = 1, but we
change the sign here to make it compatible with the monodromy operator coming
from its log crystalline interpretation. (See Proposition 4.4.1.)

(2) The Berys-algebra By, with an action of Gk, ¢ and N is independent of the
choice of 7 up to canonical isomorphisms. If we choose another uniformizer 7/, the
two embeddings tr, tr @ Bst ® ko, K — Bgr corresponding to w and 7’ are related by
the formula:

tar = tr o exp(log(r'n™1) - (N ® 1g)).
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330 T. TSUJI

2.2. Hodge-Tate, de Rham, semi-stable and crystalline representations

Let V be a p-adic representation of Gk, that is, a finite dimensional Q,-vector
space endowed with a continuous and linear action of Gx. We define K-vector spaces
Din(V) (i € Z) by |

Dir(V) := (C(i) ®q, V)%
and D, (V) (« = dR,st, crys) by
D,(V) = (B, ®q, V)°*.

D4r (V) is a K-vector space and Dst (V') and Derys(V') are Ko-vector spaces.

By (5)st, we have canonical injective homomorphisms
(2.2.1) Derys(V) «— Dg(V),
(2.2.2) Dst(V) Ok, K — DdR(V).

We define the filtration on Dgr (V') by (Fil* Bar ®q, V)¢ (i € Z). Then, by (3.2)qr,
we have canonical injective homomorphisms

(2.2.3) gr'Dar(V) — Dy (V) (i € Z).

From these facts and Proposition 2.2.6 below (which follows from Theorem 2.1.1
without much difficulty), we obtain

(2.2.4) Fil' Dgr(V) =0 (i > 0), Fil'’ Dgr(V) = Dar(V) (i <0)

(2.2.5)
dim g, Derys(V) < dimg, Dst(V) < dimg Dar(V) < dimg Dur(V) < dimg, (V),

where Dyr (V) denotes the graded module @;ezD4r (V).

Proposition 2.2.6 ([Ser67] § 2 Proposition 4). — The canonical homomorphism
QHT: 2 C(—i) ®k Diyp(V) — C ®q, V
18 injective.
Definition 2.2.7. — With the notation above, we say that V is Hodge-Tate if
dimg Dyt(V) = dimg, (V). We define de Rham, semi-stable and crystalline rep-

resentations similarly using Dgr(V'), Dsti(V) and Derys(V) respectively instead of
Dy1(V).

We define the categories MGx, MFk, MFk(p,N) and MFg(p), an object of
which will be associated to a Hodge-Tate, de Rham, semi-stable and crystalline rep-
resentation of Gk:

MGg: The category of finite dimensional K-vector spaces D graded by K-
subspaces D' (i € Z).

MFg: The category of finite dimensional K-vector spaces D endowed with ex-
haustive and separated descending filtrations Fil' D (i € Z) by K-subspaces.
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SEMI-STABLE CONJECTURE OF FONTAINE-JANNSEN: A SURVEY 331

MFg(p,N): The category of finite dimensional Ky-vector spaces D endowed with
Kp-semilinear automorphisms ¢, Kp-linear endomorphisms N such that Ny = ppN,
and exhaustive and separated descending filtrations Fil* D (i € Z) on Dk := K ®,
D by K-subspaces.

MFi(p): The full subcategory of M Fi (¢, N) consisting of the objects such that
N =0.

We have the following commutative diagram of categories and functors.

Repyr(Gr) 25 MGy

U T gr
Repyp(Gk) 28 MFy
U T
Rep(Gx) =% MFx(p,N)
U U
Dcrys
Repcrys(GK) - MFk ((p)

Proposition 2.2.8. — Let V be a p-adic representation of Gi. Then:

(1) If V is de Rham, the canonical homomorphism

adr: Bar ®k Dar(V) — Bar ®q, V

is a filtered isomorphism, where we define the filtration on the LHS (resp. the RHS)
by Fil' =3, ., Fil*® @Fil" (resp. Fil' Bar ®q, V).

(2) If V is semi-stable, the canonical homomorphism

Ot : Beg QKo Dst(V) — By ®Qp v

18 an isomorphism.
Proof

(1) By Proposition 2.2.6, aqg is injective and strict with respect to the filtrations.
Since Byr is a field and dimg Dgr(V) = dimg, (V), aqr is a filtered isomorphism.

(2) By (1), (5)st and (2.2.2), the homomorphism «y is injective. Choose bases
{di}1<i<r and {vi}i<icr of Dgt (V) and V respectively and set

as(1@di) = Y bji- (1®v;) (bs € Bsy).
1<i<r
By (1), det(bi;) # 0. On the other hand Q, - det(b;;) is stable under Gk. Hence, by
(7)st; det(b,'j) € B;,. O
Corollary 2.2.9. — The functor Dg: Repy (Gx) — M Fk(p, N) is fully-faithful.
Proof. — For a semi-stable representation V, by Proposition 2.2.8 and (4)s, as; and

aqgr induces a G g-equivariant isomorphism
(Bst ® ko Dst (V) PE=LIONENOLI=0 N pi10(Byp @ Dar(V)) = V. O
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332 T. TSUJI

Corollary 2.2.10. — For a p-adic representation V of Gk and D € MFg(p,N), to
prove that V is semi-stable and to give an isomorphism Ds(V) = D are equivalent to
giing a Gk -equivariant Bg-linear isomorphism Bg ®q, V =5 By ® Ko, D preserving
the action of Gk, ¢, N and the filtration after tensoring with Bar over Bg. Here
the action of g € Gk on the LHS (resp. RHS) is g ® g (resp. g ® 1), ¢ on the LHS
(resp. RHS) is ¢ @ 1 (resp. ¢ ® ¢), N on the LHS (resp. RHS) is N ® 1 (resp.
1® N + N ®1); the filtration on Bggr ®q, V is Fil Bar ®q, V, and the filtration on
Byr ®k Dk is the tensor product of the filtrations on Bar and D .

See [FI93] 2.3 for some examples of these kinds of p-adic representations. We will
give some in the end of §2.3.

2.3. The rings By, Bs; and Bggr; their construction. — We define the ring
R to be the projective limit of

Of/pOf Frob O_.K_'/p()7 Frob 07/;00? Frob
The element of R is a system of elements a = (ao, a1, az,...) of Ox/pOx such that
ab 1 = an. The absolute Frobenius of R is bijective. Choose a compatible system
s = (Sp)nzo of p"-th roots of 7 in O and define the element m of R to be (sn
mod p)n>0. We have a canonical injective multiplicative homomorphism:
Zy(1)(Og) = lim ppn (Of) < R*; € = (en)nz0 — £:= (en  mod p)n3o.

n
Roughly speaking, the rings Bc.ys, Bs; and Bgg are constructed as certain modifi-
cations of the ring W(R) of Witt-vectors with coefficients in R. We have a canonical
surjective ring homomorphism

9: W(R) — Oc

characterized by 6([a]) = lim,— Eﬁpn, where a = (ag,a1,...) € R, a, denotes
a lifting of a, in O and [a] denotes the Teichmiiller representative (a,0,0,...) €
W(R). We have 6([z]) = lim,_o s2 = 7 and 0([g]) = lim,_coe? = 1 for € €
Zp(1)(Og). We denote by 6o, (resp. 0k) the Ok-linear (resp. K-linear) extension of
0: Ox @w W(R) — Oc¢ (resp. K @w W(R) — C). We have §(1® [r] —7®1) = 0.

Proposition 2.3.1 ((Fon82] 2.4. Proposition). — The element 1®[n]—7®1 is a non-zero
dwisor in Ox ®w W(R) and generates Ker (0o, ).

Proof. — Since Ox ®w W(R) and O¢ are p-adically complete and separated and
p-torsion free, it suffices to prove that the reduction mod 7 of the sequence

0o

0 —— Ok Qw W(R) 18lxl el

is exact, that is,

Ok ®w W(R) Oc¢c 0

™ fog

0 R R

O¢c/mOc —— 0
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is exact, where 8o, is the projection to the first component mod 7. This is easy to
see. ' O

We define the ring BC]LR, x by
Bjr x = lim(K ®w W(R))/(Ker(6x))",

which is a complete discrete valuation ring with residue field C' by Proposition 2.3.1.
We define Byr x to be the field of fractions of BIR’ k- Since 6([e]) = 1, for € €
Z,(1)(O), log([e]) = Yi51(—=1)""*([e] — 1)*/i converges in Bjy and we obtain a
canonical additive injective homomorphism

Z,(1) — Fil' Byr k; €+ log([g]).

We can prove that the image of a non-zero element of Z, (1) is a uniformizer ([Fon82]
2.17. Proposition) and hence, for a finite extension K’ of K contained in K, the
canonical homomorphism B:R, K = B;_R, k is an isomorphism since these two com-
plete discrete valuation rings have the same residue field and a common uniformizer.
This implies Byr,x = Bgr,k’ and we simply write Bgr for Bgr,k in the following.
We have K C Bgg.

We define the ring Acys to be the p-adic completion of

W(R)["/n! (n > 1)] C W(R)[1/p],

where £ = [p] — p € Ker(#). Note that £ is a generator of Ker(f) (Proposition 2.3.1).
For the Frobenius ¢ on W(R), we have

(&) =[pl’ —p=(E+p)? —p € pW(R)[E"/n! (n > 1)].

Hence, using p™/n! € pZ, (n > 1), we see that the Frobenius ¢ on W(R) extends
to the Frobenius ¢ on Acys. We see easily that t = log([e]) converges in Acrys for
€ € Zp(1)(Ox), € # 0, and ¢(t) = log([e]’) = p-t. Note [g] — 1 € Ker(f) =& - W(R).
We define B, and Berys t0 be Acrys[p™!] and Aerys[t™,p~!]. The rings BZ, and By
are defined to be the subrings Bf [us] and Berys[us] of Bjg and Bar respectively,
where us = log((1 ® [x]) - (1 ® 1)71). Note 0x((1 ® [x]) - (r ® 1)~!) = 1 and hence
log((1® [x]) - (r ® 1)~!) converges in BJy. For the proof of (1.3)crys, (2)crys, (7)st(=
(4)crys), (1.1)st and (5)st, see [Fon82] 4.12 Théoreme (or [Fon94a] 5.3.7 Théoreme),

[Fon82] 4.7, [Fon94b] 5.1.3 Lemme, [Fon94a] 3.1.6 and [Fon94a] 4.2.4 Théoréme.

Example 2.3.2. — Let ¢ € K* and consider an extension 0 —» Q,(1) =V - Q, —» 0
defined by the image of ¢ in (@n(K*/(K*)P")) ®z, Qp = H(Gk,Qp(1)). Choose
a compatible system {gn }n>0 of p"-th roots of ¢ in K and define 7: Gx — Z,(1) by
9(d) = 7(9)n - gn, where 7(g)n := 7(g) mod p" € ppn(K). Then V = Qy(1) ® Qp
with the action of Gk: g(z,y) = (9(z) +y-7(9),y) (9 € Gk, z € Qp(1),y € Qp).

(1) If ¢ € O3, then V is crystalline: We may assume ¢ € 1 + 7 - Og. Set q :=
(¢n mod p), € R. Then, for [g] € W(R), log([g]) converges in Bf , and D :=

rys
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Derys(V) = (Berys ®q, V)@x is a Ky-vector space with a base e; = (t~! @ t, 0),
ez = (—log([g))t™' ®t,1®1) (0 #t € Qy(1)). Its filtered p-module structure is
given by p(e1) = p~ler, (e2) = ez, Fil ! Dx = Dk, Fil’ Dg = K - (log(gq)er + e2),
Fil' D = 0.

(2) Ifg=7™-ufor 0 # m € Z and u € O}, then V is not crystalline but semi-
stable: We may assume u € 1+7Ok. Choose compatible systems {s,} and {u,} of p"-
th roots of m and u in O and choose {s]"-u, } as {g,} above. Set u := (u,, mod p), €
R and let u, be as in the definition of Bs. Then D := Dy (V) = (Bg ®q, V)¢ is a
Ko-vector space with a base e; = (t71®t,0), e2 := m~((— log([u]) —mu,)t 1 ®t, 1®1)
(0 #t € Qp(1)). Its ¢-N filtered module structure is given by p(e;) = p~ler, p(e2) =
ez, N(e1) = 0, N(ez) = e, Fil ™' Dx = Dk, Fil’ Dg = K - (m~'log(u)e; + e2),
Fil' D = 0.

3. Logarithmic structures

The theory of logarithmic structures in the sense of Fontaine-Illusie on schemes
was established by K. Kato in [Kat89] based on an idea of Fontaine and Illusie and
it is a useful tool when one wants to generalize a theory concerning smooth schemes
to semi-stable schemes or normal crossing varieties. See Example 3.1.1 (2), (3) and
Example 3.2.4 (2), (3). We review the theory briefly. See [Kat89] for details.

3.1. Definition. — We assume that a monoid is always commutative and has 1
(the unit), and a morphism of monoids preserves 1. We regard N = {0,1,2,...} as a
monoid by its addition (0 is the unit in this case). For a scheme X, we regard Ox as
a monoid by its multiplication.

A pre-log structure on X is a pair (M, a) of a sheaf of monoids M on the étale
site X¢ and a morphism of sheaves of monoids a: M — Ox. It is a log structure if
the canonical homomorphism a~!(0%) — O% is an isomorphism. We define the log
structure (M, a)® associated to a pre-log structure (M, a) to be the push out of the
diagram of sheaves of monoids: 0% «— a~}(0%) — M. A log scheme (X, M, a) is
a scheme X endowed with a log structure (M, a). We often omit « in the notation
of a log structure and a log scheme in the following. We define a morphism of log
schemes as a pair of a morphism of schemes and a morphism between the sheaves of
monoids compatible with a’s in the obvious sense. The monoid O% with the inclusion
into Ox is a log structure and it is called the trivial log structure. The functor from
the category of schemes to the category of log schemes which associates (X, O%) to
X is fully faithful. For a morphism of schemes f: Y — X and a log structure M on
X, we define the inverse image f*M to be the log structure associated to the pre-log
structure f~1(M) — f~1Ox — Oy.

We say that a monoid P is integral if ac = bc implies a = b for a,b,c € P. We
say that a log structure M is fine, if étale locally on X, M is isomorphic to the log
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structure associated to a pre-log structure of the form (Px, ) where P is a finitely
generated integral monoid and Px is the constant sheaf of monoids associated to
P. Fiber products are representable in the category of log schemes and also in the
category of fine log schemes. We note that in the latter category fiber products are
not compatible with fiber products in underlying schemes in general.

For a morphism of log schemes f: (X, M) — (Y, N), we define the relative differ-
ential module Q0 /v (log(M/N)) to be the quotient of Q)y ® (Ox ®z M®P) by the
Ox-submodule generated by (d(a(z)),0) — (0,a(z) ® z) (x € M) and (0,1®z) (z €
the image of f~!(IN8) — M#P). We denote by dlog(z) the class of (0,1 ® z) for
x € M®P. If M and N are fine, then the differential module is quasi-coherent. We can
define the de Rham complex 'y, 5(log(M/N)) by setting d(dlog(z)) = 0 (z € M®P).

Example 3.1.1

(1) Let X be a regular scheme and D be a reduced divisor with normal crossings
on D. Then M := Ox N j.Of — Ox is a fine log structure, where U = X \ D and j
denotes U — X. Etale locally on X, we have a decomposition D =, <i<r Di such
that D; is regular and D; = {m; = 0} for m; € I'(X, Ox), and M is isomorphic to the
log structure associated to (N")x — Ox; (n;) — [[ 7.

(2) Let A be a discrete valuation ring and let X — Spec(A) = S be a morphism of
finite type such that étale locally on X, there exists an étale morphism of S-schemes
u: X — Spec(A[T1,...,Tq|/(Ty - - T, — 7)) for some integers 1 < r < d. Then as in
(1), we can define the fine log structures M on X and N on S by the special fiber Y
and the closed point s respectively. We have a natural morphism f: (X, M) — (S, N)
of log schemes. The relative differential Q3 /5(log(M/N)) is locally free and locally
of finite rank. If we have a morphism u as above, we have

Q% s(log(M/N)) = (®1<i<rOx - dlog(m;)) /Ox - dlog(f ™! (r)) B (Br+1<i<aOx - dmi),
where m; = u*(T;). Note dlog(f~1(m)) = 3_, i<, dlog(m).

(3) Keep the notation of (2). We denote by My (resp. N;) the inverse image
of M on Y (resp. N on s). We have a natural morphism g: (Y, My) — (s, Ns).
If we have a morphism v as in (2) and denote by 7; (1 < ¢ < 7) the image of
m; € M C Ox in My, then, for y € Y, we have Myy = (’);‘,,y X ngo}j 7 and
the morphism Myyz — Oy, sends 7; to the image of m; € Ox in Oyy. We have
QL (log(My /N,)) = Oy Goy QY 5(10g(M/N)).

3.2. Log étale and log smooth morphisms. — Etale morphisms and smooth
morphisms of fine log schemes are defined similarly as schemes as follows.

Definition 3.2.1 ([Kat89] (3.1)). — We say that a morphism of fine log schemes
i: (X,M) — (Y,N) is a closed immersion (resp. an ezact closed immersion) if it
is a closed immersion in the underlying schemes and the morphism *N — M is
surjective (resp. an isomorphism).

SOCIETE MATHEMATIQUE DE FRANCE 2002



336 T. TSUJI

Definition 3.2.2 ((Kat89] (3.3)). — We say that a morphism of fine log schemes
f: (X, M) — (Y,N) is étale (resp. smooth) if it is locally of finite presentation in the
underlying schemes and, for every commutative diagram of fine log schemes

(X,M) «—>— (T, My)

L L

(Y,N) —— (T",Mz/)

such that 7 is an exact closed immersion and I? = 0 for the ideal I of O+ defining T,
there exists a unique morphism (resp. a morphism étale locally on T”) g: (T”, M7+) —
(X, M) such that goi =sand fog=t.

If f: (X, M) — (Y, N) is étale (resp. smooth), its relative differential module van-
ishes (resp. is locally free and locally of finite rank) ([Kat89] Proposition (3.10)).

A morphism of schemes f: X — Y is smooth if and only if étale locally on X,
there exists an étale morphism of Y-schemes X — Y[T1,...,Ty] for some integer d.
We have the following analogue for log schemes.

Theorem 3.2.3 ([Kat89] Theorem (3.5)). — Let f: (X,M) — (Y,N) be a morphism
of fine log schemes. Then, f is étale (resp. smooth) if and only if étale locally on
X, there exist isomorphisms N = Q%, M = P%, where (Qy, (), (Px,a) are pre-
log structures with P, @Q finitely generated and integral monoids, and an injective
morphism of monoids h: P — @ compatible with f such that the canonical mor-
phism X —'Y Xgpec(z(q]) SPec(Z[P)) induced by o, B and h, is étale and the cokernel
(resp. the torsion part of the cokernel) of h8P is a finite group of order invertible on X .

If we have N = Q¥,, M = P% and h as in the theorem, there is an isomorphism
O,y (log(M/N)) = Ox @z PP /hEP(QEP).

Example 3.2.4

(1) For a finite extension A — A’ of discrete valuation rings, if we endow S =
Spec(A), S’ = Spec(A’) with the log structures M, M’ defined by the closed point
(Example 3.1.1 (1)), then (S',M’) — (S, M) is étale if and only if A’ is tamely
ramified over A.

(2) The morphism f in Example 3.1.1 (2) is smooth.

(3) The morphism g in Example 3.1.1 (3) is smooth.

(4) If X is a smooth scheme over a field k with a reduced divisor D with normal
crossings relative to k, then (X, M) defined as in Example 3.1.1 (1) is smooth over
Spec(k) endowed with the trivial log structure.
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4. Log crystalline cohomology

Let K, k and Ok be as in the Notation in the end of § 1. The étale cohomology of a
variety over a field k with coefficients Z; or Q; (the so called I-adic cohomology) for a
prime [ # p is an analogue of the singular cohomology of a topological space and satis-
fies good properties such as Poincaré duality. However, if [ = p, the étale cohomology
becomes smaller. For a proper smooth variety Y over k, the crystalline cohomology
H;,s(Y/W) supplies this lack; It is a finitely generated W-module endowed with a
semi-linear automorphism (called the Frobenius).

In these notes, we are especially interested in the case that Y is the special fiber of
a proper smooth scheme X over Ok . In this case, the crystalline cohomology tensored
with K over W is canonically isomorphic to the de Rham cohomology H}g (Xk/K) of
the generic fiber X (Berthelot-Ogus [BO83]) and it makes Hjp (Xk/K) an object
of MFk(p) (§2.2).

In this section, we will survey the generalization of the above theory to a proper
semi-stable scheme over Og by O. Hyodo and K. Kato [HK94]. In the semi-stable
reduction case, the following new phenomena occur: In addition to the Frobenius
automorphism, the crystalline cohomology is naturally endowed with a linear endo-
morphism N called the monodromy operator, which vanishes if X/Og is smooth. The
isomorphism between the crystalline and the de Rham cohomologies depends on the
choice of a uniformizer of K.

In the last subsection, we also review a crystalline interpretation of the rings Berys,
Byt and Bgg.

4.1. Log crystalline site. — We assume that the readers are familiar with the
usual crystalline site (([BO78], [Ber74]) and we explain how it is extended to log
schemes. In 4.1, S denotes a general scheme and is different from S in the Notation
in §1. Recall that a divided power (or PD for short) structure on an ideal I of a
sheaf of rings A is a set of maps {ym: I — A}men indexed by N = {0,1,2,...}
satisfying the same properties as the operation z — z™/m! in characteristic 0 such
as Ym(I) C I (m 2 1), ym(Z +Y) = Pogicm Vi(@)Vm—i(y). We often write zl™ for
Ym(z). By a PD-thickening of fine log schemes, we mean an exact closed immersion
(X, M) — (Y, N) of fine log schemes endowed with a PD structure § on the ideal of
Oy defining X. We have the following generalization of PD-envelopes.

Proposition and Definition 4.1.1 ([Kat89] Proposition (5.3)). — Let (S,I,~) be a scheme
S endowed with a quasi-coherent PD-ideal (I,7y). Then, for any S-closed immersion
i: (X,M) — (Y,N) of fine log schemes over S such that v extends to X, there
erist a PD-thickening ip: (X,M) — (D,Mp) over S compatible with v and an
S-morphism pp: (D, Mp) — (Y, N) satisfying ppoip = i and the following universal
property: For any PD-thickening i': (X',M') — (D', Mp:) over S compatible with
v and any S-morphisms u: (X', M') — (X,M), v: (D',Mp:) — (Y,N) satisfying
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voi' =iowu, there exists a unique S-PD-morphism vp: (D', Mp/) — (D, Mp) such
that pp ovp = v and vp oi = ip ou. We call (D,Mp) the PD-envelope of i
compatible with ~y.

If 4 admits a factorization (X, M) - (Y’ N’) -+, (Y, N) with j an exact closed
immersion and k étale, then the PD-envelope of i is the PD-envelope of X — Y’
endowed with the inverse image of N’. In the general case, we take such a factorization
étale locally on Y and glue using the universal property.

Definition 4.1.2 ([Kat89] (5.2)). — Let (S,L,1,v) be a fine log scheme (S, L) with a
quasi-coherent PD-ideal (I,+) such that n- Og = 0 for a positive integer n and let
(X, M) be a fine log scheme over (S, L) such that -y extends to X. We define the crys-
talline site (X, M)/(S, L,1,7))crys (or (X/S)28, for short) as follows: The objects of
the underlying category are (S, L)-PD-thickenings (i: (U, M|y) — (T, Mr),d) com-
patible with v of étale X-schemes U endowed with M|y, which we often abbreviate
to ((T', Mr),9) or (T, Mr). A morphism in the category is a pair of an X-morphism
u: U' — U and an (S, L)-PD-morphism v: (T’, Mr/) — (T, Mr) compatible with ’s.
We say that a morphism (u,v) is strict étale if v is étale in the underlying scheme,
My 2 v*My and U' = U x7 T'. We say that a family of morphisms {(ux,vx)}rea
is a strict étale covering if each (uy,vy) is strict étale and Uyuy(Th) = T. We give
the above category the topology associated to the pre-topology defined by strict étale
coverings.

We define the structure sheaf O(x ar)/(s,z) by T((T, M1), O(x,nmy/(s,2)) = T(T, Or)
and the PD-ideal J(X,M)/(S,L) by F((T, MT), J(X,M)/(S,L)) = F(T, JT), where JT de-
notes the PD-ideal of Or defining U.

As in the scheme case, the crystalline topos (X/ kS')lc‘,’g,S is functorial on both (X, M)
and (S, L, I,v). We have a canonical morphism of topos

uss: (X/S)esy — X&

crys
defined by T'(U, uy5s,F) = T((U/S)i5, Fl s 5ycs.)-

crys

Suppose that there exists a closed immersion i: (X, M) — (Y, N) over (S, L) with
(Y,N)/(S,L) smooth and let (D, Mp) be the PD-envelope of i compatible with .
Let Jp denote the PD-ideal of Op defining X. Then, as in the scheme case, we have:

Theorem 4.1.3 ((Kat89] Theorem (6.4)). — There exist canonical isomorphisms in
D + (X éty Z) :

RulE¢, Ox/s = Op ®ox Ny, s(log(N/L))
RS, o = T @0, Qys(log(N/L) (1 € Z),

Here, for a PD-ideal (J,8) of a sheaf of rings A, we denote by JI'! (r € Z, r > 1)
the r-th divided power of J, that is, the ideal generated by &, (%1): - 0m,(Zs),
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(1,25 € J, my,...,mg >0, my+---+mg >1). We set JIl = A forr € Z,
r < 0.
We also have the following invariance property.

Theorem 4.1.4 (cf. [Ber74] III Théoréme 2.3.4). — With the notation in Deﬁnition
4.1.2, let J be a PD-subideal of I (i.e. ym(J) C J for all m > 1) and let (X', M") be
the reduction mod J of (X, M). Then the natural homomorphism

H™((X/8)%5,,0x;s) — H™(X'/S)E,, Ox1/s)

crys)

is an isomorphism for any integer m > 0.

4.2. Log crystalline cohomology. — Let K, Ok, k, (S, N) and (s, N;) be as in
the Notation in the end of § 1. We will define a crystalline cohomology of a smooth
fine log scheme (Y, My ) over (s, N,) whose underlying scheme Y is proper over s. See
[HK94] § 3 and [Tsu99] §4.2, §4.3, §4.4 for details.

Let N? denote the log structure on Spec(W,,) associated to the pre-log structure

I'(s,Ns) — k 4, Wi, where [ ] denotes the Teichmiiller representative. Note that if

we denote by 7 the image of m € I'(S,N) in I'(s, N;), we have I'(s, Ny) = k* x 7
and the image of 7 in k is 0. We have N, = NY and I'(Spec(W,), N9) = W x 7.
The multiplication by p on I'(s, N,) and the Frobenius o of W, induce a lifting of
Frobenius F on (Spec(W,), N2). (The absolute Frobenius F{x ) of a log scheme
(X, M) over F, is the absolute Frobenius Fx of X with Fx!(M) =~ M -2 M).

Remark 4.2.1. — If we endow Spec(W) with the log structure defined by its closed
point, then its reduction mod p™ (n > 2) does not have a lifting of Frobenius because
o(p) = p but p should be sent to p? - u (u € 1 + pW,) in the log structure.

Let v be the PD-structure on pW,, defined by yn(a mod p") = a™/m! mod p™
(a € W). Then, for (Y, My) as above, the crystalline cohomology

M:ln = Hm(((Ya MY)/(W'na Ngvan’ 7))crysa O(Y,My)/(W,.,Ng))
is a finitely generated W,-module endowed with a semi-linear endomorphism ¢
induced by the absolute Frobenius of (Y, My) and the lifting of Frobenius F on
(Spec(W,,), N2). We set
M2 :=lmM;* and D™ := Ko®w M.
Then MZ and D™ are finitely generated over W and K respectively. If (Y, My) is
of Cartier type ([Kat89] Definition (4.8)) over (s, Ns), ¢ on D™ is bijective ([HK94]
§3). (The condition “of Cartier type” is necessary for the Cartier isomorphism
HI(Qy,,(log(My /N;)) = Q3 (log(My /N;)) [Kat89] Theorem (4.12) (1).)
M is endowed with a kind of HPD-stratification with respect to

(Spec(Wy), Nr?)/Wn
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as follows: Let (Dn, Mp,) be the PD-envelope of (Spec(W,,), N?) in the fiber prod-
uct of two copies of (Spec(W,,), N9) over W, let p;, p» denote the two projections
(Dn,Mp,)) = (Spec(W,),N2), and let v be the unique element of I'(D,,1+ Jp,)
such that v - p3(7) = p;(7) in I'(Dp, Mp,). Then I'(D,,,Op,) is a PD-polynomial
ring over W, with its indeterminate v — 1, and M, has an “HPD-stratification ™

~

e: pIM = M (1) <= ps M (= @i My - (v — D),

where M;"'(1) = H™((Y, My)/(Dn, Mp,,,Ker(Op,, — k),[1), Ov,my)/(Dn,Mp,,))-

We define the monodromy operator N: M* — M by N(z) = the coefficient of
(v — 1) in e(pj(z)). The lifting of Frobenius on (Spec(W,), N?) induces that on
(Dn,Mp, ) and € becomes compatible with the Frobenius endomorphisms. Hence,
from (v — 1) = v? — 1 = p(v — 1)+(a term of degree > 2 in (v — 1)), we obtain

Ny = ppN.

4.3. Comparison with de Rham cohomology. — In § 4.3, we consider a smooth
fine log scheme (X, M) over (S, N) whose underlying scheme is proper over S. Let
(Y, My) be the special fiber (X, M) x(g n) (s, N;). We assume that (Y, My) is of
Cartier type over (s, N;) ([Kat89] Definition (4.8)). A proper scheme X over S
with semi-stable reduction endowed with the log structure defined by the special
fiber (Example 3.1.1) satisfies this condition (Example 3.2.4, [Kat89] Remark after
Definition (4.8)).

We define the crystalline cohomology HZyys((X, M)) of (X, M) to be the crystalline
cohomology D™ of (Y, My) defined in § 4.2, which is a K(-vector space of finite dimen-
sion endowed with a o-semilinear automorphism ¢ and a Ky-linear endomorphism N
satisfying Ny = ppN.

We define the de Rham cohomology HJ}((Xk,Mk)/K) of the generic fiber
(XK, Mk) := (X, M) x(g,~n) Spec(K) to be

H™(Xk,Qx, /k (log(Mk)))
= Qp ®Zp IJ_I_D Hm(((X'ny Mn)/(sna Nnaposnv'y))crym O(Xn,Mn)/(Sn,Nn))a

which is a K-vector space of finite dimension. We write D7y for HJ} ((Xk, Mk)/K)
to simplify the notation in the following.

Theorem 4.3.1 ((HK94] Theorem (5.1), cf. [Tsu99] § 4.4). — There exists a canonical
isomorphism depending on the choice of the uniformizer 7 of K:

pr: K @k, D™ — DgLR

functorial on X and compatible with the cup products. For another choice of the
uniformizer ©’, we have

Pr’ = Pmx © exp(IOg(W,ﬂ'—l) ’ (1K ® N))
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In the rest of § 4.3, we will explain how to construct the map p,. We introduce an
intermediate crystalline cohomology D™ as follows.

Let £(T) denote the log structure on Spec(W,[T]) defined by the divisor {T" = 0}
and let ig, r: (Sn,Nn) — (En, MEg,) be the PD-envelope compatible with (pW,,7)
(see §4.1) of the exact closed immersion (Sp, N,,) < (Spec(W,[T]), L(T")) defined by
T — 7. The scheme E, is explicitly written as

Spec(W [T, T™¢/m! (m > 1)] @w Wy)
where e = [K : Kg]. We have another exact closed immersion
iBn0: (Spec(Wr), Np) < (En, Mg,,)

defined by T7™¢/m! — 0 (m > 1) and T — 7 in the log structure. The liftings of
Frobenius on (Spec(W,[T]), £(T)) defined by T — TP and ¢: W,, — W, induces the
lifting of Frobenius Fg, on (E,, Mg,) compatible with the canonical PD-structure &
on Jg, := Ker(Og, — Og,). The exact closed immersion ig, ¢ is compatible with
the liftings of Frobenius.

We define the intermediate cohomology D™ by

Mnm = Hm(((Xn, Mn)/(Em MEn,jEn,S))crysy OX,,/En)

= Hm(((le Ml)/(Em MEnajE'mE))crysa Oxl/E")a
D™ = Q, ®z, lim M.

By the base changes ig, o and i{g, », we obtain two homomorphisms
Dm prO Dm pr‘ﬂ' DénR‘

The absolute Frobenius of (X;, M;) and Fg, induces an endomorphism ¢ on D™
and pry is compatible with .

MT is endowed with an HPD-stratification with respect to (Sp,Nn,) <
(Spec(W,[T), L(T))/ Wy as follows: Let (En(1), Mg, (1)) be the PD-envelope of
(Sn, Ny) in the fiber product of two copies of (Spec(W,[T]), L(T)) over Wy, let p1, p2
denote the two projections (E, (1), Mg, (1)) = (En, ME, ), and let u denote the unique
element of I'(E,(1),1 + Jg,(1)) such that u - p3(T) = pi(T) in T'(En(1), Mg, 1))-
Then I'(En(1),0g, 1)) is a PD-polynomial ring over I'(E,,Og,) with its indeter-
minate u — 1 for either of the two I'(E,, O, )-algebra structures, and M7 has an
HPD-stratification:

~

e PIMRY =5 M (1) <= ps M (= iso My - (u — 1)),

where M;n(l) = Hm((Xn, Mn)/(En(l), MEn(l), 7En’ 5), OXn/En(l))'

We define the monodromy operator N on M7 by N(z) = the coefficient of (u—1)
in e(pi(x)). As in the case of M, we see Ny = ppN on M. The projection pry is
compatible with N, that is, pry N = Npr,.

SOCIETE MATHEMATIQUE DE FRANCE 2002



342 T. TSUJI

Proposition 4.3.2 ((HK94] Lemma (5.2), [Tsu99] Propositions 4.4.6, 4.4.9)

There exists a unique Ko-linear section s of pry compatible with . The section s
is functorial on X and compatible with N and the cup products. It also induces an
isomorphism

Rg Qw D™ AN D™,
where Rg = lim T'(En, Og,).

The isomorphism p; is the K-linearization of pr, o s.

4.4. Crystalline interpretation of Bs, Bst and Bqr. — We will give a crys-
talline interpretation of the rings Berys, Bst and Bar. We define H™((S, N)/W, Jll)
(m = 0,7 > 0) to be
tim (tim H™ (S}, N3/ (Wos 5Wos 1))eryss Ty sy ywa))-
n K’

where W, is endowed with the trivial log structure, K’ ranges over all finite extensions
of K contained in K and (S’, N’) denotes the scheme Spec(Ok+) endowed with the
log structure defined by the closed point. The crystalline cohomology over the base
(S, N) or (E, Mg) appearing below is defined similarly. See § 4.3 for the definition of
(En7 M E, )

By functoriality, the absolute Frobenius of (S],N;) and the Frobenii of W,
and (En,Mg,) induce the Frobenius endomorphisms ¢ on H™((S,N)/W) and
H™((S,N)/(E,Mg)). H™((S,N)/(E, ME)) is naturally endowed with a monodromy
operator N satisfying Ny = ppN in the same way as H™((X,, M,)/(En, Mg,)) in
§4.3 ([Tsu99] §4.3). We will denote by the operation Q,®z, by the subscript Q,.

Proposition 4.4.1 ([Fon83] § 3, [Kat94a] § 3, [Tsu99] § 1.6, § 4.6)
(1) There exist canonical Gk -equivariant isomorphisms:

B, = H((S,N)/W)g,,
B = (H((S,N)/(E, ME))g,)" ™™,
B 2 lim(H°((S,N)/(S,N),0/J%)q,)

U U
Fil” Bar = lim(H°((S,N)/(S, N), J"/J¥)g,)  (r € Z,r >0),

where Bc'*rys and B} are as in § 2.3 and N-nilp denotes the part where N is nilpotent.
The first (resp. the last) isomorphism is compatible with ¢ (resp. ¢ and N). Further-
more the pull-backs by (En, Mg,) — Spec(W,) and ig, : (Sn, Np) — (En, MEg,) in
the RHS correspond to the injections B, — Bf and 1r: Bf — BJy associated to
7 (see §2.3 and Remark 2.1.3 (2)).

(2) The cohomologies H™((S,N)/W), H™((S,N)/(S,N),J"/Jls) (s > r > 0)
and H™((S,N)/(E, Mg)) vanish if m > 0.
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5. Syntomic complex

In this section, we will survey the definition of the syntomic complexes and their
properties proven in [Tsu99] § 2.

Syntomic cohomology was first introduced by J.-M. Fontaine and W. Messing as
an intermediate cohomology in their proof of Cerys (=Cs in the good reduction case)
in [FM87]. We will explain their idea briefly. Assume K = Kj, let X be a proper
smooth scheme over W, and suppose that Ccys is true for X. Then we have the
following exact sequence for r > m ([FM87] III 2.4. Proposition and the following

remark):
0 — HE (X, Qp(r)) — Fil'(B (X/W))

1—p/p" 4
Bcrys crys(

( crys crys
X/W) — 0.

See §2.3 for the definition of Bf, . Furthermore, the right two terms are isomorphic
to Qp ®z, Hipyo(X /W, J rl) and Q, ®z, HT,(X /W) respectively (Kiinneth formula
[FM87] I1I 1.5. Proposition. cf. the crystalline interpretation of B, in Proposition

crys

4.4.1), where X = X ®ox O%. Hence we have a quasi-isomorphism:

(5.0.1) HE(Xz,Qp)(r) = [Qp @2z, HILy (X /W, J11) 2222, @, @z, HIZ (X /W)

Fontaine and Messing considered the RHS of (5.0.1) syntomic (= flat and locally
complete intersection) locally on X and constructed sheaves S7, (n > 1,7 > 0) on the
syntomic site of X, := X ® Z/p°Z (s > n+r), which we can regard as an analogue of
Z/p"Z(r) in characteristic p. The syntomic cohomology H™ (X, S%) is defined to be
H™(X s syn, S%) (s = n+r). Then Fontaine and Messing constructed canonical maps

(5.0.2) H™(X, 8;) — Hg (Xg, Z/p"Z(r))

and proved Cerys in the case dim(Xk) < p and K = K (see the beginning of § 7).

In [Kat87], [Kur87|, K. Kato and M. Kurihara proved that the above maps are
isomorphisms if m < r < p — 2 without assuming K = Kj, from which K. Kato
and W. Messing derived Ciys in the case dim(Xg) < (p — 2)/2 ([KM92], see the
beginning of § 7). In [Kat94a], K. Kato extended these results to the semi-stable
reduction case. In their proof, Kato and Kurihara used an étale localization of the
RHS of (5.0.1): syntomic complexes (not sheaves) S,(r) (s!°%(r) in the semi-stable
reduction case) (r < p—1) whose étale cohomology gives the syntomic cohomology; it
is defined explicitly in terms of certain de Rham complexes (see § 5.2). They compared
syntomic complexes with p-adic nearby cycles based on the calculation of the latter
by Bloch-Kato [BK86] (in the good reduction case) and O. Hyodo [Hyo88] (in the
semi-stable reduction case).

If r > p — 1, unfortunately, the homomorphism (5.0.2) with m < r does not seem
to be an 1somorphxsm in general. In fact, the sheaves S}, for r > p are defined in
an adhoc manner compared to the case r < p — 1. However, if we allow kernels

SOCIETE MATHEMATIQUE DE FRANCE 2002



344 T. TSUJI

and cokernels with exponents bounded when n varies, we can remove the restriction
r <p—2([Tsu99] §2, §3). We will survey it in §5 and §6. We will introduce two
complexes of étale sheaves S;’(r) and S,,(r). The first one is canonical but different
from sl°8(r) (defined by K. Kato) when r < p — 1. The second one coincides with
s1°8(r) when r < p— 1 but depends on some choices when r > p. There is a canonical
morphism S;’(r) — S},(r) quasi-isomorphic “up to bounded torsion”. The complex
S, (r) is used to prove an invariance (up to bounded torsion) of H4(Sy'(r)) (¢ < 7)
under Tate twists (§5.2) and the complex S,,(r) is used to compare H?(S/,(¢q)) with
the corresponding p-adic vanishing cycles (§ 5.4, §6.1, §6.3). We can also define the
syntomic cohomology and the morphism (5.0.2) in the semi-stable reduction case by
generalizing the method of Fontaine-Messing [FM87] (see [Bre98b], [Tsu98], [BM]),
but we won’t treat that approach in these notes.

5.1. The complexes S;'(r). — Let (X, M) be a fine log scheme over W whose
underlying scheme X is of finite type over W and let (X,,, M,,) denote (X, M)RZ/p"Z.
For r € Z, r > 0, we will define the object S, (r)(x,nm) of DT ((X1)et, Z/p™Z) such
that there exists a canonical distinguished triangle

= S () x,0) — RUGto M) W T 21 W o B M) (Ws O M) W

Here w(x, um,)/w, denotes the morphism of topos

U(Xp,Mp) /Wy * ((XH?MH)/(Wnprn77))(;ys — (Xn); = (Xl)gt".

and Spec(W,,) is endowed with the trivial log structure. Note that we cannot take
the mapping fiber in a derived category.

First assume that there is a closed immersion i of (X, M) into a smooth fine log
scheme (Z, Mz) over W endowed with a compatible system of liftings of Frobenius
{Fz,}nz1 00 (Zn,Mz,) := (Z,Mz) ® Z/p"Z (which exists if Z is affine). Set w} :=

QF W (log(Mz,)) (¢ = 0) to simplify the notation. In this case, noting Theorem

4.1.3, we define the syntomic complex S;’(7)(x,a),(z,m5) to be the mapping fiber of

r—- . Py .
JI[Jn ] ®0,, Wz, — Op, ®0,, Wz, ,

where (D, Mp,) denotes the PD-envelope of i ® Z/p™Z compatible with « and Jp,
is the PD-ideal Ker(Op, — Oy, ). Its degree g-part is

(T, " ®0s, w5,) ® (Op, @0, wE,")
and its differential map is given by
d(z,y) = (dz, (p" — ¢)(z) — dy)
for z € J[Drn_‘ﬂ ®0,, wg and y € Op, ®o,, w%zl. We define a product

(5.1.1) Sg(r)(X,M),(Z,Mz) (2 S;(T,)(X,M),(Z,Mz) — Sy (r+ TI)(XYM%(Z,MZ)
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by
(z,9) @ (2',y) — (@ A2, (1) "z Ay +y A p(a'))
2,y € (75, " ®o,, wh, ) ® (Op, ®os, W, )
and a symbol map
(5.1.2) MEP — S7(1)(x,m),(2,M2)[1]
in D*((X1)et,Z) by
MEP[-1] < [L+ Jp, — MP ] — S7'(1)(x,m),(2,Mz);

where the first quasi-isomorphism is induced by M§ /(1 + Jp,) — MEP and the
second morphism is defined by log: 1+ Jp, — Jp, and

ME — (Op, ®o,, wz,)® Op,
ar— (dlog(a),log(a’pp,(a)™1)).
We can also define a homomorphism

(5.1.3) ppn (Ox,.) — HO(Sy (1) (x,m),(2,Mz))

by € + log(gP"), where & denotes a lifting of € in O, . Note gr" € 1+ Jp, since
e?” =1.

We define Sy’ (r)(x,ar) to be the image of S;'(7)(x,m),(z,mz) in DT ((X1)et, Z/p"Z),
which is independent of the choice of ¢ and {Fz, } up to canonical isomorphisms
([Tsu99] §2.1).

In the general case, we take an étale hypercovering X of X and a closed immersion
of (X', M|x-) into a smooth fine simplicial log scheme (Z', Mz.) over W with a com-
patible system of liftings of Frobenius {Fz. } and “glue” the above complex associated
to each component of the simplicial log schemes using cohomological descent. They
still have a product structure and a symbol map. See [Tsu99] § 2.1 for details.

Let (X, M) be a fine log scheme over (S, N) whose underlying scheme is of finite
type over O and let Y denote X ®o, k. For r € Z, r > 0, we define Sy (rx €
D*(Y &, Z/p™Z) to be the “inductive limit” of S;'(7)(x’,m")ly,,, Where K’ ranges over
all finite extensions of K contained in K, (S’,N’) is the scheme Spec(Og/) with
the log structure defined by the closed point, and (X', M') = (X, M) x(g,n) (S, N').
Precisely speaking, since we cannot take the inductive limit in the derived category, we
choose a compatible system {(S’, N') — (V', My:),{Fy:}}k of a closed immersion
of (8, N’) into a smooth fine log scheme (V’, My) over W with liftings of Frobenius
{Fv;} of its reduction mod p™, and use the compatible system

{(X,M|x ) x@s,n) (S,N') = (Z',Mz) xw (V',My),{Fz, x Fy;}}k

to describe S;’(r)(x’,m+) as explicit complexes. Here X and (Z', Mz-) is the same
as in the above definition of S;'(r)(x,m) in the general case. See [Tsu99] §2.1 for
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details. We define the syntomic cohomology H™((X, M), Sg,) to be

Qy 2, lim HE (¥, 87 () x 1)

5.2. The complexes S),(r). — Next let us define another complex S, (r) (r € Z,
r > 0). Roughly speaking, we replace p” — ¢ by 1 — “p/p" in the definition of S’ (r).

Let (X, M) be a fine log scheme over W whose underlying scheme X is of finite
type over W. We assume that X is flat over W and that there exists an exact closed
immersion ¢ of (X, M) into a smooth fine log scheme (Z, Mz) over W endowed with a
compatible system of liftings of Frobenius {Fz, } of (Z,, Mz, ) satisfying the following
conditions: i is a regular closed immersion in the underlying scheme (EGA IV Défini-
tion (16 9.2)) and there exist global sections T1, . . Td of Mz such that Fz, (T;) = TF
(1 €4 < d)anddlog(T;) (1 << d)form a basis of wy = Q%4 (log Mz). (Any smooth
fine log scheme (X, M) over (S, N) satisfies this assumption étale locally on X. See
after the statement of Theorem 5.3.2.) Choose such i and {Fz,}. Let (Dn,Mp,)
be the PD-envelope of ¢ ® Z/p"Z compatible with (pW,,,~) and Jp, be the PD-ideal
Ker(Op, — Ox,). Then, using the assumptions, we can verify:

Lemma 5.2.1 (cf. [Kat87] I Lemma (1.3)). — The sheaves Op,, and ng (r € Z) are
flat over Z/p"Z and the canonical homomorphisms Op,,, @ Z/p"Z — Op, and
JI[SLH QZ/p"Z — J[gl are isomorphisms.

On the other hand, we have

Lemma 5.2.2 (cf. [Kat87] I Lemma (1.3)). — For any integer 0 < r < p — 1, we have
J[T] o)
¢(Jp,) Cp"Op,

Proof. — For any z € Jp,,, () is described as 2P +p-y (y € Op, ) and p(z!*!) = plsl.
((p—1)'z!P +4)* for s > 1. Hence the lemma follows from pl*l(= p*/s!) € pinf{s:P— 1}Z
(s=1). d

Hence, for 0 < — 1, we can define @, : ng — Op,, by ¢r(z) =y mod p,

where 7 is a hftlng of z in J[ " and o) =p"y,y € Op,,,. Forr>p, ¢ [rl ) g
p"Op,, in general and we use the modification

JoY =I5, L e(@) €p 0D, }/p" (reZ,r>0).
Note J[Drl' = J[Drl (0 < r < p—1). Using Lemma 5.2.1, we can verify that J[T]' is
flat over Z/p"Z and JI[;]'“ ®Z/p"Z — J [T]/ ([Tsu99] §2.1). Hence, we can define

:Jp 0 D., 51mllarly as above. For r < 0 we set o, =p~Tp.
Smce cp(wzn) Cp- wZn (because p(wy, ) = 0 by p(dlog(h)) = dlog(b?) = p -
dlog(b) = 0,b € Mz,) and w} is flat over Z/p"Z, we can define the Frobenius
“divided by p?™: ¢g: w} — wh similarly.
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We define S;,(r)(x,m),(z,m5) to be the mapping fiber of
1—p: J,[Sn“]’ ®0z, Wz, — Obp, ®o,, wz,,

where ¢, = @r_q ® @ in degree q. The existence of T3,...,Ty in the as-
sumptions is used here to make J,[;;*’]' ®0,, wg (¢ > 0) a complex. (For
T € Jgi o if we set V(z) = 370, cq@idlog(Ti) (zi € Jgn_:l), then we have
V(p(z)) = ¢(V(z)) = X1<icaP(@i) - pdlog(T;). Hence ¢(z) € p"Op,,, implies
pp(xi) €p"Op,,. ie. p(z;) €p" 'Op,,..)

The “multiplication by p™”

upr”: Jgn—]/ ®Ozn w.Zn . Jgn_] ®oz,. w'Zn

and the identity on Op, ®o,, wy, defines a morphism of complexes

(5.2.3) Sp () (x,m),(2,M7) — Sn(r)(x,m),(2,M7)
whose kernel and cokernel are killed by p”.

We can define a product S, (r) ® S, (r') — S,,(r+r') and a symbol map M2}, —
8! (1)[1] similarly as S;(r) in such a way that the following diagrams commute
([Tsu99] §2.1).

Sy e@Sy(r) —— Sy(r+r) M L se(1)[1]

! Lo !

SLr) @S (r') —— Sh(r+71), M=, E¥L oy,

5.3. Invariance of H(Sy(r)x77) (¢ < r) under Tate twists. — Let
(X, M) be a smooth fine log scheme over (S,N) whose special fiber (Y, My) :=
(X, M) x(s,n) (5,Ns) is of Cartier type over (s,Ns). Choose a generator ¢t =
(en)nz0 € Zp(1)(Og) = liLniupn(Of). Let t, denote the image of t under
Zy(1)(Og) — ppn(Ox) — HO(X,S;7(1)). See (5.1.3) for the second homomorphism.
Then from the product structure of S;’(r) (X,31)> We obtain a homomorphism

(5.3.1) HUSy (@ x ) — RSy (Nx ) ar— it Y-a
for0<g<r.

Theorem 5.3.2 ([Tsu99] Theorem 2.3.2). — For any integers r and q such that 0 < q <
r, there ezists a positive integer N depending only on p, r and q such that the kernel
and the cokernel of the homomorphism (5.3.1) are killed by p"™ for every n > 1.

We will explain an outline of the proof of Theorem 5.3.2. Let £(T') denote the
log structure on Spec(W[T']) defined by the divisor {T" = 0} and let ig denote the
exact closed immersion of (S, N) into (Spec(W|TY]), L(T)) defined by T +— m. Recall
that the PD-envelope of the reduction mod p™ of i¢gs is denoted by (E,, Mg,) in
§4.2. (Spec(W|T)), L(T)) and hence (E,, Mg, ) have liftings of Frobenius defined by
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T+~ TP and 0: W — W. Since the question is étale local on X, we may assume that
there exist a Cartesian diagram

(X, M) ——(Z,Mgz)

i E

(S, N) —=— (Spec(W[T)), £(T))

such that g is smooth, a compatible system of liftings of Frobenius {Fz,_ } of (Z,, Mz,)
compatible with the lifting of Frobenius of (Spec(W([T)),L(T)), and Th,..., T4 €
['(Z,Mz) such that F3 (T;) = Tf (1 < i < d) and dlog(T3) (1 < i < d) form
a basis of le/W[T] (log(Mz/L(T))) (use Theorem 3.2.3). Choose such a diagram,
{an} and T,

Choose a compatible system s = (sp)n>0 of p"-th roots of 7 in Ox and
we regard Acys as a W([T]-algebra by the homomorphism p: W[T] — Acrys;
T +— [(sn mod p)n>o]. Note that p is not Galois invariant. Set wj, JWaT) =
QW) (log(Mz,/L(T))) to simplify the notation.

Proposition 5.3.3 ([Tsu99] Lemma 2.3.4). — With the above notation, there exists an
isomorphism in DY(Y ¢, Z/p"Z):

Sy (T)(Y,ﬁ)
= fiber(p” — ¢ ® ¢ Fil'™" Acrys ®@wir) Wz, jw, (7] — Acrys OWIT) Wz, W, 17)
depending on the choice of T; (1 < i < d) and (Sn)n>0, which is not G -equivariant.

Furthermore the multiplication by t,, on the LHS corresponds to the multiplication by
t € Zp(1)(O%) C Fil' Acrys on the RHS.

Idea of a proof. — First there is a canonical distinguished triangle in D+ (Y ¢, Wy,):

log L _ N log L
— R”Yn/wn*oxn/wn — Ru~ . Ox JE, RUYH/En*OXn/En'

Set Pn = H{ycrys(Sn/En,O5 /5 )(2 Rliogcrys(Sn/En, Oz, /). This is an
Rg, (.= T'(E,, Og,))-PD-algebra endowed with a monodromy operator Np,: P, —
P, (cf. §4.4). Then we have a Kiinneth formula

l [a¥) L l ns .
Ru%i/En*OYn/En = Pn ®REn Ru;i/En*OX"/E" = Pn ®W"[T] wzn/Wn[T]'

Using T; (1 < 7 < d), we can define a monodromy operator N: Wz war
Wy swair) @ WalT]-modules in such a way that the endomorphism N in the above
distinguished triangle is realized as the morphism of complexes Np, ® 1 +1® N.
Using the monodromy operator N on w, JWalT] and the PD-structure on P,, we

can change the natural W, [T]-algebra structure of P, to a: Wy[T] -2 Aeys/p" =
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HY . erys(Sn/Wan) — P,. Then the monodromy operator Np, ® 1+ 1® N is replaced

by Np, ® 1 because a(W,,[T]) C PN=C. Hence, from the exact sequence
0 — Acrys/P" Acrys —> P = P, — 0

(compare with the above distinguished triangle) and the above distinguished triangle,
we obtain

1 ~ )
(*) Rug’y, 0%, w, = (Aarys/P") @W, (1) Wz, jw, (7)-
Strictly speaking, we need to describe Ru];g W *Ofn Jw,, etc. as explicit complexes
and construct the relevant maps (especially (*)) as morphisms of complexes. Of

course, we also need the filtered version. O

We define the filtration Fil;, Acrys (1 € Z) on Acrys by
Fil, Acrys := {a € Fil" Acrys | (@) € p" Acrys }

for r > 0 and Fil}, Acrys = Acrys (7 < 0) (cf. §5.2). We have Filj, Acrys = Fil" Aerys if
r < p—1and p"(Fil" Acrys/ Fily Acrys) = 0 (1 > 0). Hence we may study the mapping
fiber of

1 —pr: Fil,7" Acrys Qwir) Wz, jw, (1] — Acrys OW(T] Wz, )W, (1)
which we denote by C,(r), instead of the RHS of the isomorphism in Proposition

5.3.3. Here ¢, = £ ® % in degree q.

We define the filtration I1¢] Acrys on Acrys by
I[s]Acrys = {z € Acrys | ¢"(x) € Fil® Agyys for all n > 0}.
We also denote by Il! the induced filtration on Fil}, Acrys.

Lemma 5.3.4 ([Fon94a] § 5.2, cf. [Tsu99] Corollary A3.2). — tP~1 ¢ PAcrys.

For an integer n > 0, we set t{"} = t*(tP=1/p)lal(= t"/(p%a!)) € Acrys Where
n=(p-1)a+b(a,beZ0<b<p—1). We verify easily trt e I[T]Acrys. Let R
and 6: W(R) — Oc¢ be as in §2.3 and let £ be a generator of Ker(6) (cf. Proposition
2.3.1). We see easily £7=° - t18} € TFN(Fil] Acrys) (0 < s < 7). Set me == [(en
mod p)n>o0] — 1 € W(R), where (€n)n>0 is as in the beginning of this subsection.

Proposition 5.3.5 ([Fon94a] 5.3.1 Proposition, 5.3.6 Proposition ii), [Tsu99] § 1.2, A3)
(1) For any integer r > 0, we have

I{T]Acrys = {Z ant{n}

nx2r

an € W(R), a,, converges p-adically to O}.

(2) For any integer s > 0, there exists an isomorphism.:

W(R)/7eW (R) =5 gr$ Acrys; « — - £},
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(3) For any integers 0 < s <,
W(R)/¢™ (me)W (R) =5 gr}(FIl} Acrys); @ — - €775 - 1)
and for any integers s > 1 > 0, I Agrys = 1191 (Fill) Acrys).

Let I11C,,(r) be the filtration on Cy,(r) induced by the filtration T [1 on Fil; ™ Acrys
and Acrys. Then, by Proposition 5.3.5 (2), (3), we see that, for any integers s and r,
the complexes gr;yCy(r) and gr?"'T,Cn(r +7') (' = 0) become isomorphic to the same
complex and the multiplication by t{'} from the former to the latter is given by the
multiplication by o € Z,, defined by tlsh.¢{r'} = o.t{s+7'} Hence it suffices to prove:

Lemma 5.3.6 ([Tsu99] Lemma 2.3.19)
(1) HI(IBIC,(r)) =0 (s > T —q+1).
(2) Hi(griCr(r)) =0ifs<r—q.

Sketch of a proof. — We are reduced to the case n = 1 easily. Then the morphism

1— i IFN(FI™ Aerys @wir) Wy, jiiry) — 1 1 Aerys @wir) Wz, jir)

becomes the identity maps in degree ¢ > r — s + 1, which implies (1). Next consider
gr$ of the above morphism. Then, in degree ¢ < 7 — s — 1, the LHS is isomorphic to
(W(R)/p~ ! (me)W(R)) ®w ) wy, Jk(r) With zero differentials, the RHS is isomorphic
to (W(R)/meW(R)) @w(r] Wz, /xr) 2nd the morphism becomes ¢ ¢/p?. Hence,
using the Cartier isomorphism (here we use the assumption that (Y, My) is of Cartier
type over (s, N;)), we see that gr§ of 1 — ¢, induces an isomorphism (resp. injective
homomorphism) between H? if ¢ < r—s—2 (resp. ¢ = r—s—1), which implies (2). O

5.4. Calculation of H(S{(q)). — Let (X, M) be a smooth fine log scheme over
(S, N) whose special fiber (Y, My) := (X, M) x(s,n) (s, Ns) is of Cartier type over
(s, Ns). We assume that there exist a Cartesian diagram and {Fz,} as after the
statement of Theorem 5.3.2 and we choose such a diagram and {Fz,}. Set S,,(q) :=
S;,(9)(x,M),(z,Mz) to simplify the notation. We will define a filtration on the sheaf
H9(S;(q)) and give an explicit description of the associated graded quotients.

Define the filtrations U" and V" on (M5?)®? (¢ > 0) by

UO(MEPYE0 = (MEP)E0, U™+ (MFP)® = V™(MEP)® := 0 (m > 0),
if g =0,
UUMng = MEP, U™MEP :=1+1"0x, (m > 1),
VOMSP .= (14 n0x,) - (n), V™M = UM HIMEP (m > 1)
if g=1, and
U™(MEP)®? := the image of U™ MEP ® (MEP)®(~1),
V™(MEP)®9 := the image of U™ MEP ® (MEP)®(4=2) ® (1) + U™ (MEP)®"
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if ¢ > 2. (See [Hyo88](1.4).) Here and hereafter we denote by the same letter m the
image of m € I'(S, N) = Ok ~ {0} under the map I'(S, N) — I'(X, M) and its images
in I'(X,, M,) (n > 1).

From the product structure and the symbol map, we obtain a morphism
(M$P)®7 — S7(q)[q] and then (MEP)®9 — HI(S](q)) by taking H° of both sides. We
also call this homomorphism the symbol map. We denote by {a1,...,aq} the image
of a1 ® -~ ®aq (a; € MSP) by this map.

We define the filtrations U and V' on H(S7(¢q)) (¢ > 0) to be the images of
those on (M5P)®? defined above under the symbol map. We define grf* and gr* of
H(S1 (g )) by U™/V™ and V™/U™F! respectively.

Put wi = Q}, /s (log(My /N;)) and define the subsheaves By (resp. Z3) of wi to

be the image of d: w% ™' — w¥ (resp. the kernel of d: w} — w?,'“) Let wy, log D€

the subsheaf of abelian groups of wj. generated by local sections of the form dloga; A
dlogas A --- Adlogag, where ai,a2, -+ ,ay € My.

Proposition 5.4.1 ([Tsu99] Proposition 2.4.1, cf. [Kur87] Proposition (4.3))

If p = 2, assume v—1 € K, where Ky, is the mazimal unramified extension of
K. Let e be the absolute ramification index of K. Then the sheaf H1(S1(q)) has the
following structure :

(1) U"H(S1(9)) = H4(S1(q))-

(2) Ifm =0,

EIHI (S} (@) = W, o {01, 0} = dlogaT -+ dlog Ty
griH(S](q)) = ;1, logh 101,°*+ ,ag—1,T} > dlog@r A -+ A dlog@g—

(3) If0 < m < pe/(p—1) and p}m,

1

q
griHY(S1(q)) & BY {1+7™z,a1, -+ ,a4-1} — Tdlogar A --- Adlogag_q

q—

Y
q 2

BT HI(S{(@)) & Dy {1+ 77w an, 0,7} o Fdlogay A A dlog T
Y

(4) If0<m <pe/(p—1) and p | m,

q 1

gro M (S1(q)) = Z;, {1+7™z,a1, - ,a4-1} > Tdloga@r A --- Adlogay_y
Y
q 2

gri"HI(S;(q)) = Z’ {1+ 7™z,a1, -+ ,a9-2,7} — Tdlogar A --- A dlogag_2
Y

(5) If m > pe/(p—1), U"H(Si(q)) = 0.

Here ay,...,aq € M§®, ¢ € Ox,, @; are the images of a; in M§P, and T is the
image of x in Oy.

Furthermore, (1), (2), (5), and (3) and (4) for 0 < m < e are still true when p = 2

and /—1 ¢ K.
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In degree > q¢—p+2, J ] for r > p — 1 does not appear in the complex 8 (q) and
we can prove Proposition 5. 4 1 by the same method as [Kur87]ifp > 3. If p = 2, we
need to introduce a new and more complicated method.

6. Syntomic complexes and p-adic nearby cycles

Let X be a scheme of finite type with semi-stable reduction, that is, X is a regular
scheme flat over Ok and its special fiber Y is a reduced divisor with normal crossings
on X. We endow X with the log structure M defined by the special fiber (see Example
3.1.1). Then (X, M) is smooth over (S, N) and its special fiber (Y, My) is of Cartier
type over (s, N,) ([Kat89] Definition (4.8)). Set X := X ®o, Ox, Y = X ®o, k,
X? := X ®ox K, and let i and j denote the canonical morphlsms i: Y — X and
j: X7 — X respectively. Forr € Z, r > 0, let Z/p"Z(r)' denote (p aa1Lyp(r))®Z/P"Z,
where r = (p — 1)a + b (a,b € Z,0 < b < p —2). There are natural products
Z/p™Z(r) QZL/p"Z(s) — Z/p"Z(r + s)’ (r,s > 0). We will explain an outline of the
proof of the following theorem.

Theorem 6.0.1 ([Tsu99] § 3)
(1) There ezists a canonical Gk -equivariant morphism
Sy (r)x 1) — teRiesZ/P L(r)'
in D% (Y4, Z/p"Z) compatible with the product structures.

(2) For any integers q, T such that 0 < q < r, there exists N > 0 which depends
only on p, q and r such that the kernel and the cokernel of the homomorphism:

HAUSY (N x.37)) — 6 R TexnZ/D" L)'
induced by the morphism in (1) are killed by pV for every n > 1.

By the proper base change theorem for étale cohomology, we obtain the following
corollary.

Corollary 6.0.2. — Suppose that X is proper over Ok . Then, there exists a canonical
Gk -equivariant tsomorphisms

H™((X, M), Sy,) — HE (Xg, Qp(r))

for 0 < m < r compatible with the product structures.

6.1. Construction of the maps. — First we consider a smooth fine and saturated
log scheme (X, M) over (S, N). (Here a monoid P is called saturated if it is integral
and if, for any a € P8P, ™ € P for some n > 1 implies a € P, and a log structure
L on a scheme S is called saturated if Lz are saturated for all s € S or equivalently
if (U, L) are saturated for all étale S-schemes U.) We further assume that we are
given a closed immersion (X, M) < (Z, Mz) and liftings of Frobenius {Fz, } as in the
definition of S}, (r)(x,m),(z,Mz) in §5.2. (Such a closed immersion and {Fz,} always

ASTERISQUE 279



SEMI-STABLE CONJECTURE OF FONTAINE-JANNSEN: A SURVEY 353

exist étale locally on X). Let Xiniv (C Xk = X Qo K) denote the locus where
the log structure M on X is trivial, which is open dense in X. If X has semi-stable
reduction and M is defined by its special fiber, then X,y is precisely the generic fiber.
Let ¢ and j denote the morphisms Y := X ®o, k — X and Xy — X respectively.
Then we can construct canonical morphisms:

(6.1.1) S, (1) (x,Mm),(2,Mz) — e Ristx Z/p"L(r)  (r € Z,r > 0)

in the following way. See [Tsu99)] § 3.1 for details.

For an affine scheme U = Spec(A) étale over X whose special fiber is connected and
non-empty, let A® denote the p-adic henselization of A, which is a normal domain,
choose an algebraic closure Frac(A") of the field of fractions Frac(A") of A", and let
AP denote the integral closure of A" in the maximal unramified extension of A%, in
Frac(A"), where U, = Spec(Al, ) (C Spec(A"[1/p])) denotes the locus where the

triv triv

inverse image of M on U" := Spec(A") is trivial. We have Gal(Frac(A?)/Frac(A")) =

m1(UL;,) where we use the base point defined by Frac(A*) in the RHS. Replacing O,
Oc and R in the definition of Ay (§2.3) with AR AR (the p-adic completion of F)
and Rz := lim_ AR/pA", we obtain a ring Acrys(4") endowﬁ with an action
of m (UL a lifting of Frobenius ¢ and a filtration Fil' Acrys(A®). If we define

riv)v

Fil;, Ac,ys(—f—lﬁ) (r € Z) in the same way as after the proof of Proposition 5.3.3, then
we have the following exact sequences of 71 (U, )-modules ([Fon94a] 5.3.6, [Tsu99]
§1.2):

0 — Zy(r) — Fill Acrys(AP) ——22° A (AF) — 0 (r€Z, v >0).
Next, for a sufficiently small U, we construct canonical resolutions
Fil} Aerys(AR)/p" — Fill ™ Acrys(AP) /9" ®o0,, wy, (r € Z)

compatible with the actions of 71 (Ul,,) and the Frobenii (divided by p") such that
there are canonical morphisms:

(U ®oy k,J[DTn—']’ ®0y, Wy, ) — (RHS)™ i)

compatible with the Frobenii (divided by p"). Let S_,’l(r)U,( z,Mz) denote the mapping
fiber of

1- ]%: FIL™ Acrys(AP) /D" @0, Wy, — Acrys(AP) /D" ®0,. wy..
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Then, regarding discrete 71 (U};,)-modules as étale sheaves on Ul , we obtain a series
of morphisms in D*(Z/p"Z):

Tee(U ®ox by S () (x,m),(2,Mz)) — Tet (Utins SL( v, (2,Mm7))
— Rle( tnvaS (Mu,(z,mz))
< Rl&t(Uly, Z/p"Z(r)")
— RUe(U", iéyiéy RiGZ/p"Z(r)")
& R (U, ietnity RisenZ/p"Z(r)"),

where i" and j* denote the canonical morphisms U* ®o, k (= U ®o, k) — U" and
Ut’;w — U™, Describing the above morphisms as morphisms of explicit complexes

(using the Godement resolutions) and varying U, we obtain (6.1.1).

Remark. — For an algebraic closure L of Frac(Ah), let G denote the fundamental
group of U, with the base point Spec(L) — Ul,,. Suppose that we are given the
following data: for every algebraic closure L of Frac(A"), a discrete Gr-module M,
and, for every isomorphism s: Ly — Lg over Frac(A"), an isomorphism ¢s: M, —
M, compatible with the isomorphism G, — G, induced by s, such that ts,0s, =
ts, Ols, for any composable sy, sz and, for s € Gal(L/Frac(A")), ¢, is the action of the
image of s under the canonical surjection Gal(L/Frac(A")) — G. Then, if we denote
by Fr the sheaf on (UL, )e associated to My, then the isomorphism Fr, — Fp,
induced by ¢s for an s: L; — Lo is independent of s, and hence, up to canonical
isomorphisms, 7, is independent of the choice of L.

The resolution of Fil;, Acrys (AR)/p™ above is constructed as follows. Let AP be the
image of 0: W(Rz5) — Ah and set U := Spec(Ah) Then

A7 2 Agrya(AP)/ Fil' Agrys(AF)
and hence we have a PD-thickening U < D := Spec(Acrys(AP)). If U is sufficiently

small, the image of A in AP is contained in A* and hence there exists a canonical mor-
phism U — U ([Tsu99] Lemma 1.5.4). Furthermore, if we denote by Mg the inverse
image of M on U, M lifts to a log structure Mz on D in a canonical way ([Tsu99]
§1.4). Thus we obtain a PD-thickening (U, Mz) — (D, Mz) endowed with an ac-
tion of m1 (U}, ). Let (En, Mg ) be the PD-envelope of (U, Mg, ) in (Zn, Mz ) :=
(D, Mz ) Xw,, (Zn, Mz,) and set Jg_:=Ker(Og — Og, ). We define Acrys(AR) to

belim T (En, O, ) and Fil” Acrys(4%) to be lim (E,, JET] ). We define Fill) Acrys(A")

in the same way as Fil; Acrys to obtain ¢/p": Fil;7 crys(Ah) .Acrys(Ah) Acrys(Ah)

is naturally endowed with a connection V: Acrys(Ah) .Acrys( k) R0, w7 /D satis-

fying the Griffiths transversality: V(Fil” Acrys(AF)) C Fil"™! Acrys(AR) ®oy. wi

Note “’7/5 =07 ®0, w}.

Z/D
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Next we will discuss the compatibility with the symbol maps. From the Kummer

sequence 0 — Z/p"Z(1) — O%, .. =, 0%.,... — 0, we obtain a symbol map

(6.1.2) i§dets Oxyp, — tésRernZ/P Z(1)[1]
and, then, using the cup products, symbol maps
(6.1.3) (it Jex 0%, )29 — 15 R%ersZ/p"L(q) (q € Z,q > 0).

By the assumption that M is saturated, we see js.O%, = M ([Kat94b] The-
orem (11.6), [Tsu99] Proposition 3.2.1) and hence there is a canonical surjective
homomorphism 4} jeix O%, . — Maq ;.

Proposition 6.1.4 ([Tsu99] Proposition 3.2.4). — The morphisms (6.1.1) is compatible
with the product structures and the following diagrams commute:

ME, Sn(1)(x,M),(2,Mmz)[1]

I Jis

symbol
—_—

o 6.12) ., ..

igeJetx OX i, €12 i RjstsZ/p"Z(1)'[1],
bol

(M )® 22 HI(S) (9) (x,m),(2,M2))

T lw((ma))

. e 6.183) .\ pos
(1%Jeex O, ) ®7 SLLIN i5 R%jsex L/ D™ ZL(q)".

Here note that there is a canonical homomorphism Z/p"Z(r) — Z/p™Z(r)’ for r € Z,
r>0.

Let us return to the special situation in the beginning of this section 6. We de-
fine the morphism in Theorem 6.0.1 (1) by “gluing” the composite of (6.1.1) with the
canonical map S, (7)(x,m),(z,Mz) = Sn(T)(x,Mm),(2,Mz) (§5.2) and taking the “induc-
tive limit” with respect to finite extensions of K contained in K. When X is proper
over Ok, we define the homomorphisms

(615) Hm((yv M)v S(Sp) - HeZ?(XFa QP(T)) (Tv m 2 O)

by multiplying p~" to the homomorphisms induced by the morphism in Theorem 6.0.1
(1) in order to make them compatible with the symbol maps (cf. the diagram in the
end of §5.2).

6.2. Calculation of p-adic vanishing cycles. — We will review the calculation
of p-adic vanishing cycles by Bloch-Kato [BK86] (in the good reduction case) and by
Hyodo [Hyo88] (in the semi-stable reduction case).

Keep the notations and assumptions in the beginning of § 6. Let K’ be any finite
extension of K contained in K, let S’ := Spec(Og), let N’ denote the log structure
on S’ defined by the closed point and set (X', M’) := (X, M) x(g,n) (S’,N'). Then
(X', M'") is smooth over (S’,N'), M' is saturated and the special fiber is of Cartier
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type. Note that M’ is trivial on the generic fiber and hence X{, = Xk/. Let ¢’ and
j' denote the morphisms Y’ := X' ®¢,, k' = X’ and Xk := X' ®o,, K’ — X'. We
define the filtrations U* and V" on (ig M'8?)®9 = (ig ¢, O% )®7 (cf. §6.1) and U,
V', grgt and gr* of it Rj,,,Z/pZ(q) in the same way as in § 5.4 using the symbol
maps (6.1.3).

Theorem 6.2.1 (Bloch-Kato-Hyodo). — With the notation above, we have

Ui R 544, 2/ VL(q) = s R 564, Z/ PL(q)
and gry', gri* of iRl Z/pZ(q) have the same description as Proposition 5.4.1
without assuming v/—1 € K. in the case p = 2.

Historically, Theorem 6.2.1 was proven earlier than Proposition 5.4.1.

6.3. Proof of Theorem 6.0.1 (2). — We keep the notation of § 6.2. Comparing
Theorem 6.2.1 with Proposition 5.4.1, we will prove the following theorem, from
which we can deduce Theorem 6.0.1 (2) easily because the kernel and cokernel of

Sy () (x,m),(2,M2) = Sn(T)(x,M),(2,M7) are killed by p™ and HU(S7'(r) x 37)) (¢ < 7)
are invariant under Tate twists up to bounded torsions (Theorem 5.3.2). We replace
(S, N) by (S, N’) and omit the prime ' from the notation (X', M’), i’ etc.

Theorem 6.3.1 ([Tsu99] Theorem 3.3.2). — Let q be a non-negative integer and put
m = vp(alp®), where a is the biggest integer which is less than or equal to q/(p — 1).
Let n > m and assume that the primitive p™-th roots of unity are contained in K.
Assume that there exist a diagram and {Fz,} as after the statement of Theorem 5.3.2
and choose such a diagram and {Fz,}. Set S (q) = S;(q)x,m),(z,Mmz) to simplify
the notation. Then the sequence
(S, (9)) T— HU(S1(9) — HI(Sp_m(q)) — 0
is exact, the natural homomorphism
ige R jetn Z/p" " " Z(q) — igR%jersZ/ D" Z(q)"
is injective, and the homomorphism
H(S,(9) — i§ R jewnZ/ " Z(q)'
induced by (6.1.1) has a unique factorization
HI(S50(9)) — HYU(Spom(q)) — &R jers Z/p"""Z(q) — 15 R jersZ/P"Z(q)"-
Furthermore the middle homomorphism in this factorization is an isomorphism.

M
Proof — By Proposition 5.4.1 (1) and the exact sequence 0 — Si(q) Z—
Syhim(@) — Si(g) — 0, we see that the symbol maps (My7,;)®? — HY(Sy(q))
(N > 1) are surjective and the first claim holds. Similarly, by the assumption on

K and by Theorem 6.2.1, we see that 4%, R~ jets Z/p"Z(q) — i3RI jetn Z/p™Z(q)
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is surjective and the second claim is true. Now by the surjectivity of the symbol
maps (MR, ,)®? — HI(Sy(g)) and Proposition 6.1.4, we obtain the factorization in
the last claim and the middle homomorphism becomes compatible with the symbol
maps. For the last claim, we are reduced easily to the case n = 1, in which case, it
follows from Theorem 6.2.1 and Proposition 5.4.1. O

7. Proof of Cy

We will first explain the idea of Fontaine, Messing and Kato to prove Ccys for
a proper smooth scheme X over Og. In the case dimXx < p—1 and K = K,
using the theory of Fontaine and Laffaille on p-torsion crystalline representations,
Fontaine and Messing proved that the de Rham cohomology HJ(Xk/K) with its
filtered p-module structure is admissible ([FM87] II 2.8 Remark), that is, associated
to a crystalline p-adic representation V™ and that there exist isomorphisms ([FM87)
III 1.6 Corollary, 2.4 Proposition)

(7.0.1)
H™(X, S,) = Ker(Fil" (B, ©x Hih(Xic/K)) "= By, 0 Hh(Xx/K))
& V™ (r)
for 0 < m < r (cf. the beginning of § 5). Combining this with

(7.0.2) H™(X,8g,) — Hé (X7, Qp(r))

induced by (5.0.2) and using Poincaré duality, they proved H (X%, Qp) = V™. In
the ramified case K # K, we don’t have a good integral theory of p-torsion crystalline
representations unless [K : Kp] x (length of filtration) < p — 2. Kato and Messing
constructed only a homomorphism ([KM92]):

(7.0.3) H™(X,8g,) — (Bys ®Ko Hitys(X))?=P" NFil' (Bl ®x Hik(Xx/K))-

crys

To prove Cerys for dim Xg < (p — 2)/2, they needed the strong result of Kato and
Kurihara for the étale cohomology side: that (7.0.2) is an isomorphism for 0 < m <
r < p-2 ([Kat87],[Kur87]).

In [Kat94a], K. Kato generalized the latter argument to the semi-stable case,
which we will survey below. Now we have the isomorphisms without the restriction
r < p—2 (Corollary 6.0.2) and hence we can remove the restriction dim X < (p—2)/2
in [Kat94a).

7.1. Syntomic cohomology and étale cohomology. — Let (X, M) be a smooth
fine log scheme over (S, N) such that X is proper over S and the special fiber (Y, My)
is of Cartier type over (s, N5). We further assume that M is saturated. We construct
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a canonical Gi-equivariant homomorphisms functorial on X and compatible with the
product structures (the semi-stable version of (7.0.3)):

(7.1.1) H™((X,M),S3,)
— (B, ®k, HE,o(X, M)))N=09=P" NFil"(BY, @k Hin((Xk, Mk)/K))

for integers r,m > 0 as follows.
First recall that we have the following commutative diagram (§ 4.3):

iEn,’ll'

(Smy Nu) =275 (B, Mg, ) 42222 (Spec(Wi), N9)

~

Spec(Wy,)
We define H™((X, M)/W, JI") to be
lim (n_;;stys(«x:u M)/ (Was PWors Meryss 3ty aary i)

where K’ ranges over all finite extensions of K contained in K, (S’,N’) denotes
Spec(Ok+) with the log structure defined by the closed point and (X', M') =
(X, M) xs,n) (S',N'). H™((X,M)/W) is naturally endowed with a Frobenius
endomorphism ¢ and there is a natural map:
(7.1.2)

H™((X, M), Sg,) — Ker(H™((X, M)/W, J")q, = H™((X,M)/W)g,)
for ,m > 0. Here and hereafter, we denote the operation Q,®z, simply by the
subscript Q,. We define H™((X,M)/(S,N), JI"/Jlsl) and H™((X, M)/(E, ME))
similarly using the base (S, N,) and (E,, Mg, ) respectively. The latter cohomology
naturally endowed with ¢ and N satisfying Np = ppN (cf. §4.3, §4.4). We have the
following Kiinneth formulas:

Proposition 7.1.3
(1) ([Tsu99] Proposition 4.5.4, cf. [Kat94a] the proof of Lemma (4.2)). The
natural homomorphism:

HO((SnaNn)/(Env MEn)) ®Rzn Hm((Xnv Mn)/(Em MEn))
- Hm((fmﬁn)/(EmMEn))

s an isomorphism for m > 0.
(2) ([Tsu99] §4.7, cf. [KM92] Proposition (1.3)). The natural homomorphism
obtained from Proposition 4.4.1:

B ®x Hi((Xk, Mi)/K) — lim H™((X,M)/(S, N),0/J)q,
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is an isomorphism for m > 0 and it induces an isomorphism for r > 0:

Fil" (B ®x Hix(Xx, Mi)/K)) = lim H™((X, M)/(5,N), I/ T¥)q, .

To prove (2), we need the degeneration of the Hodge spectral sequence for
(XK, Mg)/K, where we use the assumption that My is saturated. I don’t know
whether the degeneration holds without this assumption.

To simplify the notation, we set

D™ := HZ((X,M)), D :=Hir((Xk, Mk)/K)
D™= H™((X,M)/(E,Mg))q,

gi := H°((S,N)/(E,ME))q, (the notation of C. Breuil)
D" := H™((X,M)/(E, Mp))g,
5ZlnR = mHm((X:v—M-)/(S’ N)v O/J[S])Qp

Fil” Dy := lim H™((X, M)/ (S, N), J1/J¥])q,
S
Then, from Proposition 4.3.2, Proposition 4.4.1 (1) and Proposition 7.1.3, we obtain
the following commutative diagram:

H™(X, ), 5p,)

(7.1.2)

H™ (X, M)/W, JIEF ——— Fil"' Dy 155 FI'(Bdr ®x D)

| | |

—_m —nT —_ ~
(D™)¢=r"N=0 ———— Dan 135, Bir ©k Dk

1| 7.1.3(1) %@pw

(B @y D)7 N0 (B3 ©x, D)= =0

Here the bottom left arrow is obtained from Proposition 4.4.1 (1) and Proposition
4.3.2. Thus we obtain the required homomorphism (7.1.1).

For a line bundle £ on X, we define the syntomic first Chern class c (L)
to be the image of the class of £ in Pic(X) = HL(X,0O%) under the homo-
morphism H(X,0%) — HA(X,M®) — H?*((X,M),S} ) induced by the
symbol map. For a line bundle £ on Xk, we define the de Rham first Chern
class cig(L) similarly using HYL(Xk,MY) — Hiz((Xk,Mk)/K) induced by
dlog: ME? — Q. x (log(Mx))[1].
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Proposition 7.1.4 ([Tsu99] Lemma 4.8.9). — For any line bundle £ on X, the homo-
morphism (7.1.1) with m = 2, r = 1 sends cgy, (L) to 1® cip(Lxx)-

Proof. — We are easily reduced to proving the diagram:
Hélt(XmMEP) - Hélt(XmMgp)

l l

Hézt(KS;(l)(X,M)) —_— HgR((XnaMn)/(SmNn))
is commutative. This follows from its local analogue:
MeP _— Mep

1symbol l
Sy (V) x,my,(z.m7) — x5, (log(Mn/Nn))[1]
trivial by definition. O

7.2. Proof of Cs;. — Let (X, M) be as in the beginning of § 6. Then, from Corollary
6.0.2 and (7.1.1), we obtain a Gk-equivariant homomorphism:

(7.2.1)

HE (X7, Qp(r)) — (B ®k0 Hopys (X, M))N=0%=P" NFil" (B ®x Hih(Xx/K))
for 0 < m < r compatible with the product structures and functorial on X. By

tensoring Q,(—r) = BE™ "N=CFil™" Byg, we obtain a Gx-equivariant homomor-
phism:

(7.2.2) By, ®q, Hg (X5, Qp) — Bst @k Herys (X, M)

preserving ¢, N and the filtrations after Byr®p,,. We can verify that (7.2.1) for
m = 0 is induced by Q,(r) = Fil” Bi; N (B)*=P""N=0 and it implies that (7.2.2) is
independent of the choice of (> m). Combining with Proposition 7.1.4 and Propo-
sition 6.1.4, it also implies:

Proposition 7.2.3. — For any line bundle L on X, the homomorphism (7.2.2) with
m =1 sends t ® (c},(Llxx) ®t71) to 1 ® cir(Llxy), where t denotes a non-zero
element of Qp(1).

Now we will prove that (7.2.2) is a filtered isomorphism, which implies Theorem 1.1
by Corollary 2.2.10. Since the special fiber Y is reduced and X is smooth in a neighbor-
hood of a codimension 0 point of the special fiber, by replacing K with a suitable finite
unramified extension, we may assume that X is geometrically connected (SGA1 X
Proposition 1.2) and has a section s : S — X whose image is contained in a smooth
locus. Set d := dim Xx. We have dimg, HZ = dimg H3E = dimg, H2, = 1.

crys

Proposition 7.2.4 ([Tsu99] Lemma 4.10.3). — The homomorphism (7.2.2) for m = 2d
is a filtered isomorphism.
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Proof. — (The argument of Fontaine-Messing [FM87] III 6.3.) We take the blow
up X of X along s and prove the proposition for X instead of X. Let P be the
exceptional divisor, which is isomorphic to P‘é—l. Then, for a hyperplane H C P,
we have j*([Px]) = —[Hk| in CH'(Pk) where j denotes Px — Xk and hence
[Px]? = (=1)¢14,([Hk]4Y) in CH(X ). This implies that the class of a rational
point is (—1)4~1c! (0% (P)|g, )* in HZ* and H3. Hence the proposition for X follows
from Proposition 7.2.3. O

By Proposition 7.2.4 and Poincaré duality, we see that the image of (7.2.2) is
a direct factor of the RHS as Bg-modules and since dimg, H} = dimg Hi}(=

dimg, HZ,s) (by the Lefschetz principle and the equality over C), it implies the

bijectivity. For the isomorphism of the filtrations, we take gr of Bar ®p,, (7.2.2) and
prove that it is injective using Poincaré duality for étale cohomology and Serre duality.

Appendix. Cy implies Cyr

In this appendix, we will give an argument to derive Cyqr: the theorem of G.
Faltings ([Fal89] VIII) from Cs by using the alteration of de Jong ([dJ96]). As in
the Notation in § 1, let K be a complete discrete valuation ring of mixed characteristic
(0, p) with perfect residue field and let K be an algebraic closure of K. We will prove
the following theorem.

Theorem Al (Cqr). — For each finite extension L of K contained in K and each
proper smooth scheme X over L, there exist Gal(K / L)-equivariant Bqg-linear canon-
ical isomorphisms:
ex: Bar ®9, HE (X7,Qp) — Ban ®1 HIR(X/L) (m € Z)

preserving the filtrations and satisfying the properties below. Here Xz := X ®r K,
the action of g € Gal(K/L) on the LHS (resp. RHS) is g ® g (resp. g ® 1) and the
filtration on the LHS (resp. RHS) is Fil' Bqr ® Hy (resp. the tensor product of the
filtrations on Bar and HJY). Let t denote any generator of Z,(1)(C Fil' Bygr).

(A1.1) Functoriality : For other L' and X' such that L C L' and a morphism
f: X' — X compatible with Spec(L') — Spec(L), the following diagram is commuta-

tive:
Bar ®q, H (X, Qp) —2—  Bar ®1 H(X/L)

1®f‘l 1®f*l
BdR ®Qp Hgsl (lev QP) C;, BdR ®L’ gﬁ(X//L/)
(A1.2) Compatibility with cup products.
(A1.3) Compatibility with cycle classes: For any algebraic cycle Y on X of codi-
mension r,
ex(1® (¥ (Y) ®177)) = t77 @ d%H(Y).
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(A1.4) Compatibility with Chern classes: For any vector bundle E on X,
ex(1® (H(BE) @) =t7" @ iR (E).
(A1.5) Compatibility with trace maps: If X is of equidimension d, then the following
diagram commutes:

Bar ®q, Hi! (X7, Qp) —2— Bar ®1 H3(X/L)
1®(td~’n)l td®’I‘rl

Bir ®q, Qp — Bar ®L L.
(A1.6) Compatibility with direct images: Under the same assumption as (Al.1), if
L' = L, X is of equidimension d and X' is of equidimension e, then the following
diagram commutes:

Bur ®g, H (X%, Qy)  —X—  Bar®p Hf4(X'/L)

1®(te"’~f.)l t”"@f.l
Bar ®Qp H$+2(d—e) (X?’ Qp) C_;(_) Bir O H(;rﬁ+2(d—e) (X/L)

First one can derive the following weaker theorem easily from the results of [Tsu99].

Theorem A2. — For each finite extension L of K contained in K and each proper
smooth scheme X over L with semi-stable reduction, associated to each semi-stable
model X, there ezist Gal(K /L)-equivariant Bag-linear isomorphisms:

cx: Bar ®q, HE (X7, Qp) — Bar ® Hik(X/L)
preserving the filtrations and satisfying the following properties, where t denotes a
generator of Z,(1)(C Fil' Byr).

(A2.1) Functoriality I: For other L', X' and X' such that L C L' and a morphism
f: X" — X compatible with Spec(Or') — Spec(Or), the same diagram as in (Al.1)
with cx and cx+ replaced by cx and ¢y is commutative ([Tsu99] Proposition 4.10.4).

(A2.2) Compatibility with cup products.

(A2.3) Compatibility with cycle classes: For any algebraic cycle Y on X of codi-
mension T,

ex(1® (cy (Yg) ®t77)) =t @ dSH(Y).
(A2.4) Compatibility with Chern classes: For any vector bundle E on X,
ex(1® (EH(E)®t™)) =t @ R (E).

(A2.5) Compatibility with trace maps: If X is of equidimension d, then the same
diagram as in (A1.5) with cx replaced by cx is commutative.

(A2.6) Compatibility with direct images: Under the same assumption as (A2.1), if
L' = L, X is of equidimension d and X' is of equidimension e, then the same diagram
as in (A1.6) with cx and cx: replaced by cx and cx/ is commutative.
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(A2.7) Functoriality II: For any o € Gal(K/K), if we denote by X, X7 the base
change of X, X by Spec(c): Spec(Oy(r)) — Spec(OL), then the following diagram
commutes:

Bar ®q, HE (X%, Q) ——  Barn® HI{(X/L)

oQa™ ll o®c™ J,I

Bar ®q, HE (X%, Qp) —=— Bar ®o(z) HIH(X7/o(L)).

Here o* denote the isomorphisms induced by the following cartesian diagrams:

~ ~

X =5 X xXe "= Xz

! Lo !

Spec(o(L)) ———— Spec(L),  Spec(K) ——— Spec(K).
Spec(o) Spec(o)
Proof. — The isomorphism cy compatible with the cup products (A2.2) is con-
structed in [Tsu99] §4.10, (A2.1) is proven in [Tsu99] Proposition 4.10.4 and (A2.7)
is trivial by the construction of cx. We will prove the remaining properties.

(A2.3) (I learned the following argument from W. Messing.) Since cx is compatible
with the Chern classes of a line bundle on X (not on X!) ([Tsu99] Proposition 4.10.1)
and cy is functorial on X (A2.1), we see that cx is compatible with the Chern classes
of a vector bundle on X by the splitting principle. Here note that the flag variety
associated to a vector bundle on X is proper smooth over X. For any integral closed
subscheme Y of X, if we denote by ) the closure of Y in X, then Oy has a resolution
of finite length by locally free sheaves of finite rank (because X is regular) and the
cycle classes of Y in H}, and Hj}y can be described in the same way in terms of the
Chern classes of the locally free sheaves appearing in the resolution. Hence cx is also
compatible with cycle classes.

(A2.4) Choose a coherent Ox-module € such that £|x = F (EGA I (9.4.8)). Then
& has a resolution of finite length by locally free sheaves of finite rank. The rest is
the same as the proof of (A2.3) above.

(A2.5) By (A2.1), cx decomposes into the sum of cx- for each irreducible component
X' of X. Hence, by (A2.1) again, we can replace L by a suitable finite unramified
extension contained in K and assume that X is geometrically irreducible and has an
L-rational point. In this case, H2¢ are both one dimensional and (A2.5) follows from
the compatibility with cycle classes of a point (A2.3).

(A2.6) follows from (A2.1), (A2.2) and (A2.5). O

In the rest of this appendix, we will derive Theorem A1 from Theorem A2 using the
alteration of de Jong [dJ96]. First let us recall a result of de Jong. In this appendix,
we say that a morphism f: X — Y between reduced noetherian schemes is an étale
alteration if it is proper surjective and, for each z € X of codimension 0, f is étale in
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a neighborhood of z. If f is proper and surjective, the latter condition is equivalent
to the following: For each y € Y of codimension 0, there exists an open neighborhood
V C Y of y such that f~}(V) — V is étale and, for each z € X of codimension 0,
f(z) is also of codimension 0 in Y. Let L be a finite extension of K. For a scheme X
of finite type over Or, we say that X is strictly semi-stable over Op if X is regular, the
special fiber of X is a reduced divisor with normal crossings on X, and the irreducible

components of the special fiber and their intersections are smooth over the residue
field of L.

Theorem A3 (de Jong [dJ96]). — For a proper flat reduced scheme X over Or, there
exist a finite extension M of L, a proper strictly semi-stable scheme Y over Oy and a
morphism f: Y — X compatible with Spec(Opr) — Spec(OL) such that the morphism
Y — X ®o, Oum induced by f is an étale alteration.

We will also need the following fact.

Proposition A4. — For a proper strictly semi-stable scheme X over Op, there ezist
a proper strictly semi-stable scheme Z over Or and a proper surjective morphism
Z — X Xgpec(0,) X over Or which is an isomorphism on the generic fiber.

Now let us construct the isomorphism cx.

Proposition AS. — Let L be a finite extension of K contained in K, let X be a proper
smooth scheme over L and let X be a proper flat model of X. (Such a model always
exists by the compactification theorem of Nagata). Suppose that we are given a proper
strictly semi-table scheme Y over Op and an étale alteration f: Y — X over Of.
Then the homomorphism

7 Hg (X7, Qp) — Heg (Vi Qp)
is injective, the homomorphism
f* Hig(X/L) — Hgr(Y/L)

is injective and strictly compatible with the Hodge filtrations and cy in Theorem A2
induces a Gal(K /L)-equivariant Byr-linear isomorphism

Byr ®q, f*(Hé (X7, Qp)) = Bar ®1 f*(Hir(X/L))

preserving the filtrations.

Proof. — (I learned this argument from T. Saito). By (A2.1), we may assume that X
and Y := Y®qp, L is irreducible. (Note that ) and X are disjoint union of irreducible
components but X is not in general. We replace X by the disjoint union of the
irreducible components of X with the reduced induced closed subscheme structures.)
Let g be the correspondence defined by the transpose I't, = (f,idy): Y — X x Y of
the graph I'y := (idy, f): Y < Y x X of f. Then the composite fog is n-idx. Here
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n denotes the degree of Y — X at the generic point of X. Indeed, we see easily that
the commutative diagram:

(idy, f)
"

Y Y xX
(f,idy)l P}Xidxl
idx xI's
XxY — X xYxX

is cartesian, and the direct image of the cycle (f,idy, f): Y C X xY x X in X x X is
n-Ax. Here Ax denotes the diagonal of X x X. Hence for the two cohomology groups
in question, we have g* o f* = (f 0 g)* = n and hence f* are injective. By applying
the same argument to the Hodge cohomology @;H™ *(Z, 2}, L) & ®igr' HIL (Z/ L),
we see that the gr of f* for de Rham cohomology is injective and hence f* is strictly
compatible with the Hodge filtrations. From the above argument, it also follows that
g* is surjective and hence the image of f* coincides with the image of f*og* = (go f)*.
Set H™(Z)(r) = HZ (Z%, Qp)(r) or Hi}(Z/L) (here we ignore the Hodge filtration)
and denote by c the class in H?¢(Y x Y)(d) (d = dimX = dimY’) defined by the
correspondence g o f. Then the composite f* o g* is given by

H™(Y) 2 H™(Y x Y) 225 B2y x v)(@) 2% gm(y)

Now from Proposition A4, (A2.3), (A2.1), (A2.2) and (A2.6), we obtain the isomor-
phism in the proposition. The compatibility with the filtrations follows from the strict
compatibility of f* with the Hodge filtrations. O

Let L be a finite extension of K contained in K and let X be a proper smooth
scheme over L. Choose a proper flat model X of X. Then by Theorem A3, there exist
a finite extension M of L contained in K, a proper strictly semi-stable scheme ) over
Opn and a morphism f: Y — X compatible with Spec(Op) — Spec(Opr) such that
the induced morphism f': Y — X ®c, O is an étale alteration. Choose such M, Y
and f. Applying Proposition A5 to f’, we obtain an isomorphism

cx,v,r: Bar ®q, He (Xg, Qp) — Bar @1 Hir(X/L)
which makes the following diagram commutative:

Bar ®q, Hg (Xz, Q) —Cx—:—f’ Bar ®p Hi%(X/L)
1®f‘l 1®f,.l
Bar ®q, He (Yi; Qp) —C:—’ Bar ®@m Hig (Y/M).

Here the two vertical homomorphisms are injective and the homomorphism cy y 5 is
compatible with the actions of Gal(K /M) and with the filtrations.

Proposition A6. — Under the notations and assumptions as above, the homomorphism
cx,y,f s independent of the choice of X, M, Y and f.
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Proof. — Choose other X1, My, Y1 and f;. Let X5 be the scheme theoretic closure
of the diagonal Ax of X x X in X x X;. Then X3 is a proper flat model of X from
which there are maps to X and X;. Let M3 := M - M, Let X, be the base change of
X2 by Or, C Opyy and let )’ (resp. );) be the base change of the closed subscheme
of Y xx Xo (resp. Y1 Xx, X2) defined by the ideal consisting of all torsion elements
by M C M, (resp. My C Mj;). Then we have natural étale alterations over Oy
V' — X5 and Y; — Xj. Let Y5 be the closure in ) xx; J; of the inverse images of all
points of codimension 0 on X7, (or equivalently X3) endowed with the reduced closed
subscheme structure. Note that, in general, the generic fiber of )% is smooth over M}
only in a neighborhood of the points of codimension 0. Then, by Theorem A3, there
exist a finite extension My of M} contained in K, a proper strictly semi-stable scheme
Y2 over Op,, and a morphism Y, — Y compatible with Spec(Onr,) — Spec(Oxyy)
such that the induced morphism Y5 — YV} ®o g O, is an étale alteration. Thus we
obtain a commutative diagram

X X Xy
fI f2[ fxT
y Y2 N1

over the commutative diagram

Spec(OL) Spec(OL) Spec(OL)

I I I

Spec(Onr) «——— Spec(On,) — Spec(Ony, ).

Here the middle vertical morphism induces an étale alteration Y2 — X2 ®0, Ou,.
Now, from the functoriality (A2.1), we obtain cx .y f = €x3,3,,f2 = CX1,Y1,f1- a

We set cx = cx,y,5.

Proposition A7. — Under the notations and assumptions above, cx is compatible with
the actions of Gal(K/L).

Proof. — Choose X, M, Y and f as above. Then cx is compatible with the actions
of Gal(K/M). Let o be an arbitrary element of Gal(K /L), let Y, J° be the base
change of Y, Y by Spec(c): Spec(a(Opr)) — Spec(Onr), and let f° be the composite
Yo =y J, %. Since the action of ¢ on L is trivial, f¢ is compatible with the
embedding L < o(M). By the definition of cx,y,s and the functoriality (A2.7), we

ASTERISQUE 279



SEMI-STABLE CONJECTURE OF FONTAINE-JANNSEN: A SURVEY 367

obtain the following commutative diagram:

Bar ®q, HE (Xg Q) ——=5  Bar ®1 Hip(X/L)
1®f* lﬂ l®f* ln
Bar ®q, H (Y, Q) —— Bar ®u HJ3(Y/M)

oQac™ ll oQoc* J,I

Bar ®q, H(YZ,Q,) —=—  Bar ®o(m) Hjn (Y7 /o (M))
1®(f")*TU 1®(f”>*Iu
Bar ®q, Hg (X7, Qp) Bar ®r HJL(X/L).

Here the morphisms f*, o* and (f?)* between étale and de Rham cohomology groups
are induced by the following commutative diagrams respectively:

CX =Cx,yo,fo
_

~

X L Y Y — Y°

! Lo !

Spec(L) «———— Spec(M) Spec(M) Seeclo) Spec(a(M))

I [ I

Spec(K) — Spec(K), Spec(K) Speclo) Spec(K)

~

x Ly

! !

Spec(L) «—— Spec(c(M))

I I
Spec(K) <—ij— Spec(K)

If we denote by ¢, the morphism between the two cohomology groups induced by the
diagram
X d X

~

! !

Spec(L) —d Spec(L)

I I

Spec(K) Speclo) Spec(K),

~
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then we have 0* o f* = (f?)* 0 ¢,. On the other hand, ¢, is nothing but the action
of o for the étale cohomology and the identity for the de Rham cohomology. Hence
the following diagram is commutative:

Bar ®q, Hf (X7, Qp) —=— Bar @1 Hiz(X/L)

=]

0®012 a®idll

Bar ®q, Hz (X%, Qp) ——=— Bar ®r Hix(X/L).

Finally, we will prove that cx satisfies the properties (A1.1)-(A1.6). First let us
prove the functoriality (A1.1). We can verify that cx and cx, are compatible for any
finite extension L; of L contained in K and the base change X; of X to L. (Choose
a proper flat model X of X, choose M, ) and f for the base change X; of X to L;, and
use the same M and ) to define cx and cx,.) If we denote by X, ¢ € I the irreducible
components of X, then we see easily cx = ®;ercx,. Hence, we may assume L = L'
and that X and X' are geometrically irreducible. We may further assume that there
are a proper flat model X of X, a proper strictly semi-stable scheme ) over Oy, and
an étale alteration ) — X over Or. Choose a proper flat model X} of X and let
X’ be the scheme theoretic image of (idx/, f) : X' «— X’ x X in X{ x X. Then X'
is a proper flat model of X’ and the morphism f extends to a morphism X' — X.
Choose a closed point of the fiber of Y xyx X’ — X’ over the unique generic point
of X’ and let X’ be its closure in Y xx X’ endowed with the reduced induced closed
subscheme structure. Then X’ — X' is an étale alteration. By Theorem A3, there is a
finite extension M of L contained in K, a proper strictly semi-stable scheme )’ over
Oy and a morphism )’ — X’ compatible with Spec(Ops) — Spec(Oy) such that the
induced morphism )’ — X/ ®o, On is an étale alteration. Define cx and cy using
Y - X and Y’ — X' — X'. Then (Al.1) follows from (A2.1).

The compatibility with the cup products (A1.2) follows easily from (A2.2). The
compatibility with cycle classes (A1.3) follows from (A2.3) and the compatibility of
the pull-back maps with cycle classes for étale and de Rham cohomologies. Similar for
the compatibility with Chern classes (A1.4). For the compatibility with trace maps
(A1.5), by replacing L by a finite extension of L contained in K, we are reduced to
the case that X is geometrically irreducible and has an L-rational point. Here we use
the compatibility of cx with base changes and with the decomposition of X into its
irreducible components. Then (A1.5) follows from the compatibility of cx with the
cycle classes of a point (A1.3). Finally the compatibility with direct images (A1.6)
follows from (A1.1), (A1.2) and (A1.5).
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