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HOLDER IMPLIES COLLET-ECKMANN 

by 

Feliks Przytycki 

Abstract. — We prove that for every polynomial / if its basin of attraction to oo 
is Holder and Julia set contains only one critical point c then / is Collet-Eckmann, 
namely there exists A > 1, C > 0 such that, for every n > 0, |(/ n)'(/(c))| > CA n. 
We introduce also topological Collet-Eckmann rational maps and repellers. 

0. Introduction 

J. Graczyk and S. Smirnov proved in [GS] that if a rational map is Collet-Eckmann 
(abbr. CE) , then every component of the complement of Julia set J is Holder. An
other proof was provided later in [PR1]. The question whether a converse fact holds 
remained unanswered. Moreover it has been proved in [PR2] (using an example from 
[CJY]) that if there are at least two critical points in J, then the converse may occur 
false, even for polynomials. Namely if the forward trajectory of a critical point c at 
some times approaches very closely another critical point, but all critical points in J 
are nonreccurrent, then the basin of infinity is John even, but | ( / n ) ' ( / ( c ) ) | does 
not grow exponentially fast. 

Here (in Sec.3) we prove that Holder implies CE for polynomials if there is 
only one critical point in J. In fact we prove this in a more general setting of rational 
functions. We prove this by using Graczyk and Smirnov's "reversed telescope" idea. 

In Section 4 we introduce for rational maps the property topological Collet-Eckmann 
(abbr. T C E ) . This property means roughly a possibility of going from many small 
scales around each point to large scale round discs with uniformly bounded criticality 
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386 F. PRZYTYCKI 

under the action of the iterates of / . This property is topological (i.e. it is preserved 
under topological conjugacies) and we prove in Section 4 that it implies CE, provided 
there is only one critical point in J (or more than one, but none in the o;-limit set of 
the others). Since by [PR1] CE implies TCE we obtain a new elementary proof that 
CE is a topological property. The first proof was provided in [PR2]: For / being CE, 
and g topologically conjugate to it, it was proved that the conjugacy can be improved 
to a quasiconformal one on a neighbourhood of J ( / ) . This implied CE for g, by a 
method not much different from presented here (but simpler technically). 

In the unimodal maps of the interval case the fact CE is a topological property 
was proved in [NP] via the same TCE property called there finite criticality. The 
intermediate property used there was uniform hyperbolicity on periodic orbits (abbr. 
UHPer). Here this idea also appears implicitly, though we cannot prove UHPer implies 
CE (the fact proved for unimodal maps of interval with negative Schwarzian derivative 
by T. Nowicki and D. Sands in [NS].) 

Finally, in Section 5, we introduce and study holomorphic TCE invariant sets in 
particular repellers and prove that if a repeller is the boundary of an open connected 
domain in C, then it is TCE iff the domain is Holder. In consequence, for each domain 
with repelling boundary, to be Holder is a topological property. We prove also the 
analogous rigidity result for Holder immediate basins of attraction to attracting fixed 
points. 

1. Preliminaries on Holder basins 

Definition 1.1. — Let / : C —> C be a rational map of the Riemann sphere. We call 
an /-critical point c (i.e. such that f'(c) — 0) exposed if its forward /-trajectory does 
not meet other critical points. 

The map / is called Collet-Eckmann if its every exposed critical point c that belongs 
to the Julia set J = J ( / ) , or its forward orbit converges to J, satisfies the following 
Collet-Eckmann condition: 

There exists A > 1 such that for every n > 0 

(CE) l ( / n ) ' ( c i ) | > Const A n . 

Notation. — By Const we denote various positive constants which can change from 
one formula to another. We use the notation xn = fn(x). 

The definition of holomorphic Collet-Eckmann map was introduced in [P2] with 
(CE) assumed only for critical points in J. This allowed parabolic periodic points. 
Here we modify the definition, in accordance with [GS, Def 1.2]. 

One calls a simply-connected open hyperbolic domain A Holder if there exists a > 0 
such that any Riemann mapping from the unit disc D onto A is Holder continuous. 
This can be generalized to non-simply connected domains, see [Po] or [GS, Def 5.1]. 
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HOLDER IMPLIES COLLET-ECKMANN 387 

We shall not rewrite here this definition in absence of dynamics because we do not 
need this. However if A is an immediate basin of attraction to a sink, for a rational 
mapping / , / ( ^ 4 ) = A, Graczyk and Smirnov provided an equivalent definition [GS, 
Def.1.4, Sec.5 Prop.3] which will be of use for us. Denote Crit + := Ц / l i / J (Cr i t ) , 
where Crit= Crit(/) means the set of all critical points for / . 

Definition 1.2. — We call A Holder if there exists Лн0 > 1 such that for every z G 
A \ cl Crit + there exists C\ > 0 such that for every у G f~n({z}) П A 

We extend this definition to periodic A, fk(A) = A, by replacing / by fk above. 
This replacement allows in proofs to assume f{A) = A. 

We need also the following 

Notation (cf. [PUZ]). — Suppose f(A) = A. Let z1,..., zd be all the pre-images of z 
in A. Consider smooth curves 7̂  : [ 0 , 1 ] - » A \ cl Crit + , j = 1 , . . . , rf, joining z to zj 

respectively {i.e. 7" 7(0) = 2, 7 J f '(l) = z^). 
Let S d := { 1 , . . . , d}z+ denote the one-sided shift space and a the shift to the left, 

i.e. a((an)) = (a n+i). For every sequence a = ( a n ) ^ L 0 G S d we define jo(a) :— ja°. 
Suppose that for some n > 0, for every 0 < m < n, and all a £ S d , the curves 7 m ( a ) 
are already defined. Write zn{a) :— jn(a)(1). 

For each a G E d define the curve 7 n + i ( a ) as the lift (image) by / ~ ( n + 1 ) of 7 Q n + 1 

starting at zn(a). 
The graph T = T(z, 7 1 , . . . , ^d) with the vertices z and zn(a) and edges 7n(< )̂ is 

called a geometric coding tree with the root at z. For every a G E d the subgraph 
composed of 2, zn(a) and 7 n (o0 for all n > 0 is called a geometric branch and denoted 
by b(a). Denote by bn(a) for n > 0 the subgraph composed of Zj(a) and 7 J + i ( a ) for 
all j > n. 

The branch 6(0;) is called convergent to x G dA if zn(a) —> x. 
For an arbitrary basin of attraction A we define the coding map Zoo ' ?)(zoo) clU 

by Zoo(a) := limn__^00 z n ( a ) on the domain X> = T>(zoo) of all such a's for which b(a) 
is convergent. By Lemma 1.3 below, for A Holder, T> ~T,d and z^ is Holder. 

Finally let L 7" 1,..., Ud be open topological discs with closures in A \ cl Crit + , con
taining 7 1 , . . . , j d respectively. For each a and n > 0 denote by Un(a) the component 
of f~~n(Uan) containing 7 n ( a ) . 

In the subsequent Lemmas A is a Holder immediate basin of attraction to a periodic 
sink for a rational function / . 

Lemma 1.3. — There exists C2 > 0 such that for every a G T,d and every positive 
integer m 

(1.1) \(ГУ(У)\ > CiAj n 

( 1 . 2 ) diamC/m(a) < C2X kHo — m 
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388 F. PRZYTYCKI 

and 

(1 -3 ) Um(a) c B(Zoo(a), C 2 A 5 « / ( 1 - A ^ ) ) . 

Proof. — This follows from ( 1 . 1 ) and uniformly bounded distortion for all the bran
ches of /~n, n > m on Uj involved. • 

Lemma 1.4. — For every x E OA there exists a G S d such that b(a) is convergent to 
x. 

Proof. — Notice that x = lim znk (ak) for a sequence ak E T,d and a sequence of inte
gers n&, see [PZ, the proof of ( 9 ) ] . Now any a a limit of a convergent subsequence of 
ak satisfies the assertion of the Lemma. The convergence of b(a) is even exponential. 
This follows from Lemma 1.3 • 

Lemma 1.5. — Let A be a Holder immediate basin of attraction to a sink for a rational 
map f. Then for every A : 1 < A < AHO there exist S > 0 and no > 0 such that for 
every n > no and every x 6 dA, if for every j = 0 , . . . , n — 1 

( 1 . 4 ) dist(xj5 Crit) > exp—<5n, 

then \(fnY(x)\ > Xn. 

Proof. — Consider a G Y>d such that 6(a) converges to XQ. Then for 

s = [C3+n<V (log AHO)] + l 

(the square brackets stand for the integer part), where 

(logC2/g(l-AHo)) 
3 log AHO 

for an arbitrary e : 0 < e < 1, one obtains by ( 1 . 3 ) 

zs(an{a)) C B(xn,C2Xuo/(1 ~ xnl) = B(xn, e exp -8n). 
Moreover for every 0 < j < n 

( 1 . 5 ) zs+j(an~3 (a)) E B(xn-J1eexp-Sn). 

For y := zs+n(a) we have 

l(/n)'(y)l = \(fn+s)'(y)\ • KD'CT(y))!"1 > c^+'L-* 

for L := sup | / ' | . 
Using the definition of s we see that for S small enough and n large, the latter 

expression is larger than Xn for an arbitrary A : 1 < A < AH05 SO 

(1.6) l(/n)'(y)l>Àn. 

For e small enough, in view of ( 1 . 4 ) and ( 1 . 5 ) , we can replace y by x in ( 1 . 5 ) , 
changing A by a factor arbitrarily close to 1. • 
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HOLDER IMPLIES COLLET-ECKMANN 389 

Definition 1.6. — Let X be an /-forward invariant set. We say that / on X satisfies 
the property exponential shrinking of components if there exist £ : 0 < £ < 1 and r > 0 
such that for every x E X and positive integer n the component of f~n(B(fn(x),r)) 
containing x has diameter bounded by £ n . 

Lemma 1.7. — The property A is Holder implies the property: exponential shrinking 
of components, for f on dA, with £ arbitrarily close to A¿*. 

In the proof we shall use the following fact, a variant of the telescope lemma [PI, 
Lemma 5 ] : 

Lemma 1.8. — Let X be a compact set in C and f : U —> C be a holomorphic map 
on a neighbourhood of X such that f{X) = X. Then (3C > 0)(V/x > 1)(3?7 > 0) 
such that for every x E X and positive integer n > 0, for every r > 0, the disc 
B := B(xn,r) and every compact connected set Y C B the following holds: 

Denote Wj := CompXnj (f~j(B)) for j = 0 , . . . , n. Let Yn be an arbitrary compo
nent of f~n(Y) in Wn. Assume finally that diam Wj < r) for every j = 0 , . . . , n — 1. 
Then 

diam Wn < ^ n diam Yn 

diamB ~~ diamF 
Proof of Lemma 1.8. — See [PI]. The idea of the proof is that if Wj is far from Crit 
then, denoting Yá = fn~j(Yn), 

diamWj+i ^ diamYj+i 
diam Wj diam Yj 

If Wj+i is close to a critical point of multiplicity v then, instead of « , the inequality < 
with a constant depending on v appears on the right hand side. These cases however 
happen rarely as long as diam Wj are small. • 

Proof of Lemma 1.7. — Fix^1) an arbitrary n > 0 and x E OA. By Lemma 1.4 we 
can find a E Yid such that b(a) —> x. By the continuity of / for every 0 < j < n we 
have 6(cr J(a)) —> Xj. Let m(r) be the largest integer such that 7 m ( r ) (c r n (<^)) intersects 
dB for B := B(xnjr). Denote by b' the curve in fcm(r)_i(^n(oi)) contained in B and 
joining dB to xn. Denote by Wj the component of f~i(B) containing xn-j. Denote 
finally by bj the component of f~j(b') contained in 6 m ( r )_ 1 + j (cr n ~" 7 (o; ) ) . By Lemma 
1.3 we have 

diamfc;. < Const A ^ m ( r ) + i ) . 

So, using Lemma 1.8 and due to diamfe' comparable with diamS, we obtain 

(1.7) diam Wj < fij Const A ^ m ( r ) + i ) . 

A different proof, for polynomials - using puzzles, was obtained jointly by the author and Jacques 
Carette. 
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390 F. PRZYTYCKI 

for \i > 1 arbitrarily close to 1, as long as all diam Wi for all i < j are small. Observe 
however that if r —> 0 then m(r) —> oo (more precisely m(r) > ( log( l / r ) / logL) — 
Const). So if r is small enough that A H o

 v ' compensates Const, diamW^ are small 
and ( 1 . 7 ) holds by induction. • 

Lemma 1.9. — Let A be a Holder domain. Then for every ß : 0 < $ < log Xu0/logL 
there exists r(i?) > 0 such that for every x G dA and a < r(i9) such that for W =  
Compa.n f~

s(B(xn+s,r)) 

di&mW < a*. 

Proof. — Set s = [log(r/a)/logL]. Let a be small enough that s > 0 . We have chosen 
r and £ according to Definition 1.6 and Lemma 1.7. 

As L is a Lipschitz constant for / , we obtain for B' := Comp a. n f~s(B(xn+s,r)) 

B' D B(xn,a). 

By Lemma 1.7 diamComp^ f-n(B') < £ n+*, hence 

diamPT < f n + * < € 9 . 

_ log(r/a) 
By s > f v ' } - 1 we obtain 

logL 

d i a m ^ < ( ; ) " V f o r t f = « ^ . 
~ \Ls logL 

• 

2. A technical lemma 

Lemma 2.1. — For every v > 2 there exist E\ : 0 < S\ < 1 /2 st6c/i £fta£ £fte following 
holds: 

Write g(z) — gu(z) — zv + u for an arbitrary u with \u\ < 1. Consider any 
$ : g~1(W) —>• C univalent and such that in the spherical metric diam 3>(<7-1(ID))) < 
diam | C . ii/ere © is the unit disc in C, considered later with the euclidean metric. 
Write F 3 > - 1 with the domain 3>(p-1(ID))). Assume 

( 2 . 1 ) u G $(# - 1(ID))). 

Moreover assume 

( 2 . 2 ) M < £i «nd | ( # o F ) ( u ) | < £rx. 

Tften either 

( 2 . 3 ) c K & G T 1 ^ © ) ) C |E>, 

or there exists £2 : 0 < £2 < 1 SMC/J tftai 

( 2 . 4 ) *(j _ 1 (£2D))D£2D. 
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HOLDER IMPLIES COLLET-ECKMANN 391 

Proof. — Suppose there exist un \ 0 and univalent 3>n on g~^(B) satisfying (2.1) 
such that gUn(Fn(un)) —> 0 and both (2.3) and (2.4) fail. Then starting from some 
n the distortion of 3>N on Vn := g~^(^H)) is bounded by a constant Q. A reason for 
this, is for example the existence of a definite geometric annulus in g~^(1B)) \ Vn. 

The sequence of the domains Vn converges in Caratheodory's sense, [McM, 5.1], to 
V := ( l / 2 ) 1 / ^ p and, as all diameters of * n ( V n ) are uniformly bounded by | diam C, 
and one can choose from (3> n ,Ki) & subsequence convergent to certain (<I>, V ) . 

Now notice that by (2.2) $(0) = 0, in particular 0 E $(V). On the other hand 
by the failure of (2.3) we obtain c l * ( V ) <£ §©. Hence diam$(F) > 1/2. Hence 
sup v | * ' | > | 2 1 / I / . So imV |* ' | > Q-121^u~1\ A result is that for every r : 0 < r < 
(1 /2 ) 1 / " the set *(rD) contains the disc of radius Q~x2x^v-^r centered at 0. 

Thus if Q - i 2 1 / ( " - i ) r i / « ' > r, or after rewriting: 

(2.5) r < !q -" / (" -D, 

we obtain for g(z) = zv the inclusion cl 3>(<7-1(rlD))) D rUD. This implies the analogous 
inclusion for n large, what contradicts the assumption that (2.4) fails. • 

Remark2.2. — One could compute £i ,£2 explicitly, however we have chosen above 
a more lazy way. In particular 82 can be chosen independent of 3>, i.e. the statement 
of the Lemma could start with: (V i/)(3 £ 1 , ^ 2 ) • • • • 

3 . Holder implies CE 

An important role will be played by the following variant of a lemma proved in 
[DPU, Lemma 2.3 and (3.2)] 

Lemma 3.1. — Let X be a compact set in C and f : U —> C be a holomorphic map 
on U a neighbourhood of X such that f(X) — X. Fix c E Crit(/) Pi X. Assume that 
there is no periodic orbit in X attracting the point c. 

For every y E X write k(y) = max(0, — logdist(2/, c)). For y = c write k(y) = 00. 
Then there exists a constant Cf such that for each x E X and n > 1 

n 
(3.1) ^'k(xj)<nCf, 

j=0 

where denotes summation over all but at most one index j at which k(xj) is 
maximal, (00 is also possible). 

Proof. — To proceed as in [DPU] extend / to C in a differentiate way. The obser
vation used in [DPU] is that fn(U) C U for U small intersecting X is not possible. 
In case / is a rational map and X contained in Julia set, the family / J n on U for 
j = 1,2,... would be normal, what contradicts a property of Julia set. In general 
case we use also the additional property of fn on U if (3.1) fails: | ( / n ) ' | < 1/2. This 
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392 F. PRZYTYCKI 

yields an attracting periodic orbit in X , what, together with the property U 3 c also 
following from the construction in [DPU], contradicts the assumptions. • 

Definition 3.2. — We call A regular for / if for every small r > 0, for every x G dA, 
every positive integer n and every component W of f~n(B(x,r)) if W n A ^ 0 then 
fn(W fl A) =B(x,r)HA. 

The notion of regular is introduced ad hoc because we do not know how to prove 
our main theorem below without assuming this. Of course if A is completely invariant, 
i.e. f~x(A) = A, then A is regular. 

The reader will see that in the proof instead of B = B(x, r) for all r it is sufficient to 
consider B boundedly distorted in many scales. To have such B satisfying Definition 
3.2 it is sufficient to assume that A is Holder and Jordan. The idea is that if B is 
large and B n A is connected, then for pullbacks Wj (components of f~i(B)) Wj Pi A 
are also connected. If a critical value is met in OA then only one component of 
f~1(Wj n A) fl Wj+i can intersect A. Otherwise their boundaries would be glued at 
a critical point, contradicting Jordan property. Bounded distortion and many scales 
are due to TCE property (see Sec.4). 

Theorem 3.3. — Let A be a Holder immediate basin of attraction to a periodic sink 
for a rational map f. Assume A to be regular. Let c G dA be a critical point whose 
closure of the forward orbit is disjoint from Crit \ { c } . Then c satisfies (CE), with A 
arbitrarily close to AHO-

Corollary 3.4. — Let f be a polynomial and A^ be Holder. Suppose there is only one 
critical point in «/(/). Then f is CE, with A arbitrarily close to AHO-

Proof of Theorem 3.3. — The proof uses the procedure of the "reversed telescope" 
invented by Graczyk and Smirnov [GS, Appendix] to prove that CE2 (plus the so-
called i?-expansion property) implies CE. CE2 means \(fn)'(y)\ > Const A N for every 
y G J and n such that n is the smallest positive integer for which fn(y) G Crit, A > 1. 
Here instead of CE2 we shall use the definition of Holder domain, the property (1.1). 

Step 1. The block preceding the telescope. — Fix an arbitrary, large, n. Let 0 < m < n 
be the last time dist(# m , Crit) < exp — n5s for an arbitrary constant e : 0 < e < 1 
and for S from Lemma 1.5. Here x = xo := c. (We use the symbol x for c to 
distinguish the trajectory cn of c from c it passes by.) A critical point d such that 
dist(.rm, c') < exp — n5e must be c, supposed that n is large enough that exp — n5e < 
dis t (0 + (c ) , Crit \ ( { c } ) ) , where 0 + ( c ) stands for the forward orbit of c (c included). 

(1) Iin-m-l>en then K / ^ ^ y ^ m + i ) ! > A 7 1 - 7 7 1 " 1 by Lemma 1.5. 
(2) If n — m — 1 < en then by Lemma 3.1 we have 

k(xj) < (n — m — 1)C/, 
ra<ji<n 
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HOLDER IMPLIES COLLET-ECKMANN 393 

the function k considered with respect to c. Hence 
| ( / n - m - i y ( a . r o + i ) | > e x p ( - ( n - m - l)C'f) 

for a constant Cf > 0. 
Notice that by k(xm) > k(xj) for every j : m < j < n, there is no need to exclude 

an exceptional j from the above sum, because the exceptional index in YLm<j<n m ight 
be only j — m. 

Suppose we know that there exists a constant A > 1 such that 

(3.2) | ( / m ) ' ( * i ) l > A™. 

Then in the case (1), (CE) for c is proved. In the case (2) we obtain 

| ( / n ) ' ( * i ) | > A m e x p ( - ( n - m - l)C'f) > Xn 

for 1 < A < A with A arbitrarily close to A for e appropriately small, in particular we 
also obtain (CE). 

Thus, we need to prove (3.2), provided 

(3.3) dist(x m , c) < exp — nSe < exp —mSe. 

We shall prove this with an arbitrary A : 1 < A < AHO and for m large enough. More 
precisely, we shall prove (3.2) with the lower bound Const Ag^ where Const depends 
only on <5, 6. 

Note that n large implies m large by the first inequality of (3.3) (c cannot too soon 
approach itself). 

Step 2. Telescope: the first tube. — Define first some constants. 
Let T = [2{8e'd)-1Cf} + 2 for from Lemma 1.9. Let C4 = ( | ^ i ) ~ T for ex from 

Lemma 2.1. 
Consider now B := B(xm+\, C4 d i s t (x m + i , c±). For every j = 0 , 1 , . . . define 

Wj := Comp a ! m + 1 _ i f~'(B). 

Fix j — jo the first time W^+i intersects Crit, at d say. This can happen only with 
d — c. Indeed, otherwise, using Lemma 1.9, we obtain 

d i s t (0 + (c ) , Crit \{c}) < d is t (c m , c ; ) < diam Ifj+i < C4 exp — mfei?, 

what for m large enough is not possible. 
We conclude with W$+\ 3 c. We have two cases: 

Case 1°. P(a) i\exB\ 
Case 2°. fi(a) e \exB. 

Consider the case 2°. (Then we call / J : Wj —> B the first tube of our telescope.) 
In appropriate charts, in particular for B identified to ED, we can decompose into 
g o F, the decomposition in the language of Lemma 2.1, where g corresponds to the 
z i-> zv + u part of / and F takes care of the rest, in particular it includes 
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394 F. PRZYTYCKI 

We have also c\ G \s\B because \e\ > C^1. Finally diamW} < | d i a m C by 
Lemma 1.9. Thus we can apply Lemma 2.1. We multiplied c\ by 1/2 because here we 
consider the spherical metric whereas in Sec.2 we considered discs TED with respect to 
the euclidean metric on C. 

We obtain two possibilities: 
(1) The closure of Wj := C o m p a . m + i _ . f~3(r0B) is contained in r0B. 

T0 replaces here 1/2 resulting from the difference between the spherical met
ric on B and the euclidean on ED. 

(2) There exists e<i : 0 < £2 < 1 such that 

(3.4) Wj' := C o m p , m + i _ . f~J{£2B) D e2B 

(Here is an explanation of the existence of £±,£2 that yield this alternative, for a 
reader who does not wish to decipher Section 2: If (1) does not hold we shrink B to 
S2B so that diamWj' » d\am£2B and consider e± small enough that f3(ci) is close 
to x m + i , hence c\ is a "center" of the boundedly distorted Wj' . E\ small means also 
that ci is close to the center of S2B. This gives (3.4).) 

Notice now that (3.4) contradicts a;m +i_ J- G J(f). Thus, we can suppose that 

cl Wj C r0B. 

Step 3. The capture of expansion. — f3 : Wj —> TQB is polynomial-like, hence Wj 
contains an / J-fixed point p. In the case / is a polynomial (Corollary 3.4) A = A^ 
is completely invariant, hence p G dA of course. Hence if we had UHPer on OA we 
would obtain for a constant A > 1 

(3.5) \(fj)'(p)\ > 

(We shall come back to this discussion in Section 4. In particular UHPer on dA will 
be deduced from A Holder, with A = AHO-) 

In the general case we do not know whether p G <9A, unfortunately. So, instead, 
we use the assumption A is regular. Denote f3 by F. As Wj itersects OA at Xm+i-j, 
it intersects also A at, say, y1. Write F{y1) — y°. Since y° has an F-preimage in 
Wj H Ay by the regularity of A also y1 has an F-preimage y2 in Wj D A, next y2 has, 
etc. Hence \(Fiy(yl)\ > RXj^0 = ( - R 1 ^ ^ ^ ) * , where R is a constant dependent on 
diaml?. (If diami? is small then R is large. It arises from the ratio of derivatives of 
f~k at y° and z in Def.1.2., resulting from a distortion bound.) Hence for an arbitrary 
A < AHO one can take i large enough and find s : 0 < s < i such that 

(3.5') \Ujy(p)\ > A J for p = F'(yi). 

By construction the distortion of f3~x on Wj is bounded by a constant. Hence we 
have 

l ( / i - 1 ) ' ( p ) l / l ( / i _ 1 ) ' ( * m + l - i ) | < Const. 
We have also \f'{fj'1{p))\/\f'{xm)\ < Const C{±~X)/u for v the multiplicity of / at c. 
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(We use the assumption that c\ is peripheric in B with the factor C4, i.e. 

dist(ci, xm+i) > C^1 d iami? . 

Notice that earlier, in Step 2., we used the opposite inequality, that c\ is close to the 

center.) 

We conclude using (3.5) or (3.5') that 

(3.6) \(Pnxm+1_j)\ > A'Ho Const Civ-1)/V. 

Step 4- Longer first tube. — Consider now the case 1°. In this case instead of taking 

Wj for j = jo + 1, • •. we replace B by \s\B in the definition. Denote the resulting 

sets by Wj. We stop at j = j \ such that for the first time Wj+i 3 c. Either we have 

the case 2° now or again the case 1° in which we continue with preimages of e\B, 

etc. Notice that we finally arrive at the case 2° because if we stop at j = m we have 

^ra+l — i — c l 
The conclusion (3.6), in the case 2° , ending this procedure at some jt, holds if 

<Cf(m + l)(-tf logC4 

We have fortunately, by Lemma 1.9, (compare htep 2.) 

diam Wj < Cf exp —mSsi). 

Hence, by Lemma 3 .1 , 

t<Cf(m + l ) ( - t f logC4 + mfetf )"1 

that is less than T — 1 defined in Step 2. if m is large enough. T h e estimate {\ei)t+1 > 

C^1 follows now from the definition of C4. 

Step 5. The number of tubes. Conclusion. — Thus , we have (3.6) for j — jt. Denote 

this integer by k±. We consider now B := B(xrn+i-k1,C4dist(xrn+i-k1iCi)) and 

repeat the above construction. We obtain the inequality (3.6) for #m+i_fc2 instead 

of xrn^-i—k1 and for j' = k<2,. We continue until X ^ = i ^i — m* ^ e have constructed a 

reversed telescope [GS, Appendix] . Sett ing 7 : = Const cjf-1^" we conclude with 

(3.7) | ( /m)'(ci) | > 7 7 A £ 0 . 

Indeed, at each step 7A^Q ^> 1 for m large enough, because k\ is large; c cannot 

too soon approach itself. So, by (3.6), using bounded distortion for the appropriate 

branch of f~(ki~^ on the appropriate B' = C o m p f~1(^eiB), we obtain 

(3.8) ••• < dist(xrn-kl-k2,c) < dist(xm-kl,c) < exp - r a f e , 

resulting from the related inequalities concerning dist(xm_^1 ^ + 1 , ^ 1 ) . 

Formally, (3.8), the construction of the i-th tube and ki large, are proved alternately 

by induction over i. In particular m — k\ — • • • — ki > kj for i < I is also large. Here 

dist(xm_^1 ^, c) < exp —mSe < exp — (ra — k± — • * • — ki)8e replaces (3.3) 

B y Lemma 3.1 we obtain a bound for / : 

<Cf(m + l)(-tf logC4 
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Thus ( 3 . 7 ) yields ( 3 . 2 ) , with A arbitrarily close to A H 0 for m large enough. Therefore 
as noticed at the beginning we obtain (CE). • 

It is possible to prove Theorem 3.3 without refering to Lemmas 1.7, 1.9^2^. The 
method relies on the following fact (weaker than Lemma 1.9) 

Lemma 3.5. — For A Holder, there exists C > 0 such that for every Q > 1, 
r > 0, positive integer n and x G dA, for B a topological disc of diameter r bound-
edly distorted around fn(x), say containing B(xn,r/4), for W the component of 
f~n(B(xn:r)) containing x, if fn\w is univalent and the distortion of f~n on B = 
H(xn,r) is bounded by Q (namely sup | ( / _ n ) / | / i n f | ( / - n ) ' | <Q), then 

diam W < CQr^, for $ = log A H O / log L. 

Proof. — Consider a £ S d such that b(a) converges to x. W contains a round 
disc centered at x of diameter equal to Q~x • ^diamVF. By Lemma 1.3 A ^ * < 
Const Q~x diam W, in particular t = [(Const + log Q + log(— diam W))/log AHO] + 1, 
implies zt{a) G W. Hence zt_ n (<j n (a)) G B. So t — n > (log 1 / r ) / l o g L — Const. 

Now t > t — n implies 

[(Const + log Q 4- l o g ( - diam W))/log A H O ] + 1 > (log 1 / r ) / log L - Const, 

hence after exponentiating the both sides, diam W < Const Qr^. • 

Now, in Proof of Theorem 3 .3 , in Step 2 , one can define Wj with the use of the 
"shrinking neighbourhoods" procedure, see [P2, Sec.2]: 

For B := Z ? ( x m + i , C 4 dist(^m_j_i, c i ) ) , for every j = 0 , 1 , . . . write By := (3jB for 

(3j = r i i=i( l — for bi := exp — KI for an arbitrary K > 0 , close to 0 . 

Write B' = C o m p X m / _ 1 ( ^ ) and B'{j = C o m p X m f~1{B[j). Finally define W3 := 

C o m p a B m + 1 _ i / - W - 1 ) ( S [ J . ) 
For j < jo — 1 we have by construction f3~x univalent on f(Wj+±) with distortion 

bounded by exp(— ConstKJ) (using Koebe distortion theorem). Hence diamW} can 
be estimated due to Lemma 3.5 by Const r^ for arbitrarily close to log AHO/log L. 

We do the same trick in Step 4. in the definition of Wj. 

4 . T C E rational maps and the topological invariance of CE 

In this section we shall provide a new proof of the theorem proved first in [PR2], 
that CE is a topological condition provided the following holds: 

Condition (*). — For every exposed critical point c G J(f) it holds 

c l ( J / " ( < O n ( C r i t \ { c } ) = 0. 
n>0 

(2)We followed that way in the first distributed version of the paper. 
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In other words for no critical point in J(f) its a>limit set contains another critical 
point. This condition was already present in Theorem 3.3. (Recall that exposed means 
the forward trajectory of c does not meet other critical points.) 

Let us introduce some properties of a rational map / related to CE and to expo
nential shrinking of components, compare Def. 1.6. (We follow the numeration and 
terminology from [NP].) 

2° (exponential shrinking of components) There exist 0 < £2 < 1 and r<i > 0 such that 
for every x G J every n > 0 and W = Comp^ f~n(B(fn(x), r 2 ) ) one has diam W < • 

3° (exponential shrinking of components at critical points) The same as above, but 
only for W containing a critical point. 

4° (finite criticality or topological Collet-Eckmann, abbr. TCE) There exist M > 
0, P > 1 and r > 0 such that for every x G J there exists an increasing sequence of 
positive integers nj,j = 1, 2 , . . . such that Uj < Pj and for each j 

#{i : 0 < i < nj, Compfi(x) /-("¿"0B(f n * (x),r) n Crit / 0 } < M. 

5° (mean exponential shrinking of components) There exist P > 1,0 < £5 < 1 and 
rs > 0 such that for every x G J there exists an increasing sequence of positive 
integers nj = nj(x), j = 1,2,.. . such that Uj < Pj and for each j one has 

diamComp,<Cf(m + l)(-tf logC 4(s),r 5)) < 

Another interesting condition is uniform hyperbolicity on periodic orbits (abbr: 
UHPer): There exists Ap e r > 1 such that every periodic p G J(f) satisfies 

\(fkY(p)\ > A £ E R . 

where k is a period of p. 

Formally we do not restrict 3° to critical points in J, but this condition implies 
there are no critical points outside J attracted to J (which is equivalent to the absence 
of parabolic periodic orbits). 

Notice that 4° is a topological condition, i.e. if it is satisfied by / and there exists 
a homeomorphism h from a neighbourhood of J(f) to a neighbourhood of J(g) such 
that h(J(f)) — J(g) and hf = gh then 4° holds also for g. 

The implications CE=> 2° => 3° 4° have been proven in [PR1] (see also [NP]). 
4° 5° has also been proven in [PR1]. Here we shall prove 5° ^> 2° and next 
2° =>CE provided (*). Thus we shall prove: 

Theorem 4.1. — If f is topological Collet-Eckmann and satisfies (*) (a particular 
case is that there is only one critical point in J), then f is CE. 

In view of the above discussion we shall obtain 

Corollary 4.2. — (CE & (*)) is a topological property. 
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Remark that it is straightforward to prove 5° UHPer, see Lemma 4.7. belov 

Unfortunately we cannot prove UHPer=> CE, to mimic the interval case [NP], [NS 
Let us start the proofs with 5° 2° which is surprisingly easy. 

Lemma 4.3. — Mean exponential shrinking of components implies exponential shr 
nking of components. 

Proof — Fix an arbitrary x G J{f) and n > 0. Write Bj := B(xj^r^) for j •• 
0 , 1 , . . . , n. Set t0 := 0 and define the increasing sequence of integers 0 < t\ < £2, •. 
by induction as follows: Given ti take ti+i such that ti + (n — ti)/2P < ti+i < n an 
for 

Ki+! := CompXti f-^-^(Bti+1), 

(4.1) diamKi+1 < £li+1~U. 

This is possible by the definitions of the constants in 5°. 5° implies that the number of 
Uj — nj(xtiys not exceeding ra = Pk is at least k for every k = 1, 2 , . . . . So for every 
ra > 0 we obtain #{rtj : rij < ra} > [m/P] (the integer part of m/P). In particular 
for ra > 2P we obtain # { n j : rij < ra} > ra/2P, hence {n^ : m/2P < rij < ra} ^ 0. 
Finally apply this to ra = n — ti and choose as ¿¿+1 any rij from the latter nonempty 
set. 

x f-*^Btl) < & < g/2P 
<Cf(m . > log n> 

log6> 
(4.2) 

then by (4.1) 

(4.3) Ki+1 GBXti. 

Suppose i = I is the smallest integer such that either n — ti < 2P so we may not 
find ¿7+1 satisfying (4.1), or (4.2) does not hold. The latter: ¿7+1 — £7 < logr$/ log£5, 
together with ¿7+1 — £7 > (n — t\)/2P imply n — ti < 2Plogr$/ log£5. Denote the 
maximum of this constant and 2P by C. 

Due to (4.3) for every i — 1 , — 1 we have a "telescope" so we obtain 

Comp,t] /-<«'-«*>(£*,) C B I R 

Hence, applying also (4.1) for i = 0, 

( 4 . 4 ) d iamCompx(/-^(Bt j ) ) < diamCompx f-*^Btl) < & < g/2P 

provided n > 2P (otherwise / = 0, i.e. there is no ti). 

Finally, due to n — ti bounded by C, we can replace in (4.4) Btl by 

CompXt/ / - ( " - < ' > ( I ? ( W 2 ) ) 

for a constant small enough. We conclude with 

diamCompx /-"(5(^,7-2)) <Ql2P 
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which proves 2° with £ 2 = '• The case n < 2P is trivial, r 2 small enough does 

the job. • 

Lemma 4.4. — Assume 2°. Then there exist i? : 0 < i9 < 1 such that for every a > 0 

small enough, for every x G J(f) and every n > 0 

(4.5) d i a m C o m p x / - n ( J B ( / n ( x ) , a ) ) < a*. 

Proof — See Proof of Lemma 1.9. • 

Analogously to Lemma 1.5 we have the following 

Lemma 4.5. — Assume 2°. Then there exist A > 1, 8 > 0 and an integer no > 0 

such that for every n > no and x G J(f), if for every j = 0 , . . . , n — 1 

dist(#j, Crit) > exp —5n, 

then \(fn)'(x)\ > \ n . 

Remark 4.6. — This Lemma will be proved with A arbitrarily close to Notice 

that this, for dA rather than J ( / ) , together with Lemma 1.7, give a new proof of 

Lemma 1.5. 

Proof of Lemma — Consider arbitrary <S, s > 0. Let 

s := 
" log s 5n 

.log 6 - l o g 6 
+ 1. 

Then, by 2°, for all 0 < j < n 

(4.6) d i a m C o m p ^ , . f-*^ (B(xn+S,r2)) < < £ | < s e x p - 5 n . 

Now let B = B{xn, r 2 exp —SMn) for M = [ l o g I / / ( - l o g £ 2 ) ] + 1. Then for n large 
enough we obtain, using (4.6) for j = 0 and the definition of s, 

C o m p ^ / - * ( £ 0 r n + s , r 2 ) ) D 

Let W n = Comp^. f~n(B). Then there exists 2/ € Wn such that 

l(/n)'(y)l > 
diaml? 

diam Wn 

> (2 r 2 e x p - á M n ) ^ , 

where the second inequality follows from 2°. Now, as in Proof of Lemma 1.5, for e 

small, with the use of (4.6), we can switch from y to x, hence | ( / n ) ' ( # ) | > A n , for A 

arbitrarily close to if <S, e are appropriately small. • 

Lemma 4.7. — 2° implies UHPer on J ( / ) . Moreover A p e r = ^ j - 1 . 

Proof. — For each periodic point x G « / ( / ) , with fk(x) = x, we consider the backward 

trajectory x^ = fNk~i{x), N such that Nk — j > 0. By 2°, for j large enough, 

Wj are so small that shrinking of Wj is comparable to decreasing of derivatives of 

the respective branches of f~i (critical points are far away, so there is almost no 
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distortion). Moreover we obtain \(fNk)'(x)\ > Const£ 2 f ° r every positive N with 
the same Const, that implies | ( / f e ) ' ( # ) | > £2"*- Compare [NP, section 2]. • 

Proof of Theorem 4.1. — It is sufficient to prove that 2° and (*) imply (CE) for 
every exposed critical point in J. The proof is the same as the proof of Theorem 3.3. 
Having obtained a mapping corresponding to the polynomial-like fJ\w< TQB we 
find a periodic point p and we refer to UHPer, compare (3.5). (We do not have the 
harder case (3.5')). • 

5. T C E repellers 

Call a pair (X , / ) a holomorphic invariant set if X C C is compact and f : X —> C 
is defined on a neighbourhood of X and / ( X ) = X. (Recall that in Lemmas 1.8 and 
3.1 we considered already such pairs.) We say that holomorphic invariant sets (X, f) 
and (Y,g) are topologically conjugate if there exist neighbourhoods Ux,Uy of X , Y 
respectively, and a homeomorphism h : Ux —> Uy such that hf = gh. Recall that a 
property of holomorphic invariant sets is called topological if for every (X , / ) and (Y, g) 
topologically conjugate, if (X , / ) satisfies this property then (Y, g) satisfies this too. 
Sometimes we restrict the space of holomorphic invariant sets under consideration to 
those that satisfy certain property (not necessarily topological, for example to those 
/ ' s that extend to rational functions). 

For example it is easy to see (and is well-known) that the expanding property 
(namely \{fk)'\ > 1 for a positive integer fc), is topological. An argument is that 
expanding is equivalent to 4° with nj being the sequence of all positive integers and 
M = 0, that is of course a topological condition. 

Here we consider (X , / ) with properties weaker than expanding, namely with: 
2° — 5° with J replaced by X , W intersecting X and / not necessarily extendable to 
a rational function on the Riemann sphere. 

One can define also CE as (CE) for every exposed c G W for W intersecting X . 

We call a holomorphic invariant set (X , / ) a holomorphic repeller if there exists a 
neighbourhood V of X in the domain of / such that (Vx G V \ X ) ( 3 n > 0) such that 

$ v. 
We have the following 

Proposition 5.1. — For ( X , / ) holomorphic invariant sets, 5° 2° 3° 4°. 
Moreover, for (X , / ) holomorphic repellers, or holomorphic invariant sets such that 
f extends to a rational function and X C J(f), the properties 2°, 3°, 4° and 5° are 
equivalent. Then all of them are topological properties, CE implies each of 2° — 5° 
and conversely, provided (*) from Section 4> 

Proof of Proposition 5.1. — As mentioned in Sec.4 the proof of 3° 4° has been 
done in [PR1, Lemma 2.2] for / rational ( X = J has been considered there, but for 
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X strictly in J the proof is the same). For (X, / ) an arbitrary holomorphic invariant 
set we need to refer to [DPU] as it is stated here in Lemma 3.1. The assumptions 
are satisfied: if there existed a periodic point p E X whose periodic orbit attracts a 
critical point c G X, then for x = c the condition 2° would not hold. 

As mentioned in Sec.4 the implication 4° 5° for / rational has been proven in 
[PR1]. For {X, f) holomorphic repeller we refer to the following fact proved in [PR2, 
Appendix]: 

If X C then 4° implies that X is nowhere dense. 

Now repeating [PR1, (2.6)] one uses the repelling property to know that all the 
maps fn : W —> B, for every B(x,r),x G X , r small and every W a component 
of f~n(B) intersecting X, are proper. This is needed in the proof that if fn have 
uniformly bounded criticalities on W, then the respective preimages of \B have di
ameters shrinking to 0 as n —> oo. 

To prove the latter fact we find a little disc D in |J5 \ X , so that the components 
W of / n-preimages of D in W have diameters shrinking to 0. Such D exists due 
to X nowhere dense and W —» X. Finally we use a bounded distortion lemma in a 
bounded criticality setting (for example [PR1, Lemma 2.1]. 

5° 2° is automatic, see Lemma 4.3. The proof that CE implies 4° is the same 
as in [PR1] and the proof of the opposite implication is the same as in Section 4. • 

We call a holomorphic repeller satisfying any of the properties 2° — 5° a topological 
Collet-Eckmann repeller, abbr. TCE repeller. 

Proposition 5.2. — Let X — dA for a connected open domain A C C. Let f be 
a holomorphic map defined on a neighbourhood U of X such that f{UC\A)c_A, 
/ ( X ) = X Then A Holder implies ( X , / ) is TCE (i.e. it satisfies 4°). Coversely, if 
(X, / ) is TCE and additionally it is a repeller or f extends to a rational map on C, 
then A is Holder. 

Proof. — Assume that A is Holder. Definition 1.2 is still valid except that one consid
ers only z G A close to dA. Observe now that Holder implies 2°. The proof is similar 
to Proof of Lemma 1.7., except that in this situation one needs Markov geometric 
coding tree. Instead of one point z as in Sec.l, choose a finite family Z C A in a small 
Hausdorff distance from the whole X and join each z^ G / _ 1 ( Z ) by a curve 7 J to a 
point in Z, so that 7̂  is close to OA, in particular in the domain of 

Next 2° implies TCE by Proposition 5.1. 
In the opposite direction TCE implies 2° by Proposition 5.1. Next we prove that 

A is Holder: Consider a disc B := B(x,r) for x G X such that diam W < £n 

for W components of f~n(B) intersecting X (compare property 2°) and consider 
D = B(z, S) C AnB. Let W be a component of f~n(D) in W. Hence diam W < £n 

so by bounded distortion \{fnY{y)\ > C o n s t £ _ n for y G W,fn(y) — z. Compare 
[GS, Sec.5] and [PR1, Sec.3]. • 
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We obtain an immediate 

Corollary 5.3 (Rigidity of Holder domains). — Let A be a connected open domain 
A C C. Let f be a holomorphic map defined on a neighbourhood U of dA such 
that f(U H A) C A, f(dA) — dA. Suppose A is Holder. Let g be a holomorphic 
map on a neighbourhood of a compact set Y C C such that f on a neighbourhood 
of X — dA is conjugated by a homeorphism h to g and h(X) = Y. Assume that g 
extends to a rational function on C or assume that (X , / ) (hence (Y, g)) are repellers. 
Then the component of C \ Y intersecting h{A) is Holder. 

Let us underline that we allow above critical points in X to be in the a;-limit set 
of other critical points. Proposition 5.2 and Corollary 5.3 are much easier than the 
corresponding Theorem 3.3 and Corollary 4.2. 

Remark finally that in between holomorphic expanding repellers {i.e. holomorphic 
repellers with expanding property) and holomorphic TCE repellers there lies the class 
of holomorphic semihyperbolic repellers, that is satisfying the property 4° with Uj 
being the sequence of all positive integers. Semihyperbolicity is of course a topological 
condition. 

Notice that this semihyperbolicity is equivalent to 2° with all fn\w of uniformly 
bounded criticality. Notice also that for compact nowhere dense repellers semihyper
bolicity is equivalent to the assumption that critical points in X are nonrecurrent, see 
[CJY]. Parabolic points cannot happen for repellers. 

If X = dA for A a basin of a sink, I believe that / semihyperbolic is equivalent to 
A John. This has been proven in the case A — A^ for polynomial f in [CJY^. 
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