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MODEL COMPLETENESS AND SUBANALYTIC SETS 

1. Introduction 

The class of real subanalytic sets was defined by Gabrielov [2], where he proved 
that the class is closed under complementation. Real subanalytic sets have attracted 
extensive study; in particular, Hironaka [7] proved uniformization and rectilineariza-
tion theorems for real subanalytic sets. In [1], Denef and van den Dries introduced 
the class of p-adic subanalytic sets and showed how to develop both the real and 
p-adic theories from a suitable analytic quantifier elimination theorem. In [9] an 
analogous quantifier elimination theorem was proved for K an algebraically closed 
field, complete with respect to a non-Archimedean absolute value, using the functions 
of S — U m , n S m , n . (See below.) That paper developed a theory of subanalytic sets 
(termed rigid subanalytic sets). This theory was developed further in [10], [11] and 
[12]. In [17]-[21], Schoutens developed a theory of subanalytic sets (which he termed 
strongly subanalytic), over such fields. This theory used a class of functions somewhat 
smaller than T — UT m . (The Tm are the Tate rings of strictly convergent power series 
over K.) 

In this paper we prove a quantifier elimination theorem (Theorem 4 .2) for alge­
braically closed extension fields of K in language Z/£, the language of valued rings 
augmented with function symbols for the members of £, where £ — £(Ji) is a class of 
analytic (partial) functions obtained from % C S by closing up with respect to "dif­
ferentiation" and existential definition (see below for precise definitions). For suitable 
choice of £ = £(T) this gives a quantifier elimination theorem (Corollary 4 .4) in Z/£(T) 
(or a quantifier simplification theorem, Corollary 4 .5, in Ly, the language of valued 
rings augmented with function symbols for the members of T) suitable for developing 
the theory of subanalytic sets based on T, which we term if-affinoid (Corollaries 5.4 
and 5.5) . These results have been used by Gardener and Schoutens in their proof, [3], 
[4], and [22], of a quantifier elimination theorem in the language Lj? (= LT enriched 
by "restricted division" (see below)). Section 2 contains precise definitions of what we 
mean by "closed under differentiation and existential definitions", in all characteristics. 
Section 3 gives the Weierstrass Preparation and Division Theorems for these classes 
of functions that we need for all the Elimination Theorems in Section 4. Section 5 
contains the application of the Elimination Theorems to the theory of Subanalytic 
Sets. 
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We recall some of the basic definitions. K is a field complete with respect to 

a non-Archimedean absolute value | • | : K - > 1 + . We do not assume that K is 

algebraically closed. K° = {x € K : \x\ < 1} is the valuation ring of K, and 

K°° = {x G K : \x\ < 1} is the maximal ideal of K°. Tm = Tm(K) is the (Tate) 

ring of strictly convergent power series over K and 5m?n = Sm,n(E,K) is a ring of 

separated power series over K (see [13, Definition 2.1.1]). Recall that Tm+n C 5m,n 

and that elements of 5m?n represent analytic functions (K°)m x {K°°)n X . 

The language of multiplicatively valued rings is 

L = ( 0 , 1 , + , ^ | - | , 0 , ! , - , < ) . 

The symbols 0, 1, + , • denote the obvious elements and operations on the field; 0, T, 7 

denote the obvious elements and multiplication on the value group U{0}; | • | denotes 

the valuation and < the order relation on the value group U{0}. Section 0 of [1] 
provides all the background about first order languages that we will need. 

A structure F (for a language L') has elimination of quantifiers if every subset of 

Fm defined by an //-formula is in fact defined by a quantifier free //-formula. We 

say that F has quantifier simplification (or is model complete) if every subset of Fm 

defined by an V formula is in fact defined by an existential //-formula. 

In [13] we defined certain open domains in Km which we termed .R-domains ([13, 
Definition 5.3.3]) and showed that each i?-domain U carries a canonical ring of func­

tions denoted 0(U)\ -R-domains generalize the Rational Domains of Affinoid geometry. 

2. Existentially Defined Analytic Functions 

As usual K is a complete non-Archimedean valued field. Let F be a complete 

field extending K and let Faig be its algebraic closure. In general Faig will not be 

complete. However if F' C Faig is a finitely generated extension of F, then F' is 

complete and hence the power series / G 5m>n actually define analytic functions 

(Fa°ig)m x (Fa°ig)n ~* Faig. By the Nullstellensatz ([13, Theorem 4.1.1]) there is a map 

: (Fa°lgr -> Maxrra(F). 

Since Tm(K) C Tm(F) we may therefore regard any i?-domain U C MaxTm(K) as a 

subset of (F£lg)m. In this section we set up the formalism for the quantifier elimination 

theorem. 

The (not necessarily algebraically closed) field K will be the field over which the 

functions in our language are defined in the sense that these functions will all be 

elements of generalized rings of fractions (see below) defined over K. Formulas in 

the language define subsets of (F°lg)m. The Quantifier Elimination Theorem (Theo­

rem 4.2) is uniform in the sense that if (p is defined over K then there is a quantifier-free 

formula also defined over K, such that for each complete F with K C F, <p and 

(p* define the same subset of (F°{ )m. 
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2. EXISTENTIALLY DEFINED ANALYTIC FUNCTIONS 111 

In [1] and [9] the quantifier elimination takes place in a language L^n which has 

symbols for all functions built up from a suitable class of analytic functions and "re­

stricted division" D, where D(x,y) = x/y if \x\ < \y\ / 0 and D(x,y) = 0 otherwise. 

In this paper the use of "restricted division" is replaced by that of generalized rings 

of fractions (see definition below). This is necessary for us because Theorems 3.1 

and 3.3 give definitions of the Weierstrass data in terms of functions, but do not in 

general produce representations of the Weierstrass data by (definable) -D-terms. (In 

the special case that T-L — 5, definability issues drop away and the treatment in this 

paper is easily seen to be equivalent to the treatment of [9] using restricted division. 

See Corollary 4.3). 

Definition 2.1 (cf. [13, Definition 5.3.1]). — We define the generalized rings of frac­

tions over Tm inductively as follows: Tm is a generalized ring of fractions, and if 

A is generalized ring of fractions and f,g G A then both A(f/g) and A\f/g\8 are 

generalized rings of fractions. 

£m+l i - - - i £,m+r\$ £m+l i - - - i £,m+r\ is a generalized ring of fractions over Tm+n. 

Definition 2.2. — Let <p : Tm -> A be a generalized ring of fractions and let $ : 

Max A -> MaxTm be the induced map. We define the domain of A, Dom^4 C 

MaxTm, by saying that x G Dom A iff there is a quasi-rational subdomain U (see [13, 
Definition 5.3.3]) of MaxTm with x G U, such that 

£m+l i - - - i £,m+r\£m+l i - - - i £ 

is bijective. 

Remark 2.3 
(i) The set Dom A does not depend on the representation of the generalized ring of 

fractions A as a quasi-afRnoid Tm-algebra. Suppose that ip : Tm —> A and ip : Tm -> B 

are isomorphic quasi-affinoid Tm-algebras, i.e. there is a If-algebra isomorphism a 

such that 

A a B 

^$ ^$ 

^$ù$ 

commutes. By the Nullstellensatz [13, Theorem 4.1.1] 

X := MaxTm flMax^l = MaxTm H Maxi?. 

Let x G X and suppose there is a quasi-rational subdomain x G U C X such that 

$~1{U) -> U is bijective, where $ : Max A ->> MaxTm corresponds to <p (as in 

Definition 2.2). Let \£ correspond to x[). Since a is an isomorphism, ^-1(C7) —>> U 

is bijective. Since the argument is symmetric in A and B, this shows that Dom A is 
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112 MODEL COMPLETENESS AND SUBANALYTIC SETS 

independent of the presentation of A as a Tm-algebra. (Note however that Dom A is 

not in general a quasi-affinoid subdomain in the sense of [13, Definition 5.3.4].) 

(ii) Let <p : Tm ->> A be a generalized ring of fractions. It follows from the Nullstel-

lensatz, ([13, Theorem 4.1.1]), that 

Dom A(f/g) = {x G Dom A : |/(<r)| < \g(x)\ ^ 0 } , and 

Dom A[f/g]8 = {x G Dom A : \f(x)\ < \g(s)\}. 

(iii) Let (p : Tm -> A be a generalized ring of fractions. By ground field extension 

([13, Definition 5.4.9 and Proposition 5.4.10]) A C A! = S0l0(E,F) ®SOO{E,K) A AND 
we may regard Dom A as a subset of (̂ aig)m and eacn / ^ A as determining an 

analytic function Dom A Faig. In fact, given x G Dom A, there is a unique power 

series / G K{(} and a rational polydisc x G U C Dom A such that f(y — x) converges 

on U and f(y) = f(y — #) for all y G 17. 

(iv) As we noted in the discussion before Definition 2.1, in this paper we work 

with generalized rings of fractions instead of with D-functions. Any element / of a 

generalized ring of fractions A over Tm defines a partial function on Dom A C Max Tm. 

We may regard / as a total function by assigning f(x) = 0 for x G MaxTm \ Dom A. 

It is a consequence of (ii) above that such functions are represented by D-terms in 

the sense of [9, Section 3.2], and conversely. 

We will see below that the Weierstrass data of a power series are existentially de­

finable from / and its partial derivatives. In characteristic p ^ 0, "partial derivatives" 

must be interpreted as Hasse derivatives which we define next. 

Definition 2.4. —Let / G , . . . , £m], R a commutative ring, and let t = (ti,..., tm). 

The Hasse Derivatives of / , denoted Dvj G v — {y\,..., um) G , are defined 
by the equation 

/ ( * + * ) = 
i/6Nm 

£m+l i - - - i £,m+r\ 

(See [5] or [6, Section 3].) 

Remark 2.5 

(i) In characteristic zero the Hasse derivatives are constant multiples of the usual 

partial derivatives. In fact 
^$^$ 

£m+l i - - - i £,m+r\ 
f = Vi\...vm\Dvf. 

Hence the partial derivatives of / and the Hasse derivatives of / are quantifier free 

definable from each other (cf. Definition 2.7). The following facts are not hard to 

prove. Proofs can be found in [5] or [6, Section 3]. 

(ii) In characteristic p ^ 0 the situation is more complicated. If 

!/ = ( ( ) , . . . ,0 ,Pn ,0 . . . ,0 ) 
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2. EXISTENTTALLY DEFINED ANALYTIC FUNCTIONS 113 

with pn in the ith position denote Du by D™. Then the whole family of Hasse deriva­

tives is generated by the Df under composition. In particular D™D™ = D^D™ and 

D„ = D?D?...D%>. 

(iii) Suppose the characteristic is p ^ 0 and let / G R{£i,..., £mJ. Fix i, 1 < i < ra, 

and write 

/ = 

^$^$^$ 

3=0 

fj(f1>•••» & - 1 > f f> &+1 Î • • • i£m)£i • 

The power series fj are uniquely determined by this equation, so we may define 

£m+l i - - - i £,m+r\ 

If / converges on a rational polydisc 0 eU C (F°lg)m, so do the S^j(f). We call the 

Sçitj(f) the p-components of / . By induction, we define the p^1-components of / to 

be the Ö£.j(g), where g is a //-component of / . Thus, 

/ = 
$^$^p 

^pp^p 

£m+l i - - - i £,m+r\£m+l i - - - i £,m+r\£m+l i - - - i £,m 

where the are //-components of / with respect to &. 

It is not hard to show that the Dv are existentially definable from the ôç.j and 

conversely. Indeed the Dv are linear combinations of compositions of the S^j with 

polynomial coefficients, and conversely. 

(iv) The following properties of the Dv follow easily from the definition 

(a) Do = id 
(b) Dvc = 0 for c G R, v ^ 0 

(c) D„(f + g) = Dvf + Dl,g 

(d) D, o D„ = where ( < ^ ) = ft ("J1*) 

(e) D„(f-g) = ZM=ADvf)(Ds9). 
(f) a chain rule (see [5]). 

Definition 2.6. — Let (p : Tm —> A be a generalized ring of fractions and let / G A 

Using Remark 2.3 we define A ( / ) to be the collection of functions Dom A —> Faig 

determined by the Dvf', v G M71. In other words A ( / ) is the smallest collection of 

functions Dom A -> Fajg containing / and closed under the Hasse derivatives. 

Definition 2.7. — Let % C Um,n5m,n be any collection such that A(H) C H. (In the 

most important application % = T = UmTm; another possibility is % = A ( / i , . . . , /n).) 

Let 

Ln : = L ( 0 , 1 , + , . , { / } / e « ; I-1,0, ! , " , < ) 

be the first-order language of multiplicatively valued rings, augmented by symbols 

for the functions of H. A subset X C (F^)™ is said to be definable (respectively, 
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114 MODEL COMPLETENESS AND SUBANALYTIC SETS 

existentially definable, quantifier-free definable) in iff there is an L^-formula (re­

spectively, an existential L^-formula, quantifier-free L^-formula) <p(fi,... , £m) such 

that 

( a i , . . . , am) G X <p(ai,..., am) is true. 

A partial function f : X -> Faig is said to be definable (respectively, existentially 

definable, quantifier-free definable) in L-u iff its graph (and domain) are. The %-

subanalytic sets discussed in Section 5 are exactly the sets existentially definable 

in L<H. A function / is quantifier free (respectively, existentially) definable from 

functions gi,...<>g£ if there is a quantifier-free (respectively, existential) formula (p in 

the language L of multiplicatively valued rings, such that 

V = /0*0 <p(x, y, giOr),..., gi(x)). 

We next define the class of functions £(H) all of whose "derivatives" are existentially 

definable from T-L. The Quantifier Elimination Theorem (Theorem 4.2) applies to 

the language Ls(u) where W = A(H). Since all functions of S{T-L) are existentially 

definable in Lu a corresponding quantifier simplification theorem for the language 

L>n follows. 

Definition 2.8. — The collection £(H) consists of all functions / : X —> Faig such 

that / G A and X = Dom A for some generalized ring of fractions (p : Tm -> A, and 

such that the members of A ( / ) are all existentially definable in L^ . We define the 

language Ls in analogy to Definition 2.7, i.e., Ls is the language of multiplicatively 

valued rings augmented by symbols for the functions of £(1~L)-

The languages Lu (or Ls{u)) are three-sorted languages. The three sorts are F° , 
F°° and |F°| . (See [9, Sections 3.1-3.7].) 

We shall use the following in Section 3. 

Remark 2.9 

(i) Let Char i f = p ^ 0, let f{y) be a convergent power series in y, let y G K 

sufficiently near 0, and let t G N. There is a polynomial f(y) such that 

l(y) = f(y) mod (y - y)p£ 

and / is existentially definable from the //-components of / with respect to y. To see 

this write 

^$^$ 

^$^$ 

3=0 

fej(ype)yj 

£ - £ 

and let / = Y7j=o fij(VP )yj- By Remark 2.5(iii), / is existentially definable from 

A / . 
(ii) If f(x,y) £ £{H) and / = Efi(*)yi then each U € £{U). 

ASTÉRISQUE 264 



3. EXISTENTIAL DEFINABILITY OF WEIERSTRASS DATA 115 

3. Existential Definability of Weierstrass Data 

Let A be a generalized ring of fractions over T and let f,g G -A(f)H* wrtn / 
regular of degree s in y (where y is either £m or pn). By the Weierstrass Division and 
Preparation Theorems ( [13, Theorem 2.3.8 and Corollary 2.3.9]) we can write 

/ = uP and g = qf + r 

where u, P, q and r are as described in those theorems. 

In this section we show that all the members of A(u) and A(P) are existentially 

definable from A ( / ) and all the members of A(q) and A(r) are existentially defin­

able from A ( / ) and A(g). These results are needed for the Elimination Theorem 

(Theorem 4.2). 

Analogous questions in the real case are considered in [23]. For completeness, we 

include proofs below not only in characteristic p but also in characteristic zero. 

Theorem 3.1 (Weierstrass Preparation for £). — Let <p :Tm Abe a generalized ring 

of fractions and let f G i (^ ) I /? ]s . Suppose f is regular of degree s in £M (respectively, 

in PN) in the sense of [13, Definition 2.3.7]. By [13, Corollary 2.3.9], there exist a 

uniquely determined polynomial P G ^ ( O M S K M ] (respectively, P G A{£)IP'}S[PN]) 

monic and regular of degree s and a unit u G ^4(£)Ip]S SUC^ ^IA^ 

f = u-P. 

(Here % : = ( £ i , . . . , £ M - I ) and p' := (pi,...,pN-i)-) Each member of A[u) and 

A(P) is existentially definable in I/A(/)- Hence if f G £(H), then u , ? E £(H). 

Proof — Let y denote the variable (either £m or ppj) in which / is regular and let x 
denote the other variables. With this notation the above equation becomes 

f(x,y) = u(x,y)[ys + as-i(x)ys~1 + ••• + a0(x)]. 

We must show that each member of A(u) and A(a,j) j — 0 , . . . , s — 1 is existentially 

definable in ^A ( / )? i-e- from A ( / ) . 

For each x G Dom A(£')[p]5 (respectively Dom4(()[p ' ]s) , let yi(x),... ,ys(x) be 

the s roots of the equation f(x,y) = 0 with \y\ < 1 (respectively < 1). Then the 

dj(x) are symmetric functions of the yi(x), say CLJ(X) = (Tj(y1(x),... ,y8(x)). 

We consider the cases Char K = 0 and Char K = p ^ 0 separately. 

Case (A). — Characteristic K = 0. 

By Remark 2.5(i) we may work with the usual partial derivatives instead of the 

Hasse derivatives. 
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116 MODEL COMPLETENESS AND SUBANALYTIC SETS 

For each partition V : s = s\ +s2 H \-sm, with the S{ > 1, let </?p be the formula 

\i=i 

s 
£m+l i - - - i A (2/1 = 2/2 = • • • = y8l) A (y8l+i = ' • • = 2/5l+S2) A . . . 

• * * A (î/ai+...+„m_1+i = • • • = y s) 
«1-1 

^$^^$ 

^$^$ 

^$^mùù (2/1) = 0 A 

. . . A 
^$^$^$^$ 

3=0 

poppop 

dy* 
{ySl+...+Srn_1+1) = 0/* 

$^$^$ 

A (î/ai+...+„m_1+i = • • • 

where • is < or < depending on whether 2/ is a £M or piv. Hence (p-p expresses the 

fact that yi is a root of / = 0 of multiplicity 51, y8l+i is a root of multiplicity s2, etc. 

For each j = 0 , . . . , s — 1, let <Pj(x,Wj) be the formula 

3yi...3y8[ 

v 

(ppAWj = (Tj(yu...,ys)]. 

Then <£>j is an existential definition of dj(x). We must further show that u and 

the derivatives of the aj(x) are existentially definable. Notice that the y^x) may 

not be differentiate even at points where the cij(x) are analytic. Let P{x,y) = 

ys + as-1(x)ys~1 H h ao(x). Then 

(3.1) f(x,y)=u{x,y)P{x,y). 

Next we show that u(x,y) is existentially definable. This is obvious from (3.1) except 

perhaps when y = ^(rr) for some i (i.e. when P{x,y) — 0). Note that 

$^^$ 9P 
dy ' 

a2p 
^$^$^$ 

^$^$ 
^$^$ = s ! # 0 

are all existentially definable. It is now easy to see that if y is an s^-fold root of 

f(x,y) = 0 then u(x,y) is defined by 

dSif 

dy** 
x,y) = u(x,y) 

fìSi p 

QySi fay). 

Iterating, we see that 
du d2u 

dy dy2 
are all existentially definable from A ( / ) . 

Differentiating (3.1) with respect to x\ we get 

df 

dxi 

du 

dxi 
P + u 

dP 

dxi 

du 

ax i 
P + u 

da s 

dxi 
£m+l i - - - i £,m+r\ da0 

dx\ 

So, if yx,..., ys satisfy P(x, y) = 0, then 

(3.2) £m+l i - - - i £,m+r\ df_ 

dxi 
^$^$ = a'a_1y8i 1 + - - - + a(), 

da 
where we write a' for -r-̂ -. If the roots V i , • • •, V« of P — 0 are distinct then the 

3 dxx 1 8 
equations (3.2) uniquely determine the a1 y (The coefficient matrix of the system of 
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3. EXISTENTIAL DEFINABILITY OF WEIERSTRASS DATA 117 

linear equations (3.2) is the Vandermonde matrix with determinant Yl^jiVi — Vj) / 

0). 

If yi is a root of P = 0 of multiplicity Si we replace the si identical equations in 

(3.2) by the subsystem 

A (î/ai+...+ $^=* 

dxi 
^$^$^^$ 

dp 

dxi 
{x,Vi), 

u 1(x,yi) 
d2f 

öyöxi 
(x,Vi) = 

d2P 

ôyôxi 
[x^yj + u 1(x,yi) 

du 

dyK 
^$^ù^^$ 

x dP 
UX\ 

^$^$^$^$ 

u 1(x,yi) 
dSif 

dy'^dxi 
A (î/ai+...+„m_ ^$^$ 

QSip 

dy8i~1dx\ 
(x,yi) + ... . 

to obtain a system of equations that we denote (3.2)'. The coefficient matrix of the 

resulting system of equations is nonsingular (see Remark 3.2 below) and hence the 
do, du 

new system of equations defines the Existential definitions of and the 

higher derivatives of the a,j and u are obtained by iterating. 

Case (B). Characteristic K = p^ 0. 

We follow the same general outline as in Case A and indicate the necessary changes. 
dkf _ 

In characteristic zero we used the derivatives Trriv) to detect the multiplicity of a 
oyK 

root y of / = 0. In Characteristic p we use the device of Remark 2.9(i). If we choose 

p£ > s then the multiplicity of y as a root of / = 0 is the same as the multiplicity of y 

as a root of f(y) — 0, and since / is a polynomial in y, the multiplicity of y as a zero 

of / is existentially definable from the coefficients of / , which are by Remark 2.9(i) 

existentially definable from the pe components of / . Hence P is existentially definable 

from the ^/-components of / with respect to y and hence from the Hasse derivatives 

Dvf for v = ( 0 , . . . , 0, i) , i = 0,...,p£ - 1. 

Next we must show that u and all its Hasse derivatives with respect to y are 

existentially definable. From the equation 

f = uP, 

u is existentially definable, except when P = 0, i.e. except when y — y{ for some i. If 

y is a zero of P of order a < s then u(y) is (existentially) defined using 

f(y)=u(y)P m o d ( 2 / - ^ r + 1 

where / is the polynomial as in Remark 2.9(i) and pl > s. In fact, for any ¡5 G N we 

can existentially define a polynomial u such that u = u mod (y — y)@ by considering 

the congruence / = uP mod (y — y)^+a. 
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118 MODEL COMPLETENESS AND SUBANALYTIC SETS 

Let Dy denote £)(o,...,o,i)- Then 

£m+l i - - - i £,m+r\ 

j+k=i 

WyUDlP 

(see Remark 2.5(iv)(e)). Since P is a polynomial in y the DyP are all quantifier free 

definable. We proceed inductively 

Dlf = (D1yu)P + uD1yP. 

This defines (DyU) except when y = y is a zero of P. But for such y we consider a 
congruence of the form 

Dlf = {Dlyu)P + uD\P mod £m+l i - - - i £,m+r\ 

By Remark 2.9(i), for any ¡3 G N we can existentially define a polynomial congruent 

to Dyf mod (y — y)13. We saw above that we can existentially define a polynomial 

u(y) = u(y) mod (y — y)@. Hence we can existentially define D^u modulo (y — y)P 

for any /3. From this, for /3 large enough, an existential definition of (DyU)(y) follows. 

Next we use 

Dlf (Dlu)P + (Dlu)(DlP)+u(D2yP) 

and the same argument to see that we can existentially define D2u mod (y — y)@ for 

any /3. The same devices allow us to obtain existential definition of the other Hasse 

derivative of u and P. We do an example that will convince the reader, and show that 

D^DyU and DltDyP are existentially definable. (Here DlXl = Z}(^0,...,())• Observe 

also that DlXlD3y = ^(»,o,...,o,j)0 We again start with the equation 

f = uP. 

Thus 

(3.3) D1Xlf = {D1Xlu)P + u(D1XlP). 

Let the distinct zeros of P be . . . ,yd and let yi have multiplicity on. Then DXlP, 

which is a polynomial in y of degree < s — 1 is determined by the congruences 

D i , / = u ( j M P ) m o d f o - f r r , i = l,...,d. 

DXlu is determined by equation (3.3), except where y — y{ for some i. But as above 

DXiu mod (y—yi)^ can be existentially defined by looking at (3.3) mod (y—yi)p for 

large enough I and using the fact that D\J mod (y — yi)pt and u mod {y — y)p are 

existentially definable from the D3yDXlf and Dyf. To obtain the "second derivative" 

with respect to x\ we apply D2 to the equation / = uP: 

(3.4) Dlj = (Dl^P + iDluXDl^ + uiDlP). 

Looking at this equation modulo the (y — yi)ai and using the facts that P = 0 

mod (y—yi)ai and that we have existentially defined polynomials congruent to {DlXlu) 

and u modulo (y — ^)aS gives an existential definition of (the polynomial in y) 
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D\ P. Then D^u is determined when y is different from all the yi by (3.4) and D^u 
mod (y — yi)P (for any /?) is determined by looking at (3.4) modulo a high enough 

power of y — yi and using the facts that we have existentially defined polynomials 

congruent to DxXlu and u modulo any specified power of y — y{. Next apply Dy to 

(3.3): 

(3.5) D\D\J = {D\DllU)P + (DllU)(DlP) + ( U j u J p ^ P ) + u(D\DlXlP). 

As above, first determine DyDXlP by looking at this equation mod (y — yi)ai and 

then determine D^DXlu for y ^ yt, i = 1,..., d and DyD^u mod (y - y^P for any 

/3. Finally apply Dy to (3.4) to obtain 

D\D\J = (DlDliU)P + (DliU)(DlP) + (DlDl^D^P) 

+ (Dl^iDlDlP) + (DluXDlP) + u(DlD2XiP). 

Exactly as above, first determine DyD^P and then DxyD\xu for y ^ y{1 i = 1,... , d, 

and finally DyDlxu mod (y - y^P for any ¡3. • 

Remark 3.2. 
and let the Yij be variables i 

det 

Assume the characteristic of K is zero. Let s\ + S2 + • 
l , . . . , m ; j = 1 , . . . ,^ . 

y / f 1 y / f 2 . . . yn 1 

£m+l i - - - i £ 

ys-1 Vs-
Ils1 Ils1 s-2 

rs-1 ys-2 
1 msm 

YUl 1 

£m+l i - - - i 

= J ] (Yij-Yst) 
(i,j)<(s,t) 

where < is the lexicographic ordering. 
For each i and j , differentiate j — 1 times with respect to Y^. Then set all the 

Y{j = Yi (a new variable) for each i = l , . . . , m . The resulting determinant is a 
nonzero constant times a product of powers of (Yi — Yj), i ^ j . Call this function 
V(Yu...1Ym). 

Then the determinant of the coefficient matrix of the system of equations (3.2)' 

occurring in the proof of Theorem 3.1 is V(y11... ,ym) ^ 0 where yx,... ,ym are the 

distinct roots of f(x,y) = 0, and yi is a root of multiplicity Si. 

Theorem 3.3 (Weierstrass Division for £). — Let tp :Tm —>> A be a generalized ring of 

fractions and let f,g £ Suppose f is regular of degree s in £M (respectively, 

PN) in the sense of [13, Definition 2.3.7]. Then by [13, Theorem 2.3.8] there exist 

unique elements 

r e A{?)\p].[tM] 
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(respectively, r G -A(£)Ip'Js[PN]^ of degree s — 1 and q G i(()[p]s such that 

g = qf + r. 

(Here £' := (£1, . . . , £ M - I ) and p' := (pi,.. . ,pN-i)-) Furthermore, each member of 
A(q) and A(r) is existentially definable in I>A(/)UA(#)- Hence if f,g G £(H) then 
q,re£{U). 

Proof. — We follow the same notational convention as in the proof of Theorem 3.1 
— i.e. we let y denote £M (respectively px) and let x denote the other variables. Let 
r = YliZi riix)y\ and let yi(x),... ,ys{x) be the roots of f(x,y) = 0. Then 

s-1 
(3.6) 0(z,27.) = X ^ O r ) ^ . 

j=o 

Case (A). — Characteristic K = 0. 

Again in this case we may consider the usual derivatives. If the yt are all distinct 
then (3.6) has coefficient matrix the Vandermonde matrix and (3.6) determines the 
rj(x). If yi is a root of / = 0 of multiplicity ŝ , replace the corresponding si identical 
equations in (3.6) by the equations 

d^g _ d^r _ 
di*{x>Vi) = di^x'Vi)' * = o, 1. 

The resulting system again has nonsingular coefficient matrix (see Remark 3.2) and 
hence determines the rj(x). 

Existential definitions of the derivatives of the r3- are obtained in a way similar to 
that employed in the proof of Theorem 3.1 to obtain those for the derivative of the 
a,j. The same arguments also give existential definitions of q and its derivatives from 
A(/)UA(5) . 

Case (B). — Characteristic K = p ^ 0. 

We proceed in a way entirely analogous to the characteristic p case of the proof of 
Theorem 3.1. • 

4. The Elimination Theorem 

We prove an elimination theorem that both generalizes that of [9] and provides a 
basis for the theory of affinoid subanalytic sets (i.e., the images of affinoid maps) as the 
elimination theorem of [9] provided a basis for the theory of quasi-affinoid subanalytic 
sets. We follow the strategy of [1], first using parameterized Weierstrass Preparation 
(and Division) to reduce to the case that some variable occurs polynomially and 
then using an algebraic elimination theorem. Where [1] used Macintyre's elimination 
theorem [16] we use the elimination theorem of [24]. 
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To obtain parametrized Weierstrass division from the usual one, [1] used restricted 

division by coefficients (with parameters). The fact that functions are not canonically 

represented by terms in a first order language leads to difficulties in our situation, 

since we have extra definability conditions to satisfy. It turns out that the generalized 

rings of fractions (see Definition 2.1) allow us to carry out the necessary divisions 

while retaining definability properties in a natural way. Furthermore, [1] works over 

discretely valued fields K, where multiplication by a uniformizing parameter for the 

maximal ideal of K° can be used to witness strict inequalities. As in [9], we use 

variables ranging over F°Y°g to witness strict inequalities: our fields Paig are never 

discretely valued, being algebraically closed. As we remarked in [13, Example 2.3.5], 

the class of Weierstrass automorphism for the resulting rings of analytic functions is 

not large enough to transform every nonzero function to one that is regular. Thus 

we employ Weierstrass Preparation and Division and the double induction of [9] to 

reduce to an application of the algebraic elimination theorem for algebraically closed 

valued fields of [24]. 

Let A be a quasi-affinoid algebra. Recall that we showed in [13, Section 5.2] that 

MOIPIS C A[&p], so we may write 

/ = £m+l i - - - i £,m+r\ ffjLU E A, 

for any / e A(0\p].. 

Lemma 4.1. — Let A be a generalized ring of fractions over T, and let 

f = £m+l i - - - i £,m+r\£ 

Then there are: c E N, A-algebras A^, + \u\ < c, each a generalized ring of 

fractions, and elements g^u G AtiV{£)\p\8 such that 

(i) f^(x)gIA1/(x^,p) = / ( s , f , p ) for every x G D o m A ^ , 

(ii) each g^v is preregular of degree (//, v) in the sense of [13, Definition 2.3.7], and 

(iii) D o m ^ = Z ( / ) u U | M | + M < c ^ 

where Z(f) := {x G Dom A : / ( x , ^ , p ) = 0 } . If f E £, then Z(f) is quantifier-free 

definable in Ls and each g^u E £. 

Proof — Writing A as a quotient of a ring of separated power series and applying 

[13, Lemma 3.1.6] to a preimage of / , we obtain a c E N and elements E A(€)lp}8 

such that 

/ = 

£m+l i - - - i £,m+r\ 
/ ^ V U + M and 

I^25/56 < 1 for all y G MaxA(£>[/>]s. 

(Hence each 1 + /iM„ is a unit of A(í)[p]8.) 
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For each ( / i 0 , i / 0 ) G l f x f f with | / i 0 | + |^o| < c, we define the generalized ring of 

fractions A^Ql/Q from A in the obvious way so that the inequalities 

I/MO^O(x)\ > \fnAx)\ for all |^| 4- \v\ < c, 

\fwo(x)\ > \UAX)\ for a 1 1 v < vo and |//| + \v\ < c, 

\fnovo(x) > \ f»v0(
x)\ f o r a 1 1 M > A*o and \fi\ + \i/0\ < c 

hold for all x G D o m i M o I / 0 . Indeed, A M o I / 0 , so defined, has the property that x 6 

D o m ^ o ^ if, and only if, f^,ol/0{x) ^ 0 and the above inequalities hold. 

Now, for + < c, f^/f^o e A ^ , so we may put 

W o ^ f V ^ ° ( i + ^ o ) + E f 1 ^ 1 1 ^ lrt>l + N < c . 
h + m < C / / I 0 I / ° 

(/x,i/)^(//0,^o) 
Finally, suppose / G £. Since 7̂  0 for x G D o m i M I / , and / ^ ( x ) G 5 by 

Remark 2.9(h), condition (i) implies that g^v G £. To see this inductively, apply Dv> to 

(i), use the product formula of Remark 2.5(iv)(e) and solve for D^g^. Furthermore, 

Z(f) = {x€ Dom A : J„v(x) = 0, + < c } , 

which is a quantifier-free Ls-definition. • 

Theorem 4.2 (Quantifier Elimination Theorem). — Let H C S with U = A(U), let 

£ := £(H), and let $ be an Ls-formula. Then there is a quantifier-free Ls-formula 

such that for every complete field F extending K, F° l g t= $ \I>; i.e., $ and # 

define the same subset of (F^g)
m. 

Proof. — Recall that Ls{u) is a three-sorted language. We shall use the following 

convention which will greatly simplify notation. The & will denote variables of the 

first sort (that range over F°) and the pj will denote variables of the second sort (that 

range over F°°) ; x will denote a string of variables of sorts one and two. Observe 

that a quantified variable of the third sort (that ranges over |F°|) can always be 

replaced by a quantified variable of the first sort — if v is a variable of the third sort 

replace it by |£| where £ is a variable of the first sort. Hence we need only eliminate 

quantified variables of sorts one and two. (Alternatively, a quantified variable of 

the third sort can be eliminated by a direct application of the quantifier elimination 

theorem of [24]). After routine manipulations we may assume that $ is of the form 

3£p(p(v,x,£,p), where ip is a conjunction of atomic formulas; i.e., formulas of the 

form 

ti(v)y(x^p)\Dt2(v)-\g(x^p)l 
where • is either < or = ; / , g G A{£) [p]$n<f for some fixed generalized ring of fractions 

over T; v denotes a string of variables of the third sort and the ti are terms of the 

third sort containing no variables of sorts one or two. (Observe that the negation of 

such a formula is a disjunction of such formulas.) 
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For such formulas <p, we may define £(<p) to be the number of functions in the 

formula that actually depend on (£,p). Writing 

£m+l i - -£l » • • • ? £m. anc P = (Pl>---»Pn), 

we induct on the triples (ra,n,£), ordered lexicographically. 

Let / i , . . . , ft be the functions that occur in <p and depend on (£, p). Write 

£m+l i - - - i £m+l i - - - i £,m+r\ £m+l i - - - i £,m+r\ 

where jiVLV G An£ and fiu G A(£) fl £. Applying Lemma 4.1 to / = /1 yields rings 

4̂//*/ and elements g^v G 
( O H * preregular of degree (p, v). 

Consider the formulas 
(fo :=x E Z(f) A <p and •= x G DomiMl / A (p. 

By Lemma 4.1 (hi), $ is equivalent to the disjunction 

3 two (f, p) V \J 3 Çp<p^ (f, p) • 

Let <£o result from (po by replacing / by 0 and let ip'^ result from by replacing 

/ by fftt, • p^i/. Note that ¿ ( ^ 0 ) < £{<p) and ^ ( ^ ^ ) = £(<p). By induction, we may 

assume that $ is of the form 3€p<p' . Iterating this procedure reduces us to the case 

that $ is of the form 3£p<p, where the functions occurring in <p are ai(x) • /*(#,£,/?), 
and each p) is preregular of degree (p*, with / i ^ ^ = 1, 1 < i < £. 

Consider the Ls-formulas 

<Po : = <p A 
¿=1 

$^^$ 
£m+l i - - - i £,m+r\ = 1 and <p$ : = <p A | / ^ ( # , £ ) | < 1. 

Clearlv, 4> is equivalent to the disjunction 

3 & W £ , p ) V \/3Çp<Pifop) 

and we may consider the disjuncts separately. 

Owe (A). — $ = 3£p<^(£,p). 

We have that $ is equivalent to 

3Çppn+np A \fiv. - pn+1\ = 0. 

Observe that j{Vi — pn+i is preregular of degree (/¿¿,0). Hence, after a Weierstrass 

automorphism involving only the £'s, we may assume that fiUi — pn+\ is regular in 

fm. (Recall that Weierstrass automorphisms preserve membership in £.) After ap­

plying Weierstrass Preparation (Theorem 3.1) to — pn+i and Weierstrass Division 

(Theorem 3.3) with divisor fiU. — pn+i to the other functions in we may assume 

that all the functions occurring in $ are polynomials in £m. We may now apply the 

algebraic elimination theorem of [24] to find a formula 

# = 3£i ...fm-lPPn+lV> 
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equivalent to Since (m — l ,n + 1, £(?/>)) < (m,n, •£(<£>)), we are done by induction. 

Ctaw(B). — * = 3ftrç>0(É,p). 

We have that $ is equivalent to 

tf:=3#m+i/^A£m+l i - - - i £,m+r £m+l i - - - i £,m+r\ 
sm+1 = 0. 

Observe that ft — ( n t = i / ^ ) £ ™ + i - 1 is preregular of degree (]T 1,0). Hence 

after a Weierstrass automorphism involving only £ i , . . . ,£m+i we mav assume that 

ft is regular in fm+i. Let /• result from ft by multiplying by (n^ i / j i / J fm+i and 

replacing the coefficient (]l j=i /jvjfm+i (of p"*') by 1. Then each / / is preregular of 

degree ( 0 , ^ ) . Let result from \j) by replacing each fi by f[. Then * is equivalent 

to '. After a Weierstrass automorphism among the p's we may assume that each 

/ / in is regular in pn. Applying Weierstrass Preparation (Theorem 3.1) to each 

/ / with respect to pn and to ft with respect to £m+i, and then Weierstrass Division 

(Theorem 3.3) with divisor ft, we may assume that each function occurring in \P; is 

a polynomial in both pn and £m+i. We may now apply the algebraic elimination 

theorem of [24] to find a formula 

* " = 3 f i , . . . , f m , p i , . . . , p n - i ^ 

equivalent to Since (ra,n — l,€(-0)) < (ra,n,£(<p)), we are done by induction. • 

Taking % — S(E, K) = U5m,n(^, K) we obtain the following strengthened version 
of the elimination theorem of [9]. Observe that in this case every (partial) function 
of £(S(E, K)) is represented by a D-term (i.e., a function in the language Lj?n of [9]), 
and conversely, as in Remark 2.3(iv). 

Corollary 4.3. — F£x admits elimination of quantifiers in the language LS(E,K)- The 
elimination is uniform in F and depends only on S(E,K). 

Taking Ti = T(K) = UTm(K) we obtain the following quantifier elimination theo­

rem. 

Corollary 4.4 (Quantifier Elimination over £(T)). — F^ admits elimination of quan­

tifiers in the language Lg^T(K))- The elimination is uniform in F and depends only 

on K. 

Observing that every member of £{T) is existentially definable over T gives us the 

following quantifier simplification (model completeness) theorem, which provides the 

basis of the theory of affinoid subanalytic sets discussed in Section 5. 

Corollary 4.5 (Quantifier Simplification over T) 

(i) F°lg is model complete in the language LT(K) • 
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(ii) Every subset of (F°lg)m definable by an LT(K)-formu^a i>s definable by an exis­
tential LT(K) -formula. 

5. Subanalytic Sets 

In this section we explain how the basic properties of subanalytic sets based on 
the functions in T — UTm (or on any set of functions % C S, with H = A(H)) follow 
from Corollary 4.5. 

Definition 5.1. — Let K be a complete, non-Archimedean valued field and let H C 
S = Um,n5mjn(E', K). Let F be a complete field extending K and let Faig be its 
algebraic closure. A subset X C {F°Xg)m is called globally %-semianalytic iff X is 
defined by a quantifier-free L^-formula. A subset X C (̂ aig)m 1S caUed H-subanalytic 
iff it is the projection of a globally W-semianalytic set (or equivalently is defined by an 
existential L^-formula). When H — T{K) we use the terms K-affinoid semianalytic 
and K-affinoid subanalytic and when H — S(E,K) we use the terms (E,K)-quasi-
affinoid-semianalytic and (E,K)-quasi-affinoid-subanalytic. 

The following is a restatement of Theorem 4.2 (the Elimination Theorem). 

Theorem 5.2. — Let U C S(E,K) with U = A(Ti). The U-subanalytic sets are 
exactly the L^-definable sets. In particular, the class of"H-subanalytic sets is closed 
under complementation and (metric) closure. 

The following can be proved by a small modification of the arguments of [9, Sec­
tion 5] in characteristic zero. The characteristic p ^ 0 case requires a larger modifi­
cation. Details are given in [14]. 

Corollary 5.3. — Every subanalytic set is a finite disjoint union of F^g-analytic, 
H-subanalytic submanifolds. 

We restate the above results in the special case that % — T{K). 

Corollary 5.4. — The class of K-affinoid-subanalytic sets is closed under complemen­
tation and closure. 

Corollary 5.5. — Each K-affinoid-subanalytic set is a finite disjoint union of K-
affinoid-subanalytic sets which are also F^g-analytic submanifolds. If X is such a set, 
this allows us to define the dimension of X, d imX, to be the maximum dimension 
of an FoXg-analytic submanifold that occurs in a smooth subanalytic stratification, or 
equivalently, the maximum dimension of an F^g-analytic submanifold of X. 

Remark 5.6 
(i) The theory of subanalytic sets developed in [9] (and there termed rigid) is the 

special case of Theorem 5.2 with % = S. 
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(ii) The Lojasiewicz inequalities proved in [9] for 5-subanalytic sets also hold for 
^-subanalytic sets. This is immediate since ri C S. 
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