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RATIONAL PARAMETER RAYS 
OF THE MANDELBROT SET 

by 

Dierk Schleicher 

Abstract. — We give a new proof that all external rays of the Mandelbrot set at 
rational angles land, and of the relation between the external angle of such a ray 
and the dynamics at the landing point. Our proof is different from the original 
one, given by Douady and Hubbard and refined by P. Lavaurs, in several ways: it 
replaces analytic arguments by combinatorial ones; it does not use complex analytic 
dependence of the polynomials with respect to parameters and can thus be made 
to apply for non-complex analytic parameter spaces; this proof is also technically 
simpler. Finally, we derive several corollaries about hyperbolic components of the 
Mandelbrot set. 

Along the way, we introduce partitions of dynamical and parameter planes which 
are of independent interest, and we interpret the Mandelbrot set as a symbolic pa­
rameter space of kneading sequences and internal addresses. 

1. Introduction 

Quadratic polynomials, when iterated, exhibit amazingly rich dynamics. Up to 
affine conjugation, these polynomials can be parametrized uniquely by a single com­
plex variable. The Mandelbrot set serves to organize the space of (conjugacy classes 
of) quadratic polynomials. It can be understood as a "table of contents" to the dy­
namical possibilities and has a most beautiful structure. Much of this structure has 
been discovered and explained in the groundbreaking work of Douady and Hubbard 
[DH1], and a deeper understanding of the fine structure of the Mandelbrot set is a 
very active area of research. The importance of the Mandelbrot set is due to the fact 
that it is the simplest non-trivial parameter space of analytic families of iterated holo-
morphic maps, and because of its universality as explained by Douady and Hubbard 
[DH2]: the typical local configuration in one-dimensional complex parameter spaces 
is the Mandelbrot set (see also [McM]). 

1991 Mathematics Subject Classification. — 30C20, 30D05, 30D40. 
Key words and phrases. — Mandelbrot set, kneading sequence, internal address, external ray, param­
eter ray, hyperbolic component. 
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real-analytically on the parameter. Of course, the "standard proof using Fatou co­
ordinates and Ecalle cylinders, as developed by Douady and Hubbard and elaborated 
by Lavaurs [La2], is a most powerful tool giving interesting insights; it has had many 
important applications. Our goal is to present an alternative approach in order to 
enlarge the toolbox for applications in different situations. 

The fundamental result we want to describe in this article is the following theorem 
about landing properties of external rays of the Mandelbrot set, a theorem due to 
Douady and Hubbard; for background and terminology, see the next section. 

Theorem 1.1 (The Structure Theorem of M). — Parameter rays of the Mandelbrot set 
at rational angles have the following landing properties: 

(1) Every parameter ray at a periodic angle $ lands at a parabolic parameter such 
that, in its dynamic plane, the dynamic ray at angle i? lands at the parabolic 
orbit and is one of its two characteristic rays. 

(2) Every parabolic parameter c is the landing point of exactly two parameter rays 
at periodic angles. These angles are the characteristic angles of the parabolic 
orbit in the dynamic plane of c. 

(3) Every parameter ray at a preperiodic angle i? lands at a Misiurewicz point such 
that, in its dynamic plane, the dynamic ray at angle $ lands at the critical 
value. 

(4) Every Misiurewicz point c is the landing point of a finite non-zero number of 
parameter rays at preperiodic angles. These angles are exactly the external 
angles of the dynamic rays which land at the critical value in the dynamic 
plane of c. 

(The parameter c = 1/4 is the landing point of a single parameter ray, but this 
ray corresponds to external angles 0 and 1; we count this ray twice in order to avoid 
having to state exceptions.) 

The organization of this article is as follows: in Section 2, we describe necessary 
terminology from complex dynamics and give a few fundamental lemmas. Section 3 
contains a proof of the periodic part of the theorem, and along the way it shows 
how to interpret the Mandelbrot set as a parameter space of kneading sequences. 
The preperiodic part of the theorem is then proved in Section 4, using properties 
of kneading sequences. In the final Section 5, we derive fundamental properties of 
hyperbolic components of the Mandelbrot set. Most of the results and proofs in 
this paper work also for uMultibrot sets": these are the connectedness loci of the 
polynomials zd + c for d > 2. 

This article is an elaborated version of Chapter 2 of my Ph.D. thesis [Si] at Cornell 
University, written under the supervision of John Hubbard and submitted in the 
summer of 1994. It is part of a mathematical ping-pong with John Milnor: it builds 
at important places on the paper [GM]; recently Milnor has written a most beautiful 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000 



408 D. SCHLEICHER 

new paper [M2] investigating external rays of the Mandelbrot set from the point of 
view of "orbit portraits", i.e., landing patterns of periodic dynamic rays. I have not 
tried to hide how much both I and this paper have profited from many discussions 
with him, as will become apparent at many places. This paper, as well as Milnor's 
new one, uses certain global counting arguments to provide estimates, but in different 
directions. It is a current project [ES] to combine both approaches to provide a new, 
more conceptual proof without global counting. Proofs in a similar spirit of further 
fundamental properties of the Mandelbrot set can be found in [S2]. 

Acknowledgements. — It is a pleasure to thank many people who have contributed 
to this paper in a variety of ways. I am most grateful to John Hubbard for so much 
help and friendship over the years. To John Milnor, I am deeply indebted for the 
ping-pong mentioned above, as well as for many discussions and a lot of encourage­
ment along the way. Tan Lei contributed very helpful corrections and suggestions 
most constructively. Many more people have shared their ideas and understanding 
with me and will recognize their contributions; they include Bodil Branner, Adrien 
Douady, Karsten Keller, Eike Lau, Jiaqi Luo, Misha Lyubich, Shizuo Nakane, Chris 
Penrose, Carsten Petersen, Johannes Riedl, Mitsu Shishikura and others. I am also 
grateful to the Institute for Mathematical Sciences in Stony Brook for its inspiring 
environment and support. Finally, special thanks go to Katrin Wehrheim for a most 
helpful suggestion. 

2. Complex Dynamics 

In this section, we briefly recall some results and notation from complex dynamics 
which will be needed in the sequel. For details, the notes [Ml] by Milnor are recom­
mended and, of course, the work [DH1] by Douady and Hubbard which is the source 
of most of the results mentioned below. 

By affine conjugation, quadratic polynomials can be written uniquely in the normal 
form pc : z h-» z2 + c for some complex parameter c. For any such polynomial, the 
filled-in Julia set is defined as the set of points z with bounded orbits under iteration. 
The Julia set is the boundary of the filled-in Julia set. It is also the set of points 
which do not have a neighborhood in which the sequence of iterates is normal (in the 
sense of Montel). Julia set and filled-in Julia set are connected if and only if the only 
critical point 0 has bounded orbit; otherwise, these sets coincide and are a Cantor 
set. The Mandelbrot set M is the quadratic connected locus: the set of parameters 
c for which the Julia set is connected. Julia sets and filled-in Julia sets, as well as 
the Mandelbrot set, are compact subsets of the complex plane. The Mandelbrot set 
is known to be connected and full (i.e. its complement is connected). 

Douady and Hubbard have shown that Julia sets and the Mandelbrot set can 
profitably be studied using external rays: for a compact connected and full set K c C , 
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the Riemann mapping theorem supplies a unique conformal isomorphism &K from 
the exterior of K to the exterior of a unique disk DR = {z G C : \z\ < R} subject 
to the normalization condition limz_^oo $(z)/z — 1. The inverse of the Riemann map 
allows to transport polar coordinates to the exterior of K\ images of radial lines and 
centered circles are called external rays and equipotentials, respectively. For a point 
z G C — K with <&(z) = re27™19, the number $ is called the external angle and logr is 
called the potential of z. External angles live in S 1 ; we will always measure them in 
full turns, i.e., interpreting S 1 = E /Z . Sometimes, it will be convenient to count the 
two angles 0 and 1 differently and have external angles live in [0,1]. Potentials are 
parametrized by the open interval (logi?, oo ) . An external ray at angle $ is said to 
land at a point z if l im r ^ i o g j R ^J^(re2ni^) exists and equals z. For general compact 
connected full sets K, not all external rays need to land. By Caratheodory's theorem, 
local connectivity of K is equivalent to landing of all the rays, with the landing points 
depending continuously on the external angle. 

For all the sets we consider here, it turns out that the conformal radius R is 
necessarily equal to 1. In order to avoid confusion, we will replace the term "external 
ray" by dynamic ray or parameter ray according to whether it is an external ray of a 
filled-in Julia set or of the Mandelbrot set. 

For c G M, the filled-in Julia set Kc is connected. For brevity, we will denote 
the preferred Riemann map by y?c, rather than &KC- A classical theorem of Böttcher 
asserts that this map conjugates the dynamics outside of Kc to the squaring map 
outside the closed unit disk: (pc opc = (</?c)2. A dynamic ray is periodic or preperiodic 
whenever its external angle is periodic or preperiodic under the doubling map on S 1 . 
The periodic and preperiodic angles are exactly the rational numbers. More precisely, 
a rational angle is periodic iff, when written in lowest terms, the denominator is odd; 
if the denominator is even, then the angle is preperiodic. It is well known [Ml, Sec­
tion 18] that dynamic rays of connected filled-in Julia sets always land whenever their 
external angles are rational. The landing points of periodic (resp. preperiodic) rays 
are periodic (resp. preperiodic) points on repelling or parabolic orbits. Conversely, 
every repelling or parabolic periodic or preperiodic point of a connected Julia set is 
the landing point of one or more rational dynamic rays; preperiods and periods of all 
the rays landing at the same point are equal. 

If a quadratic Julia set is a Cantor set, then there still is a Böttcher map (fc near 
infinity conjugating the dynamics to the squaring map. One can try to extend the 
domain of definition of the Böttcher map by pulling it back using the conjugation 
relation. However, there are problems about choosing the right branch of a square 
root needed in the conjugation relation. The absolute value of the Böttcher map 
is independent of the choices and allows to define potentials outside of the filled-in 
Julia set. The set of points at potentials exceeding the potential of the critical point 
is simply connected and the map <pc can be defined there uniquely. This domain 
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includes the critical value. In particular, the external angle of the critical value is 
defined uniquely. Douady and Hubbard have shown that the preferred Riemann map 

of the exterior of the Mandelbrot set is given by $M(C) = <pc(c). 
For disconnected Julia sets, the map (pc defines dynamic rays at sufficiently large 

potentials. If a dynamic ray at angle $ is defined for potentials greater than t > 0, 
then one can pull back by the dynamics and obtain the dynamic rays at angles $/2 
and (& + l ) / 2 down to potential ¿/2, except if the ray at angle $ contains the critical 
value. In the latter case, the two pull-back rays will bounce into the critical point and 
the pull-back is no longer possible uniquely. This phenomenon has been studied by 
Goldberg and Milnor in the appendix of [GM]. Conversely, a dynamic ray at angle 

can be extended down to the potential t > 0 provided its image ray at angle 2t? 
can be extended down to the potential 2t and does not contain the critical value, or 
if the ray at angle 4i? can be extended down to the potential 4t without containing 
the critical value or its image, etc.. The ray can be defined for all potentials in (0, oo) 
if the external angle of the critical value is different from 2krd for all k = 1,2,3, . . . 
This is the general situation, and in this case, the dynamic ray is known to land at a 
unique point of the Julia set, whether or not the angle is rational. 

We rephrase these facts in a form which we will have many opportunities to use: 
if a parameter c ^ M has external angle i?, then the dynamic ray at angle i? for the 
parameter c will contain the critical value. If the angle $ is periodic, then this ray 
cannot possibly land: the ray must bounce into an inverse image of the critical point 
at a finite positive potential. The main focus of Sections 3 and 4 will be to transfer 
the landing properties of dynamic rays at rational angles into landing properties of 
parameter rays at rational angles: as so often in complex dynamics, the general 
strategy is "to plow in the dynamical plane and then to harvest in parameter space", 
as Douady phrased it. 

When a periodic ray lands at a periodic point, the periods need not be equal: it 
is possible that the period of the ray is a proper multiple of the period of the point 
it is landing at. We will therefore distinguish ray periods and orbit periods. If only 
one ray lands at every periodic point on the orbit, then both periods are equal; in 
general, there is a relation between these periods and the number of rays landing 
at each point on the orbit; see Lemma 2.4. For our purposes, periodic orbits will 
be most interesting if at least two rays land at each of its points. Such periodic 
orbits have a distinguished point and two distinguished dynamic rays landing at this 
point; these play a prominent role in all the symbolic descriptions of the Mandelbrot 
set. Following the terminology of Milnor [M2], we will call the distinguished point 
and rays the characteristic periodic point of the orbit and the characteristic rays (see 
below), and the corresponding external angles will be the two characteristic angles 
of the orbit. In Thurston's fundamental preprint [T], the two characteristic rays and 
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their common landing point are the "minor leaf of a "lamination". We will not use 
or describe his notation here, but we note that it is very close in spirit to this article. 

For our purposes, it will be sufficient to define characteristic points and rays only 
for parabolic periodic orbits. 

Definition 2.1 (Characteristic Components, Points and Rays). — For a quadratic po­
lynomial with a parabolic orbit, the unique Fatou component containing the critical 
value will be called the characteristic Fatou component, the only parabolic periodic 
point on its boundary will be the characteristic periodic point of the parabolic orbit. 
It is the landing point of at least two dynamic rays, and the two of them closest to 
the critical value on either side will be the characteristic rays. 

The fact that every parabolic periodic point is the landing point of at least two dy­
namic rays will be shown after Lemma 3.6. Lemma 2.4 will describe the characteristic 
rays dynamically. 

With hesitation, we use the term "Misiurewicz point" for a parameter c for which 
the critical point or, equivalently, the critical value, is (strictly) preperiodic. This 
terminology has been introduced long ago, but it is only a very special case of what 
Misiurewicz was investigating. In real dynamics, the term is used in a wider meaning. 
We have not been successful in finding an adequate substitution term and invite the 
reader for suggestions. 

In this section, we provide two lemmas which are the engine of our proof: the first 
one is of analytical nature; it is a slight generalization of Lemma B.l in Goldberg and 
Milnor [GM], guaranteeing stability in the Julia set at repelling (pre)periodic points. 
The second lemma will make counting possible by estimating the number of parabolic 
parameters with given ray periods. 

Lemma 2.2 (Stability of Repelling Orbits). — Suppose that, for some parameter Co € 
C (not necessarily in the Mandelbrot set), there is a repelling periodic point ZQ at which 
some periodic dynamic ray at angle i? lands. Then, for parameters c sufficiently close 
to Co, the periodic point ZQ can be continued analytically as a function z(c) and the 
dynamic ray at angle t? in the dynamic plane of c lands at z{c). Moreover, the dynamic 
ray and its landing point form a closed set which is canonically homeomorphic to [0, oo] 
via potentials, and this parametrized ray depends continuously on the parameter. 

When z{c) is continued analytically along some curve in parameter space along 
which the orbit remains repelling, then z(c) can lose its dynamic ray at angle $ only on 
a parameter ray at some angle 2k/d for some integer k > 0, or else at any parabolic pa­
rameter; in the latter case, the dynamic ray at angle i? must then land at the parabolic 
orbit. 

If ZQ is repelling and preperiodic, the analogous statement holds provided that nei­
ther the point ZQ nor any point on its forward orbit is the critical point. 
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Proof. — We first assume that ZQ is a periodic point. By the implicit function the­
orem, z0 can be continued analytically as a function z(c) in a neighborhood of Co; 
the multiplier A(c) will also depend analytically on c so that the cycle is repelling 
sufficiently close to CQ. Let V be such a neighborhood of Co and denote the period 
of zo by n. Then for every c G V there exists a local branch gc of the inverse map 
of p ° n fixing z(c). There is a neighborhood U of z0 such that gCo maps U into U, 
and possibly by shrinking V, we may assume that all gc have the same property for 
c G V. Under iteration of gc, any point in U then converges to z{c). Let t > 0 be 
a potential such that, for the parameter Co, the set C7 contains all the points of the 
dynamic i9-ray at potentials t and below, including the landing point. 

Now we distinguish two cases, according to whether or not Co G M. If CQ £ M, then 
the external angle of the parameter Co is well-defined and different from the finitely 
many angles 2k/d for k = 1, 2 , 3 , . . . because the dynamic ray at angle i? lands. If V 
is small enough so that all points in V are outside M and have their external angles 
different from all the 2*1?, then for every c G V, the dynamic ray at angle i? lands, 
and the point at potential t depends analytically on the parameter. It will therefore 
be contained in U for sufficiently small perturbations and thus converge to z(c) under 
iteration of gCy so the landing point of the ray is z(c). 

However, if CQ G M, then we may assume V small enough so that all its points 
have potentials less than t/2 (with respect to the potential function of the Mandelbrot 
set). In the corresponding dynamic planes, the critical values then have potentials less 
than ¿/2, so every dynamic ray exists and depends analytically on the parameter for 
potentials greater than t/2 (the construction of the Böttcher coordinates around oo 
is analytic in the parameter where they exist). By shrinking V, we may then assume 
that for all c G V, the segment between potentials t/2 and t in the dynamic ray at 
angle i? is contained in U. Iterating the map gc, it follows that the dynamic ray at 
angle i? lands at z(c). In both cases, rays and landing points depend continuously on 
the parameter, including the parametrization by potentials. 

Suppose that z(c) is continued analytically along some curve in parameter space 
along which the orbit remains repelling, and let c be the first point on which the 
dynamic ray at angle ß no longer lands at z(c). For the parameter c, the dynamic ray 
at angle $ then cannot land at any repelling periodic point because this point would 
keep the ray under perturbations. Therefore, the dynamic ray at angle i? must either 
land at a parabolic orbit, or it must fail to land entirely. The latter case happens if 
and only if the forward orbit of the dynamic i?-ray contains the critical value, so the 
parameter c is on a parameter ray as specified. 

The statement about preperiodic points follows by taking inverse images and is 
straightforward, except if ZQ or any point on its forward orbit are the critical point. 
However, if some preperiodic dynamic ray lands at the critical value, then a small 
perturbation may bring the critical value onto this dynamic ray, and the inverse rays 
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will bounce into the critical point (after that, both branches will land, and the landing 
points are two branches of an analytic function). • 

Lemma 2.3 (Counting Parabolic Orbits). — For every positive integer n, the number of 
parabolic parameters in C having a parabolic orbit of exact ray period n is at most half 
the number of periodic angles in [0,1] having exact period n under doubling modulo 1. 

Proof — We can calculate the exact number of periodic angles. If an angle $ G [0,1] 
satisfies 2nt? = t? modulo 1, then we can write i? = a/(2n — 1) for some integer 
a, and there are 2n such angles in [0,1]. Only a subset of these angles has exact 
period n: denoting the number of such angles by s'n, we have ^k\ns'k = 2n, which 
allows to determine the s'n recursively or via the Möbius inversion formula. We have 
s[ — 2, and all the s'n are easily seen to be even. In the sequel, we will work with the 
integers sn := s'n/2. The first few terms of the sequence (sn), starting with si, are 
1,1,3,6,15,27,63,. . . The specified number of periodic angles in [0,1] is then exactly 
2sn. 

We consider the curve 

{(c^)eC2 :p°cn(z)=z} 
consisting of points z which are periodic under pc with period dividing n. It factors 
as a product Ylk\n Qk(c-> z) according to exact periods. (The curves Qk have been 
shown to be irreducible by Bousch [Bo] and by Lau and Schleicher [LS], a fact we 
will not use.) For |c| > 2, the filled-in Julia set of pc is a Cantor set containing all 
the periodic points. For \c\ > 4, it is easy to verify that points z with \z\ > \c\lj/2 + 1 
escape to oo, and so do points with \z\ < |c|x/2 — 1. Periodic points therefore satisfy 
\z\ = I c l 1 / 2 ^ + o( l ) ) as c —• oo. The multiplier of a periodic orbit of exact period n 
is the product of the periodic points on the orbit multiplied by 2n, so it grows like 
|4c|n/2(l + o( l ) ) . 

For any parameter c, the number of points which are fixed under the n-th iterate 
is obviously equal to 2n, counting multiplicities. These points have exact periods 
dividing rz, so the number of periodic points of exact period n equals 2sn by the 
same recursion formula as above. These periodic points are grouped in orbits, so the 
number of orbits is 2sn/n (which implies that 2sn is divisible by n). For bounded 
parameters c, the periodic points and thus the multipliers are bounded; since there are 
2sn/n orbits, the multipliers of which are analytic and behave like |c|n/2 near infinity, 
and since every orbit contains n points, it follows that sufficiently large multipliers 
are assumed exactly {2sn/n)(n/2)n = nsn times on Qn (we do not have to count 
multiplicities here because multiple orbits always have multiplier H-l). Consider the 
multiplier map on Qn which assigns to every point (c, z) the multiplier (d/dz)p°n(z). 
It is a proper map and thus has a mapping degree, so (counting multiplicities) every 
multiplier in C is assumed equally often, including the value +1 . The number of points 
(c,z) having multiplier -hi therefore equals nsn, counting multiplicities. Projecting 
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onto the c-coordinate and ignoring multiplicities, a factor n is lost because points on 
the same orbit project onto the same parameter, and we obtain an upper bound of 
sn for the number of parameters. (In fact, it is not too hard to show at this point 
that sn provides an exact count [M2]. We will show this in Corollary 3.4 by a global 
counting argument.) 

Consider a parabolic orbit of exact period k and multiplier ^ — e27rtp/q with (p, q) = 
1. Then the exact ray period is qk = : n, and qk is also the smallest period such that, 
when interpreting the orbit as an orbit of this period, the multiplier becomes +1 . 
Therefore, the periodic points on this orbit are on Qnj and the number of parabolic 
parameters having exact ray period n therefore is at most sn. • 

A more detailed account of such counting arguments can be found in Section 5 of 
Milnor [M2]. 

The following standard lemma is folklore and at the base of every description of 
quadratic iteration theory. Our proof follows Milnor [M2]; compare also Thurston [T, 
Theorem IL5.3 case b) i) a)]. We do not assume that the Julia set has any particular 
property; it need not even be connected. 

Lemma 2.4 (Permutation of Rays). — / / more than two periodic rays land at a peri­
odic point, or if the orbit period is different from the ray period, then the first return 
map of the point permutes the rays transitively. 

Proof. — Denote the orbit period by k and the ray period by n. Since a periodic 
orbit has periodic rays landing only if the orbit is repelling or parabolic, the first 
return map of any of its periodic points is a local homeomorphism and permutes the 
rays landing there in such a way that their periods are all equal, and the number of 
rays landing at each point of the orbit is a constant s, say. If s = 1, then orbit period 
and ray period are equal. If s = 2, then either ray and orbit periods are equal, or the 
first return map of any point has no choice but to transitively permute the two rays 
landing at this point. We may hence assume s > 3. Then the s rays landing at any 
one of these periodic points separate the dynamic plane into s sectors. Every sector 
is bounded by two dynamic rays, so it has associated a width: the external angles of 
the two rays cut S 1 into two open intervals, exactly one of which does not contain 
external angles of rays landing at the same point. The width of the sector will be the 
length of this interval (normalized so that the total length of S 1 is 1). 

Since the dynamics of the first return map is a local homeomorphism near the 
periodic point, every sector is periodic, and so is the sequence of the corresponding 
widths. More precisely, we will justify the following observations below: if a sector 
does not contain the critical point, then it maps homeomorphically onto its image 
sector (based at the image of its landing point), and the width of the sector doubles. 
However, if the sector does contain the critical point, then the sector maps in a 
two-to-one fashion onto the image sector, and it covers the remaining dynamic plane 
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once. In this case, the width of the sector will decrease under this mapping, and 
the image sector contains the critical value. To justify these statements, first note 
that the rays bounding any sector are mapped to the rays bounding the image sector. 
Looking at external angles within the sector, it follows that either the sector maps 
forward homeomorphically, or it covers the entire complex plane once and the image 
sector twice. The latter must happen for the sector containing the critical point. 
Since all the sectors at any periodic point combined exactly cover the complex plane 
twice when mapped forward, all the other sectors must map homeomorphically onto 
the image sectors. We also see that among all the sectors based at any point, the 
sector containing the critical point must have width greater than 1/2, and all the 
other sectors then have widths less than 1/2 (the critical point cannot be on a sector 
boundary: if it is on a periodic dynamic ray, then this ray cannot land, and if it 
is on a periodic point, then this point is superattracting). The width of any sector 
doubles under the map if it does not contain the critical point; since the sum of the 
widths of all the sectors based at any point is 1, the width of the critical sector must 
decrease. 

For each orbit of sectors, there must be at least one sector with minimal width. 
It must contain the critical value (or it would be the image of a sector with half 
the width), and it cannot contain the critical point (or its image sector would have 
smaller width). Therefore, all the shortest sectors of the various cycles of sectors must 
be bounded by pairs of rays separating the critical point from the critical value, and 
these sectors are all nested. Among them, there is one innermost sector Si based at 
some point z\ of the periodic orbit. This sector Si cannot contain another point from 
the orbit of z\\ if there was such a point z', there would have to be a sector based 
at z1 which was shorter than all the shortest sectors at points on the orbit of z\, and 
this is obviously absurd. 

If there is an orbit of sectors not involving Si, then any shortest sector on this 
orbit must contain the critical value and thus Si, but it cannot contain the crit­
ical point. This sector must then contain all sectors at z\ except the one con­
taining the critical point. The representative of this orbit of sectors at z\ must 
then be the unique sector containing the critical point. Any cycle of sectors has 
then only two choices for its representative at z\\ the sector containing the crit­
ical point or the critical value. If there is more than one cycle, then it follows 
that there are just two cycles, and each of them has exactly one representative 
at each point of the periodic orbit, so s — 2 in contradiction to our assumption. 

• 

Remark. — This lemma is at the heart of the general definition of characteristic rays: 
the main part of the proof works when at least two rays land at each of the periodic 
points, and it shows that there is a unique sector of minimal width containing the 
critical value. The rays bounding this sector are called the characteristic rays. For 
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the special case of a parabolic orbit, this definition agrees with the one we have given 
above. 

3. Periodic Rays 

In this section, we will be concerned with parameter rays at periodic angles. The 
proof of the following weak form of the theorem is due to Goldberg, Milnor, Douady, 
and Hubbard; see [GM, Theorem C.7]. 

Proposition 3.1 (Periodic Parameter Rays Land). — Every parameter ray at a peri­
odic angle t? lands at a parabolic parameter c$. In the dynamic plane of CQ, the 
dynamic ray at angle $ lands at the parabolic orbit. 

Proof. — Let c 0 be a point in the limit set of the parameter ray at angle $ and let 
n be the exact period of i9. In the dynamic plane of Co, the dynamic ray at angle 
$ must land at a repelling or parabolic periodic point z of ray period n; see [Ml, 
Theorem 18.1]. If z was repelling, Lemma 2.2 would imply that for parameters c 
sufficiently close to Co, the dynamic ray at angle t9 in the dynamic plane of c would 
land at a repelling periodic point z(c), so it could not bounce off any precritical point. 
However, when c is on the parameter ray at angle then the dynamic ray at angle 
i9 must bounce off some precritical point, even infinitely often. 

Therefore, CQ is parabolic, and within its dynamics, the dynamic ray at angle $ 
lands at the parabolic orbit. Since limit sets are connected but parabolic parameters 
of given ray period form a finite set by Lemma 2.3, the parameter ray at angle $ lands 
and the statements follow. • 

This proves half of the first assertion in Theorem 1.1. The remainder of the first 
and the second assertion will be shown in several steps. We want to show that at a 
parabolic parameter CQ , those two parameter rays land which have the same external 
angles as the two characteristic rays of the critical value Fatou component, and no 
other rational ray lands there. The first statement is usually shown using Ecalle 
cylinders. It turns out that it is much easier to show that some ray does not land 
at a given point, rather than to show where it does land. The idea in this paper 
will be to exclude all the wrong rays from landing at given parabolic parameters, 
using partitions in the dynamic and parameter planes. Using that the rays must land 
somewhere, a global counting argument will then prove the theorem. 

Let c be a parabolic parameter and let & c be the set of periodic angles t? such that 
the parameter ray at angle # lands at c. A priori, it might be empty; if it is not, 
then all the angles in 0 C have the same period by Proposition 3.1. We will prove the 
following two results later in this section. 
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Proposition 3.2 (Necessary Condition). — / / an angle $ is in @c, then the dynamic 
ray at angle $ lands at the characteristic point of the parabolic orbit in the dynamic 
plane of c. 

Proposition 3.3 (At Most Two Rays). — Suppose the set 0 C contains more than one 
angle. Let n be the common period of these angles and suppose that all parameter ray 
pairs of periods 2, 3, . . . , n — 1 land in pairs. Then 0 C consists of exactly those two 
angles which are the characteristic angles of the parabolic orbit in the dynamic plane 
of c. 

These two propositions allow to prove the half of the theorem dealing with periodic 
rays; we will deal with the preperiodic half in the next section. 

Proof of Theorem 1.1 (periodic case). — We will use induction on the period. For 
period n — 1, there are only two angles 0 and 1 which both describe the same 
parameter ray. This ray runs along the positive real axis and lands at the unique 
parabolic parameter c = 1/4 with ray period 1. 

For any period n > 2, the number of parabolic parameters of any given ray period 
is at most half the number of parameter rays at periodic angles of the same period by 
Lemma 2.3. Since every ray lands at such a parabolic parameter by Proposition 3.1, 
and at most two rays land at any such point by Proposition 3.3 (using the induc­
tive hypothesis), it follows that exactly two rays land at every parabolic point, and 
Proposition 3.3 says which ones these are. It also follows that the number of parabolic 
parameters of any given period is largest possible as allowed by Lemma 2.3. • 

Corollary 3.4 (Counting Parabolic Orbits Exactly). — Let Sk be the number of param­
eters having a parabolic orbit of exact ray period k. These numbers satisfy the recursive 
relation ^2k\nSk = 2n~1, which determines them uniquely. • 

It remains to prove the two propositions. In both of them, we have to exclude 
that certain rays land at given parabolic parameters. We do that using appropriate 
partitions: first in the dynamic plane, then in parameter space. We start by discussing 
the topology of parabolic quadratic Julia sets and define a variant of the Hubbard tree 
on them. Hubbard trees have been introduced by Douady and Hubbard in [DH1] for 
post critically finite polynomials. We will be interested in combinatorial statements 
about combinatorially described Julia sets, so these results could be derived in purely 
combinatorial terms. However, it will be more convenient to use topological properties 
of the Julia sets in the parabolic case, in particular that they are pathwise connected 
(which follows from local connectivity). This was originally proved by Douady and 
Hubbard [DH1]; proofs can also be found in Carleson and Gamelin [CG] and in Tan 
and Yin [TY]. 

In a quadratic polynomial with a parabolic orbit, let z be any point within the filled-
in Julia set and let U be a bounded Fatou component. We then define a projection of 
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^37/63 

FIGURE 2 . Illustration of the theorem in the periodic case. The poly­
nomials at the landing points of the parameter rays at angles 3 / 1 5 and 
4 / 1 5 (left) and at angles 2 2 / 6 3 and 2 5 / 6 3 (right) are shown. In both pic­
tures, the rays landing at the characteristic points are drawn. For the 
corresponding parameter rays, see Figure 1. 

z onto U as follows: If z G U, then the projection of z onto U is z itself. Otherwise, 
consider any path within the filled-in Julia set connecting z to an interior point of 
U (such a path exists because the filled-in Julia set is pathwise connected); then the 
projection of z onto U is the first point where this path intersects dU. There may be 
many such paths, but the projection is still well-defined: take any two paths from z 
to the interior of U and connect their endpoints within U. If the paths are different, 
they will bound some subset of C, which must be in K because K is full. If the paths 
reach dU in different points, then these paths enclose part of the boundary of U, but 
the boundary of any Fatou component is always in the boundary of the filled-in Julia 
set. This contradiction shows that the projection is well-defined. Every parabolic 
periodic point is on the boundary of at least one periodic Fatou component, so the 
projection in this case is just the identity. 

Lemma 3.5 (Projection Onto Periodic Fatou Components). — In a quadratic polyno­
mial with a parabolic orbit, the projections of all the parabolic periodic points onto the 
Fatou component containing the critical value take images in the same point, which 
is the characteristic point of the parabolic periodic orbit. Projections of the parabolic 
periodic points onto any other bounded Fatou component take images in at most two 
boundary points, which are periodic or preperiodic points on the parabolic orbit. 
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Proof. — Let n be the period of the periodic Fatou components and number them 
Uo, E/i,.. •, Un-i, Un = Uo in the order of the dynamics, so that Uo = Un contains the 
critical point. Let ak be the number of different images that the projections of all the 
parabolic periodic points onto Uk have, for k = 0 , 1 , . . . , n (with a 0 = an). We first 
show that ak+i > ak for k = 1,2,. . . , n — 1. 

Let z be a parabolic periodic point and let TT(Z) be its projection onto Uk. We claim 
that P(TT{Z)) is the projection onto Uk+i of either p(z) or the parabolic point on the 
boundary of the Fatou component containing the critical value (i.e. the characteristic 
point on the parabolic orbit). Indeed, if the path between z and 7r(z) maps forward 
homeomorphically under p, then iv(p{z)) — p{ir{z)). If it does not, then the path must 
intersect the component containing the critical point, and ir(z) — TT(0). But then 
P(TT(Z)) is the projection of the characteristic point on the parabolic orbit. Therefore, 
for k G {0 ,1 ,2 , . . . , n — 1} , all the ak image points of the projections of parabolic 
periodic points onto Uk will be mapped under p to image points of the projection 
onto Uk+i- Since for k ^ 0, the polynomial p maps Uk homeomorphically onto t/fc+i, 
we get an > a n _i > • * • > > a±. Similarly, since p maps Uo in a two-to-one fashion 
onto f/i, we have a\ > ao/2. 

Now we connect the parabolic periodic points by a tree: first, there is a path 
between the critical point and the critical value, and all the other parabolic periodic 
points which are not on this path can be connected, one by one, to the subtree which 
has been constructed thus far. We can require that every path which we are adding 
intersects the boundary of any bounded Fatou component in the least number of 
points (at most two). After finitely many steps, all the parabolic periodic points are 
connected by a finite tree, and all the endpoints of this tree are parabolic periodic 
points. It is not hard to check that this tree intersects the boundary of any bounded 
Fatou component exactly in the image points of the projections of the parabolic 
periodic points. 

We now claim that there is a periodic Fatou component whose closure does not 
disconnect the tree. Indeed, any component which does disconnect the tree has at 
least one parabolic periodic point and thus at least one periodic Fatou component 
in each connected component of the complement. Pick one connected component, 
and within it pick a periodic Fatou component that is "closest" to the removed one 
(in the sense that the path between these two components does not contain further 
periodic Fatou components). Remove this component and continue; this process can 
be continued until we arrive at a component which does not disconnect the tree. Let 

be such a component. 
It follows that a£ < 2: all the parabolic periodic points which are not on the 

boundary of t/~ must project to the same boundary point, say 6, which may or may 
not be the parabolic periodic point on the boundary of U^. We will now show that it 
will be, so ar = 1. 
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Since b is the image of a projection onto of some parabolic periodic point which 
is not in it follows from the argument above that p(b) is the image of a projection 
onto C/^ + 1 of some parabolic periodic point which is not in U^±. But since b is the 
only boundary point of with this property, it follows that b is fixed under the first 
return map of this Fatou component. The point b must then be the unique parabolic 
periodic point on the boundary of £7-, and we have = 1. 

Since a\ < a,2 < an < 2ai, it follows in particular that a\ = 1 and all ak < 2, and 
all projections onto the Fatou component containing the critical value take values in 
the same point, which is the characteristic point of the parabolic orbit. The remaining 
claims follow. • 

Remark. — The tree just constructed is similar to the Hubbard tree introduced in 
[DHl] for postcritically finite polynomials. An important difference is that our tree 
does not connect the critical orbit. Moreover, Hubbard trees in [DHl] are specified 
uniquely, while our trees still involve the choice of how to traverse bounded Fatou 
components. We will suggest a preferred tree below. 

However, some properties are independent of the choice of the tree. Assume that 
two simple curves 71 and 72 within the filled-in Julia set connect the same two points 
z\ and Z2, such that a point w is on one of the curves but not on the other. Then w 
is on the closure of a bounded Fatou component because the region which is enclosed 
by the two curves must be in the filled-in Julia set. The tree intersects the boundary 
of any bounded Fatou component in at most two points which are projection images 
and thus well-defined. Therefore, the choice for the curves and thus for the tree is 
only in the interior of bounded Fatou components. 

For any point w in the Julia set (not in a bounded Fatou component), it follows 
that the number of branches of the tree (i.e. the number of components the point 
disconnects the tree into) is independent of the choice of the tree. Similarly, the 
number of branches is "almost" non-decreasing under the dynamics, so that p(w) has 
at least as many branches as w: all the different branches at w will yield different 
branches at p(w)y except if w is on the boundary of the Fatou component containing 
the critical point. At such boundary points, only the branch leading into the critical 
Fatou component can get lost. (However, it does happen that p(w) has extra branches 
in the tree.) It follows that the characteristic point on the parabolic orbit has at most 
one branch on any tree, and all the other parabolic periodic points can have up to 
two branches. 

A branch point of a tree is a point w which disconnects the tree into at least three 
complementary components. 

Lemma 3.6 (Branch Points of Tree). — Branch points of the tree between parabolic 
periodic points are periodic or preperiodic points on repelling orbits. 
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Proof. — Branch points are never on the parabolic orbit, as we have just seen. There­
fore, the image of a branch point is always a branch point with at least as many 
branches. Since there are only finitely many branch points, every branch point is 
periodic or preperiodic and hence on a repelling orbit. • 

We can now proceed to select a preferred tree, which we will call a (parabolic) 
Hubbard tree. We only have to specify how it will traverse bounded Fatou components. 
In fact, since every bounded Fatou component will eventually map homeomorphically 
onto the critical Fatou component, we only have to specify how the tree has to traverse 
this component; for the remaining components, we can pull back. 

Let U be the critical Fatou component and let w be the parabolic periodic point 
on its boundary. First we want to connect the critical point in U to w by a simple 
curve which is forward invariant under the dynamics. We will use Fatou coordinates 
for the attracting petal of the dynamics [Ml, Section 7]. In these coordinates, the 
dynamics is simply addition of +1 , and our curve will just be a horizontal straight 
line connecting the critical orbit. This curve can be extended up to the critical point. 
The other point on the boundary of the critical Fatou component which we have to 
connect is —w, and we use the symmetric curve. With this choice, we have specified 
a preferred tree which is invariant under the dynamics, except that the image of the 
tree connects the characteristic periodic point on the parabolic orbit to the critical 
value. Removing this curve segment from the image tree, we obtain the same tree as 
before. 

It is well known that, if a repelling or parabolic periodic point disconnects the Julia 
set into several parts, then this point is the landing point of as many dynamic rays 
as it disconnects the Julia set into. It follows that any branch point of the Hubbard 
tree has dynamic rays landing between any two branches; any periodic point on the 
interior of the tree is the landing point of at least two dynamic rays separating the 
tree. It now follows that the characteristic point on the parabolic orbit, and thus every 
parabolic periodic point, is the landing point of at least two dynamic rays. The two 
characteristic rays of the parabolic orbit are the two rays landing at the characteristic 
point of the orbit and closest possible to the critical value on either side. A different 
description of the characteristic rays has been given in Lemma 2.4. 

Lemma 3.7 (Orbit Separation Lemma). — Any two parabolic periodic points of a qua­
dratic polynomial can be separated by two (pre)periodic dynamic rays landing at a 
common repelling (pre)periodic point. 

Proof. — It suffices to prove the lemma when one of the two parabolic periodic points 
is the characteristic point of the orbit; this is also the only case we will need here. 
Let z be this characteristic point and let z' be a different parabolic periodic point. 
Consider the tree of the polynomial as constructed above. It contains a unique path 
connecting z and z'. We may assume that this path does not traverse a periodic 
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Fatou component except at its ends; if it does, we replace z' by the parabolic periodic 
point on that Fatou component. Similarly, we may assume that the path does not 
traverse another parabolic periodic point. If the path from z to zl contains a branch 
point of the tree, then by Lemma 3.6, this branch point is periodic or preperiodic and 
repelling, and it is therefore the landing point of rational dynamic rays separating the 
parabolic orbit as claimed. 

If the Hubbard tree does not have a branch point between z and z', then it takes 
a finite number k of iterations to map z' for the first time onto z. Denoting the path 
from z to z' by 7, then the fc-th iterate of 7 must traverse itself and possibly more in 
an orientation reversing way: denoting the fc-th image of z by z", then the image curve 
connects z and z"\ near z, it must start along the end of 7 because z is an endpoint of 
the Hubbard tree, and it cannot branch off because we had assumed no branch point 
of the tree to be on 7. There must be a unique point Zf in the interior of 7 which is 
fixed under the fc-th image of 7. This point is a repelling periodic point, and it is the 
landing point of two dynamic rays with the desired separation properties. • 

Now we can prove Proposition 3.2. 

Proof of Proposition 3.2. — In Proposition 3.1, we have shown that 0 C can contain 
only angles $ of dynamic rays landing at the parabolic cycle in the dynamic plane of c. 
By the Orbit Separation Lemma 3.7, all the rays not landing at the characteristic point 
of the parabolic orbit are separated from the critical value by a partition formed by 
two dynamic rays landing at a common repelling (pre)periodic point. This partition 
is stable in a neighborhood in parameter space by Lemma 2.2. But the parameter 
c being a limit point of the parameter ray at angle $ means that, for parameters 
arbitrarily close to c, the critical value is on the dynamic ray at angle t9. • 

The set 0 C of external angles of the parabolic parameter c can thus contain only 
such periodic angles which are external angles of the characteristic periodic point of 
the parabolic orbit in the dynamical plane of c. If there are more than two such 
angles, we want to exclude all those which are not characteristic. This is evidently 
impossible by a partition argument in the dynamic plane. In order to prove Propo­
sition 3.3, we will use a partition of parameter space; for that, we have to look more 
closely at parameter space and incorporate some symbolic dynamics using kneading 
sequences. The partition of parameter space according to kneading sequences and, 
more geometrically, into internal addresses is of interest in its own right (see below) 
and has been investigated by Lau and Schleicher [LS]; related ideas can be found in 
Thurston [T], Penrose [Prl] and [Pr2] and in a series of papers by Bandt and Keller 
(see [Kel], [Ke2] and the references therein). This partition will also be helpful in 
the next section, establishing landing properties of preperiodic parameter rays. 

Definition 3.8 (Kneading Sequence). — To an angle v1 G S 1 , we associate its kneading 
sequence as follows: divide S 1 into two parts at $/2 and (1? 4- l ) / 2 (the two inverse 
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images of i? under angle doubling); the open part containing the angle 0 is labeled 
0, the other open part is labeled 1 and the boundary gets the label *. The kneading 
sequence of the angle i) is the sequence of labels corresponding to the angles 2$, 
4tf, 8tf, . . . 

# / 2 
1 

0 

0 

( t f + l ) / 2 * 

( 0 + 1 ) / 2 

0, 

m$^ù 

FIGURE 3. Left: the partition used in the definition of the kneading se­
quence. Right: a corresponding partition of the dynamic plane by dynamic 
rays, shown here for the example of a Misiurewicz polynomial. 

It is easy to check that, for $ ^ 0, the first position always equals 1. If is 
periodic of period n, then its kneading sequence obviously has the same property 
and the symbol • appears exactly once within this period (at the last position). The 
symbol • occurs only for periodic angles. However, it may happen that an irrational 
angle has a periodic kneading sequence (see e.g. [LS]). As the angle $ varies, the 
entry of the kneading sequence at any position n changes exactly at those values of $ 
for which 2 n _ 1 $ is on the boundary of the partition, i.e. where the kneading sequence 
has the entry This happens if and only if the angle i? is periodic, and its exact 
period is n or divides n. 

Another useful property which will be needed in Section 4 is that the pointwise 
limits K_(t?) := l i m a / ^ K ^ ' ) and K+ (#) := lim^ N tf K(tf') exist for every If <& 
is periodic, then K± ($) is also periodic with the same period (but its exact period 
may be smaller). Both limiting kneading sequences coincide with K(i?) everywhere, 
except that all the ^-symbols are replaced by 0 in one of the two sequences and by 
1 in the other. The reason is simple: if is very close to then the orbits under 
doubling, as well as the partitions in the kneading sequences are close to each other, 
and any symbol 0 or 1 at any finite position will be unchanged provided is close 
enough to i9. However, if the period of i) is n so that 2n~lrd is on the boundary of the 
partition in the kneading sequence, then 2 n - 1 i ? / will barely miss the boundary in its 
own partition, and the • will turn into a 0 or 1. As long as the orbit of is close to 
the orbit of i?, all the symbols • will be replaced by the same symbol. 
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FIGURE 4. Left: the partition .Pn used in the proof of Proposition 3.3, 
for n = 4. The corresponding hyperbolic components are drawn in for 
clarity and do not form part of the partition. Right: a corresponding 
symbolic picture, showing how the partition yields a parameter space of 
initial segments of kneading sequences. The same pairs of rays are drawn 
in as on the left hand side, but the angles are unlabeled for lack of space. 

Proposition 3.1 asserts in particular that all the periodic parameter rays landing 
at the same parameter have equal period. All the rays of period at most n — 1 divide 
the plane into finitely many pieces. We denote this partition by Vn-i', it is illustrated 
in Figure 4. Parabolic parameters of ray period n and parameter rays of period n 
have no point in common with the boundary of this partition. 

Lemma 3.9 (Kneading Sequences in the Partition). — Fix any period n > 1 and sup­
pose that all the parameter rays of periods at most n — 1 land in pairs. Then all 
parameter rays in any connected component of ^n-i have the property that the first 
n — 1 entries in their kneading sequences coincide and do not contain the symbol *. 
In particular, rays of period n with different kneading sequences do not land at the 
same parameter. 

Proof. — The first statement is trivial for two periodic rays which do not have rays 
of lower periods between them, i.e., for rays from the same "access to infinity" of 
the connected component in -Pn-i* the first n — 1 entries in the kneading sequences 
are stable for angles within every such access. The claim is interesting only for a 
connected component with several "accesses to infinity". 

The hypothesis of the theorem asserts that parameter rays of periods up to n — 1 
land in pairs. Therefore, whenever two rays at angles i?2 are in the same connected 
component of y n _ i , the parameter rays of any period k < n — 1 on either side (in 
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S 1 ) between these two angles must land in pairs. The number of such rays is thus 
even, and the fc-th entry in the kneading sequence changes an even number of times 
between 0 and 1. • 

Remark. — This lemma allows to interpret 7 n as a parameter space of initial seg­
ments of kneading sequences. In Figure 4, the partition is indicated for n = 4, together 
with the initial four symbols of the kneading sequence. The entire parameter space 
may thus be described by kneading sequences, as noted above. To any parameter 
с E C, we may associate a kneading sequence as follows: it is a one-sided infinite 
sequence of symbols, and the fc-th entry is 1 if and only if the parameter is separated 
from the origin by an even number of parameter ray pairs of periods к or dividing 
fc; if the number of such ray pairs is odd, then the entry is 0, and if the parameter 
is exactly on such a ray pair, then the entry is *. Calculating the kneading sequence 
of any point is substantially simplified by the observation that, in order to know the 
entire kneading sequence at a parameter ray pair of some period n, it suffices to know 
the first n — 1 entries in the kneading sequence, so we only have to look at ray pairs of 
periods up to n — 1. This leads to the following algorithm: for any point с G C, find 
consecutively the parameter ray pairs of lowest periods between the previously used 
ray pair and the point c. The periods of these ray pairs will form a strictly increas­
ing sequence of integers and allow to reconstruct the kneading sequence, encoding it 
very efficiently. If we extend this sequence by a single entry 1 in the beginning, we 
obtain the internal address of c. For details, see [LS]. In the context of real quadratic 
polynomials, this internal address is known as the sequence of cutting times in the 
Hofbauer tower. 

The figure shows that certain initial segments of kneading sequences appear sev­
eral times. This can be described and explained precisely and gives rise to certain 
symmetries of the Mandelbrot set; see [LS]. 

Lemma ЗЛО (Different Kneading Sequences). — Let с be a parabolic parameter and 
let z\ be the characteristic periodic point on the parabolic orbit. Among the dynamic 
rays landing at z\> only the two characteristic rays can have angles with identical 
kneading sequences. 

Proof. — Let i?i, i?2 5 • • • > be the angles of the dynamic rays landing at z\. If their 
number s is 2, then both angles are characteristic, and there is nothing to show. We 
may hence assume s > 3. All the rays $i are periodic of period n, say. By Lemma 2.4, 
the orbit period of the parabolic orbit is exactly n/s =: k. Let zo and z'Q be the two 
(different) immediate inverse images of z\ such that ZQ is periodic. If any one of the 
rays R($i) is chosen, its two inverse images, together with any simple path in the 
critical Fatou component connecting ZQ and z'Q, form a partition of the complex plane 
into two parts. We label these parts again by 0 and 1 so that the dynamic ray at 
angle 0 is in part 0, and we label the boundary by Now the labels of the parts 
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containing the rays R(i)i), R(2$i), i2(4#*), . . . again reflect the kneading sequence of 
fli because the partitions are bounded at the same angles. 

Above, we have constructed a tree connecting the parabolic orbit. By Lemma 3.6, 
branch points of this tree are on repelling orbits, so ZQ and z'0 have at most two 
branches of the tree. One branch always goes into the critical Fatou component to 
the critical point. For zo or z'0, the other branch goes to the critical value which is 
always in the region labeled 1. The second branch at the other point (z'0 or ZQ) must 
leave in the symmetric direction, so it will always lead into the region labeled 0 (if 
the second branch at z'0 were to lead into a direction other than the symmetric one, 
then the common image point z± of ZQ and zf

0 could not be an endpoint of the tree, 
which it is by Lemma 3.6). It follows that the entire tree, except the part between z0 

and zf

0, is in a subset of the filled-in Julia set whose label does not depend on which 
of the angles $i have been used to define the partition and the kneading sequence. 
For positive integers Z, let zi be the Z-th forward image of ZQ. If Z is not divisible by k, 
it follows that the label of z\ is independent of $¿5 since z\ is the landing point of all 
the dynamic rays at angles 2l~1$i, it follows that the Z — 1-st entries of the kneading 
sequences of all the $i are the same. Therefore, we can restrict our attention to the 
rays at angles rd'1, $

f

2,... ,^'s landing at ZQ, where ^ is an immediate inverse image of 
$1. The first return dynamics among the angles is multiplication by 2k; for the rays, 
this must be a cyclic permutation with combinatorial rotation number r/s for some 
integer r (Lemma 2.4); compare Figure 5. 

Depending on which of the rays i9j is used for the kneading sequence, i.e. which 
of the rays defines the partition, a given ray ^ may have label 0 or label 1. In 
particular, the total number among these rays which are in region 0 may be different. 
But then the number of symbols 0 within any period of the kneading sequence will be 
different and the kneading sequences cannot coincide. Two angles among the i9i can 
thus have the same kneading sequence only if the corresponding partition has equally 
many rays in the region labeled 0. This leaves only various pairs of angles at symmetric 
positions around the critical value as candidates to have identical kneading sequences. 
But it is not hard to verify, looking at the cyclic permutation of the rays t? ,̂ that if two 
such angles define a partition in which at least one of the ^ is in region 0, then the two 
corresponding kneading sequences are different at some position which is a multiple 
of k. The only two angles with identical kneading sequences are therefore those for 
which all the ^ are in region 1 (or on its boundary), so the partition boundary is 
adjacent to the Fatou component containing the critical point. The angles $i are 
hence those for which the dynamic rays land at z\ adjacent to the critical value, so 
the corresponding rays are the characteristic rays of the parabolic orbit. They do in 
fact have identical kneading sequences. • 

Proof of Proposition 3.3. — For period n — 1, there is nothing to show. For periods 
n > 2, we may suppose that all parameter rays of periods up to n — 1 land in pairs. 
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FIGURE 5 . Illustration of the proof of Lemma 3.10. Left: coarse sketch of 
the entire Julia set; numbers in parentheses describe the parabolic orbit 
(in this case, of period 5) , and symbols 0 or 1 specify the corresponding 
entries in the kneading sequences of external angles of rays landing at the 
characteristic periodic point. Right: blow-up near the critical point (cen­
ter, marked by *) with the periodic point zo, considered as a fixed point of 
the first return map. In this case, seven rays land at zo with combinatorial 
rotation number 3 / 7 . The rays are labeled by the corresponding kneading 
sequences. The symbols 0 and 1 indicate regions of the Julia set which are 
always on the same side of the partition, independently of which ray is 
chosen. 

We have a parabolic parameter c of ray period n and the set 0 C contains the angles 
of periodic parameter rays landing at c. All these angles have the same period n and, 
by Lemma 3.9, identical kneading sequences. Since the corresponding dynamic rays 
all land at the characteristic point of the parabolic periodic orbit by Proposition 3.2, 
Lemma 3.10 says that if © c contains more than a single element, it contains the two 
characteristic angles. • 

We have now finished the proof of the periodic part of the theorem, describing 
which periodic parameter rays land at common points. This prepares the ground for 
combinatorial descriptions such as Lavaurs' algorithm [Lai] or internal addresses. 

4. Preperiodic Rays 

In this section, we will turn to parameter rays at preperiodic angles and show at 
which Misiurewicz points they land. We will use again kneading sequences. Recall 
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that if the angle $ is periodic of period n, then its kneading sequence K(#) will be 
periodic of the same period; it will have the symbol * exactly at positions n, 2n, 3n, . . . 
Moreover, the pointwise limits K_ ($) := lim ̂ / and K+. (&) := lmx#/\^ K($') 
both exist; in one of them, all the symbols • are replaced by 1 and in the other by 
0 throughout. Both are still periodic; in fact, their period is n (or a divisor thereof). 
More precisely, if the parameter rays at periodic angles #i and t?2 both land at the 
same parameter value, then K±($ i ) = Kip (#2): it suffices to verify this statement for 
a single period within the kneading sequences, and this follows from Lemma 3.9. We 
can thus imagine every pair of periodic parameter rays being replaced by two pairs, 
infinitesimally close on either side to the given pair and having periodic kneading 
sequences without the symbol 

Kneading sequences of preperiodic rays are themselves preperiodic; the lengths of 
the preperiods of external angle and kneading sequence are equal (this is easy to 
verify; or see the proof of Lemma 4.1). However, the lengths of the periods do not 
have to be equal: the ray 9/56 = 0.001010 has kneading sequence 110111 = 1101. 
This fact is directly related to the number of parameter rays landing at the same 
Misiurewicz point; see below. 

15/56 11/56 9/56 1 /6 

FIGURE 6 . Illustration of the theorem in the preperiodic case. Shown are 
the Julia sets of the polynomials at the landing points of the parameter 
rays at angles 9 / 5 6 , 1 1 / 5 6 and 1 5 / 5 6 (left) and at angle 1 /6 (right). In 
both pictures, the dynamic rays landing at the critical values are drawn. 

Proof of Theorem 1.1 (preperiodic case). — Consider any preperiodic parameter ray 
at angle and let c be one of its limit points. First suppose that c is a parabolic 
parameter. We know that there are two parameter rays at periodic angles t?i, $ 2 which 
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land at c. We can imagine two parameter ray pairs infinitesimally close to the ray 
pair ( i ? i , $ 2 ) on both sides, and these two parameter ray pairs have periodic kneading 
sequences without symbols *. Each of these two periodic kneading sequences must 
differ at some finite position from the preperiodic kneading sequence of 1?. But we had 
seen in the previous section that the regions of constant initial segments of kneading 
sequences are bounded by pairs of parameter rays at periodic angles (see Lemma 3 . 9 ) , 
so there is a pair of periodic parameter rays landing at the same point separating the 
parameter ray at angle $ from the two rays at angles t?i52 and from the parabolic 
point c. Therefore, c cannot be a limit point of the parameter ray at angle rd. This 
contradiction shows that no limit point of a preperiodic parameter ray is parabolic. 

Now we argue similarly as in the proof of Proposition 3 . 1 . For the parameter 
c, there is no parabolic orbit, so the dynamic ray at angle i9 lands at a repelling 
preperiodic point. We want to show that the landing point is the critical value. Since 
c is a limit point of the parameter ray at angle there are arbitrarily close parameters 
for which the critical value is on the dynamic ray at angle 

If, for the parameter c, the dynamic ray at angle $ does not land at the critical 
point or at a point on the backwards orbit of the critical point, then the dynamic ray 
at angle $ and its landing point depend continuously on the parameter by Lemma 2 . 2 , 
so the critical value must be the landing point of the dynamic ray at angle $ for the 
parameter c. If, however, the landing point of the dynamic i?-ray is on the backwards 
orbit of the critical value, then some finite forward image of this ray will depend 
continuously on the parameter, and pulling back may yield a dynamic ray bouncing 
once into the critical value or a point on its backward orbit, but after that the two 
continuations will land at well-defined points. The ray with both continuations and 
both landing points will still depend continuously on the parameter, so again the 
dynamic $-ray must land at the critical value for the parameter c. (However, this 
contradicts the assumption that the landing point is on the backwards orbit of the 
critical value because that would force the critical value to be periodic.) 

We see that, for any limit point c of the parameter ray at angle the number c is 
preperiodic under z i—>• z2 4- c with fixed period and preperiod, and c is a Misiurewicz 
point. Since any such point c satisfies a certain polynomial equation, there are only 
finitely many such points. The limit set of any ray is connected, so the parameter 
ray at angle $ lands, and the landing point is a Misiurewicz point with the required 
properties. This shows the third part of Theorem 1.1 . 

For the last part, we have already shown that a Misiurewicz point cannot be the 
landing point of a periodic parameter ray, or of a preperiodic ray with external angle 
different from the angles of the dynamic rays landing at the critical value. It remains 
to show that, given a Misiurewicz point Co such that the critical value is the landing 
point of the dynamic ray at angle t?, then the parameter ray at angle $ lands at Co. 
We will use ideas from Douady and Hubbard [DH1]. By Lemma 2 . 2 , there is a simply 
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connected neighborhood V of CQ in parameter space such that CQ can be continued 
analytically as a repelling preperiodic point, yielding an analytic function z(c) with 
z(co) = Co such that the dynamic ray at angle i? for the parameter c E V lands at 
z(c). The relation z{c) = c is certainly not satisfied identically on all of V, so the 
solutions are discrete and we may assume that CQ is the only one within V. 

Now we consider the winding number of the dynamic ray at angle 1? around the 
critical value, which is defined as follows: denoting the point on the dynamic $-ray at 
potential t > 0 by zt and decreasing t from +00 to 0, the winding number is the total 
change of arg(^ — c) (divided by 2ir so as to count in full turns). Provided that the 
critical value is not on the dynamic ray or at its landing point, the winding number 
is well-defined and finite and depends continuously on the parameter. When the pa­
rameter c moves in a small circle around CQ and if the winding number is defined all 
the time, then it must change by an integer corresponding to the multiplicity of c as 
a root of z(c) — c. However, when the parameter returns back to where it started, the 
winding number must be restored to what it was before. This requires a discontinuity 
of the winding number, so there are parameters arbitrarily close to CQ for which the 
critical value is on the dynamic ray at angle 1?, and Co is a limit point of the parameter 
ray at angle Since this parameter ray lands, it lands at c 0 . This finishes the proof 
of Theorem 1.1. • 

Remark. — There is no partition in the dynamic plane showing that preperiodic pa­
rameter rays can not land at parabolic parameters: there are countably many preperi­
odic dynamic rays landing at the boundary of the characteristic Fatou component, for 
example at preperiodic points on the parabolic orbit, and they cannot be separated 
by a stable partition. 

For the final part of the theorem, we used that a repelling preperiodic point z(c) 
depends analytically on the parameter. As mentioned before, this proof started with 
a need to describe parameter spaces of antiholomorphic polynomials like the Tricorn 
and Multicorns, and there we do not have analytic dependence on parameters. Here 
is another way to prove that every Misiurewicz point is the landing point of all the 
parameter rays whose angles are the external angles of the critical value in the dynamic 
plane. We start with any Misiurewicz point c 0 and external angle $ of its critical 
value. Let c\ be the landing point of the parameter ray at angle i9. Then both 
parameters Co and c\ have the property that in the dynamic plane, the ray at angle 
& lands at the critical value. It suffices to prove that this property determines the 
parameter uniquely. This is exactly the content of the Spider Theorem, which is 
an iterative procedure to find postcritically finite polynomials with assigned external 
angles of the critical value. In Hubbard and Schleicher [HS], there is an easy proof 
for polynomials with a single critical point. While the existence part of that proof 
works only if the critical point is periodic, all we need here is the uniqueness part, 
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and that works in the preperiodic case just as well, both for holomorphic and for 
antiholomorphic polynomials. 

The last part could probably also be done in a more combinatorial but rather 
tedious way, using counting arguments like in the periodic case. This would, however, 
be quite delicate, as the number of Misiurewicz points and the number of parameter 
rays landing at them require more bookkeeping: the number of parameter rays landing 
at Misiurewicz points varies and can be any positive integer. The following lemma 
makes this more precise. 

Lemma 4.1 (Number of Rays at Misiurewicz Points). — Suppose that a preperiodic 
angle i? has preperiod I and period n. Then the kneading sequence K(i?) has the same 
preperiod I, and its period k divides n. Ifn/k > 1, then the total number of parameter 
rays at preperiodic angles landing at the same point as the ray at angle i? is n/k; if 
n/k = 1, then the number of parameter rays is 1 or 2. 

In the example above, we had seen that the angle 9/56 has period 3, while its 
kneading sequence has period 1. Therefore, the total number of rays landing at the 
corresponding Misiurewicz point is three: their external angles are 9/56,11/56 and 
15/56. If more than one ray lands at a given Misiurewicz point, it is not hard to 
determine all the angles knowing one of them, using ideas from the proof below. 

Proof — In the dynamic plane of the dynamic ray at angle $ lands at the critical 
value, so the two inverse image rays at angles i?/2 and (i? + l ) / 2 land at the critical 
point and separate the dynamic plane into two parts; this partition cuts the external 
angles of dynamic rays in the same way as in the partition defining the kneading 
sequence, see Definition 3.8 and Figure 3. We label the two parts by 0 and 1 in 
the analogous way, assigning the symbol • to the boundary. The partition boundary 
intersects the Julia set only at the critical point. 

The critical value jumps after exactly I steps onto a periodic orbit of ray period n. 
Denote the critical orbit by c 0 , c\, C 2 , . . . with Co = 0 and c\ — c, so that Q + I = c / + n + i , 
while c\ — —ci+n. The points c/ and Q + n are on different sides of the partition. The 
periodic part of the kneading sequence starts exactly where the periodic part of the 
external angles start, so the preperiods are equal. 

We know that n is the ray period of the orbit the critical value falls onto. The 
orbit period is exactly k: periodic rays which have their entire forward orbits on 
equal sides of the partition land at the same point, for the following reason: we can 
connect the landing points of two such rays by a curve which avoids all the preperiodic 
rays landing at the critical point, all the finitely many rays on their forward orbits, 
and their landing points (if we have to cross some of these ray pairs, they must also 
visit the same sides of the partition, and we can reduce the problem). Now inverse 
images of the rays are connected by inverse images of the curve, which avoids the 
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same rays. Continuing to take inverse images in this way, the periodic landing points 
must converge to each other, so they cannot be different. 

The number of dynamic rays on the orbit of t? landing at every point of the pe­
riodic orbit is therefore n/k, and the critical value jumps onto this orbit as a local 
homeomorphism, so it is the landing point of equally many preperiodic rays. But 
these rays reappear in parameter space as the rays landing at the Misiurewicz point. 

It remains to show that there are no extra rays at the periodic orbit. By Lemma 2.4, 
more than two dynamic rays can land at the same periodic point only if these rays 
are on the same orbit, i.e., the dynamics permutes the rays transitively. The number 
of dynamic rays can therefore be greater than n/k only if n/k = 1, and in that case, 
there can be at most two rays. • 

Remark. — It does indeed happen that n/k = 1 while the number of rays is two. 
An example is given by the two parameter rays at angles 25/56 = 0/011100 and 
31/56 = 0.100 011; their common kneading sequence is 100 101, so n = k = 3, but 
these two rays land together at a point on the real axis. On the other hand, for the 
angle 1/2 = 0.01 = 0.10, the kneading sequence is 10, so n = k — 1; the parameter 
ray at angle 1/2 is the only ray landing at the leftmost antenna tip c — — 2 of the 
Mandelbrot set. These rays are indicated in Figure 1. 

For a related discussion of rays landing at common points, from the point of view 
of "Thurston obstructions", see [HS]. 

5. Hyperbolic Components 

Most, if not all, of the interior of the Mandelbrot set consists of what is known 
as hyperbolic components. A hyperbolic rational map is one where all the critical 
points are attracted by attracting or superattracting periodic orbits. The dynamic 
significance is that this is equivalent to the existence of an expanding metric in a 
neighborhood of the Julia set, which has many important consequences such as local 
connectivity of connected Julia sets (see Milnor [Ml]). For a polynomial, the criti­
cal point at oc is always superattracting, and in the quadratic case, the polynomial 
is hyperbolic if the unique finite critical point either converges to oo or to a finite 
(super)attracting orbit. Hyperbolicity is obviously an open condition. A hyperbolic 
component of the Mandelbrot set is a connected component of the hyperbolic interior. 
The period of the attracting orbit is constant throughout the component and defines 
the period of the hyperbolic component. We will see in Corollary 5.4 that every bound­
ary point of a hyperbolic component is a boundary point of the Mandelbrot set, so 
a hyperbolic component is also a connected component of the interior of M. There 
is no example known of a non-hyperbolic component; it is conjectured that there are 
none. A center of a hyperbolic component is a polynomial for which there is a super-
attracting orbit; a root of such a component of period n is a parabolic boundary point 
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where the parabolic orbit has ray period n. We will show in Corollary 5.4 that every 
hyperbolic component has a unique center and a unique root. It is easy to verify that 
the multiplier of the attracting orbit on a hyperbolic component is a proper map from 
the component to the open unit disk, so it has a finite mapping degree; we will see 
that this map is in fact a conformal isomorphism. The relation between centers and 
roots of hyperbolic components is important; the difficulty in establishing it lies in 
the discontinuity of Julia sets at parabolic parameters. Proposition 5.2 will help to 
overcome this difficulty. First we need to have a closer look at parabolic parameters. 

Lemma 5.1 (Roots of Hyperbolic Components). — Every parabolic parameter with ray 
period n is a root of at least one hyperbolic component of period n. If the orbit period 
k is smaller than n, then this parameter is also on the boundary of a hyperbolic com­
ponent of period k, and the parabolic orbit breaks up under perturbation into exactly 
one orbit of period n and k each. If orbit and ray periods are equal, then the parabolic 
orbit is a merger of exactly two orbits of period n. In no case is such a parabolic 
parameter on the boundary of a hyperbolic component of different period. 

Proof. — First suppose that orbit period and ray period are equal. Then the first 
return map of any parabolic periodic point z leaves all the dynamic rays landing at 
z fixed, so its multiplier is +1 . In local coordinates, the map has the form £ i-» 
£ + H for some integer q > 1. The point z then has q attracting and repelling 
petals each, and every attracting petal must absorb a critical orbit. Since there is a 
unique critical point, we have q — 1. Under perturbation, the parabolic orbit then 
breaks up into exactly two orbits of exact period n, and no further orbit is involved. 
Denote the parabolic parameter by Co and let V be a simply connected neighborhood 
of Co not containing further parabolics of equal ray period. In V — { C Q } , all periodic 
points of exact period n can be continued analytically because their multipliers are 
different from +1. Among these periodic points, those which are repelling at Co can 
be continued analytically throughout all of V, while the two colliding orbits might be 
interchanged by a simple loop in V — {co} ( m fact, they will be: see Corollary 5.7). 
Their multipliers are therefore defined on a two-sheeted covering of V — {co} and are 
analytic, even when the point c 0 is put back in. By the open mapping principle, the 
parameter co is on the boundary of at least one hyperbolic component of period n. 
Since, for the parameter Co, all the orbits of periods not divisible by n are repelling, 
the parameter can be only on the boundary of hyperbolic components with periods 
divisible by n. If it was on the boundary of a hyperbolic component with period rn for 
some integer r > 1, then the rn-periodic orbit would have to be indifferent at Co; since 
there can be only one indifferent orbit, it would have to merge with the indifferent 
orbit of period n, and this orbit would get higher multiplicity than 2, a contradiction. 
This contradiction shows that Co is not on the boundary of any hyperbolic component 
of period other than n. 
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If the orbit period strictly divides the ray period, so that s := n/k > 2, then the 
first return map of the orbit must permute the rays transitively by Lemma 2.4. The 
least iterate which fixes the rays must also be the least iterate for which the multiplier 
is +1: the landing point of a periodic ray is either repelling or has multiplier -hi (this 
is the Snail Lemma, see [Ml]); conversely, whenever the multiplier is +1 , then all the 
finitely many rays must be fixed. It follows that the multiplier of the first return map 
of any of the parabolic periodic points is an exact 5-th root of unity. The periodic 
orbit can then be continued analytically in a neighborhood of the root. Since the 
multiplier map is analytic, the parabolic parameter is on the boundary of a hyperbolic 
component of period k. The 5-th iterate of the first return map has multiplier +1 and 
hence again the form £ \-+ £ -h C 9 + 1 + • * • in local coordinates, for an integer q > 1. 
The number of coalescing fixed points of this iterate is then exactly q + 1. 

Since there is only one critical orbit, the first return map of the parabolic orbit must 
permute the q attracting petals transitively and we have q — s. For the first, second, 
..., s — 1-st iterate of the first return map, the multiplier is different from +1 , so the 
respective iterate has a single fixed point. The 5-th iterate, however, corresponding 
to the sk — n-th iterate of the original polynomial, has a fixed point of multiplicity 
q + 1 = s H- 1: exactly one of these points has exact period fc; all the other points 
can have no lower periods than n, so they are on a single orbit of period n of which 
s points each are coalesced. There is no further orbit involved (or some iterate would 
have to have a parabolic fixed point of higher multiplicity with more attracting petals 
attached, as above). Since there is a single indifferent orbit of period n, its multiplier 
is well defined and analytic in a neighborhood of the parabolic parameter, which is 
hence on the boundary of a hyperbolic component of period n as well. • 

A root of a hyperbolic component is called primitive if its parabolic orbit has equal 
orbit and ray periods, so it is the merger of exactly two orbits of equal period. If orbit 
and ray periods are different, then the root is called non-primitive or a bifurcation 
point: at this parameter, an attracting orbit bifurcates into another attracting orbit 
of higher period (the terminology bi-iurcation comes from the dynamics on the real 
line, where the ratio of the periods is always two). We will see below that every 
hyperbolic component has a unique root. It will therefore make sense to call a hy­
perbolic component primitive or non-primitive according to whether or not its root 
is primitive. 

Our next goal is to relate the dynamics at root points to the adjacent hyperbolic 
components. Perturbations of parabolics are a subtle issue because both the Julia set 
and the filled-in Julia set behave drastically discontinuously. We show that nonethe­
less the landing points of all the dynamic rays at rational angles behave continuously 
wherever the rays land. However, we will explain below that the rays themselves do 
not depend continuously on the parameter. In a way, the following proposition is the 
parabolic analogue to Lemma 2.2, which dealt with repelling periodic points. This 
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proposition has first been shown by Lavaurs: it is the main result of Exposé XVII in 
[DH1]. Our proof is different; one of our main ingredients will be the Orbit Separation 
Lemma 3.7. 

Proposition 5.2 (Continuous Dependence of Landing Points). — For any rational an­
gle the landing point of the dynamic ray at angle $ depends continuously on the 
parameter on the entire subset of parameter space for which the ray lands. 

The dynamic ray at angle t? for the polynomial pc fails to land if and only if 
it bounces into the critical point or into a point on the inverse orbit of the critical 
point, which happens if and only if the parameter c is outside the Mandelbrot set on a 
parameter ray at one of the finitely many angles {2$, 4$, 8 $ , . . . } . All these parameter 
rays land, and at the landing parameters, the dynamic ray at angle $ lands as well. 
These landing points are the interesting cases of the proposition. 

Proof. — It suffices to discuss the case of a periodic angle $: the statement for 
preperiodic angles follows by taking inverse images because the pull-back is continuous 
(if the landing point of a preperiodic ray visits a critical point along its preperiodic 
orbit, which happens at Misiurewicz points, then several preperiodic points may merge 
and split up with different rays, but this happens in a continuous way). 

If the landing point of the dynamic ray at angle is repelling, then the proposition 
reduces to Lemma 2.2. We may thus assume that the landing point is parabolic. 
Under perturbation, any parabolic periodic point splits up into several periodic points 
which may be attracting, repelling, or indifferent, and these periodic points depend 
continuously on the parameter. We need to show that the landing point of the ray 
after perturbation is one of the continuations of the parabolic periodic point it was 
landing at. 

Denote the parabolic parameter before perturbation by Co, let n be its ray period 
and let V C C be a simply connected open neighborhood which does not contain 
further parabolics of equal or lower ray periods, and which does not meet parameter 
rays of period n other than those landing at CQ. Then analytic continuation of repelling 
periodic points of periods up to n is possible in V — { c o } . 

First we discuss the case that the parabolic parameter Co is non-primitive with orbit 
period k and q := n/k > 2. Then c 0 is on the boundary of at least one hyperbolic 
component of period n and k each. The multipliers fin and Hk of the unique orbits 
of periods n and k which are indifferent at CQ are well-defined and analytic in a 
neighborhood of c 0 : for the period k orbit, this is clear because the periodic point 
z = z(c) can be continued analytically near c 0 and the multiplier depends analytically 
on c and z\ for the period n orbit, this is also true because the multiplier is well-defined 
and analytic near Co, except at CQ itself, and has a removable isolated singularity at 
Co. Critical points of the multiplier maps are thus isolated and the boundaries of both 
components are piecewise smooth analytic curves. 
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Within a hyperbolic component of period N near Co, let ZK(C) the periodic point of 
period k which merges into the parabolic orbit of Co at the characteristic point; it is 
on a repelling orbit and can be continued analytically within the component. Because 
of the piecewise analytic boundary, there is a curve within the hyperbolic component 
converging to Co. The point ZK{C) is the landing point of at least one periodic dynamic 
ray at some angle and it will keep this ray throughout the hyperbolic component by 
Lemma 2.2. In fact, it can lose the ray only at Co and only in favor of the parabolic 
orbit. Since ZK(C) merges into the parabolic orbit and all the parabolic periodic 
points are separated by stable partitions by the Orbit Separation Lemma 3.7, the 
point ZK(C) will keep the ray t?' even at the parabolic orbit. Therefore, i9f is one of the 
external angles of the characteristic point on the parabolic orbit. Since we are in the 
non-primitive case, all the rays are on the same orbit by Lemma 2.4, and ZK(C) is the 
landing point of all the dynamic rays of the characteristic point of the parabolic orbit. 
Under perturbation into the period N component, the landing points of all dynamic 
rays from the parabolic orbit will thus depend continuously on the parameter. The 
same argument works for perturbations into a hyperbolic component of period k: we 
consider a repelling periodic point zN{C) which merges into the characteristic point of 
the parabolic orbit. It must be the landing point of one of the dynamic rays from the 
characteristic point of the parabolic orbit as above, and all the other dynamic rays 
from the parabolic orbit must land at points on the orbit of zN(C). 

The two parameter rays landing at Co together with their landing point cut C into 
two connected components, and continuity of the landing points of the dynamic rays 
from the parabolic orbit is true for any connected component which contains a hy­
perbolic component of period N or k by the arguments above. But the components of 
different periods must be in different connected components because analytic contin­
uation of ZK(C) within V — { c 0 } from a period N component to a period K component 
must change the landing pattern of the dynamic rays, and the only place where this 
can happen is at a parameter ray landing at Co. This proves the proposition in the 
non-primitive case (and as a bonus result, we see that c 0 can be on the boundary of 
only one component of period N and k each). 

In the primitive case, the rays landing at the parabolic orbit are on two different 
ray orbits, and the characteristic point of the parabolic orbit is the landing point of 
exactly one ray from each orbit. The proof above shows continuity of the landing 
points of at least one of the two ray orbits. Instead, we will follow a suggestion of 
Tan Lei and use an Orbit Separation Property: IN THE DYNAMICS OF CQ, ANY REPELLING 

PERIODIC POINT OF PERIOD AT MOST N CAN BE SEPARATED FROM THE CHARACTERISTIC POINT OF THE 

PARABOLIC ORBIT BY A RAY PAIR LANDING AT A REPELLING PERIODIC OR PREPERIODIC POINT. This 

prevents the dynamic rays landing at the parabolic orbit from jumping onto other 
orbits, and the Orbit Separation Lemma 3.7 prevents them from jumping onto other 
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points on the parabolic orbit. This proves the proposition also in the primitive case. 
(This Orbit Separation Property does not hold in the non-primitive case.) 

In order to prove the Orbit Separation Property, we will use the tree constructed 
in Section 3. Let w be a repelling periodic point of period at most n, let z\ be 
the characteristic point of the parabolic orbit and let JJ\ be the characteristic Fatou 
component. The only periodic point of period at most n on U\ is the characteristic 
parabolic point, so w £ U\. Within the filled-in Julia set of c 0 , connect w to z\ by a 
simple curve 7; the point where the curve first meets U\ is the image of the projection 
7T(W) onto U±. Let 7 be the curve between w and 7r(w). 

The curve 7 is unique except on the closures of bounded Fatou components (com­
pare the remark before Lemma 3.6). If it does not meet any bounded Fatou compo­
nents (except for U± at its end), then it is unique and each of its points except w is 
the landing point of at least two dynamic rays. Then every iterate of the dynamics 
must map 7 homeomorphically which contradicts the expansion from angle doubling. 
Therefore, an interior point of 7 will be on the closure of some periodic or preperiodic 
bounded Fatou component. Let n' be the least number of iterations for an interior 
point of 7 to hit a periodic Fatou component. Then 7 maps forward homeomorphically 
for at least n' iterations, and the periodic Fatou component it meets on its interior 
is different from the one at its end. Therefore, the n'-th image of 7 connects two 
different periodic Fatou components. These two Fatou components can be separated 
by a periodic or preperiodic dynamic ray pair landing on a repelling orbit (in the 
primitive case, no two periodic Fatou components have a boundary point in common, 
so the periodic Fatou components inherit the separation property from the parabolic 
periodic points as shown in Lemma 3.7). But since 7 maps homeomorphically onto 
its n'-th image, the two endpoints of 7 are also separated by a ray pair on a repelling 
orbit. This proves the Orbit Separation Property and thus the proposition. • 

Remark. — Unlike their landing points, the dynamic rays themselves may depend 
discontinuously on the perturbation. The simplest possible example occurs near the 
parabolic parameter CQ = 1/4: for this parameter, the dynamic ray at angle 0 = 1 
lands at the parabolic fixed point z = 1/2, and the ray is the real line to the right 
of 1/2. The critical point 0 is in the interior of the filled-in Julia set. Perturbing the 
parameter to the right on the real axis, i.e., on the parameter ray at angle 0 = 1 , 
the dynamic ray will bounce into the critical point and thus fail to land. But for 
arbitrarily small perturbations near this parameter ray, the dynamic ray at angle 
0 = 1 will get very close to the critical point before it turns back and lands near 1/2. 
The closer the parameter is to c 0 = 1/4, the lower will the potential of the critical 
point be, and while the dynamic ray keeps reaching out near the critical point, it does 
so at lower and lower potentials, and in the limit the part of the ray at real parts less 
than 1/2 will be squeezed off. Points at any potential t > 0 will depend continuously 
on the parameter, and so does the landing point at potential t — 0; however, this 
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continuity is not uniform in t, and the dynamic ray as a whole can and does change 
discontinuously with respect to the Hausdorff metric. 

Continuous dependence of landing points of rays requires a single critical point (of 
possibly higher multiplicity). It is false already for cubic polynomials; an example 
can be found in the appendix of Goldberg and Milnor [GM]. 

We can now draw a couple of useful conclusions. 

Corollary 5.3 (Stability at Roots of Hyperbolic Components). — For any hyperbolic 
component, the landing pattern of periodic and preperiodic dynamic rays is the same 
for all polynomials from the component and at any of its roots. 

Proof — Again, it suffices to discuss periodic rays; the statement about preperiodic 
rays follows simply by taking inverse images because for the considered parameters, 
all the preperiodic dynamic rays land, and they never land at the critical value. 
Throughout the component, all the periodic rays land at repelling periodic points, so 
no orbit can lose a ray under perturbations, and consequently no orbit can gain a ray, 
either. Hence we only have to look at the roots of the component. Upon perturbation 
into the component, the proof of the previous proposition shows that all the rays from 
the parabolic orbit will land in the same way at a single repelling orbit, and all the 
repelling periodic points at the root parameter will keep their rays by Lemma 2.2. • 

Remark. — Perturbing a parabolic orbit with orbit period k and ray period n > k 
into the component of period k changes the landing pattern of rational rays: the 
parabolic orbit creates an attracting orbit of period fc, so a repelling orbit of period 
n remains, and all the dynamic rays from the parabolic orbit land at different points. 
Phrased differently, when moving from the component of period k into the one of 
period n, then n/k periodic rays each start landing at common periodic points; of 
course, this forces the obvious relations for the preperiodic rays. The landing pattern 
of all other periodic rays remains stable. 

This discussion not only describes the landing patterns of periodic rays within 
hyperbolic components, but on the entire parameter space except at parameter rays 
at periodic angles: since the landing points depend continuously on the parameter 
and periodic orbits are simple except at parabolics, the pattern can change only at 
parabolic parameters or at parameter rays where the dynamic rays fail to land. The 
relation between landing patterns of periodic rays and the structure of parameter 
space has been investigated and described by Milnor in [M2]. The landing pattern of 
preperiodic rays also changes at Misiurewicz points and at preperiodic parameter rays. 

Corollary 5.4 (The Multiplier Map). — The multiplier map on any hyperbolic compo­
nent is a conformal isomorphism onto the open unit disk, and it extends as a home-
omorphism to the closures. In particular, every hyperbolic component has a unique 
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root and a unique center. The boundary of a hyperbolic component is contained in the 
boundary of the Mandelbrot set. 

Proof. — The multiplier map is a proper analytic map from the hyperbolic compo­
nent to the open unit disk and extends continuously to the boundary. Any point on 
the boundary has a unique indifferent orbit. If the multiplier at such a boundary 
point is different from -hi, then orbit and multiplier extend analytically in a neigh­
borhood of the boundary point. The multiplier is obviously not constant. This shows 
in particular that parabolic parameters are dense on the boundary of the component; 
since parabolics are landing points of parameter rays and thus in the boundary of 
M, the boundary of every hyperbolic component is contained in the boundary of the 
Mandelbrot set. 

The number of parabolic parameters with fixed orbit period and multiplier -hi is 
finite, so the boundary of any hyperbolic component consists of a finite number of 
analytic arcs (which might contain critical points) limiting on finitely many parabolic 
parameters with multipliers -hi. Since the multiplier map is proper onto ID, the com­
ponent has at least one root. 

By Corollary 5.3, the landing pattern of periodic dynamic rays has to be the same 
at all the roots of a given hyperbolic component. It follows that at all the roots, 
the angles of the characteristic rays of the parabolic orbits have to coincide: in every 
case, the characteristic ray pair lands at the Fatou component containing the critical 
value and separates the critical value from the rest of the parabolic orbit. Among 
all ray pairs separating the critical point from the critical value, the characteristic 
ray pair must be the one closest to the critical value. Hence the landing pattern 
of periodic dynamic rays determines the characteristic angles. Since any root of 
a hyperbolic component must be the landing point of the parameter rays at the 
characteristic angles of the parabolic orbit, every hyperbolic component has a unique 
root. 

We can now determine the mapping degree d, say, of the multiplier map. The 
hyperbolic component is simply connected because the Mandelbrot set is full. Then 
the multiplier map \i has exactly d— 1 critical points, counting multiplicities. If d > 1, 
let v G B be a critical value of \i and connect v and +1 by a simple smooth curve 
7 C B avoiding further critical values. Then / i _ 1 ( 7 ) , together with the unique root 
of the component, contains a simple closed curve T enclosing an open subset of the 
hyperbolic component. This subset must map at least onto all of B—7, so T surrounds 
boundary points of the component and thus of M. But this contradicts the fact that 
the Mandelbrot set is full, so the multiplier map is a conformal isomorphism onto 
B and the component has a unique center. It extends continuously to the closure 
and is surjective onto <9B because it is surjective on the component. Near every non-
root of the component, the boundary of the component is an analytic arc (possibly 
with critical points) and the multiplier is not locally constant on the arc, so it is 
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locally injective. Global injectivity now follows from injectivity on the component. 
The multiplier map is thus invert ible, and continuity of the inverse is a generality. 

• 
Proposition 5.5 (No Shared Roots). — Every parabolic parameter is the root of a sin­
gle hyperbolic component. 

Proof. — Since the period of a component equals the ray period of its root, we can 
restrict attention to any fixed period n. We have well defined maps from centers to 
hyperbolic components (which we have just seen is a bijection) and from hyperbolic 
components to their roots. This gives a surjective map from centers of period n to 
parabolic parameters of ray period n. Denote the number of centers of period n by 

A center of a hyperbolic component of period n is a point c such that the critical 
point 0 is periodic of exact period n under z z2 + c; therefore, c must satisfy 
a polynomial equation ( . . . ( (c 2 + e ) 2 + c ) . . . ) 2 + c = 0 of degree 2n~1. Since this 
polynomial is also solved by centers of components of periods k dividing n, we get 
the recursive relation Ylk\n sk — 2 n _ 1 . By Lemma 2.3, this is exactly the number 
of parabolic parameters of ray period k. Since a surjective map between finite sets 
of equal cardinality is a bijection, every parabolic parameter is the root of a single 
hyperbolic component. • 

Remark. — This proposition shows even without resorting to Corollary 5.4 that every 
hyperbolic component has a unique center, so that the only critical point of the 
multiplier map (if it had mapping degree greater than one) could be the center. This 
is indeed what happens for the "Multibrot sets": the connectedness loci for the maps 
z i-» zd + c with d > 2. 

Before continuing the study of hyperbolic components, we note an algebraic obser­
vation following from the proof we have just given. 

Corollary 5.6 (Centers of Components as Algebraic Numbers) 
Every center of a hyperbolic component of degree n is an algebraic integer of degree 

at most sn. It is a simple root of its minimal polynomial. • 

A neat algebraic proof for this fact has been given by Gleason; see [DH1]. As 
far as I know, the algebraic structure of the minimal polynomials of the centers of 
hyperbolic components is not known: when factored according to exact periods, are 
they irreducible? What are their Galois groups? Manning (unpublished) has verified 
irreducibility for n < 10, and he has determined that the Galois groups for the first 
few periods are the full symmetric groups. Giarrusso (unpublished) has observed that 
this induces a Galois action between the Riemann maps of hyperbolic components of 
equal periods, provided that their centers are algebraically conjugate. 

Now we can describe the boundary hyperbolic components much more completely. 
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Corollary 5.7 (Boundary of Hyperbolic Components). — No non-parabolic parameter 
can be on the boundary of more than one hyperbolic component. Every parabolic 
parameter is either a primitive root of a hyperbolic component and on the boundary 
of no further component, or it is a upoint of bifurcation71: a non-primitive root of a 
hyperbolic component and on the boundary of a unique further hyperbolic component. 
In particular, if two hyperbolic components have a boundary point in common, then 
this point is the root of exactly one of them. The boundary of a hyperbolic component 
is a smooth analytic curve, except at the root of a primitive component. At a primitive 
root, the component has a cusp, and analytic continuation of periodic points along a 
small loop around this cusp interchanges the two orbits which merge at this cusp. 

Proof — If two hyperbolic components have a non-parabolic parameter in their com­
mon boundary, then the landing patterns of periodic rays must be the same within 
both components. This must then also be true at their respective roots, which yields 
a contradiction: on the one hand, the roots must be different by Proposition 5.5; on 
the other hand, the parabolic orbits at the roots must have the same characteristic 
angles (compare the proof of Corollary 5.4), so they must be the landing points of 
the same parameter rays. It follows that the multiplier map of the indifferent orbit 
cannot have a critical point at c$: if it had a critical point there, then Co would con­
nect locally two regions of hyperbolic parameters which cannot belong to different 
hyperbolic components; however, if they belonged to the same component, then the 
closure of the component would separate part of its boundary from the exterior of 
the Mandelbrot set, a contradiction. Therefore, the boundary of every hyperbolic 
component is a smooth analytic curve near every non-parabolic boundary point. 

Now let CQ be a parabolic parameter of ray period n and orbit period k. We know 
that it is the root of a unique hyperbolic component of period n. 

In the non-primitive case (when k strictly divides n), the point c 0 cannot be on the 
boundary of a hyperbolic component of period different from n and k by Lemma 5.1. 
It is on the boundary of a single hyperbolic component of period n (Proposition 5.5). 
In a small punctured neighborhood of CO avoiding further parabolics of ray period 
n, the multiplier map of the n-periodic orbit is analytic and cannot have a critical 
point at Co, for the same reason as above, so the component of period n occupies 
asymptotically (on small scales) a half plane near c$. The parameter Co is also on 
the boundary of a component of period k the multiplier of which is analytic near CQ. 
Since hyperbolic components cannot overlap, this component must asymptotically be 
contained in a half plane, so the multiplier map cannot have a critical point and must 
then be locally injective near CO. The boundaries of both components must then be 
smooth analytic curves near CQ. 

In the primitive case k — n, the parameter c 0 cannot be on the boundary of a 
hyperbolic component of period different from n by Lemma 5.1, and it cannot be on 
the boundary of two hyperbolic components of period n because otherwise it would 
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have to be their simultaneous root, contradicting Proposition 5.5. In a small simply 
connected neighborhood V of Co, analytic continuation of the two orbits colliding at 
Co is possible in V — {co} (compare the proof of Lemma 5.1), so their multipliers can 
be defined on a two-sheeted cover of V ramified at Co- If analytic continuation of these 
two orbits along a simple loop in V around Co did not interchange the two orbits, then 
both multipliers could be defined in V, and both would define different hyperbolic 
components intersecting V in disjoint regions, yielding the same contradiction as in 
the non-primitive case above. Therefore, small simple loops around Co do interchange 
the two orbits. In order to avoid the same contradiction again, the multiplier must 
be locally injective on the two-sheeted covering on V'. Projecting down onto V, the 
component must asymptotically occupy a full set of directions, so the component has 
a cusp. • 

Remark. — The basic motor for many of these proofs about hyperbolic components 
was uniqueness of parabolic parameters with given combinatorics, via landing proper­
ties of parameter rays at periodic angles. A consequence was uniqueness of centers of 
hyperbolic components with given combinatorics. One can also turn this discussion 
around and start with centers of hyperbolic components: the fact that hyperbolic 
components must have different combinatorics, and that they have unique centers, 
is a consequence of Thurston's topological characterization of rational maps, in this 
case most easily used in the form of the Spider Theorem [HS]. 
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