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GEOMETRIZATION OF 3-ORBIFOLDS OF CYCLIC TYPE 

Michel Boileau and Joan Porti 

with the collaboration of Michael Heusener 

Abstract. — We prove the orbifold theorem in the cyclic case: If O is a compact 
oriented irreducible atoroidal 3-orbifold whose ramification locus is a non-empty sub-
manifold, then O is geometric, i.e. it has a hyperbolic, a Euclidean or a Seifert fibred 
structure. This theorem implies Thurston's geometrization conjecture for compact 
orientable irreducible three-manifolds having a non-free symmetry. 

Résumé (Géométrisation des orbi-variétés tridimensionnelles de type cyclique) 
Nous démontrons le théorème des orbi-variétés de Thurston dans le cas cyclique : 

une orbi-variété tridimensionelle, compacte, orientable, irréductible, atoroïdale et dont 
le lieu de ramification est une sous-variété non vide, admet soit une structure hyper­
bolique ou Euclidienne, soit une fibration de Seifert. Ce théorème implique qu'une 
variété tridimensionelle, compacte, irréductible et possédant une symétrie non libre, 
vérifie la conjecture de géométrisation de Thurston. 

© Astérisque 272, SMF 2001 
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INTRODUCTION 

A 3-dimensional orbifold is a metrizable space with coherent local models given by 
quotients of R 3 by finite subgroups of 0(3) . For example, the quotient of a 3-manifold 
by a properly discontinuous group action naturally inherits a structure of a 3-orbifold. 
When the group action is finite, such an orbifold is said to be very good. For a general 
background about orbifolds see [BS1], [BS2], [DaM], [Kap, Chap. 7], [Sc3], [Takl] 
and [Thul, Chap. 13]. 

The purpose of this monograph is to give a complete proof of Thurston's orbifold 
theorem in the case where all local isotropy groups are cyclic subgroups of SO(3). 
Following [DaM], we say that such an orbifold is of cyclic type when in addition 
the ramification locus is non-empty. Hence a 3-orbifold O is of cyclic type iff its 
ramification locus £ is a non-empty 1-dimensional submanifold of the underlying 
manifold which is transverse to the boundary d\0\ = \dO\. The first result 
presented here is the following version of Thurston's Orbifold Theorem: 

Theorem 1. — Let O be a compact, connected, orientable, irreducible, and d-incom­
pressible 3-orbifold of cyclic type. If O is very good, topologically atoroidal and acylin-
drical, then O is geometric (i. e. O admits either a hyperbolic, a Euclidean, or a Seifert 
fibred structure). 

Remark. — When dO is a union of toric 2-suborbifolds, the hypothesis that O is 
acylindrical is not needed. 

If dO 7̂  0 and O is not /-fibred, then O admits a hyperbolic structure of finite 
volume with totally geodesic boundary and cusps. 

We only consider smooth orbifolds, so that the local isotropy groups are always 
orthogonal. We recall that an orbifold is said to be good if it has a covering which 
is a manifold. Moreover if this covering is finite then the orbifold is said to be very 
good. 



2 INTRODUCTION 

A general compact orientable irreducible and atoroidal 3-orbifold (which is not a 
priori very good) can be canonically split along a maximal (perhaps empty) collection 
of disjoint and non-parallel hyperbolic turnovers (i.e. a 2-orbifold with underlying 
space a 2-sphere and with three branching points) into either small or Haken 3-
suborbifolds. 

An orientable compact 3-orbifold O is small if it is irreducible, its boundary dO 
is a (perhaps empty) collection of turnovers, and O does not contain any essential 
orientable 2-suborbifold. 

Using Theorem 1, we are able to geometrize such small 3-orbifolds, and hence to 
show that they are in fact very good. 

Theorem 2. — Let O be a compact, orientable, connected, small 3-orbifold of cyclic 
type. Then O is geometric. 

Therefore, to get a complete picture (avoiding the very good hypothesis), it remains 
to geometrize the Haken atoroidal pieces. 

An orientable compact 3-orbifold O is Haken if: 

- Ö is irreducible, 
- every embedded turnover is parallel to the boundary 
- and O contains an embedded orientable incompressible 2-suborbifold different 

from a turnover. 

The geometrization of Haken atoroidal 3-orbifolds relies on the following extension of 
Thurston's hyperbolization theorem (for Haken 3-manifolds): 

Theorem 3 (Thurston's hyperbolization theorem). — Let Ö be a compact, orientable, 
connected, irreducible, Haken 3-orbifold. If O is topologically atoroidal and not Seifert 
fibred, nor Euclidean, then Ö is hyperbolic. 

It is a result of W. Dunbar [Dun2] that an orientable Haken 3-orbifold can be 
decomposed into either discal 3-orbifolds or thick turnovers (i.e. {turnovers} x[0,1]) 
by repeated cutting along 2-sided properly embedded essential 2-suborbifolds. 

Due to this fact, the proof of Theorem 3 follows exactly the scheme of the proof 
for Haken 3-manifolds [Thu2, Thu3, Thu5], [McMl], [Kap], [Otl, Ot2]. We do 
not give a detailed proof of it here, but we only present the main steps to take in 
consideration and indicate shortly how to handle them in Chapter 8. 

Since hyperbolic turnovers are rigid, Theorem 2 and Theorem 3 imply Thurston's 
orbifold theorem in the cyclic type case: 

Thurston's Orbifold Theorem. — LetO be a compact, connected, orientable, irreducible, 
3-orbifold of cyclic type. If O is topologically atoroidal, then O is geometric. 

In late 1981, Thurston [Thu2, Thu6] announced the Geometrization theorem 
for 3-orbifolds with non-empty ramification set (without the assumption of cyclic 
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INTRODUCTION 3 

type), and lectured about it. Since 1986, useful notes about Thurston's proof (by 

Soma, Ohshika and Kojima [SOK] and by Hodgson [Hoi]) have been circulating. 

In addition, in 1989 much more details appeared in Zhou's thesis [Zhl, Zh2] in the 

cyclic case. However no complete written proof was available (cf. [Kir, Prob. 3.46] ). 

Recently we have obtained with B. Leeb a proof of Thurston's orbifold theorem 

in the case where the singular locus has vertices. A complete written version of this 

proof can be found in [BLP1, BLP2]. This proof, in particular for orbifolds with all 

singular vertices of dihedral type, relies on the proof of the cyclic case presented here. 

However the methods used in [BLP2] to study the geometry of cone 3-manifolds are 

quite different from the ones used here. 

A different proof, more in the spirit of Thurston's original approach, has been 

announced by D. Cooper, C. Hodgson and S. Kerckhoff in [CHK]. 

In this monograph we work in the category of orbifolds. For the basic definitions 

in this category, including map, homotopy, isotopy, covering and fundamental group, 

we refer mainly to Chapter 13 of Thurston's notes [Thul], to the books by Bridson 

and Haefliger [BrH] and by Kapovich [Kap], as well as to the articles by Bonahon 

and Siebenmann [BS1, BS2], by Davis and Morgan [DaM] and by Takeuchi [Takl]. 

In the case of good orbifolds, these notions are defined as the corresponding equiv-

ariant notions in the universal covering, which is a manifold. 

According to [BS1, BS2] and [Thul, Ch. 13], we use the following terminology. 

Definitions. — We say that a compact 2-orbifold F2 is respectively spherical, discal, 

toric or annular if it is the quotient by a finite smooth group action of respectively 

the 2-sphere 5 2 , the 2-disc D2, the 2-torus T2 or the annulus S1 x [0,1]. 

A compact 2-orbifold is bad if it is not good. Such a 2-orbifold is the union of two 

non-isomorphic discal 2-orbifolds along their boundaries. 

A compact 3-orbifold O is irreducible if it does not contain any bad 2-suborbifold 

and if every orientable spherical 2-suborbifold bounds in (!) a discal 3-suborbifold, 

where a discal 3-orbifold is a finite quotient of the 3-ball by an orthogonal action. 

A connected 2-suborbifold F2 in an orientable 3-orbifold O is compressible if either 

F2 bounds a discal 3-suborbifold in O or there is a discal 2-suborbifold A 2 which 

intersects transversally F2 in dA2 — A 2 D F2 and such that dA? does not bound a 

discal 2-suborbifold in F2. 

A 2-suborbifold F2 in an orientable 3-orbifold O is incompressible if no connected 

component of F2 is compressible in O. The compact 3-orbifold O is d-incompressible 

if dO is empty or incompressible in O. 

A properly embedded 2-suborbifold (F, OF) ( 0 , dO) is d-compressible if: 

- either (F,dF) is a discal 2-suborbifold (D2,dD2) which is <9-parallel, 

- or there is a discal 2-suborbifold A c O such that d A D F is a simple arc a, 

A fl dM is a simple arc /?, with dA = a U ¡3 and ad ¡3 = da = d/3 
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4 INTRODUCTION 

An orientable properly embedded 2-suborbifold F2 is d-parallel if it belongs to the 
frontier of a collar neighborhood F2 x [0,1] C O of a boundary component F2 c dO. 

A properly embedded 2-suborbifold F2 is essential in a compact orientable irre­
ducible 3-orbifold, if it is incompressible, d-incompressible and not boundary parallel. 

A compact 3-orbifold is topologically atoroidal if it does not contain any embedded 
essential orientable toric 2-suborbifold. It is topologically acylindrical if every properly 
embedded orientable annular 2-suborbifold is boundary parallel. 

A turnover is a 2-orbifold with underlying space a 2-sphere and with three branch­
ing points. In an irreducible orientable orbifold an embedded turnover either bounds 
a discal 3-suborbifold or is incompressible and of non-positive Euler characteristic. 

According to [Thul, Ch. 13], the fundamental group of an orbifold 0 , denoted by 
7Ti (0) , is defined as the Deck transformation group of its universal cover. 

A Seifert fibration on a 3-orbifold O is a partition of O into closed 1-suborbifolds 
(circles or intervals with silvered boundary) called fibres, such that each fibre has 
a saturated neighborhood diffeomorphic to S 1 x D2/G, where G is a finite group 
which acts smoothly, preserves both factors, and acts orthogonally on each factor and 
effectively on D2; moreover the fibres of the saturated neighborhood correspond to 
the quotients of the circles Sl x { * } . On the boundary dO, the local model of the 
Seifert fibration is S1 x D\/G, where D\ is a half disc. 

A 3-orbifold that admits a Seifert fibration is called Seifert fibred. Every good 
Seifert fibred 3-orbifold is geometric (cf. [Sc3], [Thu7]). Seifert fibred 3-orbifolds 
have been classified in [BS2]. 

A compact orientable 3-orbifold O is hyperbolic if its interior is orbifold-diffeo-
morphic to the quotient of the hyperbolic space H 3 by a non-elementary discrete group 
of isometries. In particular /-bundles over hyperbolic 2-orbifolds are hyperbolic, since 
their interiors are quotients of H 3 by non-elementary Fuchsian groups. In Theorem 1, 
except for /-bundles, we prove that when O is hyperbolic, if we remove the toric 
components of the boundary drO C dO, then O — drO has a hyperbolic structure 
with finite volume and geodesic boundary. This implies the existence of a complete 
hyperbolic structure on the interior of O. 

We say that a compact orientable 3-orbifold is Euclidean if its interior has a com­
plete Euclidean structure. Thus, if a compact orientable and 9-incompressible 3-
orbifold O is Euclidean, then either O is a /-bundle over a 2-dimensional Euclidean 
closed orbifold or O is closed. 

We say that a compact orientable 3-orbifold is spherical when it is the quotient 
of S 3 by the orthogonal action of a finite subgroup of SO (A). A spherical orbifold of 
cyclic type is always Seifert fibred ([Dunl], [DaM]). 

Thurston's conjecture asserts that the interior of a compact irreducible orientable 
3-orbifold can be decomposed along a canonical family of incompressible toric 2-
suborbifolds into geometric 3-suborbifolds. 
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The existence of the canonical family of incompressible toric 2-suborbifolds has 
been established by Jaco-Shalen [JS] and Johannson [Joh] for 3-manifolds and by 
Bonahon-Siebenmann [BS2] in the case of 3-orbifolds. 

Recall that the eight 3-dimensional geometries involved in Thurston's conjecture 
are H 3 , E 3 , § 3 , H 2 x R, § 2 x R, SZ^(R), Nil and Sol. The non Seifert fibred orbifolds 
require a constant curvature geometry (H 3 , E 3 and S 3 ) or Sol. Compact orbifolds 
with Sol geometry are fibred over a closed 1-dimensional orbifold with toric fibre and 
thus are not atoroidal (cf. [Dun3]). 

Thurston has proved his conjecture for Haken 3-manifolds [Thul, Thu2, Thu3, 
Thu4, Thu5] (cf. [McMl, McM2], [Kap], [Otl, Ot2]). More generally, his proof 
works for Haken 3-orbifolds (cf. Chapter 8). 

Here is a straightforward application of Thurston's orbifold theorem to the ge-
ometrization of 3-manifolds with non-trivial symmetries: 

Corollary 1. — Let M be a compact orientable irreducible and d-incompressible 3-
manifold. Let G be a finite group of orientation preserving diffeomorphisms acting 
on M with non-trivial and cyclic stabilizers. Then there exists a (possibly empty) G-
invariant family of disjoint essential tori and annuli which splits M into G-invariant 
geometric pieces. 

Using the fact that 3-orbifolds with a geometric decomposition are very good by 
[McCMi], one obtains the following immediate corollary: 

Corollary 2. — Every compact orientable irreducible 3-orbifold of cyclic type is very 
good. 

Thurston's hyperbolization theorem for Haken 3-manifolds ([Thul, Thu2, Thu3, 
Thu4, Thu5], [McMl, McM2], [Kap], [Otl, Ot2]) and a standard argument of 
doubling O along its boundary components, allow to reduce the proof of Theorem 1 
to the following theorem, which is one of the main results of this monograph. 

Theorem 4. — Let O be a closed orientable connected irreducible very good 3-orbifold 
of cyclic type. Assume that the complement O — £ of the ramification locus admits 
a complete hyperbolic structure. Then there exists a non-empty compact essential 
3-suborbifold O' C O which is not a product and which is either Euclidean, Seifert 
fibred, Sol or complete hyperbolic with finite volume. In particular dO' is either empty 
or a union of toric 2-orbifolds. 

A compact 3-suborbifold O' C O is essential in O if the 2-suborbifold dO' is either 
empty or incompressible in O. 

Remark. — If the orbifold O is topologically atoroidal, then O = O' is geometric. 

5 
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6 INTRODUCTION 

The following strong version of the Smith conjecture for a knot in 5 3 is a straightfor­
ward corollary of Theorem 4 and of the classification of the orientable closed Euclidean 
3-orbifolds (cf. [BS1], [Dunl]). 

Corollary 3. — Let K C S3 be a hyperbolic knot. Then, for p > 3, any p-fold cyclic 
covering of S3 branched along K admits a hyperbolic structure, except when p = 3 
and K is the figure-eight knot. In this case the 3-fold cyclic branched covering has a 
Euclidean structure. Moreover, in all cases the covering transformation group acts by 
isometries. 

The proof of Theorem 4 follows Thurston's original approach. His idea was to 
deform the complete hyperbolic structure as far as possible on O — E into structures 
whose completion is topologically the underlying manifold \G\ and has cone singu­
larities along E. These completions are called hyperbolic cone structures on the pair 
(|C>|, E) and their singularities are (locally) described by cone angles. Such structures 
with small cone angles are provided by Thurston's hyperbolic Dehn filling theorem 
([Thul, Chap. 5], cf. Appendix B). The goal is then to study the limit of hyperbol-
icity when these cone angles increase. Note that a hyperbolic structure on O induces 
a hyperbolic cone structure on the pair ( |0 | ,E) with cone angles determined by the 
ramification indices. Hence, if these cone angles can be reached in the space of hy­
perbolic cone manifold structures, then O is hyperbolic. Otherwise, the study of the 
possible "collapses" occurring at the limit of hyperbolicity shows the existence of a 
non-empty compact essential geometric 3-suborbifold O' <Z O which is different from 
O when C is hyperbolic. 

Our main contribution takes place in the analysis of the so called "collapsing cases". 
There we use the notion of simplicial volume due to Gromov and a cone manifold 
version of his isolation theorem [Gro, Sec. 3.4]. This gives a simpler combinatorial 
approach to collapses than Thurston's original one. In particular, it spares us the 
difficult task of establishing a suitable Cheeger-Gromov theory for collapses of cone 
manifolds. 

When some of the branching indices are 2, our proof of Theorem 1 uses in a crucial 
way the results of Meeks and Scott [MS]. This could be avoided by using the extension 
of Thurston's hyperbolization theorem to Haken 3-orbifolds (cf. Theorem 3). Since 
we are not giving here a detailed proof of this extension, we have decided to make the 
proofs of our main results (Theorems 1, 2 and 4) totally independent of it. 

Here is a plan of the monograph. 
In Chapter 1 we introduce the notion of cone 3-manifold and state the theorems 

that are the main ingredients in the proof of of Thurston's orbifold theorem. 
In Chapter 2 we prove Theorem 4 from the results quoted in Chapter 1. Then we 

deduce Theorem 1 from Theorem 4. 
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INTRODUCTION 7 

In Chapter 3 we prove the compactness theorem, which is a cone 3-manifold version 
of Gromov's compactness theorem for Riemannian manifolds of pinched sectional 
curvature. 

In Chapter 4 we prove the local soul theorem, which gives a bilipschitz approxima­
tion of the metric structure of a neighborhood of a point with small cone-injectivity 
radius. 

By using the compactness and the local soul theorem, in Chapters 5 and 6 we study 
sequences of closed hyperbolic cone 3-manifolds with a fixed topological type. 

In Chapter 5 we prove Theorem A, which deals with the case where the cone angles 
are bounded above, uniformly away from TT. 

In Chapter 6, we prove Theorem B which deals with the case where the cone angles 
converge to the orbifold angles. 

In Chapter 7, we uniformize small 3-orbifolds of cyclic type by proving Theorem 2. 
In Chapter 8, we first deduce the complete version of Thurston's orbifold theorem 

from Theorem 2 and Theorem 3. Then we give a detailed overview of the proof of 
Theorem 3. 

In Chapter 9, we present explicit examples of collapses of hyperbolic cone structures 
to other geometric structures. These are the difficult phenomena that cannot be 
avoided in the proof of Theorem 4. 

In Appendix A, M. Heusener and the second named author complete the results 
presented here by showing the following result: if a sequence of hyperbolic cone 
structures on a pair E) collapses at angle 7r, then the closed orientable 3-orbifold 
O is not spherical. 

In Appendix B, for completeness we give a detailed proof of Thurston's hyperbolic 
Dehn filling theorem for manifolds and orbifolds. 
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CHAPTER 1 

CONE MANIFOLDS 

Cone 3-manifolds play a central role in the proof of Thurston's orbifold theorem. 
Thurston has shown that they appear naturally as a generalization of hyperbolic 
Dehn filling on cusped hyperbolic 3-manifolds. Thurston's hyperbolic Dehn filling 
theorem provides a family of cone 3-manifolds with small cone angles and the proof 
of Thurston's orbifold theorem analyzes the accidents that can occur when we increase 
the cone angles in order to reach the hyperbolic metric on the orbifold. 

This chapter has two sections. In the first one we give the basic definitions for cone 
3-manifolds (of non-positive curvature). In the second one we state some theorems 
about sequences of hyperbolic cone 3-manifolds, which are the key steps in the proof 
of Thurston's orbifold theorem. 

1.1. Basic Definitions 

In this monograph we only consider cone 3-manifolds of non-positive constant cur­
vature. Moreover, we also restrict our attention to cone 3-manifolds whose singular 
set is a link and whose cone angles are less than 27r. 

To fix notation, let H3^ be the simply connected three-dimensional space of constant 
sectional curvature K < 0. Thus M.3_1 = H 3 is the usual hyperbolic space and HQ = E 3 

is the Euclidean space. 
For a G (0,27r), let №3

K(a) be the cone manifold of constant curvature K < 0 
with a singular line of cone angle a, constructed as follows. Consider in a solid 
angular sector Sa obtained by taking the intersection of two half spaces, such that 
the dihedral angle at the (infinite) edge A is a. The cone manifold H^-(a) is the 
length space obtained when we identify the faces of Sa by a rotation around A. The 
image of A in the quotient gives the singular line E c H^-(a). The induced metric on 
M.3

K(a) — E is a non-singular, incomplete Riemannian metric of constant curvature, 
whose completion is precisely H 3^(a). 
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In cylindrical or Fermi coordinates, the metric on M.3K(a) — £ is: 

where r G (0, +oo) is the distance from E, 6 e [0,2ir) is the rescaled angle parameter 
around E and h G R is the distance along E. 

Having described the local models, we can now define a cone 3-manifold. 

Definition 1.1.1. — A cone manifold of dimension three and of constant curvature 
K < 0 is a smooth 3-manifold C equipped with a distance so that it is a complete 
length space locally isometric to or H^-(a) for some a e (0, 2tc). 

The singular locus E C C is the set of points modeled on the singular line of some 
model Mjf(a), and a is called the cone angle at a singular point modeled on this 
singular line. According to our definition, E is a submanifold of codimension two and 
the cone angle is constant along each connected component. 

The topological pair (C, E) is called the topological type of the cone 3-manifold. 
The induced metric on C — E is a Riemannian metric of constant curvature, which 

is incomplete (unless E = 0) , and whose completion is precisely the cone 3-manifold. 
By the developing map of a cone 3-manifold C with topological type (C, E), we 

mean the developing map of the induced metric on C — E: 

D : C - E < < X L 

where C — E is the universal covering of C — E. The associated holonomy represen­
tation 

p:7Ti(C-E)^Isom(HI^) 

is called the holonomy representation of C. If /x £ 7Ti(C — E) is represented by a 
meridian loop around a component Eo of E, then p(/i) is a rotation of angle equal to 
the cone angle of this component. 

Thurston s hyperbolic Dehn filling theorem provides many structures on a hyper­
bolic cusped 3-manifold whose completions are precisely cone 3-manifolds. The cone 
angles of these cone 3-manifolds are not necessarily less than 2tt. The complete cusped 
structure on C — E is the limit of these hyperbolic cone structures when the cone an­
gles approach zero. We adopt therefore the standard convention that the cone angle 
at a component Eo of E is zero when the end of C — E corresponding to Eo is a cusp, 
of rank 2 or 1 according to whether Eo is compact or not. 

We still need two more definitions. 
A standard ball in a cone 3-manifold C is a ball isometric to either a metric non-

singular ball in or a metric singular ball in HI^(a) whose center belongs to the 
singular axis. 

astérisque 272 
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We define the cone-injectivity radius at a point x G C as 

inj(x) = sup{(5 > 0 such that B(x,5) is contained in a standard ball in C}. 

We remark that the standard ball does not need to be centered at the point x. With 

this definition, regular points close to the singular locus do not have arbitrarily small 

cone-injectivity radius. 

1.2. Sequences of hyperbolic cone 3-manifolds 

Let O be an orbifold as in Theorem 4: a closed orientable irreducible very good 

3-orbifold of cyclic type, such that the complement O — E of the ramification locus 

admits a complete hyperbolic structure of finite volume. 

Thurston's hyperbolic Dehn filling theorem provides a one-parameter family of 

hyperbolic cone 3-manifolds with topological type ( |0 | ,E). Consider the exterior 

X — O — int(A/*(E)) of E and for each component Ê  C E choose a meridian curve 

Hi C dAf(Ei) and another simple closed curve A; C cW(Ei) intersecting in one 

point; hence ^ , A; generate 7ri(cW(Ej)). 

According to Thurston's hyperbolic Dehn filling theorem, there exists a space of 

deformations of hyperbolic structures on int(X) parametrized by generalized Dehn 

coefficients (pi,qi), 1 < i < k, in an open neighborhood U C ( R 2 U {oo})k = (S2)k 

of ( o c , . . . , CXD), where k is the number of connected components of dX (and of E). 

The structure at the i-th component of dX is described by the Dehn parameters as 

follows: 

- When (pi,qi) — oc, the structure at the corresponding cusp remains complete. 

- When pi,qi G Z are coprime, the completion -X"((pi, q\),..., (p^, qk)) is a hy­

perbolic 3-manifold, obtained by genuine Dehn filling with meridian curves 

Pi^i + qiXi, i = 

- When Pi/qi G Q U {CXD}, let r*, Si G Z be coprime integers so that Pi/qi = ri/Si. 

Then the completion X((pi, q\),..., (pk, qk)) is a hyperbolic cone 3-manifold 

obtained by gluing solid tori with possibly singular cores. The underlying space 

is the 3-manifold X((ri, s i ) , . . . , (r^, Sk)) and the cone angle of the i-th singular 

core is 2ir\ri/pi\, i = 1,..., k. 

Here we are interested in the coefficients of the form (Pi,qi) = (n^/t,0), where 

t G [0,1] and rii is the branching index of the orbifold O along the i-th compo­

nent Ei C E, for i = 1,..., k. Thurston's hyperbolic Dehn filling theorem im­

plies the existence of a real number EQ > 0 such that, for any t G [0,£o], there 

is a deformation of the complete hyperbolic structure on int(X) whose completion 

X ( ( ^ , 0 ) , . . . , ( ^ , 0)) is a hyperbolic cone 3-manifold with topological type (|C7|, E) 

and cone angles ^-t,..., ^-t 
° ni ' 'rife 

The proof of Theorem 4 consists in studying the behavior of the hyperbolic cone 

3-manifold X ( ( ^ , 0 ) , . . . , ( ^ , 0)) while increasing the parameter t G [0,1]. If the 
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parameter t = 1 can be reached so that the cone 3-manifold X ( ( n i , 0 ) , . . . , (n/~,0)) 
remains hyperbolic, then the orbifold O itself is hyperbolic. Otherwise, there is a 
limit of hyperbolicity G [0,1]. Then, since the space of hyperbolic cone structures 
with topological type ( |0 | ,E) and cone angles < 2ir is open, one has to analyze 
sequences of hyperbolic cone 3-manifolds X ^ ( 0 ) , . . . , ( f ^ , 0)^ where ( £ n ) n e N is an 
increasing sequence in [0, t o o ) approaching t^. This analysis will be carried out in 
detail in Chapter 2, by using Theorems A and B below, which are central for the 
proof of Theorem 4, and should be of independent interest. Their proofs are given 
respectively in Chapter 5 and 6. 

Theorem A is used when < 1, while Theorem B is used when t^ = 1. 

Theorem A. — Let (Cn)ne^ be a sequence of closed orientable hyperbolic cone 3-
manifolds with fixed topological type (C, £ ) such that the cone angles increase and 
are contained in [uo,ui], with 0 < LJO < wi < n. Then there exists a subsequence 
(Cnk)keN such that one of the following occurs: 

1) The sequence {Cnk)keN converges geometrically to a hyperbolic cone 3-manifold 
with topological type (C , E) whose cone angles are the limit of the cone angles of 
Cnjc. 

2 ) For every k, CUk contains an embedded 2-sphere S2

k C CUk that intersects E in 
three points, and the sum of the three cone angles at S2

k n E converges to 2ix. 
3) There is a sequence of positive reals approaching 0 such that the subsequence 

of rescaled cone 3-manifolds (\~^1Crik)keN converges geometrically to a Euclidean 
cone 3-manifold of topological type (C, E) and whose cone angles are the limit of 
the cone angles of CUk. 

Theorem B. — Let O be a closed, orientable, connected, irreducible, very good 3-
orbifold with topological type ( | 0 | , £ ) and ramification indices n i , . . . ,r ik . Assume 
that there exists a sequence of hyperbolic cone 3-manifolds (Cn)ne^ with the same 
topological type E) and such that, for each component o / E , the cone angles form 
an increasing sequence that converges to 2-KJrii when n approaches oo . 

Then O contains a non-empty compact essential 3-suborbifold O' C O, which is not 
a product and which is either complete hyperbolic of finite volume, Euclidean, Seifert 
fibred or Sol. 

As stated, these two theorems deal with geometric convergence of cone 3-manifolds. 
Up to minor modifications, the term geometric convergence stands for the pointed 
bilipschitz convergence introduced by Gromov [GLP]. The following compactness 
theorem plays a central role in the proofs of Theorems A and B. It is a cone manifold 
version of Gromov's compactness theorem for Riemannian manifolds with pinched 
sectional curvature (cf. [GLP] and [Pe]). The proof of this theorem is the main 
content of Chapter 3. 
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Compactness Theorem. — Given a > 0 and u € (0,7r], if (Cn,xn)ne^ is a sequence of 

pointed cone 3-manifolds with constant curvature in [—1,0], cone angles in [a;, 7r], and 

such that i n j ( x n ) > a, then ( C n , x n )neN subsequence that converges geometrically 

to a pointed cone 3-manifold (Coo,#oo)-

The compactness theorem is used to analyze sequences of hyperbolic cone 3-mani­

folds which do not collapse. In the collapsing case, we need to rescale the metric in 

order to apply the compactness theorem. In fact we need a more precise result in the 

collapsing case, analogous to the "Local Approximation Proposition" of Cheeger and 

Gromov [CGv, Prop. 3.4], which furnishes a description of the (non-trivial) topology 

of neighborhoods of points with small cone-injectivity radius. This is the local soul 

theorem, which is the content of Chapter 4. 

Local Soul Theorem. — Given uo e (0 ,7r), e > 0 and D > 1 there exist 

6 = ö(uj,e,D)>0 and R = R(uo, e,D) > D > 1 

such that, if C is an oriented hyperbolic cone 3-manifold with cone angles in [U,TT] 

and if x £ C satisfies inj(x) < 5, then: 

- either C is (1 + e)-bilipchitz homeomorphic to a compact Euclidean cone 3-man­

ifold E of diameter diam(£') < it! inj ( x ) ; 

- or there exists 0 < v < 1, depending on x, such that x has an open neighborhood 

Ux C C which is (1 + e)-bilipschitz homeomorphic to the normal cone fibre bundle 

J\fv(S), of radius v, of the soul S of a non-compact orientable Euclidean cone 3-

manifold with cone angles in [cj,7t]. In addition, according to d im(S) , the Euclidean 

non-compact cone 3-manifold belongs to the following list: 

I) (when d im(S) = 1), S1 ix R2, S1 k (open cone disc) and the solid pillow (see 

Figure 1 of Chapter 4), where k denotes the metrically twisted product; 

II) (when dim(S) = 2 ) 

i) a product T2 x R ; S2(a, /?, 7 ) x R , with a + ß + 7 = 2ir (the thick turnover); 

52(7r, 7T, 7T, 7r) x R (the thick pillow); 

ii) the orientable twisted line bundle over the Klein bottle K2xR or over the 

projective plane with two silvered points P 2(7r,7r)xR; 

Hi) a quotient by an involution of either 52(7r, 7r, 7r, 7r) x R , T2 x R or K2xR, that 

gives an orientable bundle respectively over either D2(7r,7r), an annulus, or 

a Möbius strip, with silvered boundary in the three cases (see Figure 2 of 

Chapter 4)-

In addition, the (1 + e)-bilipschitz homeomorphism f : Ux —• Af^(S) satisfies the 

inequality 

max(inj(x),ö!(/(x),5),diam(5)) < u/D. 

These two theorems, compactness theorem and local soul theorem, are the main 

ingredients in the proofs of Theorems A and B. The assumption that cone angles are 
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14 CHAPTER 1. CONE MANIFOLDS 

bounded above by TT is crucial for the proof of both theorems (and cannot be removed). 
Geometrically this property is related to convexity: the Dirichlet polyhedron of a cone 
3-manifold with cone angles bounded above by n is convex; moreover convex subsets 
of such cone 3-manifolds have nice properties. 

One more ingredient for the study of the collapsing case is a cone manifold version 
of Gromov's isolation theorem [Gro, Sec. 3.4] (cf. Proposition 5.2.5). This involves 
the notion of simplicial volume due to Gromov [Gro]. 

A strengthening of Theorem A leads to the following Margulis type result (cf. 
Chapter 5): 

Proposition 1. — Given 0 < UJQ < uj\ < n, there exists a positive constant 5o — 
SQ(UO,UJI) > 0 such that every oriented closed hyperbolic cone 3-manifold with cone 
angles in [uo,ui] and diameter > 1 contains a point x with m.]{x) > So > 0. 

Stronger thickness results, for general hyperbolic cone 3-manifolds (not assuming 
any more, the singular locus to be a link) can be found in [BLP2]. This is a part 
of the complete proof of Thurston's orbifold theorem, including the case where the 
singular locus has vertices, that we have written with B. Leeb in [BLP1, BLP2]. 

For cone angles bounded away 27r/3, using Hamilton's theorem (cf. [Zh2, Thm 
3.2]) we can get ride of the lower bound on the diameter: 

Proposition 2. — Given 0 < uuo < wi < 2n/3, there exists a positive constant 5\ = 
5I(CJO»^I) > 0 such that every oriented closed hyperbolic cone 3-manifold with cone 
angles in [a;o?^i] contains a point x with inj(x) > S\ > 0. 
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CHAPTER 2 

PROOF OF THURSTON'S ORBIFOLD THEOREM 
FOR VERY GOOD 3-ORBIFOLDS 

In this chapter we prove Theorem 4, assuming Theorems A and B. Then we deduce 

Theorem 1 from it. 

2.1. Generalized Hyperbolic Dehn Filling 

Let M be a compact 3-manifold with non-empty boundary dM = T2 U • • • U T% a 

union of tori, whose interior is hyperbolic (complete with finite volume). Thurston's 

hyperbolic Dehn filling theorem provides a parametrization of a space of hyperbolic 

deformations of this structure on int(M). 

To describe the deformations on the ends of int(M), we fix two simple closed curves 

fii and Xi on each torus T2 of the boundary, which generate H\{T2, Z). The structure 

around the i-th end of int(M) is described by the generalized Dehn filling coefficients 

(PiiQi) £ M 2 U { o o } = 5 2 , such that the structure at the i-th. end is complete iff 

(Pi,qi) — oo . The interpretation of the coefficients (pi,qi) G M 2 is the following: 

- If Pi,qi G Z are coprime, then the completion at the z-th torus is a non-

singular hyperbolic 3-manifold, which topologically is the Dehn filling with 

surgery meridian p¿/¿¿ + qi\. 

- When pi/qi G Q U { o c } , let r¿,s¿ G Z be coprime integers such that Pi/qi — r¿/s¿. 

The completion is a cone 3-manifold obtained by gluing a torus with singular 

core. The surgery meridian is r¿/i¿ + s¿A¿ and the cone angle of the singular 

component is 27r|r¿/p¿|-

- When Pi/qi G R — Q, then the completion (by equivalence classes of Cauchy 

sequences) is not topologically a manifold. These singularities are called of 

Dehn type, cf. [Ho2l. 

Theorem 2.1.1 (Thurston's hyperbolic Dehn filling [Thul]). — There exists a neighbor­

hood U C S 2 x • • • x S2 of { o o , . . . , o o } such that the complete hyperbolic structure 

on i n t (M) has a space of hyperbolic deformations parametrized by U via generalized 

Dehn filling coefficients. 
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The proof (cf. Appendix B) yields not only the existence of a one parameter family 
of cone 3-manifold structures but also gives a path of corresponding holonomies in 
the variety R(M) of representations of TTI(M) into SL2 (C). The holonomy of the 
complete structure on int(M) is a representation of TTI(M) into PSL2(C) that can 
be lifted to 5 L 2 ( C ) . A corollary of the proof of Thurston's hyperbolic Dehn filling 
theorem is the following: 

Corollary 2.1.2. — For any real numbers a i , . . . , oik > 0 there exist £ > 0 and a path 
7 : [0,e) —• R{M), such that, for every t G [0 ,e) , j(t) is a lift of the holonomy of a 
hyperbolic structure on M corresponding to the generalized Dehn filling coefficients 

((pi,qi),..-,(Pk,Qk)) = ( (27r / ( a i* ) ,0 ) , . . . , ( 27r / ( a f c t ) , 0 ) ) . 

When = 0, the structure at the i-ih cusp is complete; otherwise its completion 
is a cone 3-manifold obtained by adding to Tf a solid torus with meridian curve fii 
and singular core with cone angle ait. 

2.2. The space of hyperbolic cone structures 

Let O be an irreducible orientable connected closed 3-orbifold of cyclic type, with 
ramification locus E, and such that O — E admits a complete hyperbolic structure 
of finite volume. In this section we study the space of hyperbolic cone structures 
with topological type ( 0 , E ) . The main result of this section, Proposition 2.2.4, 
can be deduced from Thurston's Hyperbolic Dehn filling theorem (Theorem 2.1.1) 
and Hodgson-Kerckhoff rigidity theorem [HK]. Nevertheless we present here an el­
ementary proof, based only on Thurston's Dehn filling theorem, but independent of 
Hodgson-Kerckhoff rigidity theorem. 

Notation 2.2.1. — Let m i , . . . , mq be the ramification indices of O along E. We set 

,2TT 2TT, 
a = ( a i , . . . ,aq) = (—,..., — j . 

v m i mq 

For t £ [0,1], let C(ta) denote the hyperbolic cone 3-manifold having the same 
topological type as the orbifold O and cone angles ta = ( t o i , . . . ,taq) (the ordering 
of the components of E is fixed throughout this section). With this notation, C(0) is 
the complete hyperbolic structure of finite volume on O — E. 

Thurston's hyperbolic Dehn filling theorem (Corollary 2.1.2) means that for small 
values of t > 0 the hyperbolic cone 3-manifold C(ta) exists. Thurston's idea is to 
increase t whilst keeping C(ta) hyperbolic and to study the limit of hyperbolicity. 

More precisely, consider the variety of representations of ir±(0 — E) into 5 L 2 ( C ) , 

R := Hom(7n(0 - E) ,SX 2 (C) ) . 

Since 7Ti (0 — E) is finitely generated, R is an affine algebraic subset of CN (it is 
not necessarily irreducible). The holonomy representation of the complete hyperbolic 
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structure on O — E lifts to a representation p 0 into 5L 2 (C) , which is a point of R. 

Let i?o be an irreducible component of R containing po-

Definition 2.2.2. — Define the subinterval J Ç [0,1] to be: 

J : = - t e [ o , l] 

there exists a path 7 : [0, £] —» i?o 

such that, for every s G [0, £], 

7 ( 5 ) is a lift of the holonomy 

of a hyperbolic cone 3-manifold C(sa) 

Remark 2.2.3. — We say "a" hyperbolic cone 3-manifold C(sa), since we do not use 

the uniqueness of the hyperbolic cone structure for s > 0, proved in [Koj]. 

By hypothesis, J / 0 because 0 G J (i.e. O — E has a complete hyperbolic 

structure). 

Proposition 2.2.4. — The interval J is open in [0,1]. 

Proof. — The fact that J is open at the origin is a consequence of Thurston's hyper­

bolic Dehn filling theorem, as seen in Corollary 2.1.2. 

Let ¿¿ = (//1,. . . be the meridians of E. That is, p* G TTI(0 — E) represents 

a meridian of the i-th component of E, for i = 1,..., q. Note that \ii is not unique, 

only the conjugacy class of /if1 is unique. We consider the regular map: 

Tr^.Ro —> C« 
p 1—• (trace(p(/ii)),. . . , trace(p(/xg))). 

Claim 2.2.5. — There exists a unique affine irreducible curve C C Cq such that, for 

anyteJ, Tr / 1(7([0,t]))cC. 

Proof of the claim. — For n G N, consider the Chebyshev-like polynomial pn(x) = 

2 cos(narccos(x/2)). It is related to the classical Chebyshev polynomial by a linear 

change of variable. It can also be defined inductively by the rule 

f p0(x) = 2, Pl(x) = x, 

\ pn(x) = Xpn-i(x) - p n _ 2 ( x ) , for n G N, 71 > 1. 

We are interested in the following property of polynomials pn: 

trace(M n ) = p n (trace(M)), VM G 5L 2 (C) , Vn G N. 

Let po = 7(0) be the lift of the holonomy corresponding to the complete finite 

volume hyperbolic structure on O — E. Since po applied to a meridian is parabolic, 

TrM(po) = 1 M 7 ( 0 ) ) = ( c i 2 , . . . , e,2), with e u . . . , e q e { ± 1 } . 

We take C to be the irreducible component of the algebraic set 

{z G Cq I pmi(eizx) = .-.VNVXXS=Pmq{eqzq)} 

that contains TrM(p 0)« 
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To show that the component C is well defined and is a curve, we use the following 
identity: 

p'n(2)=n\ V n e N . 
It follows from this formula that TrM(po) is a smooth point of { p m i ( ^ i ^ i ) = • • • = 
Pmq(£qZq)} of local dimension 1. Thus C is the only irreducible component containing 
Tr^A)) a n < i it i s a curve. 

Finally to prove that Tr / i(7([0, £])) C C, we consider the analytic map: 

0 : C — • C 9 

w i — • (ei2cos(iy7r/mi),... ,eq2cos(wir/mq)) 

Since i(s)(/j,i) is a rotation of angle sir/nti and 1^ (7 (0 ) ) = (e i2 , . . . , e g2), it is clear 
that TrM(7([0,t])) C 0 ( C ) . By construction, 

0 (C) C {pmi(eizi) = . . . = p m , ( e g ^ ) } . 

Since analytic irreducibility implies algebraic irreducibility, 0(C) C C, and the claim 
is proved. • 

Claim 2.2.6. — For every t G J, there exists an affine curve V c Ro containing j(t) 
and such that the restricted map TrM :V —> C is dominant. 

Proof. — We distinguish two cases, according to whether t > 0 or t = 0. 
When t > 0, we take an irreducible component Z of T r " 1 ^ ) that contains the 

path 7([£ — e, £]), for some e > 0. Since 

I ^ M 5 ) ) = (ei2 cos(s7r/mi),..., tq2 cos(s7r/mq)), 

the rational map Tr^ : Z —> C is not constant, hence dominant. By considering 
generic intersection with hyperplanes we can find the curve V of the claim. More 
precisely, we intersect Z with a generic hyperplane H passing through j(t) and such 
that it does not contain Tr~1(Tr/Li(7(^))) D Z. Such a hyperplane H exists because 
Tr^ : Z —> C is dominant. By construction Tr^ : Z n H —> C is not constant and the 
dimension of Z n fl" is less than the dimension of Z . By induction we obtain a curve 
V. 

When t = 0, we consider again an irreducible component Z of T r " 1 ^ ) that contains 
po. In this case Thurston's hyperbolic Dehn filling theorem implies that the restriction 
Tr^.X —> C is not constant. By considering intersection with generic hyperplanes as 
before, we obtain the curve V of the claim. • 

We now conclude the proof of Proposition 2.2.4. Given £ £ J, let C and V be as in 
Claims 2.2.5 and 2.2.6. Since V and C are curves, for some e > 0, the path 

g:[t,t + e) — • CcCq 

s 1—> (ei2cos(s7r/rai),..., eq2 cos(s7r/mq)) 

can be lifted through TrM : V —> C to a map 5/ : [£, £ + e) —• P. This map # is a 
continuation of 7. 
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It remains to check that this algebraic continuation of 7 corresponds to the holono­

my representations of hyperbolic cone 3-manifolds. To show this, we use Lemma 1.7.2 

of Canary, Epstein and Green's Notes on notes of Thurston [CEG]. This lemma 

(called "Holonomy induces structure") proves that, for s e [t,t + e), g(s) is the holon­

omy of a hyperbolic structure on the complement C(ta) — A/"r(E) of a tubular neigh­

borhood of the singular set, with arbitrarily small radius r > 0. The construction 

of the hyperbolic structure in a tubular neighborhood of the singular set needs some 

careful but elementary analysis. In [Po2] this is done in the case where the structure 

is deformed from Euclidean to hyperbolic geometry, and the constant curvature case 

is somewhat simpler. This finishes the proof of Proposition 2.2.4. • 

Remark 2.2.7. — It follows from the proof that, for every t G J, the path 7 : [0,t] —> 

Ro of holonomies of hyperbolic cone structures is piecewise analytic. This is useful 

for applying Schlafli's formula [Po2, Prop. 4.2]). 

The following technical lemma will be used in the next section. 

Lemma 2.2.8. — The dimension o / T r " 1 ^ ) is 4. 

Proof. — The proof of Thurston's hyperbolic Dehn filling theorem uses the fact that 

the local dimension of T r ' ^ T r ^ p o ) ) a t po is 3, because of Weil's local rigidity theo­

rem. Moreover, the dimension of the preimage of any point in C is at least 3, because 

this is the dimension of SL2(C). Since Tr^ : Tr~ 1(C) —• C is dominant, the dimension 

of Tr -^C) is 4. • 

2.3. Proof of Theorem 4 from Theorems A and B 

Theorem 4. — Let O be a closed orientable connected irreducible very good 3-orbifold 

of cyclic type. Assume that the complement O — E of the branching locus admits a 

complete hyperbolic structure. Then O contains a non-empty compact essential 3-

suborbifold O' Ç O, which is not a product and which is either complete hyperbolic of 

finite volume, Euclidean, Seifert fibred or Sol. 

Proof of Theorem 4 from Theorems A and B. — We start with the subinterval J Ç 

[0,1] as in Section 2.2. Recall that J is the set of real numbers t G [0,1] such that 

there is a path 7 : [0,£] —• Ro with the property that, for every s G [0,£], 7 ( 5 ) 

is the holonomy of a hyperbolic cone 3-manifold C(sa). The hyperbolic cone 3-

manifold C(sa) has the same topological type as O and its cone angles are sa = 

(s 2'ïï/mi,..., s 2n/mq). 

By Proposition 2.2.4, J is open in [0,1], and moreover 0 G J by hypothesis. So 

there are three possibilities: either J = [0,1], J = [0,1), or J = [0,£) with 0 < t < 1. 

If J = [0,1] then O is hyperbolic. Propositions 2.3.1 and 2.3.7 deal with the cases 

where J — [0, t) with 0 < t < 1 and J = [0,1) respectively. 
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Proposition 2.3.1. — If J = [0,£) 0 < t < 1, £/aen O ¿5 a spherical 3-orbifold. 

Proof. — Fix (tn)neN an increasing sequence in J = [0, t) converging to t and consider 

the corresponding sequence of cone 3-manifolds Cn = C(tna). The cone 3-manifolds 

C n have the same topological type as O, and the cone angles are contained in some 

interval [ C J C C J I ] , with 0 < u0 < vi < 7r, because 0 < t < 1. Thus we can apply 

Theorem A to the sequence ( C N ) N G N , and, after perhaps passing to a subsequence, 

we have three possibilities: 

i) the sequence (Cn)ne^ converges geometrically to a hyperbolic cone 3-manifold 

with the same topological type; 

ii) each Cn contains an embedded sphere Sn which intersects E in 3 points and the 

sum of the cone angles at these points converges to 2-ir; 

hi) there is a sequence of positive reals A n —• 0 such that ( x - C n ) n e N converges 

geometrically to a Euclidean cone 3-manifold with the same topological type. 

We want to show that only the last possibility occurs. 

If case i) happens, we claim that t G J; this would contradict the hypothesis 

J = [0, t). Let Coo be the limit of the sequence Cn. Since the convergence is geometric, 

the cone angles of Coo are precisely ta. Therefore C(ta) is hyperbolic and it remains 

to show the existence of a path of holonomy representations from 0 to t. To show 

that, we take a path 7 N for each pn and we prove that the sequence of paths 7 N has 

a convergent subsequence. 

Lemma 2.3.2. — The sequence of paths 7 N has a subsequence converging to a path 7 ^ . 

Moreover, up to conjugation, for n sufficiently large, 700 is a continuation of 7 N . 

Proof of Lemma 2.3.2. — Consider the algebraic affine set V = Tr~ 1(C) and its quo­

tient by conjugation X = V/PSL2(C). The space X may not be Hausdorff, but since 

the holonomy of a closed hyperbolic cone 3-manifold is irreducible [Pol, Prop. 5.4], 

the points we are interested in (conjugacy classes of holonomy representations) have 

neighborhoods that are analytic (see for instance [CS] or [Pol, Prop. 3.4]). If we 

remove all reducible representations, then the quotient is analytic, even affine [CS], 

call it Xirr. By lemma 2.2.8, Xirr is a curve. Moreover, the holonomies of hyperbolic 

cone structures are contained in a real curve of Xirr', because the traces of the merid­

ians are real. Hence, up to conjugation, the paths 7 N are contained in a real analytic 

curve. Thus, pn converges to poo , the sequence 7 N has a convergent subsequence, and 

the limit 700 is a continuation of 7 N . • 

It follows from this lemma that the limit 700 is a path of holonomy representations 

of hyperbolic cone structures. Hence t G J and we obtain a contradiction. 

Next we suppose that case ii) occurs. That is, for each n G N, S2 C Cn is 

an embedded 2-sphere which intersects E in three points and the sum of the cone 

angles at these points converges to 2TT. Since E has a finite number of components, 
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after passing to a subsequence, we can suppose that S2 intersects always the same 
components of E. Let m i , m 2 and m 3 be the branching indices of the components of 
E which intersect 5^, counted with multiplicity if one component of E intersects S2 

more than once. Since the sum of the cone angles at these points converges to 27r, we 
have: 

/2TT 2TT 2TT\ n ( 1 1 1 \ 
2?r < *( — + — + — <2TT — + — + — , 

V mi m 2 m 3 / V m i m 2 m 3 / 

because £ < 1. If we view S2 as a 2-suborbifold F c O , then F is spherical, because 
its underlying space is |F| = S2 and it has three points of ramification with branching 
indices m i , m 2 and m 3 , where ^ + ^ + ^ > 1. The suborbifold F cannot bound 
a discal 3-orbifold, since we assume that the ramification set of O is a link. This 
contradicts the irreducibility of the 3-orbifold (9, so case ii) cannot happen. 

So far we have eliminated cases i) and ii). Now we prove from case iii) that O is a 
spherical 3-orbifold. 

Case iii) implies that there is a Euclidean cone 3-manifold C(ta) with the same 
topological type as O and with cone angles ta = (£27r/mi, . . . ,£27r /m g ) , where 
0 < t < 1. We first prove that in this case the 3-orbifold O must be very good. 

Lemma 2.3.3. — If there is a Euclidean cone 3-manifold C{ta) with the same topolog­
ical type as the orbifold O and with cone angles ta = (£27r/rai, . . . ,t27r/mq), where 
0 < t < 1, then O is a very good 3-orbifold. 

Proof of Lemma 2.3.3. — First we deform the singular Euclidean metric induced by 
C(ta) on the underlying manifold \0\ of O to a Riemannian metric with non-negative 
sectional curvature (cf. [Jon], [GT], [Zhl, Zh2]). 

Let E C \0\ be the singular locus of this Euclidean metric, which is also the ram­
ification locus of the orbifold O. We deform the metric on its tubular neighborhood 
A/" ro(E) of radius ro, for some r 0 > 0 sufficiently small. Around E, the local expression 
of the singular Euclidean metric in Fermi (cylindrical) coordinates is: 

ds2 = dr2+t2r2d02 + dh2, 

where r G (0,ro) is the distance from E, h is the length parameter along E, and 
9 G (0,27r) is the rescaled angle parameter. 

The deformation we are introducing depends only on the parameter r. This defor­
mation consists of replacing the above metric by a metric of the form 

ds2 = dr2 + f2(r)d62+dh2, 

where / : [0, ro — e) —• [0, - foo) is a smooth function that satisfies, for some e > 0 
sufficiently small: 

1) / ( r ) = r, for all r G [ 0 , te); 

2) f(r) =tr + te, for all r G ( r 0 / 2 , r 0 - e), 
3) / is concave: f"{r) < 0, for all r G [0, r 0 - e). 
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Such a function / exists because 0 < t < 1. The first property implies that the 

new metric is non-singular. Property 2) implies that, after reparametrization, this 

new non-singular metric fits with the original singular metric at the boundary of 

the tubular neighborhood A/" r o(£). A classical computation shows that the sectional 

curvature of the planes orthogonal to £ is non-negative, by property 3), and it is 

even positive at some point. Hence, since the metric is locally a product, it has 

non-negative sectional curvature. 

We show now that the manifold \0\ admits a Riemannian metric of constant pos­

itive sectional curvature (i.e. is spherical), by applying the following deep theorem of 

Hamilton ([Hal, Ha2], see also [Bou]). 

Theorem 2.3.4 (Hamilton [Hal, Ha2]). — Let N3 be a closed 3-manifold which admits 

a Riemannian metric of non-negative Ricci curvature. Then N3 admits a metric 

which is either spherical, flat or modelled on S 2 x R. 

Furthermore the deformation is natural, and every isometry of the original metric 

is also an isometry of the new metric. • 

Remark 2.3.5. — It follows from Hamilton's proof [Ha2] that the flat case occurs only 

if the initial metric on N3 was already flat, and that the case modelled on § 2 x 1 

occurs only if the initial metric had reducible holonomy, contained in SO(2). 

We apply Hamilton's Theorem 2.3.4 to the metric on \0\ given by Lemma 2.3.3. 

According to the remark, the flat case of Hamilton's theorem does not occur because 

the initial metric was not flat. Moreover, we can also eliminate the case § 2 x IR, 

because this case would imply that the singular Euclidean cone structure on \0\ is of 

Seifert type (\G\ admits a Seifert fibration such that the singular locus is an union of 

fibres). This follows, for instance, from [Po2, Lemma 9.1]. Thus Hamilton's theorem 

implies that \G\ admits a spherical metric. 

Therefore, up to passing to a finite cover, we can assume that the underlying space 

\0\ of O is S3. Since the ramification set is a link, O is a very good 3-orbifold. More 

precisely, O admits a finite abelian regular covering which is a manifold. This proves 

Lemma 2.3.3. • 

Let M —> O be a regular covering of O with finite deck transformation group 

G, such that M is a manifold. Since t < 1, the Euclidean cone 3-manifold C(ta) 

induces a G-invariant Euclidean cone manifold structure on M, with singular angles 

t2n < 2TT, from which we deduce (cf. [Jon], [GT], [Zhl, Zh2]): 

Lemma 2.3.6. — The manifold M admits a non-singular G-invariant Riemannian 

metric with constant positive sectional curvature. 

Proof of Lemma 2.3.6. — First, we deform the singular Euclidean metric on M (lifted 

from the one induced by C(ta) on \0\) in a G-invariant way to a G-invariant Rie­

mannian metric on M, which is not flat and has non-negative sectional curvature. 
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Let E G C M be the singular set of this Euclidean metric, which is also the set 

of points where the action of G is not free. We deform the metric in a tubular 

neighborhood of the singular set A /" R O (EG) of radius r 0 , for some r 0 > 0 sufficiently 

small, exactly in the same way as in the proof of Lemma 2.3.3. Since the deformation 

introduced in Lemma 2.3.3 depends only on the radial parameter r, it is G-invariant. 

Hence we get a G-invariant Riemannian metric which is non flat and has non-negative 

sectional curvature. 

Now, Hamilton's Theorem 2.3.4 implies that this G-invariant Riemannian metric 

on M can be deformed to a G-invariant Riemannian metric with positive constant 

sectional curvature. This is because the initial metric is not flat. Moreover M — E G 

admits a complete hyperbolic structure lifted from the one of O — E , and hence cannot 

be Seifert fibred. 

This G-invariant spherical metric on M induces a spherical metric on the 3-orbifold 

O. This concludes the proof of Proposition 2.3.1 • 

We complete now the proof of Theorem 4 by dealing with the case where J = [0,1): 

Proposition 2.3.7. — If J = [0,1) then O contains a non-empty compact essential 

3-suborbifold which is not a product and which is geometric. 

Proof. — Let ( t n ) n e N be a sequence in [0,1) converging to 1. We apply Theorem B to 

the corresponding sequence of hyperbolic cone 3-manifolds ( C ( £ n a ) ) n € N whose cone 

angles form an increasing sequence that converges to 2TT/rii, i = l , . . . , f c , when n 

goes to oo. By Theorem B, O contains a non-empty compact essential 3-suborbifold 

Of C O which is either Euclidean, Seifert fibred, Sol, or hyperbolic of finite volume, 

and which is not a product. • 

Since Propositions 2.3.1 and 2.3.7 are proved, the proof of Theorem 4 from Theo­

rems A and B is finished. 

2.4. Proof of Theorem 1 

Theorem 1. — Let O be a compact, connected, orientable, irreducible and d-in­

compressible 3-orbifold of cyclic type. If O is very good, topologically atoroidal and 

acylindrical, then O is geometric (i.e. O admits either a hyperbolic, a Euclidean, or 

a Seifert fibred structure). 

Throughout this section we assume that O is a 3-orbifold which satisfies the hy­

pothesis of Theorem 1. 

Let DO denote the double of O along some components of dO, which we call 

doubling components. The ramification set of DO is denoted by DY,. If we double 

along the empty set, then we choose the convention that DO — O, so that DO is 

always connected. 
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First we give some results about the topology and the geometry of DO and DO — 

DT, in order to reduce the general case to the case where the hypothesis of Theorem 4 

are satisfied. Then we deduce Theorem 1 from Theorem 4. 

Throughout Lemmas 2.4.1 to 2.4.7 we assume only that O is a compact orientable 

irreducible and (^-incompressible 3-orbifold which is topologically atoroidal and acylin-

drical. The hypothesis that the 3-orbifold O is very good will be used only in Propo­

sition 2.4-9, to reduce the proof of Theorem 1 to the case where dO does not contain 

any non-singular torus component. 

Lemma 2.4.1. — Let O be a compact connected orientable irreducible d-incompressible 

3-orbifold which is topologically atoroidal and acylindrical. For any choice of doubling 

components, 

i) DO is irreducible and topologically acylindrical; 

ii) every component of dO is incompressible in DO; 

iii) every incompressible toric 2-suborbifold of DO is parallel to dO C DO. 

In particular DO is d-incompressible. Furthermore, DO is topologically atoroidal iff 

every doubling component is a hyperbolic 2-suborbifold. 

Proof of Lemma 2.^.1. — Let S C DO be a spherical 2-suborbifold. After isotopy, 

we can suppose that S is transverse to dO and that the intersection SildO is minimal. 

We claim that S C O. Seeking a contradiction, we suppose S (¡LO. Since 5 is a sphere 

with at most three cone points, at least one component of S fl O is a disc A 2 with 

at most one cone point. Since O is irreducible, dA2 is essential in dO by minimality. 

Hence A 2 is a compressing disc for dO, and we get a contradiction because O is 

<9-incompressible. Therefore S C O and S bounds a discal 3-orbifold by irreducibility 

of O. The same argument goes through to show that DO does not contain any bad 

2-suborbifold. Hence DO is also irreducible. 

Let A c DO be a properly embedded annular 2-suborbifold. Again we deform 

it so that A n dO is transverse and minimal. No component of A fl O is a discal 

orbifold, because dO is incompressible and the intersection AndO is minimal. Hence 

A = A\ U • • • U Ak, where each Ai is an annular 2-suborbifold properly embedded in 

one of the copies of O. If k > 1, then, by minimality of the intersection, none of the 

annuli Ai is parallel to dO nor compressible in (D, contradicting the acylindricity of 

O. Hence k = 1 and A c O is not essential. This proves that DO is topologically 

acylindrical. 

To show that every component of dO is incompressible in DO, suppose that dO 

has a compressing disc A 2 C DO. By making the intersection A 2 n dO minimal, 

every disc component of A 2 fl O is a compressing disc for dO in 0 , thus we obtain a 

contradiction that proves assertion ii). 

Finally, let F C DO be an incompressible toric 2-suborbifold. After an isotopy, 

we can again make the intersection F fl dO transverse and minimal. If F D dO ^ 0 , 
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then the minimality of the intersection implies that each component of F n O is an 

essential annular 2-suborbifold, and we get a contradiction. Thus F c O and F is 

parallel to dO. • 

Lemma 2.4.2. — Let O be a compact connected orientable irreducible d-incompressible 

3-orbifold which is topologically atoroidal and acylindrical. If every doubling compo­

nent is different from a non-singular torus, then the manifold DO — DE is irreducible 

and topologically atoroidal. 

Proof of Lemma 2.4-2. — Let S C DO - DT, be an embedded 2-sphere. It bounds a 

discal 3-suborbifold A 3 in DO, because DO is irreducible. Since 5 n £>E = 0 , A 3 is 

a 3-ball and A 3 D J D E = 0 . So DO - DY, is irreducible. 

Let T C DO — DT, be an embedded torus. By Lemma 2.4.1 iii), either T is 

compressible in DO or parallel to a component of dO c DO. In this last case, since 

the doubling components are different from tori, T must be boundary parallel in DO, 

and thus it is also boundary parallel in DO — DE. If T admits a compressing discal 

2-suborbifold, then the irreducibility of DO implies that T bounds either a solid torus 

or a solid torus with ramified core S1 x D 2 ( * ) . In the former case T is compressible 

in DO — £>E; in the latter case, T is boundary parallel in DO — DY,. • 

Lemma 2.4.3. — Let O be a compact connected orientable irreducible d-incompressible 

3-orbifold. 

i) For any choice of doubling components, if DO is Euclidean or Seifert fibred then 

O is Euclidean, Seifert fibred, or an I-bundle over a 2-orbifold. 

ii) If the doubling components are non-empty, then DO is not Sol. 

Proof of Lemma 2.4-3. — First suppose that DO is Euclidean or Seifert fibred. We 

can assume that dO ^ 0 , otherwise the statement is trivial. Moreover DO ad­

mits a finite regular irreducible manifold covering TV, because DO is irreducible by 

Lemma 2.4.1, and it is geometric. The fundamental group TTI(N) is infinite, because 

each component of dO lifts to incompressible surfaces in N, with infinite fundamental 

group. 

If DO is Seifert fibred, by [BS1, Thm. 4], DO is either isotopic to a vertical (i.e. 

fibred) or to a horizontal (i.e. transverse to the Seifert fibration) 2-suborbifold because 

it is incompressible (Lemma 2.4.1). Therefore O is either Seifert fibred or an /-bundle 

over a 2-orbifold. 

If DO is Euclidean but dDO is not empty, then DO admits a Seifert fibration, 

hence, as above, O is either Seifert fibred or an /-bundle. 

To handle the case where DO is Euclidean and dDO is empty we consider the 

natural involution r : DO —> DO obtained by reflection through the doubling com­

ponents of O. The reflection r : DO —> DO lifts to a reflection r : N —> N which 

commutes with the deck transformations group of N —• DO. In particular, N is 

obtained by doubling a finite regular covering M —> O along the lifts of the doubling 
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components of DO, which are precisely the fixed point set of the involution r. We 
can take N to be the 3-torus T 3 . Then the fixed point set of r, which is an incom­
pressible surface, is isotopic to a disjoint union of parallel copies of fibres T 2 x { * } 
in T 3 . In particular, the finite regular covering M of DO is homeomorphic to the 
product T 2 x I. By [BS1, Prop. 12] or [MS], the orbifold O inherits an J-fibration 
and is Euclidean. This proves assertion i). 

l o prove assertion nj, we suppose that DO is Sol. lhere is a hmte regular covering 
N —> DO which is a manifold and fibres over S1 with fibre T 2 and Anosov monodromy. 
Let r : DO —» DO be the natural involution as above, obtained by reflection through 
the doubling components of dO. Since r is an involution with a non-empty fixed 
point set, not included in the ramification locus, it lifts to an involution r of N whose 
fixed point set contains a two dimensional submanifold. By Tollefson's theorem about 
finite order homeomorphisms of fibre bundles [To2] (see also [MS]), we may assume 
that r preserves the fibration by tori. Then one can easily check that torus bundles 
with Anosov monodromy cannot admit the reflection r. • 

Remark 2.4.4. — When O is an /-bundle over a 2-orbifold F 2 , the following facts 
should be noted: 

i) The 2-orbifold F2 is either Euclidean or hyperbolic, because O is irreducible. In 
particular, the interior of O has a complete Euclidean or hyperbolic structure. 

ii) Acylindricity of O restricts the possibilities for F2. 
iii) The manifold DO - DY> is Seifert fibred. 

We decompose the boundary of O in three parts: 

dO = drO U dSE0 U duO, 

where: 

- 8TO is the union of the boundary components homeomorphic to a torus, 
- &SEO is the union of the singular Euclidean boundary components, 
- 8HO is the union of the hyperbolic boundary components. 

In the following we denote O — AT(E) by X, where Af(E) is an open tubular 
neighborhood of E. Let P C dX be the union of drO with the tori corresponding to 
circle components of E and with the annuli corresponding to arcs in E. Equivalently: 

P = drO U (<W(E) n int(O)). 

Then we have the following proposition (see also [Dun2, Thm. 10], [SOK, §2]): 

Lemma 2.4.5. — Let O be a compact orientable irreducible and d-incompressible 3-
orbifold which is topologically atoroidal and acylindrical. Then: 

i) either X — P admits a hyperbolic structure with totally geodesic boundary and 
finite volume, 

ii) or O is Seifert fibred or an I-bundle over a 2-orbifold F2. 
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Proof of Lemma 2.4-5. — Let DX be obtained by doubling X along dX—P. We take 

the convention that DX = X if dX = P, so that DX is always connected. Then dDX 

is an union of tori. In fact DX = DO - Af(DE), where DO is obtained by doubling 

O along all the components of &SEO U 3HO. Thus it follows from Lemma 2.4.2 that 

DX is irreducible and atoroidal. With these notations, we have the following claim: 

Claim 2.4.6. — Either DX = DO—N(DY) has incompressible boundary and is topo­

logical^ acylindrical, or O is Seifert fibred or an I-bundle over a 2-orbifold F2. 

Proof of the claim. — First we prove that if DO—Af(DT,) has compressible boundary 

then O is Seifert fibred. Assuming that DO — J\f(DE) has compressible boundary, 

then DO — AT(-DE) is a solid torus, because it is irreducible and its boundary is a 

union of tori. Hence the underlying space of DO is a generalized Lens space and its 

ramification locus is the core of one of the solid tori of a genus one Heegard splitting. 

As the 3-orbifold DO is irreducible, it cannot be the product S1 x 5 2 (* ) , where 5 2 (* ) 

is a 2-sphere with one cone point (a bad 2-orbifold). Hence DO has S 3 as universal 

covering. By the equivariant Dehn's lemma, DO cannot contain an incompressible 

2-suborbifold. Hence dO = 0 , and DO = O, by Lemma 2.4.1 ii). Thus O is Seifert 

fibred. 

We prove next that if DO — J\f(DT) contains an essential annulus then DO is 

Seifert fibred. This will imply the claim, because when DO is Seifert fibred, then, by 

Lemma 2.4.3, O is either Seifert fibred or an /-bundle over a 2-orbifold. 

Suppose that DO — J\f(DT,) contains an essential annulus. By Lemma 2.4.2 and 

the characteristic submanifold theorem [JS], [Joh], DO — Af(DY,) is Seifert fibred. 

We consider a component E^ of E and a solid torus neighborhood Af(Ei). If the fibre 

of the Seifert fibration of DO — M{DY) is not homotopic to the meridian of £* in the 

torus <W(£i)> then this Seifert fibration can be extended to so that is a 

fibre. 

We suppose now that the fibre of the Seifert fibration of DO—M{DTi) is homotopic 

to the meridian of E^. If the base 2-orbifold of the Seifert fibration in DO — N(DY>) 

is different from a disc or a disc with one cone point, then DO — M{DT) contains an 

essential annulus which is vertical and its boundary is in cW(£*)- In particular, the 

union of this annulus with two meridian discs (with one cone point) of Af(T,i) gives 

an incompressible spherical 2-suborbifold in DO, contradicting the irreducibility of 

DO. Hence DO — Af(DT,) is a solid torus, and, as we have already shown above, this 

implies that dO = 0 and DO = O is Seifert fibred. 

To achieve the proof of Lemma 2.4.5 we apply Thurston's hyperbolization theo­

rem for topologically atoroidal and acylindrical Haken 3-manifolds. We assume that 

O is not Seifert fibred, nor an /-bundle over a 2-orbifold F2. Then it follows from 

Lemma 2.4.2 and Claim 2.4.6 that DX is a 9-incompressible Haken 3-manifold, which 

is topologically atoroidal and acylindrical. Since dDX is an union of tori, Thurston's 
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hyperbolization theorem shows that DX — dDX admits a complete hyperbolic struc­
ture of finite volume. 

If dX = P, then DX = X and the proof is done. So from now on, we assume that 
Q = dX — P is not empty. In particular 8SEO U 8HO is not empty. 

Consider the reflection ro : DX —» DX through the doubling components Q. 
By Mostow-Prasad rigidity theorem, 7*0 is homotopic to an isometric involution T\ : 
DX -+ DX. By Waldhausen's and Tollefson's Theorems ([Wal], [Tol]), there exists 
a homeomorphism h : DX —> DX isotopic to the identity, that conjugates ro and T\ . 
This implies that the 3-manifold X — P is hyperbolic of finite volume and that the 
components Q = dX — P are totally geodesic. • 

Lemma 2.4.7. — If DO is hyperbolic with finite volume, then O is hyperbolic and the 
doubling components are totally geodesic. 

Proof of Lemma 2.4-7. — Note that if DO is hyperbolic with finite volume, then the 
doubling components are precisely the hyperbolic pieces duO of dO. We assume that 
8HO is not empty, otherwise O = DO and there is nothing to prove. 

Consider the reflection ro : DO —> DO through the doubling components. By 
Mostow-Prasad rigidity theorem, ro is homotopic (in the orbifold sense) to an iso­
metric involution n : DO —» DO. We want to show that these two involutions are 
in fact conjugate. This will imply that the 3-orbifold O is hyperbolic and that the 
hyperbolic components of dO are totally geodesic. 

Since both ro and T\ preserve the ramification set, each one induces a involution 
of DO — DYJ. By Lemma 2.4.5, since DO is not Seifert fibred, nor an /-bundle over 
a 2-orbifold, the manifold DO — DT, admits a hyperbolic structure of finite volume 
with cusps and totally geodesic boundary. Its totally geodesic boundary is exactly 
(dSE0 - E) U {dSE0 - E ) . 

The following claim shows that the restrictions of ro and T\ to DO — DY, are 
respectively homotopic to some isometric involutions go and g\ on DO — DT,. 

Claim 2.4.8. — Let N be a compact orientable irreducible 3-manifold and P C dN a 
disjoint union of incompressible tori and annuli, such that N — P admits a hyperbolic 
structure of finite volume with totally geodesic boundary. Then any diffeomorphism 
h : N —+ N is homotopic to an isometry on N — P. 

Proof of Claim 2.4-8. — If dN = P, then it is a direct consequence of Mostow rigidity 
theorem. Thus we assume that Q = dN — P is not empty. 

Let DN be obtained by doubling N along Q C dN. Then dDN is an union of 
incompressible tori and DN — dDN admits a complete hyperbolic structure of finite 
volume. Moreover the reflection p : DN —> DN through the doubling components Q 
is an isometry on DN — dDN. 

The diffeomorphism h : N —> N extends to give a diffeomorphism h : DN —> DN 
which commutes with the involution p. By Mostow rigidity theorem h is homotopic 
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to an isometry hi on DN — dDN. Since the two isometric involutions p and hiph^1 

are homotopic on DN — dDN, they must be equal. Hence hi induces an isometry hi 
of N — P, which extends to a diffeomorphism of N. 

We show now that hi and h are homotopic on TV. The diffeomorphism cj> = hih~l is 
homotopic to the identity on DN. Therefore <j> induces an inner automorphism of the 
fundamental group TTI(DN), that sends the subgroup ni(N) to itself (the base point 
is taken on the doubling surface Q). Since N is not homeomorphic to an /-bundle over 
a component of Q, it follows that TTI(N) is its own normalizer in ni(DN) by [Hei, 
Thm. 2]. Therefore (j) induces an inner automorphism of TTI(N). This automorphism 
corresponds to the induced action of (j) = hih~x on TTI(N). Since N is a K(7r, 1)-
space, it follows that the map <j> is homotopic to the identity on N hence hi and h 
are homotopic on N. • 

To finish the proof of Lemma 2.4.7 we use an unpublished argument of Bonahon and 
Siebenmann [BS3]. We apply Claim 2.4.8 to the restrictions of ro and T\ to DO — DY. 
Let go and gi denote the isometric involutions of DO — DY which are homotopic to 
the restrictions of ro and T\ respectively. Then, by Waldhausen's and Tollefson's 
Theorems [Wal], [Tol], there exist two homeomorphisms ho,hi : DO — DY —• 
DO — DY isotopic to the identity such that the restrictions TO\DO-DT, = hogoho1 

and TI\DO-DT, — higih^1. Therefore, the involutions go and gi on DO — DY can 
be extended respectively to involutions g0i9i : DO —» DO. It remains to prove that 
g0 = gx on DO. 

The map / = goSi1 is homotopic to the identity on DO in the orbifold sense; 
moreover / is of finite order, because its restriction to DO — DY is an isometry. Since 
/ is homotopic to the identity, it lifts to a homeomorphism / : H 3 —> H 3 whose 
extension to the sphere at infinity dW3 = S2 is the identity. Since / is of finite order, 
so is / , because, if n is the order of / , then ( / ) n is an isometry of M 3 whose extension 
to the sphere at infinity is the identity. By Newman's theorem (cf. [Ne]), the identity 
is the only orientation preserving periodic map of the ball which is the identity on 
the boundary. Thus / must be the identity, and in particular g0 = gx. Hence the 
involutions ro and T\ are conjugate on DO. • 

In the proof of the following proposition we use in a crucial way the assumption in 
Theorem 1 that the 3-orbifold O is very good. 

Proposition 2.4.9. — / / Theorem 1 holds when no component of dO is a non-singular 
torus, then it holds in general. 

Proof of Proposition 2.4-9. — As above we decompose the boundary of O in three 
parts: 

dO = dT0 U dSE0 U dH0, 

where: 
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- drO is the union of the boundary components homeomorphic to a torus 

- BSEO is the union of the singular Euclidean boundary components 

- OHO is the union of the hyperbolic boundary components 

We assume drO ^ 0 . We double along the hyperbolic components 8HO: 

DO = 0 U O. 
DH0 

Since DO is very good, we fix a regular covering p : DM —» DO of finite order 

which is a manifold, and let G denote its group of deck transformations. Since DO is 

irreducible, topologically atoroidal and ̂ -incompressible (Lemma 2.4.1), the Equivari-

ant Sphere and Loop Theorems ([DD], [MY1, MY2] , [JR]) imply that DM is also 

irreducible, topologically atoroidal, and boundary-incompressible. Since by hypothe­

sis d(DM) t ¿ 0 , Thurston's hyperbolization theorem for Haken 3-manifolds implies 

that DM is either Seifert fibred or hyperbolic ([Thul, Thu2, Thu3, Thu4, Thu5], 

[McMl, McM2], [Otl, Ot2], [Kap]). If DM is Seifert fibred, Meeks-Scott theorem 

[MS] implies that DO is also Seifert fibred, and thus O is geometric (Lemma 2.4.3). 

Therefore we can assume that DM is hyperbolic. 

Let 7 = {71 , . . . , 7 r } be a family of simple closed curves, one on each torus com­

ponent of 8T(DO). Let DO(p() denote the 3-orbifold obtained by generalized Dehn 

filling with meridian curves 7 = { 7 1 , . . . , 7 r } . Generalized Dehn filling means that the 

filling solid tori may have ramified cores. Moreover, we choose the branching indices 

of these filling cores so that the generalized Dehn filling DO (7) lifts to a genuine Dehn 

filling of DM. 

We consider a sequence of families of simple closed curves 

(7")n€N = ( {7 1 " , - - - , 7"} )n€N 

such that, for each n G N, 7 n gives precisely one curve on each component of drDO, 

and for each i = l , . . . , r , the curves of the sequence (7f) n eN represent different 

homotopy classes on the i-th torus boundary component. For n G N sufficiently large, 

the orbifold DO(^n) has a regular covering obtained by Dehn filling of DM, which we 

may assume to be hyperbolic by Thurston's hyperbolic Dehn filling theorem. Then, 

by the equivariant sphere theorem ([DD], [JR], [MY1, MY2]) and the proof of 

the Smith conjecture [MB] DO{^n) is irreducible for n G N sufficiently large. It is 

also topologically atoroidal by the equivariant loop theorem ([JR], [MY1, MY2]). 

Moreover, by construction, no component of dDO("yn) is a non-singular torus. Hence, 

for n G N sufficiently large, DO(^(n) is geometric by hypothesis, and so it is hyperbolic. 

For each n G N sufficiently large, choose a point xn G DO{^n) so that inj(x n) > 

e(3), where s(3) > 0 is the 3-dimensional Margulis constant. By the compactness the­

orem (Chap. 3) there is a subsequence of the sequence (DO(jn),xn) which converges 

geometrically to a hyperbolic 3-orbifold. Moreover the limit is non-compact and gives 

a hyperbolic structure on the interior of the 3-orbifold DO, because the sequence of 
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coverings of DOyyn) converges geometrically to the interior of DM by Thurston's 
hyperbolic Dehn filling theorem. 

Since DO is hyperbolic, Lemma 2.4.7 shows that O is also hyperbolic. • 

Proof of Theorem 1. — We use the previous results of this section to make some 
reductions of the general case. First, since we assume that O is very good, by Propo­
sition 2.4.9, we can assume that no component of dO is a non-singular torus. 

Let DO be the double of O along all boundary components. In particular d(DO) = 
0 . By Lemma 2.4.1, DO is irreducible; moreover every incompressible Euclidean 
2-suborbifold is singular and parallel to a doubling component. By Lemma 2.4.2, 
DO — DY is irreducible and atoroidal. Furthermore, by Lemma 2.4.5, we can as­
sume that DO — DY is also topologically acylindrical and has an incompressible 
boundary. Hence, by Thurston's hyperbolization theorem ([Thu3, Thu4, Thu5], 
[McMl, McM2], [Kap], [Otl, Ot2]) DO - DY has a complete hyperbolic struc­
ture of finite volume, and we can apply Theorem 4 to DO. 

By Theorem 4, DO contains a non-empty compact essential 3-suborbifold O' C DO 
which is not a product and which is either Euclidean, Seifert fibred, Sol or complete 
hyperbolic with finite volume. We distinguish two cases, according to whether O is 
closed or not. 

If dO = 0 , then O = Of, because the boundary dO' is either empty or a union of 
incompressible toric 2-suborbifolds, and O is topologically atoroidal. Thus O is either 
Seifert fibred, Euclidean or hyperbolic; it cannot be Sol by atoroidality. 

Next we suppose dO ^ 0 . Note that in this case O' cannot be Sol by Lemma 2.4.3 
ii). By Lemma 2.4.1, every component of dO' is isotopic to a Euclidean component of 
dO. Therefore O' is obtained by cutting open DO along some (perhaps none) com­
ponent of dO. This implies that O can be isotoped into O*', because O' is connected 
and not a product. Moreover after isotopy we can assume that either r{Or) = O' or 
r{0') n O ' = 0 , where r : DO -> DO is the reflection through dO. There are three 
possibilities: 

- If r(0')nO' = 0 then O = O' is Euclidean, Seifert fibred or hyperbolic, possibly 
with cusps. 

- If r{0') = O' and O' is hyperbolic, then, by atoroidality, dO has hyperbolic 
components and O' is the double of dO along the hyperbolic boundary com­
ponents. By Lemma 2.4.7, O is hyperbolic, with some boundary components 
totally geodesic and possibly some boundary components cusped. 

- If r(Of) = O' and O' is Euclidean or Seifert fibred, then O' is the double of 
O along some boundary components. Lemma 2.4.3 i) implies that O is Seifert 
fibred, Euclidean or an /-bundle over a 2-orbifold. The /-bundle case is not 
possible, because it would imply that DO - DY is Seifert fibred. Hence O is 
Seifert fibred or Euclidean. 

This finishes the proof of Theorem 1. Q 
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CHAPTER 3 

A COMPACTNESS THEOREM 
FOR CONE 3-MANIFOLDS 

WITH CONE ANGLES BOUNDED ABOVE BY π 

The purpose of this chapter is to establish a version of Gromov's compactness 
theorem for sequences of Riemannian manifolds (cf. [GLP] and [Pe]) in the context 
of cone 3-manifolds. 

Before stating the main theorem we need some definitions. 

Definition 3.0.1. — For e > 0, a map f:X—>Y between two metric spaces is (1 + £)-
bilipschitz if: 

V x i , z 2 e X, (l^e)-ld(xux2) < d(f(xi)J{x2)) < (1 + e)d(xux2). 

Remark 3.0.2. — A (1 + £)-bilipschitz map is always an embedding. Hence one can 
also define a (1 + £)-bilipschitz map as an embedding / such that / and f~l have 
Lipschitz constant 1 + e. A map is 1-bilipschitz if and only if it is an isometric 
embedding. 

Definition 3.0.3. — A sequence of pointed cone 3-manifolds { ( C n , £ n ) } n e N converges 
geometrically to a pointed cone 3-manifold ( C o o , # 0 0 ) if? for every R > 0 and e > 0, 
there exists an integer no such that, for n > no, there is a (1 + £)-bilipschitz map 
/„ : B(x00,R) -> Cn satisfying: 

i) d(fn(x00),xn) < €, 
ii) B(xn,R - e) C fn(B(xoo,R)), and 

hi) f^Bix^R) H E o o ) = (/ n(B(rroo,i2))) H E n . 

Remark 3.0.4. — By definition, the following inclusion is also satisfied: 

/n(B(*oo, R)) C B(xni R(l + e) + e). 

Definition 3.0.5. — For a cone 3-manifold C , we define the cone-injectivity radius at 
xeC: 

inj(x) = sup{<5 > 0 such that B(x, S) is contained in a standard ball in C}. 
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We recall that a standard ball is isometric to either a non-singular metric ball in H.3

K, 
or to a singular metric ball in M^(a) . The definition does not assume the ball to be 
centered at x, in order to avoid cone-injectivity radius close to zero for non-singular 
points close to the singular locus. 

Given a > 0 and uj £ (0,7r], C[ W j 7 r ] ) a is the set of pointed cone 3-manifolds (C,x) 
with constant curvature in [—1,0], cone angles in [CJ,7T], and such that inj(x) > a. 

This chapter is devoted to the proof of the following result: 

Compactness Theorem. — Given a > 0 and uj £ (0,7r], the closure of C^^]^ in 
U C[u>,n],b i s compact for the geometric convergence topology. 

b>0 

This theorem says that any sequence { ( C n , x n ) } n e N of pointed cone 3-manifolds 
in C[u^],a admits a subsequence that converges geometrically to a pointed cone 3-
manifold in C[w^],b for some b > 0. 

The proof of the compactness theorem occupies Sections 3.1 to 3.4. In Section 3.5 
we give some properties of the geometric convergence. 

The main steps in the proof of the compactness theorem are the following ones. 
First we show that C ^ ^ a is relatively compact in the space C of locally compact met­
ric length spaces equipped with the Hausdorff-Gromov topology (Proposition 3.2.4). 
Next, in Proposition 3.2.6, we show that, for a sequence of pointed cone 3-manifolds 
of C[ W j 7 r ] ) a that converges in £, the limit is a pointed cone 3-manifold in C[u;,7r],& f ° r 

some b > 0. Finally we show that Hausdorff-Gromov convergence in C ^ ^ j ^ implies 
geometric convergence (Proposition 3.3.1). 

The second and third step of the proof rely on the following technical result (Propo­
sition 3.2.5): given a radius R > 0, and constants a > 0 and uj £ (0,7r], for any pointed 
cone 3-manifold (C,x) £ C ^ ^ ] ^ , the cone-injectivity radius of each point in the ball 
B(x, R) has a positive uniform lower bound, which only depends on the constants R, 
a and uj. The proof of this result is postponed until Section 3.4. 

This chapter is organized as follows. Section 3.1 is devoted to the Dirichlet polyhe­
dron and the Bishop-Gromov inequality. In Section 3.2 we show that every sequence 
in C^u^a n a s a subsequence that converges to a cone 3-manifold for the Hausdorff-
Gromov topology, assuming Proposition 3.2.5. In Section 3.3 we show that the con­
vergence is in fact geometric. In Section 3.4 we prove Proposition 3.2.5 using the 
Dirichlet polyhedron. In Section 3.5 we show some basic properties of the geomet­
ric convergence. Finally, in Section 3.6 we extend the compactness theorem to cone 
3-manifolds with totally geodesic boundary. 

3.1. The Dirichlet polyhedron 

In this section we first describe the Dirichlet polyhedron and give some elemen­
tary facts about minimizing paths. Then we prove Bishop-Gromov inequality. The 
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Dirichlet polyhedron for cone 3-manifolds is also considered in [Sua] and minimizing 
paths for cone 3-manifolds are also studied in [НТ]. 

Definition 3.1.1. — Let С be a cone 3-manifold of curvature К < 0 and x e С — E. 
We define the Dirichlet polyhedron centered at x: 

Dx = {y G С — E I there exists a unique minimizing path between у and x}. 

The open set Dx is star shaped with respect to x, hence it can be locally isomet-
rically embedded in the space of constant sectional curvature as a star shaped 
domain. The following proposition explains why it is called a polyhedron. 

Proposition 3.1.2. — The open domain Dx is the interior of a solid polyhedron Dx of 
H^. Moreover the cone 3-manifold С is isometric to the quotient of Dx under some 
face identifications. 

In order to prove this proposition we need first to understand the minimizing paths 
from x to points in С — Dx. First we recall a well known fact about minimizing paths 
in cone 3-manifolds with cone angles less than 2n (cf. [HT] for a proof). 

Lemma 3.1.3. — Let С be a cone 3-manifold with cone angles less than 2тг and sin­
gular set E. Let a be a minimizing path between two points in C. If а П E ф 0, then 
either а С E, or а П E is one or both of the end-points of a. • 

Recall that a subset А с С is called convex if every minimizing path between two 
points of A is itself contained in A. For instance, a subset with only one point is 
convex. The following lemma will be used in the proof of Proposition 3.1.2 in the case 
where A = { x } , but it will be used more generally in Section 3.4 and in Chapter 4. 

Lemma 3.1.4. — Let С be a cone 3-manifold of non-positive curvature, А С С a 
convex subset and у G С. Then the following hold: 

i) There exist a finite number of minimizing paths from у to A. 
ii) Minimizing paths to A with origin close to у are obtained by perturbation: 

for every e > 0 there exists a neighborhood U С С of у such that, for every 
z eU and every minimizing path az from z to A, there exists a minimizing path 
ay from у to A such that oz С ЛГ£(ау), where J\f£(o~y) is the set of points whose 
distance to ay is less than e. 

Proof of Lemma 3.1.4- — We prove i) by contradiction. We assume that we have 
an infinite sequence {сгп}пец of different minimizing paths between у and A. Since 
Length(crn) is constant, up to taking a subsequence, {o~n}neN converges to a path 
(Too. Let e > 0 be sufficiently small so that the developing map around a tubular 
neighborhood Л4(сгоо) is defined. By considering developing maps, we have an infinite 
sequence of different minimizing paths between one point and a convex subset in VB 
or И^-(а), and this is not possible when the curvature is К < 0. 
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We also prove ii) by contradiction: we assume that there is e > 0 and a sequence 

of points zn G C such that zn —• y and every zn has a minimizing path an to A not 

contained in J\f£(ay), for any minimizing path ay between y and A. Since zn —• y, 

there is a subsequence of { c r n } n e N that converges to a path a^. Moreover, by taking 

limits in the inequality 

d(y, A) > Length((jn) - d(y, zn), 

we get that d(y,A) > Length(croo). Therefore is a minimizing path from y to 

A whose e-tubular neighborhood A/"e((7oo) contains infinitely many crn, and we get a 

contradiction. • 

Proof of Proposition 3.1.2. — We describe locally C — Dx by using Lemma 3.1.4. Let 

y G C — Dx, we consider six different cases. 

Case 1. Consider first the case where y 0 E and there are precisely two minimizing 

paths ai and 0 2 between y and x. Take £ > 0 so that the developing map is defined 

around the ^-neighborhoods Af£(&i) and Af£(a2)- By Lemma 3.1.4. there is an open 

neighborhood y G Uy C C so that all minimizing paths from points z G Uy to x are 

in one of these tubular neighborhoods N£(o~i) or A4 (<7 2 ) . Since the set of points in 

M3

K equidistant from two given different points is a plane, by using developing maps 

we conclude that (C — Dx) fl Uy is the "bisector" plane between o\ and 0 2 - This case 

corresponds to the interior of two faces of Dx identified. 

Case 2. Next consider the case where y £ E and there are n > 3 minimizing paths 

( T I , . . . , an from y to x satisfying the following property 

(3.1) there exists v G TyC, v ^ 0 such that (a[(0),v) = • • • = ( ^ ( 0 ) , v), 

where the minimizing paths are parametrized by arc length (in particular ||cr^(0) || = 1). 

Property (3.1) means that the vectors o"i(0),. . . , ^ ( 0 ) can be ordered in such a way 

that, if Pi denotes the "bisector" plane between cr^(0) and 0 ^ + 1 ( O ) , then the intersection 

P i D - • - n P n is a line (generated by the vector v). See Fig. 1. When n = 3 property (3.1) 

always holds. 

FIGURE 1 

An argument similar to case 1 shows that, for some neighborhood Uy of y, (C-Dx)nUy 

is the union of n half planes bounded by the same line. These are precisely the 
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"bisector" half planes between the n pairs of paths a i and <7¿+i- This case corresponds 

to the interior of several edges of Dx identified. Note that the dihedral angles are less 

than 7T by construction. 

Case 3. To finish with the non-singular possibilities, consider the case where y £ E 

and there are n > 4 minimizing paths o~\,..., an from y to x that do not satisfy 

property (3.1) above. This case is treated as the previous ones and corresponds to n 

vertices of Dx identified. 

Case 4- When y G E and y has only one minimizing path a to x. This case 

corresponds to the interior of an edge of Dx, whose dihedral angle equals the cone 

angle of E at y. The two adjacent faces of this edges are identified by a rotation 

around this edge. 

Case 5. When y G E and y has n > 2 minimizing paths o~\,..., an to x that satisfy 

property (3.1) of case 2. In this case, the vector v of property (3.1) is necessarily 

tangent to E and it corresponds to n edges of Dx that are identified to get a piece 

of E. 

Case 6. Finally, consider the case where y G E and there are n > 2 minimizing 

paths d i , . . . , < 7 N between y and x that do not satisfy property (3.1). It can be shown 

that this case corresponds to n vertices of Dx identified. • 

Corollary 3.1.5. — / / the cone angles of C are less than or equal to n, then for every 

x G C — E the Dirichlet polyhedron Dx is convex. 

Proof — It suffices to show that the dihedral angles of Dx are less than or equal to 

7r. We have seen in the proof of Proposition 3.1.2 that this is true for dihedral angles 

of non-singular edges. For singular edges, this follows from the hypothesis about cone 

angles, because dihedral angles are bounded above by cone angles. • 

We next define the Dirichlet polyhedron centered at singular points. Recall that 

Mz

K{a) denotes the simply connected space of curvature K with a singular axis of 

cone angle a. 

Definition 3.1.6. — Let C be a cone 3-manifold of curvature K < 0 and x G E C C. 

We define the Dirichlet voluhedron centered at x: 

D+= yeC 
there exists a unique minimizing path a between y and x, 1 

and, in addition, if y G E then a C E. J 

As in the non-singular case, Dx is open, star shaped and it can be locally isomet-

rically embedded in M ^ ( O J ) . 

Remark 3.1.7. — It is possible to work in the non-singular space by using the 

following construction. Let Sa be an infinite sector of of dihedral angle a and 

consider the quotient map p : Sa —> M^(a) that identifies the faces of Sa by a 

rotation around its axis. Then we look at the inverse image p~1(Dx) C Sa C M3

K. As 

in Proposition 3.1.2, the set p~1(Dx) is a solid polyhedron and C is the quotient of 
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p~1(Dx) by isometric face identifications. The point x is in the boundary of p~1(Dx), 
although the polyhedron is star shaped with respect to x. As in Corollary 3.1.5, if 
the cone angles of C are bounded above by 7r, then p~1(Dx) is convex (and so is 
5 x c 4 ( a ) ) . 

The following lemma will be used in the proof of Lemma 3.4.5. 

Lemma 3.1.8. — Let C be a cone 3-manifold with cone angles less than or equal to 
7r. If x is in a compact component Eo of E 7 then Dx is contained in a region of 
H^(a) bounded by two planes orthogonal to the singular axis of№?K(a). Moreover, 
the distance between these two planes is bounded above by Length(Eo). 

Proof. — By convexity, it suffices to study the points y G E 0 that have at least two 
minimizing paths to x, one of them contained in Eo. When we embed Dx into H^-(a), 
these are the points that will correspond to the intersection of dDx with the singular 
axis of M3

K(a). 
As in the proof of Proposition 3.1.2 the local geometry of dDx will be given by 

"bisector" planes between the minimizing paths from y to x. We distinguish two cases. 
First we consider the case where there are precisely two minimizing paths G\, G2 

between y and x, and G\,G2 C Eo. In this case o\ U G2 — Eo and the point y is 
obtained by identifying the two points of the intersection of dDx with the axis of 
M^-(a). The bisector plane to G\ and G2 passing through y is the plane orthogonal to 
E 0 , therefore the lemma is clear in this case. 

In the second case, among all the minimizing paths between y and x, one of them 
&i C Eo but at least another G2 <jL Eo- Moreover, we may assume that one of the faces 
of dDx is given by the bisector plane between G\ and G2. In this case, consider the 
projection p : Sa —> M3

K(a) described in the remark 3.1.7. The pre-image P~1(GI) is 
contained in the axis of the sector Sa, and we choose the projection p so that P~1(G2) 
is contained in the bisector plane of Sa. That is, P~1{G2) defines the same angle 
between both faces of Sa. Since a < 7r, the region of Sa bounded by the bisector 
plane between P~1(GI) and p _ 1 ( a 2 ) is contained in the region of Sa bounded by the 
plane orthogonal to the axis of Sa passing through p~x(y) np _ 1 ( c r 2 ) . By convexity, 
it follows that p~1(Dx) is contained in the region of Sa bounded by this orthogonal 
plane. Therefore, p~1(Dx) c Sa is contained in a region bounded by two planes 
orthogonal to the axis of Sa and the distance of these planes is bounded above by 
Length Eo- This finishes the proof of the lemma. • 

Finally, we prove Bishop-Gromov inequality as an application of the Dirichlet poly­
hedron. 

For r > 0, let v^( r ) denote the volume of the ball of radius r in M ^ , the simply 
connected 3-space of curvature K < 0. 
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Proposition 3.1.9 (Bishop-Gromov inequality). — Let C be a cone 3-manifold of curva­
ture K < 0 and let x e C. IfO<r<R then: 

vol ( £ ( x , r ) ) vo\(B(x,R)) 
v/c(r) ~ VK(R) 

Proof — The proof follows from the fact that the Dirichlet polyhedron is star shaped. 
Namely, if B(x , r ) is the ball of radius r in and Dx is the Dirichlet polyhedron 
centered at x, then vol(B(x,r)) = vol(B(x,r) D Dx) and vir ( r ) = vol(B(x,r)) . Since 
Dx is star shaped, the function r i—> vol(B(x, r) fl Dx)/ vol(B(x, r ) ) is decreasing in r, 
and the proposition is proved. • 

Corollary 3.1.10. — Let C be a cone 3-manifold of curvature K G [—1,0]. Given e > 0 
and R > 0, the number of disjoint balls of radius e > 0 that can be contained in a ball 
of radius R in C has a uniform upper-bound, independent of C. • 

3.2. Hausdorff-Gromov convergence for cone 3-manifolds 

We first recall some well known definitions. 

Definition 3.2.1. — For e > 0, an e-approximation between two pointed compact met­
ric spaces ( X , x ) and (Y,y) is a distance d on the disjoint union XUY whose restric­
tions coincide with the original distances on X and Y, and such that X (resp. Y) 
belongs to a ^-neighborhood of Y (resp. X) and d{x, y) < e. 

Let (X,x) and (Y,y) be two pointed compact metric spaces. The Hausdorff-Gro­
mov distance dn((X, x ) , (Y,y)) is defined as: 

dn((X,x), {Y,y)) = mf{e > 0 | 3 a ^-approximation between ( X , x ) and (Y,y)}. 

Remark 3.2.2. — By [GLP, Prop. 3.6], two pointed compact metric spaces are iso­
metric by an isometry respecting base points if and only if their Hausdorff-Gromov 
distance is zero (see also [BrS]). 

Moreover, since dn verifies the triangle inequality, it is a distance on the set of 
pointed compact metric spaces. 

A cone 3-manifold is a complete metric length space (cf. Chapter 1): the distance 
between two points is the infimum of the lengths of paths joining both points. 

In the sequel, C will denote the set of complete locally compact pointed length 
spaces. Thus we have the inclusion C[ W ) 7 r ] > a C C. In a complete locally compact 
metric length space, closed balls are compact (see for instance [GLP, Thm. 1.10]). 
Hence the following definition makes sense. 

Definition 3.2.3. — A sequence ( X n , x n ) in C converges for the Hausdorff-Gromov 
topology to (XOO.XQO) G C if for every R > 0 the Hausdorff-Gromov distance 
du(B(xn,R),B(xoo,R)), between the closed balls of radius R, tends to zero as n 
goes to infinity. 
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The following proposition is the first step in the proof of the compactness theorem. 

Proposition 3.2.4. — The space C^^]^ is relatively compact in C for the Hausdorff-
Gromov topology. 

Proof. — It is a consequence of Gromov relative compactness criterion [GLP, Prop. 
5.2] for sequences of pointed complete locally compact metric spaces and the fact that 
the space C is closed for the Hausdorff-Gromov topology [GLP, Prop. 3.8 and 5.2]. 

By Gromov's relative compactness criterion, a sequence ( X n , x n ) in C has a con­
vergent subsequence if and only if, for every R > 0 and for every e > 0, the number of 
disjoint balls with radius e included in the ball B(xn, R) is uniformly bounded above 
independently of n. In our case, such a uniform bound follows from Bishop-Gromov 
inequality for cone 3-manifolds with constant curvature K G [—1,0] (Corollary 3.1.10, 
see also [HT]). • 

We are now stating a key result for the remaining of the proof of the compactness 
theorem. This result needs the fact that cone angles are bounded above by 7r, and is 
not true anymore for cone angles bigger than 7r. 

Proposition 3.2.5 (Uniform lower bound for cone-injectivity radius) 
Given R > 0, a > 0 and UJ G (0, TT], there exists a uniform constant b = b(R, a, UJ) > 

0 such that, for every pointed cone 3-manifold (C, x) G C[u^],aj th>e cone-injectivity 
radius at any point of B(x,R) C C is greater than b. 

The proof of this proposition is rather long, so we postpone it to Section 3.4. We 
will use it in the proof of the following proposition as well as in Section 3.3. 

Proposition 3.2.6. — Let (C n , x n ) be a sequence of pointed cone 3-manifolds mC[ W ) ^] ) a 

that converges to (Xoo,#oo) in C for the Hausdorff-Gromov topology. Then the limit 
( l o c X o o ) is a pointed cone 3-manifold in C^^^ for some b > 0. Moreover the 
curvature of XQO is the limit of the curvatures of Cn. 

Remark 3.2.7. — The cone-injectivity radius is lower semi-continuous, and it could 
happen that inj(xoo) < a. 

Proof of Proposition 3.2.6. — Let (Cn,xn) be a sequence in C^^a that converges to 
(XQO,XQO) € C for the Hausdorff-Gromov topology. Since X ^ is a complete, locally 
compact, metric length space, we have to show that X ^ is locally isometric to a cone 
3-manifold of constant sectional curvature. 

Let y G XQO; choose R = d(y,x00) + 1. From Hausdorff-Gromov convergence, for 
n large enough we have an ^-approximation dn between the closed balls B(xOQ,R) 
and B(xn,R), with en —• 0. We take yn G B(xn,R) such that dn(y1yn) < en. 

By Proposition 3.2.5, there is a uniform constant b > 0 independent of n such 
that inj(y n) > 6, for every n large enough. Since both Cn and X n are length spaces, 
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dn induces a 3£n-approximation between the compact balls B(yn,b) and B(y,b). By 
taking a subsequence if necessary, there are three cases to be considered: 

Case 1. For every n G N, B(yn,b) is a standard non-singular ball (i.e. B(yn,b) is 
isometric to a metric ball in the space , where Kn is the curvature of C n ) . Since 
Kn G [—1,0], up to a subsequence Kn converges to Koo G [—1,0]. Moreover, since 

lim dH(B(yn,b),B(y,b)) = 0, 
n—>oo 

the uniqueness of the Hausdorff-Gromov limit for compact spaces [GLP, Prop. 3.6] 
shows that the ball B(yb) must be isometric to a metric ball in the space of constant 
curvature . 

Case 2. For every n G N, B(yn,b) is contained in a standard singular ball, but 
the distance between yn and E is bounded below, uniformly away from zero. In this 
case, since the cone angles are also bounded below by LO > 0, there exists a uniform 
constant b' > 0 such that B(yn,bf) n E = 0 and B(yn,bf) is isometric to a metric 
ball in H^- , for every n G N. Thus we are in the first case and we can conclude that 
B(y,b') is isometric to a metric ball in , where = lim KN. 

00 n—•oo 
Case 3. For every n G N, B(yn, b) fl E ^ 0 and the distance between yn and E 

tends to zero. In this case we replace yn by y'n G E so that d(yn,y'n) —• 0. The ball 
B(yf

n,b) is isometric to a singular ball in the space (an) of constant curvature 
Kn with a singular axis, where Kn is the curvature of Cn and an the cone angle 
at y'n. Since Kn G [—1,0] and an G [o;,7R], up to a subsequence we may assume 
that KN —• KOQ £ [—1,0] and an —> G [CJ,7T]. AS in case 1, the fact that the 
Hausdorff-Gromov distance dH{B(y'n,b),B(y,b)) tends to zero and the uniqueness 
of the Hausdorff-Gromov limit imply that the ball B(y,b) is isometric to a singular 
metric ball in Ef^ (aoo) and that y G E o o . 

This achieves the proof of Proposition 3.2.6. • 
The following corollary is a direct consequence of the proof of Proposition 3.2.6 

and will be used later in the proof of Proposition 3 .3 .1. 

Corollary 3.2.8. — Let (Cn,xn) be a sequence of pointed cone 3-manifolds that con­
verges to the pointed cone 3-manifold ( C o o , # o o ) for the Hausdorff-Gromov topology. 
Given y G C o o , choose R > d(xOQ,y)-\-l anddn an en-approximation between B(xn, R) 
and B(x00,R), with en —• 0. Then there exists a sequence yn G B{xn,R) such that 
dn(yn,y) —> 0 as n —* 00, and yn G E if and only if y G E . Moreover, when y G E 7 

the sequence of cone angles at yn converges to the cone angle at y. • 

3.3. Hausdorff-Gromov convergence implies geometric convergence 

The goal of this section is to prove the following: 
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Proposition 3.3.1. — If a sequence ( C n , x n ) of pointed cone 3-manifolds converges in 

C[u;,7r],a t° a pointed cone 3-manifold ( C o o , # o o ) G C[a;,7r],a for the Hausdorff-Gromov 

topology, then it also converges geometrically. 

Proof of Proposition 3.3.1. — Fix a radius R > 0. Let T be a compact triangulated 

subset of the underlying space of Coo such that B(xOQ, 12R) C T. By subdividing the 

triangulation we may assume that: 

i) all simplices are totally geodesic, 

ii) Eoo fl T belongs to the 1-skeleton T ( 1 > , and 

iii) the base point #oo is a vertex of . 

Let R1 > 0 be such that T c B(xOQ,R
f) and let dn be a ^-approximation between 

the compact balls B(x00,R
/) and B(xn,R

f), with lim en = 0. 
n—*oo 

Let T ( ° ) = { z ^ , . . . , z^} be the vertices of T , with z%¿ = x^. We choose some 

points zn,..., zr

n G B(xn, R') such that Urn dn(zn1 z^) = 0, for i = 0, . . . , r. It 
n—KX> 

follows from Corollary 3.2.8 that one can choose zl

n G E n if and only if z7^ G EQO-
For a simplex A of T , star(A) denotes the star of A, and star*(A), the union of 

simplices of T that intersect A but not the singular set E . With this notation we 

have the following: 

Lemma 3.3.2. — It is possible to geodesically subdivide the triangulation T so that any 

simplex A satisfies the following properties: 

i) star(A) is included in a standard ball of CQQ. 

ii) Let {zl¿,..., z^} be the vertices o/star(A). Forn sufficiently large, {z^1, ..., zl

n

s} 

belongs to a standard ball in CN, 

iii) If An = 0 then star* (A) is included in a non-singular standard ball. 

iv) If An EQO = 0 and { z j ¿ , . . . , z^} are the vertices of star* (A) then, for n suffi­

ciently large, { z ^ 1 , . . . , zn*} belongs to a non-singular standard ball in CN. 

Remark 3.3.3. — It is worthwhile to recall that a standard ball in a cone 3-manifold 

C with constant sectional curvature K is isometric either to a non-singular metric 

ball in M ^ , or to a singular metric ball in M.s

K(a) whose center lies in the singular 

axis. 

Proof of Lemma 3.3.2. — From Proposition 3.2.5, there are two constants r\ > 0 

and R2 > 0 such that for any y G B(x00,R
/) or yn G B(xn, Rf): 

a) If y G E o o , then B(y,ri) is a standard singular ball in C o o , and if yn G E n , then 

B(yn,ri) is a standard singular ball in CN. 

b) If d(y, EQO) > then B(y,r2) is a non-singular standard ball in C o o , and if 

d(yn, E n ) > r i /8 , then B(yn,r2) is a non-singular standard ball in C n . 
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Using geodesic barycentric subdivision, we first achieve that for each simplex A of 

T, the diameter diam(A) < | i n f { r i , r 2 } . Thus diam(star(A)) < | i n f { r i , r 2 } , which 

implies assertions i) and ii). 

To prove iii) and iv) we introduce the constant r 3 (T) > 0 depending on T: 

r 3 (T) = inf{d(A, E o o ) , for any simplex A C T such that A fl Eoo = 0 } . 

Proposition 3.2.5 and the fact that cone angles are bounded below by UJ > 0 imply 

the existence of a constant r 4 = r 4 ( r 3 , c j ) > 0 depending on r 3 and u such that for 

any point y E B(xoo,Rf), if d(y, E o o ) > r3/2 then B(y, r 4 ) is a non-singular standard 

ball in C o o , and for any point yn £ B(xn, R'), if d(yn, E n ) > r 3 /2 then B(yn, r 4 ) is a 

non-singular standard ball in C n . 

Next we will subdivide T in such a way that the constants r 3 and hence r 4 = 

^ 4 ( ^ 3 , ^ ) do not change, but the diameter of any simplex not meeting Eoo becomes 

less than ^ . This will imply properties iii) and iv) of the lemma. 

The process for subdividing a simplex A of T is the following: 

a) When A fl Eoo = 0 , we apply geodesic barycentric subdivision to A. 

b) When A C E o o , w e do not subdivide A. 

c) When 0 / A f l Eoo ^ A , we express A as a joint A = A 0 * A i , where A 0 C Eoo 

and Ai D E o o = 0 - Then we apply geodesic barycentric subdivision A[ to Ai and 

consider A ' = Ao * A'x (see Figures 2 to 4, which describe this process). 

This process of subdivision makes the diameter of any simplex disjoint from Eoo 

arbitrarily small without decreasing its distance to Eoo- • 

Now we define gn : T - > C n by mapping 4 o t o 4 > 0 n ( 4 o ) = 4 for i = 1> • • • > r> 

and we extend gn piece wise-linearly on each simplex of T. To show that the restriction 

of gn to B(x00,R) is a (1 4- £n)-bilipschitz map with en —• 0, we need the following 

lemma: 

Lemma 3.3.4. — For n sufficiently large, gn : T —• Cn is a well defined map having 

the following properties: 

i) gn(T) is a geodesic polyhedron in Cn, and gn(T Pi E o o ) = 9n(T) fl E n ; 

ii) Mx,y E B(xOQ^R), d(gn(x),gn(y)) < (l + 6n)d(x,y) with Sn -> 0; 

iii) the restriction of gn induces a homeomorphism from int(T) onto gn(\nt{T)). 

Proof of Lemma 3.3.4- — Let A be a 3-simplex in T such that A fl Eoo = 0- Up 

to permutation of indices, let { z ^ , 2^, z^, z^} denote the vertices of A. By Lemma 

3.3.2, there exists n\ such that for n > ni, the points {z^, z2, z3, z„} are contained in a 

non-singular standard ball in Cn. By construction, the sequence {d(z¡l, 4 ) } n e N tends 

to d(zl

00,z
3

00) as n —> 00, for any i, j £ { 1 , 2 , 3 , 4 } . Moreover, the sectional curvature 

Kn of Cn tends to i^oo- It follows that the the bijection between {z^, z2^, z ^ , z^} and 

z2,45 zt} extends linearly to a map from the geodesic simplex A onto the non-

degenerated geodesic simplex in C n with vertices { z * , z2, z3, z^}. That is, gn{&) is a 
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FIGURE 2. 

FIGURE 3. 

FIGURE 4 

well defined non-degenerated simplex such that the restriction map gn\A • A —> gn(A) 
is (1 + £n)-bilipschitz, with Sn —> 0. 

If A fl SQO 7̂  0 then, by Corollary 3.2.8, for n sufficiently large, zn G S N if and 
only if z1^ G E o o , i = 1 , 2 , 3 , 4 . By using the same method as in the non-singular 
case and Lemma 3 .3.2, one shows that gn is well defined on A and that gn(A) is a 
non-degenerated totally geodesic simplex in Cn such that # n ( A D S o o ) = gn(A) n S n . 
We remark that minimizing paths between two points are not necessarily unique in 
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singular balls, but they are unique if at least one of the points lies in E. Hence, gn 

is well defined on A, because of assertions iii) and iv) of Lemma 3.3.2. Moreover the 
restriction map gn\& : A —> gn(A) is (1 + Jn)-bilipschitz with 5n —• 0. This proves 
property i). 

To prove property ii), consider x,y G B(x00,6R). Let a be a minimizing path 
between x and y. Since a C B{xOQ^12R) C T, the inequality d(gn(x), gn(y)) < 
(1 + 5n)d(x, y) follows from the fact that, for any 3-simplex A of T, gn : A —• gn(A) 
is a (1 + £n)-bilipschitz map, with Sn —> 0. It suffices to break up a into pieces a fi A 
and to use the fact that a is minimizing. 

Finally we prove property iii). Note that the restriction of gn from star (A) onto 
# n(star(A)) is a homeomorphism. This follows from the construction of gn by piece-
wise-linear extension and the fact that, for n sufficiently large and for any simplex A 
of T, star(A) and # n(star(A)) are contained in standard balls. Thus it remains to 
show that the restriction of gn to int(T) is injective for n sufficiently large. 

Suppose that x,y G int(T) are two points such that gn(x) = gn{y)\ we claim that 
x = y. Let Ax and Ay be the simplices of T containing x and y respectively. We 
claim first that Ax U Ay is contained in a standard ball in and that gn{Ax U Ay) 
is also contained in a standard ball in Cn. Recall that the diameter of the simplices 
is chosen to be small with respect to the lower bound of the cone-injectivity radius 
on T. Thus we prove the claim by showing that the diameter of Ax U Ay is also 
small. To show this, we first remark that the diameter of gn(Ax U Ay) is small, 
because gn(Ax) D gn(Ay) ^ 0 and diam(g n(A)) < (1 + 5 n )d iam(A), with Sn —• 0. 
In particular, gn(Ax U A^) is contained in a standard ball. Moreover, the limit 
lim d(zn1 z3

n) — d(zl

00,z3

00) means that the distance between vertices of gn(Ax U Ay) 

converges to the distance between vertices of A x U A y , therefore diam(A c c U Ay) is 
small. 

Finally we prove that gn{Ax D A^) = gn(Ax) fi gn{Ay). This follows from the 
facts that gn(Ax U Ay) and A^ U Ay are contained in standard balls, that d{zn,z3

n) 
converges to d(zl

OQ, z^), and that A^, Ay, gn(Ax) and gn(Ay) are the convex hulls of 
their vertices. Hence, if gn(x) = gn{y) then x and y belong to the same simplex and 
x = y. This proves Lemma 3.3.4. • 

Lemma 3.3.5. — For n sufficiently large, two points in gn{B{x00,R)) are joined by a 
minimizing geodesic contained in gn(B(x00,5R)). 

Proof. — Since two points in B(zn,2R) C Cn are joined by a minimizing geodesic 
contained in B(zn, 4i?), it suffices to show the following inclusions for n large enough: 

a) gn(B(xoo,R)) C B{zn,2R), 
b) J 5 ( ^ , 4 i J ) C ( / n № o o , 5 i J ) ) , 

where we recall that zn = ^n(xoo) and = z^ G T ^ . 
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Property a) follows from Lemma 3.3.4 ii), which states that for x,y G B(xoo,6R), 

d(9n{x),gn(y)) < {l + 5n)d(x,y), with 6n 0. 

For n sufficiently large, the restriction gn : B{xOQ^R) —> gn(B(xQO,QR)) is a 

homeomorphism and hence gn{dB{x00,hR)) = dgn(B(x00,5R)). Thus inclusion b) 

will follow from the inequality d(z^, gn(dB(xOQ,bR))) > 4J£, for n sufficiently large. 

Let y be a point in dB{x00,bR), that is d ( x o o , y ) = 5i2. Set: 

r 0 = sup{diam(A) | A is a 3-simplex of T } . 

Since y G dB(x00,5R) C T, there exists a vertex z1^ G such that d{zl

OQ,y) < ro. 

So we write: 

rf(4,5n(î/))>rf(4,4)-rf(4,ffn(î/)). 
By Lemma 3.3.4, d(zl

n,gn(y)) < (1 + < 5„)d(4 O J y) < 2r 0. Moreover, 

lim d(*&,4) = d(4»4J = d(xoo,2Jo) ^ d(«oo,l/) - <4o,2/) > 5 f l - r 0 . 
n—•OO 

Summarizing these inequalities we conclude that d(z%, gn(y)) > 5/2—4r*o and it suffices 

to choose r0 < R/4 using the proof of Lemma 3.3.2. This achieves the proof of 

inclusion b) and of Lemma 3.3.5. • 

The following lemma concludes the proof of Proposition 3.3.1. 

Lemma 3.3.6. — For any real e > 0, there is an integer UQ such that, for n>no: 

i) The restriction gn:B(xQO,R) —> Cn is (1 -f e)-bilipschitz, 

ii) d{gn(xOG),xn) < e/2, 

iii) B(xn, R - e) C gn{B{xOQ,R)). 

Proof. — By Lemma 3.3.4 ii), there exists a sequence Sn —• 0 such that 

d(9n(x),gn(y)) < (1 + 6n)d(x,y) Vx, y, G £ ( x o o , 6#) , Vn > n 0 . 

By choosing n sufficiently large we may assume Sn < s, hence property i) will follow 

from the following inequality 

(1 + e)~ld(x,y) < d(gn(x),gn(y)), Vn > no, Vx,y G B(xoo,R). 

To prove this inequality, given x,y G B(xoo,R), we choose a minimizing path a 

between g(x) and g(y) that is contained in gn{B{x00^R)), by Lemma 3.3.5. Since 

gn : B(x00,5R) —• gn{B{x00,bR)) is a homeomorphism, 5 = ^ 1 ( c r ) * s a P a t n J o m m S 

x and y. The map # n is constructed in the proof of Lemma 3.3.4 so that its restriction 

to each simplex A of T is (1 + Jn)-bilipschitz. Then, by breaking a into pieces 5 f l A 

we prove that (1 -f e ) _ 1 Length(5) < Length(a), and the claimed inequality follows. 

Property ii) follows from the construction, because the Hausdorff-Gromov distance 

between the pointed balls (B(xn, R'),xn) and ( ^ ( x o o , it!'), X o o ) goes to zero, and the 

points X o o and <7n(#oo) are arbitrarily close in the Hausdorff-Gromov approximations. 

Next we prove property iii). Let yn G B(xn,R — e). By property ii), yn G 

B(gn(xoo),R) — B(Zn,R). Moreover, in the proof of Lemma 3.3.5 (inclusion b)) 
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we have seen that B(zn1R) C gn(B(xOQ1bR)). Hence we can choose a point y G 

B(x00,5R) such that gn(y) = YN> Then, for n large, we have: 

d ( x o o , y ) < (l + 5n)(d(yn,xn) + d(xn,gn{x00))) < (1 + 5n)(d(xn,yn) + e/2), 

with Sn —> 0. For n sufficiently large so that 5n < e/(2R), we conclude that y G 

B(xoo,R). Hence B(xn, R — e) C gn(B(xoc,R)) and the lemma is proved. • 

3.4. Uniform lower bound for the cone-injectivity radius 

The goal of this section is to prove Proposition 3.2.5. For convenience we recall 

the statement. 

Proposition 3.2.5 (Uniform lower bound for cone-injectivity radius) 

Given R > 0, a > 0 and UJ G (0, TT], there exists a uniform constant b = b(R, a, UJ) > 

0 such that, for any pointed cone 3-manifold (C, x) G C^^^a, the cone-injectivity 

radius at any point of B(x,R) C C is greater than b. 

Remark 3.4.1. — We recall the definition of cone-injectivity radius at a point x G C: 

inj(x) = sup{(5 > 0 such that B(x,S) is contained in a standard ball in C } . 

Note that the definition does not assume the ball to be centered at x, otherwise regu­

lar points near the singular locus would have arbitrarily small cone-injectivity radius; 

such points are contained in larger standard balls centered at nearby singular points. 

Moreover, if x G £ then the standard ball in the definition can be assumed to be cen­

tered at x. Proposition 3.2.5 implies that there is a uniform lower bound for the radius 

of a tubular neighborhood of the singular locus E. In particular the singular locus can 

not cross itself when the cone angles are < TT. The proof of Proposition 3.2.5 is based 

on volume estimates using the convexity of the Dirichlet polyhedron (Corollary 3.1.5). 

The proof of Proposition 3.2.5 is divided in two propositions, the first one deals 

with the case of singular points, the second one with the case of regular points. 

Proposition 3.4.2. — Given R > 0, a > 0 and UJ G ( 0 ,7R] , there exist constants 5\ = 

Si(R,a,uj) > 0 and S2 = 52(R,a,uj) > 0 (depending only on R, a and UJ) such that 

any pointed cone 3-manifold (C,x) G C[ W j 7 r ] j a satisfies: 

i) any component £o of the singular locus S C C that intersects B(x,R) has length 

|Eo| ><*!, 
ii) A/i 2(E) fl B(x,R) = {y G B(x,R) | d(y,E) < ¿2} is a tubular neighborhood of 

Proposition 3.4.3. — Given R > 0, a > 0 and UJ G (0,7r], there exists a constant 

¿3 = Ss(R,a,uj) > 0 (depending only on R, a and UJ) such that for any pointed cone 

3-manifold (C,x) G C ^ ^ ] ^ , if y G B(x,R) C C and d(y, E) > min(<$i,<S2) then 

inj(y) > ¿3 (where Si and S2 are the constants given in Proposition 3.4-2). 

Е П B(x,R). 
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The proof of Proposition 3.4.3 is given in [Koj, Prop. 5.1.1]. It may be proved 

also by perturbing the singular metric on the tubular neighborhood of E D B(x,R) 

with radius min{¿i, 62} to get a Riemannian metric with pinched sectional curvature, 

with a pinching constant depending only on 61 and ¿ 2 ; then we are in the case of non-

singular Riemannian metrics for which the result is well known (cf. [GLP], [Pe]). 

Therefore we only give the proof of Proposition 3.4.2. 

Proof of Proposition 3.4-2 i). — The proof follows from the following volume estima­

tions. 

Lemma 3.4.4. — Given a > 0 and oo G (0 ,7r] ; there exists a constant c\ = c\{a,uu) > 0 

such that for any pointed cone 3-manifold (C, x) G C^^a, vo\(B(x, 1)) > c\. 

Lemma 3.4.5. — Given R > 0 there is a constant c2 = c2(R) > 0 such that, if C is 

a cone 3-manifold of curvature K G [—1,0] and if Eo is a component of the singular 

locus ofC, then for any y G Eo, vol(B(y, R+l)) < C2 ( i i ) |Eo | , where |Eo| is the length 

o / E 0 . 

Proof of Proposition 3.4-2 i) from Lemmas 3.4-4 and 3.4-5. — Let Eo be a component 

of E that intersects B(x,R) and y G E 0 fl B{x,R). By Lemmas 3.4.4 and 3.4.5 we 

have: 

ci =ci(a ,a ; ) < vol(B(x, l ) ) < vol(B(y,R + 1)) < c2(R)\E0\. 

Therefore |E 0 | > ¿1 = ci/c2. • 

We now give the proofs of Lemmas 3.4.4 and 3.4.5. 

Proof of Lemma 3.4-4- — Let (C, x) G C[ w > 7 r ] > a ; in particular inj(x) > a. Because of 

the definition of the cone-injectivity radius, we distinguish two cases, according to 

whether B(x,a) is contained in a singular standard ball or in a non-singular one. 

Non-singular case. When B(x, a) is a non-singular standard ball, by taking ao = 

in f{ l , a} we have VO1(JE?(X, 1)) > vol(£?(x, ao)) > F ^ o , because the curvature K < 0. 

Singular case. When B(x, a) is contained in a standard singular ball, there exists 

a point z G E and a! > a such that B(z,a') is a singular standard ball that contains 

B(x, a). We may assume that d(x, z) = d(x, E). We distinguish again two sub-cases. 

If d(x,z) < 1/2, then by taking ao = i n f { l / 2 , a } , we have that B(z,ao) C B(x, 1) 

and thus vol(J5(x, 1)) > vo\(B(z, a 0 ) ) > |ü;ao, because the cone angles are bounded 

below by oo and the curvature K < 0. 

If d(x ,z) = d(x,E) > 1/2, an elementary trigonometric argument shows that we 

can find a constant b = 6(CJ, a) > 0 such that B(x, b) is a non-singular standard ball. 

This constant depends only on u and a, because the curvature K G [—1,0]. As in the 

non-singular case, by taking 60 = inf{6 ,1}, we have the inclusion B(x,bo) C B(x, 1) 

and the inequality vo\(B(x, 1)) > ^Trb^. 

This finishes the proof of Lemma 3.4.4. • 
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Proof of Lemma 3.4-5. — Let Eo and y G Eo be as in the statement of Lemma 3.4.5. 

Consider DY the Dirichlet polyhedron centered at y. By Lemma 3.1.8, DY is contained 

in the region of M^-(a) bounded by two planes orthogonal to the singular axis of H^-(a) 

and the distance between them is less that or equal to the length |E 0 |- Therefore we 

have: 

vo\{DY H B(y, jR + 1)) < 2TT|E0| sinh2

K(R + 1) 

where smhK(r) = smh(y/—Kr)/y/—K if K < 0 and sinh0(r) = r. Since K G [-1,0], 

s inh^r) < sinh(r) and we conclude: 

v6l(DY n B(y, R + 1)) < (27rsinh 2(i?-hl)) |E 0 | . 

This inequality proves Lemma 3.4.5. • 
Proof of Proposition 3.4-2 ii). — Let a be a minimizing arc between two points of 

B(x,R) fi £ that is not contained in E, in particular a Pi E = da. We assume that 

a has minimal length among all such possible arcs. Proposition 3.4.2 ii) will follow 

from Lemma 3.4.4 and the following: 

Lemma 3.4.6. — There exists a constant C 3 = cs(R) > 0 depending only on R such 

that vol(A/fl +i(a)) < c3(R)\a\, where NR+\(O) = {y G C \ d(y,a) < ÜH-1} and \a\ is 

the length of a. 

The proof of Proposition 3.4.2 ii) from Lemmas 3.4.4 and 3.4.6 is similar to the proof 

of Proposition 3.4.2 i). Prom the inclusion B(x, 1) C NR+I{O) and the inequalities 

of Lemmas 3.4.4 and 3.4.6 we conclude that \a\ > ci/c$. Thus it suffices to choose 

£ 2 = | c i / c 3 in Proposition 3.4.2 ii). • 

The remaining of this section is devoted to the proof of Lemma 3.4.6. 

Proof of Lemma 3.4-6. — Let DA be the open subset of C defined as: 

DA = {y G C — E I there is a unique minimizing arc between y and cr}. 

The open set DA is perhaps not convex, but it is star shaped with respect to a. So 

DA may be isometrically embedded in M ^ , the space of constant sectional curvature 

i f € [ - 1 , 0 ] . 

Claim 3.4.7. — The set C — DA has Lebesgue measure zero. 

Proof. — Since E is 1-dimensional, it suffices to show that C — (EUD^) has measure 

zero. Given z G C — ( E U ^ ) there are only a finite number of minimizing paths from 

z to cr, by Lemma 3.1.4. Moreover, by the same lemma, there is a neighborhood Uz 

of z such that for every y G UZ fl C — (E U DA) the minimizing paths between y and a 

are in tubular neighborhoods of the minimizing paths between z and a. Therefore, by 

using developing maps along these tubular neighborhoods and the fact that the set of 

points in №.%- that are equidistant from two geodesies has measure zero, we conclude 
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5 0 CHAPTER 3. A COMPACTNESS THEOREM FOR CONE 3-MANIFOLDS 

that Uz(lC — (EuDv) has measure zero. This implies in particular that C — ( E U D a ) 
itself has measure zero and the claim is proved. • 

This claim implies that vol(AfR+i(a)) = vol(Da n A/H+I(E ) ) . We next use the fact 
that Da fl JVR+I(E) can be isometrically embedded in M3

K to get an upper bound for 
its volume. 

Let {p, q} — a fl E be the end-points of a. The proof of Lemma 3.4.6 is divided in 
three cases: Lemmas 3.4.8, 3.4.9 and 3.4.10, 

Lemma 3.4.8. — If a is orthogonal to E at p and q, then Lemma 3.4-6 holds true. 

Proof. — Since the cone angles of C are < 7r, the orthogonality hypothesis implies 
that Da is contained in the subspace of M3

K bounded by the two planes orthogonal 
to a at its end-points p and q. Therefore, as in the proof of Lemma 3.4.5, we obtain 
the following inequality: 

VO1(A/"H+I(E) H Da) < 27rHsinh^(#+ 1) < 27rsinh 2 ( i? + l) |a | , 

because K G [—1,01. • 

It may happen that a is not orthogonal to E at p or o, when p or q belong to the 
boundary of B(x, R). Let 0 and <j) in [0,7r/2] be the angles between a and E at p and 
q respectively. 

Lemma3.4.9. — If max{cos(0),cos(</>)} < 2|cr| then Lemma 3.4-6 holds true. 

Proof. — By assumption, Da is contained in the union SaUSPUSq C M ^ , where 5^ 
is the subspace of bounded by the two planes orthogonal to a at p and g, Sp is 
a solid angular sector with axis passing through p and dihedral angle TT/2 — 0 at the 
axis, and Sq is a solid angular sector with axis passing through q and dihedral angle 
7r/2 — (j) at the axis. One of the faces of Sp (and of Sq) is a face of Sa and the other 
contains a piece of E (cf. Fig. 5). 

FIGURE 5 
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3.4. UNIFORM LOWER BOUND FOR THE CONE-INJECTIVITY RADIUS 51 

Since 

vol(Mi+i(E) n Da) = vol(Mi+i(E) n Sa) + vol(Mi+i(E) n S p ) + vol(Mi+i(E) n 5,), 

to prove Lemma 3.4.6 it suffices to get a suitable upper bound for each one of these 

three volumes. 

For vol(jV jR+i(E) fl Sa) the same upper bound as in Lemma 3.4.8 goes through: 

vol(JS/Ì2+i(E)nSff) < 27rs inh 2 (#+l ) |<T | . 

For vol(A/i?+i(E) D Sp) we use the volume of the sector of angle 7r/2 - 0: 

vol(JS/k+i(E)n5p) < 
T T / 2 - 0 

2TT 

where VK{R + 1) is the volume of the ball of radius R + 1 in M3

K. Moreover, since 

K > - 1 , VK(R+1) < V _ I ( i ? + 1) < 7 R S I N H ( 2 # + 2). Therefore: 

vol(M?+i(£) n Sp) < (TT/2 - 0)^8mh(2R + 2). 

Since lim COS(0)/(TT/2—0) = 1, there is a constant A > 0 such that TT/2—0 < Acos(0). 

Therefore the hypothesis cos(^) < 2\a\ gives: 

vol(A / ' JR + i (E)n5 p ) < Asinh(2i? + 2 ) |CR|. 

The same upper bound can be applied to vol(A/*i?+i (T,)C\Sq). This proves Lemma 3.4.9. 

• 
To achieve the proof of Lemma 3.4.6 we need the following: 

Lemma 3.4.10. — There is a universal constant ¡1 > 0 such that the following holds. If 

max{cos#,cos(/>} > 2|cr|, then one can find a minimizing path a' between two singular 

points, that satisfies the following: 

i) int(cr') n E = 0, 

ii) \&'\ < \ar\, 

iii) a C M^a'), 

iv) if 0' and $ are the angles between a' and E at the end-points of a' then 

maxjcosfl^cosc//} < 2|cr| 

(note that we are using \cr\ instead of \a'\). 

Assuming Lemma 3.4.10, if the minimizing arc a does not fulfills the hypothesis of 

Lemmas 3.4.8 and 3.4.9, then we apply the upper bounds obtained in these lemmas 

to the region A/i?+i+ / i(a /) that contains MR+\(O). Thus we obtain the upper bound 

vol(A^+i(a)) < vol(7VWi+/>')) < c3(R + n)\a\ 

where cs(R + > 0 depends only on R because ¡1 is universal. This inequality 

completes the proof of Lemma 3.4.6 (assuming Lemma 3.4.10). • 
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5 2 CHAPTER 3. A COMPACTNESS THEOREM FOR CONE 3-MANIFOLDS 

Proof of Lemma 3.^.10. — By hypothesis, max{cos#, cos</>} > 2\a\. For e > 0 suffi­
ciently small there is a homotopy {o~t}te[o,e) of a = ao such that, for any t G [0, e), at 

is a geodesic arc between two points of £ satisfying the following: 

1) int(at) П £ = 0 , for all * G [0, e); 
2) the length \o~t\ is decreasing with t; 
3) the angles G [0,7R/2] between cr* and E are increasing with t. 

When we increase the parameter t, we end up with one of the following possibilities. 

a) either for some parameter to we reach a path ato that satisfies i) and ii), and 
moreover max{cos#£ 0 ,cos0t o } < 2|cr|; 

b) or before reaching such a to the homotopy crosses E: there is t\ > 0 such that 
int(<7 T L ) П E ф 0 and, for any t G [0,ti), max{cos#t,cos</>t} > 2|a|. 

Both possibilities happen at bounded distance, because of the following claim: 

Claim 3.4.11. — In both cases, d(at,a) < 1, where t < t0 in case a) and t < t\ in 
case b). 

Proof. — By using developing maps, we embed the homotopy {o~t}te[o,e) locally iso-
metrically in H^. In particular, the pieces of E and the arcs o~t are embedded as 
geodesic arcs. 

Up to permutation, we can assume that cos в > cos 0, where в and ф are the angles 
at p and q respectively. Let pt G E be the end-point of at obtained by moving p 
along E and let p't its orthogonal projection to the geodesic of containing a. This 
projection p't lies between p and q (hence it is contained in cr) by construction of the 
homotopy (see Fig. 6). In particular d(pJp,

t) < \a\. 

FIGURE 6 

Next we consider the right-angle triangle with vertices p, pt and p't (cf. Fig. 6) and 
we apply the trigonometric formula for cos#: 

cos<9 = tanhA-(d(p,pJ))/tanh/c(d(p,Pt)) < t a n h ^ \a\/ tanh/r(d(p,p*)), 
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3.4. UNIFORM LOWER BOUND FOR THE CONE-INJECTIVITY RADIUS 5 3 

where taring (r) = tanh( \ /—Kr) /V~K for K > 0 and tanh 0(r) = r. We recall that 
tanh|<:(|£|) < \x\. 

Since cos0 > 2|<J| > 2tanhx |cr|, we obtain that tanh/<:(d(p,pt)) < 1/2. Moreover 
1/2 < tanhx 1 because K G [—1,0]. Thus the monotonicity of tanh^ implies that 
d(p,Pt) < 1> and in particular d(a,at) < 1. This proves the claim. • 

Prom this claim, we deduce that at C .A/^tf"), because \o~t\ < \cr\ < 1. In particular, 
if case a) above occurs, the path ato satisfies the conclusion of Lemma 3.4.10 and we 
are done. Hence we assume that case b) happens. Let atl be the path coming from 
the homotopy that intersects E in its interior and consider pi and q\ the nearest two 
distinct points of E D atl. We obtain in this way two points p\ and q\ on E joined 
by a minimizing arc G\ such that a\ D E = {pi,<Zi}- Moreover, by Claim 3.4.11, 
d(cri, a) < 2 and, by the choice of p\ and gi, 

• i 1, , 11 | 1 
\<3^ < -\(7t, < - CM < I ii — 21 t l | - 2 l l - 4 

FIGURE 7 

Let bccbxcx G [0,TT/2] be the angles between a\ and E at p\ and q\ respectively. 
We assume again that max{cos(9i,cos^i} > 2|cr|, otherwise the minimizing path G\ 
would satisfy the conclusion of Lemma 3.4.10 and we would be done. 

By iterating this process, we construct two sequences of points pn and qn on E 
such that po = p, qo = q, pn ^ qn and there is a minimizing path an between pn and 
qn such that an D E = {pn,qn} and |crn| < ^|cr n_i|. Moreover, if 6n,(j)n G [0,TT/2] are 
the angles between an and E at pn and qn, then we make the choice cos 0n > cos (fin. 
There are two possibilities: 

- either cos# n < 2|cr| and the sequences stop at n, 
- or cos# n > 2\a\ and the sequences go on. 

The following claim shows that the sequences stop at uniformly bounded distance. 

Claim 3.4.12. — There is a universal constant rj > 0 such that d(p,pn) < rj and 
d(p,qn) < V) whenever pn and qn are defined. 

The claim implies that the sequences stop, otherwise (pn)neN would have a conver­
gent subsequence in the compact ball B{p,rj), contradicting the fact that the cone-
inject ivity radius of the limit point is positive. Hence, for the value of n where the 
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sequences stop, the path an satisfies the conclusions of Lemma 3.4.10, because it is 

at a uniformly bounded distance of a. Hence Lemma 3.4.10 is proved. • 

Proof of Claim 3.4.12. — Let pn and qn be two points of the sequences on E, and 

an the minimizing arc between them such that an D E = {pn,Qn} and \an\ < 2~n\a\. 

We also assume that cos# n > 2|<J|, so that p n + i and g n + i are defined. These points 

are constructed by considering a homotopy of an as in the beginning of the proof of 

Lemma 3.4.10. This homotopy gives: 

- either a path a'n that crosses E, and the points pn+i and qn+\ are the two 

nearest different points in a'n fi E; 

- or a path af

n such that the angles 0'n and <t>'n between a'n and E satisfy 

max{cos#^, cos0^} < 2\a\. 

In this case p n +i and qn+i are the end-points of cr n + i = a'n and the sequences 

stop at n + 1. 

In both cases we have: 

m a x { d ( p n , p n + i ) , d ( p n , t f n + i ) } < \<j'n\ + d(p n ,a' n ) , 

and \a'n\ < \an\ < \a\/2n < l / 2 n + 1 . The trigonometric argument of Claim 3.4.11 

applies here to give the following inequality, 

cos# n < tanhx \an\/ t^\iK{d(pn,a'n)). 

Combining this with the hypothesis cos# n > 2|cr| we get: 

+ u u( i\\ ^ tanh K |cr n | \an\ 1 t a n h " ( < W J ) < 2 | g | < ̂  < ^ 

Since tanh/<:(^) = x + 0 ( | x | 3 ) , it follows from this inequality that there is a universal 

constant 770 > 0 such that d(pn,o~'n) < rjo/2n+1. Summarizing these inequalities we 

obtain: 

max{d(p n , p n +i ) ,d (<? n , g n + i )} < ( 7 7 0 + l ) / 2 n + 1 

and 
n 

max{d(p ,p n + i ) ,d (<7 ,g n + 1 )} < ^ ( r / o + l ) / 2 ' + 1 < r/0 + 1. 
¿ = 0 

It suffices to take 77 = 770 + 1 to achieve the proof of Claim 3.4.12. • 

3.5. Some properties of geometric convergence 

In this section we study properties of sequences of pointed cone 3-manifolds in 

C[o;,7r],a that converge geometrically. During all the section we will assume UJ G (0,7R] 

and a > 0. 

Proposition 3.5.1. — Let {Cn,xn) be a sequence in C[W j 7 r] j a that converges geometrically 

to a pointed cone 3-manifold ( C o o ^ o o ) . Then: 
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i) the curvature of Cn converges to the curvature of C^; 

ii) inj^oo) < liminf in j (x n ) . 
n—•oo 

Proof — Property i) has been proved in Proposition 3.2.6. It follows also from the 

fact that the sectional curvature may be computed from small geodesic triangles. 

To prove Property ii) we distinguish two cases, according to whether the cone-

injectivity radius at Xoo is estimated using singular or non-singular balls. Let = 

inj(xoo). We first assume that for any 0 < e < r ^ , the ball B(x00lr00 — e) is 

standard and non-singular. Geometric convergence implies that for n sufficiently 

large, B(xn,rOQ — 2e) is standard in C n , hence inj(x n ) > inj^oo) — 2e. A similar 

argument applies in the case of singular standard balls. • 

Proposition 3.5.2. — Let ( C n , xn) be a sequence inC^^a that converges geometrically 

to a pointed cone 3-manifold ( C o o > # o o ) - For any compact subset A C Coo there exists 

no > 0 such that for n > no there is an embedding fn:A-^Cn with the following 

properties: 

i) / n ( i 4 ) n E n = / n ( i 4 n E 0 0 ) ; 
ii) the cone angles at fn(A) fl E n approach the cone angles at A D E ^ as n goes to 

infinity. 

Corollary 3.5.3. — If the limit Coo of a geometrically convergent sequence (Cn,xn) in 

C[u),7r],a i s compact, then, for n sufficiently large, Cn has the same topological type as 

Coo (i-c. the pairs ( C n , E n ) and (CQQ } Eoo) are homeomorphic) and the cone angles of 

Cn converge to those of Coo • O 

Proof of Proposition 3.5.2. — Since A is compact, there exists R > 0 such that A c 
B(xoo,R)- The definition of geometric convergence implies that for any e > 0 and 

for n > no (n0 depending on R, e and the sequence) there exists a (1 + e)-bilipschitz 

map fn : B(xoo,R) —• Cn such that 

fn{B{xoo,R) N E o o ) = fn{B(Xoo,R)) H E n . 

This proves Property i) of the proposition. Moreover, by taking s -^Owe get Property 

ii). • 

Proposition 3.5.4. — Let ( C n , x n ) be a sequence ¿wC[W)7r¡ )0 that converges geometrically 

to a pointed cone 3-manifold ( C o o ^ o o ) - Assume that the base point Xoo is non-

singular. Let A C Coo be a compact subset containing Xoo- Let pn (resp. poo) be the 

holonomy of the cone 3-manifold Cn (resp. Coo)- Then, we can choose the holonomy 

representations and the embeddings fn of Proposition 3.5.2 so that: 

i) If the curvature of Cn does not depend on n, then for all 7 G TTI(A — Eoo>#oo)> 

lim p n ( / n * ( 7 ) ) = P o o ( 7 ) -
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ii) If the curvature Kn G [—1,0) of Cn converges to 0 as n —• o o ? then for all 

7 G 7Ti(A - SQO^OO), 

lim p n ( / n * ( 7 ) ) = R O T ( P o o ( 7 ) ) , 
n—»00 

where ROT : Isom(E 3) —• 0(3) ¿5 the surjective morphism whose kernel is the 

subgroup of translations. 

Proof. — We first prove assertion i). We will assume that A contains a neighborhood 

of XQO, by replacing A by a bigger set if necessary. Let Coo — E o o , Cn — E n and 

A — EQO be the respective universal coverings of Coo — ^ c o , C n — E n and A — Eoo-

Let D o c • Coo — —» be a developing map of C o o , T: A — Eoo —> Coo — ^ o o a 

lift of the inclusion A — Eoo —> Coo — EQO, and fn:A — Eoo —» C n — E n a lift of / n . 

We claim that we can choose developing maps Dn: Cn — E n —• such that Dn o / n 

converges to D o o o T uniformly on compact subsets. 

To prove this claim, we choose a standard ball B(xoo,s) C A and three points 

a, 6,c G B(xoc,£/2) such that £ o o , a , c are not contained in a plane. In particular, 

a point in B(xoo,s) is determined by its distance to each one of the four points 

# o o , a , b , c . We also assume that B(fn(xQO),e) is standard. We lift the four points 

to the universal covering # o o , 5 ,b ,c G A — Eoo SO that a, 6,c G B(xoo,s). We choose 

the developing maps D n in such a way that <Dn(/n(#«>)), Dn{fn(a)), Dn(fn(b)) and 

Dn(fn(c)) converge respectively to D o o № o o ) ) , A»№)), A»№)) and Ax>№0). 
This choice is possible because / n is (l + en)-bilipschitz, with en —> 0, and / n preserves 
the orientation. 

The restriction of Dn o / n to I ? ( £ o o , £ ) converges uniformly to the restriction of 
Doo ° ^ because a point of is determined by the distance to four points not 
contained in a plane. The uniform convergence extends to every compact subset 
of A — E o o , by covering this subset with standard balls and using the fact that the 
intersection of two balls, if non-empty, contains four non-coplanar points. 

Since Dn o fn converges to Doo uniformly on compact subsets, we have that for 
any z G A — Eoo and any 7 G ni(A — E o o ) , 

Pn(fn*{y))(Dn(fn(z))) - Poo(7)(Ax>№))). 
Moreover since Dn(fn(z)) —• Doo(t(z)) and A contains a neighborhood of # 0 0 , this 
implies that Pn(fn*(l)) —• Poo(7)- This proves assertion i). 

Assertion ii) is proved in [Pol, Prop. 5.14(i)]. • 

3.6. Cone 3-manifolds with totally geodesic boundary 

The aim of this last paragraph is to prove a compactness theorem for cone 3-
manifolds with totally geodesic boundary. This kind of cone 3-manifolds are only 
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used in Chapter 7. If not specified, a cone 3-manifold is assumed to be without 
boundary. 

Definition 3.6.1. — A cone 3-manifold with boundary is a cone 3-manifold with totally 
geodesic boundary, such that the singular set is orthogonal to the boundary. 

To define the cone injectivity radius we use not only standard balls in the model 
spaces and H^(a) , but also half standard balls with totally geodesic boundary. 
The double of a half standard ball along its boundary is a standard ball. When it is 
singular, the boundary of the half standard ball is orthogonal to the singular locus. 

Let C be a cone 3-manifold with boundary. We define the cone-injectivity radius 
at a point x G C as 

inj(x) = sup 6 > 0 
B(x.ô) is contained in either a standard ball 

or a half standard ball in C 

As in the beginning of the chapter, given a > 0 and u G (0,7r], CB^^a denotes 
the set of pointed cone 3-manifolds (C, x), possibly with boundary, with constant 
curvature in [—1,0], cone angles in [CJ,7T], and such that inj(x) > a. 

Remark 3.6.2. — The set CB^^a contains C^^a, because the limit of cone 3-
manifolds with boundary can be a cone 3-manifold without boundary. This happens 
when, in a converging sequence of pointed cone 3-manifolds, the boundary goes to 
infinity. 

This section is devoted to the proof of the following result: 

Compactness theorem for cone 3-manifolds with boundary. — For a > 0 anduo G (0, n], 
the closure of' CB[u^],a i>n U CB[u,Tz),b is compact for the topology of geometric con-

b>0 
vergence. 

The proof of this theorem follows exactly the same scheme as the proof in the case 
without boundary. The main difference is the following uniform lower bound of the 
cone-injectivity radius, that we deduce from the analogous bound in the case without 
boundary (Proposition 3.2.5). 

Proposition 3.6.3 (Uniform lower bound for the cone-injectivity radius in the case with 
boundary) 

Given R > 0, a > 0 and u G (0, TT], there exists a uniform constant b = b(R, a, u) > 
0 such that, for any pointed cone 3-manifold (C,x) G CB\^^a, the cone-injectivity 
radius at any point of B(x,R) C C is bigger than b. 
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Proof of the compactness theorem for cone 3-manifolds with boundary. — We follow 
the proof in the case without boundary. 

First, by Gromov compactness criterion, CB^^a is relatively compact in the space 
C of locally compact metric length spaces equipped with the Hausdorff-Gromov topol­
ogy. The fact that CB^^a satisfies the necessary conditions to apply the compactness 
criterion follows from Bishop-Gromov inequality, whose proof extends trivially to the 
case with totally geodesic boundary. 

The second step requires the use of Proposition 3.6.3, that we prove later. Using 
this proposition one shows that, if we have a sequence of pointed cone 3-manifolds with 
boundary in CB\u^\,a that converges in £, then the limit is a pointed cone 3-manifold 
in CB[ui7r],b f ° r some b > 0. This can be proved by an argument similar to the one 
given in the proof of Proposition 3.2.6, by using the fact that the Hausdorff-Gromov 
limit of half standard balls is again a half standard ball. 

The final step is to show that Hausdorff-Gromov convergence in CB^^a implies 
geometric convergence. This is proved in Proposition 3.3.1 for cone 3-manifolds with­
out boundary, where the bilipschitz maps are explicitly constructed. These bilipschitz 
maps are constructed taking account of the singular locus, and the same construction 
can be made by taking additional account of the boundary. Thus we are left with the 
proof of Proposition 3.6.3. 

Proof of Proposition 3.6.3. — Given C a cone 3-manifold with totally geodesic bound­
ary, DC denotes its double along the boundary. Since the boundary of C is totally 
geodesic, DC is still a cone 3-manifold. Given y G C , m.]c(y) and injDC(y) denote 
the injectivity radius in C and in DC respectively. Note that m]c(y) < m]DC(y). 

We will also use the notation Bc{x, R) and BDC{%, R) to distinguish the ball in C 
from the ball in DC. Note that Bc(x,R) C BDC(x,R). 

Given (C , x) G CB[u,Tr],a a n d R > 0, we want to find a lower bound for the injectivity 
radius of every point in B(x,R) which depends only on a, R and UJ. Since inj c (x) < 
i n j D C ( x ) , we have that the pointed cone manifold (DC,x) G C[ w > 7 r ] j a . Therefore, by 
Proposition 3.2.5 there exists a uniform constant bo = bo(R,uJ, a) > 0 such that 

Vy e BDC(x,R + 4), in j D C (2/ ) > &o. 

We shall deduce from it that, \/y G Bc(x,R), mic(y) > b for some constant b = 
b(bo,uj) > 0 which depends only on bo and UJ. We do it in several steps (Lem­
mas 3.6.4, 3.6.7, 3.6.8). 

Lemma 3.6.4. — For every y G dC fl B(x,R + 2), m.]dc{y) > bo, where m]dc(y) 
denotes the injectivity radius in the boundary and bo is the constant above. 

Proof. — This is a consequence of the fact that i n j a c ( y ) > i n j D C ( y ) , since dC is a 
totally geodesic submanifold of DC. • 

Next we define the normal radius of a compact region in the boundary. 
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Definition 3.6.5. — Given K Ç dC a compact subset of the boundary, we define its 

normal radius as the following supremum: 

/ T ^ X f ^ two segments of length r orthogonal to dC which ] 
n(K) = sup <r>0 . r , . Ï 

I start at dînèrent points of K do not intersect J 

Remark 3.6.6. — Since K is compact, its normal radius is well defined. 

The normal radius is the supremum of all r > 0 such that the normal map defines 

a collared neighborhood for K. It is the supremum but not the maximum. 

Lemma 3.6.7. — There exists a constant b\ = bi(bo,u) > 0 depending only on bo and 

u such that the normal radius is 

n(dCnBc(x,R + 2)) > bi. 

Proof. — First we bound below the length of an orthogonal segment that starts 

in a smooth point of dC fl Bc(x,R + 3) and hits the singular locus E. Thus let 

y G dC fl Bc(x, R + 3) be a nonsingular point and let cr be a segment between y and 

E which is orthogonal to dC. We want to find a lower bound for the length of a. 

Let z = a nY>. We may assume that z G Bc(x,R + 4). Thus m]DC(z) > bo. 

Now consider the segment in DC obtained by joining a to his mirror image along the 

boundary. Since this segment goes from z to its mirror image, it joins two singular 

points and its length has to be bigger than the injectivity radius at z. Thus the length 

of a is > bo/2. 

Next we find the lower bound for the normal radius. We choose /3 > 0 a constant 

with the following property: if two points p and q in the singular model space H ^ a ) 

are joined by two segments of length less than 0, then the singular edge of MK(a) 

is at distance at most 6o/4 from p and q. This constant exists because a > a;, and 

it depends only on UJ and bo. See Figure 8. We will use the additional fact that 

the singular locus of and the segments joining p to q cannot have a common 

perpendicular plane. 

FIGURE 8 

SOCIÉTÉ M A T H É M A T I Q U E DE F R A N C E 2001 



CHAPTER 3. A COMPACTNESS THEOREM FOR CONE 3-MANIFOLDS 6 0 

Now suppose there are two different segments cri, o~2 with the same length, which are 
orthogonal to the boundary, and which start at different points of dCíl Bc(x, R + 2), 
but meet at their end-point {z} = G\ D 02. 

When both G\ and a2 are nonsingular, we will show by contradiction that the 
length of a\ (and of 02) is at least inf{&0/4, /3/2}. Let us assume that their length is 
less than inf{&o/4, /3/2}. We look at the configuration obtained by reflecting G\ U G2 

along its boundary. Since i n j D C ( z ) > bo this configuration lies in a standard ball of 
radius > 60. By definition of /3, we have that the distance between E and z is less 
than 60/4. Moreover, since o\ and 02 are perpendicular to the boundary, it follows 
that E is not orthogonal to the boundary in the standard ball. Hence we can find 
a non-singular segment between E and dC U Bc(x,R + 3) of length less than 6o/2, 
contradicting the first lower bound of the proof. 

If G\ and 02 are both singular, then their union G\ U G2 is a connected component 
of E. Since the connected components of DY, C DC in the ball BDC(%, R + 3) have 
length > &o, it follows that the length of G\ and cr2 is > &o/4. If <J\ is singular but 02 
is not, then we have shown in the beginning of the proof that the length of G\ is at 
least b0/2. • 

From Lemmas 3.6.4 and 3.6.7, we have a uniform lower bound for the injectiv-
ity radius of points in the collared neighborhood of dC D Bc(x, R + 1) with normal 
radius 6i/2. In particular, such a bound holds for points in Bc(x,R) whose dis­
tance to the boundary is < 61/2. Hence the following lemma concludes the proof of 
Proposition 3.6.3. 

Lemma 3.6.8. — There exists a uniform constant 62 > 0 depending only on 60, LJ and 
bi such that for every point y G Bc(x,R) the following holds: if the distance to dC 
is > bi/2, then mic(y) > 62 

Proof of Lemma 3.6.8. — Since m.]DC(y) > bo, either the ball BDC{V, °O) is standard 
or Bpciy, bo) is contained in a standard ball. 

If Boc(y,bo) is itself standard, then the ball Bc(y,b\/2) is also standard, because 
bi < b0 and d(y,dC) > h/2. Therefore inj c (y) > h/2. 

When Boc(y,bo) is contained in a standard ball BDC(Z,T) w e distinguish two 
cases according to whether d(y, z) < 61/8 or not. 

If d(y,z) < 61/8, then d(z,dC) > 61/4. In addition, since 61 < bo < r, the ball 
Rc(z,bi/A) = BDc(z,bi/4) is standard and Bc(y,b\/S) C Be(2,61/4) by construc­
tion. Hence inj c (y) > 61/8. 

If d(y, z) > 61/8, then, by trigonometric arguments, we can find a constant b' > 0 
depending only on b\ and u such that the ball Boc{y, b') is standard. By taking b' < 
6i/2, we have that Bc(y, b') = Boc{y, b') is standard, and therefore inj c (y) > b'. • 

This finishes the proof of Proposition 3.6.3 and hence of the compactness theorem 
in the case with boundary. • 
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CHAPTER 4 

LOCAL SOUL THEOREM FOR CONE 3-MANIFOLDS 
WITH CONE ANGLES LESS THAN OR EQUAL TO Π 

The goal of this chapter is to describe the metric structure of a neighborhood 
of a point with sufficiently small injectivity radius in a hyperbolic cone 3-manifold 
with cone angles bounded above by TT. This description is crucial to study collapsing 
sequences of cone 3-manifolds in the proofs of Theorems A and B. 

We need first the following definition. 

Definition 4.0.1. — Let C be a cone 3-manifold and D a cone manifold of dimension 
less than 3, possibly with silvered boundary dD. A surjective map p:C —• D is said 
to be a cone fibre bundle if 

- on D — dD, the restriction of p is a locally trivial fibre bundle with fibre a cone 
manifold. Moreover, if dim(D) = 2 then p ( £ c ) = ^D 

- on dD, the restriction of p is an orbifold fibration. In particular, the fibre over 
a point of dD is an orbifold with some cone angles equal to TT. 

Local Soul Theorem. — Given UJ G (0,7r), e > 0 and D > 1 there exist 

5 = S(uj,e,D)>0 and R = R{uj,e,D) > D > 1 

such that, if C is an oriented hyperbolic cone 3-manifold with cone angles in [UJ,7T] 
and if x G C satisfies inj(x) < 5, then: 

- either C is (1 + e)-bilipchitz homeomorphic to a compact Euclidean cone 3-man­
ifold E of diameter diam(E') < i?inj(x); 

- or there exists 0 < v < 1, depending on x, such that x has an open neighborhood 
Ux C C which is (1 + e)-bilipschitz homeomorphic to the normal cone fibre bundle 
^(S), of radius v, of the soul S of a non-compact orientable Euclidean cone 3-
manifold with cone angles in [UJ,TT]. In addition, according to dim(5), the Euclidean 
non-compact cone 3-manifold belongs to the following list: 

I) (when dim(5) = 1) S1 tx R 2 , S1 x (open cone disc) and the solid pillow (see 
Figure 1), where K denotes the metrically twisted product; 
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II) (whendim(S) = 2) 
i) a product T2 x R; S2(a,ß,ry) x R, with OJ + /3 + 7 = 2TT (the thick turnover); 

5 2(7r, 7r,7r,7r) x R (the thick pillow); 
ii) the orientable twisted line bundle over the Klein bottle K2xR or over the 

projective plane with two silvered points P 2(7r,7r)xR; 
iii) a quotient by an involution of either S2(n, 7r, 7r, TT) X R , T2 X R or K2 xR, that 

gives an orientable bundle respectively over either D2(7T,7r), an annulus, or 
a Möbius strip, with silvered boundary in the three cases (see Figure 2). 

In addition, the (1 + e)-bilipschitz homeomorphism f : Ux —» NV(S) satisfies the 
inequality 

max(inj(x) ,d(/(x) ,S),diam(5)) < v/D. 

FIGURE 1. The solid pillow. Its soul is the interval [0,1] with silvered boundary. 

FIGURE 2. From left to right, the non-compact Euclidean cone 3-manifolds 
with soul D2(TT, 7r), an annulus and a Möbius strip, with silvered boundary 
in every case. They are the respective quotients of S2(n, 7r, 7r, TT) x E, T 2 X R 
and K2xR by an involution. 

The Euclidean cone 3-manifolds E in the local soul theorem are called the local 
models. We call S the soul, because, in each case, S is a totally convex cone sub-
manifold of the local model E, and E is isometric to the normal cone fibre bundle 
of S. 

Remark 4.0.2. — It follows from the proof (cf. [CGv]) that v < Rmj(x). In particular, 
v depends on x and this dependence cannot be avoided. 

The first step of the proof is Thurston's classification theorem of non-compact ori­
entable Euclidean cone 3-manifolds. We need in fact a simpler classification, because 
Thurston's classification includes general singular locus, and we consider here only 
the case where the singular locus is a 1-dimensional submanifold (cf. [SOK], [Hoi] 
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and [Zhl]). After obtaining this classification, we prove the local soul theorem by 
applying an argument of [CGv]. In the last section we extend the local soul theorem 
to cone 3-manifolds with totally geodesic boundary. 

4.1. Thurston's classification theorem of non-compact Euclidean 
cone 3-manifolds 

In this section we prove the following result: 

Theorem 4.1.1 (Thurston). — Let E be a non-compact orientable Euclidean cone 3-
manifold with cone angles less than or equal to 7r and a 1-dimensional submanifold as 
singular locus. Then either E = M3, E = R 3(a) = l x (open cone disc), or E is one 
of the local models given in the local soul theorem. 

We prove this theorem by using the soul theorem for Euclidean cone 3-manifolds, 
which is a generalization of Bieberbach theorem for open flat 3-orbifolds. We need 
first some definitions. The proof of the soul theorem for Euclidean cone manifolds is 
analogous to the proof of the soul theorem for Riemannian manifolds of non negative 
sectional curvature in [CGI] (see also [Sak]). 

Definition 4.1.2. — Let C be a cone 3-manifold with singular locus E c C a 1-
dimensional submanifold and curvature K G [—1,0]. 

- The silvered points of C are the points of E having cone angle TT. 
- A path 7: [0,1] —» C is geodesic if it is locally minimizing. 
- A path 7 : [0,1] —> C is s-geodesic if it is locally minimizing except for some 

t G (0,1) where "y(t) is silvered and the following happens: there exist e > 0 and 
a neighborhood U of j(t) such that 7 : (£ — e,t + e) —• U lifts to a minimizing 
path in the double cover U —• U branched along E n U. See Figure 3. 

- A subset S C C is totally s-convex if every s-geodesic path with end-points in 
S is contained in S. 

FIGURE 3. Example of s-geodesic. 

The notion of s-geodesic generalizes the notion of geodesic, thus total s-convexity 
is stronger than usual total convexity, as shown in the following example. 

U û 2TT E 

2 : 1 
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Example 4.13. — Let A be a totally s-convex subset of a cone 3-manifold C and 7 

a geodesic path from p G A to q € £ . If g is a silvered point and 7 is orthogonal to 

£ , then 7 is contained in A, because the path 7 * 7" 1 is a s-geodesic with end-points 

in A. In particular, a totally s-convex set intersects all singular components having 

cone angle TT. 

Theorem 4.1.4 (Soul Theorem). — Let E be a non-compact Euclidean cone 3-manifold 

with cone angles < TT. Then E contains a compact totally s-convex cone submanifold 

S C E of dimension 0, 1 or 2, with silvered or empty boundary. Moreover E is 

isometric to the normal cone fibre bundle of S. 

Given a cone submanifold S C E, there is an e > 0 such that the tubular neigh­

borhood of radius e > 0, j\ie(S), is a cone bundle over S. When we say that E is 

isometric to the normal cone fibre bundle of 5, we mean that we can choose the radius 

e = 00 and that the metric has the local product structure of the bundle. 

The cone submanifold S is called the soul of E. 

Remark 4.1.5. — When cone angles between TT and 2TT are allowed, then this theorem 

does not hold anymore. For instance one can easily construct two dimensional cone 

manifolds with infinitely many singular points, if we allow the cone angles to be 

arbitrarily close to 2TT. However a weaker version of the soul theorem holds. 

We postpone the proof of the soul theorem to Sections 4.2 and 4.3, and now we 

use it to prove Thurston's Classification Theorem 4.1.1. 

Proof of Theorem J^.l.l. — Let E be an orientable non-compact Euclidean cone 3-

manifold and £ its singular locus. Note that every finite covering S —> 5 (possibly 

branched at silvered points) induces a covering E —• E. Moreover, S is the soul of E, 

because S is totally s-convex and E is the normal cone fibre bundle of S. Passing to 

finite coverings will help us to simplify the proof. 

We distinguish three cases, according to the dimension of the soul S C E. 

When dim(S') = 0, then 5 is a point p. For e > 0 sufficiently small, the ball B(p, e) 

of radius e is either a non-singular Euclidean ball or a ball with a singular axis. Hence, 

since E is isometric to the normal cone fibre bundle of the point p, either E is the 

Euclidean space R 3 , or E = R 3 ( a ) = R x (open cone disc). 

When dim(S) = 1, then either S is S1 or an interval [0,1] with silvered boundary. 

If S = 5 1 , then by convexity either S c S o r 5 n E = 0 . Since E is orientable, 

j\fe(S) is a solid torus, possibly with a singular core. Therefore, E is the (metrically 

twisted) product of S1 with an infinite disc, possibly with a singular cone point in 

the center. 

If S = [0,1], then we consider the double covering S1 —> [0,1] branched along the 

silvered boundary. The induced double branched covering E —> E is S1 K R 2 , thus E 

is the solid pillow (R 3 with two silvered lines; see Figure 1). 
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When dim(S) = 2, we use the classification of compact Euclidean cone 2-manifolds 
with geodesic boundary and cone angles < TT. This classification is easily deduced 
:rom Gauss-Bonnet formula. In particular, either S = S2(a,(3,7) with a-H/3 + 7 = 2TT 
Dr S is a Euclidean orbifold having as finite covering S = T2. If S = 5 2(a,/3,7) or 
S = T 2 , then S is two sided and Af£(S) = S x (-e,e). Therefore E = S x R. The 
remaining cases reduce to study finite groups of isometries of T 2 and their orientable 
isometric extension to T 2 x R. • 

4.2. Totally s-convex subsets in Euclidean cone 3-manifolds. 

In this section we give some basic facts about totally s-convex subsets in Euclidean 
:one 3-manifolds, which are used in the proof of the soul theorem (in Section 4.3). 
Lemma 4.2.2 shows that totally s-convex subsets appear naturally as level sets of 
:ontinuous convex functions. 

Definition 4.2.1. — A continuous function f:E —» R on a cone 3-manifold E is convex 
f / O 7 is convex for every geodesic path 7: [0, /] —> E. 

Lemma 4.2.2. — / / / : E —> R is a continuous convex function then, for every s-
^eodesic path 7: [0,I] —• E, /07 is convex. In particular, the subset {x G E \ f(x) < 0} 
is totally s-convex. 

Proof. — Every s-geodesic path is locally the limit of geodesic paths, arbitrarily close 
;o the singular set but disjoint from it. It follows by continuity that the inequalities 
iefining convexity are satisfied locally for every s-geodesic path. • 

definition 4.2.3. — Let A c E be a smooth submanifold without boundary. We say 
;hat A is totally geodesic if either dim A = 3 or for every x G A the following hold: 

- if x £ E, then the second fundamental form of A C E at x is trivial; 
- if x G E and dirndl = 2, then A and E are orthogonal at x; 
- if x G E and dim A — 1, then there is a neighborhood U C E of x such that 

YDU = AnU. 

?or non-singular points, this definition coincides with the usual definition in Rieman-
lian geometry. We also remark that this is a local notion that does not require A to 
)e complete. 

Proposition 4.2.4. — Let E be a Euclidean cone 3-manifold and A C E a non-empty 
dosed totally s-convex subset. Then A is an embedded manifold, possibly with bound-
iry, whose interior A — dA is totally geodesic. 

Before proving this proposition we need the following lemma, which describes the 
ocal structure of A at the singular points. 
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Lemma 4.2.5. — Let x G E and /e£ Z}2(a;,£) be the geodesic singular 2-disc transverse 
to E with center x and radius e > 0. If A is a closed totally s-convex subset such that 
A n D2(x, e) 7̂  0, £ften one 0 / following possibilities happens: 

i) AnD2(x,e) = {x}, 
ii) A n D2(x,e) contains a smaller disc D2(x,5), with 0 < 5 < e, 

iii) x is silvered and A n D2(x,e) is a segment orthogonal to E at x. 

Proof. — Choose e > 0 so that D2(x,e) is a disc contained in a standard ball. We 
prove first that if the cone angle a at x is less than TT then the convex hull of a point 
y e An (D2(x,e) — {x}) contains a disc D2(x,5), with 0 < 6 < e. We view D2(x,e) 
as the quotient of an angular sector Sa whose faces are identified by an isometric 
rotation, and such that y is obtained by identifying two points 2/1,2/2 € Sa, one in 
each face of Sa. Consider the geodesic path a: [0,1] —> Sa minimizing the distance 
between 2/1 and 2/2 (see Figure 4), it projects to a geodesic loop a: [0,/] —> D2(x, e) 
based at y. The convex hull of y contains a and we have 

d(o, x) = d(y, x) cos(a/2). 

By using this formula and the fact that 0 < cos(a/2) < 1, we can construct a sequence 
of concentric geodesic loops converging to x, hence the convex hull of y contains a 
disc D2(x,5), with 5 > 0. This proves the lemma when a < TT. 

Assume now that x is a silvered point. Let y G A n (D2(x,e) — {x}). The set 
A contains the minimizing path a from y to x, because a * cr _ 1 is a s-geodesic loop 
based at y. Moreover, if A(lD2(x, s) contains two such segments, then these segments 
divide D2(x,e) into two sectors of angles less than TT, therefore D2(x,S) C A with 
S > 0. • 

F IGURE 4. The sector 5« and the disc D2(x,e). 

Proof of Proposition 4-2.4- — It suffices to prove the result locally: every point x G A 
has a neighborhood U such that U fi A is an embedded submanifold, possibly with 
boundary, whose interior U D A — d(U fl A) is totally geodesic. If x is non-singular 
then it is just a well known result for locally convex subsets in M3. Hence we suppose 
that x G £. 

SA D2(x,e) 
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We choose a neighborhood U of x that has a product structure. More precisely U 
is isometric to D2(0,5) x (—£, e) for some e, 8 > 0, where D 2 (0,6) is a singular 2-disc 
of radius with a singularity in its center 0. For this product structure we have that 
C/nS = { 0 } x ( -£ ,e ) and x = (0,0). 

Since the intersection A fl U fl E is a connected subset of J7 fl E containing there 
are the following three possibilities: 

a) ADUnY = { x } ; 
b) Af]U HE = { 0 } x [0, e), i.e. a subinterval of E D U having x as end-point; 
c) AnUnY = {0} x(-e,e) = ZnU. 

By using Lemma 4.2.5 we can describe explicitly all the possibilities for A fl U in 
each case. 

In case a), when A fl U fl E = { # } = { ( 0 , 0 ) } , there are 3 subcases: 

al) AnU = {x} = {(0,0)}. 
a2) AnU = V x { 0 } , where F is a convex neighborhood of 0 in D2(0,5). In 

particular int(A fl U) is a totally geodesic 2-submanifold transverse to E 
a3) The point x is silvered and A D 17 is a segment orthogonal to E at x. 

It follows from this explicit description that the proposition holds in the three subcases 
al) , a2) and a3). 

In case b), when A fl U fl E = { 0 } x [0, e), again there are three subcases: 

bl) A H U = A n U H E = { 0 } x [0, e), (i.e. AnU is a, subinterval of E). 
b2) For some to G [0, e), An (D2(Q, 5) x {to}) contains a singular 2-disc with positive 

radius. 
b3) x is silvered and, for some to G [0, e), A fl (£>2(0, J) x {£o}) is a segment perpen­

dicular to E at x. 

In subcase b l ) we have an explicit description of A nU and we may conclude that the 
proposition holds. To give an explicit description in the other cases we need further 
work. 

In subcase b2), we claim that A fl U is a 3-manifold with boundary and that x G 
d(AnU). First we remark that, for every t G (0, e), the intersection An(D2(Q, S) x {t}) 
contains a singular 2-disc with positive radius, because AnU contains the convex hull 
of the union of An (£>2(0,5) x {t0}) and A n U fl E = { 0 } x [0, e). 

We parametrize £/ by cylindrical coordinates (r, #, t) G [0,5) x [0, a] x ( — 6 , e), where 
r is the distance to E, 0 G [0, a] is the angle parameter, a is the singular angle and t 
is the height parameter. Thus we identify (r, 0,£) to (r, a,£), and (0,0, £) to (0,0', £), 
for every 0,0' G [0,a]. 

By Lemma 4.2.5, if a point belongs to AnU, then so does its projection to E. 
Therefore there exists a function / : [0 , a ] x [0,e] —> [0,(5] such that 

A n C7 = {(r, 0, t) G [0,5] x [0, a] x [0, e] \ r < /(0, £)}. 
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We remark that for every t G (0,e) and every 9 G [0, a], f(9,t) > 0 because 
A fl (D2(0,6) x {t}) contains a singular 2-disc with positive radius. 

Next we show that / is continuous. The function / is upper semi-continuous 
because A is closed. Moreover the lower semi-continuity of / at a point (9, t) can be 
proved by considering the convex hull of the union of A n (D2(0,6) x {t}) and A fl E, 
because this convex hull has dimension 3. 

Since / is continuous, A fl U is a 3-manifold with boundary whose interior is 

int(AnC7) = {(r,9,t) G [0,6] x [0,a] x (0,e) | r < / ( 0 , * ) } . 

Hence the proposition holds in subcase b2). 
In subcase b3) we claim that A D U is a 2-manifold that is the union of a family of 

parallel segments perpendicular to E. First we remark that, for every t G (0,6:), the 
intersection An (D2 (0,6) x {t}) is a segment orthogonal to E, because AnU contains 
the convex hull of the union of the segment A D (D2(0,6) x {to}) and Anf / f l E = 
{ 0 } x [0,e). Moreover the segments An (D2(0,6) x {t}) are parallel, otherwise the 
convex hull of their union would have dimension 3 and we would be in subcase b2). 

Again we parametrize U by cylindrical coordinates (r, 0, t). By the same argument 
as in subcase b2) we conclude that there exists a continuous function / : (—e, e) —> [0,6] 
such that 

AnU = {(r,9,t) G [0,6] x [0,a] x [0,e] \9 = 0,r< f(t)}. 

Moreover, for t > 0, f(t) > 0. Hence A D U is a 2-dimensional submanifold with 
boundary and with totally geodesic interior { ( r , 9, t) \ 9 = 0, 0 < r < f(t)}. Thus the 
proposition follows from explicit description also in this case. 

Finally, in case c), when A D U Pi E = { 0 } x (—e, e), there are again three subcases 
that can be treated with the same method as subcases b l ) , b2) and b3). These 
subcases are: 

c l ) ylnC/-^nt/nE = { 0 } x ( - £ , £ ) . 
c2) A n U is a 3-submanifold with boundary that contains U fl E = { 0 } x (—e, e) in 

its interior. 
c3) x is a silvered point and A fl U is a 2-submanifold with boundary, which is the 

union of parallel segments orthogonal to U D E. In particular the interior of 
AnU is totally geodesic and C/fiE = { 0 } x (—e,e) is contained in the boundary 
oiAnU. • 

Remark 4.2.6. — In the proof of Proposition 4.2.4, the cases a3), b3) and c3) deal 
with silvered points. Let p:U —> U denote the double cover branched along UDE, so 
that U is non-singular. In the three cases a3), b3) and c3), p~l(A fl U) is a manifold 
with boundary, of dimension 1 or 2, whose interior is totally geodesic in U. Moreover 
x G dA, but in cases a3) and c3) p~x(x) is an interior point of p~x(A n U). This 
motivates the following definition. 
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Definition 4.2.7. — Let A c E be a closed totally s-convex subset. The silvered 

boundary dsA is the set of points x G dA fl E that are silvered and such that the 

following holds: if U C E is a neighborhood of x and p : U —• 17 is the double cover 

branched along E n 17, then p - 1 ( x ) is an interior point of p~1(A fl U). We also define 

the non-silvered boundary 3NSA to be the set of points in dA that are not in the 

silvered boundary: d^sA = dA — dsA. See Figure 5. 

dNSA dsA 

F I G U R E 5 

Lemma 4.2.8. — Let A c E be a non-empty closed totally s-convex subset in a Eu­

clidean cone 3-manifold. Then the following hold: 

i) The non-silvered boundary d^sA is a closed subset of E. 

ii) If dim A = 0 or 3, then dsA = 0 and dA = dxsA. 

Proof. — Let x G AfiE and let U C E be a neighborhood of x. By using the explicit 
description of U fl A in the proof of Proposition 4.2.4, we have that x G dsA if and 
only if x is a silvered point such that, either U n A is a segment orthogonal to E (case 
a3)), or U n A has dimension 2 and U fl E is a piece of 9sA C dA (case c3)). This 
description of points in dsA implies that dsA is open in OA, hence assertion i) is 
proved. We also deduce from the description that if dsA ^ 0 then dim A = 1 or 2, 
which is equivalent to assertion ii). • 

Proposition 4.2.9. — Let A c E be a non-empty closed totally s-convex subset in a 

Euclidean cone 3-manifold. If aim A < 3 then every point in int(A)UdsA = A-d^s^ 

has a neighborhood U C E isometric to the normal cone fibre bundle over AnU. More 

precisely: 

-ifx£ int(.A) then U is isometric to the product (AnU)xBc(0,e), where Bc(0, e) 

is a ball of radius e > 0 and dimension c = codim(j4), maybe with a singularity 

in its center. 

- if x G dsA and p:U —> U is the double cover branched along T.HU, then U 

is isometric to p~1(A(l U) x Bc(0,e), where Bc(0,e) is a non-singular ball of 

radius e > 0 and dimension c = codim(A). 
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Proof. — If x G int(^4) and x 0 £ then the proposition is clear because hit (A) is 

totally geodesic. 

If x G int(A) n £ then, by the description given in the proof of Proposition 4.2.4, 

A n U is either in case a2) or in case c l ) . In case a2), U fl A is a totally geodesic 

2-dimensional disc perpendicular to E, and U is isometric to the product of U fl A 

with an interval. In case c l ) , U fl A is a subinterval of E and U is isometric to the 

product of U fl A with a singular 2-disc. Hence the proposition holds in both cases. 

When x G dsA, U n A is either in case a3) or c3). In both cases D A) is a 

totally geodesic submanifold of p _ 1 ( A ) and the proposition follows. • 

The following proposition shows that A has a local supporting half-space at every 

point of 8NSA. 

Proposition 4.2.10. — Let Ad E be totally s-convex, x G A, y G 8NSA and 7 : [0, I] —> 

A be a path from x to y that realizes the distance d(x,dNsA). 

i) If ye E, then^([0J]) C E. 

ii) Let B(y,e) be a standard ball of radius e > 0 and let H C B(y,e) be the half-ball 

bounded by the (maybe singular) totally geodesic disc orthogonal to 7 at y. Then 

AnB(y,e) C H. 

Proof — Let y G E n 8NS(A). We choose a neighborhood U C E of y. By using 

the description in the proof of Proposition 4.2.4, the intersection U Pi A is either in 

case b l ) , b2) or b3). It follows from this description that if a path 7 : [0, /] —> A from 

x to y realizes d(x,dNsA), then it also realizes d(x,D2(y,6))J where D2(y,S) is the 

totally geodesic 2-disc of radius 5 > 0 transverse to E. In particular, 7 is orthogonal 

to D2(y,5) and assertions i) and ii) hold in the singular case. 

If y G 8NSA is non-singular, then assertion ii) can be proved by using developing 

maps to reduce the proof to the case of locally convex subsets in M3. • 

Lemma 4.2.11. — Let E be a Euclidean cone 3-manifold and let A c E be totally 

s-convex. The function 

$:A -> E 

x 1 • d(#, <9jvs>l) 

¿5 concave (i.e. — $ ¿5 convex). Moreover, if for some geodesic path 7 : [0,Z] —> A 

£fte function $ o 7 ¿5 constant, then for every t G [0, Z] tóere errzsís a geodesic path 

orthogonal to 7 ¿/mí realizes the distance from j(t) to 8NSA. 

Proof — Let 7 : [0,1] —> A be a geodesic path, we want to prove that $ 0 7 is concave. 

For t G [0,/], let at : [0, A] —• >1 be a minimizing path from j(t) to 8NSA of length 

A = d(^i(t),dNsA). Let 0 G [0,7r] be the angle between yf(t) and crj(0). We claim 

that there exists some uniform e > 0 such that, if |s| < e and t + s G [0, Z], then 

$(7(t + s)) < $(7(0) - scos(0). 
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This inequality shows that $ 0 7 may be represented locally as the infimum of linear 

functions, and therefore $ o 7 is concave. 

To prove this inequality, we consider first the case where crt([0,A])nE = 0 . Let 

D2(at(\)iS) be a totally geodesic disc with center crt(X) and radius S > 0 that is 

orthogonal to at. By Proposition 4.2.10 ii), the disc D2(crt(\),S) bounds a locally 

supporting half-ball for A. In particular there exists e > 0 such that, for |s| < e 

(4.1) $ ( 7 ( t + s)) = d( 7 ( t + s),divsA) < d( 7 ( t + 5 ) , £ V t W , * ) ) . 

Moreover, by considering developing maps, we can use elementary trigonometric for­

mulas of Euclidean space to conclude that for |s| < e 

d( 7 (* + s), D2(at(\), 6)) = d( 7 ( t ) , <7t(A)) - s cos(0) = A - scos(0), 

where e > 0 is small enough, so that the tubular neighborhood A/"e(7t([0,Z])) embeds 

in the Euclidean space via developing maps (see Figure 6). Therefore 

*(7(t + s)) < A - 5 cos(0) = *(7(t)) - s cos(<9). 

Furthermore, the parallel translation of AT along 7 gives a family of geodesic paths 

{(Tt+s I N < e}, such that crt+s has length A — s cos(#) and minimizes the distance of 

7(£ + 5) to D2(at(X), S). Therefore, when 3> o 7 is constant we have equality in (4.1), 

0 = 7r/2, and {<7t+s I |s| < e} is a family of geodesies of constant length, orthogonal 

to 7 and which minimize the distance to 8NSA. 

F I G U R E 6 

When <7t([0, A]) f l E ^ 0 , since AT is minimizing, either At([0, A]) fl E = {*y(T)} or 

j t ( [0 , A]) C E by Proposition 4.2.10 i). In particular, j(T) G E and either 7Q0, / ] ) C E 

3r 7(i) is an end-point of 7. Then the argument in the non-singular case goes through 

in the singular case, by just taking care when we use developing maps close to the 

singular set. 

Finally, note that a compactness argument allows to chose a uniform e > 0. • 

dNSA 
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4.3. Proof of the soul theorem 

Proof of Theorem 4-1-4 (Soul theorem for Euclidean cone 3-manifolds) 
We start by considering Busemann functions. We recall that a ray emanating from 

a point p G C is a continuous map 7 : [0, +00) —> E such that the restriction on every 
compact subinterval is minimizing. We assume that the rays are parametrized by 
arc-length. The Busemann function associated to 7 is: 

bi(x) = +

 l i m ( * - d ( x , 7 ( t ) ) ) . 
t—»-|-oo 

By construction, Busemann functions are Lipschitz, with Lipschitz constant 1. In 
particular they are continuous. 

A Euclidean cone 3-manifold with cone angles less than 2TT may be viewed as an 
Aleksandrov space of curvature > 0. Next lemma is proved in [Yam, Prop. 6.2] for 
those Aleksandrov spaces. 

Lemma 4.3.1. — Busemann functions on Euclidean cone 3-manifolds with cone angles 
less than 2n are convex. • 

We consider a Euclidean cone 3-manifold E and we fix a point xo G E. Following 
Cheeger and Gromoll [CGI] or Sakai [Sak, Sect. V.3], for t > 0, we define 

At = {xeE\ b7(x) < t for every ray 7 emanating from x 0 } -

Lemma 4.3.2. — For t > 0, At is a compact totally s-convex subset of E, satisfying: 

1) Ifti >t2>0, then At2 C Atl and At2 = {x G Atl \ d(x,dNSAtl) > t \ - t2}. In 
particular, for t2 > 0, dAt2 = dNsAt2 = {x G Atl \ d(x1dNSAtl) = t\ -12}. 

2) E= U At. 
t>o 

3) At intersects all connected components o / S . 

Proof. — The set At is totally s-convex by Lemmas 4.2.2 and 4.3.1. In order to prove 
the compactness, we suppose that there is a sequence of points xn in At going to 
infinity, and we will derive a contradiction. For every n G N, consider the minimizing 
path 7 N between x 0 and x n , which is contained in At by convexity. Since the unit 
tangent bundle at xo is compact, the sequence j n has a convergent subsequence to a 
ray 7 emanating from x 0 and contained in At\ that contradicts the definition of At. 

We recall the following classical inequalities for Busemann functions, which can 
be proved from triangle inequality. For every ray 7 emanating from xo, every point 
x G E and every real t > 0, 

d ( x , x o ) > & 7 (x) >t — d (x , 7 (£ ) ) . 

In particular B(x0, t) = {x G E \ d(x, x 0 ) < t} C At for every t > 0. Thus assertion 2) 
is clear. Moreover, for t > 0, dim A* = 3. Therefore, by Lemma 4.2.8, 8At = d^sAt. 
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To show assertion 1) we prove first the inclusion 

At2 C { x G Atl | d(x,dNSAtl) > h - t2}. 

Given x G At2 and y g int(Atl), we claim that d(x,y) > t \ - t 2 . By hypothesis, there 

exists a ray 7 emanating from XQ such that b7(x) < t2 and b^(y) > t\. For every 

t > 0, we have d(x,y) > d(x^(t)) - t + t - d(y^{t)). By taking the limit when 

t —• +00, we deduce that y) > o 7 (y) — b1(x) > t\ — t 2 , as claimed. 

To prove the reverse inclusion, we take a point x G Atl such that d(x,8NsAtl) > 

t\ — t2. We claim that for every ray 7 emanating from xo, b7(x) < t2. Note first 

that, for every t > ¿1, d(x,j(t)) > t — ¿1, because ti > b7(x) > t — d(x,j(t)). Let z 

be the point in a minimizing path between x and ^(t) such that d(z,^(t)) = t — t\. 

Then z g intAtl, because b7(z) > t — d(z,^(t)) = t\. It follows that d(x,z) > 

d(x,dNSAtl) = d(x,8Atl) > t \ - t 2 and 

t - d{x, 7(t)) = t - d(x, z) - d(z, j(t)) < t - ( t 1 - t 2 ) - ( t - t 1 ) = t2. 

By taking the limit when t —> +00, 6 7 (x) < t2. This proves assertion 1). 

Finally assertion 3) follows from assertion 1) and the following lemma: 

Lemma 4.3.3. — Let A C E be totally s-convex and let 

Ar = {xe A\d(x,dNSA)>r}. 

If Ar ^ 0 for some r > 0 and Eo is a component of E such that A fl Eo 7̂  0 , then 

i r f l E 0 ^ 0 . 

Proof. — By Lemma 4.2.11, Ar is totally s-convex. Therefore Ar intersects all com­

ponents of E having cone angle TT. In general, let Eo be a component of E that 

intersects A and has cone angle less than TT. We distinguish two cases, according to 

whether Eo is compact or not. 

When E 0 = S 1 , for every r > 0 either Ar D E 0 = 0 or E 0 C Ar, because E 0 is 

a closed geodesic path and Ar is totally s-convex. Therefore, the distance to 8NSA 

is constant on E 0 . Let r 0 = d ( £ 0 , 8NSA), then E 0 C Ar°, because E 0 intersects A. 

We claim that in fact Ar° = Eo. Since Ar° is connected, we prove that Ar° = Eo 

by showing that there are no points in Ar° — Eo in a neighborhood of Eo. Seeking 

a contradiction we suppose that there is a point y G Ar° — E in a sufficiently small 

neighborhood of Eo- Then, by Lemma 4.2.5 there is a disc D2(x15) C Ar° of radius 

S > 0, centered at a point x G Eo and transverse to E. The convex hull of EoU-D2(x, 5) 

gives an open neighborhood of x in A r ° , contradicting the fact that d(x, 8NSA) = r$. 

This proves that Ar° = E 0 . It follows that Ar = 0 for r > r 0 , and E 0 C Ar for 

r < r0. 

When E 0 = M, consider r 0 = sup{d(x, 8NSA) \ x G Eo fl A}. If ro = 00 then there 

is nothing to prove, hence we can assume ro < 00. The intersection Ar° Pi Eo is either 

a point or a segment in E 0 . If it is a segment, the argument above for the closed case 
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shows that Ar° n E 0 = Ar°. If the intersection is a point then dim(^4 r°) = 0 or 2. In 
any case dim^T 0 < dim A. Thus Ar = 0 for r > r 0 , and Ar fl E 0 ̂  0 for r < ro-

This finishes the proofs of Lemmas 4.3.2 and 4.3.3. • 

We fix a value t > 0 and we set A = At, where At is defined as in Lemma 4.3.2. 
The subset A c E is compact totally s-convex and dim A = 3. In particular 8NS A = 
8A^0. 

For r > 0, we consider 

Ar = {x G A I d(X, d i v s ^ ) > r} and ^ M A X = H { ^ R I Ar ^ 0 } . 

If Ar ^ 0 , then A r is totally s-convex by Lemma 4.2.11. Let ro = max{d(x, 8NSA) | 
x G A}, then A m a x = A r ° = {x G A \ d(x,8NSA) = r0}. By Lemma 4.2.11, every 
geodesic in A™* is perpendicular to a geodesic minimizing the distance to 8NSA, 
hence d i m j 4 m a x < dirndl = 3. 

We set = A m a x . If 8NSA(1) = 0 or dim A(l) = 0, then we take S = 
Otherwise, we construct A(2) = ^ 4 ( l ) m a x and so on. Since dim^4(i 4-1) < dim^4(i), 
this process stops and we obtain S = A(i) for either i = 1, 2 or 3. Thus S is a 
compact totally s-convex subset with 8NSS = 0 and dim S < 3. 

Next we prove that E is isometric to the normal cone fibre bundle of S. The key 
point of the proof is the following lemma: 

Lemma 4.3.4. — Each point of E — S has a unique minimizing geodesic path to S. 
Moreover for singular points, this path is contained in E. 

Proof — We consider the following subset of E — S 

X — $ x E E S X ^ a S more tnan one minimizing path to 5, or 1 
\ x G E has a minimizing path to S not contained in E J 

Claim 4.3.5. — X is a closed subset of E — S and d(X, S) > 0. 

Proof of the claim. — By Lemma 3.1.4, each point has a finite number of minimizing 
paths to the totally s-convex submanifold S. Moreover, given a point x G E — 5, 
in a sufficiently small neighborhood of x the minimizing paths to S are obtained by 
perturbation of those of x. It follows that the property of having a unique minimizing 
path to 5, contained in E for singular points, is an open property in E — S, and thus 
X C E - S is closed. 

Since S is compact, totally s-geodesic and 8NS(S) = 0 , by Proposition 4.2.9 5 has 
a metric tubular neighborhood. Thus d(X, S) > 0. • 

We come back to the proof of Lemma 4.3.4. We want to prove X = 0 . Seeking a 
contradiction, we assume 1 ^ 0 . 

Let XQ G X be such that d(xo, S) = d(X, S). Either XQ has two minimizing paths 
to S or xo G E has a minimizing path to S not in E. 
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We assume first that there are two minimizing paths 71 and 72 from xo to S. If 

at xo the angle /(71,72) < 7r, then 71 and 72 can be deformed to shorter paths, with 

common origin, that minimize the distance to S, contradicting the definition of xo-

Therefore /(71,72) = TT and 7 f 1 *72 is a geodesic with end-points in 5, contradicting 

the fact that S is totally s-geodesic. 

Now we assume that xo G £ has a minimizing path 7 to S not contained in E. If at 

xo the angle / (7 , E) < 7r/2, then we can perturb 7 to a shorter path, not contained 

in E and minimizing the distance of a point in E to S. This contradicts the definition 

of xo, hence we can assume that the angle / (7 , E) = 7r /2. We remark that the point 

xo is not silvered, otherwise x 0 G 5, because 7 _ 1 * 7 would be a s-geodesic path with 

end-points in 5. By construction there exists a totally s-convex subset A C E such 

that S C int(A) and xo G 8NSA (this is one of the sets constructed in Lemmas 4.3.2 

and 4.3.3, i.e. A = At for some t > 0 or A = A(i)r for some r > 0 and i = 1, 

2 or 3). Since the angle / (7 , E) = 7r /2, Proposition 4.2.10 says that 7 is tangent 

to the boundary of a supporting half-space for A at the point x. In particular 7 

does not go to the interior of A. This contradicts the fact that S C int(A), because 

d(S,dNSA)>0. 

This finishes the proof of Lemma 4.3.4. • 

We have shown that every point in E — S has a unique minimizing path to 5, and 

that for singular points this path is contained in E. By Proposition 4.2.9, since S is 

compact, totally s-convex and 8NS(S) = 0, for some e > 0 the tubular neighborhood 

jV£(S) is isometric to the normal cone fibre bundle of S. The fact that every point in 

E — S has a unique minimizing geodesic to S implies that the radius e of the tubular 

neighborhood can be taken arbitrarily large, and thus E is isometric to the normal 

cone fibre bundle of S. • 

4.4. Proof of the local soul theorem. 

Proof. — Seeking a contradiction, we assume that there exist some so > 0 and some 

Do > 1 such that for every 5 > 0 and every R > Do there are a hyperbolic orientable 

cone 3-manifold CS,R with cone angles in [u;,7r] and a point x G CS,R with inj(x) < 6 

that do not verify the statement of the local soul theorem with parameters £0? ^ 0 

and R. By taking 6 = 1/n and R = n, we obtain a sequence of pointed hyperbolic 

orientable cone 3-manifolds ( C n , x n ) n G N such that inj(x n) < 1/n and xn does not 

verify the local soul theorem with parameters e$, Do and R = n. 

We apply the compactness theorem (Chapter 3) to the sequence of rescaled pointed 

cone 3-manifolds ( C n , ^ n ) n e N = ( i n j ^ n ) C n , x n ) n € N . Then a subsequence of ( C n , x n ) 

converges to a pointed Euclidean orientable cone 3-manifold (Coo?#00)• 

If the limit Coo is compact, then the geometric convergence implies that for some 

integer no there exists a (1 + £o)-bilipschitz homeomorphism / : C o o —> CNO. We can 
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also choose no such that 

no > diam(Coo). 

Then the rescaled Euclidean cone 3-manifold E = inj(a:no)Coo is (1 -f £o)-bilipschitz 

homeomorphic to Cno and we have 

diam(E') < n 0 i n j (x n o ) = R inj(a; n o). 

Hence xno satisfies the statement of the local soul theorem in the compact case and 

we get a contradiction. 

If the limit Coo is not compact, then by the soul theorem (Theorem 4.1.4), has 

a soul 5oo and is the normal cone bundle of S^. Since inj(xoo) < 1, the soul S^ has 

dimension 1 or 2. We choose a real number satisfying 

ôo > A ) max (diam(500),d(x00,S'oo) + (1 + £ 0)£o, l ) . 

For n 0 sufficiently large, the geometric convergence implies the existence of a (1 + £o)-

bilipschitz embedding g: J\fVoo (Soo) —• Cn0 such that d(^(xOQ), xno) < So and no > ôo-
The image U = ^ ( A / ^ (#oo)) is an open neighborhood of xno, because 

d(dU,g(Xoo)) > 
1 

1 + £n 

(^00 - ^00,^00)) > DD£0 > 

> 1 
l + £ 0 

(^00 - ^00,^00)DDB) > £0 > d(g(xOddQ),xriQ). 

As in the compact case, we consider the rescaled 3-manifold E = in j (x n o ) Coo with 

soul S = inj(x n o ) SOQ. By taking v = inj(x n o ) v^, g~l induces a (1 + £o)-bilipschitz 

homeomorphism f :U —> A/^(5). Moreover, the constants have been chosen so that 

v < no inj (xno) < 1 and 

max(inj(a; n o),d(/(a; n o),5),diain(5)) < V/DQ. 

Thus xno verifies the statement of the local soul theorem in the non-compact case and 

we obtain a contradiction again. This finishes the proof of the local soul theorem. • 

Corollary 4.4.1. — Let (Cn)ne^ be a sequence of hyperbolic orientable cone 3-manifolds 

such that sup{inj(x) | x € Cn} converges to zero when n —• 00. Then for every e > 0 

and D > 1, 

- either there exists no = no(e,D) such that for n > no the local soul theorem 

with parameters e, D applies to every point of Cn and the local models are non-

compact; 

- or, after rescaling, a subsequence of ( C n ) n E N converges to a closed Euclidean 

cone 3-manifold. 

Proof. — Since the supremum on Cn of the injectivity radius goes to zero, there 

exists an integer no > 0 such that, for n > no, the local soul theorem applies to 

every point of Cn with compact or non-compact models. We assume the existence of 

a sequence of points (xk)keN such that Xk G C n f c , the local model of Xk is compact, 

A S T É R I S Q U E 272 



4.5. LOCAL SOUL THEOREM FOR CONE 3-MANIFOLDS WITH BOUNDARY 7 7 

and TIK —• oo as k —>• OC. In particular, for every k G N there exists a closed Euclidean 

cone 3-manifold Ek and a (1 + £)-bilipschitz homeomorphism fk'-tEk —> C n f c such that 

diam(£fc) < R inj(xfc). Therefore, 

d i a m ( C N J < (1 + e) diam(jEfc) < (1 + e)R inj(x f c). 

Hence, the diameter of the rescaled cone 3-manifold Cnk = i n t t ^ X k ^ n k is uniformly 

bounded above. By the compactness theorem (Chapter 3) (CNK,XNK)KEN has a sub­

sequence converging to a pointed Euclidean cone 3-manifold (E^x^). Moreover, the 

limit E is compact, because the diameter of Cnk has a uniform upper bound. • 

4.5. Local soul theorem for cone 3-manifolds with boundary 

By using the compactness theorem for cone 3-manifolds with boundary, the proof 

in the previous section leads to the following generalization of the local soul theorem. 

Theorem 4.5.1 (Local Soul Theorem for cone 3-manifolds with boundary) 

Given UJ G (0 ,7r), e > 0 and D > 1 there exist 

5 = 5(UJ,E,D) > 0 and R = R(u,e,D) > D > 1 

such that the following holds. Let C be an oriented hyperbolic cone 6-manifold, possibly 

with boundary, with cone angles in [UJ,TT]. If x G C satisfies inj(x) < S, then: 

- either C is (1 + e)-bilipchitz homeomorphic to a compact Euclidean cone 3-man­

ifold E, possibly with boundary, of diameter diam(E') < jRttinj(x); 

- or there exists 0 < v < 1 (depending on x) such that x has an open neighborhood 

UX C C which is (1 + e)-bilipschitz homeomorphic to one of the following: 

a) The normal cone fibre bundle J\FV(S), of radius v, of the soul S of a non-compact 

orientable Euclidean cone 3-manifold with cone angles in [CJ,7T], where E is in the 

list in the local soul theorem, 

b) The quotient of MV(S) by an isometric involution r:J\FV(S) —> MU(S) whose fixed 

point set is two dimensional and orthogonal to the singular locus. 

Moreover the (1 + e)-bilipschitz homeomorphism f : UX —> MV(S) in case a) and 

f :UX —» JVV(S)/T in case b) satisfies the inequality 

max (inifx), d( fix), S), diam(S)) < vID. 

The proof is completely analogous to the case without boundary and we just make 

some comments. Recall that the proof is by contradiction, and that we find a rescaled 

pointed sequence 

(C n , £ n ) n € N — 
1 

inj(x n) 
injtt(xn 

nGN 

that we may assume to converge to a pointed Euclidean cone 3-manifold (Coo,£oo)> 

possibly with totally geodesic boundary. When Coo is compact then the discussion is 

the same as before. When Coo is non compact, then we distinguish two cases, a) and 
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b), according to whether Coo has boundary or not. In case a), if Coo has no boundary, 
then the same proof as before applies. In case b), if Coo has nonempty boundary, then 
the double DCoo is a Euclidean cone 3-manifold with finite injectivity radius, which 
is one in the list in case a). Let r: .DCoo - » DC^ be the reflection with respect to 
<9Coo. All we have to prove is that we may choose the soul Soo to be invariant by 
r (Lemma 4.5.2 below). Once this choice of soul is made, then it is clear that any 
metric tubular neighborhood of the soul is r-invariant, and the proof of the local soul 
theorem applies without further change. 

Lemma 4.5.2. — Let E be a non compact Euclidean cone 3-manifold with totally 
geodesic boundary, finite injectivity radius and cone angles < n. There is a choice of 
a soul S of DE so that if r : DE —> DE is the reflection with respect to dE, then 

T(S) = S. 

Proof. — If the soul S of DE is unique, then the lemma is clear because r is an 
isometry. If the soul is not unique, then DE is isometric to a product S x R d , with 
d — 3 — dim S. Since r is an isometry, it has to preserve the product structure. We 
look at the restriction r|^d, which may be trivial or not. When r | R d is trivial, then 
any choice of soul is r invariant. Finally, when r\Rd is not trivial, it has fixed points, 
because it is an isometric involution of R d . In this last case it suffices to choose S x {p} 
for some p G Rd fixed by r\Rd. • 
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CHAPTER 5 

SEQUENCES 
OF CLOSED HYPERBOLIC CONE 3-MANIFOLDS 

WITH CONE ANGLES LESS THAN Π 

This chapter is devoted to the proof of the following theorem. 

Theorem A. — Let (Cn)nen be a sequence of closed orientable hyperbolic cone 3-
manifolds with fixed topological type (C, E) such that the cone angles increase and 
are contained in [u)o,u)i], with 0 < uo < w\ < TT- Then there exists a subsequence 
(Cnk)keN such that one of the following occurs: 

1) The sequence (Cnk)keN converges geometrically to a hyperbolic cone 3-manifold 
with topological type (C, E) whose cone angles are the limit of the cone angles of 
CUk. 

2) For every k, CUk contains an embedded 2-sphere S%k C CUk that intersects E in 
three points, and the sum of the three cone angles at S2

k fl E converges to 2ir. 
3) There is a sequence of positive reals Xk approaching 0 such that the subsequence 

of rescaled cone 3-manifolds (X^1Cnk)keN converges geometrically to a Euclidean 
cone 3-manifold of topological type (C, E) and whose cone angles are the limit of 
the cone angles of Cnk. 

The proof of Theorem A splits into two cases, according to whether the sequence 
(Cn)neN collapses or not. 

Definition 5.0J. — We say that a sequence (C n) n ( EN of cone 3-manifolds collapses if 
the sequence (sup{inj(x) | x e C n}) n ( EN goes to zero. 

Remark 5.0.2. — In the last section §5.5 we strengthen Theorem A by showing that 
in cases 1) and 2) the sequence (Cn)n < EN does not collapse. Consequences of this 
strengthened version of Theorem A are the following Margulis'types results: 

Proposition 1. — Given 0 < UJQ < uj\ < TT, there exists a positive constant So = 
5o(uo,wi) > 0 such that every oriented closed hyperbolic cone 3-manifold with cone 
angles in [CJQJ Î] and diameter > 1 contains a point x with inj(x) > ¿ 0 > 0. 
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Stronger thickness results, for general hyperbolic cone 3-manifolds (not assuming 
any more the singular locus to be a link) can be found in [BLP2]). 

For cone angles bounded away 27r/3, using Hamilton's theorem (cf. [Zh2, Thm. 3.2]) 
we can get ride of the lower bound on the diameter: 

Proposition!. — Given 0 < UJO < o>i < 2ix/3, there exists a positive constant 8\ = 
8i(wo,wi) > 0 such that every oriented closed hyperbolic cone 3-manifold with cone 
angles in [c^o^il contains a point x with m\(x) > <5I > 0. 

5.1. The non-collapsing case 

The following proposition (see [Zhl], [SOK] and [Hoi]) proves Theorem A when 
the sequence (Cn)ne^ does not collapse. 

Proposition 5.1.1. — Let ( C n ) n G N be a sequence of hyperbolic cone 3-manifolds satis­
fying the hypothesis of Theorem A. If the sequence ( C n ) n € ^ does not collapse, then 
there is a subsequence (Cnk)keN that verifies assertion 1) or 2) of Theorem A. 

Proof — Since the sequence Cn does not collapse, after passing to a subsequence 
if necessary, there is a positive real number a > 0 and, for every n £ N, a point 
Xn £ Cn such that inj(x n) > a. Thus the sequence ( C n , xn)ne^ is contained in 
C[o;o,u;i],a> the space of pointed cone 3-manifolds ( C , x) with constant curvature in 
[—1,0], cone angles in [CJ0,CT;i], and such that inj(x) > a > 0. By the compactness 
theorem (Chapter 3), the sequence ( C n , X n ) n e N has a convergent subsequence, which 
we denote again by ( C n , xn)ne^. Hence, we can assume that the sequence ( C n , x n ) n e N 

converges geometrically to a pointed hyperbolic orientable cone 3-manifold ( C o o , # o o ) , 
which may be compact or not. 

If the limit cone 3-manifold Coo is compact, then the geometric convergence implies 
that Coo has the same topological type ( C , E ) as the cone 3-manifolds of the sequence 
C n . Moreover the cone angles of Coo are the limit of the cone angles of C n . This 
shows that in this case the assertion 1) of Theorem A holds. If the limit cone 3-
manifold is not compact, then the next proposition shows that we get the assertion 2) 
of Theorem A. 

Proposition 5.1.2. — / / the limit cone 3-manifold Coo is not compact, then for n suf­
ficiently large, Cn contains an embedded 2-sphere Sn C Cn that intersects E in three 
points, and the sum of the three cone angles at 5 N D E converges to 2TT. 

We start with the following lemma. 

Lemma 5.1.3. — The limit cone 3-manifold Coo has finite volume. 

Proof. — Since vol(Coo) = lim vol ( Z ? ( x o o 5 ^ ) ) 5 it suffices to bound vol (B(xociR)) 
independently of R. From the geometric convergence, for every R > 0 there is n 0 
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so that, for n > n 0 , there exists a (1 + £n)-bilipschitz embedding fn : B(xOQ1R) —> 

(Cn,xn), with en —• 0. Hence, for R > 0 and n > n 0 , vol(B(x00,R)) < (1 + 

en)
3vol(Cn), and we get the bound vol(B(xoo,R)) < 2 3 v o l ( C n ) . According to 

Schlafli's formula for cone 3-manifolds (cf. [Hoi] or [Po2]), since the cone angles of 

the 3-manifolds Cn increase, the sequence ( v o l ( C n ) ) n ( E N decreases, hence it is bounded 

above. This fact follows from [Po2, Prop. 4.1], since the sequence (pn) of holonomy 

representations of the cone 3-manifolds Cn belongs to a piecewise analytical path in 

the variety of representations (by Remark 2.2.7). • 

Remark 5.1.4. — The use of Schlafli's formula is justified by the fact that our sequence 

belongs to a one parameter family of cone 3-manifolds. In the case where we apply 

Theorem A, it is clear from Chapter 2, § 2.2 and § 2.3. In general, it is still true because 

of Hodgson and Kerckhoff's local rigidity theorem [HK] and Kojima's deformation 

theorem [Koj]. 

Proposition 5.1.2 follows from the next one. 

Proposition 5.1.5. — / / the limit cone 3-manifold Coo is not compact, then its singular 

set Eoo has a non-compact component. 

Proof of Proposition 5.1.2 from Proposition 5.1.5. —From 5.1.5, there is a connected 

component E ^ of Eoo which is not compact. Since vol(Coo) is finite by Lemma 5.1.3, 

the cone-injectivity radius along E ^ is not bounded away from zero. 

By the local soul theorem (Chapter 4), there is a point y e E ^ having a neigh­

borhood (1 + £)-bilipschitz homeomorphic to a product 5 2(a,/3,7) x (—z/, z/), where 

v > 0 and S2(a, /3,7) is a two-dimensional Euclidean cone 3-manifold with underlying 

space the sphere S2 and singular set three cone points with singular angles a, ¡3 and 

7 such that a + /3 + 7 = 2-ir. 

Since ( C n , x n ) converges geometrically to ( C o o , # 0 0 ) , there is an (1 + e n)-bilip-

schitz embedding fn : S2(a,P,ry) x { 0 } —> C n , with l im£ n = 0. The image S2 = 

/ n (5 2 (a,/3,7)) is a 2-sphere embedded in C n that intersects the singular set in three 

points and the sum of the three cone angles an + (3n + 7 n at S2

k Pi E converges to 2TT. 

This proves Proposition 5.1.2. • 

The remaining of this section is devoted to the proof of Proposition 5.1.5. 

Proof of Proposition 5.1.5. — Seeking a contradiction, we suppose that the limit cone 

3-manifold Coo is not compact, but that all the components of Eoo are compact. We 

remark first that the number of compact components of Eoo cannot be bigger than the 

number of compact components of E n = E , because geometric convergence implies 

that, for every compact subset A c C o o , there is an embedding fn : A —> C n , with 

fn(A D E o o ) = fn(A) fl E n . In particular Eoo must be compact. Next we use the 

following lemma of [Koj] (see also [Zhl]). 

SOCIÉTÉ M A T H É M A T I Q U E DE F R A N C E 2001 



8 2 CHAPTER 5. SEQUENCES OF CLOSED HYPERBOLIC CONE 3-MANIFOLDS 

Lemma 5.1.6. — Let Coo be an orientable hyperbolic cone 3-manifold of finite volume 

whose singular set Eoo is compact. Then Coo — Eoo admits a complete hyperbolic 

structure of finite volume. 

Proof. — Since Eoo is compact it is a finite collection of disjoint circles. The proof 

consists in deforming the metric in A /" e (Eoo) — E o o , where A / " £ (Eoo) is a tubular neigh­

borhood of radius e > 0, so that C ^ - Eoo admits a complete metric of (non-constant) 

sectional curvature K < — a2 < 0. With this complete metric Coo — Eoo has finite 

volume, therefore by [Ebe, Thm. 3.1] it has only finitely many ends and each end is 

parabolic. In particular Coo — Eoo is the interior of a compact manifold with toral 

boundary. Since strictly negative curvature forbids essential spheres and tori as well 

as Seifert fibrations, Thurston's hyperbolization theorem (for Haken manifolds) pro­

vides a complete hyperbolic structure on Coo — Eoo- See [Koj] for the details of the 

deformation. • 

Remark 5.1.7. — If Eoo is compact, then the ends of Coo are cusps [Ebe, Thm. 3.1]. 

In particular the ends are topologically T2 x [0, oo). Moreover, if poo • /7ri(C00 — E o o ) 

PSZ/2(C) is the holonomy of C o o , then the restriction of poo to 7ri ( T 2 X { 0 } ) is parabolic 

and faithful. This is a consequence of the fact that, in the proof of Lemma 5.1.6, the 

metric has not been changed on the ends. 

Let iVoo C Coo — Eoo be a compact core containing the base point XQO- If Eoo is 

compact, then the boundary c W o o is a collection of tori T i , . . . , Tv and: 

Coo Eoo : iVoo U 
V 

I=L 

Ti x [0,oo). 

We set X — C—A/*(E) = Cn— A / * ( E n ) , where TV denotes an open tubular neighborhood. 

Prom the geometric convergence (for n sufficiently large) there is an (l+£ n)-bilipschitz 

embedding fn : —• C n , with en —• 0, such that 

Nn = / n ( i V o o ) C C n - A / " ( E n ) * X. 

Claim 5.1.8. — Forn sufficiently large, every connected component of X — mt(Nn) is 

either a solid torus S1 x D2 or a product T2 x [0,1]. 

Proof. — First we show that X — int(JVn) is irreducible for n sufficiently large. Oth­

erwise, after passing to a subsequence, we can assume that X — int(iVn) is reducible 

for every n. This implies that there is a ball Bn C X such that 7Vn C Bn, because 

X is irreducible. Let pn : iri(X,xn) —> PSL2(C) and poo • TTI(NOO,#OO) _• PSL2(C) 

denote the holonomy representations of Cn and Coo respectively. The geometric con­

vergence implies the algebraic convergence of the holonomies (Proposition 3.5.4). This 

means that for every 7 G ^(ATCXMXOO), Pn(fn*(l)) converges to Poo(7)« Since Nn is 

contained in a ball, fn*{l) = 1, so Pooil) — 1 for every 7 G ^ ( A T o c X o o ) - Since the 
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holonomy representation of Co© is non-trivial, we get a contradiction. This proves the 

irreducibility of X — int(7Vn). 

Since X — int(iVn) is irreducible and dNn is a collection of tori, the claim follows 

easily from the fact that X is irreducible and atoroidal, by Lemma 5.1.6. • 

In order to get a contradiction with the hypothesis that Eoo is compact we need 

in addition the following claim. 

Claim 5.1.9. — Forn sufficiently large, at least one component X — mt(Nn) is a solid 

torus. 

Proof. — We assume that the claim is false and look for a contradiction. Thus, after 

passing to a subsequence if necessary, we can assume that all the components of dNn 

are parallel to the boundary of dX\ this means that fn : —» X is a homotopy 

equivalence. 

If T C c W o o is a component corresponding to an end of C o o , then the 

image POO(TTI(T, #OO)) is a parabolic subgroup of PSL2(C) by Remark 5.1.7. 

Furthermore, since Cn converges geometrically to C o o , for every 7 G 7Ti(T, #OO), 

Poo(7) = l i m Pn{fn*(l)). 

Since X has a complete hyperbolic structure, by Mostow's rigidity theorem [Mos] 

and Waldhausen's theorem [Wal] the group 7r 0(Diff(X)) is finite (see also [Joh]). 

Hence, after passing to a subsequence, we can choose 7 G 7Ti(T, #OO) such that, for 

every n , fn*(l) is conjugate to a meridian //0 of a fixed component E o of E . Since 

/¿0 is elliptic, trace(p n/ n*(7)) = ±2 cos(o; n/2), where a n G [^0,^1] is the cone angle 

of the manifold Cn at the component E o . Since 0 < UJQ < u\ < TT the sequence 

i trace(p n(/ n*(7)))| is bounded away from 2. As poo(l) is parabolic, | trace(poo(7))| = 

2, and we obtain a contradiction with the convergence of p n(/n*(7)) to Poo(7)- • 

From Claim 5.1.9, there is a collection 7 \ , . . . , Tq of components of c W o o such that, 

for n sufficiently large, fn(Ti) bounds a solid torus V£ C X , for i = 1 , . . . , q. 

Let C fn(Ti) be the boundary of a meridian disc of the solid torus for 

i = 1 , . . . , q. The inverse images = f~:(A^),..., A£ = / " 1 (A^) are the meridians 

of the Dehn fillings of 7V"oo = / n

_ 1 ( ^ n ) which give X. More precisely, 

inj(xninj(xn 

Фг,п i=l 

П 
S1* Dl 

where, for i = 1 , . . . , the gluing maps 0I,n • S1 x dD2 = Ti C cWco satisfy 

4>i,n{{*} x 0 D ? ) = \L 

We have now the following claim: 

SOCIÉTÉ M A T H É M A T I Q U E DE F R A N C E 2001 



8 4 CHAPTER 5. SEQUENCES OF CLOSED HYPERBOLIC CONE 3-MANIFOLDS 

Claim 5.1.10. — For every i = 1,..., q, the sequence of simple closed curves ( A ^ ) n > n o 

represents infinitely many distinct elements in Hi(Ti). Hence, after passing to a 

subsequence, the length of Xn goes to infinity with n. 

Proof. — If the claim is not true, then, after passing to a subsequence, we can assume 

that there is an index i G { 1 , 2 , . . . , ^ } such that the curves A^ are all homotopic to a 

fixed curve A% for every n. 

Since the sequence (Cn,xn) converges geometrically to ( C o o , # o o ) we have: 

Poo(A i)= lim p n ( / n . ( A i ) ) = ± I d 
n—>-oo 

because, for n sufficiently large, / n ( A * ) = A^ bounds a meridian disc of a solid torus 

V£ C X. Since Ti corresponds to a cusp of C o o , the holonomy Poo(A*) is not trivial 

and we get a contradiction. • 

We are now ready to contradict the hypothesis that Eoo l s compact. If Eoo is 

compact, then, by Claims 5.1.8, 5.1.9 and 5.1.10, we have, for i = 1,..., g, a se­

quence of curves {Xn)n>n0 in Ti C dN^ whose lengths go to infinity with n, and so 

that the 3-manifold obtained by Dehn filling with meridians { A * , . . . , A ^ } is always 

X = C — JVÇE). According to Thurston's hyperbolic Dehn filling theorem [Thul] (cf. 

Appendix B), almost all these Dehn fillings are hyperbolic. Furthermore, by Schlafli's 

formula, almost all of them have different hyperbolic volumes. Thus we get a contra­

diction, because our Dehn fillings give always the same compact 3-manifold X. This 

finishes the proof of Propositions 5.1.5 and 5.1.2. • 

5.2. The collapsing case 

The next proposition proves Theorem A when the sequence of hyperbolic cone 

3-manifolds CN collapses. 

Proposition 5.2.1. — Let ( C n ) n ( E N be a sequence of hyperbolic cone 3-manifolds with 

the same hypothesis as in Theorem A. If the sequence ( C n ) n 6 N collapses, then there 

is a subsequence (Cnk)keN that satisfies assertions 2) or 3) of Theorem A. 

The proof uses Gromov simplicial volume of a compact oriented 3-manifold M and 

the dual notion of real bounded cohomology of M, both introduced by M. Gromov 

[Gro] (see also [Iva]). 

The simplicial volume | |M|| of a compact, orientable, 3-manifold M , with boundary 

dM (possibly empty) is defined as follows: 

\M inf 

n 

i=l 

L2 

n 

7 = 1 
IIO~I is a cycle representing a fundamental 

class in H*(MidM:R), where a. : A 3 —> M 

is a singular simplex and A; G R, i = 1,..., n. 
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In particular, when C is a closed and orientable 3-manifold and E C C is a link, we 

define the simplicial volume \\C - E|| = \\C - Af(E)||, where JV(T) is an open tubular 

neighborhood of E in C. 

We are starting now to prove Proposition 5.2.1. 

Proof of Proposition 5.2.1. — We are going to show that if assertions 2) and 3) of 

Theorem A do not hold, then the simplicial volume \\C — E|| is zero, and this would 

contradict the hyperbolicity of C — E (Lemma 5.1.6). To show that the simplicial 

volume vanishes, we need for a subset of C the notion of abelianity in C — E. 

Definition 5.2.2. — We say that a subset U C C is abelian in C — E if the image 

U(TTI(U - E)) is an abelian subgroup of iri(C- E), where is the morphism induced 

by the inclusion i : (U - E) -> (C - E). 

Definition 5.2.3. — Let C be an orientable hyperbolic cone 3-manifold, x G C, and 

e,D > 0. A (s,D)-Margulisy neighborhood of abelian type of x is a neighborhood 

Ux (1 + £)-bilipschitz homeomorphic to the normal cone fibre bundle ^ ( 5 ) , of some 

radius v < 1 depending on x, of the soul S of one of the following non-compact 

orientable Euclidean cone 3-manifolds: 

T x E, S1 x E 2 , S 1 x (cone disc), 

where x denotes the metrically twisted product. Moreover, the (1 + £)-bilipschitz 

homeomorphism / : Ux —> Njy(S) satisfies: 

max(inj(x),<i(/(x),5),diam(5)) < vjD. 

Note that a (e, Z})-Margulis' neighborhood of abelian type is abelian in C—E. This 

definition is motivated by the following lemma, which is the first step in the proof of 

Proposition 5.2.1. 

Lemma 5.2.4. — Let (Cn)ne^ be a sequence of hyperbolic cone 3-manifolds which col­

lapses and satisfies the hypothesis of Theorem A. If both assertions 2) and 3) of The­

orem A fail to hold, then, for every s, D > 0, there exists UQ such that, for n > UQ, 

every x G Cn has a (e, D)-Margulis' neighborhood of abelian type. 

Proof of Lemma 5.2.4- — Since the sequence collapses, we can apply the local soul 

theorem (Chapter 4) and we show that the only possible local models are the three 

ones of abelian type. 

More precisely, since the supremum of the cone-injectivity radius converges to zero 

when n goes to infinity, given e,D > 0 there exists no such that for n > no the 

local soul theorem applies to every point x in Cn. Since we assume that assertion 3) 

of Theorem A does not hold, by Corollary 4.4.1, the compact models are excluded. 

Hence we have to consider only the non-compact local models. 

From the hypothesis that assertion 2) of theorem A does not hold, we get rid of 

the product model S2(a, [3,7) x K, where S 2 (a , /3,7) is a Euclidean cone 2-manifold 
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with underlying space the sphere S2 and singular set three points at which the sum 

of the three cone angles is a + /3 + 7 = 2n. 

Since the cone angles belong to [u;o,u;i], with 0 < UJQ < LUI < IT, the local models 

with a cone angle equal to TT cannot occur. 

Finally, the last model to be eliminated is the one corresponding to the normal 

bundle of the soul of a twisted fibre bundle over the Klein bottle K2xR. A neigh­

borhood Ux (1 + £)-bilipschitz homeomorphic to this model does not intersect the 

singular set E. If this local model occurred, there would be a Klein bottle K2 x { 0 } 

embedded in C — E. This would contradict the fact that C — E admits a complete 

hyperbolic structure (Lemma 5.1.6). • 

Since C — E admits a complete hyperbolic structure (Lemma 5.1.6), by Gromov 

[Gro] and Thurston [Thul, Ch. 6], \\C - E|| = vol(C - £ ) / v 3 , where v3 > 0 is a 

constant depending only on the dimension. In particular, \\C — E|| ^ 0. Then the 

proof of Proposition 5.2.1 follows from Lemma 5.2.4 and the next proposition: 

Proposition 5.2.5. — There exists a universal constant DQ > 0 such that, if C is an 

orientable closed hyperbolic cone 3-manifold where every point has a (e,D)-Margulis' 

neighborhood of abelian type, with e < 1/2 and D > DQ, then the simplicial volume 

IIC-Ell is zero. 

We prove this proposition in Sections 5.3 and 5.4. In order to show that \\C — E|| 
vanishes, we adapt a construction of Gromov [Gro, Sec. 3.4] to the relative case. This 
construction gives a covering of C by open sets that are abelian in C — E, and the 
dimension of the covering is 2 in C and 0 in E. In fact, Proposition 5.2.5 can be seen 
as a version of Gromov's isolation theorem [Gro, Sec. 3.4] for cone 3-manifolds. 

5.3. Coverings a la Gromov 

Definition 5.3.1. — For 77 > 0, a covering (V*)t€j of a hyperbolic cone 3-manifold C 

by open subsets is said to be a rj-covering a la Gromov if it satisfies: 

1) for every i € I, there exists a metric ball B(xi,ri) of radius n < 1 that contains 

2) if B{xi,ri) H B(xj,rj) ^ 0 , then 3/4 < n/rj < 4/3; 

3) for i ^ j , B(xun/A) H B(xj,rj/4) = 0 ; 

4) every x G C belongs to an open set Vi such that d(x, > N / 3 ; 

5) for every i G l , vol(V^) < Vri-

Remark 5.3.2. — Every 77-covering a la Gromov of a closed hyperbolic cone 3-manifold 

is finite, because properties 2) and 3) forbid accumulating sequences. 

Vi; 
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Our interest in 77-coverings á la Gromov comes from the following proposition. 

Our proof of this proposition follows closely Gromov's proof [Gro, Sec. 3.4], for the 

Riemannian (non-singular) case. 

Proposition 5.3.3. — There exists a universal constant rjo > 0 such that, for any closed 

hyperbolic cone 3-manifold C admitting a r¡-covering á la Gromov (V¿)¿ e j with 77 < 

r]o, there exists a continuous map from C to a simplicial 2-complex f : C —• 

satisfying: 

i) for every x G C that belongs to only one open set of the covering, f(x) is a vertex 

ofK\ 

ii) for every vertex v of K^2\ there is i(v) G / such that 

R ^ s t a r ^ ) ) C ( J Vj. 
VJR\VI(V)^0 

Proof of Proposition 5.3.3. — The proof consist of a sequence of lemmas, as in 

Gromov's proof [Gro, Sec. 3.4]. We recall that a covering has dimension n if every 

point belongs to at most n + 1 open sets of the covering. 

Lemma 5.3.4. — There is a universal integer N > 0 such that, for every closed hy­

perbolic cone 3-manifold C and for every rj > 0, the dimension of any rj-covering a la 

Gromov of C is at most N. 

Proof of Lemma 5.3.4. — We shall bound the number of balls B(xj,rj) that in­

tersect a given ball B(xi,ri). Prom property 2) of the definition of a 77-covering a la 

Gromov, if B(xj,rj) fl B{xi,ri) ^ 0 , then 3/4 < rj/ri < 4/3 and we have: 

B(xj,rj) C B(xi,ri + 2rj) C B(xiAn) 

and B(xi,4ri) C B(xj,5ri + rj) C B(xj,8rj). 

By using these inclusions and the fact that the balls (B(xj,rj/4))j€/ are pairwise 

disjoint, it follows that the number Ni of balls that intersect a given B{xi,ri) is 

bounded above by: 

Ni < sup 
volt B(xi An)) 

< sup 
inj(x 

vol(B(x,-,r,74l 

voliBixjM) 
vol(£(x 7 - ,r , /4)) 

B(xilri)nxcw>dddhh<ww;<xj,rj) 

Now, the uniform upper bound for Ni comes from Bishop-Gromov inequality (Propo­

sition 3.1.9), which shows that: 

voljBjXj,8r,)) < v - i (8r , ) 

vol(E(x ?-,r ? /4)) " v-ArJAY 

where v_i ( r ) = 7r(sinh(2r) — 2r) is the volume of the ball of radius r in the hyperbolic 

space M3_1. Since the function r i-> v_i(8r) /v_i(r /4) is continuous, it is bounded on 
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[0,1]. Hence, for any integer N bounding above this function on [0,1], we get Ni < N 
and the lemma is proved. • 

Given a ^-covering a la Gromov, its nerve K is a simplicial complex and, according 
to Lemma 5.3.4, the dimension of K is at most N, where TV is a uniform constant. 
Since we work with a compact cone 3-manifold C, every 77-covering a la Gromov is 
finite and its nerve K is compact. We canonically embed K mW, where p is the 
number of vertices of if, which equals the number of open sets of this covering. More 
precisely, every vertex of K corresponds to a vector of the form ( 0 , . . . , 1,..., 0) and 
the simplices of positive dimension are defined by linear extension. 

The proof of Proposition 5.3.3 goes as follows. We start in Lemma 5.3.5 by con­
structing a Lipschitz map from C to the nerve of the covering f : C —> K which 
satisfies properties i) and ii) of Proposition 5.3.3. Next, in Lemma 5.3.7, we de­
form the map / to a Lipschitz map / 3 : C —> where is the 3-skeleton of 
K. Finally, in Lemma 5.3.9, we prove that for 77 > 0 sufficiently small we can deform 
/ 3 : C —• to the 2-skeleton K^2\ keeping properties i) and ii) of Proposition 5.3.3. 
To prove the existence of such a universal constant r/0 > 0 we need uniform constants 
in the lemmas, the first example being the upper bound N of the dimension of K. 

Lemma 5.3.5. — Let C be a hyperbolic cone 3-manifold equipped with a n-covering a la 
Gromov (Vi)i<i<p. Let K = be the nerve of this covering, which has dimension 
k < N. Then there exists a Lipschitz map fk'.C—>K that verifies properties i) and 
ii) of Proposition 5.3.3 and in addition: 

iii) there exists a uniform constant depending only on the dimension k, such 
that, for 1 < i < p, 

V*,2 / e ( J Vj, inj(xn inj(xn \\fk(x)-fk(y)\\<^d(x,y). 
VJNVI^0 T% 

In this lemma, d denotes the hyperbolic distance on C and || || the Euclidean norm 
on M p , since we assume that K is canonically embedded in W. 

Proof of Lemma 5.3.5. — We choose a smooth function 0 : R —> [0,1] such that 
</){(-oo,0]) = 0, 0 ( [ l / 3 ,+oo) ) = 1, and |0 ' ( t ) | < 4 for every t G R. 

FIGURE 1. The function 0 
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For every i = 1,... ,p, let fa : V* —• R be the Lipschitz map such that Vx G V* 
fa(x) = (/>(d(x,dVi)/ri), where 5V* is the boundary of V*. Since fa vanishes on dVi, 
we extend it to the whole manifold just by taking zero outside VJ. Then we have the 
property: 

5.1) Vx, yeC, fa(x) fa(y)\ —d(x,y] 

because the map 

x 
d{x,dVi) 

0 
if x e Vi 
otherwise 

has Lipschitz constant 1. 
Let A p _ 1 = {(uu ..., up) G W I ui + h up = 1 and ^ > 0 for i = 1,... ,p} be 

the unit simplex of M p . We define the map fk : C —> A p - 1 to be: 

VXGCSS, xcv xvx 
1 

v 

i=l 
fa(x) 

(/>l(x),. . . ,0 p(x)). 

This map is well defined, since <M#) > 1 by property 4) of a 77-covering a la 
i=l 

Gromov. 
The nerve K of the covering embeds canonically in Rp as a subcomplex of A p - 1 . 

Namely, if V\,..., Vp are the open sets of the covering, then the vertex of K corre­
sponding to Vi is mapped to the z-th vertex ( 0 , . . . , 1,..., 0) of A p _ 1 . By construction 
the image fk(C) is contained in K C A p _ 1 and satisfies properties i) and ii) of Propo­
sition 5.3.3. 

The following claim shows that fk satisfies property iii). 

Claim 5.3.6. — For 1 < i < p and Vx, y G (J F7 we have: 
inj(xninj(xn 

a) | | (0i(#),. . . , 0 p (x)) - (0 i (2 / ) , . . . , ^ P (y) ) | | < 
8(fc + l) 

inj( 
inj(xn 

ft; HAW - fk(y)\\ < V2(k +1)11(^1 ( x ) , . . . , ^ ( x ) ) - (My), • • •,0p(y))ll-

Proof of Claim 5.3.6. — We first prove a). 
From inequality (5.1), for every i = 1,... ,p, and Vx, y G [j Vj, 

VjC\Vi^0 

| | (0 i (x ) , . . . ,0 p (x ) ) - (0 i (y ) , . . . ,0 p (y) ) | | 2 = 

V (*,(*)-0,(y)) 2 < 4 2 

inj(xninj(xn 

inj(xninj(xn 

1 
nj 

d(x,y)2. 
inj(xninj(xn 

VlnVJ^0 
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9 0 CHAPTER 5. SEQUENCES OF CLOSED HYPERBOLIC CONE 3-MANIFOLDS 

Prom Property 2) of a 77-covering à la Gromov: 

VJNVI^0 
VJNVI^0 

1 

rf 
k + l 

VJNVI^0 

_4_ 

3r, 

2 inj( 2 
f -

2 2(fc + 1 
2 

vfg 

where k is the dimension of the covering. Summarizing both inequalities we conclude 

the proof of assertion a). 

Next we prove b). We view fk as a composition fk. = a-n o (6i ¿ 0 , where 

gp(ui,...,up) = l 
U\-\ \-up 

(ui,...,Up). Since the dimension of the covering is fc, 

(0 i , . . . , <j)p) maps (J Vj into a (fc + l)2-dimensional subspace of M p (provided 

Vj(lVi^0 

that p > (fc + 1 ) 2 ) , which is obtained by putting (fe + 1 ) 2 coordinates equal to zero. 

In addition, > 1 for every X G C . Hence, by setting s = inf{p, (fc + l ) 2 } , it 

suffices to prove that the restricted map 

gs\'-{{ui,...,us)eRs\}2juj>VJNVI^0VJNVI^0l,ui>0} —+ Rs 

UI, ...,US 

1 

U\ -\ 1- US 

u u . . . , u s 

has Lipschitz constant y/2s, because V2s < V2(kf + 1). For u = ( « 1 , . . . , us) € K* 

satisfying V\. Ui > 1 and u; > 0, and for v G T„R S , we claim that: 

\\(Dugs) cvv\\ < V ^ H , 

where Dugs is the tangent map of gs at u. An easy computation shows that we have 

\\{D»ga)%-\\ < y/2. Therefore, if v = £ . Vi%-, then 

\\(Dugs)v\\ < V2J2 
\vi\ < л/2з|М|, 

i 
by Cauchy-Schwarz inequality. This ends the proof of Claim 5.3.6 and of Lemma 5.3.5. 

• 
Lemma 5.3.7. — With the hypothesis of Lemma 5.3.5, the Lipschitz map f^-.C^K 
can be deformed to a Lipschitz map / 3 : C —• into the 3-skeleton which satisfies 
properties i), ii) (from Proposition 5.3.3) and Hi) (from Lemma 5.3.5). 

Proof of Lemma 5.3.7. —We start with the map fkiC^K obtained in Lemma 5.3.5. 
If k = dim K = 3, we are done. Hence we assume that k > 3 and we prove the lemma 
by induction: we show that whenever we have a map fk : C —» satisfying 
properties i), ii) and iii) with k > 3, then we can deform it to a map into the (fc — 1)-
skeleton K^k~^ satisfying the same properties. The key point in the argument is the 
following technical claim. 

Claim 5.3.8. — Given a Lipschitz map f^xdd:Cd^d satisfying properties i), ii) and 
iii), there is a uniform constant Sk > 0 (which depends only on k) such that every 

A S T É R I S Q U E 272 



5.3. COVERINGS À LA GROMOV 9 1 

k-simplex Ak C K contains a point z at distance at least Sk from the image fk(C) 

and the boundary dAk. 

Proof Claim 5.3.8. — Let e > 0 be such that every point in Ak is at distance at most 

e > 0 from the union fk{C) U dAk. We are going to find a uniform constant Sk > 0 

such that e > 6k-

Let {z\,..., zs} C Ak be a maximal family of points such that d(zi, dAk) > 3s and 

||Zi — Zj\\ > 3e for i ^ j . There exists a constant c\ = c\(k) > 0 depending only on 

the dimension k such that, for e sufficiently small, we can find at least c\s~k points 

in this family. So we can assume s > c\e~k. 

By the hypothesis on e > 0, we can find a family of points { y i , . . . , ys} C fk(C)f)Ak 

such that \\zi — yi\\ < e, for i = 1,..., s. In particular, \\yi — yj\\ > e (if i ^ j) and 

d(yi,dAk) > e. Choose points { y l 5 . . . , y j C C such that fk(Vi) = y», i = 1,... ,s. 

From property i) of fk, the points {y 1,..., ys} belong to (J V3;, where the open 

set Vi(v) corresponds to a vertex v of Ak. So, from property iii) we have 

Vi^ j e { i , . . . , « } , 
VJNVI^0 VJD 

cvw 
llyi-toll > 

VJN 

bv<; 
vd 

This implies that the balls -B(y--, bn1 
2£fc 

,;x are pairwise disjoint and satisfy 

VJNVJN 
VJN 

2& 
s) C 

VJNVJN<<; 

edeC B(xeei{v)jAri(v)), 

where the last inclusion follows from property 2) of a 77-covering à la Gromov. We get 

the following upper bound for the number s of such balls: 

s < max 
J* = 1 , . . . , S 

fV0l(B(x i ( v),4r i ( t ,)))> 

vo l (£ (y„ 2£k 

xv< 
<fv max 

/vol(B(y 7-,8r i ( v))) 
VJNJ(B(y7-,8ri(v))) 

because B(xi^,4r^v)) C B(ypSri^)1 for j = l , . . . , s . From Bishop-Gromov in­

equality (Proposition 3.1.9) we obtain: 

s < 
^ v _ i ( 8 r i ( v ) ) 

(B(y7-,8ri(v))) 

where v_i(r) = 7r(sinh(2r) — 2r) is the volume of the ball of radius r in the hyperbolic 

3-space. There exists a constant a > 0 such that r3/a < v_i(r) < ar 3 Vr G [0,8]. 

Since r̂ -y) < 1, we obtain the upper bound: 

s < 
a2(Sr i ( v )rrrser k r 

(B(y7r-,8ri 

rc 2 £ , 

where C2 = 2l2a2£% > 0 depends only on the dimension k. By combining both 

inequalities c\S~k < s < C2S~3, we conclude that s > (ci/c2)1^k~3\ with k > 3. This 

finishes the proof of Claim 5.3.8. • 

SOCIÉTÉ M A T H É M A T I Q U E DE F R A N C E 2001 



9 2 CHAPTER 5. SEQUENCES OF CLOSED HYPERBOLIC CONE 3-MANIFOLDS 

End of the proof of Lemma 5.3.7. — We assume k > 3 and we want to construct 
/ f c _i : C K^k~x\ Let A f , . . . , A* be the A;-simplices of if. From Claim 5.3.8, for 
every fc-simplex Af C i f we can choose a point zi e A* so that d(zi, fk(C) U <9Af) > 
£fc. We consider the map Ri : K — {zi} —> K which is defined by the radial retraction 
of A* — {zi} onto dA1- and the identity on i f — Af. Since the points {zi,...,zq} do 
not belong to the image of fk, the composition 

fk-i = Ri o • • . o Rq o fk : C -+ i f 

is well defined, and the image fk-\{C) lies in the (k — l)-skeleton i f ( k ~ 1 \ Moreover, 
it follows from the construction that fk-i satisfies properties i) and ii) of Proposi­
tion 5.3.3, because the retractions Ri preserve the vertices and their stars. 

For i = 1,..., q, the retraction Ri : i f — {z^ —> i f is piecewise smooth. From 
the inequality d(zi, fk(C) U dAk) > it follows that the local Lipschitz constant of 
Ri o • •. o Rq is uniformly bounded on the image fk(C); moreover the bound depends 
only on the dimension because the constant Sk is uniform, depending only on the 
dimension k. Thus fk-i satisfies also property iii) of Lemma 5.3.5. • 

Next lemma completes the proof of Proposition 5.3.3. 

Lemma 5.3.9. — There exists a universal constant rjo > 0 such that, for rj < rjo and 
for every rj-covering a la Gromov of C, the map / 3 : C —> of Lemma 5.3.7 can 
be deformed to a continuous map / 2 : C —• K^ into the 2-skeleton which satisfies 
properties i) and ii) of Proposition 5.3.3. 

Proof of Lemma 5.3.9. — To deform / 3 to / 2 , it suffices to prove that in every 3-
simplex A 3 C K, there is a point z £ int(A 3) that does not belong to the image / 3 ( C ) . 
Then such a deformation is constructed by composing / 3 with all the radial retractions 
from A 3 — {z} to <9A3 as in Lemma 5.3.7. The map / 2 will satisfy properties i) and 
ii) of Proposition 5.3.3 by construction. Next claim shows that int(A 3) — / 3 ( C ) is 
non-empty whenever rj is less than a universal constant rjo > 0. This will conclude 
the proof of Lemma 5.3.9. 

Claim 5.3.10. — There exists a universal constant 770 > 0 such that, if C admits a 
rj-covering a la Gromov with rj < rjo, then for every 3-simplex A 3 C K^ 

v o l ( A 3 n / 3 ( C ) ) < vol(A 3). 

Proof of Claim 5.3.10. — Property ii) of the map / 3 : C —> K^ implies the following 
inequality for every 3-simplex A 3 C K^: 

v o l ( A 3 n / 3 ( C ) ) < ] T voi(/ 3(y;-)), 
V j n V I ( V ) # 0 

where V^v) is the open set corresponding to a vertex v of A 3 . The map / 3 is Lipschitz, 
and from property iii), its restriction to [j Vj has Lipschitz constant £3 /^(1 ; ) • 

VJNVI{V)^0 
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Hence, according to the formula giving a bound for the volume of the image of a 
Lipschitz map (see [Fed, Cor. 2.10.111), we get: 

V j n i ( v ) v v # 0 

vol fs(Vj) 
VjvvwWI(V)^0 

vol 6 3 

(B(y7-

Property 5 ) of a 77-covering a la Gromov asserts that vol(V^) < r/r3. Furthermore, 
from property 2) of these coverings, we have rj < fr^) whenever Vj D V^v) ^ 0. 
Thus we deduce the following inequalities: 

v o l ( A 3 n / 3 ( C ) ) < 

VjnVI(VVV)^0 
vol(/ 3(V5)) < V 

'4 

, 3 Ça 
3 

(AT + l ) 

where N is the universal upper bound of the dimension of the covering given by 
Lemma 5.3.4. Hence it suffices to take 770 < vol(A 3 ) /(( iV + 1)(|^3)3) to prove the 
claim. • 

5.4. From (e, JD)-Margulis' coverings of abelian type to 77-coverings 
a la Gromov 

The aim of this section is to prove Proposition 5.2.5. We recall the statement: 

Proposition 5.2.5. — There exists a universal constant Do > 0 such that, if C is an 
orientable closed hyperbolic cone 3-manifold where every point has a (e, D)-Margulis' 
neighborhood of abelian type with e < 1/2 and D > Do, then the simplicial volume 
I IC- Ell is zero. 

The proof follows from Proposition 5.3.3 and the following: 

Proposition 5.4.1. — There is a universal constant bo > 0 such that, if C is an 
orientable closed hyperbolic cone 3-manifold where each point x G C has a (e,D)-
Margulis' neighborhood of abelian type with e < 1/2 and D > 300, then C admits a 
n-covering a la Gromov with 77 < bo/D. 

Moreover, the open sets (Vi)iei of the rj-covering a la Gromov satisfy the following 
additional properties: 

6) there is a tubular neighborhood N(Y) o / S such that every component of N(Y) 
is contained in only one open set of the covering. 

7) \/i G I, N Vj is abelian in C — E. 
(B(y7-,8ri(v))) 

Proof of Proposition 5.2.5. — We choose Do = max(6o/^o, 300), where rjo > 0 is the 
universal constant of Proposition 5.3.3. From Propositions 5.3.3 and 5.4.1, since every 
point of C has a (e, Z))-neighborhood of abelian type, we can construct a continuous 
map from C to a 2-dimensional simplicial complex: f : C —* K2. Moreover properties 
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i) and ii) of Proposition 5.3.3 together with properties 6) and 7) of Proposition 5.4.1 
imply that / satisfies: 

i') there is an open tubular neighborhood Af(S) of E such that /( jV(Ei)) is a vertex 
of K2 for every component E* of E. 

if) for every vertex v of K2, / _ 1 ( s ta r (v) ) is abelian in C — E; 

Let C ( A i , . . . , Xq) denote the closed orientable 3-manifold obtained by gluing q 
solid tori to the boundary of the manifold C — JV(E), SO that the boundaries of the 
meridian discs are identified respectively to the simple closed curves A i , . . . , Xq in 
cW(E) . More precisely, 

C(X1,...,Xq) = (C-Af(E)) [ J IJS'xDl 
<t>l,...,<j>q 1=1 

where the gluing maps fa : cW(Ei) —• S1 x dD2 satisfy fa(Xi) = ( { * } x dD2), for 
i = l,...,q. 

Prom properties i') and ii'), the continuous map / : C —> K2 induces a map 
/ : C ( A i , . . . , Xq) —• If 2. Since abelianity is preserved by quotient, / (star(v)) is 
abelian in C ( A i , . . . , A g ) , for every vertex v of i f 2 . 

Since dim(if 2 ) = 2, the closed orientable 3-manifold C ( A i , . . . , A g ) admits an 
abelian covering of dimension 2 by the pull-back of the stars of the vertices of K2. 
The vanishing theorem for simplicial volume (cf. [Gro, Sec. 3.1] and [Iva]) shows that 
| |C (Ai , . . . , Xq)\\ = 0. This holds for every choice of simple closed curves on cW(E). 
Thus, from Thurston's hyperbolic Dehn filling theorem [Thul] (cf. Appendix B): 

| | C - E | | = lim | | C ( A 1 , . . . , A , ) | | = 0 . • 
Lenght (Ai) —> oo 

The remaining of this section is devoted to the proof of Proposition 5.4.1. 

Proof of Proposition 5.4-1- — Let C be an orientable closed hyperbolic cone 3-ma­
nifold so that every point x e C admits a (e, Z))-Margulis' neighborhood of abelian 
type, with e < 1/2 and D > 300. It means that x has a neighborhood Ux C C that 
is bilipschitz homeomorphic to the normal cone fibre bundle Ny{S), of some radius 
v < 1 depending on x, of the soul S of one of the following non-compact Euclidean 
cone 3-manifolds: T2 x K, S 1 x R 2 , 5 1 x (cone disc). Moreover, the (1 + £)-bilipschitz 
homeomorphism / :UX —> N„(S) satisfies: 

a) max (inj(x), d ( / (x ) , 5 ) , diam(S)) <v/D, 

(cf. local soul theorem, Chapter 4, and Lemma 5.2.4). 
For every point x G C, we define the abelianity radius ab(x) to be: 

ab(x) = sup{r > 0 | B(x, r) is abelian in C — E } . 
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By using the (l+£)-bilipschitz homeomorphism / :UX —• NV(S) and the upper bound 

a), we get: 

ab(x) > 
v 

1 + e ( 1 -
1 

D 
) > 

v 

2 
> 

D 
2 

inj(x). 

For every x G C we define r(x) = infi ab(x) 

8 i ) . Lemmas 5.4.2 and 5.4.3 give the 

first properties of the balls B(x,r(x)). 

Lemma 5.4.2. — Let x,y e C. If B(x,r(x)) fi B(y,r(y)) ^ 0, then 

b) 3/4 < r(x)/r(y) < 4/3; 

c) B(x,r(i))cB(y,4r(y)) . 

Proof. — Assume r(x) > r(y). Either r(y) = 1 or r(y) = ab(y)/8. If r(y) = 1, 

then r(x) = 1 and assertion b) is clear. If r(y) = ab(y)/8, by using the inclusion 

B(y,6r(x)) C B(x,Sr(x)) and the fact that Sr(x) < ab(x), it follows that B(y,6r(x)) 

is abelian in C — E. Hence r(x) < ab(y)/6 < 4r(y)/3 and b) is proved. Assertion c) 

follows easily from b) and the inclusion B(x, r(x)) C B(y, 2r(x) + r(y)). • 

Lemma 5.4.3. — Let E = E i U • • • U Y,q be the singular set of C. We choose a point 

Xi in each connected component E*. Then, we have the following properties: 

d) for i = 1,... ,q, if ¡1 > 0 is sufficiently small, then M^iT^i) C B(xi, ^ f ^ - ) , where 

jV)x(Ei ) is the tubular neighborhood of radius ¡1 around the connected component 

Ef/ 

e) B(xi,r(xi)) H B(xj,r(xj)) = 0, for i^j, ij e {!,...,</}. 

Proof. — Property d) follows from the hypothesis that Xi has a (e, JD)-Margulis' 

neighborhood of abelian type. Since Xi is singular, the local model is the normal 

cone fibre bundle NU(S), of radius v < 1, of the soul S = S1 x {cone point} of the 

Euclidean cone 3-manifold S 1 K (cone disc). 

Let / : UXi —> Af„(S) be the (1 4- £)-bilipschitz homeomorphism between [T .̂ and 

the local model, then D E = E* = f~1(S) = f~1{S1 x {cone point}). Since 

e < 1/2, it follows from the upper bound a) that diam(E^) < diam(5)(l + e) < 2%. 

Furthermore, since v < inf(l, 2 ab(x^)), rlxA = inf V< (B(y7-
8 

and D > 300 we get: 

diam(Ei) < 2 
v 

D 
< inf I 

, 2 

V 

4ab(xj) 
XVC < r(a?i)/9, 

Hence Ei c ̂ (^, 
CV< 

9 
By taking a < inf rr(xi) 

18 I z = 1,..., q} we obtain the 

inclusion A/)x(Ei) c B(xi, rlXi) 
4 

To show property e), we assume that there are i ^ j such that 

B(xi,r(xi)) H B(xj,r(xj)) ^ 0 

and we seek a contradiction. From property c) of Lemma 5.4.2, the fact that the 

balls intersect implies that B(xj,r(xj)) C B(xi,4r(xi)). Hence, by property d), 

E; U Hj C B(xi,4r(xi)), which is an abelian ball in C - E. This implies that the 
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two peripheral elements of TC\{C — E) represented by the meridians of E* and Ej 

commute. This contradicts the fact that C—E admits a complete hyperbolic structure 

(Lemma 5.1.6) • 

Construction of the n-covering a la Gromov. — First, we choose a point Xi on each 

connected component E* of E, iI e { 1 , . . . , q}. We fix the points { x i , . . . , xq} and we 

consider all the possible finite sequences of points { x i , . . . , xq,xq+i,..., x p } , starting 

with these fixed q points and having the property that 

(5.2) the balls B(xn, r(xn) 4 are pairwise disjoint. 

Note that a sequence satisfying (5.2) and Lemma 5.4.2 is necessarily finite because C 

is compact. The following lemma is due to Gromov [Gro, Sec. 3.4, Lemma B]: 

Lemma5.4.4. — Let x i , . . . , x p be a finite sequence in C as above, with the first 

fixed q points in the sinqular set. If it is maximal for property (5.2), then the balls 

B(xu 

2 
3 
\r(xi) 1B (%pi 1 

3 
r(xp)) cover C 

Proof. — Let x G C. By maximality, the ball B(x, r(x) ' 
4 

intersects B(XÌ, r(xj) > 
4 

for 

some i G { ! , . . . , » } . From property b) of Lemma 5.4.2, r(x) < 4 
3 \r(xi) and thus 

x G B(xi. r[Xi)-\-r[x) 4 C Bixi 2 
3 

(B(y7-,8ri(v))) 

Let 0 < ii < inf-rr(xi) 
18 

I i = 1,...,<?} so that JVU(EÌ) C B(xi, r(xi) 
4 , as in 

Lemma 5 .4 .3 d). Let X i , . . . , X p be a sequence as in Lemma 5 .4 .4 , we consider the 

covering (Vi)ien z>> defined by: 

(5.3) 
Vi = B(XÌ, r(xi)) for i = 1,..., q; 

Vi = B(xi,r(xi)) -AfJY.) for i = q + 1,... ,p. 

The following Lemma finishes the proof of Proposition 5.4.1. 

Lemma 5.4.5. — There is a universal constant bo > 0 such that the above covering 

(Vi)ze{i,...,p} defined by (5.3) is a rj-covering a la Gromov with r\ < bo/D and satisfies 

Properties 6) and 7) of Proposition 5.4-1-

Proof of Lemma 5.4-5. — We start by checking that the covering satisfies properties 

1) to 5 ) of a 77-covering a la Gromov. Property 1) follows from the construction by 

setting Ti = r(xi), for i = 1,... ,7?. Property 2) follows immediately from Lemma 5.4.2, 

and property 3 ) is the hypothesis 5.2. 

Claim 5.4.6. — The covering ( V ^ ) ^ ! , . . . ^ } satisfies property 4) of a rj-covering a la 

Gromov. That is, Vx G C there is an open set Vi such that x G Vi and d(x, dVi) > r{/3. 

Proof. — Let x G C. From Lemma 5.4.4, x G B(xi, |n) for some i = 1,... ,p. If 

i G {1 , . . - , # } (i.e. if Xi G E) or if A/*M(E) Pi B(x^ri) = 0 , then by construction ( 5 . 3 ) 

Vi = B(xi,ri) and we have d(x,dVi) > r ^ / 3 . 
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Thus we may assume that M^(T) n B(xi,ri) ^ 0 . Let j € { l , . . . , « ? } be an 

index so that A/^Ej) D B(xi,ri) ^ 0 ; we can also assume that d(x,Xj) > 
2 

3' 
\r_i. By 

construction Vi = B(xi,ri) — A/^E); hence it is enough to show that the distance of 

x to the component Af^Ej) is at least whenever A/^Ej) n B{xi,ri) ^ 0 . 

Since d(x,Ej) > d(x,Xj) — diam(Ej), d(x,Xj) > 2 

3 and diam(Ej) < rj/9 (by 
the proof of Lemma 5.4.3), we get d(x, E.) > 5 

9 BB Moreover, from property b) of 

Lemma 5.4.2, 4 
3 Tj > Ti, hence: 

d(x,Y>j) > / 4 
V9 + 

1 

9. 
12 > 

1 

3 'Ti + 
1 

9 X< 

By the choice of a < inf l 
L 18 ' I j = 1,..., q} we can conclude that d(x, A^(Ej)) > l 

3 
Hence d(x,dVi) > 1 

3 3 and the claim is proved. 

Property 5 ) of a 77-covering à la Gromov is given by the following claim: 

Claim 5.4.7. — There is a universal constant bo > 0 such that 

vol(Vi)<vo\(B(xuri)) < 
bo 
D 

rd  
115 fori (B(y7-,8ri(v))) 

Proof. — For i = l,...,p,Xi has a (e, 2})-MarguhV neighborhood of abelian type Ux 

which is (1 + £)-bilipschitz homeomorphic to the normal cone fibre bundle NU{S), of 

radius v < 1, of the soul S of one of the following non-compact Euclidean cone 3-

manifolds: T 2 x R, S1 K M 2, 5 1 ix (cone disc). The (1 + £)-bilipschitz homeomorphism 

/ : UXi —» J\f„(S) satisfies e < 1/2 and max(inj(#i), d(f(xi), 5 ) , diam(S)) < /y/Z). 

From these inequalities we deduce that ab(xi) > v/2\ hence > z^/16. 

From Bishop-Gromov inequality (Proposition 3.1.9) we get: 

vo\(B(xi,ri)) < vol [B(xi, v 
16 

\ v_i(r») 

V - l 16 

Let a > 0 be a constant so that t3/a < v-i(t) < at3 for every t £ [0,1]. Since v < 1 

and r* < 1, we get: 

vol(B(xi,n)) < vol ( B f c , ^ ) ) 2 1 2 a 2 
r 3 

z/3 

Since d(f(xi), S) < v/D < 1//300, we have the inclusion f{B{xu ^ ) ) C A/^(5). Thus: 

vol (B(xu ^ ) ) < (1 + e)3vol(K(S)) < 2 3 vol(A^(5)), 

because / is (1 + e)-bilipschitz with e < 1/2. 

By using the upper bound diam(5) < v/D and the fact that S is of dimension 1 

or 2, a simple computation of Euclidean volumes gives the upper bound: 

v o l ^ O S ) ) < 9 
7T 

D 
CV 

Thus: 

vo l (^ ) < vol(B(xi,n)) < 
bo 
D 

r3 where 60 = 2 1 6 7 r a 2 . 
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Property 6) of Proposition 5.4.1 follows immediately from property d) of Lemma 

5.4.3 and the construction of the covering. 

Finally, property 7) of Proposition 5.4.1 follows from property c) of Lemma 5.4.2, 

because 

Vi = l , . . . , p , ( J VjC | J B(xj,rj) C B(xi,Ari) 
VjnVi^0 VjnVi^0 

and by construction the ball B(xi, 4r^) is abelian in C — E. 

This finishes the proof of Proposition 5.4.1, and thus of Theorem A. • 

5.5. (e, £>)-Margulis' neighborhood of thick turnover type 

The main purpose of this section is to strengthen the statement of Theorem A by 

showing that in cases 1) and 2) the sequence ( C n ) n G N does not collapse. It is a direct 

consequence of Proposition 5.2.1 and Proposition 5.5.1 below, which shows that case 

2) of Theorem A cannot appear if the sequence ( C n ) n € N collapses. From the proof of 

Proposition 5.2.1, it suffices to show that in the non-compact collapse case (i.e. when 

case 3) of Theorem A fails to hold), then no (e, D)-MarguhV neighborhood with local 

model a thick turnover may appear. 

Proposition 5.5.1 holds true for closed orientable connected hyperbolic cone 3-

manifolds with cone angles < n. 

We use it twice: first at the end of this section, to prove two Margulis's type 

results for closed orientable hyperbolic cone 3-manifolds (Propositions 1 and 2), then 

also in Chapter 7, in the proof of the uniformization theorem for small 3-orbifolds 

(Theorem 2). 

Proposition 5.5.1. — Given UJ > 0, there is a constant D\ > 1 (depending only on UJ), 

such that if every point of a closed orientable connected hyperbolic cone 3-manifold C 

with cone angles in [<J,7T] admits a (s, D)-Margulis' neighborhood, with s < 1/2 and 

D > D\, then no point of C admits such a {e,D)-Margulis' neighborhood with local 

model a thick turnover S2(a, /3,7) x R, with a + /3 + 7 = 2TT. 

The following is the key lemma for the proof of Proposition 5.5.1. 

Lemma 5.5.2. — Given ou > 0, there is a constant c = C(UJ) such that if a point x of 

a connected hyperbolic cone 3-manifold C with cone angles in [a>,7r] admits a (e,D)-

Margulis' neighborhood with e < 1/2, D > 1 and a local model of type 5 2 ( a , / 3 , 7 ) x R 

(a + / 3 + 7 = 2TT), then, for some t e \—v/D,v/D], the preimage f~1(S2(a, / 3 , 7 ) x { t } ) 

is contained in the open ball B(x,c inj(x)), where f : Ux —• NV(S) is a (1 + e)-

bilipschitz homeomorphism. 
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Proof of Lemma 5.5.2. — To simplify the notation, we denote by S the Euclidean 

cone turnover 5 2 ( a , /3,7). Since d( / (x ) , S) < vjD, there exists some t £ [—v/D, v/D] 

suchthatx £ f~1(Sx{t}). Hence, to prove the inclusion f~1(Sx{t}) c B(x,c inj(x)), 

it suffices to prove the inequality d i a m ( / _ 1 ( 5 x {£})) < c inj(x). 

Since d i a m ( / _ 1 ( 5 x {£})) < § diam(5), we need only to show that: 

inj(x) > e diam(5), 

where the constant e = e{u) > 0 depends only on uo. Then we can take c = 3/2e. 

In order to prove the inequality inj(x) > ediam(5), for some constant e = e(uj) > 

0, we rescale the hyperbolic cone metric on C by 1/ diam(5). Let C = d i a ^ s ^ C 

be the rescaled cone 3-manifold with constant curvature K = — (diam(5)) 2 . Since 

diam(S) < v/D < 1, the (constant) curvature K of C belongs to [—1,0). Let inj(x) 

be the cone injectivity radius of the point x £ C. Then the proof of Lemma 5.5.2 

follows from the following claim: 

Claim 5.5.3. — There is a constant e = e(o>) > 0 such that inj(x) > e. 

Proof of Claim 5.5.3. — We denote by d the distance on the rescaled cone 3-manifold 

C = d i a i ^(g) C. Let y £ f~1(S x {t}) c C b e a singular point. Since d{x,y) < 2, by 

Proposition 3.5.2 (lower bound for the cone injectivity radius) we have only to show 

that inj(y) > e' for a constant e' = ef(uj) > 0 depending only on u. 

Because of the (1 + e)-bilipschitz homeomorphism / : Ux —• NV(S) and since y 

is a singular point, it is sufficient to get such a lower bound for the cone injectivity 

radius inj(/(?/)), for f(y) in d [ a ^ S ) ^ ( ^ ) ' ^ n addition, since the cone 3-manifold 

d i a m ^ - A / * ^ ) is isometric to the product 

1 
diam(S') S x 1 

diam(5) ' 
l_ 

' diam(S) S 

it is sufficient to get a lower bound for imlfiy)) in S = 1 
diam(5) s. 

The Euclidean cone turnover 5 is obtained by doubling a Euclidean triangle A 

along its boundary. The longest edge of A has length diam(A) > \ diam(5) = \ . 

Since the angles of A belong to [00/2, n/2], by elementary trigonometric formulas it 

follows that the two other edges of A admit a uniform lower bound e" depending only 

on the constant u. 

Since the point f(y) is a vertex of A, the open ball B(f(y),eff) is a standard 

singular ball in the Euclidean cone turnover S. Therefore the cone injectivity radius 

inj(/(y)) satisfies: inj(/(x)) > e"/2. This finishes the proof of Claim 5.5.3 and thus 

of Lemma 5.5.2. • 

The proof of Proposition 5.5.1 follows now readily from the following lemma: 

Lemma 5.5.4. — For OJ > 0, let c = c(uo) be the constant given by Lemma 5.5.2. Let 

C be a closed orientable connected hyperbolic cone 3-manifold with cone angles in 

[u;,7r]. / / every point of C admits a (e, D)-Margulis' neighborhood, with e < 1/2 and 
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D > D\ = max{l, 2c}, then no point ofC admits such a (e, D)-Margulis' neighborhood 

with local model S 2 (a , /?, 7 ) x R (a + /3 + 7 = 2TT). 

Proof of Lemma 5.5.4- — We fix the constants e < 1/2 and D > D\ = max{l, 2c}. 

Let A be the subset of points x G C admitting a (e, D)-MarguhV neighborhood with 

local model 5 2 ( a , /?, 7 ) x l (a + (3 + 7 = 27r). By hypothesis, A is an open subset of 

C. To show that A is a closed subset of C, let (x n )neN C A be a sequence of points 

that converges to a point x^ G C. Since the point x^ admits by hypothesis a (e, D)-

Margulis' neighborhood UXoo, for n sufficiently large UXoo is also a (e, Z})-Margulis' 

neighborhood for the point xn G A. Then the following claim shows that UXoo must 

have a local model of type 5 2 ( a , /3,7) x E (a + (3 + 7 = 27r). Hence belongs to A 

and A is a closed subset of C. 

Claim 5.5.5. — Every (e, D)-Margulis' neighborhood of a point x e A, with e < 1/2 

and D > D± = max{l,2c}, has local model of type S2(a,f3,^) x l a + / 3 + 7 = 2-K. 

Proof of Claim 5.5.5. — Let Ux be a (e, JD)-Margulis' neighborhood of x G A with 

e < 1/2 and D > Di = max{l, 2c}. Then there is a (l-he)-bilipschitz homeomorphism 

/ : Ux —• NV(S), where MV{S) is the normal cone fibre bundle, with radius z/ < 1, 

of the soul 5 of a non-compact orientable Euclidean cone 3-manifold. We claim that 

the soul S is a Euclidean cone turnover. 

By definition of a Margulis' neighborhood, we have the following inequality: 

max(inj(ar),d(/(a:),5),diain(5)) < v/D. 

This inequality and the inequality D > 2c imply that the open ball B(x, c inj(x)) 

is included in Ux, because c inj(x) < v/2 and e < 1/2. 

Since x e A, it admits also a (e, -D)-Margulis' neighborhood with local model of 

type S 2 (a , /? ,7) x E (a + ¡3 + 7 = 2-K). By Lemma 5.5.2 the open ball B{x, c inj(x)) 

contains the preimage f~1(S2(a,¡3,7) x {£}) , for some t G [—v/D, v/D]. Hence Ux 

contains a cone turnover which is (1 + e)-bilipschitz homeomorphic to a Euclidean 

cone turnover. A quick inspection of the possible local models given by the local soul 

theorem in Chapter 4 shows that the local model of Ux has to be of type 5 2 ( a / , /?', 7 ' ) x 

E with a' + /?' + 7 ' = 2TT. • 

Since the subset A is open and closed in the connected space C, either A is empty 

or A = C. The proof of Lemma 5.5.4 follows from the following claim: 

Claim 5.5.6. — The subset A cannot be equal to C. 

Proof of Claim 5.5.6. — Seeking a contradiction, we assume that A = C. Since C is 

compact, there is a finite covering { W i , W n } of C: 

C 

n 

<?. 

CV? 
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where Wi = f~l(Si x [-Ui/2D,Ui/2D]), ft : Ui -+ KI(Si) is a (1 + e)-bilipschitz 

homeomorphism and MVi{Si) is the normal cone fibre bundle, with radius vi < 1, 

over a Euclidean cone turnover Si = 5 2 (o^ , fa, 7i) with ai + PI + 7» = 27r. 

By the proof of Claim 5.5.5, if 

/ r ' O S x [-Vi/D,vi/SVVD])^f-1{SDDj x [DD-vGVj/D,vj/D])ï0, 

then, for some G [—Vj/D,Vj/D], fJX(Sj x {fy}) is embedded in Ui. Since [/* is 

homeomorphic to a product f~F1(Si)F x [a, 6], it follows that the essential non-separating 

spheres f~1(Si) and(B(y7-,8ri(v) are homotopic, hence isotopic in C by [Lau]. Therefore, 

by the connectedness of C, all the essential and non-separating spheres f~1(Si), i G 

{ l , . . . , n } , are parallel in C. Therefore C is homeomorphic to the product S2 x S1 

and each level 2-sphere meets the singular locus in exactly three points. This shows 

that the complement C — E of the singular locus E fibres over the circle with fibre 

a three-punctured 2-sphere. Since the monodromy is, up to isotopy, of finite order, 

C — E is Seifert fibred, which is impossible for a hyperbolic cone 3-manifold. 

This concludes the proof of Claim 5.5.6, Lemma 5.5.4 and Proposition 5.5.1. • 

As a consequence of Proposition 5.5.1 and Theorem A we prove now Propositions 1 

and 2. 

We prove first Proposition 1. 

Proof of Proposition 1. — Seeking a contradiction, we assume that there is a se­

quence { C n } n G N of closed orientable hyperbolic cone 3-manifolds with cone angles 

in [o;o,o;i] and diameter > 1, such that (sup{inj(x) | x G C n } ) n G N goes to zero. By 

Theorem A together with Proposition 5.5.1, there is a subsequence that admits a 

compact collapse, corresponding to case 3) of Theorem A. In particular the diameter 

of the hyperbolic cone 3-manifolds in this subsequence goes to zero, contradicting the 

hypothesis. • 

We prove now Proposition 2. 

Proof of Proposition 2. — Seeking a contradiction, we assume that there is a se­

quence { C n } n G N of closed orientable hyperbolic cone 3-manifolds with cone angles 

in [CJOJCJI], for some ui < 2TT/3, and such that (sup{inj(x) | x G Cn})ne^ goes to zero. 

By Theorem A together with Proposition 5.5.1, there is a subsequence that admits a 

compact collapse, corresponding to case 3) of Theorem A. So the rescaled sequence 

• • } x C n converges to a compact orientable Euclidean cone manifold E with cone 
inj\Xn ) 

angles strictly less than 27r/3. In particular, for n large enough, Cn has the same 

topological type as E. 

As in Proposition 2.3.1, by using Hamilton's theorem one can show that there exists 

a closed orientable spherical 3-orbifold O with the same topological type as E and 

with branching indices > 3, because the cone angles of E are < 27r/3. The orbifold O 

is Seifert fibred, because it is spherical and of cyclic type [Dunl, Dun4]. In addition, 
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since the branching indices are > 3, the singular locus E is a union of fibres. Thus the 
Seifert fibration on O induces a Seifert flbration of Cn — E = O — E, which contradicts 
the hyperbolicity of Cn — E proved in Lemma 5.1.6 and in [Koj]. • 
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CHAPTER 6 

VERY GOOD ORBIFOLDS AND SEQUENCES 
OF HYPERBOLIC CONE 3-MANIFOLDS 

This chapter is devoted to the proof of Theorem B. 

Theorem B. — Let O be a closed orientable connected irreducible very good 3-orbifold 

with topological type ( |(9|,£) and ramification indices n i , . . . , n ^ . Assume that there 

exists a sequence of hyperbolic cone 3-manifolds (Cn)ne^ with the same topological type 

( |0 | ,E) and such that, for each component ofT,, the cone angles form an increasing 

sequence that converges to 2n/ni when n approaches oo . 

Then O contains a non-empty compact essential 3-suborbifold O' Ç O, which is not 

a product and which is either complete hyperbolic of finite volume, Euclidean, Seifert 

fibred or Sol. 

We recall that a compact orientable 3-suborbifold O' is essential in a 3-orbifold O 

if the 2-suborbifold dO' is either empty or incompressible in O. 

The suborbifold O' of the theorem is not necessarily proper, it can be O' = O, but 

it is non-empty. By saying that O' is complete hyperbolic of finite volume we mean 

that its interior has a complete hyperbolic structure of finite volume. In particular, 

dC is a collection of Euclidean 2-suborbifolds. 

The proof of Theorem B splits into two cases, according to whether the sequence 

of cone 3-manifolds (Cn)ne^ collapses or not, as in Theorem A. The non-collapsing 

case does not require the hypothesis very good, and this case will be used in the proof 

of Theorem 2 for small orbifolds in the next chapter. 

6.1. The non-collapsing case 

Next proposition proves Theorem B when the sequence of cone 3-manifolds ( C n ) n G N 

does not collapse (i.e. sup{inj(x) \ x e Cn} does not converge to zero). The proof of 

Proposition 6.1.1 does not use the fact that the orbifold O is very good. 
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Proposition 6.1.1. — Let O and ( C n ) n € N satisfy the hypothesis of Theorem B. If the 

sequence ( C n ) n G N does not collapse, then O contains a non-empty compact essential 

3-suborbifold that is complete hyperbolic of finite volume. 

Proof. — Since the sequence (Cn)ne^ does not collapse, after passing to a subse­

quence if necessary, there is a constant a > 0 and, for every n G N , there is a point 

%n G C n such that inj(x n) > a. Thus, the sequence of pointed cone 3-manifolds 

( C n , x n ) is contained in C ^ ^ , for some CJO > 0, because the cone angles of Cn 

converge to angles of the form 2ir/rii. 

Since (Cn,xn) G C[ W O j 7 r ] j a , by the compactness theorem (Chapter 3), after passing to 

a subsequence, we can assume that ( C n , xn)ne^ converges geometrically to a pointed 

hyperbolic cone 3-manifold ( C o o , £ o o ) . By hypothesis, the cone angles of Coo are of 

the form 27r/ra with m G N , hence Coo is an orientable orbifold. We distinguish two 

cases, according to whether the limit 3-orbifold Coo is compact or not. 

If the limit 3-orbifold Coo is compact, then the geometric convergence implies that 

Coo has the same topological type ( C , S) as the orbifold O. Moreover, the branching 

indices of Coo agree with the ones of O. Therefore as an orbifold Coo = O and O is 

a closed hyperbolic orbifold. Thus Proposition 6.1.1 is proved in this case. 

If the limit Coo is not compact, then we need further work, as in Chapter 5. The 

first step is the following lemma. 

Lemma 6.1.2. — / / the limit 3-orbifold Coo is not compact, then 

i) Coo has a finite volume, 

ii) the ramification locus of Coo has a non-compact component. 

Proof. — Assertion i) is Lemma 5.1.3 and assertion ii) is Proposition 5.1.5, both of 

Chapter 5, whose proofs do not require the cone angles to be strictly less than 7r but 

only less than or equal to n. • 

Hence, the non-compact orientable orbifold Coo is hyperbolic with finite volume. 

Let TVoo C Coo be a compact core corresponding to the thick part of the orbifold. 

The thin part Coo — ̂ oo is a union of cusps of the form F x (0,-foo), where F is 

an orientable closed 2-dimensional Euclidean orbifold. Moreover, since Eoo is not 

compact, at least one of the cusps is singular. 

Proposition 6.1.1, in the case where Coo is not compact, follows from the following 

one, because the compact core of Coo is not a product. 

Proposition 6.1.3. — Let Noo C Coo be the compact core of the hyperbolic 3-orbifold 

C o o - Then Noo embeds in O as an essential 3-suborbifold. 

Proof. — The geometric convergence implies that, for n sufficiently large, there is a 

(1 + en)-bilipschitz embedding fn : ( i V o o , E o o ^ ~~* ( ^ > ^ ) w ^ n £ n ~* ®- Since 

the 3-orbifold O and the cone 3-manifolds Cn have the same topological type, we view 

the image / n ( ^ o o ) as a suborbifold of O, which we denote by Nn C O. The orbifold 
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NN is homeomorphic to NQQ, thus NN is an orbifold whose interior is hyperbolic of 

finite volume. 

In Lemma 6.1.5 we are going to prove that dNn is incompressible in O, but before 

we need the following lemma. 

Lemma 6.1.4. — For n sufficiently large, the orbifold O — int(iVn) is irreducible. 

Proof. — Seeking a contradiction, we assume that O — int(7Vn) contains a spherical 

2-suborbifold F2 which is essential. Since O is irreducible, F2 bounds a spherical 3-

orbifold A 3 , which is the quotient of a standard 3-ball B3 by the orthogonal action of a 

finite subgroup of 50(3) , and Nn C A 3 , for n sufficiently large. Since the ramification 

locus of O is a link, the only possibility is that A 3 is either a non-singular ball B3 or 

its quotient by a finite cyclic group. Therefore the topological type of A 3 is (B3,A), 

where A = A 3 fl E is either empty or an unknotted proper arc. 

Let pn : 7 r i ( C n - E , x n ) —» PSL2(C) be the holonomy representation of Cn 

and let fn : (iV^Eoo fl Noo) —• (Cn,E) be the (1 + en)-bilipschitz embedding 

such that Nn = fn(Noo). For n sufficiently large, the representation pn o / n # : 

^i(Noo — Eoc^oo) —• PSL2(C) is either cyclic or trivial, since Nn c A 3 . Hence, 

the holonomy of is abelian, because the geometric convergence implies the con­

vergence of the holonomies (Proposition 3.5.4). This contradicts the fact that is 

a complete hyperbolic orbifold of finite volume. • 

Lemma 6.1.5. — For n sufficiently large, the boundary dNn is incompressible in O. 

Proof. — Seeking a contradiction, we suppose that the lemma is not true. So, after 

passing to a subsequence if necessary, we can assume that dNn is compressible in O 

and furthermore that O — int(7Vn) is irreducible (by Lemma 6.1.4). Let F i , . . . ,FP 

be the components of dNoo. By passing again to a subsequence if necessary, we can 

assume moreover that the embedded components fn(Fi),..., fn(Fq) are precisely the 

compressible ones, with p > q, where fn : (iVoo, E^ fl N^) —> ( C n , E) is the (1 + en)-

bilipschitz embedding defining 7Vn. 

For i = 1,... let be an essential curve on fn{Fi) which bounds a properly 

embedded disc in O — int(JVn), intersecting E in at most one point. Consider the 

simple closed essential curves A^ = fñl{Ki) ^ f ° r * = 1? • • • > Q-

Claim 6.1.6. — For each i = 1,..., q, the sequence of simple closed essential curves 

(Ki)n>n0 represents infinitely many different homotopy classes in the fundamental 

group TTI(FÍ). 

Proof. — If the claim is false, then, by passing to a subsequence and changing the 

indices of the Fi, we can suppose that the curves A^ represent a fixed class A1 6 7ri(Fi) 

which does not depend on n. Let pn : iii(Cn — E , x n ) —> PSL2(C) be the holonomy 
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representation of C n q qands : 7ri(Coo - Eoo,̂ oo) = ^(TV^ - Soo^oo) —> PSL2(C) 

be the holonomy of Coo. Prom the geometric convergence (Proposition 3.5.4): 

PootA1) = lim pn(/n(A^)) = lim pn(AjJ. 

Since the curves A* are compressible in (9, their holonomies pn(A*) are either elliptic 

with bounded order or trivial. Moreover, since 7Ti(Fi) is parabolic and A1 does not 

bound a discal 2-suborbifold in Fi, the holonomy pooCA1) is non-trivial and parabolic 

(cf. Appendix B, Lemma B.2.3). Thus we obtain a contradiction comparing p00(A
1) 

with the limit of pn(AjJ. • 

We come back to the proof of Lemma 6.1.5. 

Since the orbifold O — int(7Vn) is irreducible, each toric 2-orbifolds / n ( F i ) , . . . , 

fn(Fq) bounds the quotient of a solid torus in O, that we denote by Vi,..., Vq. 

For i = l , . . . , g , the curve Â  bounds a properly embedded discal 2-suborbifold 

in Vi. Since int(7Vn) = int(iVoo) admits a complete hyperbolic structure, Claim 6.1.6 

and the orbifold version of Thurston's hyperbolic Dehn filling theorem [DuM] (cf. 

Appendix B, §B.2) imply that, for n sufficiently large, the 3-orbifold 

_ _ q 
N00(\

1

n,...,\«n) = N00u\JVi 

1=1 

obtained by Dehn filling along the curves A*,...,A£ is hyperbolic. In particular 

N00(\}1,..., A£) has an incompressible boundary. 

Since the curves Â  = fn (A )̂ C Fi represent infinitely many different homo­

topy classes in 7Ti(F^), it follows from Schlafli's formula for volume that the sequence 

(iVoo(A^,..., A^)) n G N contains infinitely many non-homeomorphic 3-orbifolds. We 

shall obtain a contradiction by showing that in fact all these orbifolds are homeo­

morphic to finitely many ones. For n large, the boundary c W ^ A ^ , . . . , A )̂ is incom­

pressible in (9, because O — int(iVoo(Ai,..., A-Q) is irreducible with incompressible 

boundary and iVoo(A*,..., A )̂ is hyperbolic. Hence, this 3-suborbifold is a piece of 

the Bonahon-Siebenmann splitting of the 3-orbifold O [BS1]. Uniqueness of this 

splitting implies that the 3-orbifolds iV^A^,..., A )̂ are only finitely many. Hence 

we get the contradiction that proves Lemma 6.1.5 and therefore Proposition 6.1.3. • 

6.2. The collapsing case 

Next proposition proves Theorem B in the collapsing case. 

Proposition 6.2.1. — Let O and (Cn)ne^ satisfy the hypothesis of Theorem B. If the 

sequence ( C n ) n € N collapses, then O contains a non-empty compact essential 3-suborbi­

fold, which is not a product and which is either Euclidean, Seifert fibred or Sol. 
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Proof. — Since the sequence ( C n ) n ( E N collapses, by Corollary 4.4.1 of the local soul 
theorem (Chapter 4 ) , either there is a subsequence that, after rescaling, converges to 
a closed Euclidean cone 3-manifold, or the local soul theorem, with any parameters 
e > 0, D > 1 and non-compact local models, applies to every point x G Cn. Thus we 
distinguish again two cases, according to whether we obtain a compact limit or not. 

In the first case, for every n G N there is xn G Cn such that the sequence of 
rescaled cone 3-manifolds ( C n , xn) = (in^Xn^Cnixn) has a subsequence that converges 
geometrically to a compact cone 3-manifold ( C o o , ^ ) . The geometric convergence 
implies that is a closed orientable Euclidean 3-orbifold with the same topological 
type and the same branching indices as O. Therefore, as an orbifold = O and so 
O is Euclidean. Thus Proposition 6.2.1 holds in this case. 

The second case, when we cannot find such a compact limit, is the difficult case to 
which the remaining of this chapter is devoted. Hence, from now on we suppose that 
the local soul theorem, with any parameters e > 0, D > 1 and non-compact local 
models, applies to every point x G C n , for n sufficiently large. 

Lemma 6.2.2. — Under the hypothesis of the second case, for any e > 0 and D > 1, 
there exists no > 0 such that, for n>no, every x G Cn has an open neighborhood Ux 

(1 + e)-bilipschitz homeomorphic to the normal fibre bundle J\fY{S), with some radius 
v < 1 depending on x, of the soul S of one of the following non-compact orientable 
Euclidean orbifolds: 

a) T2 x R; 5 1 x E 2 ; S1 x D2(2TT/p); 
b) 5 2 ( | ^ , | j , §^)xR, with j ^ + j ^ + j ; = 1 (thick Euclidean turnover); S2(TT, TT, TT, TT) X 

R (thick pillow); the solid pillow; 
c) P2(7r,7r)xR ? which is the twisted orientable line bundle over P2(7r,7r); and the 

quotient of S2(TT,TT,7r,TT) X R by an involution that gives the orientable bundle over 
D2(7r,7r), with silvered boundary (cf. Figure 1). 

Moreover, if f : Ux —> NY(S) is the (1 + s)-bilipschitz homeomorphism, then 

max(inj(x), d(f(x), 5 ) , diam(S')) < v/D. 

FIGURE 1 

We recall that the solid pillow is the orbifold with underlying space R 3 and branch­
ing set two straight lines of branching order 2 (cf. Figure 1 in chapter 4 ) . It is the 
quotient of S1 x R 2 by an involution. 
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1 0 8 CHAPTER 6. VERY GOOD ORBIFOLDS 

Proof of Lemma 6.2.2. — From the hypothesis of the second case, for every e > 0 
and D > 1, there exists an no such that for n > no we can apply the local soul 
theorem, with parameters e > 0, D > 1 and non-compact local models, to every 
point x G Cn. Moreover from the hypothesis about the cone angles, the local models 
are orientable Euclidean non-compact 3-orbifolds. Now it remains to eliminate the 
Euclidean 3-orbifolds model that are no listed in Lemma 6.2.2 (as in Lemma 5.2.4). 
Hence, by the local soul theorem, we only have to get rid of the twisted line bundle 
over the Klein bottle K2y№} and the two models of Figure 2, which correspond to an 
orientable bundle over either an annulus or a Möbius strip, with silvered boundary in 
both cases. 

FIGURE 2 

Let S be the soul of one of these three Euclidean non-compact orbifolds, and let 
Nr(S) denote its normal fibre bundle of radius r. Then dj\fr(S) is an incompressible 
torus in j\fr(S) — E, for every r > 0. Therefore the appearance of one of these 
models would contradict the fact that C — E is topologically atoroidal and not Seifert 
fibred. • 

As in the previous chapter, the neighborhoods given by Lemma 6.2.2 are called 
(e, D)-Margulis' neighborhoods. We remark that the (e, £>)-Margulis' neighborhoods 

of abelian type correspond to the local models listed in a). The local models listed in 

c) are Seifert fibred and different from a product. If neighborhoods corresponding to 

these local models appear, then the following lemma proves Proposition 6.2.1. 

Lemma 6.2.3. — If for some n > no there is a point x G Cn having a (e, D)-Margulis' 

neighborhood of type c) in Lemma 6.2.2, then the orbifold O contains a non-empty 

compact essential orientable 3-suborbifold O' which is Seifert fibred and different from 

a product. 

Proof of Lemma 6.2.3. — Let S be the soul of one of the Euclidean local models 

listed in c). This soul is either a projective plane with two cone points P2(7r, TT) or 

a disc with two cone points and mirror boundary D (ir^ir). In both cases a regular 

neighborhood Af(S) of S embeds as a compact suborbifold of O. This suborbifold 

O' = fsf(S) is Seifert fibred, it is not a product and its boundary dOf = 52(TT, 7r, 7r, TT) 

is incompressible in O'. It remains to show that either it is also incompressible in O 

or O is Seifert fibred itself. 
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First note that O — mt(0') is irreducible, because the soul S = P2(7r, n) or D (n, n) 
cannot be contained in the quotient of a ball by a finite cyclic action. If dO' is 
compressible in O, then the orbifold O — mt(0') is irreducible with compressible 
boundary 

d(0 - in t (O ' ) ) = 52(7r,7r,7r,7r). 

Therefore O - int(0') is a pillow and O is Seifert fibred. • 

Lemma 6.2.3 shows that in applying Lemma 6.2.2 we only need to consider local 
models of types a) and b). The following lemma shows that we must consider local 
models of type b). 

Lemma 6.2.4. — There is a constant DQ > 0 such that if every point of a closed 
orientable hyperbolic cone 3-manifold C has a (e, D)-Margulis' neighborhood of type 
a) or b), with e < 1/2 and D > DQ, then at least one of the neighborhoods is of 
type b). 

Proof of Lemma 6.2.4- — By Proposition 5.2.5, there exists a uniform constant DQ > 
0 such that, if every point of a closed orientable hyperbolic cone 3-manifold C has a 
(e, D)-Margulis' neighborhood of type a) (abelian type), with e < 1/2 and D > DQ, 
then the simplicial volume \\C — E|| = 0. Therefore, there must be a point whose 
local model is of type b), because the fact that C — E admits a complete hyperbolic 
structure (Lemma 5.1.6) implies that \\C — E|| ^ 0. • 

By using Lemmas 6.2.2, 6.2.3 and 6.2.4, Proposition 6.2.1 follows from Proposi­
tion 6.2.6 below: 

Definition 6.2.5. — We say that a compact orientable irreducible 3-orbifold O is a 
graph orbifold if there exists a family of orientable Euclidean closed 2-suborbifolds that 
decompose O into Euclidean or Seifert fibred 3-suborbifolds. In particular, Euclidean, 
Seifert fibred and Sol 3-orbifolds are graph orbifolds. 

Proposition 6.2.6. — Let (Cn)ne^ and O satisfy the hypothesis of Theorem B. There 
is a universal constant D\ > 0 such that, if for some n every point of Cn admits a 
(s,D)-Margulisy neighborhood of type a) or b), with e < 1/2 and D > D\, then O is 
a graph orbifold. 

Proof of Proposition 6.2.6. — Let 0 < e < 1/2 and D > DQ, where DQ is the constant 
of Lemma 6.2.4. Assume that, for some n fixed, every point of the hyperbolic cone 
3-manifold Cn has a (e, £>)-Margulis' neighborhood of type a) or b). 

We choose a point XQ e Cn having a (e, £>)-Margulis' neighborhood of type b). It 
means that XQ has a neighborhood UXo C Cn with a (l+e)-bilipschitz homeomorphism 
fo UXo —> J\fv0(S), where AO (5) is the normal fibre bundle, with some radius VQ < 1 
depending on #o, of the soul 5 of a non-compact Euclidean 3-orbifold of the family b). 
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Let W0 = / 0 " 1 ( ^ o / D ( 5 ) ) C UX0 be the inverse image of the closed normal fibre 
bundle of the soul 5, with radius u0/D. As a suborbifold of O, Wo is diffeomorphic 
to either a thick Euclidean turnover, a thick pillow or a solid pillow. 

We need the following proposition, that we shall prove in the next section. We 
recall that Do is the universal constant of Lemma 6.2.4; we can suppose D0 > 10 4. 

Proposition 6.2.7. — Let O and ( C n ) n G N satisfy the hypothesis of Theorem B. There 
is a universal constant b\ > 0 such that, if for some n every point of Cn admits a 
(e, D)-Margulis' neighborhood of type a) or b), with e < 1/2 and D > D0 > 104, then 
Cn admits a rj-covering a la Gromov (Vi)iei with n < b\/D. 

Moreover, there is a choice of Xo and WQ C O such that the covering (Vi)iei 
satisfies the additional properties: 

6) Wo intersects only one open set Vi of the covering; 
7) for every i £ I, (J Vj is virtually abelian in O — Wo. 

VjnVi^0 

We say that U C O is virtually abelian in O — Wo if, for every connected component 
U' of U— p _ 1 ( W o ) , the homomorphism of fundamental groups induced by the inclusion 

U : 7 r i ( £ / ' ) — + 7 r i ( 0 - m t ( W b ) ) 

has a virtually abelian image (i.e. the image has a finite index abelian subgroup). 

Proof of Proposition 6.2.6 assuming Proposition 6.2.7. — Let rjo > 0 be the universal 
constant of Proposition 5.3.3. We choose D\ = sup(6i/ry 0,10 4). Proposition 6.2.7 of 
this chapter and Proposition 5.3.3 imply the existence of a continuous map g : C —• 
K2, from C to a simplicial 2-complex K2, such that: 

i) 9(Wo) is a vertex of K2\ 
ii) for every vertex v of K2, g"1 (stax(v)) is virtually abelian in O — Wo. 

Since O is very good, there is a regular finite covering p : M —» O such that M is 
a closed 3-manifold. Set WQ = p~l(Wo) C M. By composing g with the projection 
of the covering map p : M —> O, we have a continuous map / = g o p : M —• K2 with 
the following properties: 

i) / (Wo) is a vertex of K2\ 
ii) for every vertex v of K2, f~x(st^x(v)) is virtually abelian in M — Wo. 

Now we use the map / to show that all Dehn fillings along the boundary of any con­
nected component of M — int(Wo) have simplicial volume zero. Let AT be a connected 
component of M — int(Wo)- Its boundary dN is a union of tori. Let 

v 
N = N U I I D2 x S 1 

DN 1 

i=l 

be any closed Dehn filling of N along dN. Since / (Wo) is a vertex vo of K2, the map 
f : M —> K2 induces a map / : N —> K2 that coincides with / in N and maps each 
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filling solid torus D2 x S1 to the vertex vo- By property ii), for every vertex v G K2, 
f (star(v)) is virtually abelian in N. Hence, the closed orientable 3-manifold N 
admits a virtually abelian covering of dimension 2. By Gromov's vanishing theorem 
[Gro, Sec. 3.1] (cf. [Iva]) the simplicial volume ||IV|| = 0, as claimed. 

Next step is the following lemma, whose proof is postponed to the end of the 
section. 

Lemma 6.2.8. — The 3-orbifold O — int(Wo) is irreducible. 

Assuming this lemma, then any connected component N of M — int(Wo) is ir­
reducible, by the equivariant sphere theorem ([DD], [MY1, MY2] , [JR]). If dN 
is compressible in N, then AT is a solid torus because it is irreducible; in particular 
||IV|| = 0. If the boundary dN is incompressible in N, then the following Lemma shows 
that the simplicial volume \\N\\ = 0 (cf. fBDVl). Therefore IIAf - int(Wn)LL = 0. 

Lemma 6.2.9. — Let N be an orientable compact irreducible and d-incompressible 3-
manifold. Assume that dN is a disjoint union of tori and furthermore that any closed 
orientable 3-manifold N, obtained from N by Dehn filling, has zero simplicial volume 
|| AT 11 = 0 . Then N itself has zero simplicial volume \\N\\ = 0. 

Proof of Lemma 6.2.9. — Seeking a contradiction, we assume that ||AT|| ^ 0. Ac­
cording to Jaco-Shalen [JS] and Johannson [Joh], N splits along incompressible tori 
into Seifert and simple pieces. By Thurston's hyperbolization theorem the simple 
pieces are hyperbolic, hence they have non-zero simplicial volume ([Gro] and [Thul, 
Ch. 6]). Since the simplicial volume is additive under gluing along incompressible tori 
([Gro] and [Som]), the assumption that N has non-zero simplicial volume implies 
that at least one of these geometric pieces IVO admits a complete hyperbolic structure 
of finite volume. We distinguish then two cases, according to whether dNo contains 
or not some components of dN. 

In the first case, when dNo D dN ^ 0 , the contradiction is obtained by apply­
ing Thurston's hyperbolic surgery theorem (cf. Appendix B) to the components of 
dNo which belong to dN. This theorem implies that for some closed 3-manifolds 
N obtained by Dehn fillings of N along dN, the induced Dehn fillings N0 of N0 

along dNo fl dN give an essential complete hyperbolic submanifold of finite volume in 
N. The contradiction then follows from the additivity of the simplicial volume along 
incompressible tori [Gro, Som]. 

In the second case, when dN0 FL dN = 0 , the contradiction is obtained by using 
the fact that dNo remains incompressible in infinitely many closed Dehn fillings N 
of N along dN (by [CGLS, Thm. 2.4.4] and [Gor, Lemma 7.2]). In particular N0 

would be an essential complete hyperbolic submanifold of finite volume in N. This 
would contradict the fact that || JV|| = 0, as in the previous case. • 
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We prove now that M—int( Wo) is a graph manifold. From the proof of Lemma 6.2.9 
and the fact that \\M — int(W 0)| | = 0 all the pieces in the Jaco-Shalen and Johannson 
splitting of M — int(Wo) are Seifert fibred; therefore M — int(Wo) is a graph manifold. 

We deduce that O — Wo is a graph orbifold, by using the regular covering 
p : M - int(Wo) —> O - Wo and the results of Meeks and Scott [MS], which provide 
a graph structure on M — int(W 0) invariant by the action of the deck transformations 
group of the covering. 

Since the 3-suborbifold W 0 C O is either a thick Euclidean turnover, a thick pillow 
or a solid pillow, O admits a graph structure. 

This proves Proposition 6.2.6 from Proposition 6.2.7 and Lemma 6.2.8. The proof 
of Proposition 6.2.7 is given in the next section and the proof of Lemma 6.2.8 comes 
now. 

Proof of Lemma 6.2.8. — Seeking a contradiction, we assume that O — Wo is re­
ducible. It means that there exists an essential spherical 2-suborbifold F2 C O. Since 
O is irreducible, F2 bounds a discal 3-suborbifold D3 in O and D3 contains W 0 . Since 
the branching locus E c O is a link, the discal suborbifold D3 is the quotient of a 
ball by a finite cyclic orthogonal action. Hence the topological type of D3 is (B3, A), 
where A = B3 D E is a proper unknotted arc in the ball B3. 

Since Wo C int(D 3 ), we already have a contradiction in the case where Wo = 
A r (5 2 ( 2 ^ 1 e ,ee j^)) is a thick Euclidean turnover, because there is no way to embed a 
2-sphere in B3 that intersects A in 3 points. 

Hence we assume that Wo is either a thick pillow or a solid pillow. In both cases, 
E n Wo is not connected and we find a contradiction using a Dirichlet polyhedron 
and the fact that A = B3 D E is connected. More precisely, these local models imply 
that there is a metric ball B(x,r) C Wo C Cn such that B(x, r) n S is not connected. 
We consider the Dirichlet polyhedron Px of Cn centered at x. This polyhedron is 
convex, because the cone angles of Cn are equal to or less than n. By convexity, 
different connected components of B(x, r) fl E give different edges of dPx that belong 
to different geodesies of M3. In particular, the holonomy of the meridians of different 
components of B(x,r) fl E are not contained in a cyclic group. This contradicts the 
inclusion (W 0 , E n W 0 ) C (D3, E n D 3 ) , because TTI(D 3 - E) ̂  TT^B3 - A) is cyclic. 
Thus we get a contradiction and the lemma is proved. • 

6.3. From (e, D)-Margulis' coverings of type a) and b) to r/-coverings à la 
Gromov 

This section is devoted to the proof of Proposition 6.2.7, which constructs the 
required 77-covering à la Gromov. 

We recall that we had applied the local soul theorem (Chapter 4) to the hyperbolic 
cone 3-manifold Cn with parameters (e,D). 
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For any point xo G Cn with a (e, Z^-Margulis'neighborhood of type b), there is 
a neighborhood UXo and a (1 + 6:)-bilipschitz homeomorphism / 0 : UXQ —> MVQ(S) 
where MUQ(S) is a normal fibre bundle, with some radius i/0 < 1 depending on xo, of 
the soul 5 of a non-compact Euclidean cone 3-manifold of type b). We have defined 
Wo=fol{Ko/D{S))llm><;:chhn,;UXo. 

We want to prove the following proposition: 

Proposition 6.2.7. — Let O and (Cn)nen satisfy the hypothesis of Theorem B. There 
is a universal constant b\ > 0 such that, if for some n every point of Cn admits a 
(e, D)-Margulis7 neighborhood of type a) or b), with e < 1/2 and D > D0 > 10 4, then 
Cn admits a rj-covering a la Gromov {Vijiei with V < bi/D. 

Moreover, there is a choice of xo and Wo C O such that the covering (V*)^/ 
satisfies the additional properties: 

6) Wo intersects only one open set Vi of the covering; 
7) for every i G I, [j Vj is virtually abelian in O — Wo-

VJNVI^0 

Proof of Proposition 6.2.7. — In the proof we set Cn = C to simplify notation. 
First we describe the choices of xo G C and Wo- Given e > 1/2 and D > D0 > 10 4, 

we consider 
JI _ i x ^ Q X a ( m r i t s an (e, D)-Margulis' 1 

^ £ , D ^ \ neighborhood of type b) / 
Since D > Do, Lemma 6.2.4 implies that T^e^ ^ 0 . For x G T( £,D)J ^ Ux denote 
the (e, Dj-Margulis' neighborhood of type b) and let / : Ux —> Afi,(x)(S) be the 
(1 -f- e)-bilipschitz homeomorphism between Ux and the normal fibre bundle, with 
radius v(x) < 1, of the compact soul S of a local model of type b). We choose a point 
XO G 7(£,£>) such that 

v(xo) = "o> Y^~£ s\ip{u(x) | x G T ( £ 5 D ) } . 

Let Wo = fo~l (-A/^o/D (S)) C UXo be the inverse image of a closed normal neighborhood 
of the soul S of radius vo/D, where fo : UXo —> Afv0(S) is the (1 + s)-bilipschitz 
homeomorphism. 

For every x G C we define the virtual abelianity radius (relative to Wo C O): 

vab(x) = sup{r G M | B{x,r) is virtually abelian in O — Wo}. 

We set r(x) = i n f { l , ^ ^ } . 
This definition is analogous to the one given in Section 5.4. For instance, the 

following lemma has the same proof as Lemma 5.4.2: 

Lemma 6.3.1. — Let x,y G C. If B(x, r(x)) fl B(y, r(y)) ^ 0, then 

a) 3/4 < r(x)/r(y) < 4/3; 
b) B(x,r(x))cB(y,4rg(B(y7-,8(y)). • 
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Lemma 6.3.2. — For every xo G Wo, WQ C B(XQ, 
r(x0) 

9 

Proof. — This lemma will follow from the inequality 

diam(Wo) < r(x 0)/9. 

Since Wo = foL{Ko/D{uS)) uCu uU X 0 1 where / 0 : UXo - K0(S) is a (1 -h e)-bilipschitz 

homeomorphism, and AfUQ(S) is a normal fibre bundle, with radius of the soul S 

of a non-compact Euclidean cone 3-manifold of type b), we have: 

diam(W 0) < (l + e)&am{M^/D(S)) uu< (1 + u£)(duuiam(5)uu + 2 b 
D 

< 6 
Va 

D1 

because diam(5) < VQ/D and e < 1/2. By definition vab(x0) > i 

xx+1 
(i/o - VQ/D) > 

is0/2, moreover VQ < 1 and D > 10 4, thus we obtain the following inequalities: 

diam(Wo) < 6 v 
D 

< inf 
r 6 

2) ' 

12 vab(xn) 

(B(y7-,8 
< 

(B(y7-,8 
9 

Now we give the construction of the 77-covering a la Gromov. We fix a point 

xo G Wo, we consider then all the possible finite sequences {xo,xi,... ,x p }, starting 

with #o, such that: 

(6.1) the balls B (XQ 
r(x0)^ 

4 
(B(y7-,8r X p , 

r ( X p ) ' 

4 
are pair wise disjoint. 

A sequence satisfying (6.1) and Lemma 6.3.1 is finite by compactness. Moreover we 

have the following property, proved in Chapter 5, Lemma 5.4.4. 

Lemma 6.3.3. — If the sequence {XQ, XI, . . . , xp} is maximal for property (6.1), then 

the balls B(XQ, 2 
0 

r(xo)),...,B(xp, 2 
' 3 r{xp)) cover C. 

Given a sequence {xo, xi,..., x p}, maximal for property (6.1) and starting with 

XQ G WQ, we consider the covering of C by the following open sets: 

f V0 = B(xo,r(x0)) 

{ Vi = B(xi,r(xi)) - W Q , for i = 1,... ,p. 

Next lemma concludes the proof of Proposition 6.2.7, 

Lemma 6.3.4. — There is a universal constant b\ > 0 such that, for e < 1/2 and D > 

10 4, the open sets Vb,. . . , Vp define a rj-covering a la Gromov of C, with rj < b\/D. 

Moreover this covering satisfies properties 6) and 7) of Proposition 6.2.7. 

Proof — Lemmas 6.3.2 and 6.3.3 guarantee that the open sets Vo,..., Vp cover C. 

Then by setting = r(xi) for i = 1,... ,p, properties 1), 2) and 3) of a 77-covering a 

la Gromov follow from the construction and Lemma 6.3.1. 

Next claim shows that the covering (^)i€{o,...,p} satisfies also property 4). 

Claim 6.3.5. — For every x G C there is an open set Vi, with i G { 0 , . . . such that 

x G Vi and d(x,dVi) > r*/3. 
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Proof of Claim 6.3.5. — Let x G C, then by Lemma 6.3.3 x G B(xi, | r j ) for some 

i G { 0 , . . . we fix this index i. If i = 0 or if B(xi,ri)nWo = 0 , then = B(xi,ri) 

and the lemma holds. Hence we may assume that i > 0 and B(xi,ri) H W 0 ^ 0 . 

Moreover, we can suppose d(x,xo) > fro- In this case Vi = B(xi,ri) — Wo and we 

claim that d(x, Wo) > |r*. 

To prove this claim, we use the inequality: 

(6.2) d(x, Wo) > d(x,x0) - diam(Wo) > | r 0 - | r 0 = | r 0 , 

which holds true because d(x,xo) > | ro by assumption, and diam(Wo) < | ro by 

Lemma 6.3.2. Since 2? (#0,7-0) H B(xi,ri) ^ 0 , Lemma 6.3.1 implies that r 0 > fr*. 

Hence inequality (6.2) becomes d(x,Wo) > \ri and the claim is proved. • 

Before proving property 5) of a 77-covering à la Gromov, we point out that property 

6) of Proposition 6.2.7 is satisfied by construction and Lemma 6.3.2. Moreover prop­

erty 7) follows from Lemma 6.3.1 and the fact that the balls B(xi,£ri) are virtually 

abelian in O — Wo. 

Next claim proves property 5) of a 77-covering à la Gromov and completes the proof 

of Proposition 6.2.7. 

Claim 6.3.6. — There exists a universal constant b\ > 0 such that 

vo\(Vi) < vol (B{xi,n)) < ^ r f , Vi = 0, . . . ,p 

Proof of Claim 6.3.6. — To estimate the volume of B(xi,ri) we use the same method 

as in Claim 5.4.7 of Chapter 5. To fix notation, for i = 0 , . . . , p , let fi : UXi —> MVi (Si) 

be the (l+£)-bilipschitz homeomorphism given by the local soul theorem (Chapter 4). 

We need the following technical claim, whose proof is postponed to the end of the 

section. 

Claim 6.3.7. — For i — 0 , . . . ,p, let Vi denote the radius of the normal fibre bundle of 

the soul of the Euclidean local model given by the local soul theorem. Then Vi > z^ /2 1 1 . 

Assuming that Claim 6.3.7 holds true, we can compare the volumes of the balls 

B(xi,ri) and B(xi,i'i/2
11). Since > z^/2 1 1 , by Bishop-Gromov inequality (Propo­

sition 3.1.9) we get: 

vol (B(xhn)) i<i i ivo l (B(x i l Ui /2 n ) ) 
(B(y7-,8(v) 

v _ i ( z V 2 n ) 

where v-i{t) = 7r(sinh(2t) - 2t). 

As in Claim 5.4.7 of Chapter 5, let a > 0 be a constant such that t3/a < v_i(t) < 

at3 for every t G [0,1]. Since Vi<\ and < 1, we get: 

vol (B(xi,n)) < vol(B(xuUi/2u))aiii22ii33 
cv 
wx< 
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Since d(fi(xi),Si) < vvVi /DVV < v{ H T 4 , weg have thtjjhh i ((x i ,v i /2 u )vv) C Kt(Si). 
Thus 

v o \ ( B { x u V i / 2 1 1 ) ) v v < (l + evv)3vol(^(vv5,)) v< 2 ^ 0 1 ( ^ ( 5 , ) ) , 

because fa is (1 + £)-bilipschitz, with e < 1/2. 
Using the bound diam(Si) < V i / D and the fact that the dimension of the soul Si 

is 1 or 2, we easily get the upper bound vol(AOi(.S'i)) < (2-K/D)V3, as in Claim 5.4.7. 
Hence 

vol (B(xi,ri)) ccv< bi 

D 
r 3 with bi = 2 3 VTT. 

Finally the proof of Claim 6.3.7 concludes the proof of Proposition 6.2.7. 

Proof of Claim 6.3.7. — For i = 0 , . . . ,p, let fa : UXi NVi(Si) be the (1 + e)-
bilipschitz homeomorphism given by the local soul theorem (Chapter 4). We recall 
the upper bound 

max(inj(x),d(fi(xi),Si),diam(5^)) < cxx 
D 

If i = 0, then it is clear that vab(x 0) > vn/2; thus r 0 > VQ/16, because v0 < 1. 
If i > 1, then vab(a^) > inf l V i ( l - 1 

D .dixi.Wo)). because Wo can intersect 
the neighborhood UXi. Since e < 1/2 and D > 10 4, this inequality becomes 

vab(xi) > inf 
<xw 
- 2 ' d(x < 7 Wb)). 

Now we want to find a lower bound for d(xi, Wo). 
Since d(xi,xo) > ro/4 by the choice of the sequence xo,...,xp (property (6.1) 

above) and since diam(Wo) < 6vo/D by the proof of Lemma 6.3.2, first we get the 
following lower bound: 

d(xi, Wo) > d(xi,xo) - diam(Wo) > 
ro 
4 x<w 

6v0 

D 

Moreover, d(xi, Wo) > v0 
( i 
V64 wx< 6 

D t > va 
128 because r*o > v0/16 Therefore, since VQ 

and Vi < 1, we obtain: 

(B(y 1 
8 

vab(xi) > inf 
(Vi 

<2 4 ' 
c< 
2 1 0 7 

To compare v0 and Vi we distinguish two cases, according to whether the local model 
for UXi is of type a) or b). 

If the local model for UXi is of type b), then by the choice of #o, we have v0 > V i / 2 , 
hence r» > V i / 2 1 1 . 

When the local model for UXi is of type a), again we distinguish two cases according 
to whether the intersection f['1(Nvi/s(Si)) f) Wo is empty or not. 
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If f-\MVi/s(Si)) n Wo = 0 , then frHKM15*)) is virtually abelian in ^ - Wo 
and we have 

vab(xi) > d{xudfr\NVi/%(Si))) > 
1 

1 + e 
xx 

8 
d(fi(xi),Si)) > 

1 
1 + e 

/Vi 

c12 1 
12 

nb 
> Vi 

16 
and we conclude that > i/f/128. 

If f^iKi/siSi)) n Wo ^ 0 , then there exists y 0 € W 0 such that d(yQ, f~\Si)) < 

(B(y7-,8ri(v) 8- dd 4. Hence, for every x G W Q : 

d(x, / r 1 ^ ) ) < % o , / r 1 ^ ) ) (B(y7-,8ri(v)))+ diam(W 0; < 1 
4 + 

3 

D ' 
Since Wo corresponds to a (s, Z))-Margulis neighborhood of type b), it cannot be 
contained in a (e, Z})-Margulis neighborhood of type a). In particular, Wo cannot be 
contained in / r 1 (A r

I y i (5 i ) ) and we have: 
1 
4 + 

6v0 ^ 
D 

Vj_ 

1+e ' 

Vi 

2 
We deduce that v0 > D Vi/24 > 32 vu because D > 10 4. Thus 

r% > inf ( 
Vi 

2 4 ' 
vo 
21 0> 

> Vi 32 

and the claim is proved. 
This also concludes the proof of Proposition 6.2.7. 
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CHAPTER 7 

UNIFORMIZATION OF SMALL 3-ORBIFOLDS 

An orientable compact 3-orbifold O is small if it is irreducible, its boundary dO 
is a (perhaps empty) collection of turnovers, and O does not contain any essential 
embedded closed orientable 2-suborbifold. 

Remark 7.0.1. — If the boundary of a small 3-orbifold O is not empty, then either O 
is a discal 3-orbifold or dO is an union of Euclidean or hyperbolic turnovers. 

Example 7.0.2. — In Figure 1 there is an example of a small orbifold with non-empty 
boundary. 

FIGURE 1. This orbifold is small, provided that the ramification indices 
are sufficiently large [Dun2]. 

This chapter is devoted to the proof of Theorem 2: 

Theorem 2. — Let Ö be a compact, orientable, connected, small 3-orbifold of cyclic 
type. Then Ö is geometric. 

Remark 7.0.3. — When Ö is hyperbolic and dö is not empty, we prove that either Ö 
is a product or Ö has finite volume and totally geodesic boundary. 
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7.1. Desingularization of ramified circle components 

Let O be a compact orientable small 3-orbifold of cyclic type and with topological 
type (C, E). By definition, a small 3-orbifold does not contain any properly embedded 
essential orientable 2-sided 2-suborbifold. It implies that the underlying space itself 
does not contain a properly embedded non-separating orientable surface. Let E = 
Eo U E<9 be a decomposition of the ramification locus, where Eo corresponds to the 
circle components of E and E# to the arcs of E. 

The purpose of this section is to construct a finite regular covering O of O that 
desingularizes the circle components E 0 C E. 

In particular, if the small orbifold of cyclic type O is closed, then Eo = E and O 
is a 3-manifold, hence O is very good. 

We start with the following homological lemma (cf. [Takl]). 

Lemma 7.LI. — Let O be a compact orientable small 3-orbifold of cyclic type and 
with topological type (C, E). Then: 

i) Hi (C; Z) is finite. 
ii) If Eo C E is the union of circle components, then the following exact sequence 

holds: 

0 - i f 2 ( A R ( E 0 ) , ^ ( E 0 ) ; Z ) - H^C - E 0 ; Z ) - # i ( C ; Z ) - 0 

Proof of Lemma 7.1.1. — Assertion i) is equivalent to # i ( C ; Q ) = H2(C,dC;Q) = 
0. Seeking a contradiction, let us assume that there is a non-separating essential 
orientable surface |F|, properly embedded in C. We can always make it transverse to 
the ramification locus E. Then we choose such a surface |F| with the minimal number 
of intersection points with E. The corresponding orientable 2-suborbifold F c O with 
underlying space |F| is an essential 2-suborbifold in O, otherwise the incompressibility 
of |F| implies that one could reduce the number of intersection points with E. This 
contradicts the smallness of O. 

We prove assertion ii) with the long exact sequence for the homology of the pair 
( C , C - E 0 ) : 

• H2(C - E 0 ; Z) -+ H2(C; Z) -> H2(C, C - E 0 ; Z) H^C - E 0 ; Z) -+ 

-> ffi(C; Z) - #x(C, C - E 0 ; Z) - . . . 

The excision property gives an isomorphism: 

Hi(C, C - E 0 ; Z) ^ ff.CA/XEo), a ^ ( E o ) ; Z) , for i e { 1 , 2 , 3 } . 

In particular H\(C,C - E 0 ; Z ) = 0. Moreover, H2(C,C - Eo;Z) is a free abelian 
group generated by the meridian discs of the closed tubular neighborhood AT(Eo) of 
the circle components of E. 
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To obtain the exact sequence stated in ii), it remains to show that 

Im{tf 2 (G; Z) H2(C, C - E 0 ; Z ) } = { 0 } . 

ii fact, it is sufficient to show that the morphism (with rational coefficients) 

tf2(G-Eddhh0;CQ)FF-^#2F(CVG;Q) 

s surjective, since H2(C, C — E 0 ; Z) is a free abelian group. That is a consequence of 

;he two following facts: 

L) the morphism H2(dC; Q) —> H2(C; Q) is surjective, because H2(G, dC; Q) vanishes 

by assertion i); 

1) this morphism factors through H2(C — E 0 ; Q) 5 because Eo fl dC — 0 . 

• 

The following proposition gives the construction of the desired regular finite cov­

ering O of O. 

Proposition 7.1.2. — Let O be a compact orientable small 3-orbifold of cyclic type and 

with topological type (G, E). There is a finite regular covering p:0 —• O such that the 

ramification locus of O is E = p _ 1 ( E a ) . 

Proof. — Let $ : 7Ti(C—EO) - » # i ( G ; Z) be the surjection obtained by composing the 

ibelianization map TT\(G — E 0 ) —• Hi(G — E 0 ; Z) and the morphism H\(G — Eo; Z) —• 

H"i(C;Z) induced by inclusion. The kernel G = ker$ is a normal subgroup of finite 

ndex in 7Ti(C — Eo) by Lemma 7.1.1 i). 

The exact sequence given by Lemma 7.1.1 ii) shows that $ induces a surjective 

xiorphism 

\£ : G — > i J 2 ( ^ ( E o ) , ^ ( E 0 ) ; Z ) 0. 

rhe free abelian group iJ 2 (Af(E 0 ), &A/"(E0); Z) =i e£?Z(<Ji) is generated by the merid-

an discs ^i, i = 1,..., q, of the tubular neighborhood Af(Eo) °f the cycle components 

)f E. More precisely Si is the meridian disc of the tubular neighborhood of the i-ih 

component EQ of Eo-

Let { n i , . . . , nq} be the branching indices of the components { E j , . . . , EQ}. Then ^ 

nduces a surjective morphism ip : G —» 0*=iZ n i (Si), where Zni is the ring of integers 

xiodulo ni. So H = ker^ is a normal subgroup of finite index in G, hence it is a 

lormal subgroup of finite index in ni(C — Eo). 

We consider now the covering of C branched along E 0 , associated to the surjective 

xiorphism /3 : 7 r i ( C - E 0 ) -+ TTI(C - E 0 ) / # . 

For 2 G { 1 , . . . let [ii C TTI(G — Eo) be a meridian of the i-th component EQ. 

Since [ii corresponds to the boundary of Si, the exact sequence of Lemma 7.1.1 ii) 

shows that [ii belongs to G. Moreover i\)([ii) is a generator of Z n . . By construction, 

it follows that P([ii) is a generator of Z n . , hence has precisely the same order Ui as 

bhe branching index of the corresponding component EQ of EQ . 
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Therefore this branched covering induces a finite regular covering p : O —> O which 

desingularizes the circle components E 0 of E. In particular, the ramification locus of 

O i s E = p - 1 ( E a ) - • 

In the closed case, Theorem 2 is then a straightforward corollary of Theorem 1 and 

Proposition 7.1.2 above: 

Corollary 7.1.3. — A closed orientable small 3-orbifold of cyclic type is geometric. • 

The remaining of this chapter is devoted to the proof of Theorem 2 when dO ^ 0 . 

7.2. Uniformization of small 3-orbifolds with non-empty boundary 

In this section we always assume that O is a compact orientable small 3-orbifold 

of cyclic type with non-empty boundary dO ^ 0 . In particular O is either a discal 

3-orbifold or it is irreducible and topologically atoroidal, with boundary a collection 

of hyperbolic and Euclidean turnovers. Hence it is also acylindrical. 

By doubling O along its boundary, the arguments in Section 2.4 of Chapter 2 

(Lemmas 2.4.1 to 2.4.7) reduce the proof of Theorem 2 to the proof of Proposition 7.2.1 

below. We remark that we do not need Proposition 2.4.9 of Chapter 2 since all 

boundary components of O are different from a non-singular torus. Except for that 

proposition, the hypothesis that the orbifold O is very good is not used in Section 2.4. 

Proposition 7.2.1. — Let O be a compact, orientable, small 3-orbifold of cyclic type 

and with non-empty boundary. If the complement O — T, of the branching locus admits 

a complete hyperbolic structure with finite volume and totally geodesic boundary, then 

O is geometric. 

Proof of Proposition 7.2.1. — The proof of Proposition 7.2.1 follows the scheme of 

the proof of Theorem 4 in Sections 2.2 and 2.3 of Chapter 2. 

Using the hypothesis that O—E admits a complete hyperbolic structure with totally 

geodesic boundary, we consider the subinterval J Ç [0,1] of real numbers t E [0,1] 

such that there is a path 7 : [0,t] —> Ro with the property that, for every s e [0,£], 

7 ( 5 ) is the holonomy of a hyperbolic cone 3-manifold C(sa), with totally geodesic 

boundary and with the same topological type as E). The cone angles of C(sa) 

are sa — (s 2ir/m\,..., s 27r/mq), where { m i , . . . , mq} are the branching indices of O 

along E. Here ño denotes the irreducible component of the representation variety of 

0 — E that contains the holonomy of the hyperbolic structure on O — E, with totally 

geodesic boundary and whose ends are cusps. 

Lemma 7.2.2. — The subinterval J is non-empty and open. 

Proof. — It is non-empty because 0 G J. It is open by Proposition B.3.1 of Ap­

pendix B, which is a version of Thurston's hyperbolic Dehn filling theorem. The 
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proof that J is open at points different from 0 is the same as the proof of Propo­

sition 2.2.4, except for the boundary. To control the holonomy at the boundary it 

suffices to use Lemma B.3.3 of Appendix B, which ensures that, when we deform 

3ur holonomy representations, then the representation of the boundary is still the 

holonomy of a totally geodesic turnover. • 

By Lemma 7.2.2, there are three possibilities: either J = [0,1], J = [0,1), or 

J = [(),£) with 0 < t < 1. If J = [0,1] then the compact orbifold O admits a 

hyperbolic structure with totally geodesic boundary. 

Lemma 7.2.3. — The case J = [0,£), with 0 < t < 1, does not occur. 

Proof. — We prove it by contradiction: we fix ( £ n ) n € N an increasing sequence in J = 

[0, t) converging to t < 1 and we consider the corresponding sequence of hyperbolic 

zone manifolds with totally geodesic boundary {Cn = C(tna)}ne^. Up to taking a 

subsequence, either ( C n ) n G N collapses or not. 

If the sequence Cn does not collapse then, by the compactness theorem, we may 

assume that the sequence of pointed cone 3-manifolds ( C n , x n ) converges to a hyper­

bolic cone 3-manifold (Coo,Xoo)- Now we apply Theorem A to the sequence obtained 

by doubling Cn along its boundary, which does not collapse either. Since O is small, 

the double along the boundary DO contains no spherical turnover. This implies that 

case 2) in Theorem A is excluded because a Euclidean turnover in DC^ is spherical 

in DO, (cf. the proof of Proposition 2.3.1). Therefore Theorem A implies that the 

double of Coo is compact. Thus C ^ is also compact and has the same topological 

type as C n , hence we have a contradiction. 

If the sequence C n collapses, then by applying the strengthened version of Theo­

rem A (Section 5.5) to the sequence of doubles, we deduce that the rescaled sequence 

(inj(x )CmXn) converges to a compact Euclidean cone 3-manifold. Since t < 1, it 

Follows that O has spherical boundary. By irreducibility, the unique possibility is 

that O is discal, but this contradicts the hypothesis that O — E is hyperbolic. 

This finishes the proof of Lemma 7.2.3. • 

To complete the proof of Proposition 7.2.1 we are left with the case J = [0,1): 

Proposition 7.2.4. — If J = [0,1) then O is hyperbolic 

Proof of Proposition 7.2.4- — We fix ( £ n ) n e N an increasing sequence in J = [0,1) 

:onverging to 1 and we consider the corresponding sequence of hyperbolic cone 3-

nanifolds {Cn = C(tna)}ne^. In Proposition 7.3.1 below we will show that the 

sequence ( C n ) n G N does not collapse, hence we may apply Lemma 7.2.5 below to 

complete the proof of Proposition 7.2.4. 
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Lemma 7.2.5. — / / Cn does not collapse, then O is hyperbolic. In addition the Eu­

clidean boundary turnovers correspond to cusps and the other boundary turnovers are 

totally geodesic boundary components. 

Proof of Lemma 7.2.5. — We consider the sequence DCn of doubles of Cn along its 

totally geodesic boundary. Let DO denote the double of O. As we indicated in the 

introduction to Chapter 6, the proof of Theorem B, given in Section 6.1, does not use 

the existence of a finite regular manifold covering for DO. So it applies to show that 

DO contains a non-empty compact essential hyperbolic 3-suborbifold which is not a 

product. Since O is small, the arguments at the end of Chapter 2, in the proof of 

Theorem 1, show that O itself is hyperbolic, possibly with cusps. • 

7.3. The sequence does not collapse 

Let O be an orbifold as in the statement of Propositions 7.2.1 and 7.2.4. As above, 

let Cn be a sequence of hyperbolic cone 3-manifolds with the same topological type 

as O and whose cone angles increase and approach the orbifold angles of O. 

Proposition 7.3.1. — With the hypothesis of Proposition 7.2.4, the sequence Cn does 

not collapse. 

Proof. — We prove it by contradiction, assuming that Cn collapses. By the local soul 

theorem in Chapter 4 (the version with boundary and Corollary 4.4.1), we distinguish 

again two cases, according to whether after rescaling we obtain a compact limit or 

not: 

1) either there is a subsequence that after rescaling converges to a compact Euclidean 

cone 3-manifold, 

2) or the local soul theorem (possibly with boundary), with any parameters e > 0, 

D > 1 and non-compact local models, applies to every point x G C n , provided 

that n > no (where no depends on D and e). 

Contradiction in case 1).— In the first case, for every n £ N there is a point 

%n £ Cn such that the sequence of rescaled pointed cone 3-manifolds ( C n , x n ) = 

(inj(x )Cn;^n) has a subsequence that converges geometrically to a compact cone 

3-manifold (Coo,#oo)- The geometric convergence implies that is a compact ori­

entable Euclidean 3-orbifold with the same topological type and the same branching 

indices as O (In particular has totally geodesic boundary). Thus O is Euclidean 

with totally geodesic boundary. We consider the following non-compact Euclidean 

orbifold without boundary 

OUddOx [0,oo). 

Since O is Euclidean with totally geodesic boundary, dO has a collar neighborhood 

which is metrically a product, therefore we can glue dO x [0, + o o ) so that the metrics 
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match. The ends of O UD dO x [0, oo) are S2(a, /3,7) x [0, +00), with a + (3 + 7 = 2?r. 

If we look at the classification of non-compact orientable Euclidean orbifolds, this fact 

implies that the only possibility is 

O U a (dO x [0,00)) ^ S 2 (a , /?,7) x R 

Thus 0 - 5 2(a,/?,7) x [0,1], contradicting the fact the O - E is hyperbolic. 

Contradiction in case 2).— In the second case, when we cannot find such a compact 

limit, we apply the local soul theorem to Cn and we consider the induced covering by 

Margulis' neighborhoods on the double DCn. Thus we obtain: 

Lemma 7.3.2 (Non-compact collapsing case). — For any e > 0 and D\ > 1, there ex­

ists no > 0 such that, for n > no, every point x in the double DCn has an open 

neighborhood UX (1 + e)-bilipschitz homeomorphic to the normal fibre bundle MV(S), 

with radius 0 < v < 1 depending on x, of the soul S of one of the following non-

compact orientable Euclidean orbifolds E: 

a) T2 x R ; S1 x E 2 ; S1 x D2(2n/p); 

b) the thick pillow 5 2(7r, 7r, 7r, 7r) X R ; the solid pillow. 

Moreover: 

i) If f : UX —• AFU(S) is the (1 + e)-bilipschitz homeomorphism, then 

max(inj(x), d(f(x), S), diam(S)) < v/D\. 

ii) Let rn : DCn DCn denote the involution whose fixed point set is dCn. If 

rn(x) = x (i.e. x G dCn), then rn(Ux) = Ux and there is an isometric involution 

Too'-NIS(S) —> AFV(S) such that: 

ffn — ^00/• 

As in the previous Chapters 5 and 6, the neighborhoods above given by the local 

soul theorem are called (e,D)-Margulis' neighborhoods, and the corresponding non-

compact Euclidean cone manifolds E are called local models. 

Proof of Lemma 7.3.2. — We observe that the additional property ii) in the state­

ment follows from the fact that we apply the local soul theorem for cone 3-manifolds 

with totally geodesic boundary as in Section 4.5. The Margulis' neighborhoods on 

Cn induce Margulis' neighborhoods on the double of Cn with property ii). 

To prove the lemma we have to remove five local models from the list of the local 

soul theorem. These are the models with soul an annulus, a Möbius strip, a disc with 

two cone points, a projective plane with two cone points, and a Euclidean turnover 

(when the soul has boundary we assume that it is silvered), cf. Lemma 6.2.2. 

If the soul is an annulus or a Möbius strip, then the boundary of the Margulis' 

neighborhood is a torus. Since DO — DY, is topologically atoroidal, DO is the union 

of the Margulis neighborhood with a solid torus. This contradicts the hyperbolicity 

of DO - £>£. 
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If the soul is a disc or a projective plane with two cone points, then the boundary 
of the Margulis' neighborhood is a pillow. Since O is small, every pillow in DO is 
compressible. Thus DO is the union of the Margulis neighborhood with a solid pillow, 
since the Margulis neighborhood is not embedded in a discal 3-orbifold. In particular 
the underlying space of DO is 5 3 , contradicting the fact that DO is of cyclic type 
and contains turnovers. 

Finally, to remove the case where the soul is a Euclidean turnover (i.e. a thick 
turnover), we apply Proposition 5.5.1 in Chapter 5. • 

The following lemma restricts the type of an (e, D)-MarguhV neighborhood for a 
singular point invariant by the reflection rn. 

Lemma 7.3.3. — For n sufficiently large, e < 1/2 and D > D\, every singular point 
of DCn, invariant by the reflection rn, has a (e, D)-Margulis' neighborhood of abelian 
type a) (i.e. with local model S1 K D2(2ir/p)). 

Proof of Lemma 7.3.3. — Let rn : Cn —• Cn be the reflection through dCn = Fix(r n ) . 
Let x G Fix(r n ) fl E be a singular fixed point of rn and let U be a (e, D)-Margulis' 
neighborhood of x satisfying properties i) and ii). We choose s < 1/2 and D > D\. 

Seeking a contradiction, let us assume that U is not of the desired type a) (i.e. with 
local model of type S1 x D2(2TT/P)). Then, by Lemma 7.3.2, for n sufficiently large, 
the local model of U must be of type b): either the thick pillow 5 2 (7r , TT, TT, TT) x l or 
the solid pillow. 

Let f : UX —> Afv(S) be the (1 + e)-bilipschitz homeomorphism. Property ii) says 
that Ux is rn-invariant and A O ( 5 ) has an involution such that frn = T o o / . In 
particular: 

f(undcn) / ' UnFix(rn)) Fix(Too 

Since A O ( 5 ) is either the solid pillow or the thick pillow, and since Fix(Too) is two 
dimensional and transverse to the singularity, it follows that Fix(Too) is connected and 
contains at least two singular points with cone angle TT. Thus a connected component 
of dO contains two singular points with ramification 2, which is impossible because 
the components of dO are non-spherical turnovers • 

We now deduce Proposition 7.3.1 from Lemmas 7.3.2, and 7.3.3. 

End of the proof of Proposition 7.3.1. — By hypothesis, the union DT,G of compo­
nents of DE that meets dO C DO is not empty. Since the 3-orbifold DO is irreducible, 
no component of DY>Q is contained in a discal 3-suborbifold; hence DO — int(A/'(DEa)) 
is an irreducible 3-orbifold. 

Let p : O —> O be the finite regular covering given by Proposition 7.1.2, which 
desingularizes the circle components E 0 of the ramification locus E of O. Let 

q:DO—>hgDO 

A S T É R I S Q U E 272 



7.3. THE SEQUENCE DOES NOT COLLAPSE 1 2 7 

be the induced finite regular covering, then DE = q 1(DHd). Let 

M = DO — int(Af(DE)) 

denote the exterior of the ramification locus of DO. Then the restriction of q to 
M is a regular finite manifold covering of the irreducible compact 3-orbifold DO — 
int(Af(DE a)). 

Moreover DO — int(.A/"(DEd)) does not contain any essential toric 2-suborbifold. 
Since O is small and DO — mt(Af(DT,)) is topologically atoroidal, such an essential 
toric 2-suborbifold would be homeomorphic to S2(TT, 7r, 7r, TT). Furthermore it would 
remain essential in DO, because DO does not contain a spherical turnover, contra­
dicting the fact that O is small. 

Therefore, by the equivariant sphere theorem ([DD], [MY1, MY2] , [JR]) the 
manifold M is irreducible, and it is topologically atoroidal because the characteristic 
family of essential tori in M is empty by [MS]. Thurston's hyperbolization theorem 
for Haken 3-manifold shows that either M is Seifert fibred or hyperbolic. 

If M admits a Seifert fibration, then it is preserved by the deck transformations 
group of the finite covering q:M —• DO — int(AT(DEa)), by Meeks and Scott's results 
[MS]. We can also assume that it is invariant by any lift of the involution of DO — 
int(A/"(DEa)) that fixes dO-N{dY). Thus, the 3-orbifold DO - mt(N(DY,d)) has a 
Seifert fibration, invariant by this involution. Since the components of dO — M(dT) 
are 3 times punctured spheres, by [Wal] they are transverse to the fibration, and 
О — int(jV(Ea)) is an /-bundle. It follows that О is the product of a turnover with 
an interval, and we have a contradiction with the hyperbolicity of О — E. 

Therefore, from now on we can assume that M admits a complete hyperbolic 
structure with finite volume. In particular M has a non vanishing simplicial volume 
IIMII > 0. 

We complete the proof of Proposition 7.3.1 by contradiction. By Lemma 7.3.2, 
for n sufficiently large, e < 1/2 and D > D\ the local model of the (e, D)-Margulis' 
neighborhood of each point in Cn is of type a) or b); moreover by Lemma 7.3.3 for all 
points of DYQ it is of type a). By a construction of a 77-covering a la Gromov on C n , 
for n sufficiently large and 77 sufficiently small, as in Chapters 5 and 6, we will be in 
position to apply Gromov's vanishing theorem for the simplicial volume of M ([Gro, 
§3.4], [Iva]) and thus to get a contradiction. 

To achieve that, we reproduce the proof of the "non compact collapsing case" in 
Sections 5.3 and 5.4, but using the notion of virtually abelian subsets in DO — DY>Q 
(as in Chapter 6) instead of the notion of abelian subset. This is due to the fact that 
we have to deal here with local models of type b) which are not abelian but only 
virtually abelian subsets in DO — DYQ. 

More precisely, here is the key lemma (analogous to Proposition 5.4.1) for the 
construction of the required 77-covering a la Gromov on C n , for n sufficiently large 
and 77 sufficiently small. 
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Lemma 7.3.4. — With the notation above, there is a universal constant bo > 0 such 

that, if for some n every point ofCn has a (e, D)-Margulis' neighborhood of type a) or 

b), with e < 1/2 and D > max{Z)i, 300}, then Cn admits a n-covering a la Gromov 

(Vi)iei with V < bo/D. Moreover, the open sets (Vi)iei of the rj-covering a la Gromov 

satisfy the following additional properties: 

6) there is a tubular neighborhood Af(DHe) of DY*d such that every component of 

J\f(DT>d) is contained in only one open set of the covering. 

7) Vz G I, [j Vj is virtually abelian in DO — DTQ. 
VjnVi^0 

Proof of Lemma 7.3.4- — To simplify the notation, we omit the index n of the 

hyperbolic cone 3-manifold Cn. 

The proof is analogous to that of Proposition 5.4.1. The fact that we have to 

consider a subset DTQ C DT instead of DE and (e, D)-Margulis' neighborhood of 

type b) for points on DE — DT,Q does not make any real difference in the proof. 

We recall that a subset U C C is virtually abelian in DO — DE^, if the image 

i*(iri(U — E')) is a virtually abelian subgroup of TTI(DO — DUg), where z* is the 

morphism induced by the inclusion i : (U — DYIQ) —> {DO — DY,Q) and 7Ti(-) denotes 

the fundamental group of the orbifold. 

For every point x G C, we define the virtual abelianity radius vab(x) (relatively to 

DO - DEd) to be: 

vab(x) = sup{r > 0 | B(x,r) is virtually abelian in DO — DTQ}. 

For every x G C we define r(x) = i n f ( v a l ^ , 1). 

This definition is analogous to the ones given in Sections 5.4 and 6.3. Since by 

Lemma 7.3.2 all points of DE^ have abelian (e, £>)-Margulis' neighborhoods, the 

proofs of Lemmas 5.4.2 to 5.4.5 in Section 5.4 (that give the construction of the re­

covering a la Gromov) work without any change, except for the proof of Lemma 5.4.3 

e) which is now a consequence of the following claim: 

Claim 7.3.5. — Let DEi and DY.2 be two components of DTQ. TWO peripheral el­

ements of 7Ti(DO — DY>d) represented respectively by meridians of DEi and Z)E 2 

cannot belong to the same virtually abelian subgroup of -K\{DO — DY*Q). 

Proof of Claim 7.3.5. — Let \i\ and \i2 be two peripheral elements in TTI(DO — DTQ) 

represented respectively by a meridian m i of J\f(DHi) and ra2 of jV(DE 2 ) . Let JI1 

and ~p2 the two peripheral elements of TTI (M) corresponding to some lifts of m i and 

m 2 on dM. Since M admits a complete hyperbolic structure on its interior, they 

correspond to two parabolic elements in TTI(M) with different fixed points on the 

sphere at infinity. Hence, ~p1 and JX2 always generate a non-elementary group in 

7Ti(M) C PSL2(C). In particular, pi and p2 cannot belong to the same virtually 

abelian subgroup of TTI(DO — DT,Q). 

This finishes the proofs of Claim 7.3.5 and thus of Lemma 7.3.4. • 
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To finish the proof of Proposition 7.3.1 we choose a constant 

D > m a x { A ) , D u b 0 / v o , 3 0 0 } , 

where Do and rjo are the constants given in Chapter 5, bo and D\ are the constants 

given in Lemmas 7.3.4 and 7.3.2. Then Lemma 7.3.4, together with Proposition 5.3.3, 

implies the existence of a continuous map g : DO —> K2, from DO to a 2-dimensional 

simplicial complex K2 such that: 

i') for every component DUi of DT,Q there is an open tubular neighborhood 
AfiDZi) of DT,i such that g(N(DY>i)) is a vertex of K2; 

if) for every vertex v of K2, g~1(sta,r(v)) is virtually abelian in DO — DEQ. 

By composing the restriction of g to the 3-orbifold DO — mt(Af(DEo)) with the 
projection of the covering map q : M —• DO — int(A/"(DEa)), we get a continuous 
map / = g o q : M —> K2 with the following properties: 

i') the components of dM are mapped by / to distinct vertices of K2\ 
ii') for every vertex v of K2, / _ 1 (star(?j)) is virtually abelian in M. 

On every closed Dehn filling M of M, we use the map / to construct a covering of 
dimension 2 of M by virtually abelian open subsets, as in the proof of Proposition 5.2.5 
in Section 5.4. Then, by Gromov's vanishing theorem ([Gro, §3.1], cf. [Iva]) the 
simplicial volume of every closed Dehn fillings M of M along dM vanishes. Since M 
has a complete hyperbolic structure with finite volume, Thurston's hyperbolic Dehn 
filling theorem [Thul] (cf. Appendix B) gives a contradiction. This finishes the proof 
of Proposition 7.3.1, and hence of Theorem 2. • 

SOCIÉTÉ M A T H É M A T I Q U E DE F R A N C E 2001 





CHAPTER 8 

HAKEN 3-ORBIFOLDS 

The purpose of this chapter is to give a detailed overview of the proof of Theorem 3 
(Thurston's hyperbolization theorem for Haken 3-orbifolds) that we need to complete 
the proof of Thurston's orbifold theorem without assuming the orbifold to be very 
good. 

Thurston's Orbifold Theorem. — Let O be a compact, connected, orientable, irre­
ducible, 3-orbifold of cyclic type. If O is topologically atoroidal, then O is geometric. 

Definition 8.0.1. — A compact orientable 3-orbifold is Haken if it is irreducible and it 
does not contain an essential turnover, but it contains an incompressible 2-suborbifold 
different from a turnover. 

Theorem 3 (Thurston's hyperbolization theorem for Haken 3-orbifolds) 
Let O be a compact orientable connected Haken 3-orbifold. If O is topologically 

atoroidal and not Seifert fibred, nor Euclidean, then O is hyperbolic. 

Remark 8.0.2. — The word Haken may lead to confusion: it is not true that a com­
pact orientable irreducible 3-orbifold containing an orientable incompressible properly 
embedded 2-suborbifold is Haken in our meaning. 

Example 8.0.3. — In Figure 1 of Chapter 7 there is an example of a small (hence non-
Haken) 3-orbifold with a non-empty boundary. By doubling it along its boundary, 
one gets a closed irreducible 3-orbifold which is not Haken, but contains an essential 
embedded 2-sided 2-suborbifold. 

We show in Section 8.1 how to deduce Thurston's orbifold theorem from Theorem 2 
and Theorem 3. Next, in §8.2, we give some basic properties of Haken 3-orbifolds. 
Finally, in the remaining of the chapter, we discuss the proof of Thurston's hyper­
bolization theorem for Haken 3-orbifolds. We do not intend here to give a full detailed 
proof, but only to point out the main modifications with respect to the proof in the 
manifold case. Since we follow closely the exposition of Thurston's hyperbolization 
theorem for Haken 3-manifolds, given in [McMl] and [Ot2] (cf. also [OP]), with a 
bit of courage the details can be worked out using these two references. 
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8.1. Proof of Thurston's Orbifold theorem 

Let O be a compact, orientable, connected, irreducible, topologically atoroidal 3-
orbifold. By [Dun2, Thm. 12] there exists in O a (possibly empty) maximal collection 
T of disjoint embedded pair wise non parallel essential turnovers. Since O is irreducible 
and topologically atoroidal, any turnover in T is hyperbolic (i.e. has negative Euler 
characteristic). 

When T is empty, Thurston's orbifold theorem reduces to Theorem 2 or 3 according 
to whether O is small or Haken. 

When T is not empty, we first cut open the orbifold O along the turnovers of the 
family T. By maximality of the family T, the closure of each component of O — T 
is a compact, orientable, irreducible, topologically atoroidal 3-orbifold that does not 
contain any essential embedded turnover. 

Let O' be one of these connected components. By the previous case, O' is either 
hyperbolic, Euclidean or Seifert fibred. Since, by construction, dO' contains at least 
one hyperbolic turnover T, O' must be hyperbolic. Moreover any such hyperbolic 
turnover T in dO' is a Fuchsian 2-suborbifold, because there is a unique conjugacy 
class of faithful representations of the fundamental group TT\(T) into PSL2(C). 

If the convex core of O' is 2-dimensional, then O' is a product T x [0,1], where T 
is a hyperbolic turnover. In this case the 3-orbifold O is Seifert fibred. 

Therefore we can assume that all the connected components of O — T have 3-
dimensional convex cores. In this case the hyperbolic turnovers are totally geodesic 
boundary components of the convex cores. Hence the hyperbolic structures of the 
components of O — T can be glued together along the hyperbolic turnovers of the 
family T to give a hyperbolic structure on the 3-orbifold O. • 

8.2. Fundamental results on Haken 3-orbifolds 

For the rest of this chapter we are not assuming anymore the 3-orbifold O to be of 
cyclic type. In particular the ramification locus E may be a trivalent graph. 

We have for Haken 3-orbifolds fundamental results which are analogous to the 
results known for Haken 3-manifolds. This follows mainly from Dunbar's theorem 
[Dun2] which shows that a Haken 3-orbifold O admits a strong hierarchy: 

Dunbar's Theorem [Dun2]. — Let O be a compact, orientable, Haken 3-orbifold. 
There is a finite sequence of pairs 

(Oi, F i ) - ( 0 2 , F 2 ) ( O n , 0 ) , 

such that: 

i) Ox = O. 
ii) Fi is a 2-sided essential (connected orientable) 2-dimensional suborbifold in Oi 

which is not a turnover. 
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iii) If dO{ is neither empty nor an union of turnovers, then dFi ^ 0 . 

iv) Oi+i =Oi\ mt(Af(Fi)) (cut G{ along FJ. 

v) On is a disjoint union of discal 3-orbifolds and Euclidean or hyperbolic thick 

turnovers (i.e. {turnover} x [0,1],). 

Remark 8.2.1. — Property iii) is not explicitly stated in Dunbar's paper. To find 

essential suborbifolds, the key point in Dunbar's paper is to use Culler and Shalen's 

technique [CS] about curves of representations. This technique allows to construct 

suborbifolds satisfying property iii), because any nontrivial curve of representations 

of a hyperbolic manifold induces a nontrivial curve of representations of its boundary. 

This follows for instance from the results of [Kap, Ch. 9]. 

The following proposition is a straightforward generalization of Waldhausen's the­

orem [Wa3]: 

Proposition 8.2.2. — Let O be a compact orientable Haken 3-orbifold. Then its uni­

versal cover O is homeomorphic to B3 \ T where T is a closed subset of dB3. 

Proof. — To prove Proposition 8.2.2 it is sufficient to show that O is a good orbifold, 

because then the proof reduces to Waldhausen's proof (cf. [Wa3]). 

The fact that a Haken 3-orbifold is good follows from [Tak2, Theorem A] by 

induction on the length of a strong hierarchy for O. • 

When O is a good 3-orbifold, we can use the following extensions of the Loop 

theorem and Dehn's Lemma, required in cut and paste methods for 3-orbifolds (cf. 

[Tak2, TaYl]). They are derived from the equivariant Dehn's Lemma (cf. [JR], 

[MY1, MY2]): 

Dehn's Lemma. — Let O be an orientable good 3-orbifold with boundary. Let 7 C 

dO — £ be a simple closed non singular curve. Assume that 7 represents an element 

of finite order n in 7Ti((9). Then there is a discal 2-suborbifold A properly embedded 

in O such that dA = 7 . • 

Loop Theorem. — Let O be an orientable good 3-orbifold with boundary. Let F C O 

be a connected component. 7/ker(7Ti(F) —» TX\(0)) ^ {1}, then there is a discal 2-

suborbifold A properly embedded in O such that A fl F = dA and dA does not bound 

a discal 2-suborbifold in F. • 

Corollary 8.2.3. — Let O be an orientable good 3-orbifold. Let F C O be a properly 

embedded 2-sided incompressible 2-suborbifold. Then: 

i) ker(7ri(F)->7Ti(C7)) = { l } . 

ii) If O' is any connected component of the 3-orbifold obtained by cutting open O 

along F, k e r ^ O ' ) TTI(O)) = { 1 } . • 
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Remark 8.2.4. — Since a Haken 3-orbifold is good and irreducible, by Corollary 8.2.3 
either it is a discal 3-orbifold or it has an infinite fundamental group. 

A direct consequence of the equivariant sphere theorem for 3-manifolds (cf. [DD], 
[JR], [MY1, MY2]) is: 

Corollary 8.2.5. — Let O be an orientable good 3-orbifold. If O is irreducible, then 
any manifold covering of O is irreducible. 

Remark 8.2.6. — To get the irreducibility of any orbifold covering in Corollary 8.2.5, 
one has to use the fact that every smooth action of a finite group on a 3-ball is 
conjugate to linear action. In the cyclic case that follows from the solution of the 
Smith Conjecture (cf. [MB]) and in the general case from the works of Meeks and 
Yau [MY3] and of Kwasik and Schultz [KS]. 

Definition 8.2.7. — Let O be an orientable 3-orbifold. A subgroup in TTI(0) is a 
peripheral subgroup if it is conjugate to a subgroup of the fundamental group of a 
boundary component. 

The following result is a generalization of Waldhausen's classical result [Wa3], due 
to Y. Takeuchi and M. Yokoyama [TaY2, Thm. 5.6] (cf. also [Takl]): 

Theorem 8.2.8. — Let 0\ and 0 2 be two orientable Haken 3-orbifolds with incom­
pressible boundaries. Let h:ix\{Oi) —> TTI(02) be an isomorphism which sends periph­
eral subgroups into peripheral subgroups. Then there is a homeomorphism between G\ 
and 0 2 that induces h. • 

Another fundamental result that we need is the following: 

Theorem 8.2.9 (Torus Theorem). — Let O be a compact orientable good 3-orbifold. If 
TTI(0) contains a subgroup Z 0 Z which is not peripheral, then either O contains an 
orientable essential toric 2-suborbifold or O is Euclidean or Seifert fibred. 

Proof of Theorem 8.2.9. — Like in Scott's proof [Scl] of the Torus theorem for 3-
manifolds, the first step is given by the following claim: 

Claim 8.2.10. — Let O be a compact orientable good irreducible 3-orbifold. Let A = 
Z 0 Z C 7Ti((9) be a non-peripheral subgroup. Then the covering O of O associated to 
this Z ® Z subgroup is a non-compact irreducible 3-manifold with at least two ends. • 

The proof of Claim 8.2.10 is the same as in the case of 3-manifold (cf. [Scl]; see 
also [Ja, Thm.VII.2.2]), once one observes that O must be a 3-manifold, because O 
is a good irreducible 3-orbifold whose fundamental group Z 0 Z has no torsion. In 
particular O has a compact core homeomorphic to T 2 x [0,1]. 
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In fact by the wok of J. Hass, H. Rubinstein and P. Scott [HRS], one can even 
show that O has a manifold compactification to T 2 x [0,1]. In the Haken case, that 
follows already from J. Simon's theorem (cf. [Ja, Thm.VII.4]). 

Therefore any infinite cyclic covering of O has only one end, so we can apply 
Dunwoody and Swenson algebraic torus theorem [DS] to show that: 

i) the group it\(0) either splits non-trivially over a virtual Z 0 Z subgroup, or 
ii) 7Ti(0) is an extension of a virtual Z by a virtual surface group, or 

iii) 7r i (0 ) is virtually Z 3 . 

One may remark that the virtual Z 0 Z subgroup obtained in case i) is not always 
commensurable to the original subgroup A. 

Anyway, since O is a good orbifold, it follows from [TaYl] that the algebraic 
splitting given in case i) may be realized by a geometric one. Hence it corresponds 
to a splitting along an orientable essential toric 2-suborbifold, since its fundamental 
group is virtually Z 0 Z. 

In case ii) TX\{0) is virtually the fundamental group of a compact orientable Seifert 
3-manifold. Then it follows from Scott's result [Sc2] that it is finitely covered by a 
Seifert 3-manifold. Therefore, by [MS], it is a Euclidean or a Seifert fibred orbifold. 

In case iii) the orbifold O is finitely covered by a closed irreducible 3-manifold, that 
is homeomorphic to the 3-torus T 3 by Waldhausen's theorem [Wa3]. Then it follows 
from [MS] that O is an Euclidean orbifold. • 

The following homotopic characterization of compact orientable good 3-orbifolds, 
which are topologically atoroidal and not Euclidean nor Seifert fibred, is used in the 
proof of Theorem 3: 

Proposition 8.2.11. — Let O be a compact, orientable, irreducible, good 3-orbifold with 
infinite fundamental group. If O is topologically atoroidal then either O is Euclidean, 
Seifert fibred, or TT\(0) is not virtually abelian and every Z 0 Z subgroup is peripheral. 

Proof of Proposition 8.2.11. — If TT\(0) contains a non peripheral Z 0 Z subgroup, 
then by Theorem 8.2.9 either O contains a 2-sided embedded essential toric 2-sub­
orbifold, or it is Euclidean or Seifert fibred. Since O is topologically atoroidal, it must 
be Euclidean or Seifert fibred. 

If TT\(0) is virtually abelian, since O is good, irreducible and compact, it is finitely 
covered by a compact orientable irreducible 3-manifold M such that TX\ (M) is isomor­
phic to Z, Z 0 Z or Z 0 Z 0 Z (cf. [Ja, Chap. V]). Since M is irreducible, it follows 
that M is homeomorphic to either S1 x D2,T2 x [0,1] or the 3-torus T 3 . Hence O is 
Euclidean or Seifert fibred by [MS]. • 

Remark 8.2.12. — In [Mai], S. Maillot has proved that a small orientable closed 3-
orbifold, whose fundamental group contains an infinite cyclic normal subgroup, is 
Seifert fibred, hence geometric. 
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Definition 8.2.13. — We say that a compact orientable 3-orbifold O is homotopically 

atoroidal if ni(0) is not virtually abelian and every Z © Z subgroup is peripheral. 

Now we can restate Thurston's hyperbolization theorem as: 

Theorem 8.2.14 (Thurston's hyperbolization theorem for Haken 3-orbifolds) 

Let O be a compact, orientable, connected, Haken 3-orbifold. If O is homotopically 

atoroidal, then O is hyperbolic. 

The proof of this theorem follows exactly the scheme of the proof for Haken 3-

manifolds (cf. [Thu2, Thu3, Thu5], [McMl], [Kap], [Otl, Ot2]; see also [Boi] for 

an overview) 

In the non-fibred case, the inductive gluing step, based on Thurston's fixed point 

theorem [McMl] (cf. [Ot2]) and Maskit's combination theorem [Masl, Mas2], is 

carried in an analogous way. The initial step requires an equivariant and stronger 

version of Andreev's theorem (cf. [Anl, An2], [Thul, Ch. 13]). 

In the fibred case over a 1-orbifold, either it is fibred over the circle or it is fibred 

over a compact interval with silvered ends. When it is fibred over the circle, the 

orbifold is of cyclic type and very good, so Theorem 8.2.14 follows already from our 

Theorem 1. 

When it is fibred over a compact interval, there is a 2-fold covering that fibres 

over the circle, hence that is hyperbolic by the first case. Then using the argument 

given by Bonahon and Siebenmann in [BS3], as in Lemma 2.4.7, one shows that this 

covering involution is conjugate to an isometry. Another proof follows from Takeuchi 

and Yokoyama's generalization of Waldhausen's theorem (cf. Theorem 8.2.8). 

8.3. Kleinian groups 

We call Kleinian group a discrete subgroup of PSL2(C). 

In the following we will always assume that T is non-elementary (i.e. not virtually 

abelian) and is finitely generated. 

The action of T on the hyperbolic space H 3 extends to a conformal action on the 

sphere at infinity 5 ^ , which we identify with the Riemann sphere C U { o o } . The 

sphere at infinity S2^ is partitioned into the domain of discontinuity £1 and the limit 

set A. 

The domain of discontinuity Q is the maximal open T-invariant subset of 5 ^ , on 

which T acts properly discontinuously. The limit set A is the closure of the set of fixed 

points of non-elliptic elements of T. It is the smallest non-empty closed T-invariant 

subset of S^. 

The Kleinian orbifold O := (M 3 U fy/T is an orientable 3-orbifold with a com­

plete hyperbolic structure on its interior O = M3/T and a conformal structure on its 

boundary dO = Q/T. 
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Remark 8.3.1. — A Kleinian orbifold O is always very good, by Selberg's Lemma 

[Sei] (cf. [Rat]). 

Since T is not elementary, if the domain of discontinuity Q is not empty, then it 

admits a unique complete metric of curvature —1 (called the Poincaré metric), which 

is conformai to the underlying Euclidean metric and such that V acts as a group 

of isometries of this metric. Thus dO = fl/T is a hyperbolic 2-orbifold. Moreover, 

Ahlfors' finiteness theorem asserts that dO = Ct/T has finite area when T is finitely 

generated. 

Proposition 8.3.2 (Ahlfors Finiteness Theorem [Ah]). — Let V be a finitely generated 

Kleinian group which is not elementary. If £l(T) ^ 0, then Q(T)/r is a finite-area 

hyperbolic orientable 2-orbifold in the Poincaré metric. • 

The convex core of a hyperbolic 3-orbifold O = M 3 / R is the quotient C(0) = 

C(A ) /R of the convex hull C(A) C H 3 of the limit set A of T. 

By construction, the convex core C(0) is the smallest closed convex subset of O 

such that the inclusion map i : C(0) —• O induces an orbifold-homotopy equivalence. 

Because of the convexity, any closed geodesic 1-suborbifold is contained in C(0). In 

general C(0) is not a differentiate suborbifold of O because 8C(0) is not smooth, 

but it is "bent" along some geodesic 1-suborbifolds. A way to avoid this difficulty is 

to consider a closed ^-neighborhood of C(O), for 5 > 0: 

C6(0) = {x G O I d{x, C(0)) < S}. 

That is now a 3-suborbifold of O of class C1, with a smooth strictly convex boundary. 

Moreover, Cs(0) does not depend (up to diffeomorphism) of S > 0 and, for all 6 > 0, 

C8(0) is diffeomorphic to the Kleinian 3-orbifold O = ( M 3 U fi(r))/I\ We call it the 

thickened convex core. 

Remark 8.3.3. — Associated to a non-elementary Kleinian group we have: 

1) The complete hyperbolic 3-orbifold O = M 3 / r . 

2) The Kleinian orbifold (with boundary) Ò = ( H 3 U ii{T))/T. 

3) The thickened convex core Cs(0) C O, where Cs(0) O is an orbifold- homotopy 

equivalence. 

Definition 8.3.4. — A complete hyperbolic 3-orbifold O is geometrically finite if for 

some (hence for every) S > 0 the volume of a thickened convex core is finite: 

vol(Ci(0)) < oo. 

Remark 8.3.5. — This notion of geometrically finite hyperbolic 3-orbifold is the nat­

ural generalization of uniform lattices (i.e. compact finite volume hyperbolic 3-orbi­

folds). For a complete hyperbolic 3-orbifold O = H 3 / R , an equivalent definition of 

geometrically finiteness is that some (hence every) Dirichlet fundamental domain of 

the Kleinian group T has a finite number of sides (cf. [MT, Chap. 3]). 
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Let T be a non-elementary Kleinian group. Given a point x G H3 and a real number 

¡1 > 0 one defines: 

rM(x) = <7€r|d(a:,7a:)</x> 

rM(x) is the group generated by those elements of T which move the point x a distance 

at most ¡1. 

Let T ^ r ) = {x G M3 | rM(x) is infinite}; it is a closed T-invariant subset of H3. 

According to B. Bowditch [Bow], for a complete hyperbolic orientable 3-orbifold 

0 with fundamental group T one defines the fi-thin part of O to be: 

thin^O)=T^T)/Y 

It is a closed subset of O. The closure of O — thin^O) is the ii-thick part thick ^(O). 

There exists a universal constant (the Margulis' constant) /xo > 0 such that for 

M < Âo each connected component of the /i-thin part is either a cuspidal end of rank 

1 or 2 (i.e. corresponds to the T-conjugacy class of a maximal infinite virtually rank 

1 or 2 parabolic subgroup of V) or is a tubular neighborhood of a closed geodesic 

1-suborbifold of O (called a Margulis tube). 

The union of the cuspidal ends of the /i-thin part (for /i < /io) is called the cuspidal 

part of O and denoted by cusp(0). 

If O is geometrically finite, then vol(C<$(0)) < oo and all the closed geodesic 

1-suborbifolds are in Cs(0). For this reason, there is no arbitrarily small closed 

geodesic. Hence there is a real number [i(0) > 0 such that thin^(0) — cuspiO) for 

all fj, < /¿(0) . 

The geometrically finiteness of O is equivalent to the fact that the //-thick part 

thick^(0's(0)) = Cs(0) fl thick^(O) of a convex core is compact for /x < /i(O). In 

this case the /x-thin part thin^(Cs(0)) = Cs(0) fl thin^O) is a disjoint union of 

finitely many cuspidal ends of finite volume. 

Then each connected component of the //-thin part thin^(Cs(G)) is isometric to 

the quotient of either a cylinder cusp (rank 1 cusp) or a torus cusp (rank 2 cusp) 

by a finite group of isometries. Thus it is isometric to F x [0, oo) with the metric 

e~2tds2+dt2, where (F, ds2) is a compact orientable annular or toric flat 2-suborbifold. 

The possibilities for F are: an annulus 51 x [0,1], a disc D2(n1 n) with two branching 

points of order 2; a torus T2; a pillow S2(TT, 7r, 7r, 7r); a turnover S2(^-, ^ - ) , with 
± ± ± = H 

Pl P2 P3 

For a geometrically finite hyperbolic 3-orbifold, the compact 3-orbifold pair 

(M,P) ,;b=cvvc<<: {thick^C5{0)),dthick^C5{0))r\thin^C0{0))) 

is independent of 5 > 0 and of fi < /i(O). The suborbifold P C dM is an union of toric 

and annular orientable 2-suborbifolds, corresponding to the track of the truncated 

cuspidal ends 

The following proposition is a straightforward consequence of properties of geo­

metrically finite Kleinian groups (cf. [Mori]). 
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Proposition 8.3.6. — Let O be an orientable geometrically finite hyperbolic 3-orbifold. 

The compact 3-orbifold pair 

( M , P ) x x x :=vvbb (thick^CsiO^^dthick^CsiO^nthin^CsiO))) 

has the following topological properties: 

1) M is a compact, orientable, irreducible and very good 3-orbifold. 

2) P C dM is a disjoint union of incompressible toric and annular 2-sub orbifolds. 

3) Every Z 0 Z subgroup in -K\M is conjugate to a subgroup of some iri(Pi), where 

Pi C P is a connected component (such a Z 0 Z must be parabolic). 

4) Any properly embedded annular 2-suborbifold (A, OA) ^ (M, P) whose boundary 

rests on essential curves in P is parallel to P. • 

Definition 8.3.7. — An orbifold pair (M, P) which satisfies properties 1) to 4) of 

Proposition 8.3.6 is called a pared 3-orbifold. The 2-suborbifold P is called the 

parabolic locus of the pared orbifold, and the compact 2-suborbifold dnM = dM \ P, 

the boundary of the pared orbifold. 

This boundary dnM is said to be super-incompressible, if it is incompressible and 

there is no embedded essential annular 2-suborbifold (A, OA) ^ (M, dM) with one 

boundary component on dnM and the other on P. 

The pared 3-orbifold (M, P) is said Haken when the 3-orbifold M is Haken. 

For the rest of this chapter we use the following terminology: 

Definition 8.3.8. — A pared 3-orbifold is hyperbolic if there exists an orientable geo­

metrically finite hyperbolic 3-orbifold O such that for 5 > 0 and 0 < // < ¡¿(0): 

(M,P) := (wxvthick^C5(0)),dthick^(C5(0)) nthnhin^{C5{G))) 

Here is the precise version of Thurston's hyperbolization theorem, needed for the 

proof of Theorem 8.2.14. 

Theorem 8.3.9 (Thurston's hyperbolization theorem for pared 3-orbifolds) 

Every compact orientable Haken pared 3-orbifold with a non-virtually abelian fun­

damental group 7Ti(M) is hyperbolic. 

Remark 8.3.10 (cf. [Mori]). — Compact pared 3-orbifolds with virtually abelian fun­

damental groups correspond to the pairs: 

- ( A 3 , 0 ) , with A 3 a discal 3-orbifold; 

- ( F x [0 ,oo ) ,Fx {0})> w ^ h F a closed orientable toric 2-orbifold; 

- (V, P), where V is a solid torus or pillow with possibly a ramified soul, and P 

is empty or an annular 2-suborbifold. 

They admit hyperbolic metric, but with infinite volume. 
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A compact orientable Haken 3-orbifold is built up inductively from discal 3-orbi­
folds and/or Euclidean or hyperbolic thick turnovers by gluing along incompressible 
suborbifolds of the boundary. So this version of Thurston's hyperbolization theorem 
for pared 3-orbifolds is needed at the inductive step, where pared 3-orbifolds appear 
naturally. 

Thurston's mirror trick (see §8.6, [Kap], [Ot2], [Pau]) allows to reduce the gluing 
inductive step to the final gluing step where the whole boundary 8QM is involved. 
Hence at the inductive step one has a hyperbolic (perhaps not connected) pared 3-
orbifold (M, P) with super-incompressible boundary and gluing instructions encoded 
by an orientation-reversing involution r : doM —» doM. In particular the manifold 
M/T obtained after gluing has a boundary which is a (possibly empty) union of closed 
orientable toric 2-orbifolds. 

We devote the next sections § 8.4 and § 8.5 to explain the proof of this gluing step. 
Then in § 8.6, we explain the mirror trick. 

8.4. Thurston's gluing theorem 

The main step of Thurston's hyperbolization theorem for Haken 3-orbifolds is the 
following theorem 

Theorem 8.4.1 (Thurston's gluing theorem). — Let (M, P) be a pared 3-orbifold with 
super-incompressible non-empty boundary doM. Let r : doM —» doM be an orienta­
tion-reversing smooth involution which permutes the boundary components by pairs, 
i.e. r = (/, / _ 1 ) : M M M —> 9 0 ~ M I I 9 | M . Assume that each connected com­
ponent of the pared orbifold (M, P) is hyperbolic. Then, the quotient orbifold M/r is 
hyperbolic if and only if M/r is homotopically atoroidal. 

The proof of Thurston's gluing theorem splits into two totally different cases ac­
cording whether or not the pared 3-orbifold (M, P) is a /-bundle over a compact 
2-orbifold. 

In the first case the quotient 3-orbifold M/T is fibred over a closed 1-orbifold. As 
remarked before, this case can be handled using our Theorem 1. 

So, from now on, we assume that the pared 3-orbifold (M, P) is not a /-bundle 
over a compact 2-orbifold. By Stallings's 3-dimensional /i-cobordism theorem [Sta] 
(cf. [Hem, Chap. 10]) and the fact that finite group actions on a product are standard 
(cf. [MS]), this hypothesis is equivalent to the condition that TTI (M) does not contain a 
finite index subgroup isomorphic to the fundamental group of an orientable 2-orbifold 
(cf. [Takl], §8.6). 

Using Maskit's combination theorem ([Masl, Mas2]; cf. also [Kap], [Ot2]), we 
show now how Thurston reduces the proof of the gluing theorem to a fixed point 
theorem in the non-virtually fibred case. 
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We recall first the definition of the Teichmiiller space T (F ) of a connected hyper­
bolic orientable 2-orbifold F of topological type (|F|, E^), where Ei? is a finite number 
of points. Two hyperbolic structures (F,si) and (F, s 2 ) are equivalent if there is an 
isometry h : (F, si) —> (F, s 2 ) , which is properly isotopic to the identity by an isotopy 
of the pair (|F|, E^) . The Teichmiiller space T(F) is the set of equivalence classes of 
hyperbolic structures with finite area on int(F). 

There is a natural distance on T(F) . The Teichmiiller distance between two equiv­
alence classes represented by (F, si) and (F, s 2 ) is defined by: 

A(si ,s 2 ) = 
1 
2 

i n f { l o g № ) ) } , 

where the infimum is taken among all the quasiconformal homeomorphisms 

h:(F,Sl)-^cvv(<<;F,s2) 

that are properly isotopic to the identity by an isotopy of the pair (|F|,Ei?), and 
where K(h) is the eccentricity of h. This distance turns T (F ) into a complete metric 
space. 

In general the Teichmiiller space T(F) of a possibly non connected orientable hy­
perbolic 2-orbifold F is the product of the Teichmiiller spaces of the connected com­
ponents. The Teichmiiller distance is then defined as the maximum of the distances 
on the Teichmiiller spaces of the components. 

We introduce now the space of hyperbolic structures of a hyperbolic pared 3-orbi­
fold. 

Definition 8.4.2. — Let (M, P) be a connected orientable pared 3-orbifold. Let E C M 
be the ramification locus. A hyperbolic structure on (M, P) is a pair (Ö, [/]), where 
Ö is a geometrically finite hyperbolic 3-orbifold and [/] is a proper homotopy class of 
orientation preserving homeomorphisms 

/ : ( M , P ) —•ccv v h i c k ß { C 5 ( 0 ) ) , d t h i c k ^ C s ( 0 ) ) r \ t h i n ß { C 8 ( 0 ) ) ) , 

for 8 > 0 and 0 < /i < /x(O). Two hyperbolic structures (Oi, [/1]) and ( 0 2 , [/2]) are 
equivalent if [f2)~1 0 fi is properly homotopic to an isometry. 

The set of equivalence classes of hyperbolic structures on the hyperbolic pared 
3-orbifold ( M , P ) is denoted QT(M,P). 

In the non-connected case, QT(M,P) is the product YlQJr(Mi,Pi) of the spaces 
QJr(Mi,Pi) of the connected components Mi of M. 

Remark 8.4.3 

1) If M is connected and if (Oi, [fi]) and (0 2 , [/2]) are two hyperbolic structures on 
M, then by A. Marden [Mar] the proper homotopy class of ( / 2 ) - 1 o fi can be 
realized by a homeomorphism that extends to a quasi-conformal homeomorphism 
between the boundaries of the associated Kleinian orbifolds 0\ and (9 2 . We call 
such a homeomorphism a quasiconformal extension in the proper homotopy class 
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[ ( / 2 ) _ 1 ° / 1 ] . Thus the set QT(M,P) is also called the space of quasi-conformal 

deformations of the hyperbolic pared 3-orbifold (M, P) 

This allows to define the Teichmiiller distance A on QT(M, P) by: 

A((£>i,[/i]), (02, [/2])) = \ inf{log(K(0))}, 

where the infimum is taken over all the quasi-conformal extensions (j) : 0\ —> O2 

in the proper homotopy class [ ( / b ) - 1 0 / 1 ] , and K((j>) is the eccentricity of the 

restriction (j): dO\ —> <902-

Moreover, Teichmuller's theory shows that this infimum is realized by a unique 

quasi-conformal extension in the proper homotopy class of [(/2) _ 1 0 / 1 ] . 

2) In the non-connected case, the distance on the product space QF(M, P) is defined 

as the maximum of the Teichmiiller distances on the factors. This distance turns 

QJr(M1 P) into a complete metric space. 

Let (M, P) be an orientable hyperbolic pared 3-orbifold. The Ahlfors-Bers map 

d : QT(M, P) —• T(doM) assigns to an equivalence class of hyperbolic structures 

(O, [ /]) G QT{M, P) the equivalence class in T(doM) of finite area hyperbolic struc­

tures induced on the boundary dO of the corresponding Kleinian 3-orbifold O (by 

Ahlfors finiteness theorem). 

Ahlfors-Bers theorem gives a parametrization of the quasi-conformal deformation 

space QT[M) by the Teichmiiller space T(d0M). 

Proposition 8.4.4 (Ahlfors-Bers Theorem). — Let (M, P) be an orientable hyperbolic 

pared 3-orbifold, with a non-empty boundary d0M. The map d : QT{M, P) —• T(doM) 

is a homeomorphism. 

Remark 8.4.5. — If doM is empty then QT{M, P) is reduced to a point by Mostow's 

rigidity theorem [Mos]. This is also the case if d$M is an union of turnovers. 

Proof of Proposition 8.4-4- — The proof of Proposition 8.4.4 follows from the classi­

cal case of manifolds [AB], by using the following equivariant definitions of QT(M, P) 

and T(d0M). 

Since M is a hyperbolic 3-orbifold, it is very good. Let q : N —• M be a finite 

regular manifold covering of M. Let Q = q~1(P)1 then (N,Q) is a hyperbolic pared 

3-manifold. 

Let G C Diff +(iV,Q) be the covering group of transformations. It has natu­

ral isometric actions on the deformation spaces QJr(N,Q) and T(doN), depending 

only on the image of G in the mapping class group TTO Diff(7V, Q). Moreover the 

spaces QJ:(M1 P) and T(8QM) can be identified respectively with the fixed points set 

QJr(N, Q)G and T(doN)G of these actions. From now on, we will always make these 

identifications, that allow to consider QT{M, P) and T(doM)) as metric subspaces of 

GF{N,Q) and T(d0N). 
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By the Bers embedding, the Teichmiiller space T(8QN) carries a complex structure. 
Hence the identification of T(d0M) with T(d0N)G allows to consider T(8QM) as a 
complex submanifold of T(8QN), since the action of G is by holomorphic transforma­
tions on T(d0N), cf. [Gard]. 

By definition of the Ahlfors-Bers map d : GF(N,Q) —• T(doN), one has the 
inclusion d(QJ:(N,Q)G) c T(d0N)G. Moreover, its restriction is the Ahlfors-Bers 
map d : QT(M,P) - » T(dQM). Then the bijectivity of d follows from the proof of 
the bijectivity of d. • 

From now on we assume that (M, P) is a compact orientable pared 3-orbifold with 
super-incompressible boundary 8QM. 

We define Thurston's skinning map, a : T(doM) —> T(d$M), where doM is the 
boundary of the pared 3-orbifold with the reversed orientation. To define this map 
we use the following notation: for a connected component F C doM, the index F 
specifies the projection on the factor T(F) of T(doM). 

By the Ahlfors-Bers theorem, to a point s G T(8QM) corresponds a geometrically 
finite hyperbolic structure (OS1 [fs]) G QT{M, P). The covering O f of OS, associated 
to the component F C doM determines a quasi-Fuchsian structure on the product 
pared 3-orbifold (F, OF) x [0,1], because the Kleinian group TT\(OS) has no accidental 
parabolic. This is a consequence of the fact that d$M is super-incompressible. 

Let (SF, S'F) G T(F ) x T(F) be the Ahlfors-Bers parameters of this quasi- Fuchsian 
structure, where SF G T(F ) is the coordinate on the factor T (F ) of 5 G T(doM). 

Definition 8.4.6. — The skinning map a : T(doM) —> T(doM) is defined by <T(S)F = 

s'F for every point s G T(8QM). 

In the following we denote by r* : T(d0M) —> T(d0M) the involution induced by 
the involution r. 

Thurston has reformulated Maskit's combination theorem [Masl, Mas2] into a 
fixed point criterium for the map r* o a : T(doM) —» T(8QM). 

Proposition 8.4.7 (Gluing criterium). — Let (M,P) be a hyperbolic pared 3-orbifold, 
with a super-incompressible, non-empty boundary d$M, and which is not an inter­
val bundle. Let r : 8QM —> doM be an orientation-reversing smooth involution which 
permutes the boundary components by pairs. If the map r* o a : T(doM) —• T(8QM) 
has a fixed point, then the quotient orbifold M/r is hyperbolic. • 

Remark 8.4.8. — The proof follows from the definition of the skinning map and 
Maskit's combination theorem. The algebraic part of Maskit's combination theo­
rem remains valid for Kleinian group with torsion. For the topological part one can 
invoke Takeuchi's generalization of Waldhausen's theorem (cf. Theorem 8.2.8). In fact 
following [Ot2, §2.1], only the trivial /-bundle case is needed ([Takl, §6], [TaY2]) 
together with the Baer-Nielsen's theorem (cf. [Zie]). 
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This gluing criterium shows that the gluing theorem 8.4.1 is equivalent to a fixed 
point theorem, that we discuss in the next section. 

8.5. Thurston's Fixed Point Theorem 

The goal of this section is to explain the proof the following theorem, that implies 
the gluing theorem 8.4.1. 

Theorem 8.5.1 (Thurston's fixed point theorem). — Let (M,P) be a hyperbolic pared 3-
orbifold, with a super-incompressible, non-empty boundary d$M, and which is not an 
interval bundle. Let r : doM —> doM be an orientation-reversing smooth involution 
which permutes the boundary components by pairs. Then the map T* O a : T{8QM) —> 
T(doM) has a fixed point if and only if the quotient 3-orbifold M/T is homotopically 
atoroidal. 

Since T(doM) is complete with respect to the Teichmiiller distance, to prove 
Thurston's fixed point Theorem 8.5.1 one has to study the contraction properties 
of the map r* o a. It is a holomorphic map on the Teichmiiller space T(doM) such 
that ||d(r*ocr)|| < 1, since the Teichmiiller metric coincides with the Kobayashi metric 
(cf. [Gard]). 

Moreover, since M is not an interval bundle, r* o a strictly (but not uniformly) 
decreases the Teichmiiller distance. This follows from the facts that r* is an isometry 
and that \\dcr\\ < 1 point wise. 

Coming back to the notation of § 8.4, let q : N —• M be a finite regular manifold 
covering of M. Let Q = q~1(P), then (N, Q) is a hyperbolic pared 3-manifold, which 
is not an interval bundle. 

Let G C Diff"1" (N,Q) be the covering group of transformations. Then the Teich­
miiller space T(8QM) can be identified (as a metric subspace) with the fixed points set 
T(doN)G of the natural isometric action of G on T(doN). We recall that the Teich­
miiller space T(doN) carries a complex structure, on which G acts holomorphically. 
Whence we can consider T ( 9 Q M ) as a complex submanifold of T(doN). Moreover it 
is a convex subset for the Teichmiiller metric: the Teichmiiller geodesic between two 
points of T(d0N)G is contained in T(d0N)G. 

We consider the skinning map of the manifold covering a : T(8QN) —> T{8QN). 
Then a{T{d0N)G) c T{d0N)G, since by the Ahlfors-Bers map ~d(gT{N,Q)G) = 
T(doN)G. By construction, the restriction of a to T(doN)G coincides with a. 

Moreover, the involution r : doM —> doM induces an isometry r* : T(doN)G —> 
T(doN)G, that may not extend to the whole Teichmiiller space T(doN). 

Since r* is an isometry, to prove Thurston's fixed point Theorem 8.5.1, one has 
only to study the contraction properties (with respect to the Teichmiiller distance) of 
the restriction of a to T(doN)G. 
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We will use McMullen's detailed analysis of the derivative and coderivative of 
the skinning map of the manifold covering a : T(8QN) —> T(doN), to study the 
contraction properties of the map r* o a (cf. [McMl]; see also [Ot2], [OP]). 

For example, if the pared 3-orbifold (M, P) is acylindrical, the quotient 3-orbifold 
M/T is always homotopically atoroidal. The pared 3-orbifold (M, P) is acylindrical 
iff the pared 3-manifold (N,Q) is acylindrical. McMullen [McMl] shows that in 
this case the skinning map a contracts strictly uniformly the Teichmiiller distance 
on T(doN). Therefore r* o a contracts strictly uniformly the Teichmiiller distance 
on the closed subspace T(8QN)G, hence has a fixed point since Teichmiiller space is 
complete. 

When the pared 3-orbifold (M, P) contains an essential annulus, some gluing invo­
lutions r may produce homotopically non-atoroidal 3-orbifolds M/r. Therefore one 
must take account of r in the proof of the fixed point theorem. This is why in this 
case one proves only that some fixed iterate (T* oo~)K is strictly uniformly contracting 
on some r* o a-invariant closed subset of T{d$M), as in the classical manifold case. 

In the following, we fix K = C + S, where C is the number of components of 8QM 
and S is the maximal number of homotopy classes of disjoint simple closed curves or 
arcs with silvered end points in <9oM, not parallel to dP. 

We choose an arbitrary point s0 G T(8QM) and we denote by L the Teichmiiller 
distance A ( S O , T * O c r (s 0 ) ) . We define T{8QM)L C T(8QM) to be the set of points 
which are moved a Teichmiiller distance less than L by the map T*OCT. Then T(8$M)L 
is a closed r* o cr-invariant subset since T * O G decreases the distance. Moreover for 
every point s G T(8QM)L the Teichmiiller geodesic between s and r* o o~(s) lies in 
T(8OM)L because of the triangle inequality. 

The following theorem is a consequence of McMullen's work [McMl] (cf. [Ot2], 
[OP]). 

Theorem 8.5.2. — Let (M, P) be a hyperbolic pared 3-orbifold, satisfying the hypoth­
esis of the fixed point theorem 8.5.1 and such that the quotient 3-orbifold M/T is 
homotopically atoroidal. Let T{8QM)L C T(8$M) and the integer K > 0 be defined 
as above. Then there is a uniform constant c < 1 such that the norm of the derivative 
of ( T * O O~)k at every point s G T(8QM)L verifies | |d(r* o cr) f || < c < 1. 

Theorem 8.5.2 shows that the map (r*ocr) K is uniformly strictly contracting on the 
path formed by the union of all the positive iterates by (r* o a)K of the Teichmiiller 
geodesic joining so to T*OO~(SO). Since T(8QM) is complete, that implies the existence 
of a fixed point for (r* o a)K, and hence for (r* o a). 

We give now a sketch (without details) of the proof of Theorem 8.5.2. 

Sketch of the proof of Theorem 8.5.2. — We recall that the moduli space M(d$N) is 
the quotient of the Teichmiiller space by the natural action of the mapping class group. 
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By Baer's theorem (cf. [Zie]) the moduli space M(doM) can be identified with the 
image of T(doN)G in M(doN). In particular it is a closed subspace of M(d0N). 

One of the key results in McMullen's article [McMl, Thm 5.3] is: 

Theorem 8.5.3 (McMullen's contraction Theorem)). — / / the pared 3-manifold (TV, Q) 
is not an interval bundle, then for any point s G T(doN) 

\\das\\ < c{[s}) < 1, 

where c is a continuous function of the modular class of s, [s] G M(doN). • 

Since cr is a contraction and r is an isometry, it follows that if ll^C^ocr)^! is near 1, 
then ||d(cr)(T*0(T)fc(s) || is also near 1 for all 0 < k < K — l. Then by the discussion above 
and by using Mumford's compactness theorem [Muml], a straightforward corollary 
of Theorem 8.5.3 is: 

Corollary 8.5.4. — If the pared 3-orbifold (M, P) is not an interval bundle, then either 
Theorem 8.5.2 is true, or there are points s G T(8OM)L such that the hyperbolic 2-
orbifolds (doM, (r* O a)k(s)) develop closed short geodesies, for 0 < k < K — 1. • 

Remark 8.5.5. — In our context, a closed geodesic has to be understood in the orbifold 
sense: it is either a closed curve or an arc with silvered end-points. 

One proves now Theorem 8.5.2 by contradiction. Let s G T(8OM)L be such that 
||d(r* o a)f || > 1 — rj for some n > 0 sufficiently small (depending only on the pared 
3-orbifold (M,P)). Choose e > 0 such that log(e) 4- 2KL < log(/x 0(2)), where /x 0(2) 
is the 2-dimensional Margulis constant. 

Using Corollary 8.5.4 and following [McMl, §7.3], (cf. also [Ot2, Facts 6.13 
to 6.15]), one shows the existence of an integer 0 < k < C — 1 such that the hy­
perbolic 2-orbifold (8QM, SO), with SQ = (r* oa)k(s) has the following properties: 

i) it contains a closed geodesic ao shorter than e/2; 
ii) there is an essential immersed annular 2-orbifold AQ in the pared 3-orbifold 

(M, P) with two boundaries components dAo = ao U 70 C doM, where 70 is 
homotopic to a closed geodesic shorter than e/2 for the hyperbolic metric a(so) 
on d0M. 

The length of the geodesic ai homotopic to r(7o) for the hyperbolic metric (r*ocr)(so) 
on doM is equal to the length of the geodesic homotopic to 70 for the hyperbolic 
metric cr(so), which by construction of 70 has length shorter than e/2 (cf. [McMl, 
§7.3], [Ot2, Fact 6.14]). Then one shows that the closed geodesic a\ on the hyper­
bolic surface (d0M, (r* o a)(s0)) verifies property ii) (cf. [McMl, §7.3], [Ot2, Facts 
6.13 and 6.14]). 

By iterating this construction, one produces a sequence of S + 1 immersed essential 
annular 2-orbifolds Ai, i = 0 , . . . , S, in the pared 3-orbifold (M, P) joining two closed 
1-orbifolds a, and ii in dnM such that: 
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1) ai is a closed geodesic, shorter than s/2, for the hyperbolic metric (r* ocr)*(so) on 
d0M. 

2) r o (7 )̂ is homotopic to (o^+i). 

Since the closed geodesic ai is shorter than e/2 for the hyperbolic metric (r*ocr) 2(s 0) 
on 9oM, it has length at most po(2) for the hyperbolic metric SQ. That follows from 
the choice of e and the fact that the Teichmiiller distance A(so, (T* O a)l(so)) is at 
most L K by the triangle inequality. 

By Margulis lemma, the closed geodesies of length less than /x 0/2 on the hyperbolic 
2-orbifold (<9oM, so) is a collection of disjoint closed simple curves or simple arcs with 
silvered end points. Hence, by the definition of the integer 5, the closed 1-orbifolds 
a*, i = 0 , . . . , 5, belongs to at most 5 homotopy classes on d$M. Therefore at least 
two among the closed 1-orbifolds a$, say a m and an, must be homotopic on doM. It 
follows that the result of gluing with r the boundaries of the annular 2-orbifolds Ai, 
for m < i < n, can be closed up by an homotopy between a m and an. In contradiction 
with the hypothesis, this would produce an essential map of a toric 2-orbifold into the 
3-orbifold M / T , because by construction each annular 2-orbifold Ai is essential into 
the pared 3-orbifold ( M , P). • 

8.6. Thurston's Mirror Trick 

In this section we describe the topological part of the inductive step, which allows 
to reduce its proof to Thurston's gluing Theorem 8.4.1. It is in this part of the proof 
that the existence of a finite strong hierarchy for a Haken 3-orbifold is used. It allows 
to associate to any orientable compact Haken 3-orbifold a complexity, and thus to 
argue by induction on this complexity. 

To define strong hierarchies adapted to the notion of pared 3-orbifolds, we need 
the following definitions: 

Definition 8.6.1. — A compact properly embedded 2-suborbifold (F, dF) <—> ( M , dM) 
is super-essential in a compact orientable pared 3-orbifold ( M , P) if it satisfies the 
following properties: 

- F is essential in M. 
- There is no essential embedded annulus ( 5 1 x [0, lJjS 1 x { O } , ^ 1 x { 1 } ) <—> 

( M , <9M, F ) , such that the boundary component S1 x { 1 } c F is not parallel to 
dF. 

- Any connected component of dF isotopic to a loop in dP already lies in P. 
- dF meets transversely dP in the minimum number of points in its isotopy class. 

Definition 8.6.2. — An orbifoldbody is a compact orientable Haken 3-orbifold that can 
be cut along a (possibly empty) collection of disjoint two-sided properly embedded 
discal 2-suborbifolds into a disjoint union of discal 3-orbifolds and/or thick turnovers. 

SOCIÉTÉ M A T H É M A T I Q U E D E F R A N C E 2001 



1 4 8 CHAPTER 8. HAKEN 3-ORBIFOLDS 

Such a minimal collection of disjoint two-sided properly embedded discal 2-sub-

orbifolds is called a complete system of meridian discs for the orbifoldbody. 

Remark 8.6.3. — It follows from [Dun2] that a Haken 3-orbifold is an orbifoldbody iff 

any properly embedded orientable essential 2-suborbifold in it is a discal 2-suborbifold. 

The following proposition introduces a notion of hierarchy for Haken pared 3-

orbifolds, which follows from Dunbar's construction of a strong hierarchy for Haken 

3-orbifolds [Dun2, Thms. 10, 11, 12] (see also [Mori, §4], [Ot2, §7] and [Pau] 

for the case of 3-manifolds). When the relative homology group with rational coef­

ficients ii~i(|M|,<9|M|;Q) vanishes, to construct the desired super-essential splitting 

2-suborbifold one uses Culler and Shalen's method via ideal points of the character 

variety of the hyperbolic pared 3-orbifold (M, P) [CS]. 

Proposition 8.6.4. — A compact orientable Haken pared 3-orbifold has a partial hi­

erarchy of the following type: there is a finite sequence of compact orientable pared 

3-orbifolds (Mo,Po),...,(Mn,Pn) such that: 

i) (M0,Po) = (M,P); 
ii) for k < n — 1, there is a connected super-essential 2-dimensional suborbifold 

Fk C Mk which is not discal nor a turnover; moreover if doMk is neither empty 

nor an union of turnovers, dFk ^ 0 ; 

iii) Mfc+i is the 3-orbifold obtained by splitting Mk along Fk. Moreover, P^+i is the 

union of toric and annular 2-orbifolds, obtained by cutting Pk along dFk and by 

forgetting the components that are discal; 

iv) Mn is an orbifoldbody. • 

The integer n is called the length of the hierarchy. It has an upper bound depending 

only on the pared 3-orbifold, because of the orbifold version of Haken-Kneser finiteness 

theorem (cf. [Dun2, Thm. 12]). We associate to a Haken pared 3-orbifold (M, P) the 

integer £(M, P) that is the greatest possible length for a strong hierarchy given by 

Proposition 8.6.4. We call it the length of ( M , P ) . 

A compact connected orientable pared 3-orbifold (M, P) of minimal length is an 

orbifoldbody with parabolic locus a (possibly empty) collection of incompressible toric 

and annular 2-orbifolds. Moreover the length of a pared 3-orbifold decreases strictly by 

cutting along any connected properly embedded super-essential 2-suborbifold which 

is not discal, nor a turnover. 

Thurston's mirror trick consists in associating to a compact, orientable, pared, 3-

orbifold (M,P) a compact, orientable, irreducible, atoroidal, mirrored 3-orbifold with 

boundary a (possibly empty) union of toric 2-orbifolds. 

Definition 8.6.5. — A mirrored 3-orbifold is a pair (M, H) where M is a compact 

orientable irreducible 3-orbifold with boundary a (possibly empty) union of toric 2-

orbifolds, and H = (Z2)h C Diff(M) is a non-trivial finite abelian group that is 
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generated by orientation reversing symmetries through properly embedded orientable 
essential 2-suborbifolds in M. 

We call the non-orientable quotient 3-orbifold JC = M/H the kaleidoscope associ­
ated to the mirrored 3-orbifold (M, H). 

Remarks on kaleidoscopes. — A kaleidoscope /C = M/H is a non-orientable 3-
orbifold that is locally modeled on the quotient of M3 by one of the following groups: 

i) a finite cyclic rotation group, 
ii) a finite abelian group, generated by a rotation and a reflection through a coordi­

nate plane orthogonal to the axis of the rotation, 
iii) a subgroup of the group of eight elements generated by the reflections through 

the three coordinate planes. 

The ramification locus 9 C JC is the union of a 1-suborbifold E, that is the quotient 
E/iJ of the ramification locus E of M, with a 2-suborbifold whose underlying space 
is <9|/C|-int(|d/C|). 

The interior points with an isotropy group generated by reflections through two or 
three coordinate planes, together with the boundary points with an isotropy group 
generated by reflections through one or two coordinate planes form a 1-suborbifold 
Q C ©. Its underlying space is a trivalent graph in d\K,\ — int(|d/C|) whose vertices 
correspond to interior points with isotropy group ( Z / 2 Z ) 3 or boundary points with 
isotropy group ( Z / 2 Z ) 2 . We call the closure of a connected component of 6 — {Q U E} 
a mirror of JC. 

One can see the 3-orbifold JC = M/H as a right angled kaleidoscope obtained by 
silvering the connected components of doM — Q that are neither a square, nor a bigon 
with a branching point. It is F. Bonahon's observation that for the proof of Thurston's 
hyperbolization theorem for Haken 3-orbifolds we need to consider only this kind of 
kaleidoscopes. 

Conversely, according to [Mori, Lemma 14.1] or [Ot2, §7.2] a Kaleidoscope can 
always be mirrored along its silvered faces to get a compact orientable mirrored 3-
orbifold. 

This dictionary between mirrored 3-orbifolds and kaleidoscopes will be very useful 
to prove some equivariant properties of mirrored 3-orbifolds. 

Definition 8.6.6. — The underlying type of a mirrored 3-orbifold (M, H) or of the 
associated kaleidoscope JC = M/H is the pair (M, P) , where M is the compact ori­
entable 3-orbifold obtained from the kaleidoscope JC by erasing the mirrors, and P 
is obtained from dJC by discarding the components which are either a square or a 
bigon with a branching point. Since H ^ { 1 } , doM = d\IC\ — P is not empty. The 
ramification locus of the 3-orbifold M is obtained from E = E / i f by forgetting the 
silvering at its end points. In particular the topological type of the 3-orbifold M is 
given by the pair (|/C|, E). 
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Definition 8.6.7. — Given a compact orientable pared 3-orbifold (M, P) , we denote by 

AM(M, P) the set of homotopically atoroidal mirrored 3-orbifolds with underlying 

type ( M , P ) . 

Proposition 8.6.8. — Let (M, P) be a compact orientable pared 3-orbifold, then there 

is a homotopically atoroidal mirrored 3-orbifold (M,iJ) G AM(M, P) such that 

dM/H = P. 

Proo/ of Proposition 8.6.8. — Since H ^ {1}, doM ^ 0. Then, the proof of Proposi­

tion 8.6.8 reduces to the construction of a trivalent graph Q C doM with the following 

properties: 

1) 5 f l E = 0, where £ is the ramification locus of the 3-orbifold M; 

2) the closure of every connected component of 8QM — Q is either: 

i) a n-gon with n > 5 vertices of Q or 

ii) an annulus with one boundary component lying in dP, and at least one vertex 

of Q in the other boundary component; 

3) if 7 C doM is an embedded closed curve which intersects Q transversely in at most 

four points, then 7 bounds a discal 2-suborbifold A C % M whose intersection 

Q fl A is homeomorphic to one of the following forms (see Figures 1 and 2): 

a) the cone over £ 0 7 when Q D 7 contains at most 3 points; 

b) two disjoint arcs with end points Q D 7, possibly connected in A by an edge 

of g. 

FIGURE 1. Property 3) when A is a nonsingular disc. 

FIGURE 2. Property 3) when A is a disc with one cone point. 
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Then the compact Kaleidoscope JC with underlying type (M, P) and obtained by 

silvering all the connected components of do M — Q is irreducible and topologically 

atoroidal. The irreducibility follows from the irreducibility of the 3-orbifold M, the 

super-incompressibility of doM and properties 1), 2) and 3 a) of the graph Q. The 

topological atoroidality follows from the topological properties of the pared 3-orbifold 

( M , P ) and properties 1), 2) and 3 b) of Q. 

By [BS1] and [MS], M is either homotopically atoroidal, Euclidean or Seifert 

fibred. Since the mirrors are n-gons with n > 5 vertices, M contains essential hyper­

bolic 2-suborbifolds. Hence it cannot be Euclidean and it has infinite fundamental 

group. Moreover, by [MS] M is not Seifert fibred, since the fibration cannot be pre­

served by the group H. Otherwise some of the reflecting essential 2-suborbifold in M 

would be saturated, because Q has at least one trivalent vertex. 

Construction of the trivalent graph Q.— To construct the trivalent graph Q with 

the required properties, we fix a closed collar neighborhood C(P) of the parabolic 

locus P in dM such that the neighborhoods are pairwise disjoint. We consider a 

triangulation T of dM — int (C(P)) such that the ramification locus do M fl U belongs 

to the 0-skeleton of T, any 2-simplex in T intersects £ in at most one vertex and 

dC(P) belongs to the 1-skeleton of T. 

We first get a refined triangulation T by modifying T inside each triangle as fol­

lows: we subdivide each edge of the triangle in its middle point, we add the edges 

(parallel to the edges of the triangle) which join them, then we reproduce this modifi­

cation in the created triangle and we join each vertex of the new homothetic triangle 

obtained by an edge to the corresponding vertex of the initial triangle (see Figure 3). 

This construction is due to E. Giroux (cf. [Ot2, §7], [Pau]). 

Let t T be the cellulation dual to the triangulation T' , obtained by putting a 0-cell 

in the interior of each 2-simplex of T' and of each 1-simplex of T'ndC(P), a 1-cell for 

each 1-simplex of T' and each 0-simplex of T ' D dC(P), and a 2-cell for each interior 

0-simplex of T 7 . 

FIGURE 3. A refined triangle and its dual cellulation 
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Let G be the 1-skeleton of the cellulation tT>'. It is a trivalent graph that verifies 

property 1) because EndoM belongs to the 0-skeleton of T 7 . It verifies also property 

2) since by construction each interior 0-simplex of T' is at least pentavalent and each 

0-simplex of T 7 fl 8C(P) is at least tetravalent. 

Property 3) is a consequence of the fact that a closed curve 7 intersecting Q in 

at most 4 points gives rise to a closed path 7 contained in the 1-skeleton of T' and 

following at most 4 edges. By the construction of the triangulation T such closed 

path 7 is contained in the union of at most 2 triangles of the initial triangulation T 

with a common edge or a common vertex. Since at most one vertex of each triangle 

of the triangulation T belongs to the ramification locus E of M, the disc bounded by 

7 contains at most one point of ramification and verifies property 3. 

Moreover, since no connected component of 8QM — Q is a rectangle, nor a bigon 

with a branching point, dM/H = P. • 

Definition 8.6.9. — A compact orientable mirrored 3-orbifold (M, H) is said hyper­

bolic if it admits a ^-invariant complete hyperbolic structure with finite volume. 

Given a compact orientable pared 3-orbifold (M, P), let HM(M,P) denote 

the set of hyperbolic mirrored 3-orbifolds with underlying type (M, P). Clearly 

HM(M,P) cAM(M,P). 

Remark 8.6.10. — The existence of a complete iiT-invariant hyperbolic structure with 

finite volume on the mirrored 3-orbifold (M,H) is equivalent to the existence of 

a complete hyperbolic structure with finite volume on the associated kaleidoscope 

K — M/H. In particular all the mirrors are totally geodesic and the dihedral angle 

at a common edge between two mirrors is n/2. 

Such a kaleidoscope is said hyperbolic. 

When the orbifold M is not fibred over a 1-orbifold, the following hyperbolization 

theorem is proved by induction on the length £(M,P) of the pared 3-orbifold (M, P) 

by using the gluing theorem 8.4.1. 

Theorem 8.6.11 (Hyperbolization theorem for mirrored 3-orbifolds) 

Let (M, P) be a compact orientable Haken pared 3-orbifold, then 

HM(M,P)=AM(xxxbbM,P). 

First we show how to deduce the hyperbolization theorem for Haken pared 3-

orbifolds (Theorem 8.3.9, and thus Theorem 3) from the hyperbolization theorem for 

mirrored 3-orbifolds. 

Proof of Theorem 8.3.9 from Theorem 8.6.11. — Let (M, P) be a compact orientable 

Haken pared 3-orbifold. By Proposition 8.6.8 there is a mirrored 3-orbifold (M, H) e 

AM(M,P) such that dM/H = P. Since Theorem 8.6.11 shows that the mirrored 

3-orbifold is hyperbolic, Theorem 8.3.9 follows from the following: 
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Claim 8.6.12. — Let (M, H) be a compact orientable hyperbolic mirrored 3-orbifold 

with underlying type (M, P) and such that dM/H = P. If TTI(M) is not virtually 

abelian, then (M, P) is a hyperbolic pared 3-orbifold. 

Proof of Claim 8.6.12. — The kaleidoscope JC — M/H has a complete hyperbolic 

structure on its interior with totally geodesic mirrors. Moreover its boundary dK = P 

corresponds to cuspidal ends of this structure. Hence any thickened convex core 

Cs(K>) of the hyperbolic 3-orbifold /C is of finite volume and the 3-orbifold pair 

(thick^{Cs(K)),dthick^(C^/C)) fl thin^(Cs(1C))) (for ¡1 < /x(/C)) is diffeomorphic 

to (M, P). When 7ri(M) is not virtually abelian, this gives a geometrically finite 

hyperbolic structure on the pared 3-orbifold (M, P). • 

We explain now the proof of the hyperbolization theorem for mirrored 3-orbifold 

(Theorem 8.6.11) when M is not fibred over a 1-orbifold. 

We first need some extra results about good splitting 2-suborbifolds in a mirrored 

3-orbifold. 

Let (M, P) be a compact orientable pared 3-orbifold and let (F, OF) C (M, dM) be 

a properly embedded orientable 2-suborbifold. In the following we denote by (Mp, PF) 

the pair obtained by cutting M and P along F and by forgetting, after cutting P, the 

components that are discal. We will use analogous notations when cutting a mirrored 

3-orbifold or a kaleidoscope along some properly embedded two-sided 2-suborbifold. 

Definition 8.6.13. —Let (M, H) be a mirrored 3-orbifold with underlying type (M, P) . 

A good splitting 2-suborbifold is a H-equivariant, properly embedded, super-essential, 

orientable 2-suborbifold (P, OF) ^ (M, dM) such that the non-orientable 2-suborbi­

fold T = F/H C /C = M/H corresponds, after erasing the mirrors of /C, to a properly 

embedded, orientable 2-suborbifold (P, dF) C (M, doM) which is either: 

i) a complete system of meridian discs if M is an orbifoldbody, or 

ii) a connected super-essential 2-suborbifold that is not discal, nor a turnover, and 

with non-empty boundary if OQM is not an union of turnovers. 

We call F C M the underlying type of F and T. 

The following two lemmas are crucial to reduce the proof of Theorem 8.6.11 to the 

gluing theorem 8.4.1. 

Lemma 8.6.14. — Let (M, H) be a compact orientable mirrored 3-orbifold. If its un­

derlying type (M, P) is a Haken pared 3-orbifold, then there is a good splitting 2-

suborbifold in (M,H). 

Proof of Lemma 8.6.14- — Let K = M/H be the kaleidoscope associated to the mir­

rored 3-orbifold (M, H). Using the fact that the underlying space M of IC is a Haken 

3-orbifold, the proof consists in finding a properly embedded non-orientable super-

essential 2-suborbifold (T, dT) C (/C, dK) with the following properties: 
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i) the underlying type F of T is either a complete system of meridian discs if M is 

an orbifoldbody, or a connected super-essential 2-dimensional suborbifold which 

is not discal, nor a turnover and with a non-empty boundary if d$M is not empty, 

nor an union of turnovers. 

ii) | J7! intersects transversely the graph \Q\ in the minimal number of points among 

all the properly embedded non-orientable super-essential 2-suborbifolds satisfying 

property i). 

Then the lift F of T to M is a good splitting 2-suborbifold. We refer to [Ot2, 

Lemma 7.3] and leave the details to the reader. • 

Lemma 8.6.15. — Let (M,H) £ A M ( M , P) be a compact orientable homotopically 

atoroidal mirrored 3-orbifold. Let F C M be a good splitting 2-suborbifold, with un­

derlying type F. Then there is a compact orientable homotopically atoroidal mirrored 

3-orbifold (M',H') £ AM{MFjPF) and a subgroup H" c H' such that H'/H" ^ H 

and the mirrored 3-orbifold (M\H") has for underlvina tvve the vared 3-orbifold 

(M^(dbb,BM)p). 

Proof of Lemma 8.6.15. — Let F C M be a good splitting 2-suborbifold and let 

T = F/H be the properly embedded non-orientable super-essential 2-suborbifold of 

the kaleidoscope K = M/H. We denote b y F c M the properly embedded orientable 

super-essential 2-suborbifold obtained from T after erasing the mirrors of JC. 

By cutting the kaleidoscope JC along T one gets a kaleidoscope JCj? whose boundary 

contains two copies and T~ of T. 

Let (MF,PF) be the compact orientable pared 3-orbifold obtained by cutting 

(M, P) along the super-essential 2-suborbifold F, then the proof follows from the 

following claim: 

Claim 8.6.16. — There is a homotopically atoroidal kaleidoscope K! with underlying 

type (Mi?,Pp) such that: 

1) U . F - is an union of mirrors of' JC''; 

2) the kaleidoscope can be obtained from the kaleidoscope K! by erasing the mirrors 

contained in U T~. 

We first deduce Lemma 8.6.15 from Claim 8.6.16. 

By the equivariant characteristic toric decomposition [BS1], the mirrored 3-orb­

ifold {Mf,H') such that M'/H' = K! is homotopically atoroidal and has the same 

underlying type ( M F , P F ) as /C; thus (M',Hf) e AM(MFIPF)-

Let H" C H' be the subgroup generated by the reflections in the mirror group H' 

corresponding to the mirrors contained in .F + U T~. Then the mirrored 3-orbifold 

(M' , H") has for underlying type the pared 3-orbifold (Mp, (dM)p). • 

Proof of Claim 8.6.16. — Let F + and F~ be the two copies of F in 8MF and n : 

MF - > M b e the quotient map given by identification of F + with F~. We denote by 
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QF C 3QMF the trivalent graph n~1(Q U <9F), where Q c doM is the trivalent graph 

whose edges belongs in the kaleidoscope JC to the intersection of two mirrors or of a 

mirror and a connected component of dJC. The proof consists in adding to QF edges 

which are contained in F + U F~ to get a trivalent graph Q' c d0MF so that: 

a) no component of ( F + UF") — Q' is a rectangle, nor a bigon with a branching point; 

b) the kaleidoscope, obtained by silvering the component of d§Mp — Q' which are not 

rectangle, nor a bigon with a branching point, is homotopically atoroidal. 

This can be thought as a relative version of the proof of Proposition 8.6.8. We refer 

to [Ot2, Lemma 7.4] or [Pau, Lemma 2.32], and leave the details to the reader. • 

Now we start explaining the proof of the hyperbolization theorem for mirrored 

3-orbifolds. We consider only the case where the underlying type is not a bundle over 

a 1-orbifold. 

Proof of Theorem 8.6.11 in the non-fibred case. — The first step of the induction is 

given by Andreev's theorem and some generalizations of it due to Thurston. These 

results show that homotopically atoroidal kaleidoscopes with underlying types either 

( A 3 , 0 ) , (T e x [0, l ] ,T e x { 1 } ) or (Th x [0,1], 0 ) are hyperbolic, where A 3 is a discal 

3-orbifold, Te an Euclidean turnover and Th a hyperbolic turnover. 

For a proof of these theorems we refer to the original articles by E.M. Andreev 

[Anl, An2] (cf. [Riv]), and to Thurston's notes [Thul, Thm. 13.6.1, 13.6.5 and 

13.7.1], where the approach via pattern of circles gives the desired generalizations to 

handle the cases with underlying types (Te x [0,1],Te x { 1 } ) or (Th x [0,1], 0 ) (cf. 

also [Bro], [Kap]). 

Theorem 8.6.17 (Andreev-Thurston's Theorem). — Let JC be a compact kaleidoscope 

with underlying type either ( A 3 , 0), (Te x [0, l ] ,T e x { 1 } ) or (Th x [0,1], 0 ) . Then JC 

is hyperbolic iff JC is topologically atoroidal and acylindrical. • 

For topologically atoroidal and acylindrical kaleidoscopes with underlying type a 

pared 3-manifold ( £ 3 , 0 ) , or (T2 x [0,1], T2 x { 1 } ) , or (F x [0,1], 0 ) , where T2 is 

the 2-torus and F is a hyperbolic surface, the existence of the desired hyperbolic 

structure follows from an argument of circle pattern (cf. [Thul, Thm. 13.6.2 and 

13.7.1], [Mori, §15]). Moreover, this hyperbolic structure is uniquely determined, 

up to isometry, by the combinatorial structure of the Kaleidoscope (i.e. the cellulation 

of 8QM given by the mirrors and whose 1-skeleton is the trivalent graph Q). 

Hence any symmetry of the kaleidoscope is reflected in it. That gives the desired 

hyperbolic structures on the topologically atoroidal and acylindrical kaleidoscopes 

with underlying types ( A 3 , 0 ) , (Te x [0,1],Te x { 1 } ) or (Th x [0,1], 0 ) , since they 

are finitely covered by Kaleidoscopes with underlying type one of the above pared 

3-manifolds. 
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The proof in the thick hyperbolic turnover case uses the assumption that Th x { 1 } 
is a single mirror. The statement of Theorem 8.6.17 can be deduced from this case 
by cutting the kaleidoscope /C with underlying type (Th x [0,1], 0 ) into two pieces 
along the hyperbolic turnover Th x { 1 / 2 } . One obtains two topologically atoroidal and 
aspherical kaleidoscopes K\ and K2 by silvering each copy of the hyperbolic turnover 
Th x { 1 / 2 } . Then one gets the hyperbolic structure on /C by gluing the hyperbolic 
structures on K\ and K2, given by the proof above, along the two totally geodesic 
hyperbolic turnovers corresponding to a copy of Th x { 1 / 2 } in K\ and K,2. 

To handle the inductive step we need the following equivariant version of the gluing 
theorem 8.4.1. 

Proposition 8.6.18. — Let ( M , i f ) G AM(M,P), where M is not a bundle over a 
closed 1-orbifold. Let F C M be a good splitting 2-suborbifold, with underlying type 
F C M. Let (MF,PF) be the pared 3-orbifold obtained by cutting open (M,P) along 
F. If AM(MF,PF) = HM(MF,PF), then the mirrored 3-orbifold (M,H) is hyper­
bolic. 

Proof of Proposition 8.6.18. — Let (Mp,(dM)p) be the pared 3-orbifold obtained 
by cutting open the pared 3-orbifold (M, DM) along the super-essential 2-suborbifold 
F. Then Lemma 8.6.15 implies the following claim: 

Claim 8.6.19. — With the hypothesis of Proposition 8.6.18, the pared 3-orbifold 
(Mp, (dM)p) admits a H-invariant hyperbolic structure. 

Proof of Claim 8.6.19. — Let (M',HR) e AM(MF,PF) be the compact orientable 
mirrored 3-orbifold given by Lemma 8.6.15. Since by hypothesis AM.(MF,PF) = 
HM(MF,PF), the mirrored 3-orbifold (M',HR) is hyperbolic. Hence the 3-orbifold 
M' admits a complete if'-invariant hyperbolic structure with finite volume. This hy­
perbolic structure is also invariant by the subgroup if" c if', given by Lemma 8.6.15. 
In particular, the kaleidoscope M' /H" has a i f -invariant hyperbolic structure. Since 
dM'jE" = (dM)p, Claim 8.6.12 shows that the pared 3-orbifold (Mp, (dM)p) has 
a if-invariant hyperbolic structure. • 

By definition of a good splitting 2-suborbifold and the fact that the 3-orbifold M 
is not a bundle over a closed 1-orbifold, the pared 3-orbifold (Mp, (dM)p) is not 
a bundle over a 1-orbifold (cf. [Ot2, Prop. 7.6]). Moreover its boundary doMp is 
super-incompressible. 

Since the pared 3-orbifold (Mp, (dM)p) is hyperbolic, the gluing theorem 8.4.1 
shows that the interior of the compact 3-orbifold M admits a complete hyperbolic 
structure with finite volume. There are several ways to get a if-invariant hyperbolic 
structure. 

One way, as in [Ot2, § 8], is to establish a if-equivariant version of the gluing the­
orem 8.4.1. One can define a natural action of i f on the Teichmiiller space T(doMp) 
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and consider the the fixed point set T(doMp)H of this action. This set is not empty 

by Claim 8.6.19. Hence, it is a closed non-empty subset of T(doMp), invariant by 

the map r* o cr. Since T * O a is contracting, the unique fixed point in T(doMp) given 

by the fixed point Theorem 8.5.1 must belong to T(doMp)H. Now the existence of a 

^-invariant complete hyperbolic structure on M follows from a ff-equivariant version 

of Maskit's combination theorem (cf. [Ot2, §8]). 

Another way is to verify that Kapovich's proof of his homeomorphism theorem 

for homotopically atoroidal kaleidoscopes, with underlying type an orientable Haken 

3-manifold [Kap, Thm. 7.30], extends to the case where the underlying type is an ori­

entable Haken 3-orbifold. One follows Kapovich's proof to show that an isomorphism 

of the fundamental groups of the two homotopically atoroidal Kaleidoscopes induces 

an isomorphism of the fundamental group of the underlying types that preserves the 

peripheral structures. Then by Takeuchi and Yokoyama's result (cf. Theorem 8.2.8) 

this isomorphism can be realized by a homeomorphism between the two underlying 

types. The last task is to construct such a homeomorphism which preserves the two 

mirror structures on the boundaries of the underlying types (cf. [Kap, §7.5]). • 

We now finish the proof of Theorem 8.6.11. If the length of the pared 3-orbifold 

£(M, P) = 0, then M is an orbifoldbody. 

Let (M,H) e AM{M,P). By Lemma 8.6.14 there is in M a good splitting 2-

suborbifold F with underlying type a complete system of meridian discs F C M. Since 

each connected component of the pared 3-orbifold (MF,PF), obtained by cutting 

open (M, P) along F, is either a discal 3-orbifold or a thick Euclidean or hyperbolic 

turnover, AM(MF, PF) = HM(MF, PF) by Theorem 8.6.17. Hence (M, H) is hyper­

bolic by Proposition 8.6.18. Therefore, we have shown that AM{M, P) = HM(M, P) 

when £(M, P) = 0. 

Let (M, P) be a Haken pared 3-orbifold with length £(M, P) = £ > 0 and as­

sume Theorem 8.6.11 to hold for all Haken pared 3-orbifolds with length < £. Let 

(M, H) e AM(M, P), by Lemma 8.6.14 there is a good splitting 2-suborbifold F CM 

with underlying type a properly embedded orientable super-essential 2-suborbifold 

F C M. Hence £(MF, PF) < £(M, P) by definition of the length. Since by the induc­

tion hypothesis AM(MF,PF) = HM(MF,PF), Proposition 8.6.18 shows that the 

mirrored 3-orbifold (M,H) is hyperbolic. Therefore AM(M,P) = HM(M,P) and 

Theorem 8.6.11 is proved for all Haken pared 3-orbifolds of length £ > 0. This finishes 

the induction step and the proof of Theorem 8.6.11. • 
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CHAPTER 9 

EXAMPLES 

This chapter is devoted to examples of the different phenomena that occur in the 

proof of the orbifold theorem when we increase the cone angles of a hyperbolic cone 3-

manifold, until some angle < TT. There are two kinds of phenomena: collapses and the 

appearance of an essential Euclidean cone 2-manifold, namely a Euclidean turnover 

S2(01,0,1) (with a + /? + 7 = 2TT), a pillow S2(TT, TT, TT, TT), or RP2(7r,7r). 
The chapter is organized in eight sections, one for each example. The first examples 

are Euclidean collapses at angle < TT, i.e. hyperbolic cone 3-manifolds that collapse to 

a point and that, after rescaling, converge to a Euclidean cone 3-manifold with the 

same topological type. In Examples 9.1 and 9.2, the collapsing angle lies in [^,71"). 

By the use of Hamilton's theorem, the corresponding orbifold with cone angle TT is 

spherical, but in these examples one can check explicitly that we have a continuous 

family of spherical cone structures with cone angles between the angle of Euclidean 

collapse and TT. Example 9.3 exhibits a Euclidean collapse at angle TT. 
Example 9.4 is devoted to several collapses at angle TT where the corresponding 

orbifolds at angle TT are Seifert fibred and have one of the following geometries: Nil, 

SL2O&) or M 2 x E. In Example 9.5 we show another collapse at angle TT, where the 

corresponding orbifold at angle TT has geometry Sol. Geometries S 3 and S 2 x R do 

not occur as direct collapses: the S 3 case is eliminated in Appendix A and the case 

§ 2 x TSL is eliminated in Lemma 9.5.2. 

The last three examples are devoted to Euclidean cone 2-submanifolds that appear 

when we increase the cone angles. There are three kinds of essential Euclidean cone 

2-manifolds that can appear: a turnover S2(a,f3,7) with a + ¡3 + 7 = 2TT, a pillow 

S2(TT,TT,TT,TT) or its non-orientable quotient MP2(7r,7r). 
When a Euclidean turnover 5 2 (a , /? , 7) appears, a cusp must open, because by 

Proposition 5.5.1 we cannot have a collapse (cf. remark 5.0.2). But when a pillow 
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S2(TT, 7r, 7r, TT) or EP2(7r, TT) appear, we may have a cusp opening, a collapse, or a com­
bination of both phenomena. Example 9.6 illustrates the turnover case, Example 9.7, 
the pillow case, and Example 9.8, the MP2(7r, TT) case. 

9.1. A Euclidean collapse at angle ^ 

Consider C(a) the cone 3-manifold with underlying space S3, singular set the 
figure-eight knot and cone angle a (see Figure 1). It has been shown in [HLM1] that 
C(a) is 

i) hyperbolic for a G (0, ^ ) , 
ii) Euclidean for a = (B(y7-and 

iii) spherical for a G ( ^ , TT]. 

It follows from Appendix A that the same phenomenon occurs for any hyperbolic 
two-bridge knot or link in SS: if C(a) is a cone 3-manifold with underlying space 
space 5 3 , singular set any hyperbolic two-bridge knot and cone angle a, then it has 
a Euclidean collapse at some angle a G [ ^ T T ) . 

FIGURE 1. The cone 3-manifold C(a). 

For the Whitehead link, Suarez [Sua] has constructed an explicit family of hyper­
bolic, Euclidean and spherical cone 3-manifolds between angles 0 and TT. 

9.2. Another Euclidean collapse before TT 

Let C(a) be the cone 3-manifold with underlying space MP3, cone angle a and 
singular set the knot described as follows: we view RP 3 as the result of an integer 
surgery with coefficient 2 on one component of the Whitehead link, and the singular 
set is the remaining component (see Figure 2). 

The orbifold C(TT) is spherical, because its double cover is the Seifert fibred manifold 
with description: (OoO | 0; (2,1), (2,1), (2,1)) (here we follow the notation of [Mon]). 

Lemma 9.2.1. — For 0 < a < arccos ( | — y/2) < TT, the cone 3-manifold C(a) is 
hyperbolic. In addition it is Euclidean for angle a = arccos ( | — \ / 2 ) . 
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F IGURE 2. The cone 3-manifold C(a). 

Proof. — The open manifold M = C(a) — E is fibred over S1 with fibre a punctured 
torus and homological monodromy(B(y7-,8ri(v))) (see [HMW, Prop. 3]). By Thurston's 
hyperbolization theorem [Thu4, Otl], M is hyperbolic. Since the underlying space of 
C(a) is RP 3 , it does not contain any turnover. Thus, by Theorem A and Appendix A, 
there exists a Euclidean collapse at some angle < TT. 

Next we compute the angle where the Euclidean collapse occurs, by using the results 
of [Pol]. The variety of characters is computed in [Pol, Ch. 4, Ex. 2]. Following 
the notation in [Pol], the component of the variety of characters in which we are 
interested is: 

(x? - 2)y? = 4(1? - 1) 

where x\ and y\ are the traces of some elements of TTI(M). In addition, the trace of 
the meridian is yo — \x\y\ and the Reidemeister torsion with respect to the meridian 
is 

T(M,/i) = ± 
1 

v 2 ' 
(B(y7-,8ri(v)) 

By [Pol, Thm. 5.13] if \ is the character of the Euclidean collapse then T(M,M)(x) = 0, 
(cf. also [HLM2]). Thus, at the Euclidean collapse we obtain x\ = 2± V2, y\ = 2x\ 
and 2/Q = 3 ± 2\/2. By writing y0 — ±2 cos a/2, we have cos a = \ ± \[2. Hence the 
Euclidean collapse occurs at angle 

a = arccos 
k 2 

- y/2) « 2.72 € 
.27T 

^ 3 
IT). 

9.3. A Euclidean collapse at angle 7r 

This example is picked up from [HLMW], where the authors attribute it to 
Thurston, (see also the applications of Andreev's theorem in Thurston's Notes 
[Thul]). Let C(a) denote the cone 3-manifold with underlying space 5 3 , singular 
set the Borromean rings and cone angle a G (0, n] (Figure 3). 

It is shown explicitly in [HLMW] that C(a) is hyperbolic for a < TT and that C(TT) 
is Euclidean. More precisely, they construct a continuous family of polyhedra P(a) 
in the space i x ( a ) of constant curvature K(a), for a G (0,7r]. The cone 3-manifold 
C(a) is obtained by gluing the faces of P(a) by a isometries. The curvature, which 
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FIGURE 3. The cone 3-manifold C(a). 

1 6 2 

is continuous, satisfies 
K(a)<0 fo rae(0 , 7r ) 
K(a) = 0 for a = TT 

Since K(a) is a continuous function on a, it follows that C(a) has a Euclidean collapse 
at angle TT. We remark that the orbifold C(TT) is Seifert fibred. 

Remark 9.3.1. — J.P. Otal pointed out that for the cone angle a G (7r,27r), one can 
explicitly show that C(a) is spherical. 

9.4. Collapses at angle TT for Seifert fibred geometries 

We give a family of examples of cone 3-manifolds that collapse at angle TT and the 
orbifolds at angle TT have geometry Nil, SL2{R) or H 2 x R. 

The other Seifert fibred geometries S 3 and S 2 x R do not occur as such collapses, 
by Appendix A for S 3 and Lemma 9.5.2 for S 2 x R. 

Let Cn^h{ot) be the cone 3-manifold with underlying manifold the Lens space 
L( |n | , 1), cone angle a and singular set described in Figure 4, where L( |n | , 1) is rep­
resented by integer surgery of coefficient n on the trivial knot, with n G Z — { 0 } . 

FIGURE 4. The cone 3-manifold Cn,h(cx), where h is the number of half-
twists of E. The underlying space is L(\n\, 1). 

We assume that the number of half-twists of E is h > 2 and that n > 4 or n < —5. 

Lemma 9.4.1. — For h>2 and n> 4 or n < —5, the orbifold Cn,h(n) has geometry: 

- Nil when n = 4 and h = 2; 
- I 2 x l when n = -2h; 
- SLoiR) otherwise. 
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Proof. — To prove that the orbifold Cn,h{^) is geometric, we use the fact that it is 
Seifert fibred. This Seifert fibration follows from viewing the link with two components 
in Figure 4 as a Montesinos link. To decide the geometry of the orbifold we use two 
invariants: 

- the sign of the Euler characteristic of the basis. 
- the vanishing or not of the Euler class. 

The basis of the Seifert fibration is a 2-orbifold B2 with underlying space a disc. It 
has silvered boundary, and contains a cone point of order \n\ > 0 and a dihedral 
corner of order h > 2 (see Figure 5). 

F IGURE 5. The basis B2 of the Seifert fibration of the orbifold CN,/I(7R). 

In particular the Euler characteristic of the basis is: 

X B2 
1 1 1 
n\ 2 2' 

Thus x(B2) = 0 iff n = 4 and h = 2. Otherwise x(B2) < 0. Therefore B2 is Euclidean 
when n = 4 and h = 2, and B2 is hyperbolic otherwise. 

In addition, we also use the vanishing or not of the rational Euler number [BS2]. To 
compute this number, we use a double cover of the orbifold, which is the Seifert fibred 
manifold (OOO I 0; (n, 1), (n, 1), (h, 1)). The rational Euler number of the orbifold is 

G 
1 

2 

2 1 

n h 
1 1 
n~ 2h 

Thus e 0 = 0 if and only if n = —2h. It follows that Cn^{^) has a product geometry 
if and only if n = — 2h. • 

Proposition 9.4.2. — If h>2 and n> 4 or n < —5, then Cn^h(ot) — E is hyperbolic. 

Corollary 9.4.3. — The cone 3-manifold Cn,h((x) is hyperbolic for a G [0,7r) and it 
collapses at angle TT. 

Proof of Proposition 9.4-2. — By Thurston's hyperbolization theorem, it suffices to 
check that Cnih{a) — E is irreducible and atoroidal and that it is not Seifert fibred. 

To prove that Cn^h(ot) - E is irreducible and atoroidal, we look at the double cover 
of the orbifold 

(B(y7-,8ri(v)))(B(y7-,8ri(v))) 
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which is a small Seifert fibred manifold. Since Mn^ has geometry Nil, I 2 x R or 
SL2(R) and it is small, it is irreducible and atoroidal. It follows that the orbifold 
Cn,h{^) is also irreducible and atoroidal, and, by a standard argument, the manifold 
Cn,h(n) — E is also irreducible and atoroidal. 

We prove that C n > / l (a) — E is not Seifert fibred by contradiction. Assuming that 
Cn,h{ot) — E admits a Seifert fibration, then it extends to a Seifert fibration of the 
underlying manifold L(\n\, 1), so that E is one of the fibres, because L(|n|, 1) is irre­
ducible. In particular we have two Seifert fibrations on the orbifold Cn,h(n): one of 
them contains E as a fibre and the other one was used in Lemma 9.4.1. We lift both 
fibrations to the manifold double cover Mn^ Both lifted fibrations are homotopic, 
by [ O V Z ] , and the generic fibre generates the center of TT\{Mn^), which is isomorphic 
to Z, because: 

- Mn,h has geometry Nil, B2 x R or SL2(R), 
- and at least one of the fibrations (hence both) has an orientable basis. 

Let r : Mn,h —• Mn^ denote the involution associated to the covering so that M n ^ / r = 
Cn,/i(fl")- We obtain the contradiction by looking at the action of r on the center Z 
of 7Ti (M n ? / 1 ) , because for one of the fibrations the action is trivial, but for the other 
one the action is non trivial. • 

Proof of Corollary 9.4-3. — Since L( |n | , l ) is irreducible, C n ? ^(a) contains no turn­
over. In addition, since Cnih(n) is not spherical, Theorem A implies that C n ^ ( a ) is 
hyperbolic for a € (0,7r). By the proof of Theorem B, since Cn7hM is atoroidal and 
Seifert fibred, it follows that C n ^ ( a ) collapses at a = TT • 

9 . 5 . A collapse at TT for Sol geometry 

This is an example of collapse at angle TT into Sol geometry. Let O be the orbifold 
fibred over S1 with fibre a pillow 5 2 (2 ,2 ,2 ,2) . We assume that the monodromy 

0 : S 2 ( 2 , 2 , 2 , 2 ) ^ S 2 ( 2 , 2 , 2 , 2 ) 

fixes a singular point of the pillow S2(2,2,2,2) and therefore we view it as an element 
of the mapping class group of a disc with three points, i.e. the braid group with 
three strings. We take (j) = aia^1where (<JI,02 | O-\O2O\ — V20\o2) is the Artin 
presentation of the braid group with three strings. 

The underlying space of this orbifold is S2 x S1 and it has two singular components. 
A surgery description of this orbifold is given in Figure 6 below. 

The orbifold O has a double cover which fibres over S1 with fibre a torus T2 and 
monodromy a composition of Dehn twists along two curves that generate TT\(T2). 
This double cover has geometry Sol, and one can easily check that the involution of 
the covering is geometric. Therefore O has geometry Sol. 

A S T É R I S Q U E 272 



9 .5 . A COLLAPSE AT TT FOR SOL GEOMETRY 1 6 5 

FIGURE 6. Surgery description of O. All branching indices are 2. 

Let C(a) denote the cone 3-manifold with the same topological type as O and cone 
angle a. 

Lemma 9.5.1. — For a G (0,7r), the cone 3-manifold C(a) is hyperbolic and it col­
lapses at angle TT. 

Proof. — By Thurston's hyperbolization theorem [Thu4, Otl], the manifold O—E is 
hyperbolic because it is fibred over S1 and its monodromy is pseudo-Anosov (because 
viewed as an element of the braid group of a three times punctured disc, it is just 
cr iovT 1 ) . 

Since E represents a trivial cycle in Hi(S2 x S1, Z / 2 Z ) , E cannot intersect a sphere 
in three points. Hence C(a) does not contain any turnover, even if the underlying 
manifold is reducible. In addition, since O has Sol geometry, it cannot be spherical, 
and by Theorem A we conclude that C(a) is hyperbolic for a G (0,7r). 

By the proof of Theorem B, either it collapses or O contains an essential hyperbolic 
suborbifold with toric boundary different from a product. Since O is Sol, the only 
possibility is that the family C(a) collapses at angle TT. • 

A similar example at angle 2TT is developed in detail in [Sua], where a family of 
cone manifolds that collapses at angle 2TT is shown to converge to a circle, and the 
corresponding manifold has geometry Sol. 

To finish the sections of collapses, we prove that orbifolds with geometry S 2 x R 
cannot have the topological type of a hyperbolic cone manifold. 

Lemma 9.5.2. — If O is an orbifold of cyclic type, with geometry S 2 x l and with 
branching locus E , then O — E is not hyperbolic. 

Proof. — If the orbifold O has geometry § 2 x R , then we write O = S2 xS1/G, where 
G acts on S2 x S1 isometrically (in particular it preserves the product structure). In 
addition, the stabilizers of the action of G are at most cyclic, by hypothesis. 

We shall prove that S2 x S1 — EG is not hyperbolic, where 

EG = {x G S2 x S1 | the stabilizer Gx of x is nontrivial}. 
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Since G preserves the product structure, the components of E G are either vertical 
(equal to {p} x S 1 ) or horizontal (contained in S2 x { # } ) . 

If all components of E G are vertical, then S2 x S1 — E G is Seifert fibred, and if 
all components of E G are horizontal, then S2 x S1 — E G is not irreducible. Hence 
we assume that E G contains at least a vertical component av and an horizontal one 
ah- Let S2 x {q} be the horizontal sphere that contains cr .̂ If g e G is an element 
that fixes the vertical fibre av, then it preserves each horizontal sphere; in particular 
g((Jh) C S2 x {q}. Since ah and g((Jh) are geodesies in S2 x {<?}, they intersect, and 

since E is a link, the only possibility is that ah = g(&h)- Thus the restriction g\s2x{q} 
is a rotation that fixes the north and south poles of S2 x {q}, and ah is the equator 
of 5 2 x {q}. It follows that S2 x S1 — E G is homeomorphic to the exterior of the link 
in S3 of Figure 7, the key ring, which is Seifert fibred. • 

FIGURE 7. S2 xS1 — EG is homeomorphic to the exterior of the key ring in 
5 3 . The two biggest circles correspond to the vertical components of EG 
(one with 0 and the other with co-surgery), and the other circles correspond 
to the horizontal components of EG-

9.6 . An essential Euclidean turnover: opening of a cusp 

We show an example of Euclidean turnover at angle that corresponds to the 
opening of a cusp. This example is used by Dunfield in [Dunfj to find an ideal point 
of the character variety with a non-trivial root of unity. He finds a sixth root of unity, 
because it corresponds to the opening of a cusp, with transverse section a Euclidean 
turnover 5 2 ( ^ , CB ^ ) . There is a similar example in [Hoi]. 

We now describe the example. Let C(a) be the cone 3-manifold with underlying 
space S2 x S1, cone angle a and singular set described as follows. We view S2 x S1 

as the result of 0-surgery on one component of the 2-bridge link 7 2 in Rolfsen's table, 
and the singular set is the other component of the link (see Figure 8). 

This cone 3-manifold contains a turnover S2(a, cu, a) , whose intersection with the 
exterior of the link is a three times punctured disc, represented in Figure 8. When 
a — 27r/3, this turnover is Euclidean and when a < 2TT/3, it is hyperbolic. 

We will assume that a < 2f. Let Co(a) = C(a) - J\f(S2(a, a, a)) be the cone 
3-manifold (with boundary) obtained by cutting open C(a) along this turnover. 
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FIGURE 8. The surgery description of C(a). The disc that bounds the 
component with 0 surgery extends to a turnover in C(a ) , because it meets 
S in three points. 

The cone 3-manifold C0(a) has boundary two hyperbolic or Euclidean turnovers 

S2(a,a,a) and its underlying space is S2 x I. The singular set consists of three 

arcs, as described in Figure 9. 

FIGURE 9 . The cone 3-manifold Co (a), with cone angles a. 

Proposition 9.6.1. — For a G (0 2TT 
3 

the cone 3-manifold Co (ce) is hyperbolic with 

totally geodesic boundary. In addition, the interior of Cn <2TT > 
< 3 - is complete hyperbolic 

with cusps and, for a good choice of the base point xa, we have: 

lim ( C 0 ( a ) , x a ) = (int(Co(Ç)),x ¥ ) . 
Œ 3 

The following corollary says that a cusp appears at angle 2TT 
3 

Corollary 9.6.2. — For a e (0 2TT' 
3 . the cone 3-manifold C(a) is hyperbolic. In addi­

tion, for a good choice of the base point xa, we have: 

lim ( C ( c 0 , £ a ) = (hit(Co 
(B(y7-,8ri(v) 

<2_7p 
3 > 

, X 2 7 r ) , 
3 ' 

Proof of Corollary 9.6.2. — For a </.. 2TT 
3 since dCn(a) has two totally geodesic com­

ponents which are 5 2 (a , a, a) , and since a turnover is rigid, we can glue the compo­

nents of dCn(a) to obtain the hyperbolic structure on C(a) . The assertion about the 

limits follows from the proposition, because the boundary of Cn(a) goes to infinity 

when a —> 1 
6 
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Proof of Proposition 9.6.1. — We draw Co (a) in a more convenient way in Figure 10 
(a), in order to view it as a truncated tetrahedron P(a) with faces identified. 

FIGURE 10. (a) The cone 3-manifold Co (a) , (b) The ideal triangles. 

We label the singular edges eo, ei and E2, and we consider the two truncated trian­
gles A and B in Figure 10 (b), which are the glued faces of the truncated tetrahedron 
P(a). This truncated tetrahedron P(OT) is represented in Figure 11, where the angle 
of the edges with label eo is a/4 and the angle of the edges E\ and E2 is a. When 
a = C P ( ^ L ) is an ideal tetrahedron, with vertices in dM3 = S2^, but when a < ^ 
the vertices of P(a) lie outside dM3 = 5 ^ , therefore its vertices are truncated by 
totallv geodesic triangles orthogonal to the faces. 

P(a) P (2x3) 

FIGURE 11. The truncated tetrahedron P(a) and the ideal one P ( ^ ) . 

The face identifications are obtained by rotations around the edges E\ and E2. We 
observe that the edges of the truncated tetrahedra correspond precisely to the singular 
edges of Co (a). It follows from this construction that Co(ce) and i n t C o ^ ) have the 
hyperbolic structures stated in the proposition. Since when a —> ̂  the polygon P(OT) 
converges to P ( y ) , we also have the assertion about the limits. • 

Remark 9.6.3. — We could keep deforming by increasing a after VB but then the 
cusps would be filled to create singular vertices, because the vertices of P(a) lie in M 3 

for a CV> 2^L. One can even show that P(OT) collapses to a Euclidean polyhedron and 
it becomes spherical at a = TT (some edges have angle TT and P(TT) is a lens in S 3 ) . 

A similar example is quoted in [Hoi] by doing surgery 0 and co on the Whitehead 
link. In Figure 12 we give a surgery description of Hodgson's example, which has two 
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singular components. If we take Hodgson's example with cone angles a everywhere 
and we cut open along the turnover, then we obtain again the cone 3-manifold Co (a) 
above. 

FIGURE 12. Hodgson's example, with the turnover represented by a disc 
bounding the component with surgery coefficient 0. 

9.7. A pillow 

In this example we shall combine the two tangles of Figure 13. 

FIGURE 13. The tangles 71 and T2. 

We view each % as an orbifold with underlying space the 3-ball, ramification locus 
the strings of the tangle, and ramification indices 2. The boundary of % is a pillow 
<S2(2, 2,2,2). The orbifold 7i is the quotient of the exterior of the figure eight knot 
by the involution of Figure 14 (a), and T2 is the quotient of the trefoil knot by the 
involution of Figure 14 (b). 

Hence, by Theorem 1, %_ is hyperbolic with a cusp. The orbifold T2 is Seifert fibred 
with basis B2, where B2 is a 2-orbifold with underlying space a disc, three boundary 
arcs of this disc are mirrors connected by two dihedral corners of order 2 and 3, and 
dB2 is an interval with silvered end-points (see Figure 15). 

Consider the orbifolds 

On 

012 

022 

TiUaTi, 
T i U a T 2 , 
T2UdTB2l 

glued along the boundary. We do not specify the gluing map, except for (D22, where 
we require the fibrations not to be compatible by the gluing map. 
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F I G U R E 14. (a) 7i is the quotient of the figure eight knot exterior by the 
involution r\. (b) 72 is the quotient of the trefoil knot exterior by the 
involution T2. 

F I G U R E 15. The basis B2 of the Seifert fibration of T2. 

Lemma 9.7.1. — The manifolds On — E, O12 — E and O22 — E are hyperbolic. 

Proof. — By Thurston's hyperbolization theorem, it suffices to check that Oij — E is 
irreducible, atoroidal and not Seifert fibred. 

We recall that 7i and T2 have a double cover which is irreducible and topologically 
atoroidal. Thus Oij is finitely covered by an irreducible manifold which contains a 
unique essential torus, up to isotopy (here the choice of the gluing map for O22 is 
relevant). Therefore the orbifold Oij itself is irreducible and has a unique essential 
toric suborbifold, which is the pillow d% ^ 5 2 (2 ,2 ,2 ,2) , by [BS1]. Then it follows 
easily that Oij — E is irreducible and atoroidal. 

The manifold Oij — E is not Seifert fibred, because it contains a properly embedded 
essential separating sphere with four punctures. • 

Let Cij (a) denote the cone 3-manifold with the same topological type as Oij and 
cone angle a. 

Proposition 9.7.2. — For 0 < a < TT, Cij(a) is hyperbolic. When a = n, an essential 
pillow appears and the following occurs: 

i) For the family Cn(a), there is an opening of a cusp that splits O^ into two 
copies ofT\. 

ii) The family C22(&) collapses. 

dB2 
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iii) For the family Ci2{a), depending on the choice of the base point, there is either 
an opening of a cusp (corresponding to a base point in T\) or a partial collapse 
(corresponding to a base point inT2). 

Proof. — First we remark that contains no turnover because the underlying space 
is S3. In addition, the fundamental group of Oij is infinite. Thus, by Theorem A 
and Hamilton's theorem, if Cij(a) is the corresponding cone 3-manifold, then it is 
hyperbolic for a G (0, TT). 

At angle TT, the 3-orbifold 71 is hyperbolic and the 3-orbifold T2 is Seifert fibred 
(with geometry M 2 x E). The different cases are discussed by appealing to the proof of 
Theorem B. The cone manifold Cn(a) does not collapse at angle TT, but a cusp opens 
that splits the cone 3-manifold into two copies of T\, which is a hyperbolic orbifold. 
The family C\2(a) has a partial collapse: if we choose a base point in the thick part 
of Ti then we have again an opening of a cusp, but if we choose a base point in T2 we 
have a collapse. Finally, C22(a) collapses at angle TT, for any choice of base point. • 

Remark 9.7.3. — The example of the orbifold 0 2 2 is illustrated in Figure 16, which 
has been communicated to us by M. Lozano and has inspired the whole Section 9.7. 
In [HLM3] they compute the character variety of 0 2 2 — D, which can be used to 
show that there is a collapse at angle TT. 

FIGURE 16. The singular set of O22 is the knot 816 in Rolfsen's table. The 
pillow (corresponding to a Conway sphere) is represented by a dotted line. 

9.8. An incompressible RF2(TT,TT) 

Let M(RP2(7r,7r)) denote the closed tubular neighborhood of MP2(7r,7r) x { 0 } (of 
radius 1) in the orientable line bundle on RP2(7r,TT). Alternatively, NI(RF2(TT,TT)) 
is the quotient of S2(TT, TT, TT, TT) X [—1,1] by the involution To x T\ where To is the 
antipodal map on S2[TT,TT,TT,TT) and T\ changes the sign on [—1,1]. Note that 

<9M(MP2(7r,7r)) ^ S2(TT, TT, TT, TT). 

We consider the closed orbifold 

0 = T1UdMi(RF2{TT,TT)). 
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In the notation of Example 9.7, the orbifold O is doubly covered by On = T\ Ua 7i, 
because &A/i(RP2(7r, TT)) is doubly covered by 52(7r,TT, TT,TT) X [-1,1]. 

It follows easily from the discussion in Example 9.7 that this provides an example of 
cusp opening at angle TT, because an essential EP2(7r, TT) appears. The cusp section is a 
pillow S2(TT, TT, TT, TT), which is the boundary of the tubular neighborhood of RP2(7r, TT). 
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APPENDIX A 

LIMIT OF HYPERBOLICITY 
FOR SPHERICAL 3-ORBIFOLDS 

Michael Heusener and Joan Porti 

Let O be a spherical 3-orbifold of cyclic type. We denote the ramification locus by 

E C O; it is a ^-component link E : = Ei U • • • U During this appendix we assume 

that the complement O — E of the branching locus admits a complete hyperbolic 

structure of finite volume. For t > 0 small enough, let C(ta) be the hyperbolic cone 

manifold with topological type ( | 0 | , E) and cone angles ta = (£27r/rai , . . . , £27r/rafc), 

where mi is the ramification index along the component E* (see Chapter 2, Propo­

sition 2.2.4). Let be the limit of hyperbolicity, i.e. C(ta) is a hyperbolic cone 

manifold for a l l t G J : = [0, too). 

The aim of this appendix is to prove that the hyperbolic cone manifolds C(ta) 

cannot degenerate directly to the spherical orbifold O, i.e. we shall prove: 

Main Proposition. — Let O be a spherical 3-orbifold of cyclic type. If the complement 

O — E of the branching locus admits a complete hyperbolic structure of finite volume 

then the limit of hyperbolicity too is contained in the open interval ( 0 , 1 ) . 

We obtain the following corollary from this proposition: 

Corollary. — The cone manifold C(too<y) is Euclidean. 

Proof of the corollary. — By the main proposition we have 0 < too < 1- Proceed­

ing as in the proof of Proposition 2.3.1 of Chapter 2, we see that C(too&) is a Eu­

clidean cone manifold with the same topological type as O and with cone angles 

(tooûll, . . . jtooûfjfe). • 

Remark A.0.1. — The main proposition does not follow from Proposition 5.2.1 of 

Chapter 5. The proof of the "Collapsing Case" requires the use of the simplicial 

volume and does not give information about the collapse itself. If we had a method 

to describe the collapse at the angle n in a geometric way we could probably see 

directly that a hyperbolic cone manifold cannot degenerate to a spherical orbifold. 
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Example A.0.2. — Let 0(a, /? ;n) be the 3-orbifold whose ramification locus is the 2-

bridge knot or link 5(a, (3) C S3 and with branching index n. The orbifold (9 (a , /3; 2) 

is spherical, and the 2-fold branched covering of (S3,b(a, /3)) is the lens space L ( a , (3) 

which itself is a spherical space form. The complement of the branching locus supports 

a complete hyperbolic metric of finite volume iff \f3\ > 1. The orbifold (9 (5 ,3 ;3 ) is 

Euclidean, and the orbifolds (9 (5 ,3 ;n ) , n > 3, are hyperbolic. Note that (9 (a , / ? ;n ) , 

n > 3, is hyperbolic if a > 5 and |/?| > 1. These orbifolds and their limits of 

hyperbolicity were studied in [HLM2] . 

The strategy of the proof of the main proposition is the following. We assume that 

= 1 and we seek a contradiction. We consider a sequence tn —> 1 in J = [0,1) and 

the corresponding sequence of holonomy representations (pn). By the construction 

in Chapter 2, we may assume that the sequence (pn) belongs to an algebraic curve 

C. This curve C has a natural compactification C that consists in adding some ideal 

points. Up to a subsequence, pn converges to a point in the compactification G C. 

In Lemma A. 1.1 we show that p^ is not an ideal point (i.e. p ^ is a representation), 

by using Culler-Shalen theory about essential surfaces associated to ideal points and 

Lemma A.0.3. In fact, we prove that p^ is an irreducible representation into SU(2) 

(Lemma A.1 .2) . Then we prove that p ^ is /x-regular (see Definition A.0 .4) , which 

implies that, for n large, pn is conjugate to a representation into SU{2). We have 

obtained a contradiction, because the holonomy representation of a hyperbolic cone 

manifold of finite volume cannot be contained in SU(2). 

Spherical 3-orbifolds. — Let O be a spherical 3-orbifold. Then O = S 3 / G , where 

G C SO (A) is finite. The orbifold O is very good , its universal covering is S3, and 

its fundamental group TT\{G) is the group of covering transformations, i.e. 7 r i ( 0 ) = G 

is a finite group. There is a surjection 7Ti(0) —• 7Ti(|(9|) where \0\ is the underlying 

manifold (see [DaM]). The 3-manifold \0\ is hence a rational homology sphere which 

contains the link E. Note that £ c \0\ is a prime link. 

We denote respectively by p i , . . . , pk and m i , . . . , rrik the meridians and ramifica­

tion indices of the components E i , . . . , £& of E. We assume that each meridian pi is 

represented by a simple closed curve in c W ( £ ) which bounds a properly embedded 

orbifold disc in JV^(E). Here AA(E) denotes a tubular neighborhood of E c O. 

In what follows, we shall make use of the following lemma: 

Lemma A.0.3. — Let F c O — A/*(E) be a properly embedded orientable surface (so 

OF may be empty). If F is incompressible and non boundary-parallel, then there is a 

meridian such that dF fi iii ^ 0. 

Proof. — Let F be a properly embedded, orientable, incompressible, non boundary-

parallel surface in O — JV(£) . If dF has empty intersection with the meridians of E 

then we obtain a closed surface F c \0\, and hence the link E c \0\\s sufficiently large 

ASTÉRISQUE 272 



A.l. PROOF OF THE MAIN PROPOSITION 175 

(following the definition in [CS , §5.1]) . This is impossible because S3 is a regular 

branched covering of ( | 0 | , E ) and, according to [CS, Thm. 5.1.1], such a covering 

contains either an incompressible surface of higher genus or a non-separating sphere 

(see also FGL, Theorem 11). • 

Varieties of representation and characters. — Let T be a finitely generated 

group. The variety of characters X(T) is the quotient in the algebraic category 

of the action of SL2(C) by conjugation on the variety of representations R(T) = 

Hom(r, SX2(C)). Following [CS] , X(T) is an affine complex variety, but it is not 

necessarily irreducible. For a representation p G R(T), its projection onto X(T), 

denoted by is called the character of p. The character \p m&y be interpreted as 

a mau: 

XP : r —• C 

7 1—• t r (p(7)) . 

For any 7 G T, the trace function r7: R(T) —> C, r7(p) = tr(p(7)), is invariant under 

conjugation. Therefore, it factors through R(T) —• X(T) to the rational function 

L, : X(D —• C 

XP 1—> Xp(l) = t r ( p ( 7 ) ) . 

We use the notation X(0 - E) = X(TTI\ 

Definition A.0.4. — Let p : TTI(0 — E) SL2(C) be an irreducible representation 

such that p{ni) ^ ± I d , . . . ,p(p>k) 7^ ± I d . We say that p is p-regular if the following 

conditions are satisfied: 

i) Hi(G — E; Adp) = Cfc, where k is the number of components of E. 

ii) The function 1^ = (7Ml , . . . , /Mfc) : X{0 — E) —> Ck is locally biholomorphic at \ p . 

The following lemma is proved in [Pol, Prop. 5.24] and is going to be used at the 

end of the proof of the main proposition. 

LemmaA.0.5— Let p : TTI(0 — E) —> SU{2) be an irreducible representation such 

that tr(p(pi)) ^ ±2 for all i = 1 , . . . , k. 

If p is p-regular then there exists an open neighborhood U C R(0 — E) of p such 

that for every representation p' G U, p' is conjugate to a representation into 5/7(2) if 

and only if tr(p'(/Xj)) G R for alli = l,...,k. • 

A . l . Proof of the main proposition 

Beginning of the proof — Let tn G [0,1) be a sequence that converges to too. We 

choose a lift pn G R{0 — E) of the holonomy representation of the hyperbolic cone 

manifold C(tna). We may assume that the sequence (pn) is contained in a complex 

curve C C R(0 - E) c CN (see the proof of Lemma 2.3.2). Now let C c¥N be the 
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projective closure of C and let C be the non-singular projective curve whose function 

field F is isomorphic to that of C (see [CS] for details). Following [CS], we call the 

points of C which correspond to points of C — C ideal points. We might assume (by 

passing to a subsequence) that (pn) is contained in the non-singular part of C and 

hence we have that (pn) C C. The sequence (pn) converges since C is compact. 

Each point x EC gives us a discrete valuation u^: F* —> Z with valuation ring A. 

The ring A consists exactly of those functions which do not have a pole at x. 

The curve C C R(0 — E) gives us a tautological representation P: TT\(0 — E) —> 

SZ/2(F) (see [CS]). For a fixed point x G C we obtain therefore a representation 

P: TTI(0 — E) —• SL2(F) where F is a field with a discrete valuation. The group 

TTI(0 — E) acts hence on the associated Bass-Serre-Tits tree which will be denoted 

by T. An element 7 G TTI (O — E) fixes a point of T if and only if r7 does not have a 

pole at x where r7: C —» P1 denotes the rational function determined by r7. 

Lemma A.1.1. — The sequence (pn) does not converge to an ideal point if t^ = 1. 

Proof. — Assume that t^ = 1 and that (pn) converges to an ideal point x GC. 

Let / ¿ 1 , . . . , pk be the meridians of E. Since tr(pn(/i¿)) = ± 2 cos(ín7r/'ra¿) converges 

to ± 2 cos(7r/ra¿), it follows that r/ii does not have a pole at x. The image P(/x¿) is 

therefore contained in a vertex stabilizer of T. We obtain hence an incompressible 

non boundary-parallel surface F C O — A/"(E) such that F Pi pi = 0 for i = 1 , . . . , k 

(see [CS, Prop. 2.3.1]). This surface cannot exist by Lemma A.0.3. • 

Lemma A.1.2. — Iftoo = l then the sequence (pn) converges to a representation Poo € 

R(0 — E) which has the following properties: 

i) poo factors through a representation of 7Ti(0) into PSL2(C); 

H) poo is conjugate to a representation into SU(2); 

Hi) poo is irreducible. 

Proof. — The sequence (pn) converges to a representation p^ G R(0 — E) by Lemma 

A.1.1 and we have: 

tr(p00(pi)) = ±2 cos(7r/ra¿), for i = 1 , . . . , k. 

In particular p^p™1) = ± I d and therefore p^ factors trough ni(0 — E) —• 7Ti((9) to 

a representation of iri(0) into PSL2(C). Note that 7 T i ( 0 ) is the quotient of TTI(0 — E) 

by the normal subgroup generated by {p™1,..., p™1*}- This proves i ) . 

Assertion ii) follows from i ) : ITI(0) is finite and up to conjugation SU(2) is the 

only maximal compact subgroup of SL2(C). 

Assume that p^ is reducible. It follows from ii) that poo is abelian because every 

reducible representation into SU(2) is conjugate to a diagonal representation. The 

representations pn are all irreducible (see [Pol , Prop. 5.4]). The abelian representa­

tion poo is therefore the limit of irreducible representations which implies the existence 

of a reducible metabelian (but not abelian) representation p ^ G R(0 — E) such that 
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tr{poo(g)) = tr(p,OQ(g)) for all g G G (see [HLM2]) . Since p'^ipi) = ±2cos(7r / ra¿) it 

follows that the image of p'^ is finite. We obtain that p'^ is conjugate to a represen­

tation into SU{2). This contradicts the fact that p'^ is metabelian and non-abelian. 

Hence the lemma is proved. • 

With the help of the next lemma we are able to prove the main proposition. 

Lemma A.1.3. — Iftoo = l then the limit representation p^ is ¡i-regular. 

End of the proof of the main proposition. — Assume that t^ = 1. The sequence 

(pn) converges to an irreducible representation pool TTI(0 — E) —> SU(2) such that 

tr(poo(/ii)) ^ ±2. The representation p^ is //-regular by Lemma A.1.3 and hence we 

can apply Lemma A.0.5. 

The image of pn is contained in SU(2) up to conjugation if n is sufficiently large 

by Lemma A.0.5; note that tr(pn(pi)) G R. This contradicts the fact that pn is the 

holonomy of a compact hyperbolic cone manifold (see [Pol, Prop. 5.4]). • 

It remains to prove Lemma A.1.3. Before we start with the proof, we briefly recall 

how to define the homology of an orbifold O with twisted coefficients A d p. Let 

p be a representation of ni(0) into PSL2(C) and let K be a CW-complex whose 

underlying space is the orbifold O such that the ramification locus E is contained in 

the 1-skeleton. The CW-complex K lifts to a 7Ti ((9)-equivariant CW-complex K over 

the universal covering of O. Set: 

C*(K; Adp) = sl2(C) 8 ) ^ ( 0 ) C . ( / f ; Z ) , 

where 7 G ni(0) acts on the right on the Lie algebra s?2(C) via the adjoint of 

p(7_1). Note that C * ( l f ; Z ) is not a free TTI((9)-module (see [Pol , Section 1.2] for 

the details). There is a natural boundary map di : Ci(K; Adp) —» Ci-\{K\ A d p ) 

(induced by the boundary operator on C*(K;Z)) and the homology H*(Q; Adp) is 

defined. This homology does not depend on the CW-complex and on the conjugacy 

class of p. When E = 0 (i.e. O is a manifold), this is the usual homology with twisted 

coefficients. 

Proof of Lemma A.1.3. — In order to compute Hi(0 — E; Adpoo) we consider the 

homology of the orbifold. Note that, since p^ induces a representation of TTI(0) into 

P S X 2 ( C ) , the adjoint representation of K\(0) into the endomorphism group of the 

Lie algebra 5 /2 (C) is well defined. 

Step 1. — H*(0, A d ^ ) ^ 0 . 

The universal covering of O is S3. The projection TT: S3 —> O induces a map 

7T* : H*(S3,sl2{C)) - #*(<9, AdPoo) 

where # * ( S 3 , sl2(C)) = H*(S3,C) ®c sl2(C) is the homology of S3 with non-twisted 

coefficients sl2(C) = C3. Since we work over C, we can construct a right inverse to 
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7r* by using the transfer map (see [Bre, Chapter III]) 

s*: AdPoo) - #*(S3 ,sJ2(C)) , 

i.e. 7r* o 5* = Id. In particular s* is injective and its image is invariant by the action 
of 7 r i ( 0 ) . The homology H*(S3, sfaiC)) is only non-trivial in dimensions 0 and 3. 
Since poo is irreducible, the subspace of sl2{C) invariant by 7ti(0) is trivial, hence 
tf*(0,Adpoo)=O. 

Step 2. — H^O- E; A d poo) = C*. 
W e apply a Mayer-Vietoris argument (adapted to the orbifold situation) to the pair 

CA/"(E), 0-M(E)), where Af(E) is a tubular neighborhood of E. Since H*(O, A d p) = 
0, we have a natural isomorphism induced by the inclusion maps: 

( A . l ) i7i(AT(E); Adpoo) 0 / / i ( O - ^ ( E ) ; Adpoo) =vxbbpoo) 0//i(O -^(E); Ad Ad/O 
The homology groups iJi(AT(E), A d poo) and .Hi ( c W ( E ) , A d Poo) are easily computed, 
and they have dimension k and 2k over C respectively (see [Pol, Lemma 2.8 and 
Prop. 3.18] for instance). Therefore Hx(0 - E; A d poo) = Cfc. 

Step 3. — Xpoa 1S a smooth point of X(0 — E) with local dimension k. 
By an estimate of Thurston [Thul , Thm. 5.6], see also [CS, Thm. 3.2.1], the 

dimension of X(0 — E) at Xpoo ŝ ^ I*1 addition, since Hl{0 — E; A d p ^ ) contains 
the Zariski tangent space TXpX(0 — E) , and H 1((D — E; Adpoo) is dual to the space 
H±(0 - E; Ad poo), dim(TXpX(Q - E ) ) < k. Thus dim(TXpX(G - E ) ) = k and xPoo 
is a smooth point. 

Step 4- — Ifj, = {Ifj,! > • • • 5 IfjLk) X(G — E) —• Ck is locally biholomorphic at Xpoo• 
Viewing # i ( ( 9 — E; Ad poo) as the Zariski cotangent space TXpX(G — E ) , the proof 

consists in finding a basis for H\{0 — E; Adpoo) that can be interpreted as the set of 
differential forms { d / M l , . . . , dl^}. 

Let EiU---UEfc = E b e the decomposition of E in connected components. Choose 
Ai,...,Afe € 7 r i ( 0 - E) such that A*,pi generate ^(diAfi^i))) = Z © Z, for i = 
1 , . . . , k. Since tr(p(pi)) ^ ± 2 , we may assume that tr(p(A*)) ^ ± 2 , up to replacing 
Xi by Ai/ii if necessary. If we identify homology groups with cotangent spaces, then 
the differential form dl\i generates Hi(Af(Y>i); Adpoo) — C and {dlx^dl^} is a 
basis for H^dAfpi); Ad poo) = C2 (see for instance [Pol, Lemma 3.20] or [Ho2] 
for these computations). It follows from the Mayer-Vietoris isomorphism ( A . l ) that 
{d/Ml, . . . ,dJMfc} is a basis for H^O - E; Ad poo) = TXpX(0 - E ) . Therefore JM = 

, . . . , I^k) is locally biholomorphic at xpoo and Poo is p-regular. • 
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APPENDIX B 

THURSTON'S HYPERBOLIC DEHN FILLING 
THEOREM 

We give a proof of Thurston's hyperbolic Dehn filling theorem for completeness. 
In the manifold case, the proof is given in Thurston's notes [Thul] , and it has been 
generalized to orbifolds by Dunbar and Meyerhoff [DuM]. 

We follow Thurston's proof [Thul] , taking care of the smoothness of the variety 
of representations. For the smoothness, we use an argument from [Zhl , Zh2]. There 
is another approach in [PP] without using these results in the manifold case. 

We prove the theorem for manifolds in Section B . l , and for orbifolds in Section B.2. 
In Section B.3 we prove it for a special case of manifolds with totally geodesic bound­
ary. 

B . l . The manifold case 

Let M be a compact 3-manifold with boundary dM = T2 U • • • U T2 a non-empty 
union of tori, whose interior is complete hyperbolic with finite volume. Thurston's 
hyperbolic Dehn filling theorem provides a parametrization of a space of hyperbolic 
deformations of this structure on in t (M) . The parameters for these deformations are 
the generalized Dehn filling coefficients, which describe the metric completion of the 
ends of i n t ( M ) . 

For each boundary component T? we fix two oriented simple closed curves and 
Xj that generate iri(Tj). The completion of the structure on the j - t h end of i n t (M) 
is described by the generalized Dehn filling coefficients (pj,qj) G R 2 U { 0 0 } = 52 , so 
that the structure at the j-th end is complete iff (pj,qj) = 0 0 . The interpretation of 
the coefficients (j>j,qj) G R 2 is the following: 

- If Pj,qj G Z are coprime, then the completion at the j - t h torus is a non-
singular hyperbolic 3-manifold, which topologically is the Dehn filling with 
surgery meridian pjfij + qj\j-

- When Pj/qj G Q U { 0 0 } , let ruj^rij G Z be coprime integers such that Pj/qj = 
rrij/nj. The completion is a cone 3-manifold obtained by gluing a torus with 
singular core. The surgery meridian is rrijfij + rijXj and the cone angle of the 
singular component is 2ir\mj/pj\. 
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- When Pj/qj G R — Q, then the completion (by equivalence classes of Cauchy 
sequences) is not topologically a manifold. These singularities are called of Dehn 
type, cf. [Ho2]. 

Theorem B.l.l (Thurston's hyperbolic Dehn filling [Thul]). — There exists a neigh­
borhood of { c x ) , . . . , 0 0 } in S2 x • • - x S2 such that the complete hyperbolic structure on 
i n t (M) has a space of hyperbolic deformations parametrized by the generalized Dehn 
filling coefficients in this neighborhood. 

Proof. — The proof has three main steps. The first one is the construction of the 
algebraic deformation of the holonomy of the complete structure on i n t ( M ) . The 
second step is to associate generalized Dehn filling coefficients to this deformation and 
the third one is the construction of the developing maps with the given holonomies. 
These steps are treated in paragraphs B . l . l , B . l .2 and B.1.3 respectively. 

B . l . l . Algebraic deformation of the holonomies. — We recall some notation. 
Let R(M) = Hom(7Ti (M) , 5Z/2(C)) be the variety of representations of TTI(M) into 
5 L 2 ( C ) , and X(M) = R(M)//SL2(C) its variety of characters. Both are affine alge­
braic complex varieties (not necessarily irreducible). For a representation p G R(M)y 
its character Xp 1S its projection to X(M) and can be viewed as the map xp : ^i(M) —> 
C defined by xp{l) = trace(p(7)), for every 7 G T. Given an element 7 G TT\{M) we 
will also consider the rational function 

J7 : X(M) —> С 

Xp 1—> Xpb) = t race(p(7)) . 

Recall that / / 1 , . . . is a family of simple closed curves, one for each boundary 
component of M. We will consider the map 

IM = ( J M l , . . . , J M J : X ( M ) - > C f c . 

Let po £ R(M) be a lift of the holonomy representation of i n t (M) and let xo € 

X(M) denote its character. The main result we need about deformations is the 

following: 

Theorem B.1.2. — The map JM = (JMl,. . . , I^k) : X(M) —> Ch is locally bianalytic 

at xo-

Proof. — We follow the proofs of [Thul] and [Zh l , Zh2]. We prove first that 7M is 

open at xo- Let X0(M) be any irreducible component of X(M) that contains xo- In 

order to prove that 7M is open we use the following two facts: 

- By an estimate of Thurston [Thul , Thm. 5.6], see also [CS, Thm. 3.2.1], 

d i m X o ( M ) > k. 

- The character xo is an isolated point of I~l(Ifl(xo))1 by Mostow rigidity theo­

rem. 
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By the openness principle [Mum2] , it follows that iM is open at xo-

Moreover, 7M is either locally bianalytic or a branched cover. Let VQ C X{M) 

and V\ C Ck be respective neighborhoods of xo and I^(xo) such that the restriction 

i^lvb : VQ —> V\ is either bianalytic or a branched cover. If i^lvb was a branched 

cover, then the ramification set would be a proper subvariety W C VQ such that 

I^i(W) would be also a proper subvariety of V\. In addition, if i^|vb was a branched 

cover, then the restriction of I^\vQ-w would be a cover of V\ — I^{W) of degree d > 1. 

Hence it suffices to show that I^\v0 has only one preimage in a Zariski dense subset 

of Vi C Ck. This set is 

S = €\2 COS 
7T 

Tlx' 
., eq2 cos 

7T 
\Ui> NQ 

for some No sufficiently large, where the coefficients e« = ± 1 are chosen so that 

/ ^ ( X o ) = ( e i 2 , . . . ,eg2). We have that for x £ X(M) in a neighborhood of xo, if 

I^{x) £ ^ then x is the character of the holonomy of a hyperbolic orbifold, and 

therefore it is unique by Mostow rigidity. 

Along this proof we have used twice that deformations of the holonomy imply 

deformations of the structure (every time we used Mostow rigidity). The techniques 

in Paragraph B.1.3 below apply to construct such deformations of structures. • 

Remark B.1.3. — A stronger version of this theorem can be found in Kapovich's book, 

[Kap, Thm. 9.34 and Remark 9.41], where the dimension of certain cohomology 

groups with twisted coefficients are computed. These computations are an infinites­

imal rigidity result, similar to rigidity results of Calabi-Weil [Wei], Raghunathan 

[Rag] and Garland [Garl], and they imply Theorem B.1.2 above. 

B . l . 2 . Dehn filling coefficients. — In order to define the Dehn filling coefficients 

(Pj,Qj), we must introduce first the holomorphic parameters Uj and Vj. Following 

[Thul] , if we view the holonomy of /2j and Xj as affine transformations of C = 

<9H3 — { o o } (oo being a point fixed by JJLJ and Xj), Uj and Vj are branches of the 

logarithm of the linear part of the holonomy of fij and A^ respectively. For the 

definition we use branched coverings. 

Definition B.l.4. — Let U C Ck be a neighborhood of the origin and W C X(M) a 

neighborhood of xo- We define TT : U —» W to be the branched covering such that 

Ip^u) = Cj2 cosh(uj/2) for every u = ( t i i , . . . , Uk) € U, 

and €j E { ± 1 } is chosen so that 7^ . ( ^ (0 ) ) = Xo(Hj) = t r a c e ( p o ( ^ ) ) = ^ 2 . 

Remark B.1.5. — From this definition, u = ( ^ i , . . . , Uk) is just the parameter of a 

neighborhood of the origin U C Ck and its geometric interpretation comes from the 

branched covering TT : U —> V C X(M). We also remark that TT(U) = xo iff u = 0. 
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Now we shall associate a representation to each u £ U by considering an analytic 

section 

s:V CX(M)—>R(M) 

such that s(xo) = Po- This section may be constructed easily by using [CS, 

Prop. 3.1.2] or [Pol, Prop. 3.2]. We use the notation: 

pu = S(7T(U)) e R(M) for every u eU. 

Lemma B.l.6. — For j = 1 , . . . , k, there is an analytic map Aj : U —> SL2(C) such 

that for every u € U: 

Pu(p<j) = ejAj(u) 
<eUj/2 

0 
1 

e-Uj/2 
Ajiu)-1 With €j = ± 1 . 

Proof — Let €j E {±1} be such that IH(xo) = Xo(Vj) = We fix a vector 

W2 = (wLwn) e C2 that is not an eigenvector for on and we set 

wi(u) = (w\(u),wl(u)) = (ejpu(Pj) - e Uj/2)w2. 

Since €je±ui/2 are the eigenvalues for pn(/ij), the following is the matrix of a change 

of basis that has the required properties for the lemma: 

Aj(u) = 
1 

w\(u)vÜ2 — W2(u)\JÜ2 

s 1 / ' 

2(u)\J 

2(u)\J 

2(u)\J 

LemmaB.1.7. — There exist unique analytic functions Vj,Tj : U —• C such that 

Vj(0) = 0 and for every u GU: 

pu{\j) = ±Aj{u) 
/eVj(u)/2 

0 

2(u)\J 

e-Vj(u)/2 AAu)-\ 

In addition: 

i) Tj(0) G C - M ; 

ii) s inh(fj /2) = Tj sinh(itj/2); 

Hi) Vj is odd in Uj and even in u\, for I ^ j ; 

iv) Vj{u) = Ujir/iu) + 0(\u\2)). 

Proof. — The existence and uniqueness of Vj and Tj, as well as point ii), follow 

straightforward from the commutativity between Xj and pj. We remark that the 

uniqueness of Vj uses the hypothesis Vj(0) = 0, because this fixes the branch of the 

logarithm. To prove i) we recall that po(Pj) and po{Xj) generate a rank two parabolic 

group, because po is the holonomy of a complete structure. In particular 1 and Tj(0) 

generate a lattice in C and therefore Tj (0) ^ E. 

To prove hi) we remark that the points ( ± t i i , ± U 2 , . • . , ±Wfc) project to the same 

character in X(M) independently of the signs ± , hence: 

Vjlh(±Ui,dddhdh±U2, ...,±ugk) = ±dhdhddVj{uudhdU2idhd..., 
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This equality, combined with points i) and ii) imply that Vj is odd in Uj and even in 

ui for I ^ j . Finally, iv) follows easily from the previous points. • 

Definition B.1.8. — [Thul] For u G U we define the generalized Dehn filling coeffi­

cients of the 7-th cusp (p7-, qA G R2 U { 0 0 } = S2 by the formula: 

(PjiQj) — 00 if i6j = 0 

PjUj + qjVj = 27Ty/—Î if Uj 7^ 0 

The equality Vj = UJ(TJ(U) + 0 ( M 2 ) ) , with 7^(0) G C - R, implies: 

Proposition B.1.9. — Tfte generalized Dehn filling coefficients are well defined and 

U S2x---xSz 

u 1—> (pi,gi),...,(Pfc,£fc) 

defines a homeomorphism between U and a neighborhood of { 0 0 , . . . , 0 0 } . 

B . 1 . 3 . Deforming developing maps. — Let Do : i n t M —• Hr be the develop­

ing map for the complete structure on i n t ( M ) , with holonomy p0. The following 

proposition completes the proof of Theorem B . l . l . 

Proposition B.l. 10. — For each u G U there is a developing map Du : i n t M —> H3 

with holonomy pu, such that the completion of intM is given by the generalized Dehn 

filling coefficients of u. 

Proof. — We write in t (M) = N U C\ U • • • U Ck, where N = M is a compact core 

of i n t ( M ) , Cj =T2 x [0, + 0 0 ) , Cj 0 N = T2 x [0,1] and Cj DCi = 0 for j ^ I. We 

construct Du separately for N and for Cj, and then glue the pieces. We construct a 

family of maps {Du}ueu that will be continuous on u for the compact C1-topology. 

This means that if {un}ne^ is a sequence in U converging to Uoo G U, then DUn 

converges to DUoo uniformly on compact subsets, and the tangent map of DUn also 

converges to DUoo uniformly on compact subsets. 

Lemma B.l.l 1. — There exists a family of local diffeomorphism D^ : N —• H3, which 

depends on u G U continuously for the compact C1 -topology, such that D^ is pu-

equivariant and DQ = DQ^. 

Proof. — This is a particular case of [CEG, Lemma 1.7.2], but we repeat their proof 

here because we will use the gluing technique. We fix u G U and we construct D^ a 

family continuous on u for the compact C1-topology. 

We start with a finite covering {Ui,..., Un} of a neighborhood of N. Let p : 

i n t (M) —> M denote the universal covering projection and let V\ be a connected 

component of p~lU\ = U 7V1. We define A i : V\ —> M3 to be the restriction of D% 

and we extend it pt-equivariantly to p^Ui = U 7 V 1 . 
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We would like to define A* : p~1Ui —• M3 in the same way and to construct Du by 

gluing A i , . . . , An , but we must be careful with the equivariance and the continuity on 

u for the compact C1 -topology. The next step will be to try to extend A i to a map on 

p~lUi C\p~lU2. To be precise, we take {U[,..., U'n} a shrinking of {U\,..., Un} that 

covers N and we will define A 2 : p~lU[ H p - 1 £/"2 —> H3 as an extension of A i | p - i c / / . 

Thus we define A2|p-i£/ ' — ̂ i\p~1uf and we extend it to p - 1 ^ as follows. 

We choose V 2 a connected component of p~lU2 and V2' a connected component of 

the smaller neighborhood p - 1 ^ which is contained in V 2 . In particular 

Vi C int(V2) 

Let </>: V2 —> [0,1] a C°°-bump function such that: 

- 4> restricted to V{ C\p~lU[ is constant equal to 1, 

- the closure of the support of <f> is contained in V^Hp^Ui. 

By using 0, we define / : V2 —» H3 as: 

/ = 0 A ! + ( 1 - 0 ) Z ? § . 

This is, / equals A i on the intersection V2 f)p~LU[ and equals DQ on V2 -p~xUi. In 

addition / depends continuously on u for the compact C1-topology (we remark that 

<p is independent of u). We define A2 |y2 ' = f\vj and we extend it pu-equivariantly 

to p~lU2 = U 7 V 2 . In this way A2 is pu-equivariant and the construction depends 

continuously on u for the compact C1-topology. 

Now we can continue by an inductive process and make successive shrinking to get 

D ° defined on a neighborhood of N. Finally, since DQ is a local diffeomorphism and 

N is compact , the compact C1 - topology implies that is a local diffeomorphism for 

u close to 0. • 

Lemma B.l.12. — There exists a family of local embeddings : Cj —> H3 which is 

continuous on u G U for the compact C1-topology, such that is pu-equivariant, 

DJ0 = -D0|c and structure on Cj can be completed as described by the generalized 

Dehn filling parameters. 

Before proving this lemma, we prove the following one, that concludes the proof of 

Proposition B. l .10 . 

Lemma B.l.13. — There exists a family of local embeddings Du : i n t (M) —• H3 which 

depends continuously on u G U for the compact Cl-topology, such that Du is pu-

equivariant and Do is the developing map of the complete structure on i n t ( M ) . In 

addition, away from a compact set it coincides with the maps Du,... D* of Lemma 

B.l.12. 

Proof of Lemma B.l. 13. — We already have Du and defined on the respective 

universal coverings of N and Cj. We want to glue these maps by using bump functions 

again. Recall that C7- = T2 x [0, + 0 0 ) and N n Cj = T2 x [0,1]. Thus it suffices to 
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work with a partition of the unit, subordinate to the covering { [ 0 , 3 / 4 ) , ( 1 / 4 , 1 ] } of 

the interval [0,1], to glue the maps on the universal coverings. • 

Proof of Lemma B.L 12. — The universal covering Cj is homeomorphic to E2 x 

[0, -hoo). We suppose that the action of the fundamental group is given by: 

ai : E2 x [0, + o o ) — • E2 x [0, + o o ) 
and 

Xi : E2 x [0, -hoc) —> E2 x [0, -hoo) 

(x,y,t) «—> ( x - h l , y , t ) (x,y,t) I—> (x,2/ + l , t ) 

By Lemmas B. l .6 and B. l .7 , we may assume that 

2(u)\J2(u)\J2(u)\J 

(e"j/2 

0 

1 
2(u)\J 

Pu(Xj) = ± 
2(u)\J 

0 

2(u)\J 

e-Vj{u)/2 

Since the cusp is complete for the initial hyperbolic structure when u = 0, we also 

assume that the restriction of the developing; map D(\ — Dr.x^, is: 

DJ0 : E2 x [0, -hoc) —> H3 = C x (0, -hoo) 

(x,y,t) I • (x + rAOfae*) 

Here we use the half space model H3 = C x (0, -hoo) for the hyperbolic space 

We consider the family of maps DJU : E2 x [0, -hoo) —> H3 defined by 

Dju{x,y,t) = 

' eUjX+Vj(u)y _ 

eUj/2 _ e-Uj/2 

et+Re(uj x+Vj (u)y) 

{x + TjiuJy^e1) 

if Uj 0; 

if Uj = 0. 

The map D3U is pn-equivariant and it is also a local diffeomorphism. Since Vj(u) = 

UJ{TJ(U) -h 0( | t^ |2)) , DJU varies continuously on u e U for the compact C1-topology. 

The following claim finishes the proof of the lemma. 

Claim B.l.14. — The hyperbolic structure on Cj induced by DJU is complete iff Uj — 0. 

// Uj 7̂  0 then the metric completion of Cj is the completion described by the Dehn 

filling parameters. 

Proof. — When Uj = 0 , the structure is complete since it is the quotient of a horoball 

by a rank two parabolic group (cf. [BP] or [Rat]). 

We assume that Uj 7̂  0. For every t e [0, -hoo), D^M2 x {t}) is the set of points 

that are at distance d(t) from the geodesic 7 having end-point 

7 n an3 = 
- 2 

smh(uj/2) ' 
+ 0 0 

The distance d(t) satisfies 

sinh(d(t)) 2 I s i n h ( V 2 ) | e * = 1 . 

In particular, for a fixed u G U, d(t) —+ 0 when t —> + 0 0 , and 

Dì ( E 2 x [ t , + o o ) ) - A ^ ( t ) ( 7 ) - 7 , 

where Md(t){l) ^ tne tubular neighborhood of 7 of radius d(t). 
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We deal first with the case where (pj,qj) is a pair of coprime integers. Let r-j, Sj £ Z 

be such that VjSj — a9r\ = 1. Consider the linear isomorphism 

$ : E2 —> E2 

(a, b) I—> (pjd + rjb, qjd + s.-fr) 

The equality h+ t̂ -ûs hh= 27Ta/^T implies that 

Z ? £ ( * M ) , * ) = 

^ea27rv/:=T+FEZJ _ I 

1 e W j / 2 _ e-Uj/2 
t+b Re(lj) 

where lj = VjUj + s ^ - . An easy computation shows that 

Re( / j ) = lmhh(ujVj)/(27r), 

which is non-zero, because Vj(u) = UJ(TJ(U) + 0(\u\2) and lm( r j (0 ) ) ^ 0. 

It follows that for every t > 0, Du : R2 x [£, - foo) —> H3 factorizes to a homeomor-

phism 

(E2 x [t, + o o ) ) / + ÇHHJN;N;-ÀN;NN;J) ̂  ^ d ( t ) ( 7 ) - 7, 

where (jPjlij+Qj^j) denotes the cyclic group generated by pjfij+qj\j. In addition, the 

holonomy of Tjfij+SjXj preserves 7 and acts on 7 as a translation of length Re(Zj) ^ 0. 

It follows that the completion of Cj is obtained by adding the quotient of 7 by this 

translation, and topologically this is the Dehn filling with meridian pjfij + qjXj. 

Next we study the case where Pj/qj £ Q U { 0 0 } . Let (mj,rij) be a pair of coprime 

integers such that rrij/rij = Pj/qj and set OLJ = 2itmj/pj. Consider the singular space 

H3 defined in the first chapter. The developing map D3U : Cj —• M3 — 7 induces a 

developing map D'u : Cj —• M3 . — E, because the universal coverings of H3 — 7 and 

of H3 — E are isometric. Now the discussion in the precedent case applies, and we 

conclude that the completion of Cj consist of adding a singular geodesic, with cone 

angle a j , and the topological filling meridian is rrijPj + rijXj. 

In the last case, where Pj/qj £ E — Q, the holonomy of Cj acts faithfully on the 

geodesic 7. Since ni(Cj) = Z © Z , this action is non discrete. It follows easily that 

the completion cannot be Hausdorff. 

This finishes the proof of the claim, of Proposition B. l .10 and of Theorem B . l . l . • 

The proof yields not only the existence of a one parameter family of cone 3-manifold 

structures but also gives a path of corresponding holonomies in the variety R{M) 

of representations of ni(M) into SX2(C) . A corollary of the proof of Thurston's 

hyperbolic Dehn filling theorem is the following: 

Corollary B.1.15. — For any real numbers a i , . . . , > 0 there exist e > 0 and a path 

7 : [0,e) —> R(M), such that, for every t £ [0, e ) , 7(t) is a lift of the holonomy of a 

hyperbolic structure on M corresponding to the generalized Dehn filling coefficients 

( (p i , (Zi) , . . . , (p* , (7fc)) = ( ( 2 7 r / ( a 1 0 , 0 ) , . . . , ( 2 7 r / ( a ^ ) , 0 ) ) . 

ASTÉRISQUE 272 



B.2. THE ORBIFOLD CASE 187 

When ctjt = 0, the structure at the j - t h cusp is complete; otherwise its completion 

is a cone 3-manifold obtained by adding to Tj a solid torus with meridian curve JJLJ 

and singular core with cone angle ctjt. 

B . 2 . T h e orbifold case 

B . 2 . 1 . Dehn filling on orbifolds. — Let O be a compact 3-orbifold whose bound­

ary components are Euclidean 2-orbifolds. Each component of dO is one of the fol­

lowing: 

- a2-torus T ^ ^ x S 1 ; 

- a pillow P = S 2 ( 2 , 2 , 2 , 2 ) 2Ê T 2 / ( Z / 2 Z ) ; 

- a turnover S2(ni , n2, n3) with ^ + ^ + ^ = 1. 

A turnover cannot bound the quotient of a solid torus, hence we cannot do any 

Dehn filling on it. This is coherent with the fact that turnovers are rigid, and do not 

allow to define Dehn filling parameters. For a 2-torus T2, we define the Dehn filling 

coefficients exactly in the same way as for manifolds. Next we give the details of the 

definition for a pillow. 

Definition B.2.1. — A solid pillow is a 3-ball with two unknotted singular arcs with 

ramification indices 2. In a solid pillow, a meridian disc is a proper non-singular 

disc of the solid pillow that splits it into two balls with a singular arc each one (see 

Figure 1). 

F I G U R E 1. The solid pillow. Its boundaxy is the pillow. The figure on the 

right represents a meridian disc in the solid pillow. 

A meridian disc in a solid pillow is unique up to orbifold isotopy. The solid pillow 

is the quotient of the solid torus by Z / 2 Z , and the meridian disc of the solid pillow 

lifts to two parallel meridian discs of the solid torus. 

The boundary of the solid pillow is the pillow .S2(2,2 ,2 ,2) , hence we have the 

following definition. 

Definition B.2.2. — Let O be a 3-orbifold, let P c dO be a boundary component 

with P = 5 2 ( 2 , 2 , 2 , 2 ) , and let fi C P be a simple closed curve that splits P into two 

discs with two cone points each one. The Dehn filling of O with surgery meridian 
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[i is the orbifold O 5, where 5 is a solid pillow and 0 : P —» OS is an orbifold 
homeomorphism that identifies \x with the boundary of a meridian disc. 

As for manifolds, the Dehn filling only depends on the orbifold isotopy class of the 
surgery meridian. To describe the orbifold isotopy classes of these curves, we need 
to recall some elementary facts about the fundamental group of the pillow. Since 
S2(2,2,2,2) 2* T 2 / ( Z / 2 Z ) , we have an exact sequence: 

1 — > Z 0 Z — • 7Ti(52(2,2,2,2)) — > Z / 2 Z — > 1 . 

The sequence splits, and the generator of Z / 2 Z acts on Z 0 Z by mapping each element 
to its inverse. 

We list some elementary properties of the fundamental group of an orbifold in the 
following lemma, whose proof is an easy exercise. 

Lemma B.2.3. — Given 7 G 7Ti(52(2,2,2,2)) with 7 ^ 1 , then: 

i) Either 7 is torsion free or has order two. 
ii) The element 7 is torsion free iff>y G ker (TTI(52(2, 2,2,2)) -> Z /2Z) ^ Z 0 Z . 

Hi) If 7 is torsion free, then 7 is represented by n times a simple closed loop that 
splits 52(2,2,2,2) into two discs with two singular points each one. • 

Definition B.2.4. — We call ker (TTI(52(2, 2,2,2)) -> Z/2Z) ^ Z 0 Z the torsion free 
subgroup of 7N(52(2,2 ,2 ,2)) . 

Remark B.2.5. — For a Dehn filling on a pillow, the surgery meridian gives, up to sign, 
a primitive element of the torsion free subgroup of 7Ti(52(2, 2, 2, 2)). Thus, to describe 
a Dehn filling it suffices to give a primitive element of the torsion free subgroup, up 
to sign. 

B . 2 . 2 . The hyperbolic Dehn filling theorem. — Let O be a compact 3-orbifold 
with boundary such that int((D) is hyperbolic with finite volume. Each boundary 
component of O is a Euclidean 2-orbifold. As for manifolds, the completion of the 
deformed hyperbolic structures on int(O) is described by generalized Dehn filling 
parameters. Assume that dO has 

- k non-singular tori, 
- I pillows, and 
- m turnovers, 

with k + / > 0. For each torus T2 in dO, we fix \Xj and Xj two generators of 7ri(Tj*), 
that are represented by two simple loops in T2. For each pillow P? in dO, we also fix 
Pj and Xj two generators of the torsion free subgroup of 7Ti(PJ2), that represent two 
simple closed curves in F2 (each curve bounds a disc with two cone points). 

For a torus Tj (j < k), the interpretation of the the generalized Dehn filling 
coefficients is the same as in the manifold case. For a pillow Pj (k + 1 < j < k - H ) , 
we also associate generalized Dehn filling coefficients (pj,qj) G M2 U { 0 0 } such that 
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(PjiQj) = oo iff the structure at the j - t h cusp is complete. When (pj,qj) G E2 the 
interpretation is very similar to the manifold case: 

- If pj, qj G Z are coprime, then the completion at the j-th end is a non-singular 
hyperbolic 3-orbifold, which topologically is the Dehn filling with surgery merid­
i a n ^ - - Ь ^ Л , . 

- When Pj/qj G Q U { o o } , let rrij,nj G Z be coprime integers such that Pj/qj = 
mj/rij. The completion is a cone 3-manifold obtained by gluing a solid pillow 
with singular core. This core is a segment with silvered boundary (see Fig­
ure 2) , and therefore there are singularities which are not of cyclic type. The 
surgery meridian is rrijfij + rijXj and the cone angle of the singular component 
is 27r\rrij/pj\. 

- When Pj/qj G E — Q, the completion (by equivalence classes of Cauchy se­
quences) is not topologically a manifold. These singularities are called of Dehn 
type, cf. [Ho2]. 

FIGURE 2. The solid pillow with a singular soul with cone angle a. 

Theorem B.2.6 (Thurston's hyperbolic Dehn filling for orbifolds [DuM]) 
There exists a neighborhood of { o o , . . . , o o } in S2 x • • • x S2 = (S2)k+£ such that 

the complete hyperbolic structure on int(O) has a space of hyperbolic deformations 

parametrized by the generalized Dehn filling coefficients in this neighborhood. 

Proof. — The proof has the same steps as in the manifold case, but it is more 

involved. We give the three main steps in the next three paragraphs. 

B . 2 . 3 . Algebraic deformation of holonomies. — The holonomy representation 

of 7 r i ( 0 ) into PSL2{C) may not lift to a representation into 5 L 2 ( C ) , because 7 r i ( 0 ) 

has elements of finite order which are rotations. One could work with the variety of 

representations into P 5 L 2 ( C ) , but in order to use some results of Section B . l , we will 

work with representations of O — E into 5 L 2 ( C ) , where E is the ramification set of O. 

Assume that E consists of no circles and n\ arcs (thus it has no + ni components). 

Let 7 1 , . . . , 7 N O + N I G 7Ti((9 — E) represent meridians of the components of E. Let 

Po : 7Ti(0 — E) 5L2(C) denote a lift of the restriction of the holonomy of int((9). 
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Its character is denoted by VN. We define: 

K(0) = {p G R(0 - E) I t race(p(7j)) = trace(po(7j)) . for j = 1 , . . . , n0 + n i } , 

X{Q) = {XeX(0-E) I x ( 7 i ) = Xo(7 i ) , for j = 1 , . . . , n0 + n j . 

A representation in TZ(0) composed with the natural projection SL2(C) —> PSL2(C) 

factors to a representation 7Ti(0) —> PSL2(C) because the restriction trace(p(7j)) = 

trace(p0(7j)) implies that p(ij) is a rotation of the same angle as podj). For the 

same reason, if Xp £ X(0), then p factors to a representation 7Ti(0) —> PSL2(C). 

The elements / ¿ 1 , . . . G 7 T i ( 0 ) represent a family of simple closed curves, one 

for each boundary component of O different from a turnover. As in the manifold case, 

we consider the map 

JM = ( J M l , . . . , J w + I ) : * ( 0 ) — • € * + ' . 

Let XO be the character of the holonomy po of the complete structure on int O. 

Theorem B.2.7. — The map 1^ = ( 1 ^ , . . . , I^k+l): # ( 0 ) —• Cfc+/ ¿5 /oca//?/ bianalytic 

at XO-

Proof. — The proof or the theorem follows the same scheme as the proof of Theo­

rem B. l .2 in the manifold case. The only difference is the lower bound of the dimension 

of A B ( 0 ) , where XQ(0) is a component of X(0) that contains XO- This is done in the 

following lemma. 

Lemma B.2.8. — d im(AB(0) ) >h + l. 

Proof of Lemma B.2.8. — Let XQ(0 — E) be a component of X(0 — E) that contains 

Xo(0). Let A/"(E) denote a tubular neighborhood of E. By Thurston's estimate 

[Thul , T h m 5.6], see also [CS, Thm. 3.2.1], we have that 

d i m ( X 0 ( O - E) ) > k + n0 - \x{d{0 - ( E ) ) ) , 

because k + no is the number of torus components of d(0 — A/*(E)). Since each pillow 

meets 4 singular arcs, each turnover meets 3 singular arcs, and each singular arc meets 

the boundary twice, we have that 

4/ + 3m = 2ni . 

In addition the Euler characteristic of the boundary is 

x ( ö ( 0 - A T ( E ) ) ) = - m - 2 / . 

Combining these equalities, Thurston's estimate can be reformulated as: 

d i m ( X 0 ( O - E) ) > k + n0 + nx + /. 

Since Xo(0) is a subset of XQ(0 — E) defined by no + n\ equations, lemma B.2.8 

follows. This also finishes the proof of Theorem B.2.7 • 
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B .2 .4 . Generalized Dehn filling coefficients. — As in the manifold case, by 

using Theorem B.2.7, we choose a neighborhood V c X(G) of xo, a neighborhood 

U C Cfc+/ of the origin, and a branched covering n : U -> V C ( O ) of order 2k+l 

defined by 

Itiji^{dddu)) = Idhdnj(n(uufhf...,uk+i)) =gjg ej2cosh(uj/2) for j = 1 , . . . , k + /, 

where the coefficients €j G { ± 1 } are chosen so that /^.(xo) = trace(po(Mj)) = e?2. 

Following the manifold case, we choose an analytic section s : V —> 7£(0 ) and we 

use the notation pu = S(TT(U)) G 1Z(0). 

Recall that for j = 1 , . . . , fc, the j - t h boundary component of O is a torus Tj and 

Pj and Xj generate ni(T2). For j = k + 1,... ,k + I, the j - t h boundary component 

of O is a pillow Pj and \ij and Xj generate the torsion free subgroup of TTI(PJ). We 

choose Oj G 7Ti (P j ) any element of order two, so that the following is a presentation 

of the fundamental group 

Itiji^{u)) = Inj(n(uu...,uk+i)) = ej2cosh(fjuj/2) for j = 1,..., k + /,sfsfsfddhdhddddsItiji^{u)) 

We recall that ni(Pj) is a quotient of ni(Pj — E ) . 

LemmaB.2.9. — Let iij,Oj G ~ E) be two elements that project to fij^Oj G 

x<cwvcbn 

i) For j = 1 , . . . , + Z, there is an analytic map Aj : U —> PSL2(C) such that for 

every u eU: 

Pu(Pj) =ejAhj(u) 
{eUj/2 

0 

1 
Itiji^{u 

Aj(u)-\ 

ii) In addition, for j = k + 1 , . . . ,k +1, Aj : U —• PSL2(C) satisfies 

Pu{6j) = ±Aj(u) 
-i(eu*>2 

i 
Itiji^{u)ff) 

0 
Mu)'1 

where i = \f—ï. 

Proof — We give only the proof for pillows, the proof for tori being the proof of 

Lemma B. l .6 . We fix ws G C2 such that 11)3 is not an eigenvector for pu(0j) and 

set W2(u) = {pu{Qj) — i)w3 7̂  0, so that (pu(0j) + 1)11)2(11) — 0, because ±i are the 

eigenvalues for pu(Qj)-

The matrix po(]lj) is parabolic, hence it does not diagonalize. This means that 

Po(jij) has only a one dimensional eigenspace with eigenvalue 6j. Therefore, up to 

replacing i by — i, we have: 

ker(po(Mj) - tj Id) H ker(po(0j) + ild) = { 0 } . 

In particular w2(u) = (w\(u),W2(u)) is not an eigenvector for po(l^j)- As in Lemma 

B.1.6, we take wi(u) = (w{(u), w\(u)) = (ejpu(pj) — e~Uj/2)u)2, where €j = ±1 is the 
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eigenvalue for po(FIJ). We define: 

Aj(u) = 
1 

/w{{u)W2\U) — wf (u)w2(u) 

(w\{u) 

Kwl{u) 

w\{u)\ 

wl{u)) 

and it is clear from this construction that i) holds. 

To prove ii), since (pu(0j) + i)w2(u) = 0, we have that pu{0j) is of the form: 

Pu(0j) = ±Aj(u) 
V * 

o 1 

-ij 
Mu)'1 

Therefore point ii) follows from the fact that pu{0j) £ SL2(C) and from the relation 

Pu{0j)pu{pj)pu{0~1) = ±pu(pj1), because pu factors to a representation of ni(Pj) 

into PSL2(C). • 

The following lemma has exactly the same proof as Lemma B. l .7 , again because 

pu factors to a representation of ni(Pj) into PSL2(C). 

Lemma B.2.10. — Let Xj £ TT\{PJ — E) be an element that projects to Xj e iri(Pj). 

For j = 1 , . . . , ft + Z, there exist unique analytic functions VJ,TJ : U —• C such that 

Vj(0) = 0 and for every u G U: 

Pu(Xj) = ±Aj(u) 
/eVj(u)/2 

0 

Itiji^{u 
e-Vj(u)/2 A j { u ) - \ s h d 

In addition: 

i) TJ(0) G C - E ; 

ii) sinh(VJ 12) = TJ sinh(uj/2); 

Hi) Vj is odd in Uj and even in ur, for r ^ j ; 

iv) Vjfh =fhUj(Tggjgj(u)+0(\u\2)). 

Following the manifold case, we define: 

Definition B.2.11 ([Thul]). — For u eU and j = 1 , . . . , /c+Z, we define the generalized 

Dehn filling coefficients of the j - t h cusp (pj,qj) G M2 U { o o } = S2 by the formula: 

f (Pj,Qj) = 00 if 1 x ^ = 0 ; 

\ PjUj + qjVj = 2 7 T \ / — Î if Uj ^ 0. 

The following proposition follows also from Lemma B.2.10 i) and iv) . 

Proposition B.2.12. — The generalized Dehn filling coefficients are well defined and 

u 1—• (puqi),>-,(pk+hqk+i) 

u 1—• (puqi),>-,(pk+hssgsqk+i) 

defines a homeomorphism between U and a neighborhood of { o o , . . . , o o } . 
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B . 2 . 5 . Deformation of developing maps. — Let Do :int O —> H3 be the devel­

oping map for the complete structure on in tO , with holonomy po. The following is 

the orbifold version of Proposition B. l .10 and completes the proof of Theorem B.2.6. 

Proposition B.2.13. — For each u G U there is a developing map Du : intO —• H3 

with holonomy pu, such that the completion of'mtO is given by the generalized Dehn 

filling coefficients of u. 

Proof — The proof is analogous to the proof of Proposition B . l . 10, but it needs to 

be adapted to orbifolds. 

First we need an orbifold version of Lemma B . l . l l . In the proof of Lemma B . l . 11 

we use a finite covering {U\,..., Un} of a neighborhood of a compact core of the 

manifold N C i n t (M) , such that each Ui is simply connected. In the orbifold case, 

we have to use simply connected subsets Ui such that if Ui Pi £ ^ 0 then Ui is 

the quotient of a ball by an orthogonal rotation. With this choice of L^, one can 

generalize the argument in Lemma B . l . l l by using the fact that, for every torsion 

element 7 G ni(0), the fixed point set of pu{l) depends analytically on u G U. By 

using these remarks, Lemma B . l . l l can easily be generalized to orbifolds, as well as 

Lemma B . l . 13. 

It only remains to prove a version of Lemma B . l . 12 for orbifolds. This lemma gives 

the precise developing maps for the ends. In the orbifold case, we have to distinguish 

the kind of end of int((9), according to the associated component of dO. For tori, 

Lemma B . l . 12 applies. We do not have to worry about turnovers because they are 

rigid. Thus we only need an orbifold version of Lemma B . l . 12 for pillows. It is 

Lemma B.2.14 below, that concludes the proof of Proposition B.2.13. Let Cj denote 

the j - t h end of O. If k + 1 < j < k + / then Cj = Pj x [0, + 0 0 ) , where Pj is a pillow. 

Lemma B.2.14. — For k + 1 < j < k + I, there exists a family of local embeddings 

Du : Cj —> H3 which is continuous on u G U for the compact C1 -topology, such that: 

i) D3U is pu-equivariant, 

ii) DJ0 = D0{d, and 

Hi) the structure on Cj can be completed as described by the generalized Dehn filling 

parameters. 

Proof. — The universal covering Cj is homeomorphic to R2 x [ 0 , + 0 0 ) . With the 

notation above, the group T T I ( C J ) = ni{Pj) is generated by ^ , Xj and 6j. We may 

assume that their action on Cj by deck transformations is the following: 

( Pj{x,y,i) = (x + 1,2/,*) 

Xj(x,y,t) = (x,2/ + l , t ) 

Oj{x,y,t) = (xs,2/ s+ l,t)cvc 

for every (x, y, t) G R2 x [0, + 0 0 ) . 
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By Lemmas B.2.9 and B.2.10, we may assume: 

(x,2/ + l,t) 
= ± 

(x + l 

0 

1 
(x,2/ 

(x,2/ + l,t) = ± 
reVj{u)/2 

0 

(x,2/ + l, 

e-Vj(u)/2 

and Pu(0j) = ± 
1 

(x,2/ + l,t) 

0 

- e~u^2) -i 

When u = 0, the cusp is complete and therefore the developing map DJ0 = D0^j is: 

DJ0 : R2 x [0, + o o ) — > I 3 = C x ( 0 , + o o ) 

(x,2/ + l,t)(x,2/ +fff l,t)(x,2/ + l,t) 

The family of maps Du : R2 x [0, + o o ) —» H3 that proves the lemma is the following: 

Dí(x,y,t) = 

'a(u,t) eu¿x+v^u>y - 1 

eUj/2 _ e-Uj/2 
a(u t) et+^{u3xJrvj{u)y) 

(x,2/ + l,t)(x,2/ + l,t 

if Uj ^ 0; 

if UJ = 0. 

where a(u,t) = (l-f- e ^ e ^ / 2 - e"u^/2|) 1/2. We remark that in Lemma B. l .13 we 

used the same family but with a(г¿,t) = 1, since we did not require the equivariance 

by 0j. 

The family DJU is a family of pu-equivariant local diffeomorphisms that depends 

continuously on u e U for the compact C1-topology. The completion of Cj for the 

structure induced by Du is the one described by the Dehn coefficients and it can be 

proved in the same way as Claim B . l . 14. 

This concludes the proof of Lemma B.2.14 and of Theorem B.2.6. • 

B . 3 . Dehn filling with totally geodesic turnovers on the boundary 

The aim of this last section is to prove Proposition B.3.1, which is a version with 

boundary of the hyperbolic Dehn filling theorem, used in Chapter 7. 

Let TV3 be a three manifold with boundary and let E c iV3 be a 1-dimensional 

properly embedded submanifold. This is the case for instance when AT3 is the under­

lying space of an orbifold and E its branching locus. 

We will assume that every component of dN3 is a 2-sphere that intersects E in 

three points. We define the non-compact 3-manifold with boundary 

M3 = NS- E. 

Each component of dM3 is a disjoint union of 3 times punctured spheres. Each end 

of M3 is the product of [0, + o o ) with a torus or an annulus, according to whether the 

corresponding component of E is a circle or an arc. 

We also assume that M3 admits a hyperbolic structure with totally geodesic bound­

ary, whose ends are cusps (of rang one or two, according to whether the corresponding 
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component of E is an arc or a circle). As a metric space is complete 0 1 hmte vol­

ume, and the boundary components are three times punctured spheres. The double 

of M3 along the boundary is a complete hyperbolic manifold with finite volume and 

without boundary. Let k denote the number of connected components of E. 

Proposition B.3.1. — For any real numbers a i , . . . , cxk > 0 there exist e > 0 and a path 

7 : [0 ,e) —> R(M3), such that, for every t G [0 ,e) , 7(t) is a lift of the holonomy of a 

hyperbolic structure on M3 whose metric completion is a cone manifold structure with 

totally geodesic boundary, topological type (iV3, E ) , and cone angles (a± £). 

Proof — We follow the same argument as in the proof of Theorem B . l . l . For the 

algebraic part, we choose { / i i , . . . , Pk} C 7r i (M3) a system of meridians for E. As in 

Theorem B. l .2 we have: 

Proposition B.3.2. — The map 1^ = , . . . , 7Mfc) : X(M3) —> Ck is locally bianalytic 

at xo> where \o is the character of the lift of holonomy of the complete structure on 

M3. • 

The proof of Proposition B.3.2 follows precisely the same argument as Theorem 

B. l .2 : Thurston's estimate gives d i m ( X 0 ( M 3 ) ) > fc, and one can also apply the 

argument about Mostow rigidity to the double of M3. Moreover we use the following 

lemma: 

Lemma B.3.3. — Let po : 7Ti(S2 — {*, *, *}) —• SL2(R) be the holonomy of a hyperbolic 

turnover or of a hyperbolic 3 times punctured sphere. Let {pt}te[o,e) be a deformation 

of po in R(S2 — { * , * , * } , SL2(C)) such that, for each meridian /2 G 7Ti(S2 — {*,*,*}) 

and for each t G ( 0 , e ) , Pt{p) is a rotation. Then pt is conjugate to the holonomy of 

a hyperbolic turnover (i.e. it is Fuchsian). 

Proof. — If po is a holonomy representation, then po is irreducible. Since irre-

ducibility is an open property, we may assume that pt is irreducible. The group 

7Ti(52 — { * , * , * } ) is free of rank 2, generated by two meridians a and b such that the 

product ab is also a meridian. To prove the claim we use the fact that the conju-

gacy class of an irreducible representation is determined by the traces of a, b and ab. 

Thus if pt(a), pt(b) and pt(ab) are rotations, then pt is conjugate to the holonomy of 

the hyperbolic turnover that has cone angles given by pt(a), pt{b) and pt(ab). This 

finishes the proof. • 

By using the fact that deformations of holonomy imply deformations of the struc­

ture and Lemma B.3.3 we obtain the following remark: 

Remark B.3.4. — When we deform the holonomy of a hyperbolic cone structure on 

M3 with totally geodesic boundary so that the meridians are mapped to rotations, 

then the deformed representations are still the holonomy of a hyperbolic structure 

with totally geodesic boundary. 
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All the explicit deformations constructed in Section B . l can be used here, combined 
with Lemma B.3.3, to prove Proposition B.3.1. • 
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