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COMPLEX FOLIATIONS W I T H ALGEBRAIC LIMIT SETS 

by 

César C a m a c h o & B r u n o A z e v e d o Scârdua 

Dedicated to Adrien Douady on the occasion of his 6 0 ^ birthday. 

Abstract. — We regard the problem of classification for complex projective foliations 
with algebraic limit sets and prove the following: 

Let T be a holomorphic foliation by curves in the complex projective plane CP(2) 
having as limit set some singularities and an algebraic curve A C CP(2). / / the 
singularities sing A are generic then either T is given by a closed rational 1-form 
or it is a rational pull-back of a Riccati foliation 71 : p(x)dy — (a(x)y2 + b(x)y)dx = 0, 
where A corresponds to (y = 0) U (p(x) = 0), on C x C. 

The proof is based on the solvability of the generalized holonomy groups associated 
to a reduction process of the singularities sing f n A and the construction of an affine 
transverse structure for T outside an algebraic curve containing A. 

1. Introduction 

Let J7 be a holomorphic codimension one foliation on the complex projective 2-

space C P ( 2 ) . Given any leaf L of T the limit set of L is defined as l im(L) = f]^ L\KU 

where Kv C Ku+1 is an exhaustion of L by compact subsets Kv C L. The limit set 

of the foliation T is defined as lim.F = \JL l im(L) . We are interested in classifying 

those foliations whose limit set is a union of singularities of T and an algebraic curve 

A C C P ( 2 ) . There are two reasons for this, first because these foliations exhibit the 

simplest dynamic behavior we can imagine and also because they must support an 

important class of first integrals. The parallel with the actions of Kleinian groups 

on the Riemann sphere comes naturally to mind. These foliations will correspond 

to actions with a finite set of limit points (one or two) while the first integrals of 

these foliations will correspond to the automorphic functions of such Kleinian group 

1991 Mathematics Subject Classification. — 32L30, 58F18. 
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58 C. CAMACHO & B. AZEVEDO SCÀRDUA 

actions. Here we will show that this similarity is not only apparent. Indeed the 
Kleinian groups will appear naturally as the holonomy groups of the Riccati foliation 
that, it will be shown here, is the ultimate model for these foliations. 

The problem of classifying such foliations T was considered in [1] and [17]. In 
both cases it is proved that, under generic assumptions, there are a rational map 
F: CP(2) -> CP(2) and a linear foliation C : \xxdy - X2ydx = 0 on CP(2) such that 
F = F*(C). In particular, it follows that no saddle-nodes appear in the resolution 
of sing.Fn A, and in fact all the singularities as well as all the holonomy groups 
appearing in this resolution are abelian and linearizable. Using [9] we can construct 
examples where T is a Riccati foliation with algebraic limit set on CP(2) , containing 
the invariant line (y = 0): 

T : p(x)dy — (y2a(x) + yb(x))dx = 0 

where a(x), b(x),p(x) are polynomials, and (x,y) G C2 C CP(2) is an affine chart (see 
Example 1.3 below) and A n C2 = (p(x) = 0) U (y = 0). 

In the Riccati case, the holonomy groups are solvable and we have an additional 
compatibility condition as in [2]. However we may have saddle-nodes in the resolution 
of sing.?7 fl A. The aim of this paper is to solve the problem above in the case the 
foliation may have certain saddle-node singularities in its resolution along A. 

Let therefore T be a foliation on CP(2) and let A C CP(2) be an algebraic invariant 
curve (perhaps reducible). We will say that sing T D A has the pseudoconvexity 
property (psdc) if the invariant (by T) part T of the resolution divisor D of sing JFPIA 
is connected and its complement is a Stein manifold (alternatively, T is a very ample 
divisor on the ambient (algebraic) manifold of the resolution of sing T n A denoted 
by CP(2 ) ) , so that we can apply Levi's extension theorem [21] which allows us to 
extend analytically to all CP(2) , any analytic object defined on a neighborhood of 
r . This property is verified if T has no dicritical singularities over A [1]. There is 
another remarkable case where property (psdc) is verified, as we can find in [17]. A 
singularity qQ G sing T Pi D is a corner if qG = D^C) Dj, where Di ^ Dj are invariant 
components of D. 

Also, we say that a saddle-node singularity qQ G D is in good position relatively 
to D, if its strong separatrix is contained in some component of T. A saddle-node 
xk+1dy — y(l + Axk)dx + h. o. t. = 0 is analytically normalizable if we may choose local 
coordinates (x,y) as above for which we have h. o. t. = 0. In this case it will be called 
normally hyperbolic if we have A 0 Q. In this case we call (x = 0) the strong separatrix 
and (y = 0) the central manifold of the saddle-node. We recall that according to [12] 
a saddle-node singularity is analytically classified by the local holonomy of this strong 
separatrix. In particular, the saddle-node is analytically normalizable if, and only if, 
its strong separatrix holonomy is an analytically normalizable flat diffeomorphism. 

Finally, we introduce the following technical condition (see Example 1.4): 
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C O M P L E X FOLIATIONS W I T H A L G E B R A I C LIMIT SETS 59 

(Ci) The saddle-nodes in the resolution o / s i n g j F n A are analytically normalizable, 
and the ones in the corners are normally hyperbolic. 

Our main result is the following: 

Theorem 1.1. — Let J7 be a codimension one holomorphic foliation on CP(2) having 
as limit set some singularities and an algebraic curve A C CP(2). Assume that 
sing f f l A satisfies property (psdc) and condition C\. Then, either T is given by a 
closed rational 1-form or it is a rational pull-back of a Riccati foliation 1Z : p(x)dy — 
(a(x)y2 4- b(x)y)dx = 0, where A corresponds to (y = 0) U (p(x) = 0) , on C x C . 

The proof of this theorem relies on the study of the singular and virtual holonomy 
groups [2], [5], [19] and [1] respectively, of the irreducible components of the divisor 
given by the resolution of sing .FDA. The limit set of the leaves L of T induces discrete 
pseudo-orbits in each of these groups, so that they are solvable [14]. The solvability 
of these groups, allows (under our restrictions on s i n g . F n A) the construction of 
a "transversely formal" meromorphic 1-form 77, defined over the invariant part T of 
the resolution divisor of sing J7 n A. This 1-form is closed and satisfies the relation 
duj = rjAuj, where ZD is a meromorphic 1-form with isolated singularities which defines 
the foliation JF, obtained from the resolution of s ingjFn A. Moreover, 77 has (simple) 
poles over T which coincides with the limit set of T. Using a result of Hironaka-
Matsumara (see [5], [8]), we conclude that (since C P ( 2 ) \ r is a Stein manifold) the 
1-form rj is in fact rational on CP(2). This corresponds to the existence of a Liouvillian 
first integral for T on CP(2), and also to the existence of an affine transverse structure 
for T in C P ( 2 ) \ C , where C C CP{2) is an algebraic invariant curve containing A, 
where A is the strict transform of A, [18]. This affine transverse structure can be 

extended as a projective transverse structure to ( C P ( 2 ) \ C ) U A. In particular, all the 
singular holonomy groups associated to the components of T are solvable analytically 
normalizable. This implies by (a careful reading of the last part of) [2] that either T 
is given by a closed rational 1-form or by a rational pull-back of a Riccati foliation. 

Example 1.2. — Let J7 be a rational pull-back of a hyperbolic linear foliation C : 
xdy — Xydx = 0, A G C \ R , on CP(2). Clearly T has an algebraic limit set consisting 
of some singularities and an algebraic curve A as in Theorem 1.1. 

Example 1.3. — Let us take any finitely generated group of Moebius transformations 
G C SL(2, C ) . Assume that the limit set of G is a single point, which can be assumed 
to be the origin 0 G C. The limit point 0 is a fixed point of G. According to [9] we 
can find a Riccati foliation J7 : p(x)dy — (a(x)y2 4- b(x)y + c(x))dx = 0 on C x C, 
whose holonomy group of the line (y = 0) is conjugated to the group G. Moreover 
we can assume that the singularities of T over this horizontal line are reduced and 
non degenerate. The line (y = 0) is invariant by T so that c(x) = 0, and also it is 
contained in the limit set of T and satisfies condition C\ in the statement above. This 
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60 C. CAMACHO & B. AZEVEDO SCÀRDUA 

example can also be seen in CP(2) using a birational transformation. This will create 
a dicritical singularity. This example will satisfy the (psdc) property for a proper 
choice of A. 

Example 1.4. — This is a counterexample to a more general statement. Let T be 
given by u = dy — (a(x)y + b(x))dx = 0 over C2 C CP(2). If we consider the vector 
field X(x,y) = (l,a(x)y + b(x)), then X is complete and tangent to T over C2. 
Moreover the orbits of X are diffeomorphic to C. It is not difficult to see, using the 
flow of X , that the leaves of T accumulate the line at infinity = CP(2)\C2, so 
that lim.77 = L^. However, generically, the resolution of sing J7 n exhibits some 
non analytically normalizable saddle-node. Indeed, this resolution is quite simple and 
shows that there are saddle-nodes with non convergent central manifolds [5]. On the 
other hand, in general, T is not a rational pull-back of a Riccati foliation of the form 
stated in Theorem 1.1. 

Acknowledgements. — Part of this work was conceived during a post-doctorade stage 
of the second author, at the Université de Rennes I. He wants to thank the IRMAR 
and specially D. Cerveau for the kind hospitality and for valuable conversations. 

2. Formal normal forms and resolution of singularities 

Let T and A C lim T be as in Theorem 1.1. Let n : (CP(2), T, D) -^_(CP(2), T, A) 
be the resolution morphism of Seidenberg, for sing T Pi A [20]. Thus CP(2) is a com­
pact complex surface which is obtained from CP(2) by a finite sequence of blowing-
up's, denoted TT. The proper morphism 7r induces therefore a foliation by curves 
F — 7r*jF on CP(2). The divisor D — 7r~1(A) of the resolution is a finite union 
D = Uj=o^?> °f Projective lines Dj = CP(1), j ^ 0, and of the strict transform of 
A, D0 = 7r-1(A\ sing T). The foliation T has singularities of the following two types 
(called irreducible singularities): 

(i) xdy — Xydx 4- h. o. t. = 0 (non degenerate) 
(ii) ypJrldx - [x(l + \yp) + h. o. t.]dy = 0 (saddle-node). 

We consider the foliation T — and denote by Y the invariant (by T) part of D, 
which consists of the invariant projective lines and of the strict transform of A. Let u 
be a rational 1-form which defines T on CP(2) and denote by UJ the strict transform 
of TT*UJ. Therefore the 1-form ¿¡5 has isolated singularities and we can assume that its 
polar set intersects the divisor D transversely and at regular points of T. Clearly we 
have l im(^) C T. 

Lemma2.1. — We have limp7) = T. In particular all the saddle-nodes in singTflT 
are in good position with respect to T. 
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Proof. — Recall that by hypothesis V is connected. Let us fix a saddle-node qQ G Dj, 
which is not a corner. Assume by contradiction that the strong separatrix S of qQ 
is not contained in Dj. We consider the local of S around qQ at a small transverse 
disk E = E>, with £ n S = q\ £ sing.?7. This holonomy map hQ : (£,<2i) -> (£,<7i) is 
a flat local diffeomorphism, that is, a local diffeomorphism tangent to the identity. 
Thus, the orbits of hQ accumulate the origin q1, so that the local leaves of T around 
qQ and crossing £ , must accumulate the strong separatrix 5, and therefore we obtain 
S C limJ7 (notice that S is transverse to Z>, so that it corresponds to a separatrix of 
T not contained in A), which contradicts the hypothesis that Xvo&T — A. Now, we 
fix a saddle-node on a corner qQ — Did Dj. First we prove that if lim T contains the 
central manifold of qQ, say Di then it contains the strong manifold, in this case Dj. 
In fact, by the hypothesis we may write T as 

2/(1 + \xk)dx - xk+1dy = 0, Di = (y = 0), Dj = (x = 0). 

Now, in a sector (x,y) G U x C near 0 G C2, where U = {x G C*; Re(xp) > 0} the 
leaves of T have a saddle-like behavior in the sense that there are sections £$ = (x = 1) 
and Ytj — (y = 1), such that any leaf L of ^\UxC, n°t contained in (y = 0), is at a 
positive distance from 0 G C2 and, if we denote ru = fi L, we have: if —» (0,1) 
then rj -> (1,0). 

Now we prove the converse: If limT contains the central manifold of qQ, Di, then 
it contains the strong manifold, Dj. In fact, using the normal form above we may 
conclude that the local holonomy of the central manifold around qQl is linearizable of 
the form h: (£¿,(1,0)) -> (EÌ5 (1, 0)), h(y) = exp(2?riA) • y. If A G M\Q, then it is a 
non rational rotation so that the accumulations of the leaves in the section do not 
correspond to algebraic limit sets. Thus À G C\IR, and therefore, either h or h~x is 
an attractor, so that any leaf which intersects £« accumulates the origin (0,1) G 

We also remark that lim T contains all the strong séparatrices of the saddle-nodes 
in T. In fact, from the analytic normal form above we have a multivalued first integral 
f(x,y) = (y/xx) exp(l/kxk). This first integral shows that the leaves accumulate on 
the strong manifold (x = 0). Also from the same arguments of [1], [17] we have 
(in the non degenerated corners) the passage of the limit set lim(L) from one to the 
other adjacent component of D: It is in fact, only necessary to use the fact that if 
qQ is a non degenerate corner say of the form, xdy — Xydx + h. o.t. = 0 such that 
A G 1R+\Q+, then by Poincaré Linearization Theorem this singularity is linearizable, 
and therefore it is not difficult to see that the local leaves around qQ are not proper. 
On the other hand, in the case A G M_, any leaf which accumulates qQ and which is 
not a separatrix, accumulates both séparatrices. Finally, we remark that since by the 
hypothesis the limit set of T is algebraic, it follows that all the strong manifolds in 
singJ^nr are contained in T, that is, the saddle-nodes are in good position relatively 
to T. • 
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62 C. CAMACHO & B. AZEVEDO SCÀRDUA 

Now we fix local transverse sections Sj, Sj fl Dj = pj £ sing.77, (Sj,pj) = (C, 0). 
Let us write for the holonomy group Ro^J7, Dj,Sj) of Dj C T (see [2]). The 
following definition is found in [1]: 

Definition 2.2. — The virtual holonomy group of T relative to the component Dj at 
the section Sj is defined as 

H o r ^ , ^ , ^ - ) = { / e DiS(Sj,pj) I Lz = Lf(z), Vz € (Sj,Pj)} 

Clearly this group contains the holonomy group of T relative to Dj at the section 
Sj, denoted by Hol(J^, Dj, Sj) (see [2] for the definition of the holonomy group). Let 
us write GVj for the virtual holonomy group HoF (T', Dj ,Sj). 

We will write projective holonomy group to denote the holonomy group of any 
component Dj of D. 

We denote by Diff (C, 0) respectively Diff (C, 0) the group of germs of biholomor-
phisms respectively the group of formal biholomorphisms of (C, 0). We also denote 
by A^C, 0), respectively A^C, 0) the Lie algebra of the germs of singular holomorphic 
vector fields at 0 G C, respectively the Lie algebra of singular formal vector fields in 
one complex variable. 

According to Lemma 2.1 the limit set of any non algebraic leaf L induces discrete 
pseudo-orbits in each projective virtual holonomy group. These groups are solvable 
as a consequence of the following result due to L Nakai: 

Proposition 2.3 ([14]). — Let G C Diff(C, 0) be a subgroup which has some discrete 
pseudo-orbit. Then G is solvable. 

Corollary 2.4. — Let T be as in Theorem 1.1. Then each projective or virtual holon­
omy group of sing T n A is solvable. 

We also have the following result concerning subgroups with discrete pseudo-orbits: 

Theorem 2.5 ([10]). — Let G C Diff(C, 0) be a nonabelian subgroup with discrete 
pseudo-orbits outside the origin. Then G is either formally conjugate to some group 

Gl := (z ^az,z^ z/(l + zv)x<v) 

where av has order 2; or it is analytically conjugate to some group 

G2V>T := (z ^az,z^ z/(l + zv)x'v\ z h-> z/{\ + rzvflv) 

where au has order 2 and r G C \ M; or finally it is analytically conjugate to some 
group 

Gl := (z ^az,z^ z/(l + zv)x/v) 

where av has order n G { 3 , 4 , 6 } . 
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We shall consider the subgroups 

= {ip G Diff(C,0) \<p(z)k 
h a^Z 

ßcp G C* , dip G C 
1 -h a^Z k ' 

where k G N*. According to [4] any solvable non abelian subgroup of Diff(C, 0) is 
formally conjugated to a subgroup of some Hfo, this conjugacy is analytic except for 
some special case. We also use the following result: 

Lemma 2.6 ([15]). — Let G C Diff(C, 0) be a subgroup. Then: 
(i) G is abelian if, and only if, there exists a formal vector field £ G A*(C, 0) such 

that g*€ = £,Vg€G. In the case G is not linearizable the vector field £ is unique. 
(ii) G is solvable non abelian ify and only if, there exists a formal vector field 

£ G X(C, 0) such that g * £ = cg • £, cg G C*, V # G G, where cg ^ 1 for some g G G. 
The vector field £ is unique up to multiplicative constants. 

As it is well-known [11], given a formal vector field £ = a(z)d/dz, with £(0) = 0, 
there exists a formal diffeomorphism 0 G Diff (C, 0), such that 

where k G N and A G C are formal invariants associated to £. It is clear that if 
(p G Diff(C, 0) satisfies <^*£o,fc(̂ ) = £o,k(z), then <y2(z) G Ek. On the other hand it is 
not difficult to see that if G C Diff (C, 0) is solvable and non abelian, then the vector 
field f given by Lemma 2.6 above must exhibit A = 0 [15]. Therefore we have the 
following definition: 

Definition 2.7. — Let G C Diff(C, 0) be a solvable subgroup. A formal normalizing 
coordinate w G (C, 0) for G is anyone for which the vector field £ of Lemma 2.6 above 
writes as £(w) = £\,k(w)-

Clearly, if G is solvable and non abelian, then the formal normalizing coordinate 
is unique up to composition with elements <p G Ek, where k is given by G as above. 

If G is abelian then given two normalizing coordinates u and w with u' (0) = w' (0), 
we have u = <p(w), where ip(z) = exp (¿0 for some t G C. 

The group G is called analytically normalizable if the associated vector field £ is 
convergent, otherwise we will say that G is non analytically normalizable. In other 
words, a solvable (perhaps abelian) subgroup G C Diff(C, 0) is analytically normaliz­
able if it is analytically conjugated to its formal model. 

Proposition 2.8. — Let T, A be as in Theorem 1.1. Denote by D the resolution divisor 
of sing^7 n A. Let Dj be a component of D. Assume that the holonomy of the 
component Dj is solvable non abelian Gj C by a formal conjugation. Then, given a 
singularity qQ G singFC\Dj there exists a formal diffeomorphism $ G Diff(CP(2), qQ), 
such that $*(.7r) has one of the following normal forms where <&*(Dj) — (y = 0) : 

h a^Zh a^Zh a^Zh a^Z 
zk+i 

1 + Xzk 
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64 C. CAMACHO & B. AZEVEDO SCÂRDUA 

(a) u\ = xdy — Xydx, A E C\Q (qQ is formally linearizable non resonant); 
(b) ^n/m — rtxdy + mydx, n,m E N, (n,m) — 1 (i/D /ias a formal first integral); 

(c) c*;^ = fcrccfa/ + ^2/(1 + ^^^x£yk)dx (qQ is resonant non formally linearizable); 
(d) ĉ fc = yk+1dx — xdy (qQ is a saddle-node with strong manifold tangent to Dj); 
(e) cup,x = xp+1dy — 2/(1 + Xxp)dx (qQ is a saddle-node with strong manifold trans­

verse to Dj). 

Moreover, we may assume that converges except for case (c), and that Gj is 
analytically normalizable except for cases (b) and (c). 

Proof. — First we assume that qQ is non degenerate, say 

UJ(U, v) — udv — Xvdu + h. o. t., A E C* 

for some local holomorphic coordinates (u,v) centered at qQ. If A ^ Q then it follows 
that ¿¡5 is formally linearizable at q0, that is, we have (a). Assume now that A = 
—n/m E Q - with n, m E N, (n,m) = 1. Then we consider the local holonomy tp(v) 
of Dj at qQ. According to the hypothesis on the holonomy group of Dj, there exists 
a formal change of coordinates E Diff (C, 0) such that 

^2/(1 + ^^^x£yk)dx ^2/( cw 
(1 + awk)1/k 

where the linear part is c = exp(2fc7r^~ln). On the other hand it is well-known that 
an homography which is not tangent to the identity is linearizable by another homog-
raphy. If kn/m £ N, then c ^ 1 and therefore the singularity is therefore formally 
linearizable as in (b). Assume that q0 is not formally linearizable and (therefore) that 
k/n = £/m for some £ E N. Then according to [11] there exists a formal conjugacy 
at q0 which takes ¿¡3 into the form (c). 

Assume now that qQ is a saddle-node singularity. If the strong manifold of qQ is 
tangent to Dj then c = 1 in the expression of ip o cp o jp~1(w) above and therefore this 
local holonomy is formally conjugated to the local holonomy of the strong manifold 
(v = 0) of the saddle-node vkJrldu — udv = 0. Therefore ¿¡5 must be of the form (d) 
above. If the strong manifold of q0 is transverse to Dj then its has a formal normal 
form as in (e) as a consequence of [12]. 

Now we remark that in case (a) Gj must be analytically normalizable because 
it contains an element with nonperiodic linear part. In case (d) Gj is analytically 
normalizable because it contains the holonomy of the strong manifold of a;/fe, which 
is assumed to be analytically normalizable. We remark that in case (e) Gj is again 
analytically normalizable because, as it follows from Lemma 2.1, q0 is a corner. Indeed, 
in this case Gj contains the holonomy of the central manifold of cup,x, which is a 
nonrational linearizable rotation, and therefore has nonperiodic linear part. Finally 
we remark that according to [13] a singularity qQ has a formal first integral if, and 
only if, qQ has a holomorphic first integral, so that we can assume that $ is convergent 
in case (a). This finishes the proof of the proposition. • 
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Remark 2.9. — According to [11], [12], [13] any reduced singularity admits a formal 
integrating factor. 

3. Virtual holonomy and Singular holonomy 

In this section we follow [5], [19] and [2]. Let us consider the following situation: 
T is a foliation on a compact complex surface M, D C M is a compact (codimension 
one) invariant divisor with normal crossings, D — {jjDj where the Dj are irreducible 
smooth components. As in §2 we fix local transverse sections Sj, Sj D Dj — pj ^ 
sing.77, (Sj,pj) = (C, 0), and write Gj for the holonomy group B.ol(Jr, Dj, Sj) of Dj 
(see [2]). Given any other transverse section £ j to T such that T>jDDj = qj, there is a 
conjugacy between Hol(:F, Dj, S?) and H o l ^ , Dj,Sj) induced by lifting to the leaves 
of T a simple path joining pj to qj, in the leaf Dj\ singjF. Thus, up to conjugacy, we 
can identify these groups and in particular H o l ^ , Dj, T,j) is solvable if, and only if, 
Gj is. 

Now we fix a corner qQ = D{ D Dj. We assume that all the virtual the holonomy 
groups Gvu are solvable (perhaps abelian) for v G In the non abelian case we 
denote by kv the ramification order of Gvv, so that Gv C Gvv C Mku by a formal 
conjugacy. 

The following lemma holds in general, i.e., also for non normally hyperbolic saddle-
nodes: 

Lemma 3.1. — Assume that the holonomy group Gj is analytically normalizable, and 
that if qQ is a saddle-node then its strong manifold is contained in Dj. Then T is 
analytically normalizable at the singular point qQ. 

Proof. — First we assume that Gj is non abelian, so that there exists a local holo-
morphic coordinate z G SJ5 z{qj) — 0, where Hj is a local transverse section with 
Ej n Dj = qj close to qQ, such that the local holonomy of T due to qQ and relative to 
Dj writes 

^2/(1 + Xz 

(l-hazk)1/k' 

Now, if A ^ 1 then we can linearize this local holonomy and therefore the singularity 
q0, which is not a saddle-node (recall that the holonomy of the strong manifold of a 
saddle-node is never linearizable). Assume now that we have \k = 1. In this case we 
have <p(z)k = z/(l + azk). If qG is not a saddle-node then as in the proof of Proposi­
tion 2.8 it follows from [11] that qQ must be analytically conjugated to a singularity 
of the form tJk,£ as in Proposition 2.8, because the holonomies are analytically conju­
gated. If qQ is a saddle-node then by the hypothesis the strong manifold is contained 
in Dj. Therefore, by [12], the analytic normalization of the holonomy of the strong 
manifold implies the analytic normalization of the singularity qQ. Now we consider 
the case Gj is abelian and analytically normalizable. According to the techniques of 
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construction of integrating factors (see Lemma 5.4 below or [16]), we can construct a 
closed meromorphic 1-form ttj in a neighborhood of qQ, and which satisfy LJ Attj = 0. 
This implies that qQ is analytically normalizable [3], [11], [13]. • 

According to Lemma 3.1 above, except for the non analytically normalizable cases 
on the holonomy groups, there exists a neighborhood U of q0 where T can be written 
in an analytic normal form. 

We shall describe the notion of singular holonomy introduced in [5] and used in 
[2], [19]: 

3.1. The case of a formal holomorphic first integral, — Let us assume that 
qQ is a non degenerate resonant corner say, T : nxdy + mydx + h.o.t . = 0 in a neigh­
borhood of qQ : x = y — 0, where n/m E Q+. We will assume that T has a formal 
first integral at qQ and therefore [13], a local holomorphic first integral on a neigh­
borhood of qQ. Thus this singularity is linearizable [13] and we can define the Dulac 
correspondence in a neighborhood of the singularity qQ. This correspondence is de­
fined as follows: By the hypothesis qQ E Dj is a linearizable singularity corresponding 
to a local holomorphic first integral of JF, therefore we can choose local coordinates 
(x,y) E 17, a neighborhood of q0l centered at this point, such that Di D U = (x = 0), 
Dj n U = {y = 0), and such that T\v is given by nxdy + mydx — 0. We fix the local 
transverse sections as Sj = (x = 1) and S* = (y = 1), such that S^n i^ — q% ^ q0 and 
YljODj = qj ^ qa. Let us denote by Gj = Hol(JT, Dj, Sj-) and by Gi = Hoi (J7, Gi, S*). 
Also denote by hQ E Hol(^", Di, S«) the element corresponding to the corner q0. Then 
we have hQ(x) = exp(—2TT^\/—1) • x. The Dulac correspondence is therefore given 
by T>: (£i,(/i) — ( S j , ^ ) , ẐT>(a;0) = x™^n. We use this correspondence in order to 
associate to G^ a subgroup Gj * (T)*Gi) C Diff (S j , grj). Given an element h E G^ we 
look for elements /i^ E Diff (S^, q^), which are solutions of the adjunction equation 
hP o V = V o h. 

Case 1. — Gi is abelian: Take any element h E Gi. Since Gi is abelian we have 
h(x) = fixhix771) for some h E Ouh(0) = 1. We take ¿¿1 = /xm/n and /n = fcm/n be 
one of the n-roots of //m and h™ respectively. Then we define hP : (S^, qj) (S^, qj), 
by 

h1>{y) = ^yh1{yn) 

Clearly we have hP E GJ. 

Case JS. — G« C Ek,. is non abelian, analytically normalizable and nki/m = fc? E N: 
In this case we have an analytic embedding Gi C . Take an element 

h(x) = 
Ax 

f 1 -I- a:rfc* UA* 
h a^Zh a^ 
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We consider determinations of 

Vo 
Xm/riyô 2/(1 

-1 , nki/m 
1 + ay0 1 

m/nki 

By definition the maps hP are all these determinations. Clearly the maps hP belong 
to the virtual holonomy group GJ. 

Case 3. — Gi is solvable non abelian and not analytically normalizable: In this 
case it follows from [4] that the group of the commutators [Gi,Gi] is cyclic, say, 
[Gi,Gi] = (hi) for some hi G Gi and Gi is generated by some power or root of hQ 
and some power h\, I G Z . Notice that if n = m = 1 then we have T>(x) = x, and 
given any h € Gi, we may define hP G as hP(y) = h(y), in the coordinates above. 
Thus we may assume that n ^ m. We regard this case: First we consider the case 
the virtual holonomy group GJ is abelian. Then all its elements commute with the 
local holonomy gQ around qQ, associated to the separatrix contained in Dj. Therefore, 
using the same construction of Case 1 above we may consider the adjunction of GJ 
to the holonomy group Gi, as a subgroup of the virtual holonomy group G\. If GJ 
contains some element g of infinite order then we have two possibilities to consider: 

(a) g has non periodic linear part: In this case, g induces an element h in the 
adjunction holonomy and therefore in the virtual holonomy h G G\, which also has 
non periodic linear part. This implies that G\ (which is solvable by hypothesis), is 
analytically normalizable [4]. Therefore we may exclude this case. 

(b) Every element g in GJ has periodic linear part: In this case we may find some 
non trivial element g G GJ, which is tangent to the identity g(y) = y + + h. o. t., 
o ^ 0. Then, g induces an element h in the virtual holonomy G\, which has infinity 
order and some power tangent to the identity. Moreover, since GJ is analytically 
normalizable, it follows that g and h are analytically normalizable. This implies that 
the powers of h are analytically normalizable and therefore since the group of flat 
elements in G\ is cyclic, G\ is analytically normalizable. We exclude therefore this 
case, and conclude that all the elements in GJ have finite order. It follows that GJ 
is a group whose elements are rational rotations, and that each finitely generated 
subgroup is in fact a finite linearizable group. In particular Gj is a finite linearizable 
group. 

Now we consider the case GJ is solvable non abelian, and analytically normalizable. 
In this case, once again we may use the same procedure of Case 2 above in order to 
induce non trivial analytically normalizable flat elements in the virtual holonomy G\, 
and conclude that this is in fact analytically normalizable. Thus we exclude this case. 

Summarizing, we conclude that if Gi is exceptional (that is, solvable non abelian 
and not analytically normalizable) then Gj is either a group of rational rotations and 
therefore with finite finitely generated subgroups, or an exceptional group. In this last 
case, we use [4] to conclude that GJ is generated by some root of the local holonomy 
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gQ associated to qQ (we may have g0 — Id), and some flat element g\. Moreover each 
flat element in GJ is some power of g±. We may then use the ideas of [14] in order 
to conclude that some power of hi corresponds to some power of gi by means of the 
Dulac correspondence adjunction. In fact, we can give the ideas: It is possible to 
use the Dulac corresponce given by T*(x) = xm'n, in order to consider the sets of 
"pseudo-orbits" 

{g^ oVoh'fo V-1 o . . . o g^ o V o h{2 o V'1 o g^ o V o h^ (x)} C E*, 

where x G E*, It, lit are integral numbers, and is the correspondence Y,j —» E^, 
y i—y yn/™. These sets are contained in a same leaf of T for each fixed x, and as in 
[14], if the powers g{, and h* are never related by the congugation equation, then we 
will have accumulations for the leaves of T, outside the origin in On the other 
hand, in the case we are interested in, we have discrete intersections of the leaves with 
the transverse sections, outside the origin, so that we will conclude that some power 
h\, passes to the virtual holonomy GJ, as some power g\. 

3.2. The case of a non degenerate non resonant corner. — Let us assume 
that qQ is a non degenerate non resonant corner say, T : xdy — Xydx + h. o. t. = 0 in 
a neighborhood of qQ : x = y = 0, where A G C\Q. We only need to consider the 
following case (see Definition 4.2): Gi is abelian and Gj is solvable non abelian. 

In this case the singularity qQ is analytically linearizable. In fact, since the group 
Gj is solvable non abelian, and since the local holonomy <p associated to qQ has non 
periodic linear part it follows that the group Gj is analytically normalizable [4], and 
therefore there exists an analytic coordinate w G T,j,w(qj) = 0, such that 

( \ - aw 
Ww> ~ (i + ^ J i / f c i ' 

where an ^ 1, Vn G N*. Thus, we can change coordinates analytically in order to have 
(p(u) = au for some coordinate u = <j>(w), 4> G IH^.. This implies that the singularity 
qQ is analytically linearizable [13]. 

The adjunction holonomy group Gj * (T>*Gi) C Diff(Ej,qj) is defined as follows: 
There exists an analytic embedding Gj C H^.. We may also assume that we have 
Ef, Ej, Di Pi U, DJ fl C7, Gi, Gj, qi, qj given in terms of (x, y) as in 3.1 above. 

Since Gi is abelian and contains a non resonant linearizable diffeomorphism, Gi 
is linearizable. In fact, we can assume that the holonomy group H o l ^ , Di, E^) is 
linear in the local coordinate #|E.. Therefore any element h G Gi corresponds to an 
element h(x) = fjbh • x in Diff (E^, qi). In the present case the Dulac correspondence is 
given by T>(xQ) = x~x. We are looking for elements hP G Diff(Ej, qj), which satisfy 
hP o T> = T> o h. Therefore we choose hP as 

h a^Zh a^Zh ah a^ a^Z 
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where fihx runs over the solutions of z 1//A = Hh- Clearly the diffeomorphims hP 
belong to the virtual holonomy Gj. 

3.3. The case of a saddle-node corner. — Assume now that qQ is a saddle-node 
singularity which will be assumed to be analytically normalizable. Thus, there exists 
a system of local coordinates (x,y) G U centered at qQ such that, T\v is given by 
xk+1dy - y(l + Xxk)dx = 0. We assume that Di = (x = 0) and Dj = (y = 0). We 
also introduce the transverse sections Ej = (y = e1//fc) and Ej = (x = 1). The leaves 
of P\v are the level curves of the multiform first integral f(x, y) — yx~x exp (l/kxk). 
Therefore, the Dulac correspondence is defined by 

D: E» —> Ej, XQ I—> yQ = V(x0) = x~x exp (l/kxk). 

Now we show how the Dulac correspondence can still be used to define an adjunc­
tion for the holonomy. This adjunction will be from the strong manifold to the central 
manifold, that is, from Gi to Gj above. Given an element h G Gi we look for elements 
hP G Diff(Ej, qj), which are solutions of the adjunction equation ti° o T> = V o h. 

Case 1. — Gi is solvable non abelian. In this case we have A = 0 and 

h0(x) = x 
{l + axky/k 

and therefore ki = k. We claim that G is analytically normalizable. In fact, since 
it is solvable it follows from [4] that it is analytically normalizable if, and only if, 
the (abelian) subgroup of flat elements in G is analytically normalizable. But this is 
clear because this group contains h0. This also implies that we can assume that x is 
a normalizing coordinate for Gi. The Dulac correspondence T) is given by T>(x0) = 
exp (l/kxk). Now we take any element h G Gi and write 

h{x) = 
JJLX 

(l-haxk)1/k'h 

Since h is of the form given above we have the adjunction equation as 

hP (exp l/kxk exp [a/kfik exp (l/kxk) h a^Z 

Thus we have linear solutions of the form hP(y) — exp (a/kfjbk) -y^1 k. However these 
are not uniform analytic functions. Assume that hk is tangent to 1, that is, fik = 1. 
In this case we can take solutions of the form g(y) — exp [a/k) • y. These are linear 
diffeomorphisms and we will denote any of them by hP as before. Notice that if qQ is 
a corner then by the normal hyperbolicity hypothesis Gi must be abelian. 

Case 2. — Gi is abelian. Let us consider once again the local holonomy hQ G Gi 
associated to the strong manifold of the saddle-node qQ. First notice that we have 

h0(x) = exp 
h a^Z 
1 + \xk 

d_ 
dx 
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Let us denote by £(x) = 
xk+1 d 

1 -}- Xxk dx 
Once again we claim that G is analytically 

normalizable, and it follows from the fact that hQ is analytically normalizable and 
that G is abelian. It also is clear that hQ is a normal form diffeomorphism in the 
sense of [11], and therefore if z G (E^,^) is a normalizing coordinate for Gi, then we 

must have hQ(z) = exp ù^^ 
zK^L d 

1 4- \zk dz. 
for some /i G C*. Thus it follows that 

h a^Z xk+1 d 

1 4- Axfe dx 
= zk+1d 

1 + Xzk dz ' 

On the other hand the local holonomy gQ G Diff(Ej5 qj) associated to the local sepa-
ratrix (y = 0); i.e, the holonomy of the central manifold of the saddle-node, is linear 
in given by 

9o(y) = exp 27TÀ - 1 » 
d 

dy 
= exp(27rÀ\/—1)?/. 

Thus it is natural to pass the elements h £ Gi, tangent to the identity, to Gj as linear 
maps in the coordinate 2/|s.. Let h G Gi with ft/(0) = 1. We have h = exp(^£) 
for some £^ G C. Now we remark that if we consider the multiform function f(x) = 
x~x exp (l/kxk) defined on the transversal E^ = (y = e1//k), it extends to a local 
multiform first integral for T. Therefore given any element 7 G 7Ti (-C^\ sing JF), if we 
denote by h7 G Gi, the corresponding holonomy diffeomorphism associated to this 
homotopy class, then we obtain f0(x) o hy = exp(27rc7\/—1) • /o(#0, for any fixed 
determination fQ(x) of f(x). Therefore we obtain 

x x exp (l/kxk) o exp ù$ 
xk+1d 

1 + Xxk dx. 
exp(27rcyy/^l) • x x exp (l/kxk). 

Take now an element h G Gi tangent to the identity say 

h(x) = exp th 
xk+1 d 

1 H- A#fc dx< 

Since we have f0(x) o h(x) = exp(27rc/lv/—1) * /o0*0 f°r some Ch G C, we consider 
h^iy) :— exp(27rc/l\/— l)y. It is now clear that /i25 G Diff (C, 0) satisfies the adjunction 
equation. Finally we observe that by our construction we have UP G GVj. 

Remark 3.2. — As it is well-known a resonant nonlinearizable corner qQ — DiC\ Dj, 
has a formal normal form, 

u = [n(l + (A - l)(xmyn)k)xdy + m( l + Xix^y^y dx] = 0, 

where A = n/m [11]. As we have seen in Proposition 2.8, when one of the virtual 
holonomy groups is nonabelian, then we have a formal normal form 

UJ = kxdy -h ly 1 + 
(l/kxk) ^ 

2TT 
xlvk dx = 0. 
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These formal normal forms admit integrating factors (that is, formal functions h such 
that ft = oj/h is closed), and give us closed meromorphic 1-forms Q which have 
non simple poles along (x • y = 0). Moreover, these closed 1-forms are unique up 
to multiplication by constants (this is a consequence of the fact that the singularity 
admits no meromorphic first integral, except the constants). Later on, we will see 
that this last remark shows that it is not necessary for our purposes, to define any 
adjunction associated to such a corner (see Case C in the proof of Proposition 5.6). 

Definition 3.3 ([5], [19]). — Under the hypothesis of 3.1, 3.2 or 3.3 above for q0,G\ 
and Gj, we define the group Gj * (V*Gi) as the subgroup of Diff(E$,(fc) generated 
by Gj and by the elements hb° where h 6 Gi. This group will be called the Dulac 
adjunction of Gi to Gj^\ 

Given a singularity qQ = Di n Dj as in cases 3.1, 3.2 or 3.3 above we assume 
that Gi is analytically normalizable, and choose analytic normalizing coordinates 
(x, y) G U for the singularity qQ (see Lemma 3.1 and Proposition 2.8), as in these 
cases, i.e., coordinates that give the foliation T\v in its local normal form. We choose 
Di fl U = (x = 0) and Dj nil = (y = 0). We may also choose x in such a way that 
the restriction x|E is an analytic normalizing coordinate for the holonomy group Gi 
(Lemma 3.1). However, it is not always true that y L also normalizes Gj. This is 
the subject of the following lemma. 

Lemma 3.4. — The adjunction holonomy group Gj * (T>*Gi) is a solvable group if, 
and only if, y | s normalizes Gj. 

Lemma 3.4 is proved in [2]̂ 2). It also follows, under our hypothesis of analytic 
normalization and normal hyperbolicity on the saddle-nodes, from an equivalent result 
of [16], which is stated in terms of the solvability and convergence of some formal Lie 
algebras of vector fields. 

In other words, Lemma 3.4 says that if qQ = DiDDj with Gi, Gj solvable as above, 
then we can normalize simultaneously Gi, Gj and the singularity qQ if, and only if, the 
adjunction holonomy group Gj * (T>*Gi) is a solvable group. This same lemma holds 
in the formal case, where Gi is not assumed to be analytically normalizable. We will 
use this lemma in order to "glue" certain integrating factors associated to adjacent 
components Di and Dj (see Proposition 5.2 and Proposition 5.6). 

In order to proceed to the definition of the singular holonomy groups of the com­
ponents Dj we introduce an order in the resolution divisor (here we follow as in [2]). 
This order is defined as follows: Let Z be the (finite) family of connected components 

(^This adjunction process, defined preliminary for holonomy groups, must be iterated whenever it 
is possible. 
<2>We will give a more general version of this lemma in §5 Lemma 5.7. 
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Of 
D* = Z}\{saddle-nodes} U {nonlinearizable resonant singularities} 

Given two elements A, B G Z we will say that A > B if and only if there exist 
components Di, Dj of D such that Di n £>j = { # } is either a nonlinearizable resonant 
singularity, or a saddle-node, D* = Di — {q} C A, Dj = Dj — {q} c i?, and the 
strong manifold of q lies over Di. Clearly > defines a partial order on Z. Each totally 
ordered subfamily Z\ C Z has a maximal element. Take a supremum say A0 G Z. It 
is clear that given a component such that 

Dj\{saddle-nodes and resonant nonlinearizable singularities} 

belongs to A0 then no adjunction can be defined from any other component B of Z 
to A0. Thus we consider the singular holonomy of any fixed component Dj in A0 as 
the maximal subgroup Holsing (T, D3;, Sj) = G îng C Diff (Sj;, p3;) obtained by iterating 
the adjunction process at all the other corners of -Dj, Dj n k ^ j where is 
in A0. Now we consider the new family Z\ = Z — {A0}. Take a maximal element 
Ai G Z\ = Z — {A0} with respect to the (induced partial order) > , and consider 
the same iteration of the adjunction process for the corners in Ai adding to this the 
adjuncted singular holonomy of Dj. This defines the singular holonomy group of 
any component Dk G Ai. Thus we may exhaust Z and define the adjunction of the 
holonomy for all the components of D. 

Definition 3.5 ([5], [19]). — The subgroup 

Holsing(^,£>7-,<9?) : GfngCDifF(^,Pi) 

obtained by the algorithmic process above will be called the singular holonomy group 
associated to the component Dj of D. The singular holonomy group is defined up to 
conjugacies, depending on the choice of the transverse sections Sj. 

Using the fact that the singular holonomy is always contained in the virtual holon­
omy, we conclude from Corollary 2.4 that: 

Corollary 3.6. — Let J7 be a foliation on CP(2) having as limit set some singularities 
and an algebraic curve A as in Theorem 1.1. Then each projective singular holonomy 
group of singan A is solvable with discrete pseudo-orbits outside the origin. 

4. Logarithmic derivatives of an integrable differential 1-form 

In what follows T is a foliation on a complex surface M defined by a meromorphic 
integrable 1-form to = 0 outside its polar divisor (o;)oo- We consider a bimeromorphic 
map 7r: M —> M (e.g. a resolution morphism as in §2) and denote by u; the pull-
back 1-form 7T*CJ. The 1-form UJ is meromorphic in M, but may have non-isolated 
singularities (in the case of the resolution morphism these singularities appear over 
the projective lines Dj introduced by 7r). On the other hand, for the cases we are 
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interested in, we may assume that ( (o;)oo and therefore) (u;)oo> nas non invariant 
codimension one irreducible components, and meets the divisor transversely at regular 
points of T. In this case, the singular set sing T is contained in the zero divisor (cD)o-

Definition 4.1 ([18]). — Let D C M be an invariant divisor (not necessarily irre­
ducible). A meromorphic 1-form rj defined on M is called a logarithmic derivative of 
Zo adapted to D if 

(1) did — rj A ¿¡5, drj = 0, 
(2) the polar divisor (rf)^ of rj has order one along (any component of) D, and 

consists of the union of (co)oo U (£>)o and an invariant divisor of T', 
(3) the residue of rj along any noninvariant irreducible component L of (u)^ U (£D)o 

is equal to either —(the order of the poles of Zo along L), or (the order of (u5)o along 
L), respectively. We remark that, a priori, rj may have nonsimple poles on M. 

The existence of an adapted logarithmic derivative is related to some conditions in 
the resolution of sing^7 D A [2], [19] (see also Theorem 5.1 below). 

Definition 4.2 ([2]). — The foliation T has a Liouvillian resolution {relative to A) if 
the divisor D — \S™=$Dj °^ ̂ e resolution of sing T n A satisfies: 

(i) The singular holonomy group of every Di is solvable. 
(ii) If q = Di D Dj is a non degenerate corner such that Gi C and Gj C №kj 

are nonabelian, then q is a resonant singularity. Moreover, if q is linearizable (has a 
holomorphic first integral), then we can find local coordinates (x,y) € U centered at 
q such that Di D U = (x = 0), Dj n U = (y = 0) and : kjxdy 4- kiydx = 0. 

(iii) If q = Di n Dj is a saddle-node corner whose strong manifold is contained in 
£>i, then is solvable, and Gj is abelian analytically linearizable. 

The motivation for the definition above is given by [2], [18] and the following result: 

Proposition 4.3 ([2]). — Let J7 be a holomorphic foliation on CP(2) given by a ratio­
nal 1-form u, and suppose that there exists an algebraic T-invariant curve A having 
only non dicritical singularities. Assume that each component of the resolution di­
visor of sing T H A contains a linearizable non resonant singularity and that all the 
saddle-nodes in the resolution divisor are in good position relatively to this divisor. 
Then the following two assertions are equivalent: 

(i) The 1-form u> admits a rational logarithmic derivative rjf adapted to the invari­
ant curve A c CP(2). 

(ii) T exhibits a Liouvillian resolution relative to K, and all the singular holonomy 
groups are analytically normalizable. 

Theorem 4.4. — Let T be a foliation on CP(2) having as limit set some singularities 
and an algebraic curve A. Assume that sing.FflA satisfies (C\) and that the invariant 
part of the resolution divisor is connected. Then T has a Liouvillian resolution relative 
to A. 
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Proof — According to Corollary 3.6, it remains to prove that 

(1) if q — Di C\Dj G sing T is a non degenerate singularity such that the holonomy 

groups of Di and of D3 are non abelian. Then q is resonant. Moreover, if q has a 

holomorphic first integral, then we can write it as kjxdy + kiydx — 0 for some local 

coordinates with Dj : {y = 0 } and Di : {x = 0 } . 

(2) If q — Di n Dj G sing T is a saddle-node whose strong manifold is tangent to 

Di, then the holonomy group of Dj is abelian analytically linearizable. 

Proof of (1). — In fact, if the holonomy group of Dj is not abelian then, since the 

virtual holonomy GVj exhibits discrete pseudo-orbits, it follows that GVj contains only 

elements with periodic linear part [10]. In particular the singularity q must be a 

resonant singularity. Assume now that q is linearizable say, as mxdy + nydx = 0 

with ra,n G N, (m,n) = 1, and (y = 0) C Dj and (x = 0) C Di as usual. We must 

prove that m/n = kj/ki. We consider first the case m — n = 1, and Gi is analytically 

normalizable. In this case as in item 3.1 of §3. we have that the Dulac correspondence 

is given bv 
D : 1 + axk*y/k* (l + m/**)1/fciV1 o...o^2oDo^2 + m/**)1/fcio 

We take any element h G Gi, write 

h(x) = 
Xx 

(1 + axk*y/k* 

and define 
V'1 o gkl o V V'1 o gkl o V 

ù 

( l + m/**)1/fci 

using the fact that m = n = 1 (see 3.1 §3). Applying now Theorem 2.5 for Gi and GJ 

we conclude that £^ < • The same way, we may conclude that kj < ki and therefore 

ki = kj. Now we treat the case m ^ n as in 3.1 §3. We repeat the main argument: 

Take elements gi G GVj and h\ G that are tangent to the identity of orders kj and 

ki respectively. Using the Dulac correspondence T>(x) = x™/71, we introduce the sets 

of "pseudo-orbits" 

^ o D o h[r o V1 o . . . o ^ 2 o D o ^ 2 o V'1 o gkl o V o h{x (x) V'1 o gkl o V 

where x G E*, t̂5 t̂ are integral numbers, and T>~Y is the inverse correspondence 

T,j —> Ei, i/ y71/™. These sets are contained in a same leaf of T for each fixed x, 

and as in Theorem 2.5 and in Nakai's Theorem [14], if the powers g[, and hk are never 

related by the conjugation equation, then we will have accumulation points for the 

leaves of T, outside the origin in E$. Thus we conclude that some power h{, passes 

to the virtual holonomy GJ, as some power gk. This implies that m/n = kj/ki. 

Proof of (2). — In fact, choose analytic coordinates (x,y) at q, such that T is given 

by xp+1dy — y(l + Xxp)dx = 0. By hypothesis the saddle-node is normally hyperbolic 

so that the holonomy group Gj contains some element with non periodic linear part. 
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According to [10] since G has some discrete pseudo-orbit this implies that Gj cannot 
be solvable non abelian. Thus it follows that the holonomy group Gj is abelian and, 
since it contains some analytically linearizable non rational rotation, Gj is analytically 
linearizable. • 

Remark 4.5. — Since G îng C GVj also has discrete orbits, it follows (with the same 

proof) that in (2) above we have Gsing abelian analytically linearizable. 

5. Formal logarithmic derivatives near the limit set 

In this section we prove a generalization of Theorem 4.4 above: 

Theorem 5.1. — Let J7 be a foliation on M a complex projective surface, and let A C 
M be an invariant irreducible analytic curve. Assume that sing A satisfies property 
(Ci) and that all the saddle-nodes in the resolution divisor are in good position. If 
T is given by a meromorphic 1-form UJ with isolated singularities, then the following 
assertions are equivalent: 

(i) The strict transform UJ of the 1-form u), admits a transversely formal logarithmic 
derivative rj over T, adapted to the invariant curve T. 

(ii) T has a Liouvillian resolution relative to A. 

We shall describe briefly the notion of transversely formal object. Suppose that 
r C M is an algebraic codimension one divisor. We denote by Zp the sheaf of ideals 
defining F C M, and by OM the sheaf of regular functions on M. For any m £ N we 
have (Xr)m+1 C (Xr)m C Om. 

The infinitesimal tubular neighborhood of order m of T in M is the locally ringed 
space 

V ' ( 2 r ) m / 

The formal completion of M along T is the locally ringed space T = (M, Of), whose 
structural sheaf is defined by the projective limit 

Of; = lim ——— 
r (Zr)m 

The ring of (transversely) formal rational functions on M along T, K(T), is defined 
as the ring of rational functions on the formal completion T of M along T. 

It is proved in [7] that: 
(i) K(F) = H°(T,K,f) where /Cp is the quotient field of the sheaf of total quotient 

rings of Of, 
(ii) there exists a natural inclusion of sheaves JCr —> /Cp, where /Cr is the sheaf of 

germs of meromorphic functions defined on neighborhoods of points in V. 
We refer to [5] for more details. 
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With the notions above we extend the notion of logarithmic derivative to the notion 
of transversely formal logarithmic derivative over a resolution divisor T. 

The first step in the proof of Theorem 5.1 is the following (see also [16] for similar 
constructions): 

Proposition 5.2. — Let T be a foliation in the complex surface M, and let A be an 
invariant compact curve such that sing^Tl A satisfies {C\) and all the saddle-nodes in 
the resolution divisor are in good position. Assume that T has a Liouvillian resolution 
relative to A. Let Dj C T be an irreducible component of the resolution divisor of 
s i n g ^ n A. Then there exists a closed transversely formal meromorphic 1-form rjj 
defined over Dj, such that rjj is a transversely formal logarithmic derivative of u, 
adapted to Dj. 

Proof — It follows from the definition of Liouvillian resolution that the groups G îng 
are solvable. We distinguish the non abelian case and the abelian case considered in 
the following two lemmas. Clearly they complete the proof of Proposition 5.2. • 

Lemma 5.3. — Under the hypothesis of Proposition 5.2, assume that G îng is non 
abelian and formally embedded in H*. . Let £j = ord((o3)o, Dj), then there exists a 
transversely formal closed logarithmic derivative rjj of UJ, adapted to Dj, such that 
Res^. rjj — kj + 1 + £j. 

Proof — In order to simplify the notation we write k = kj. We follow [16]: Given 
any regular point q G Dj and a local transverse section T,q with Eg D Dj = q, we 
can choose a formal coordinate y G Ylq centered at q, such that y defines the formal 
embedding Gj = Ho^J7, Dj, T,q) C H^.. Given such a coordinate we consider the 
formal vector field £q = yk+1d/dy. We have g * £q = cg • ̂ q, V# G Hol(JF, Dj, E9). 
Thus £q can be extended into a global section a of the quotient sheaf S/C*, where 
S is the sheaf of the transversely formal symmetries of T over Dj\sm^gT [16]. We 
define the 1-form rjj — d(uj{a))/uj{a), which is a well defined transversely formal 
closed 1-form over Dj\ singT. The 1-form rjj is a logarithmic derivative of ¿¡5 adapted 
to Dj \ sing T. 

An alternative way of constructing rjj is the following ([2], [5], [19]): For each 
point q G Dj\singJr as above, we extend the coordinate y into a transversely for­
mal coordinate defined over a certain neighborhood of q in Dj \ sing !F. This local 
extension is a consequence of the local trivialization for T. Thus we obtain a col­
lection {(xa,ya), Ua}aeA where the U& are open sets which cover a neighborhood of 
.D^singj^ in CP(2), and also (ya = 0) — Ua H Dj, uj\v = gadya for some trans­
versely formal function ga over Ua n Dj. The coordinates Xq are analytic in Ua and 
the coordinates ya are transversely formal over Ua Pi Dj, obtained as the extensions 
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of the coordinates y above. Finally if Ua fl Up / <fi then we have 

g^F, °>Vßk 
1 + byßk 

for some a, b € C. Define the 1-form 

Vq = — + AUJ. AUJ. g^F, 

•Va 
g^F, 

g^F, 
It is not difficult to see that this is a well-defined closed transversely formal meromor­
phic 1-form over Dj\sing^F, and satisfies the relation dw — rjj A U J . Moreover (rjj)oo 
is invariant and contains (ya = 0) as a simple pole of residue k 4- 1. 

The extension of the 1-form rjj to a singularity q G Dj is done as follows. According 
to Proposition 2.8 there exists a formal logarithmic derivative rjq defined at the singu­
lar point q. If q is a saddle-node then by the hypothesis we can take rjq meromorphic 
in a neighborhood of q. This same holds in the case q admits a formal first integral 
or is a nonresonant nondegenerate singularity (Proposition 2.8). In general, in the 
nondegenerate case the formal integrating factors r\q can be extended in a transversely 
formal way along the séparatrices through g, as a consequence of the resommation 
properties of the integrating factors along the séparatrices through q [ 1 9 ] ^ . Thus, 
over a neighborhood of q in Dj, the difference rjj — rjq writes rjj — rjq = hq • to for 
some transversely formal function hq, defined over a punctured neighborhood of q in 
Dj, which is an integrating factor for to, that is d(hq • u) = 0. We will show that hq 
extends in a transversely formal way to a neighborhood of q in Dj (see Remark 2.9 
and the first part of the proof of Lemma 5.3 above). We consider the following cases: 

(a) q is formally linearizable non resonant, of the form u\ in Proposition 2.8. In 
this case we know that there exist formal coordinates (x,y) such that Dj = (y = 0 ) , 
Di = (x = 0) and uj(x,y) = g(xdy — Xydx), for some transversely formal function g 
over a neighborhood of q in Dj. We also have 

dg dx , dy 
Vq = — + a— + b— 

9 x y 
where a,b E C* satisfy 

(*) 1 + A = a + bX. 

(3)"We say that a 1-form UJ admits a formal integrating factor h defined at q; if we have 

** Vq = — + a— 
Vq = — + a— 

where h is a formal series at q. Equation (*) exhibits resommation properties for h along a certain 
separatrix S of u> — 0 at g, if h can be written h(x,y) = S J ^ o ^ -> where (x, y) G U is a local 
holomorphic coordinate centered at q, such that S N U — {y — 0 } , aj(x) is a holomorphic function 
converging in a small disk B)q C S centered at q, not depending on j G N. This occurs, by a Briot-
Bouquet type argument [11], [12], [16], [19], for any separatrix of a non-degenerate singularity, and 
for the strong separatrix of a saddle-node. 
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We have 

rjj -rjq = hg.LJ 

as transversely formal objects over (y = 0),(# ^ 0). The function hq(xyy) is a 

transversely formal function defined over (y — 0),(x ^ 0), and since the 1-form 
1 /dy dx \ 

u)(x,y) is closed it follows that we have d(hqxyg) A ( A — ) = 0. Now, since 
gxy V y x J 
A E C \ Q , it follows from [18] that hqxyg = ¡1 E C is constant (use Laurent series). 

Therefore, the formal expression hq(x,y) extends as a formal meromorphic extension 

to (x = 0). 

(b) q has a formal first integral. In this case, we can choose (x,y) as above such 

that u)(x,y) = g(nxdy + mydx) as in Proposition 2.8 (b ) . We have 

dq dx 7 dy 
rjq = — + a— + b— 

g x y 

where a, b E C* satisfy n — m = na — mb. The formal expression 

7/J x {dy mdx\ 
d(hqxyg)A + ) = 0 

V y n x / 

implies that (hqxyg)(x,y) — (f(xmyn) for some formal function <p(z) in one variable. 

Therefore, the formal expression for hq(x,y) extends as (f(xrnyn)/xyg to (x — 0). 

(c) q has a non linear formal normalization as in Proposition 2.8 ( c ) . In this case 

we may choose (x,y) such that u — g(kxdy + £y(l + y^^x£yk)dx). We choose 

r/q — (k 4- 1)ĝF,ĝF,h + 1)ĝF,ĝF,IĝF,ĝF, 
y x g 

Then we have 

d ( M * " V + 1 ) AĝF,ĝM*"V+F,ĝF,- ^ logo. ) = 0. 

On the other hand, since the singularity q has a non linear formal normalization, 

it follows that its local holonomy is not formally linearizable. This implies that 

hqgxi+1yk+1 = fx E C is a constant. Therefore hq(x,y) extends to (x = 0). 

(d) q is a saddle-node whose strong manifold is tangent to Dj. We may choose 

analytic coordinates (x,y) such that (y = 0) C Dj and UJ = g(yk+1dx — x(l + \yk)dy). 

We define 
dx , , , . cfa/ do 

% = — + (fc + l ) — + — . 
x y 9 

Then the difference rjj — rjq has simple poles over Dj\{q} : (x 7̂  0), (y — 0), therefore 

it follows that 77̂  = rjj in (# / 0): In fact, since a saddle-node admits no formal first 

integral, it follows that up to multiplicative constants the 1-form 

dx dy dy 
X yk+! y 

is the only closed formal 1-form which defines T at q, and it has non simple poles 

over (y = 0). Hence rjj extends as rjq to (x — 0). 
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(e) q is a saddle-node whose strong manifold is transverse to Dj. In particular Gj 

is abelian analytically linearizable (see Proposition 4.3). This implies that sing TC\Dj 

contains no saddle-nodes in good position with respect to Dj and that the nondegen­

erate singularities are analytically linearizable. Using the techniques of [2], [19], [16] 

one constructs a meromorphic closed 1-form Qj in a neighborhood Vj of Dj minus 

the saddle-nodes in s ingT f l Dj. This 1-form satisfies Qj AUJ = 0, and Qj has simple 

poles, all of them contained in the divisor D. We have ¿¡5 = hj • Qj for some mero­

morphic hj in Vj. Redefine now the 1-form rjj = dhj/hj. Clearly rjj is a candidate 

for a logarithmic derivative of UJ adapted to Dj. Notice that rjj has residue 1 over 

D J : In fact, the poles of Qj are simple, and UJ has isolated singularities. We must 

show that rjj extends meromorphically to the saddle-node singularities in Dj. Fix 

such a singularity q0 G Dj. We must have q0 = Di D Dj for some Di (the saddle-nodes 

are in good position). We will show the extension of rjj to qQ using the fact that 

the adjunction holonomy group Gj *T>*(Gi) is solvable. Choose analytic coordinates 

(x,y) G U centered at q, such that D\ n U = (x = 0) , and Dj = (y = 0 ) , and 

such that uj\JJ(x,y) = g • (xpJrldy — ydx) for some meromorphic function g and some 

p G N. As we know the holonomy group Gi of the component Di, must be solvable 

nonabelian Gi C Hp. Moreover we can assume that the analytic coordinate x\^ , 

where S/ = (y = e1//p), normalizes the group Hol(JT, D / , S/) = C?/. Take an element 

tangent to the identity h G C?/, say 

M*"V+ V+ 

(1 + axP)1/p' 

Then the corresponding element hP G *P*(Gj ) is given by hT>(y) = ea/p-y Let now 

z G (Hj,qj) be any analytic coordinate, where S j = (# = 1) and #j = S j fl Dj, which 

linearizes the holonomy group Gj = Hol(^", -Dj, S j ) . Then the fact that the singular 

holonomy group G^mg is solvable implies that either y = <p(z) for some diffeomorphism 

(p G Mk when G^ing C Mk by analytic conjugacy, ox y — p> - z for some // G C* when 

G^ing is abelian analytically linearizable. According to this we can assume that the 

analytic coordinate y L linearizes Gj. This implies that the 1-forms rjj and 

Vqo 
dy 

y 
r - ( p + l ) 

M 

*" 

V+ 

9 

coincide over the transverse section S j . This same argument shows that they coincide 

over an open neighborhood of qj in Dj. Therefore rjj extends as r)qo to the singularity 

Co- • 

Lemma 5.4. — Under the hypothesis of Proposition 5.2, assume thatGSjUë is abelian. 

There exists a transversely formal logarithmic derivative rjj defined over Dj, this 1-

form is obtained as follows: There exists a closed transversely formal 1-form ujj defined 

over Dj\sing^F, which defines T around Dj \ sing J7 in the sense that UJ J A UJ — 0. 
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The 1-form rjj is obtained by extending dhj/hj, where to = hj -ujj, to the singularities 
q G sing J7 D Dj. 

Proof. — In this case the group G îng may be non linearizable. Anyway, according 
to Lemma 2.6, there exists a formal singular holomorphic vector field in one complex 
variable £ G A*(C, 0) which is invariant by the natural action induced by G®mg, i.e., 
<7*£ = £5v/gE GSjing. Now, using the techniques of [16] we can extend the vector £ 
into a transversely formal symmetry a for T, through the holonomy, (here one may 
use the invariance above), that is, a global section of the sheaf S of transversely 
formal symmetries of T over Dj \ sing T. This section induces a transversely formal 
integrating factor hj = to {a) for ¿¡5 over Dj\s\YLgJr. We define the closed transversely 
formal 1-form rjj = dhj/hj over Dj. Since co/hj is closed we have duo = rjj A to. Clearly 
rjj is a logarithmic derivative of uo adapted to Dj and defined over Dj \ sing T. 

Now we show that this logarithmic derivative extends to the singularities in Dj. Fix 
a singularity q G sing FDDj. As in the proof of Lemma 5.3, there exists a transversely 
formal logarithmic derivative r)q defined over a neighborhood of q in Dj, and we have 
rjj —rjq = hq-uj for some transversely formal function hq which is an integrating factor 
for uo, defined over a punctured neighborhood of q in Dj. We consider the following 
cases: 

(a) q is formally linearizable non resonant, of the form oo\ in Proposition 2.8. In 
this case the same arguments of the proof of Lemma 5.3 above, apply to show that 
we have hxyg — cte and therefore we have a natural extension of rjj to q. 

(b) q has a formal first integral as Ukj in Proposition 2.8 (b). In this case, as above 
we can choose (x,y) above such that co(x,y) = g{nxdy + mydx), and 

dq dx 7 dy 
rja = — + a— + b— 

g x y 

where a, b G C* with n — m = na — mb. The formal expression hq(x,y) extends 
therefore as (^(x^y71)/xyg to (x = 0). 

(c) q has a non linear formal normalization as in Proposition 2.8 (c). As above we 
conclude that hq{x,y) extends to (x — 0). 

(d) q is a saddle-node with the strong manifold tangent to Dj. As above the 
difference rjj — r)q has simple poles over Dj\{q} : (x ^ 0), (y — 0), and therefore it 
follows that r)q — rjj in (x ^ 0). This implies that rjj extends as r)q to (x = 0). 

(e) q is a saddle-node whose strong manifold is transverse to Dj. In particular Gj 
is abelian analytically linearizable. This case is done as above, by using the fact that 
the adjunction holonomy groups associated to Dj are all abelian. This ends the proof 
of Lemma 5.4. • 

Remark 5.5. — The following proposition is one of the main tools in this work, and 
we refer to [19], [2] for a more general version and some details. This also may follow 
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from the results in [16], our hypothesis on the saddle-node singularities and the fact 
that the virtual holonomy groups are solvable (Corollary 2.4) and "contain" all the 
information concerning the foliation near the resolution divisor so that, in particular 
they must contain the "generalized holonomy" of [16]. 

Proposition 5.6. — Let T be a foliation on a complex surface M, and let A be an 
invariant compact curve such that the saddle-nodes in the resolution divisor of sing TC\ 
A are in good position. Assume that T has a Liouvillian resolution relative to A, and 
that sing.T'n A satisfies property C±. There exists a closed transversely formal 1-form 
rj defined over T, such that duj = rj AUJ. This form rj is a logarithmic derivative for UJ 
adapted to T. 

Proof — We give the proof of the most relevant points in the construction. Let Dj 
be any component of F which we will write as T — IJ^lo^- We consider a 1-form rjj 
over Dj given by Proposition 5.2 above. Fix a corner qQ = DiC\ Dj where Di and Dj 
are components of T. We will prove that 

DidDj ^ 0 => rji = rjj, (for suitable and fixed choices of the 1-form rjj), as formal 
expressions at qQ. In the case the 1-forms are meromorphic we also have the equality 
holding in a neighborhood of qQ. 

There are some cases to consider: 

Case A. — qQ is a saddle-node singularity. In this case we have analytic coordinates 
(x,y) centered at qQ such that UJ = g • (x(l + Xyk)dy — yk+1dx) and Di = (x = 0), 
Dj = (y = 0). We have rji — rjj = fij • UJ for some formal meromorphic function fij 
such that d(fij - UJ) = 0 in a neighborhood of qQ. This implies that fijgxykJrl = a € C. 
Therefore 

_ _ /. dy dx dy \J = g • (x(l + Xyk)J = g • (x(l + X 
yk)J = g • (x(l + Xyk)J = g • (x(l + Xyk)J = g • 

and hence since the poles of rji and rjj are simple we have a = 0 and therefore rji = rjj 
in a neighborhood of qQ. 

Now we assume that qQ is not a saddle-node. We have that qQ is a non degenerate 
singularity of the form xdy — Xydx -I- h.o.t. = 0 where (x,y) are local holomorphic 
coordinates centered at qQ and such that Di : (x — 0) and Dj : (y = 0). As above 
rji - rjj = fij • UJ, but now fij is a formal meromorphic function at qQ, which satisfies 
d(fij • ¿¡5) = 0. We introduce the following types of singularity: 

type (1) : qQ admits a holomorphic first integral, Gi is abelian or nonabelian 
analytically normalizable, Gi C , with nki/m G N as in Definition 4.2 and 
Theorem 4.4. 

type (2) : qQ is a non resonant analytically linearizable singularity and Gi is 
abelian. 

We will use the following lemma whose proof we have extracted from [19] for the 
reader's convenience: 
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Lemma 5.7'. — Let qQ = DiDDj be a corner of type (1) or (2) as above. Assume that 
the adjunction holonomy group Gj * (D*Gi) is solvable. Then we may construct ffj, 
ffi in such a way that we have ffj=ffi as formal expressions at qQ. Moreover, for the 
cases Gi, Gj are analytically normalizable, let (x,y) G U be analytic coordinates such 
that (x = 0) = Di n U, (y = 0) = Dj HU, T\v is in the normal form xdy — Xydx = 
0, X G (C\Q) U Q_, and such that x\^ is an analytic normalizing coordinate for 
Hol(J^, Di, T>i), Si = (x = 1). Then the adjunction Gj * (D*Gi) is solvable if, and 
only if, y|E (T,j = (x = 1)) is an analytic normalizing coordinate for Hol(T, Dj,T,j). 

Proof. — We denote by £j = ord((u;)0, Dj). First we assume that qQ is of type (2) 
We have Gi linearizable so that each h G Hol(J^, Di, S*) writes h(x) = p,h • x and 
induces an element h^Çy) = • y in Diff(SJ,qj) where = //~^A. In particular the 
local holonomy h0 around qQ induces h^{y) = (e~2nt/x) y = y. Thus we have two 
possibilities: 

Case 1. — Gi is cyclic generated by ho. In this case any element h G Gi writes 
h — h™h for some rrth G Z . Now, if Gj is also abelian then we may assume that ffj = ffi 
(are meromorphic and coincide) in a neighborhood of g0. If Gj is nonabelian say, 
Gj C H^. by an analytic embedding, then we have necessarily Resr^. ffj = kj; + 1 + £j 
(Lemma 5.3). This fixes Resr^ ffj as Resr^ ffj — l — kj\-\-£i as it follows from equation 
(*) in the proof of Lemma 5.3. On the other hand we may (since Gi is linearizable), 
choose ffi such that Resr^ ffi = 1 — kjX + £i and therefore Res/?., ff = fej+^ + l. Thus 
ffj — ffi is holomorphic in a neighborhod of q0 and since 

№ - * ) a ( ^ - a Ç ) = o 

and À ̂  Q, it follows that ffj = ffi around qQ. Alternatively, we may use the fact that 
Gi is generated by ho in order to extend ffj\^. to a neighborhod of Di and therefore 
obtain ffj = ffi around qQ for ffi — extension of above obtained. 

Case 2. — Gi is not cyclic. In this case there exists h G Gi such that hm ^ /IQ, 
V(n,m) 3 Z x Z - { ( 0 , 0 ) } . Thus # e-**in/\ and therefore /x";A # e27rin/m 
V(n,m) G Z x Z - { ( 0 , 0 ) } . 

This shows that ^ G G, * (V*Gi) C Diff(Si,^J) is of the form hP{y) = fi~~x • y 
and is not a rational rotation. Now, fixed a normalizing coordinate z G ( S j , ^ ) , 
z(qj) = 0, for Gj * (V*Gi) as a solvable group then (in the nonabelian case) we may 
write each element g G Gj * (V*Gi) as #(z) = az/ V l + bzkK In particular we may 
write hP{z) = a - z/ V l 4- where a = /x"̂ A is not a root of 1. This implies that hP 
is linearizable by some coordinate Z — T{z), where T is an homography. Therefore 
we may assume that hP(z) = IJL~~X • z. Since /2~~X is not a root of 1 it follows that 
z = a - y for some a G C*. Thus y|E also normalizes the group Gj * (T>*Gi) D Gj. 
In particular we obtain ffj — ffi around qQ. 
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- Now we consider the case qQ is of type (1) with Gi solvable nonabelian: 
We write T\.. : nxdv 4- mvdx = 0. Anv element h G Gi writes 

h(x) = 
ax 

V l + bxk* 

and induces an element hv G Gj * (D*Gi) of the form 

J = g • (x(l + 
Xyk) 

am/ny 

1 4- byKJ 
G Diff(£j, 

This implies that Gj * (D*Gi) is nonabelian and we can choose a normalizing co­
ordinate 2; G S j , z(qj) = 0, such that / 1 ^ ( 2 ) = am/nz/ tyTTc***". Now, if we 
choose h E Gi such that b - c ^ 0 then necessarily we have 2*' = T(ykj) for 
some homography T ( Z ) G SL(2,C) and therefore y\^_ also normalizes the group 
Gj * (U*Gi) C Diff(Sj,#j). In particular 77} = ffi in a neighborhood of qQ. 

- Finally, we consider the case where qQ is of type (1) with Gi abelian: 
In this case again we write T\v : nxdy + mydx = 0, and now any element h G 

Gi, writes h(x) = /x#/ii(xm) and induces hP(y) = //m/ny • h™^n(yn) in the group 
Gj*(V*Gi). 

If Gi is not cyclic then there exists h such that hk / h%, V (k,t) G Z x Z \ { ( 0 , 0 ) } 
and therefore we may proceed as above and conclude that y\^ normalizes Gj * (D*Gi) 
(notice that Gi not cyclic Gi analytically normalizable Gj is analytically nor­
malizable). Thus we one reduced to the case Gi is cyclic. Thus Gi is in fact finite 
(because it is abelian and contains a rational rotation, ho). We may consider two 
distinguished situations: 

• If Gi is generated by ho then since tig = Id it follows that Gj * (V*Gi) = Gj and 
we may extend rjj | s to a neighborhood of Di and therefore assume that rjj = ffi at 

• If Gi is not generated by ho then we have Gi = (h^£) for some £ G N and hl/£ G G* 
induces an element {h]/1)^ G Gj * (T>*Gi) that writes (^^^(y) = e2nl/£y which is 
not the identity. Since Gj * (T>*Gi) Z> Gj and is also solvable, we can construct ffj in 
such a way that (hQ^£)^ffj = ffj in S j , and this assures that (^0^)^ (% |E.) — {fjtj\^.) 
so that ?7j|E. can be extended to a neighborhood of Di and we may assume that 
ffj — ffi at q0. This ends the proof of the lemma. • 

Case B. — A ̂  Q. In this case, qQ is formally linearizable [3], moreover, according 
to Definition 4.2 (ii) and Theorem 4.4, at least one of the holonomy groups of Di and 
Dj is abelian, say G« is abelian formally linearizable. However it is not clear that 
qQ is analytically linearizable, so that it is not immediate that we can introduce the 
adjunction holonomy group Gj *X>*(G^). If both virtual holonomy groups are abelian 
then we can proceed as in the proof of Lemma 5.4 and construct the 1-forms rji and 
rjj from integrating factors, say fju = d\oghu, in a neighborhood of qQ, where u/hu 
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is closed, v =J = g J = g Clearly the quotient hi/hj is a first integral for ¿¡5 at qQ. Since 

the singularity is not formally linearizable it follows that hi = cte -hj and therefore 

we have rji = rjj. Thus we may assume that Gj is non-abelian. But since it contains 

a diffeomorphism with non-periodic linear part (the local holonomy around q0), it 

follows that Gj is analytically normalizable, and so it is the singularity qQ. This 

says that qQ is of type (2 ) . The glueing of the forms rji and rjj is therefore given by 

the fact that the adjunction holonomy group Gj * T>*(Gi) is solvable ([2], [19]) (see 

Lemma 5.7). 

Case C. — q0 is not linearizable and A = —n/m G Q_ in the usual notation. If 

bo th singular holonomy groups are abelian, then according to the proof of Lemma 5.4 

we construct the 1-forms rji and rjj from integrating factors, say rju — d\oghv, in a 

neighborhood of q0l where uj/hv is closed, v = Clearly the quotient hi/hj is a first 

integral for ¿¡5 at qQ. Since the singularity is not formally linearizable it follows that 

hi = cte -hj and therefore we have rji = rjj. Now we assume at least that only one of 

the holonomy groups say, Gj is nonabelian. In this case we have formal coordinates 

{x,y) at qQ such that 

UJ = g\ kxdy +£y 1 + 
J = g 

2TT 
•xlyk dx (Proposit ion 2.8) . 

Thus we have as usual rji — rij = hQ * UJ where 

d(hqgxt+1yk+1) Ad 
J = g 1 

J = g 

J = g 

2?r 
- log X = 0. 

On the other hand, since the singularity q0 has a non linear formal normalization, it 

follows that hqgxi~*~1yk+1 = JJL G C is a constant. Finally we have fi — 0 because both 

rji and rjj have simple poles over T. 

Case D. — q0 has a holomorphic first integral, A = —n/m as usual. If bo th virtual 

holonomy groups GJ and G\ are abelian, then we can consider the adjunction process 

from Di to Dj and conversely. Thus it will follow that the 1-forms rjj and rji may 

be constructed in compatible way, so that we have rji = rjj at qQ (indeed, qQ is of 

type ( 1 ) ) . Thus we may assume that some of the virtual holonomy groups say, GJ 

is non-abelian. If it is analytically normalizable then we have qQ of type (1) and we 

may apply Lemma 5.7. Let us however give a sole argument. Assume that G\ is also 

non-abelian. Then the 1-forms rji and rjj have residues given by Res ̂  rji — ^ -h fcj + 1 

and Res ̂  rjj = £j + kj + 1, in the usual notation. On the other hand we have that 

m/n = kj/ki (Theorem 4.4) . Using this and equation (*) in the proof of Lemma 5.3, it 

follows that Res ̂  rjj = Res ̂  rji and also Res ̂ . rjj = Res z^ rjj. Thus, the difference 

rjj — rji is a closed (formal) holomorphic 1-form at qQ, so that we may write it as 

rjj — rji — d<pij(xrnyn) for some (holomorphic) formal function <p(z). Now, as in 3.1 

of §3 we can consider the adjunction holonomy groups obtained from Gj and Gi. 

These groups are solvable and we have Gt * T>*(Gj) C G\ and Gj * £>*(G;) C G]. 
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The solvability of these groups allows us to extend the 1-form rji as a transversely 
formal 1-form over Dj \ sing JT, and therefore the integral (p(xmyn) also extends as a 
transversely formal first integral over Dj \ sing T. This implies, in the case <p(z) is 
non-constant, that the virtual holonomy group GJ is finite [13], [16], and we would 
have a contradiction. Thus we may assume that Gj is non-abelian, but G\ is abelian. 
In particular we may perform the adjunction from Di to Dj and obtain a solvable 
subgroup Gj * T>*(Gi) С GJ (see 3.1 §3). We write the difference rji — rjj = ftij, for 
some closed (formal) meromorphic 1-form at qQ. This l-form can be extended by 
holonomy to a transversely formal closed meromorphic 1-form over Dj \ sing T. This 
implies, in the Qij Ф 0, that the virtual holonomy GJ is abelian [16], [19], and we 
would have a contradiction. Thus ftij = 0 and therefore щ = rjj at qQ. Thus in any 
case either the glueing of rji and rjj is immediate, or it is given by the fact that the 
adjunction holonomy is well-defined and solvable as it follows from Lemma 5.7. 

Remark 5.8. — The solvability of the virtual holonomy groups is enough, under our 
hypothesis of normal hyperbolicity on the saddle-nodes, to conclude that we may 
choose all the 1-forms rjj in a simultaneously compatible way (see Remark 5.5). For 
instance we discuss the case the holonomy of Dj is finite, and there are Di, Dk with 
non abelian holonomies such that Di D Dj ^ 0 ^ Dk PI Dj. In this case the 1-
form rjj is not unique over a neighborhood of Dj\sing^F. However, if qi = Di Pi Dj 
and qk = Dk H Dj are not saddle-nodes then (they have finite local holonomies and 
therefore, by [13], these singularities admit local holomorphic first integrals so that) 
we may perform the adjunction from the holonomy of Dj to Dk and Di and conversely. 
Thus we consider the case where qi and qj are saddle-nodes. Since the holonomy of 
Dj is linearizable, it follows that these saddle-nodes are not in good position with 
respect to Dj, that is, their strong manifolds lie over Di and Dk respectively. But 
in this case we can perform the adjunction of the holonomy of Di to Dj and of 
the holonomy of Dk to Dj (see the construction of the singular holonomy which is 
below Lemma 3.4). Therefore, the fact that the singular holonomy G îng is abelian 
linearizable (cf. Remark 4.5), is enough to assure the compatibility of the forms rjj, rji 
and rjk [19]. The collection of 1-forms (rji)^0 defines therefore a transversely formal 
1-form rj over F, which is a logarithmic derivative of Zo, adapted to T. 

Proof of Theorem 5.1. — According to Proposition 5.6, it remains to prove (i)=>(ii) 
in Theorem 5.1. This is proved with a geometric interpretation of [16], or following 
the steps of an analogous result stated in [2], one may also find a proof in [19], using 
our hypothesis of normal hyperbolicity on the saddle-nodes. • 
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6. Rationality of formal logarithmic derivatives 

As in §2 we denote by F the invariant part of the divisor D, obtained in the 
resolution of sing T fl A. The following proposition is a consequence of [5] which is 
based on a theorem of Hironaka-Matsumara [8]: 

Proposition 6.1. — Let a be a transversely formal differential form defined over F in 

CP{2), where F C CP(2) is a normal crossing divisor, and CP{2) is is obtained from 

CP(2) by a finite sequence of blowing-ups. Assume that F C CP(2) satisfies property 

(psdc). Then a extends rationally to CP{2). 

Proposition 6.2. — Let T be a foliation on CP {2), having as limit set some singu­
larities and an algebraic curve A. Assume that singjFn A satisfies property (C±) and 
{psdc). Then there exists a closed rational 1-form rj which is a rational logarithmic 
derivative for Zo, adapted to the invariant part of the resolution divisor of sing T D A. 
In particular all the projective singular holonomy groups of sing T H A are solvable 
analytically normalizable. 

Proof. — According to Theorem 4.4, T has a Liouvillian resolution relative to A. 
Using Propositions 5.6 and 6.1 we conclude that ¿¡3 admits a rational logarithmic 
derivative rj adapted to F. We apply Proposition 6.1 to conclude the rationality of rj. 
The last part of the statement is a consequence of [16] or, also, of an improvement of 
[2] found in [19]. • 

7. Proof of Theorem 1.1 

According to Proposition 6.2 we know that J7 (that is uo) admits a rational loga­
rithmic derivative rj on CP(2), which is adapted to F. According to Proposition 6.2 
above, all the singular holonomy groups appearing in the resolution of sing T n A are 
analytically normalizable. Thus we may apply the last part of [2] which assures that 
either T is given by a closed rational 1-form or T is a rational pull-back of a Riccati 
foliation as in Theorem 1.1. • 

We can relax the hypothesis on the limit set of T if we assume that T has a 
transcendent leaf whose limit set is an algebraic curve A plus some singularities but, 
in order to prove that F = lim(L) for the corresponding transcendent leaf L of T, we 
have to make an additional hypothesis on sing T fl A. 

(C2) A contains all its local séparatrices, and all the saddle-nodes appearing in the 

resolution of sing J7 D A have their strong manifolds contained in the limit set limL. 

Using the same techniques as in the proof of Theorem 1.1 we can prove: 

Theorem 7.1. — Let J7 be a foliation on CP{2), having a transcendent leaf whose 
limit set is an algebraic curve A. Assume that sing.Fn A satisfies property {psdc), 
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conditions (Ci),(C2). Then, either T is given by a closed rational \-form or it is a 
rational pull-back of a Riccati foliation 1Z : p(x)dy — (a(x)y2 + b{x)y)dx = 0, where A 
corresponds to (y = 0) U (p(x) = 0), on C x C. 

A few words should be said, concerning the relations between our result and groups 
of linear rational transformations. Let G be a finitely generate Fuchsian group, i.e, 
a properly discontinuous group of diffeomorphisms of C, carrying a certain circle 
C(G), (the principal circle), into itself. It is known that the limit set of G lies on 
C(G). Moreover it is well-known that if lim(G) has more than two points, either 
lim(G) = C(G), or lim(G) C C{G) is a nowhere dense perfect subset [6]. 

Let us assume that lim(£?) = C(G). Using [9] we can realize G as the "suspension 
holonomy" of the line (y = 0) C C x C, of a Riccati foliation 

71(G) : p(x)dy - (a(x)y2 + b(x)y + c(x))dx = 0 

on C x C. The foliation 71(G) satisfies \iva(7Z(G)) = M3(G), for a real 3-dimensional 
singular subvariety M3(G), which is singular along the invariant vertical fibers : 
x x C,p(x) = 0, and such that the intersection M3(G) fl Cx is a principal circle 
of a Fuchsian group conjugate to G, provided that the fiber is non invariant. 
Conversely, one can ask whether a foliation whose limit set is an invariant real singular 
hypersurface as M3(G) above, is in fact the pull-back of a Riccati foliation. This 
problem remains open. 
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