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PERIODIC ORBITS, EXTERNALS RAYS 
AND THE MANDELBROT SET: 

AN EXPOSITORY ACCOUNT 

by 

John Mi lnor 

Dedicated to Adrien Douady on the occasion of his sixtieth birthday 
Abstract. — A presentation of some fundamental results from the Douady-Hubbard 
theory of the Mandelbrot set, based on the idea of "orbit portrait": the pattern of 
external rays landing on a periodic orbit for a quadratic polynomial map. 

1. Introduction 

25/63N 
\ 22/63 11/63 

Si 

37/63 
44/63 50/63 

FIGURE 1. Julia set for z z2 l 
4 

e27Ti/3 " 1) showing the six rays 
landing on a period two parabolic orbit. The associated orbit portrait has 
characteristic arc X = (22/63, 25/63) and valence v = 3 rays per orbit 
Doint. 

A key point in Douady and Hubbard's study of the Mandelbrot set M is the 
theorem that every parabolic point c / 1/4 in M is the landing point for exactly 
two external rays with angles which are periodic under doubling. (See [DH2]. By 
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278 J. MILNOR 

definition, a parameter point is parabolic if and only if the corresponding quadratic 
map has a periodic orbit with some root of unity as multiplier.) This note will try 
to provide a proof of this result and some of its consequences which relies as much as 
possible on elementary combinatorics, rather than on more difficult analysis. It was 
inspired by §2 of the recent thesis of Schleicher [Si], which contains very substantial 
simplifications of the Douady-Hubbard proofs with a much more compact argument, 
and is highly recommended. (See also [S2], [LS].) The proofs given here are rather 
different from those of Schleicher, and are based on a combinatorial study of the 
angles of external rays for the Julia set which land on periodic orbits. (Compare [A], 
[GM].) As in [DH1], the basic idea is to find properties of M by a careful study of 
the dynamics for parameter values outside of M. The results in this paper are mostly 
well known; there is a particularly strong overlap with [DH2]. The only claim to 
originality is in emphasis, and the organization of the proofs. (Similar methods can 
be used for higher degree polynomials with only one critical point. Compare [S3], 
[E], and see [PR] for a different approach. For a theory of polynomial maps which 
may have many critical points, see [K].) 

We will assume some familiarity with the classical Fatou-Julia theory, as described 
for example in [Be], [CG], [St], or [M2]. 

Standard Definitions. — (Compare Appendix A . ) Let K = K(fc) be the filled Julia 
set, that is the union of all bounded orbits, for the quadratic map 

/(*) = fc(z) = Z2+C. 

Here both the parameter c and the dynamic variable z range over the complex num
bers. The Mandelbrot set M can be defined as the compact subset of the parameter 
plane (or c-plane) consisting of all complex numbers c for which K(fc) is connected. 
We can also identify the complex number c with one particular point in the dynamic 
plane (or ^-plane), namely the critical value / c ( 0 ) = c for the map / c . The parameter 
c belongs to M if and only if the orbit fc : 0 C c2 4- c • is bounded, or 
in other words if and only if 0, c G K(fc). Associated with each of the compact sets 
K = K(fc) in the dynamic plane there is a potential function or Green's function 
GK : C [0, oo) which vanishes precisely on K, is harmonic off K, and is asymptotic 
to log \z\ near infinity. The family of external rays of K can be described as the or
thogonal trajectories of the level curves GK — constant. Each such ray which extends 
to infinity can be specified by its angle at infinity t G M / Z , and will be denoted by 

. Here c may be either in or outside of the Mandelbrot set. Similarly, we can 
consider the potential function GM and the external rays TZ^ associated with the 
Mandelbrot set. We will use the term dynamic ray (or briefly K-ray) for an external 
ray of the filled Julia set, and parameter ray (or briefly M-ray) for an external ray of 
the Mandelbrot set. (Compare [SI], [S2].) 
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FIGURE 2 . Schematic diagram illustrating the orbit portrait (1) . 

Definition. — Let O = { ^ i , . . . , zp} be a periodic orbit for / . Suppose that there 
is some rational angle t E Q / Z so that the dynamic ray izf^^ lands at a point of 
O. Then for each zi E 0 the collection A* consisting of all angles of dynamic rays 
which land at the point zi is a finite and non-vacuous subset of Q / Z . The collection 
{A\, . . . , ^4P} will be called the orbit portrait V = V(0). As an example, Figure 1 
shows a quadratic Julia set having a parabolic orbit with portrait 

V = { { 2 2 / 6 3 , 25/63, 3 7 / 6 3 } , { 1 1 / 6 3 , 44/63, 5 0 / 6 3 } } . (1) 

It is often convenient to represent such a portrait by a schematic diagram, as shown 
in Figure 2. (For details, and an abstract characterization of orbit portraits, see §2.) 

The number of elements in each Ai (or in other words the number of i^-rays which 
land on each orbit point) will be called the valence v. Let us assume that v > 2. 
Then the v rays landing at z cut the dynamic plane up into v open regions which 
will be called the sectors based at the orbit point z E O. The angular width of a 
sector S will mean the length of the open arc Is consisting of all angles t E 1R/Z with 
IZf C S. (We use the word 'arc' to emphasize that we will identify M/Z with the 
'circle at infinity' surrounding the plane of complex numbers.) Thus the sum of the 
angular widths of the v distinct sectors based at an orbit point z is always equal to 
+ 1 . The following result will be proved in 2.11. 

Theorem 1.1 (The Critical Value Sector S±). — Let O be an orbit of period p > 1 for 
f = fc. If there are v > 2 dynamic rays landing at each point of O, then there is one 
and only one sector S\ based at some point z\ E O which contains the critical value 
c = f(0), and whose closure contains no point other than z\ of the orbit O. This 
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280 J. MILNOR 

critical value sector S\ can be characterized, among all of the pv sectors based at the 

various points of O, as the unique sector of smallest angular width. 

It should be emphasized that this description is correct whether the filled Julia set 

K is connected or not. 

Our main theorem can be stated as follows. Suppose that there exists some poly

nomial fc0 which admits an orbit O with portrait P , again having valence v > 2. Let 

0 < t- < t+ < 1 be the angles of the two dynamic rays TZ^± which bound the critical 

value sector .Si for fCo. 

Theorem 1.2 (The Wake Wp). — The two corresponding parameter rays TZ^± land at 

a single point r-p of the parameter plane. These rays, together with their landing point, 

cut the plane into two open subsets Wp and C \ Wp with the following property: A 

quadratic map fc has a repelling orbit with portrait V if and only if c G Wp, and has 

a parabolic orbit with portrait V if and only if c — Yp. 

22/63 
p^p 

25/63 

FIGURE 3. The boundary of the Mandelbrot set, showing the wake Wp 
and the root point rp = j e27™/3 — l associated with the orbit portrait of 
Figure 1, with characteristic arc Tp — (22/63, 25/63). 

In fact this will follow by combining the assertions 3.1, 4.4, 4.8, and 5.4 below. 

Definitions. — This open set W-p will be called the V-wake in parameter space (com

pare Atela [A]), and Tp will be called the root point of this wake. The intersection 

Mp = M n Wj> will be called the V-limb of the Mandelbrot set. The open arc 

Isx — ( £ - , £+) consisting of all angles of dynamic rays TZf which are contained in the 

interior of S\, or all angles of parameter rays TZ^4 which are contained in Wp, will be 

called the characteristic arc T = Tp for the orbit portrait V. (Compare 2.6.) 
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PERIODIC ORBITS, EXTERNALS RAYS AND THE MANDELBROT SET 281 

In general, the orbit portraits with valence v = 1 are of little interest to us. These 
portraits certainly exist. For example, for the base map fo(z) = z2 which lies outside 
of every wake, every orbit portrait has valence v = 1. As we follow a path in parameter 
space which crosses into the wake Wp through its root point, either one orbit with a 
portrait of valence one degenerates to form an orbit of lower period with portrait V, 
or else two different orbits with portraits of valence one fuse together to form an orbit 
with portrait V. (If we cross into Wp through a parameter ray TZp^, the picture is 
similar except that the landing point of the dynamic ray TZf± jumps discontinuously. 
If t+ and t- belong to the same cycle under angle doubling, then the landing points 
of both of these dynamics rays jump discontinuously.) 

However, there is one exceptional portrait of valence one: The zero portrait V = 
{ { 0 } } will play an important role. It is not difficult to check that the dynamic ray 
of angle 0 for fc lands at a well defined fixed point if and only if the parameter value 
c lies in the complement of the parameter ray TZQ1 = TZf1 = (1 /4 , o o ) . Furthermore, 
this fixed point necessarily has portrait { { 0 } } . Thus the wake, consisting of all c G C 
for which fc has a repelling fixed point with portrait { { 0 } } , is just the complementary 
region C \ [1/4, o o ) . The characteristic arc ^ { { o } } f°r this portrait, consisting of all 
angles t such that TZf C W{{o}}> ls the open interval (0 ,1 ) , and the root point r{{o}}> 
the unique parameter value c such that fc has a parabolic fixed point with portrait 
{ { 0 } } , is the landing point c = 1/4 for the zero parameter ray. 

4N 

3^ 

2 \3 V 4 4 y 3, 4 

4 

4 

4 

3 

4 
2 '3 '4 A 3 \4 

4 

1 
1 

FIGURE 4. Boundaries of the wakes of ray period four or less. 
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282 J. MILNOR 

Definition. — It will be convenient to say that a portrait V is non-trivial if it either 
has valence v > 2 or is equal to this zero portrait. 

Remark. — An alternative characterization would be the following. An orbit portrait 
{ A i , . . . , Ap} is non-trivial if and only if it is maximal, in the sense that there is no 
orbit portrait {A[, ..., A'q} with A[ D A\. This statement follows easily from 1.5 and 

2.7 below. Still another characterization would be that V is non-trivial if and only if 
it is the portrait of some parabolic orbit. (See 5.4.) 

Corollary 1.3 (Orbit Forcing). — If V and Q are two distinct non-trivial orbit por
traits, then the boundaries dW-p and &WQ of the corresponding wakes are disjoint 
subsets of C. Hence the closures Wp and WQ are either disjoint or strictly nested. 
In particular, if Xp C XQ with V ^ Q, then it follows that Wp C WQ. 

Thus whenever Xp C XQ, the existence of a repelling or parabolic orbit with 
portrait V forces the existence of a repelling orbit with portrait Q. We will write 
briefly V Q. On the other hand, if Xp C\XQ = 0 then no fc can have both an orbit 
with portrait V and an orbit with portrait Q. 

See Figure 5 for a schematic description of orbit forcing relations for orbits with 
ray period 4 or less, corresponding to the collection of wakes illustrated in Figure 4. 
(Evidently this diagram, as well as analogous diagrams in which higher periods are 
included, has a tree structure, with no loops.) 

Proof of 1.3, assuming 1.2. — First note that Wp and WQ cannot have a boundary 
ray in common. For the landing point of such a common ray would have to have 
one parabolic orbit with portrait V and one parabolic orbit with portrait Q. But 
a quadratic map, having only one critical point, cannot have two distinct parabolic 
orbits. In fact this argument shows that dWp D 8WQ — 0 . Note that the parameter 
point c = 0 (corresponding to the map fo(z) = z2) does not belong to any wake W-p 
with V 7̂  { { 0 } } - Since rays cannot cross each other, it follows easily that either 

Wp C WQ, or WQ C Wp, O l Wp D WQ = 0 , 

as required. 

For further discussion and a more direct proof, see §7. 

To fill out the picture, we also need the following two statements. To any orbit 
portrait V = {Ai, . . . , Ap} we associate not only its orbit period p but also its ray 
period rp, that is the period of the angles t G Ai under doubling modulo one. In 
many cases, rp is a proper multiple of p. (Compare Figure 1.) Suppose in particular 
that c G M is a parabolic parameter value, that is suppose that fc has a periodic 
orbit where the multiplier is an r-th root of unity, r > 1. Then one can show that the 
ray period for the associated portrait is equal to the product rp. (See for example 
[GM].) This is also the period of the Fatou component containing the critical point. 
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FIGURE 5. Forcing tree for the non-trivial orbit portraits of ray period 
n < 4. Each disk in this figure contains a schematic diagram of the cor
responding orbit portrait, with the first n forward images of the critical 
value sector labeled. (Compare Figure 4; and compare the "disked-tree 
model" for the Mandelbrot set in Douady [D5] . ) 

This ray period rp is the most important parameter associated with a parabolic point 
c or with a wake Wj>. 

It follows from 1.2 that every non-trivial portrait which occurs at all must occur 
as the portrait of some uniquely determined parabolic orbit. The converse statement 
will be proved in 4.8: 

Theorem 1.4 (Parabolic Portraits are Non-Trivial). — If c is any parabolic point in M, 
then the portrait V = V(0) of its parabolic orbit is a non-trivial portrait. That is, 
if we exclude the special case c — 1/4, then at least two K-rays must land on each 
parabolic orbit point. 

It then follows immediately from 1.2 that the parabolic parameter point c must be 
equal to the root point v<p of an associated wake. It also follows from 1.2 that the 
angles of the M-rays which bound a wake W-p are always periodic under doubling. In 
§5 we use a simple counting argument to prove the converse statement. (This imitates 
Schleicher, who uses a similar counting argument in a different way.) 

Theorem 1.5 (Every Periodic Angle Occurs). — Ifty^OinR/Z is periodic under dou
bling, then IZt1 is one of the two boundary rays of some (necessarily unique) wake. 
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284 J. MILNOR 

Further consequences of these ideas will be developed in §6 which shows that each 

wake contains a uniquely associated hyperbolic component, §8 which describes how 

each wake contains an associated small copy of the Mandelbrot set, and §9 which 

shows that each limb is connected even if its root point is removed. There are two 

appendices giving further supporting details. 

Acknowledgement — I want to thank M. Lyubich and D. Schleicher for their ideas, 

which play a basic role in this presentation. I am particularly grateful to Schleicher, 

to S. Zakeri, and to Tan Lei for their extremely helpful criticism of the manuscript. 

Also, I want to thank both the Gabriella and Paul Rosenbaum Foundation and the 

National Science Foundation (Grant DMS-9505833) for their support of mathematical 

activities at Stony Brook. 

2. Orbit Portraits 

This section will begin the proofs by describing the basic properties of orbit por

traits. We will need the following. Let f(z) = z2 + c with filled Julia set K. 

Lemma 2.1 (Mapping of Rays). — If a dynamic ray VJf lands at a point z E dK, 

then the image ray f{TZ^) — TZ£t lands at the image point f(z). Furthermore, if 

three or more rays TZf^, • • •, IZfk land at z ^ 0, then the cyclic order of the 

angles ti around the circle R / Z is the same as the cyclic order of the doubled angles 

2U (mod Z ) around R/Z. 

Proof. — Since each 1Z^\ is assumed to be a smooth ray, it cannot pass through any 

precritical point. Hence also cannot pass through a precritical point, and must 

be a smooth ray landing at f(z). Now suppose that we are given three or more rays 

with angles 0 < t\ < t2 < • • • < t& < 1, all landing at z. These rays, together 

with their landing point, cut the plane up into sectors S\, . . . , Sk, where each Si is 

bounded by 7Z£ and (with subscripts modulo k). The cyclic ordering of these 

various rays can be measured within an arbitrarily small neighborhood of the landing 

point z, since any transverse arc which crosses TZ£ in the positive direction must pass 

from Si-i to Si. Since / maps a neighborhood of z to a neighborhood of f(z) by an 

orientation preserving diffeomorphism, it follows that the image rays must have the 

same cyclic order. • 

Now let us impose the following. 

Standing Hypothesis 2.2.. — O — {z\, ..., zp} is a periodic orbit for a quadratic map 

fc(z) = z2 + c, with orbit points numbered so that f(zj) = Zj+±, taking subscripts 

modulo p. Furthermore there is at least one rational angle t € Q / Z so that the 

dynamic ray TZ^ associated with / lands at some point of this orbit O. 
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If c belongs to the Mandelbrot set M , or in other words if the filled Julia set K 
is connected, then this condition will be satisfied if and only if the orbit O is either 
repelling or parabolic. (Compare [Hu], [M3].) On the other hand, for c $ M , all 
periodic orbit are repelling, but the condition may fail to be satisfied either because 
the rotation number is irrational (compare [ G M , Figure 16]), or because the i^-rays 
which 'should' land on O bounce off precritical points en route ( [ G M , Figure 14]). 

As in §1, let Aj c E / Z be the set of all angles of K-rays which land on the point 
ZJ e O. 

Lemma 2.3 (Properties of Orbit Portraits). — / / this Standing Hypothesis 2.2 is satis
fied, then: 

(1) Each Aj is a finite subset ofQ/Z. 
(2) For each j modulo p, the doubling map t H-> 2t (mod Z ) carries Aj bijectively 

onto Aj+i preserving cyclic order around the circle, 
(3) All of the angles in A\ U • • • U Ap are periodic under doubling, with a common 

period rp, and 
(4) the sets A\, ..., Ap are pairwise unlinked; that is, for each i ^ j the sets Ai 

and Aj are contained in disjoint sub-intervals of R / Z . 

1/7 2/7 

3/7 

(3) (2) 

4/7 

5/7 6/7 

FIGURE 6. Julia set for z i-> z2 — 7/4, showing the six X-rays landing on 
a period three parabolic orbit. Each number (j) in parentheses is close to 
the orbit point Zj (and also to fOJ(0)). 

As in §1, the collection V = {A\, . . . , Ap} is called the orbit portrait for the orbit 
O. As examples, Figure 6 shows an orbit of period and ray period three, with portrait 

V = { { 3 / 7 , 4 / 7 } , { 6 / 7 , 1 / 7 } , { 5 / 7 , 2 / 7 } } , 

Figure 7 shows a period three orbit with ray period six, and with portrait 

V = { { 4 / 9 , 5 / 9 } , { 8 / 9 , 1 / 9 } , { 7 / 9 , 2 / 9 } } , 
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4 / 9 
2 / 9 1 / 9 

5 / 9 7 / 9 8 / 9 

FIGURE 7. Julia set for z i-> z2 — 1.77, showing the six X-rays landing on 
a period three orbit. In contrast to Figure 6, these six rays axe permuted 
cyclically by the map. 

12 

13 
• 6 

3 

(1) 

(3) 

"17 

(5) 
(4) 

(2) 

21 22 24 
26 

FIGURE 8. Julia set J(/c) for c = —1.2564 + .3803 2, showing the ten rays 
landing on a period 5 orbit. Here the angles are in units of 1/31. 

while Figure 8 shows an orbit of period and ray period five, with portrait 

V = 
11 12 
3 1 ' 31 

22 24 
3 1 ' 31 

13 17 
3 1 ' 31 

f 26 _3_ 
[ 3 1 ' 31 

21 6_ 
3 1 ' 31 

FIGURE 9. Schematic diagrams associated with the orbit portraits of Fig
ures 6, 7, 8. The angles are in units of 1/7, 1/9 and 1/31 respectively. 
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Proof of 2.3. — Since some Ai contains a rational number modulo Z , it follows from 

2.1 that some Aj contains an angle to which is periodic under doubling. Let the period 

be n > 1, so that 2nt0 = t0 (mod Z ) . Applying 2.1 n times, we see that the mapping 

r)(t) = 2nt (mod Z ) maps the set Aj C M/Z injectively into itself, preserving cyclic 

order and fixing to. In fact we will show that every element of Aj is fixed by 77. For 

otherwise, if t E Aj were not fixed, then choosing suitable representatives modulo Z 

we would have for example t0 = r](to) < t < n(t) < ¿0 + 1- Since rj preserves cyclic 

order, it would then follow inductively that 

t0 < t < r]{t) < rjo2(t) < r)o3(t) < < t0 + l . 

Hence the successive images of t would converge to a fixed point of 77. But this is 

impossible since every fixed point of 77 is repelling. Thus rj fixes every point of Aj. 

But the fixed points of 77 are precisely the rational numbers of the form i/(2n — 1), 

so it follows that Aj is a finite set of rational numbers. It follows easily that all of 

the Ak are pointwise fixed by 77. This proves (1) , (2) and (3) of 2.3; and (4) is clearly 

true since rays cannot cross each other. • 

It is often convenient to compactify the complex numbers by adding a circle of 

points e2nltoo at infinity, canonically parametrized by t E M / Z . Within the resulting 

closed topological disk © , we can form a diagram V illustrating the orbit portrait V 

by drawing all of the K-rays joining the circle at infinity to O. These various rays are 

disjoint, except that each z E O is a common endpoint for exactly v of these rays. 

Note that this diagram T> deforms continuously, preserving its topology, as we 

move the parameter point c, provided that the periodic orbit O remains repelling, 

and provided that the associated If-rays do not run into precritical points. (Compare 

[ G M , Appendix B].) 

In fact, given V, we can construct a diagram homeomorphic to T> as follows. Start 

with the unit circle, and mark all of the points e{t) = e2nlt corresponding to angles 

t in the union = Ai U • • • U Ap. Now for each Ai, let 2i be the center of gravity 

of the corresponding points e(£), and join each of these points to % by a straight line 

segment. It follows easily from Condition (4) that these line segments will not cross 

each other. (In practice, in drawing such diagrams, we will not usually use straight 

lines and centers of gravity, but rather use some topologically equivalent picture, 

fixing the boundary circle, which is easier to see. Compare Figures 2, 5, 9.) 

It will be convenient to temporarily introduce the term formal orbit portrait for a 

collection V — {Ai, ..., Ap} of subsets of M/Z which satisfies the four conditions of 

2.3, whether or not it is actually associated with some periodic orbit. In fact we will 

prove the following. 

Theorem 2.4 (Characterization of Orbit Portraits). — If V is any formal orbit por

trait, then there exists a quadratic polynomial f and an orbit O for f which realizes 

this portrait V. 
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This will follow from Lemma 2.9 below. To begin the proof, let us study the way in 

which the angle doubling map acts on a formal orbit portrait. As in §1, the number 

of angles in each Aj will be called the valence v for the formal portrait V. It is easy to 

see that any formal portrait of valence v = 1 can be realized by an appropriate orbit 

for the map f(z) — z2. Hence it suffices to study the case v > 2. For each Aj G V 

the v connected components of the complement M / Z \ Aj are connected open arcs 

with total length + 1 . These will be called the complementary arcs for Aj. 

Lemma 2.5 (The Critical Arcs). — For each Aj in the formal orbit portrait V, all but 

one of the complementary arcs is carried diffeomorphically by the angle doubling map 

onto a complementary arc for Aj+±. However, the remaining complementary arc 

for Aj has length greater than 1/2. Its image under the doubling map covers one 

particular complementary arc for Aj+i twice, and every other complementary arc for 

Aj+i just once. 

Definition. — This longest complementary arc will be called the critical arc for Aj. 

The arc which it covers twice under doubling will be called the critical value arc for 

Aj+i. (This language will be justified in 2.9 below.) 

Proof of 2.5. — If / C K / Z is a complementary arc for Aj of length less than 1/2, 

then clearly the doubling map carries / bijectively onto an arc 21 of twice the length, 

bounded by two points of Aj+i. This image arc cannot contain any other point of 

Aj+i, since the doubling map from Aj to Aj+1 preserves cyclic order. It follows easily 

that these image arcs cannot overlap. Since we cannot fit v arcs of total length + 2 

into the circle without overlap, and since there cannot be any complementary arc of 

length exactly 1/2, it follows that there must be exactly one "critical" complementary 

arc for Aj which has length greater than 1/2. Suppose that it has length (1 + £j)/2. 

Then the v — 1 non-critical arcs for Aj have total length (1 — Sj)/2, and their images 

under doubling form v — 1 complementary arcs for Aj+i with total length 1 — Ej. Since 

the doubling map is exactly two-to-one, it follows easily that it maps the critical arc 

for Aj onto the entire circle, doubly covering one "critical value arc" for Aj+i which 

has length Ej, and covering every other complementary arc for Aj+i just once. • 

Lemma 2.6 (The Characteristic Arc for V). — Among the complementary arcs for the 

various Aj G V, there exists a unique arc Xj> of shortest length. This shortest arc is 

a critical value arc for its Aj, and is contained in all of the other critical value arcs. 

Definition. — This shortest complementary arc Xj> will be called the characteristic 

arc for V. (Compare 2.11.) 

Proof of 2.6. — There certainly exists at least one complementary arc Xp of minimal 

length t among all of the complementary arcs for all of the Aj G V. This Xp must 

be a critical value arc, since otherwise it would have the form 2 J where J is some 

complementary arc of length £/2. Suppose then that X-p is the critical value arc for 
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-Aj+i, doubly covered by the critical arc Ic for Aj. Since Xp is minimal, it follows 

from 2.3(4) that this open arc Xp cannot contain any point of the union Ap = 

Ai U • • • U Ap. Hence its preimage under doubling also cannot contain any point of 

Ap. This preimage consists of two arcs / ' and / " = I' + 1/2, each of length £/2. Note 

that both of these arcs are contained in Ic. In fact the arc Ic of length (1 + £)/2 is 

covered by these two open arcs of length £/2 lying at either end, together with the 

closed arc Ic \ ( / ' U J") of length (1 - £)/2 in the middle. 

Now consider any Ak £ V with k ^ j . It follows from the unlinking property 

2.3(4) that the entire set Ak must be contained either in the arc (IR/Z) \ Ic of length 

(1 — £)/2, or in Ic and hence in the arc Ic \ (I'Ul") which also has length (1 — £)/2. In 

either case, it follows that the union of all non-critical arcs for Ak is contained in this 

same arc of length (1 — £)/2, and hence that the image of this union under doubling 

is contained in the arc 

2 ( ( R / Z ) \ Ic) = 2(IC \ ( / ' U I")) = ( R / Z ) \ Xv 

of length l—£. Therefore, the critical value arc for Ak+i contains the complementary 

arc Xp, as required. It follows that this minimal arc Xp is unique. For if there were 

an Xlp of the same length, then this argument would show that each of these two must 

contain the other, which is impossible. • 

Remark. — This characteristic arc never contains the angle zero. In fact let Ic be 

the critical arc whose image under doubling covers Ip twice. If 0 € Ip, then it is not 

hard to see that one endpoint of Ic must lie in Xp and the other endpoint must lie 

outside, in 1/2 + Xp. But this is impossible by 2.3(4) and the minimality of Ip. 

Recall that the union Ap = A± U • • • U Ap contains pv elements, each of which has 

period rp under doubling. Hence this union splits up into 

pv _ v 

rp r 

distinct cycles under doubling. If V is the portrait of a periodic orbit (9, then the 

ratio v/r can be described as the number of cycles of K-rays which land on the orbit 

O. As examples, we have v — r — 3 for Figure 1 and v = r — 2 for Figure 7 so that 

there is only one cycle under doubling, but v — 2 and r = 1 for Figures 6 and 8 so 

that there are two distinct cycles. In fact we next show that there are at most two 

cycles in all cases. 

Lemma 2.7 (Primitive versus Satellite). — Any formal orbit portrait of valence v > r 

must have v — 2 and r = 1. It follows that there are just two posibilities: 

Primitive Case. If r = 1, so that every ray which lands on the period p orbit is 

mapped to itself by fop, then at most two rays land on each orbit point. 

Satellite Case. If r > 1, then v = r so that exactly r rays land on each orbit point, 

and all of these rays belong to a single cyclic orbit under angle doubling. 
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This terminology will be justified in §6. (Compare Figure 12.) 

Proof of 2.7. — Suppose that v > r and v > 3. Let T-p be the characteristic arc. We 

suppose that Xp is the critical value arc in the complement of A\. Let / _ the com

plementary arc for A\ which is just to the left of i p and let / + be the complementary 

arc just to the right of Ij>. To fix our ideas, suppose that / _ has length l(I-) > ¿(1+). 

Since 7+ is not the critical value arc for Ai, we see, arguing as in 2.6, that it must be 

the image under iterated doubling of the critical value arc / ' for some Aj. That is, 

we have I+ = 2 m / ' for some m > 1. Hence i(I') < ¿ (1+) . 

The hypothesis that v > r implies that the two endpoints of Xp belong to different 

cycles under doubling. Thus the left endpoints of / ' and Xp belong to distinct cycles, 

hence V ^ Xp . Therefore, by 2.6, / ' strictly contains Xp . This arc V cannot strictly 

contain the neighboring arc J+, since it is shorter than 7+. Hence it must have an 

endpoint in I+ , and therefore, by 2.3(4), it must have both endpoints in i + . But this 

implies that V contains i _ , which is impossible since £(If) < € ( / + ) < € ( / - ) . Thus, if 

v > r it follows that v < 2, hence r = 1 and v = 2, as asserted. • 

Lemma 2.8 (Two Rays determine V). — Let V = {Ai, . . . , Ap} be a formal orbit por

trait of valence v > 2, and let X-p = (£_, t+) be its characteristic arc, as described 

above. Then a quadratic polynomial fc has an orbit with portrait V if and only if the 

two K-rays with angles t- and t+ for the filled Julia set of fc land at a common point. 

Proof. — If fc has an orbit with portrait V, this is true by definition. Conversely, if 
these rays land at a common point z\, then the orbit of z\ is certainly periodic. Let 
V be the portrait for this actual orbit. We will denote its period by p ' , its valence 
by v\ and so on. Note that the ray period rp is equal to r 'p ' , the common period of 
the angles t- and t+ under doubling. 

Primitive Case. — Suppose that r = 1 so that v/r = 2, and so that each of these 

angles t± has period exactly p under doubling. If p' < p hence r' > 1, then it would 

follow from 2.7 applied to the portrait V' that t- and £+ must belong to the same 

cycle under doubling, contradicting the hypothesis that v/r — 2. 

Satellite Case. — If r > 1 hence v = r, then £_ and t+ do belong to the same cycle 

under doubling, say 2kt- = t+ (mod Z ) . Clearly it follows that r' > 1 hence v' — r'. 

Furthermore, it follows easily that multiplication by 2k acts transitively on A±, and 

hence that all of the rays TZf with t £ A± land at the same point z\. In other words 

A\ C A[. This implies that r < rf hence p > p'. If p were strictly greater than p ' , 

then it would follow that Ai+P> is also contained in A[. But the two sets A± and 

Ai+pt are unlinked in M / Z . Hence there is no way that multiplication by 2P can act 

non-trivially on A\ U Ai+P> carrying each of these two sets into itself and preserving 

cyclic order on their union. This contradiction implies that A\ — A[ and p = p1and 

hence that V = V, as required. • 
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Now let c be some parameter value outside the Mandelbrot set. Then, following 
Douady and Hubbard, the point c, either in the dynamic plane or in the parameter 
plane, lies on a unique external ray, with the same well defined angle t(c) G M/Z in 
either case. (Compare Appendix A . ) 

Lemma 2.9 (Outside the Mandelbrot Set). — Let V = {Ai, ..., Ap} be a formal orbit 
portrait with characteristic arc Ij>, and let c be a parameter value outside of the 
Mandelbrot set. Then the map fc{z) = z2 + c admits a periodic orbit with portrait V 
if and only if the external angle t(c) belongs to this open arc T*p. 

Proof. — The two dynamic rays Tl^cy2 and Ttfi+t(c))/2 meet at the critical point 
0, and together cut the dynamic plane into two halves. Furthermore, every point of 
the Julia set dK = K is uniquely determined by its symbol sequence with respect 
to this partition. Correspondingly, the two diametrically opposite points t(c)/2 and 
(1 4- t(c))/2 on the circle R / Z cut the circle into two semicircles, and almost every 
point t G K / Z has a well defined symbol sequence with respect to this partition under 
the doubling map. Two rays IZf and H*f land at a common point of K if and only 
if the external angles t and u have the same symbol sequence. 

First suppose that the angle t(c) lies in the characteristic arc T<p. Then, with 
notation as in the proof of 2.6, the two points t(c)/2 and (1 + t(c))/2 lie in the two 
components / ' and I" of the preimage of Xp . For every Aj G all of the points of 
Aj lie in a single component of R/Z \ (I' U I"). Hence the rays Tlf with t G Aj land 
at a common point Zj G K. It follows from 2.8 that these points lie in an orbit with 
portrait V, as required. 

On the other hand, if t(c) lies outside of T-p, then it is easy to check that the two 
endpoints of T*p are separated by the points t(c)/2 and (1 + t{c))/2. Hence these two 
endpoints, both belonging to A\ G V, land at different points of K. Hence fc has no 
orbit with portrait V. 

Finally, in the limiting case where t(c) is precisely equal to one of the two endpoints 
t± of , since these angles are periodic under doubling, it follows that the ray 
passes through a precritical point, and hence does not have any well defined landing 
point in K. This completes the proof of 2.9. • 

Evidently the Realization Theorem 2.4 is an immediate corollary. Since we have 
proved 2.4, we can now forget about the distinction between "formal" orbit portraits 
and portraits which are actually realized. We can describe further properties of por
traits and their associated diagrams as follows. 

Definition 2.10. — Suppose that we start with any periodic orbit O with valence 
v > 2 and period p > 1, and fix some point Z{ G O. As in §1, the v rays landing at 
Zi cut the dynamic plane C up into v open subsets which we call the sectors based at 
Z{. Evidently there is a one-to-one correspondence between sectors based at zi and 
complementary arcs for the corresponding set of angles Ai C M / Z , characterized by 
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the property that TZ^ is contained in the open sector S if and only if t is contained 
in the corresponding complementary arc. By definition, the angular size a(S) > 0 of 
a sector is the length of the corresponding complementary arc, which we can think 
of as its "boundary at infinity". It follows that ]T)5 a(S) — 1, where the sum extends 
over the v sectors based at some fixed zi G O. 

Remark. — The angular size of a sector has nothing to do with the angle between 
the rays at their common landing point, which is often not even defined. 

Altogether there are pv rays landing at the various points of the orbit O. Together 
these rays cut the plane up into pv — p -f 1 connected components. The closures of 
these components will be called the pieces of the preliminary puzzle associated with 
the diagram T> or the associated portrait V. Note that every closed sector S can be 
expressed as a union of preliminary puzzle pieces, and that every preliminary puzzle 
piece is equal to the intersection of the closed sectors containing it. This construction 
will be modified and developed further in Sections 7 and 8. 

For every point zi of the orbit, note that just one of the v sectors based at zi 
contains the critical point 0. We will call this the critical sector at z%, while the 
others will be called the non-critical sectors at z%. Another noteworthy sector at zi 
(not necessarily distinct from the critical sector) is the critical value sector, which 
contains / ( 0 ) = c. 

Lemma 2.11 (Properties of Sectors). — The diagram T> C © associated with any orbit 
O of valence v > 2 has the following properties: 

(a) For each zi G O, the critical sector at zi has angular size strictly greater than 
1/2. It follows that the v — 1 non-critical sectors at zi have total angular size 
less than 1/2. 

(b) The map f carries a small neighborhood of z% diffeomorphically onto a small 
neighborhood of Zi+i = f(zi), carrying each sector based at zi locally onto a 
sector based at zi+\, and preserving the cyclic order of these sectors around 
their base point. The critical sector at zi always maps locally, near z\, onto the 
critical value sector based at Zi+i. 

(c) Globally, each non-critical sector S at zi is mapped homeomorphically by f 
onto a sector f(S) based at Zi+i, with angular size given by a(f(S)) = 2a(S). 
However, the critical sector at zi maps so as to cover the entire plane, covering 
the critical value sector at Zi+± twice with a ramification point at 0 \-> c, and 
covering every other sector just once. 

(d) Among all of the pv sectors based at the various points of O, there is a unique 
sector of smallest angular size, corresponding to the characteristic arc T-p. This 
smallest sector contains the critical value, and does not contain any other sec
tor. 
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(As usual, the index i is to be construed as an integer modulo p.) The proof, 

based on 2.6 and the fact that / is exactly two-to-one except at its critical point, is 

straightforward and will be left to the reader. Evidently Theorem 1.1 follows. • 

Now let us take a closer look at the dynamics of the diagram T> or of the associated 

portrait V. The iterated map fop fixes each point zi G O, permuting the various rays 

which land on zi but preserving their cyclic order. Equivalently, the p-fold iterate of 

the doubling map carries each finite set A{ C Q / Z onto itself by a bijection which 

preserves the cyclic order. For any fixed i mod p, we can number the angles in Ai as 

0 < < £(2) < < < 1. It then follows that 

2P№ = t(j+V (mod Z ) , 

taking superscripts modulo v, where k is some fixed residue class modulo v. 

Definition 2.12. — The ratio k/v (mod Z ) is called the combinatorial rotation number 
of our orbit portrait. It is easy to check that this rotation number does not depend 
on the choice of orbit point zi. Let d be the greatest common divisor of v and k. The 
we can express the rotation number as a fraction q/r in lowest terms, where k — qd 
and v = rd. (In the special case of rotation number zero, we take q = 0 and r = 1.) 

In all cases, note that the denominator r > 1 is equal to the period of the angles 
fU) £ Ai under the mapping t i->- 2pt (mod Z ) from Ai to itself. It follows easily that 
the period of t ^ under angle doubling is equal to the product rp. Thus this definition 
of r as the denominator of the rotation number is compatible with our earlier notation 
rp for the ray period. 

Notation Summary. — Since we have been accumulating quite a bit of notation, here 
is a brief summary: 

Orbit period p: the number of distinct element in our orbit O, 
Ray period rp: the period of each angle t 6 A± U • • • U Ap under doubling. 
Rotation number q/r: describes the action of multiplication by 2P on each set Ai. 
Valence v: number of angles in each Ai, for a total of pv angles altogether. 
Cycle number v/r: the number of disjoint cycles of size rp in the union A\ U- • - \JAV. 

According to 2.7, this cycle number is always equal to 1 for a satellite portrait, and 
is at most 2 in all cases. Thus, in the case v > 2 there are just two possibilities as 
follows: 

Primitive Case. — The rotation number is zero. There are v = 2 rays landing at 
each orbit point, for a total of 2p rays. These split up into two cycles of p rays each 
under doubling. 

Satellite Case. — The rotation number is q/r ^ 0. There are v — r rays landing at 
each orbit point, for a total of pv = rp rays altogether. These rp rays are permuted 
cyclically under angle doubling, so that the number of cycles is v/r = 1. 
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As examples, Figures 6, 8 illustrate primitive portraits with rotation number zero, 

while Figures 1, 7 show satellite portraits with rotation number 1/3 and 1/2. We will 

see in §6 that primitive portraits correspond to primitive hyperbolic components in 

the Mandelbrot set, that is, to those with a cusp point. 

3. Parameter Rays 

This section will prove the following preliminary version of Theorem 1.2. 

Let V be any orbit portrait of valence v > 2, and let Tp = (£_, t+) be its char

acteristic arc, where 0 < £ _ < £ + < 1. If the quadratic polynomial fc = z2 4- c has 

an orbit O with portrait V, recall that the two dynamic rays 7Zf_ and lZf+ for fc 

land at a common orbit point, and together bound a sector 5 i which has minimal 

angular size among all of the sectors based at points of the orbit O. This S\ can also 

be characterized as the smallest of these sectors which contains the critical value c. 

(Compare Lemmas 2.6, 2.9, 2.11.) 

Theorem 3.1 (Parameter Rays and the Wake). — The two parameter rays TZ^_ and 

TZf^ with these same angles land at a common parabolic point in the Mandelbrot 

set. Furthermore, these two rays, together with their common landing point, cut the 

parameter plane into two open subsets Wj> and C \ Wj> with the following property: 

The quadratic map fc has a repelling orbit with portrait V if and only if c G W-p. 

Proof — Let A7? = Ax U • • • U Ap be the set of all angles for the orbit portrait V, and 

let n = rp be the common period of these angles under doubling. The set Fn C M 

of possibly exceptional parameter values will consist of those c for which / ° n has a 

fixed point of multiplier + 1 . Since Fn C C is an algebraic variety and is not the 

entire complex plane, it is necessarily a finite set. As noted in [ G M ] , if c belongs to 

the Mandelbrot set but c $ Fn, then the various dynamic rays 7Z^^ with t G A-p 

all land on repelling periodic points, and the pattern of which of these rays land 

at a common point remains stable under perturbation of c throughout some open 

neighborhood within parameter space. 

Now suppose that c lies outside of the Mandelbrot set. Then c, considered as a 

point in parameter space, belongs to some uniquely defined parameter ray and 

considered as a point in the dynamic plane for / c , belongs to the dynamic ray Ttf^c) 

with this same angle. In this case, a dynamic ray TZ^ for fc has a well defined landing 

point in K — K(fc) if and only if the forward orbit {2£, 4£, 8£, . . . } under doubling 

does not contain this critical value angle t(c). Since the angles in A p are periodic, it 

follows that all of the dynamic rays IZf with t £ A-p have well defined landing points 

in K if and only if t(c) £ A-p. 

Let t E A-p and let c$ € M be any accumulation point for the parameter ray 

IZf1. Since every neighborhood of C Q contains parameter values c E TZf1 for which 
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the dynamic ray lZt does not land, it follows that c0 must belong to Fn. Thus 

every accumulation point for TZ^1 belongs to the finite set Fn. Since the set of all 

accumulation points of a ray is connected, this proves that TZ^1 must actually land at 

a single point of Fn. 

These parameter rays TZf4 with t G A-p, together with the points of Fn, cut the 

complex parameter plane up into finitely many open sets Ui, and the pattern of which 

of the corresponding dynamic rays 7Zf with t G A-p land at a common periodic point 

remains fixed as c varies through any U{. Since every U{ is unbounded, it follows from 

Lemma 2.9 that for c G Ui the map fc has an orbit with portrait V if and only if Ui is 

that open set which contains the points in C \ M with external angle t(c) in (£_, £+). 

It follows that the two rays 1Z^_ and must land at a common point of Fn, so as 

to separate the parameter plane. For otherwise, if they had different landing points, 

the connected set Ui containing points with external angles in (£_, £+) would also 

contain points with other external angles, which is impossible. 

Define the root point r-p G M to be this common landing point, and define the 

wake W-p to be that connected component of C \ (TZfl u u Tv) which does not 

contain 0. For c G W-p \ Fn, it follows from the discussion above that fc does have a 

repelling orbit with portrait V, while for c G C \ ( W p U Fn) it follows that fc does 

not have any repelling orbit with portrait V\ Thus, to complete the proof of 3.1, we 

need only consider those fc with c in the finite set Fn. 

First suppose that some point Co G Fn \ Wj> had a repelling orbit with portrait 

V. Then any nearby parameter value would have a nearby repelling orbit with the 

same landing pattern for rays with angles in Aj>. A priori it might seem possible that 

some extra ray, perhaps one landing on a parabolic orbit for fCQ, might land on this 

same repelling orbit after perturbation. (Compare [ G M , Fig. 12].) However, this is 

ruled out by 2.8. Hence all nearby parameter values must belong to W-p, which is 

impossible. 

Now consider parameter points c G W-p. I am indebted to Tan Lei for pointing out 

the following very elegant argument due to Peter Hai'ssinsky which replaces my own 

more complicated reasoning. As noted above, for every c G W-p the rays 7Z^_}^ and 

TZt^^ land at well defined periodic points of the Julia set J(fc)- Let z = z(m,t±,c) 

be the unique point on the ray TZ^J^^ which has potential G(z) = 1/ra. The functions 

c i-t z(m, t±,c) are evidently holomorphic; in fact z(m, t,c) = <j)c1 ( exp(2mt+l/m) 

<pc : C \ K C \ D can be defined locally as </>c(z) = lim 2\l f°k(z) 

(choosing appropriate branches of the iterated square root) and hence is holomorphic 

as a function of both variables. These maps c H-> z{m, t-,c) o r c i 4 z(ra, £+, c) form a 

normal family throughout W-p, since they miss the three points 0, c and oc . Choosing 

a convergent subsequence and passing to the limit as m —> 00, we see that the landing 

where the function 
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points also depend holomorphically on c. Since the landing points for TZf}Tc) and 

TZ^^ coincide for c G W-p \ Fn, it follows by continuity that they coincide for all 
c G Wp. It follows also that the multiplier A(c) of this common landing point depends 
holomorphically on the parameter c G Wp, with |A(c) | > 1 since the landing point 
must be repelling or parabolic. But the absolute value of a non-zero holomorphic 
function cannot have a local minimum unless it is constant, so all of these landing 
points must actually be repelling. Together with 2.8, this completes the proof of 
3.1. • 

We will deal with parabolic orbits with portrait V in the next two sections. 

4. Near Parabolic M a p s 

Let c be a parabolic point in parameter space. This section will study the dynamic 
behavior of the quadratic map fc for c in a neighborhood of c. (Compare [DH2, 
§14(CH)], [Sh2].) 

Let O be the parabolic orbit for with period p > 1 and with representative point 
z. Then the multiplier A = (f^PY(z) is a primitive r-th root of unity for some r > 1. 
Let V be the associated orbit portrait, with ray period rp > p. We will first prove 
the following. 

Theorem 4.1 (Deformation Preserving the Orbit Portrait). — There exists a smooth 
path in parameter space ending at the parabolic point c and consisting of parameter 
values c with the following property: The associated map fc has both a repelling orbit 
of period p and an attracting orbit of period rp. Furthermore, this repelling orbit has 
portrait V, and lies on the boundary of the immediate basin for the attracting orbit. 
As c tends to c, these two orbits both converge towards the original parabolic orbit O. 

or 

FIGURE 10. (Courtesy of S. Zakeri). The left sketch shows a parabolic 
fixed point with r = 3, the middle shows the modified version with an 
attracting orbit of period 3, and the right shows a modified version with 
an attracting fixed point. Here the arrows indicate the action of / °3 . 

(Compare Figure 10, middle.) The proof will depend on the following. 
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Lemma 4.2 (Convenient Coordinates). — For any complex number X close to X there 

exists at least one parameter value c close to c and point z\ close to z so that z\ is a 

periodic point for the map fc with period p and with multiplier A. Furthermore there 

is a local holomorphic change of coordinate z = 4>\{w) with z\ = <f>\(0) so that the 

map F = F\ = (j)^1 o f°P o <frx takes the form 

F(w) = A w + R(X,w) 

for w near zero, and so that its r-th iterate takes the form 

For(w) = <f>^ o f°r? o cf>x = \rw (1 + wr + R'(\,w)), (2) 

where the remainder terms R and R' satisfy \R'\ < constant |w|r+1 uniformly for 

A in some neighborhood of A and for w in some neighborhood of zero. 

(In 4.5, we will sharpen this statement by showing that the phrase "at least one" 

in 4.2 can be replaced by "exactly one".) 

Proof of 4-2 in the Primitive Case. — First suppose that V is a primitive portrait, 

so that the multiplier (f~p) {z) is equal to + 1 for ? G O, with r = 1. In this case, £ i s 

a fixed point of multiplicity two for the iterate and splits into two nearby fixed 

points under perturbation. (It cannot have a higher multiplicity, since a fixed point 

of multiplicity fji > 2 would have /J, — 1 > 2 attracting Leau-Fatou petals, each with 

at least one critical point in its basin, which is impossible for a quadratic map.) As c 

traverses a small loop around c, these two fixed points a priori may be (and in practice 

always will be) interchanged. However, if we loop twice around c, then each of these 

fixed points must return to its original position. Thus, if we introduce a new parameter 

u by the equation c = c + tx2, then we can choose these fixed points as holomorphic 

functions, zL = zc(u) for L = 1,2, with ^i(O) = z2(0) = z. Evidently the u-plane is a 

two-fold branched cover of the c-parameter plane. Let XL(u) = (fcP) (zi(u)) be the 

multiplier for the orbit of zLJ and note that Ai(0) = A2(0) = 1. Since the holomorphic 

function u • y \i(u) cannot be constant, it takes on all values close to + 1 as w varies 

through a neighborhood of 0. 

Expanding the function f°p as a power series about its fixed point z\, we obtain 

f°p{zx{u) + h) - zx{u) = Xiiu) h + a(u) h2 + (higher terms in h) (3) 

for h and u close to zero, where c — c + u2. Here the coefficient a{u) is also a 

holomorphic function of u, with a(0) ^ 0 since the fixed point multiplicity is two. It 

follows that a(u) ^ 0 for u sufficiently small. Denoting the expression (3) by gu{h), 

and replacing the variable h = z — z\ by w — auh where au = a(u)/X\{u), we see 

easily that the function 

Fu{w) = OLu gu(w/ctu) 

has the required form (2) . • 
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Proof of 4-2 in the Satellite Case. — We now suppose that A is a primitive r-th root 

of unity, with r > 1. Then we can solve for the period p point z = z(c) as a 

holomorphic function of c for c in some neighborhood of c, with z(c) = z. Hence 

the multiplier A(c) = (fcPY(z(c)) will also be a holomorphic function of c, taking the 

value A E \ / l when c = c. Similarly A(c)r is a holomorphic function, taking the value 

A(c)r = 1 when c = c. This function A(c)r clearly cannot be constant, so it takes all 

values close to + 1 as c varies through a neighborhood of c. 

We will construct a sequence of holomorphic changes of variable which conjugate 

the map z H » fcP(z) m a neighborhood of z — z(c) to maps ft i-4 gc,k(h) in a neigh

borhood of ft = 0, where 1 < k < r, so that 

9c7k(h) = A(c)ft(l 4- ak(c)hk 4 (higher terms in ft.)) 

for some constant a&(c). Here c can be any point in some neighborhood of c. To 

begin the construction, let 

9ci(h) = f°P(z(c) + h) - z(c). 

This certainly has the required properties. Now inductively set 

gc,k+i{h) = 4>~x o gck o (j)(h) where <j>{h) = ft + 6ftfc+1 

for 1 < k < r. We claim that the constant b = b(c) can be uniquely chosen so that 

<7c,fc+i will have the required form. In fact a brief computation shows that 

#c,*+i(ft) = Aft(l 4- (a + b - \kb)hk 4- (higher terms). 

But \k ^ \ since A is close to A, which is a primitive r-th root of unity with 1 < k < r. 

Hence there is a unique choice of b so that a 4- b — Xkb = 0, as required. 

In particular, pushing this argument as far as possible, we can take k = r and 

replace f°p near z = z(c) by gc,r(h) = Aft(l 4- ahr 4- • • • ) near ft = 0. Hence we can 

replace f°rp near z(c) by 

g£r(h) = Xr ft(1 + a' hr 4- (higher terms)) , 

where computation shows that a' = ( l + Ar + A2r 4 - • • +A( r -1 ) r ) a . Here the coefficient 

a' of hr must be non-zero when A = A, and hence for A close to A. For otherwise, the 

Leau-Fatou flowers around the points of the parabolic orbit would give rise to more 

than one periodic cycle of attracting petals for fc. This is impossible, since each such 

cycle must contain a critical point, and a quadratic polynomial has only one critical 

point. Finally, after a scale change, replacing gc,r+1(h) by Fc(w) — ac g°^r+1{w/ac) 

for suitably chosen a?c, we obtain simply 

F°r{w) = A r w ( l 4- wr 4- (higher terms in w)), 

as required. • 
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Proof of 4.1. — First note that we can choose a smooth path in parameter space so 

that the multiplier Ar of Lemma 4.2 is real and belongs to some interval (1, 1 4- 77). 

This follows easily from the fact that A is a non-constant holomorphic function of c 

in the case r > 1, or of u = y/c — c in the case r == 1. Note that the map For of 4.2 

satisfies 

\For(w)\ = Ar • \w\ • (1 + Re(wr) + (higher terms)) (4) 

and 

arg(For(tt;)) = arg(w) + Im(wr) + (higher terms) (5) 

whenever Ar is real and positive; and note also that For has a locally defined holo

morphic inverse of the form 

F~r{w) = w (1 - wr/X2r + (higher terms)) /Ar, 

which satisfies 

\F~r(w)\ = \w\ (1 - Re(wr)/X2r + (higher terms))/Ar (4 ' ) 

and 
a rg(F- r (uO) = arg(w) - Im(wr)/A2r + (higher terms). (5 ') 

FIGURE 11. A repelling petal V£ and attracting petal Vg for the map 
F(w) « w -h w2 (illustrating the primitive case, before perturbation). 

As a representative repelling petal for For let us choose a small wedge shaped 

region Ve described in polar coordinates by setting w = pe2nlt with 0 < p < e and 

\t\ < l / ( 8 r ) . (Compare Figure 11 for the case r = 1.) If Ar > 1 with Ar sufficiently 

close to 1, it follows easily from (4') and (5;) that V£ maps into itself under F~r, with 

all orbits converging towards the boundary fixed point at w = 0. If a dynamic ray 

for lands at then it must land through one of the r repelling petals, for example 

through the image of V£ in the ^-plane. For c sufficiently close to c, this image must 

still contain a full segment, from some point z to f°rp(z), of the perturbed ray, hence 

this perturbed ray must still land at the repelling point which corresponds to w — 0. 

Note that no new rays land at this point, after perturbation. There are only finitely 

many rays which have period p. But every dynamic ray of period p for with angle 
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not in the set A-p of angles for V must land on some disjoint repelling point, and this 

condition will be preserved under perturbation. Thus the perturbed orbit, for Ar > 1, 

still has portrait V. 

As an attracting petal for For we can choose the set VJ = enl/rV£ consisting of 

all w = pe2nit with 0 < p < e and ^ < t < ^ . If Ar > 1 with Ar close to 1, then 

using (4) and (5) we can check that For maps VJ into itself. However, the origin is 

a repelling point, so orbits cannot converge to it. In fact, if K is the compact set 

obtained from VJ by removing a very small neighborhood of the origin, then For maps 

K into its own interior. It follows easily that all orbits in VJ \ { 0 } converge to an 

interior fixed point. This must be a strictly attracting point, and must correspond to 

an attracting orbit of period rp for the map fc. • 

Corollary 4.3 (Parabolic Points as Root Points). — If fc has a parabolic orbit whose 

portrait V is non-trivial, then c must be equal to the root point r-p of the V-wake. 

Note. — The hypothesis that V is non-trivial is actually redundant. (See 4.8.) It will 

be shown in 5.4 that every parabolic point is the root point of only one wake, so that 

the root point of the 'P-wake always has portrait equal to V. 

Proof of 4-3. — Since fz has a parabolic orbit with portrait V, it certainly cannot 

have a repelling orbit with portrait V. Hence it cannot be inside the 7^-wake by 

3.1. On the other hand, by 4.1 it must belong to the boundary of the P-wake. By 

construction, the root point r-p is the only boundary point of W-p which belongs to 

the Mandelbrot set. • 

Here is a complementary statement to 4.1, in the case r > 1. 

Lemma 4.4 (A Deformation Breaking the Portrait). — Under the hypothesis of 4-1, 

there also exists a smooth path of parameter values c, converging to c, so that each 

fc has an attracting orbit of period p, and a repelling orbit of period rp which lies on 

the boundary of its immediate basin. Furthermore, the dynamic rays with angles in 

A-p — Ai U • • • U Ap all land on this repelling orbit. 

(Compare Figure 10, right.) For such values of c (still assuming that r > 1), it 

follows that there is no periodic orbit with portrait V. Together with 4.1, this gives 

an alternative proof that c is on the boundary of the V-wake. 

Proof. — The proof of 4.4 is completely analogous to the proof of 4.1, and will be 

left to the reader: One simply deforms so that Ar < 1, instead of Ar > 1. • 

The following assertion helps to make the statement of 4.2 more precise. 

Lemma 4.5 (Local Uniqueness). — Under the hypothesis of 4-2, there exist unique sin

gle valued functions c = c(A) and z = z(\), defined and holomorphic for A in a 

neighborhood of A. so that z(X) is a periodic point of period p and multiplier A for the 

ASTÉRISQUE 261 



PERIODIC ORBITS, EXTERNALS RAYS AND THE MANDELBROT SET 3 0 1 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000 

map fc{\), with c — c(A) and z = z(X). This function c(A) is univalent in the satellite 
case, but has a simple critical point at A in the primitive case. 

The implications of this lemma for the geometry of the Mandelbrot set will be 
described in 6.1 and 6.2. 

Proof of 4.5. — First consider the satellite case, with A / 1. Then clearly the period 
p orbit and its multiplier A(c) depend smoothly on c throughout some neighborhood 
of c. We will show that the derivative dX/dc is non-zero at c. For otherwise, we could 
write 

Ar(c) = 1 + a(c - c)k + (higher terms) 
with k > 2. Hence we could vary c from c in two or more different directions so 
that Ar > 1 and in two or more intermediate directions so that Ar < 1. The former 
points would be within the P-wake and the later points would be outside it; but 
this configuration is impossible by 3.1. Thus dX/dc ^ 0, and it follows by the Inverse 
Function Theorem that the inverse mapping A t—» c(A) is well defined and holomorphic 
throughout a neighborhood of A, as required. 

In the primitive case, the situation is different, but the proof is similar. In this 
case, setting c = c + u2, we must express the multiplier Ai for one of the two nearby 
period p points as a holomorphic function of and show that the derivative dX\/du 
is non-zero at u — 0. Otherwise, if the derivative dX\{u)/du were equal to zero for 
u — 0, then we could write 

Ai (u) = 1 + a uk 4- (higher terms) 

for some k > 2. It would follow that we could vary u from 0 in two or more different 
directions so that Ai > 1 and in two or more separating directions so that A2 > 1. 
All of these points would be within the 'P-wake, but the rays landing on the periodic 
point zi would have to jump discontinuously so as to land on z2 as we pass from 
Ai > 1 to A2 > 1, and such points of discontinuity must be outside the V-wake. 
Even allowing for the fact that the ^-plane is a two-fold covering of the c-plane, such 
a configuration is incompatible with 3.1. Therefore, Ai and u must determine each 
other holomorphically in a neighborhood of A 0. In particular, it follows that the 
parameter value c = c 4- u2 can be expressed as a holomorphic function of Ai, with a 
simple critical point at Ai = A. • 

To conclude this section, we will prove that the portrait of a parabolic periodic 
point is always non-trivial. We will use a somewhat simplified form of the Hubbard 
tree construction to show that every parabolic orbit with ray period rp > 2 must 
have portrait with valence v > 2. First some general remarks about locally connected 
subsets of the plane. 

Lemma 4.6 (A Canonical Retraction). — Let K C C be compact, connected, locally 
connected, and full, and let U be a connected component of the interior of K. Then 
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the closure U is homeomorphic to the closed unit disk, and there is a unique retraction 

Pu from C onto U which carries each external ray, and also each connected component 

of the complement K \ U, to a single point of the circle dU. There are at least two 

distinct external rays landing at a point ZQ E dU if and only if K\{ZQ} is disconnected, 

or if and only if there is some connected component X of K \U with pu(X) = { ^ o } -

Proof — (Compare [D5].) The statement that U is a disk follows easily from well 

known results of Caratheodory. Furthermore, according to Caratheodory, there is a 

unique retraction from C onto K which maps each external ray to its landing point. 

Composing this with the retraction K —> U which maps each component X of K \ U 

to the unique intersection point ZQ E X n E7, we obtain the required retraction pu. 

For any such X , note that there must be at least one maximal open interval of 

angles t such that the ray IZ^ lands in X. The endpoints of such a maximal interval 

are the angles for the required pair of rays landing on ZQ. Conversely, if there were 

two rays landing on ZQ but no component X attached in between, then there would 

be an entire open interval of angles t so that 7Zf lands at ZQ. But this is impossible 

by a classical theorem of F. and M. Riesz. (See for example [M2, A p p . A].) • 

In particular, let K = K(f) be the filled Julia set for a hyperbolic quadratic 

polynomial. (We are actually interested in the parabolic case, but will work first with 

the hyperbolic case, since that will suffice for our purposes, and since it is much easier 

to prove local connectivity in the hyperbolic case.) 

Lemma 4.7 (The Dynamic Root Point). — Suppose that f = fc has an attracting orbit 

of period n > 2. Let K be its filled Julia set, and let Uo and U\ C K be the Fatou 

components containing the critical point 0 and the critical value c respectively. Then 

the canonical retraction pux : C —> U\ carries the component Uo to the unique point 

rc E dU± which is fixed by fon. Hence at least two dynamic rays land at this point. 

(See for example Figures 1,6.) Following Schleicher, I will call rc the dynamic root 

point for the Fatou component U±. 

Proof — Let Uo —» U± ^ > U2 —> * • • —•> Un = Uo be the Fatou components con

taining the critical orbit. Then fon maps each circle dUj onto itself by an expanding 

map of degree two. Hence there is a canonical homeomorphism a,j : dUj —> M / Z which 

conjugates fon to the angle doubling map on the standard circle. For each z E C \ Uj , 

the image aj{puj(z)) will be called the internal angle of the point z with respect to 

Uj. The map / from dUj to dUj+± preserves the internal angles of boundary points 

for 0 < j < n, but doubles them for the case j = 0 of the critical component. 

Define the t-wake Lt(Uj) to be the set of all z E C \ Uj with aj{pu5 (z)) = t E M / Z . 

These wakes are pairwise disjoint sets with union equal to C \ Uj. In general / maps 

to £-wake of Uj homeomorphically onto the £-wake of Uj+\ for 0 < j < n, and onto 

the 2£-wake of Uj+i when j — 0. However, there is one exceptional value of t for each 
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Uj with 0 < j < n. Namely, if the wake Lt(Uj) contains the critical component Uo 
then it certainly cannot map homeomorphically, and its image may be much larger 
than Lt(Uj+i). 

Let Aj C K / Z be the finite set consisting of all angles t G R / Z such that the wake 
Lt{Uj) contains one of the components Uk (where necessarily j 7̂  fc). Then it follows 
that A\ C A2 C • • • C An and 2An = Ao. On the other hand, since K is full, the 
various Uj must be connected together in a tree-like arrangement (the Hubbard tree). 
There cannot be any cycles. Hence at least one of the Ai must consist of a single 
angle. It follows easily that A\ = { 0 } , and the conclusion follows. • 

Corollary 4.8 (Parabolic Orbit Portraits are Non-Trivial). — Ifc is any parabolic point 
of the Mandelbrot set other than c = 1/4, and if O is the parabolic orbit for fc, then 
at least two dynamic rays land on each point of O. 

(This is just a restatement of Theorem 1.4 of §1.) 

Proof — In the satellite case this is trivially true, while in the primitive case it follows 
from 4.7, using 4.1 to pass from the parabolic to the hyperbolic case. This completes 
the proof of Theorem 1.4. • 

5. The Period n Curve in (ParameterxDynamic) Space 

It is convenient to define a sequence of numbers v2 (n) inductively by the formula 

2fe = I > 2 ( n ) , or v2{k) = 5 > ( f c / « ) 2 n , 
n\k n\k 

to be summed over all divisors n > 1 of fc, where /i(fc/n) € { ± 1 , 0 } is the Mobius 
function. In fact we will be mainly interested in the quotients v2{n)l2 and v2(n)jn. 
The first few values are 

n 1 2 3 4 5 6 7 8 9 10 
i/2(n)/2 1 1 3 6 15 27 63 120 252 495 
jy2(n)/n 2 1 2 3 6 9 18 30 56 99 . 

Define the period n curve Pern C C2 to be the locus of zeros of the polynomial 
Qn(c,z) which is defined by the formula 

/ c 0 f c ( ^ ) - * = I l 3 ™ ( c > * ) ' or Qk(c,z) = ]J(f°k(z)-z)tl{k/n\ 
n\k n\k 

taking the product over all divisors n of fc. For example, 

Qi(c,z) = z2 + c - z, Q2(c,z) = ^ ^ = z2 + z + c+l. 
zz + c — z 

Note that each point (c, z) G Pern determines a periodic orbit 

Z = ZQ H-» Z\ I-* • • • H-> ZN = ZQ 
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for the map fc. Let Xn = An(c, z) = df°n(z)/dz = 2nz\ • * - zn. For a generic choice 

of c, this orbit has period exactly n, and Xn is the multiplier. However, if z is a 

parabolic periodic point for fc with ray period n = rp > p , then (c, 0) belongs both 

to Pern with An = 1, and to Perp with Xp G y/l. (In fact, the two curves Pern and 

Perp intersect transversally at (c, z).) 

Remarks. — Compare [M4] for a somewhat analogous discussion for cubic polyno

mials. The fact that Qn is really a polynomial can be verified by expressing fck(z) — z 

as a product of irreducible polynomials, and checking that each of these irreducible 

factors has a well defined period n dividing k. The factors are all distinct since 

d(f°j(z) — z)/dz T¿ 0 at every zero of this polynomial when |c | is large. It is shown in 

[Bou], and also in [SI], [LS], that the algebraic curve Pern (or the polynomial Qn) 

is actually irreducible; however, we will not make any use of that fact. 

Lemma 5.1 (Properties of the Period n Curve). — This algebraic curve Pern c C2 is 

non-singular. The projection (c,z) \-t c is a proper map of degree v^iyi) from Pern to 

the parameter plane, while the projection (c, z) 1—> z is a proper map of degree 1/2(77.)/2 

to the dynamic plane. Finally, the function (c, z) y-+ An(c, z) is a proper map of degree 

nv2{n)/2 to the Xn-plane. 

Note that the cyclic group of order n, which we will denote by Zn, acts on Pern, a 

generator carrying (c, z) to (c, fc{z)). 

Lemma 5.2 (Properties of Pern / Z n ) . — The quotient Per™ / Z n is a smooth algebraic 

curve consisting of all pairs (c, O) where O is a periodic orbit for fc which is either 

non-parabolic of period n, or parabolic with attracting petals of period n. At any point 

where An ^ 1, the coordinate c can be used as local uniformizing parameter, while 

in a neighborhood of a point with Xn = 1, the multiplier Xn = An(c, z) serves as a 

local uniformizing parameter for this curve. The projection maps (c, O) i-> c and 

(c,0) 1—> An are proper, with degrees V2(n)/n and V2(n)/2 respectively. 

The proof that Pern and Pern / Z n are non-singular will be divided into three cases, 

as follows. 

Generic Case. — First consider a point (c, z) G Pern with An(c, z) ^ 1. Then, by 

the Implicit Function Theorem, we can solve the equation fcn(z) — z locally for z 

as a smooth function of c. It follows that both of the curves Pern and Pern / Z n are 

locally smooth, with c as local uniformizing parameter. 

Primitive Parabolic Case. — Now consider a point (c, z) € Pern with An(c, z) = 1, 

where z has period exactly n under fc. According to the proof of 4.5, if we set 

c = c+u2, then both z and Xn = An(c, z) can be expressed locally as smooth functions 

of u with dXn/du ^ 0. It follows that both Pern and Pern / Z n are locally smooth 

at this point, and that we can use either u or An as local uniformizing parameter. 
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(Similarly dz/du ^ 0, so we could use z as local uniformizing parameter for Pern. 
However dc/du is zero when u — 0, so c cannot be used as local parameter.) 

Satellite Parabolic Case. — Again suppose that An(c, z) = 1, but now assume that 
the period p of z is strictly less than the ray period n = rp. For c near c, let z = z(c) 
be the equation of the unique period p point near z. Using the change of variable 
w — a(z — z(c)) + (higher terms) of 4.2, the map / ° n corresponds to 

w For(w) = Xrw(l + wr + (higher terms)) , (6) 

where A = \{w) is the multiplier of this period p orbit. The equation for a fixed point 
is w = Xrw (1 + wr -b (higher terms)). Dividing by w (since we want the fixed point 
with w 7 ^ 0 or with z ^ z{c)), this becomes 

1 = Ar( l + wr 4- (higher terms)) or Ar = 1 — wr + (higher terms). 

Thus we can express A as a holomorphic function of w, with a critical point at w = 0. 
Therefore, by 4.5, we can also express c as a holomorphic function of w. Since w is 
defined as a holomorphic function of z and c with dw/dz 7^ 0, it follows that Pern is 
locally smooth with local uniformizing parameter z or w. 

Now note that there is a unique local change of coordinate w <fi{w) with <^'(0) = 1 
so that Ar = 1 — 4>(w)r. Since the expression cf)(w)r is invariant under the Zn action of 
Pern, it follows easily that this action can be described by the formula <f>(w) \<j>{w). 
It follows that </>(w)r = 1 — Ar is a local uniformizing parameter for the quotient curve 
Pern / Z n . Therefore, either A or c can also be taken as local uniformizing parameter. 
In particular, it follows that the multiplier An of the period n — rp orbit can be 
expressed as a smooth function of the multiplier A = Xp of the period p orbit. Note 
that 

dXn/d(Xr) = -r (7) 

at the parabolic point. (Compare [ C M , (4.3)].) This can be verified by direct compu
tation from (6) , or by using the holomorphic fixed point formula [M2] for the function 
f°n to show that the expression 

r 1 
1 - Xn + 1 - Xr 

depends smoothly on the parameter c throughout some neighborhood of the parabolic 
point. Therefore Xn can also be used as local uniformizing parameter for Pern / Z n . 

The degrees of the various projection maps can easily be computed algebraically, by 
counting solutions to the appropriate polynomial equations. Here is a more geometric 
argument, which also provides a quite explicit description of the ends of the curve 
Pern, and hence proves that these mappings are proper. Let us consider the limiting 
case as \c\ -> 00. Setting c = —v2 with \v\ > 2, let ± A be the open disk of radius 1 
centered at ±.v. It is not difficult to check that both A and — A map holomorphically 
onto a disk / ( A ) which contains A U (—A) . The (filled) Julia set K can then be 
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described explicitly as follows. Given an arbitrary sequence of signs £o> £i> • • • ? there 

is one an only one orbit z0 »->• z\ i-» • • • in K with ^ G €jA for every j > 0. This 

is proved using the Poincaré metric for the inverse maps / ( A ) - » ± A c / ( A ) . In 

particular, the number of solutions of period n is equal to the number of sign sequences 

of period n, which is easily seen to be i/2(n). Thus the degree of the projection to the c-

plane is V2{n). It follows also that the product z\ • • • zn — A/2n is given asymptotically 

by 

A/2n ~ ±zn ~ ±vn = ±(-c)n'2 as \v\ oc . 

Thus the degree of the projection to the A-plane is n times the degree of the projection 

to the z-plane, and is n / 2 times the degree of the projection to the c-plane. • 

Thus we have a diagram of smooth algebraic curves and proper holomorphic maps 

with degrees as indicated: 

n i/2 (n)/2 
Pern —> Pern / Z n • An-plane 

4- v<2(ri)/2 4- i/2(n)/n 

^-plane c-plane 

For a generic choice of c, it follows that the map fc has exactly V2{n)/n periodic 

orbits of period n, while for generic choice of An there are exactly i/2(n)/2 pairs 

(c, (9) consisting of a parameter value c and a period ri oròz£ of multiplier An for 

the map / c . The discussion shows that the correspondence (c, (9) i-* (c, An) yields 

a smooth immersion of Pern / Z n into C2. (Caution: Presumably some fc may have 

two different period n orbits with the same multiplier, so this immersion may have 

self-intersections. ) 

Corollary 5.3 (Counting Parabolic Points). — The number of parabolic points in the 

Mandelbrot set with ray period rp — n is equal to i/2(n)/2. 

Proof — This is the same as the number of points in the pre-image of + 1 under 

the projection (c, O) H-> An(c, O) from P e r n / Z n to the An-plane. According to 5.2, 

the degree of this projection is V2 {ri)/2, and + 1 is a regular value. The conclusion 

follows. • 

We are now ready to prove the main results, as stated in §1. 

Corollary 5.4. — There are exactly two parameter rays which angles which are periodic 

under doubling landing at each parabolic point c ^ 1/4. Hence distinct wakes have 

distinct root points; and for each non-trivial portrait V, the root point of the V-wake 

has a parabolic orbit with portrait V. 

(For angles which are not periodic, compare 9.4.) 
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Corollary 5.5. — Every parameter ray TZ^1 whose angle has period n > 2 under dou
bling forms one of the two boundary rays for one and only one wake W-p, where V is 
some portrait with ray period n. 

Proof of 5.4 and 5.5. — According to 5.3, the number of parabolic points c with ray 
period n > 2 is equal to i/2(n)/2, and according to Theorem 1.4 each such point is 
the landing point of at least two rays, which necessarily have ray period n. Thus 
altogether there are at least z/2 (n) distinct rays of period n. On the other hand, since 
the map t 1-4 2nt (mod Z ) has 2n — 1 fixed points, it follows inductively that the 
number of angles with period exactly n > 2 is precisely equal to */2(n). Thus there 
cannot be more than two rays landing at any such point c. It follows that c is the 
root point of at most one wake. For if c were the root point of two different wakes, 
then (even if they shared a boundary ray) it would be the landing point for at least 
three different parameter rays. Using 4.3, it now follows that each such c is the root 
point Y<p for exactly one wake W p , and furthermore that each frv has a parabolic 
orbit with portrait V. 

Here we have assumed that n > 2. However, for n = 1 there is clearly just one 
parameter ray TZQ1 = ( 1 /4 , 00) which is fixed under doubling, and its landing point 
c = 1/4 is the unique parabolic point with ray period n = 1. This completes the proof 
of 5.4 and 5.5. Clearly Theorems 1.2 and 1.5, as stated in §1, follow immediately. • 

To conclude this section, here is a more explicit description of the first few period 
n curves: 

Period 1. — The curve Peri = Peri / Z i = C can be identified with the Ai-plane. 
It is a 2-fold branched cover of the c-plane, ramified at the root point y*{{o}} = 1/4, 
and can be described by the equations z = A i / 2 , c = z — z2. Note that the unit 
disk I Ai | < 1 in the Ai-plane maps homeomorphically onto the region bounded by the 
cardioid in the c-plane. 

Period 2. — The quotient Per2 / Z 2 — C can be identified either with the A2-plane or 
with the c-plane, where A2 = 4 (1 4- c ) . The curve Per2 = C is a 2-fold branched cover 
with coordinate z, branched at the point A2 = 1 which corresponds to the period 2 
root point c = r-p = —3/4 with portrait V = { { 1 / 3 , 2 / 3 } } . It is described by the 
equation z2 4- z 4- (c 4- 1) = 0, with Z2-action z « 4 fc(z) — —z — 1-

Period 3. — (See [GF].) The quotient Per3 / Z 3 ^ C can be identified with a 2-fold 
branched cover of the c-plane, branched at the root point r-p = —7/4 of the real 
period 3 component, where V = { { 3 / 7 , 4 / 7 } , { 6 / 7 , 1 / 7 } , { 5 / 7 , 2 / 7 } } . If we choose a 
parameter u on this quotient by setting c = — (u2 -f- 7 ) /4 , then computation shows 
that the multiplier is given by the cubic expression A3 = u3 — u2 + 7u 4-1. The curve 
Per3 itself is conformally isomorphic to a thrice punctured Riemann sphere. It can be 
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described as a 3-fold cyclic branched cover of this i^-plane, branched with ramification 
index 3 at the two points u = (1 =b y/—27)/2 where A3 = 1. 

6. Hyperbolic Components 

By definition, a hyperbolic component H of period n in the Mandelbrot set is a 
connected component of the open set consisting of all parameter values c such that 
fc has a (necessarily unique) attracting orbit of period n. We will first study the 
geometry of a hyperbolic component near a parabolic boundary point. 

Lemma 6.1 (Geometry near a Satellite Boundary Point). — Let c be a parabolic point 
with orbit portrait V having ray period rp > p. Then c lies on the boundary of exactly 
two hyperbolic components. One of these has period rp and lies inside the V-wake, 
while the other has period p and lies outside the V-wake. Locally the boundaries of 
these components are smooth curves which meet tangentially at c. 

/167/819 

164/819 

period 4 
1/5 

4/15 

FIGURE 12. Detail of the Mandelbrot boundary, showing the rays landing 
at the root points of a primitive period 4 component and a satellite period 
12 component. 

Proof. — According to 4.1, c lies on the boundary of a hyperbolic component Hrp of 
period rp which lies inside the 7^-wake, while according to 4.4 it lies on the boundary 
of a component Hp of period p which lies outside the P-wake. Let Orp and Op be 
the associated periodic orbits, with multipliers \ rp and \ p . According to 4.5, the 
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multiplier Xp can be used as a local uniformizing parameter for the c-plane near c. 
Therefore the boundary dHp, with equation \XP\ — 1, is locally smooth. Similarly, it 
follows from equation (7) of §5, that we can take Xrp as local uniformizing parameter, 
so the locus |Arp| = 1 is also locally smooth. These two boundary curves are neces
sarily tangent to each other since the two hyperbolic components cannot overlap, or 
by direct computation from (7) . 

To see that there are no other components with c as boundary point, first note 
that all periodic orbits for the map fc-> other than its designated parabolic orbit, must 
be strictly repelling. For any orbit with multiplier |A| < 1 must either attract the 
critical orbit (in the attracting or parabolic case) or at least be in the u;-limit set of 
the critical orbit (in the Cremer case), or have Fatou component boundary in this 
cj-limit set (in the Siegel disk case). Since the unique critical orbit converges to the 
parabolic orbit, all other periodic orbits must be repelling. 

Now choose some large integer N. If we choose c sufficiently close to c, then all 
repelling periodic orbits of period < TV for will deform to repelling periodic orbits 
of the same period for fc. Thus any non-repelling orbit of period < N for fc must 
be one of the two orbits Op and Orp which arise from perturbation of the parabolic 
orbit. In other words, any hyperbolic component H' of period < N which intersects 
some small neighborhood of c must be either Hp or Hrp. In particular, any hyperbolic 
component which has c as boundary point must coincide with either Hp or Hrp. • 

By definition, the component Hrp is a satellite of Hp, attached at the parabolic 
point c. (It follows from (7) that \dXrp/dXp\ = r2 at c, so to a first approximation the 
component Hp is r2 times as big as its satellite Hrp. Compare [CM].) 

Lemma 6.2 (Geometry near a Primitive Boundary Point). — / / the portrait V of the 
parabolic point c has ray period rp — p, then c lies on the boundary of just one hyper
bolic component H, which has period p and lies inside the V-wake. The boundary of 
H near c is a smooth curve, except for a cusp at the point c itself 

Proof — As in the proof of 4.2, we set c = c 4- u2 and find a period p point z(u) 
with multiplier X(u) which depends smoothly on u, with dX/du ^ 0. Hence the locus 
|A(-u)| = 1 is a smooth curve in the i/-plane, while its image in the c-plane has a cusp 
at c = c. The rest of the argument is completely analogous to the proof of 6.1. • 

Lemma 6.3 (The Root Point of a Hyperbolic Component). — Every parabolic point of 
ray period n — rp is on the boundary of one and only one hyperbolic component of 
period n. Conversely, every hyperbolic component of period n has one and only one 
parabolic point of ray period n on its boundary. In this way, we obtain a canoni
cal one-to-one correspondence between parabolic points and hyperbolic components in 
parameter space. 
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Proof — The first statement follows immediately from 6.1 and 6.2. Conversely, if H 
is a hyperbolic component of period n, then we can map H holomorphically into the 
open unit disk D by sending each c G H to the multiplier of the unique attracting 
orbit for fc. In order to extend to the closure iJ, it is convenient to lift to the curve 
Pern / Z n , using the proper holomorphic map (c, O) c of §5. Evidently H lifts 
biholomorphically to an open set C Pern / Z n , which then maps holomorphically 
to the An-plane under the projection (c, O) \-± An(c, O). (Here is a connected 
component of the set of (c,0) such that O is an attracting period n orbit for fc.) 
Since the projection to the An-plane is open and proper, it follows easily that the 
closure H^ maps onto the closed disk D . In particular, there exists a point (c , O) of 
H* with An(c, O) = + 1 . Evidently this c is a parabolic boundary point of H with 
ray period dividing n, and it follows from 6.1 and 6.2 that it must have ray period 
precisely n. 

According to 4.7, for each c G H there is a unique repelling orbit of lowest period 
on the boundary of the immediate basin for the attracting orbit of fc. Furthermore, 
according to 4.1, the portrait V = VH for this orbit is the same as the portrait for the 
parabolic orbit of /g\ Since there is only one parabolic point with specified portrait 
by Theorem 1.2, this proves that there can only one such point c G dH. • 

Definition. — This distinguished parabolic point on the boundary dH of a hyperbolic 
component is called the root point of the hyperbolic component H. We know from 1.2 
and 1.4 that the parabolic points of ray period n can be indexed by the non-trivial 
orbit portraits of ray period n. Hence the hyperbolic components of period n can 
also be indexed by non-trivial portraits of ray period n. We will write H = H-p (or 
V = VH) if H is the hyperbolic component with root point r-p. We will say that H is 
a primitive component or a satellite component according as the associated portrait 
is primitive or satellite. 

Remark 6A.. — Of course there are many other parabolic points in dH. For each 
root of unity p, = e2nzq/s ^ 1 a similar argument shows that there is at least one point 
( C M , O m ) G dH^ with An(c^, O^) — fi. In fact the following theorem implies that 
is unique. This cM is the root point for a hyperbolic component H' of period sn > n, 
with associated orbit portrait V of period n and rotation number q/s. By definition, 
V is the (q/s)-satellite of V, and H1 is the {q/s)-satellite of H. 

We next prove the following basic result of Douady and Hubbard. Again let H be 
a hyperbolic component of period n and let H^ C Pern / Z n be the set of pairs (c, O) 
with c G i f , where O is the attracting orbit for fc. 

Theorem 6.5 (Uniformization of Hyperbolic Components). — The closure H is home-
omorphic to the closed unit disk D . In fact there is a canonical homeomorphism 

D ^ H* -+ H 
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which carries each point A ^ 1 in ID to the unique point c G H such that fc has a 
period n orbit of multiplier A. This homeomorphism extends holomorphically over a 
neighborhood ofH), with just one critical point 1 € ID) mapping to the root point c G H 
in the primitive case, and with no critical points in the satellite case. The closures 
of the various hyperbolic components are pairwise disjoint, except for the tangential 
contact between a component and its satellite as described in 6.1. 

Proof. — Recall that \ n : Pern / Z n —> C is a proper holomorphic map of degree 
i/2(n)/2. We will first show that there are no critical values of An within the closed 
unit disk E D . This will imply that the inverse image A ~ 1 ( D ) is the disjoint union of 
u2(n)/2 disjoint sets H , each of which maps diffeomorphically onto ID) . First note 
that there are no critical values of An on the boundary circle 9 ID. In the case of a 
root of unity every (c, O) with An(c, O) = p, must be parabolic, and it follows 
from 6.1 and 6.2 that the derivative of An at (c, O) is non-zero. Consider then a point 
(c, O) G dH^ such that An(c, O) is not a root of unity. According to 5.2, we can 
use c as local uniformizing parameter throughout a neighborhood of (c, O). If this 
were a critical point of An, then it would follow that we could find two different line 
segments emerging from c which map into I D , separated by two line segments which 
map outside of I D . In other words, one of the following two possibilities would have 
to occur. 

Case 1. — There are two different hyperbolic components with c as non-root bound
ary point. Each of these components must have a root point, and be contained in 
its associated wake. But these two components cannot be separated by any rational 
parameter ray, hence each one must be contained in the wake of the other, which is 
impossible. 

Case 2. — The single hyperbolic component H must approach c from two different 
directions, separated by two directions which lie outside of H. In other words. There 
must be a simple closed loop L C H which encloses points lying outside of H. Now 
the collection of iterates /°fc(0) must be uniformly bounded for c G 1/, and hence 
also for all c in the region bounded by L. Thus this entire region must lie within the 
interior of the Mandelbrot set, which is impossible since this region contains parabolic 
points. 

Thus both cases are impossible, and An must be locally injective near the boundary 
of H^. It follows easily that maps onto ID) by a proper map of some degree d > 1, 
and similarly that the boundary dH^ wraps around the boundary circle <9© exactly 
d times. Now a counting argument shows that this degree is + 1 . In fact the number 
of H or of period n is equal to z/2(n)/2 by 6.3 and 5.3. Since the degree of the 
map An on Pern / Z n is also v2{n)l2 by 5.2, it follows that each must map with 
degree d = 1. Therefore An maps each H biholomorphically onto I D . 
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Next consider the projection (c, O) H> C from the compact set TJ onto U. This 

is one-to-one, and hence a homeomorphism, by a theorem of Douady and Hubbard 

which asserts that a polynomial of degree d can have at most d— 1 non-repelling cycles. 

(Compare [ S h i ] . Alternatively, it follows from the classical Fatou-Julia theory that 

a polynomial with one critical point can have at most one attracting cycle. If two 

distinct points of dH^ mapped to a single point of dH, then, as in Case 2 above, a 

path between these points in H^ would map to a loop in H which could enclose no 

boundary points of H, leading to a contradiction.) 

According to 5.2, the parameter c can be used as local uniformizing parameter 

for Pern / Z n unless An = 1. Hence the only possible critical value for the projection 
£ j 

H —> H is the root point. In fact, by 6.1 and 6.2, the root point is actually a critical 

value if and only if i f is a primitive component. 

Finally suppose that two different hyperbolic components have a common boundary 

point. If this boundary point is parabolic, then one of these components must be a 

satellite of the other by 6.1 and 6.2. If the point were non-parabolic, then the argument 

of Case 1 above would yield a contradiction. This completes the proof of 6.5. • 

7. Orbit Forcing 

Recall that an orbit portrait is non-trivial if either it has valence v > 2, or it is 

the zero portrait { { 0 } } . The following statement follows easily from 1.3. However, it 

seems of interest to give a direct and more constructive proof; and the methods used 

will be useful in the next section. 

Lemma 7.1 (Orbit Forcing). — Let V and Q be distinct non-trivial orbit portraits. 

If their characteristic arcs satisfy I(V) C I(Q), then every fc with a (repelling or 

parabolic) orbit of portrait V must also have a repelling orbit of portrait Q. 

Compare Figure 5, and see 1.3 and for further discussion. The proof of 7.1 begins 

as follows. 

Puzzle Pieces. — Recall from 2.10 that the pv rays landing on a periodic orbit for 

f — fc separate the dynamic plane into pv — p+1 connected components, the closures 

of which are called the (unbounded) preliminary puzzle pieces associated with the 

given orbit portrait. (As in [K], we work with puzzle pieces which are closed but 

not compact . The associated bounded pieces can be obtained by intersecting each 

unbounded puzzle piece with the compact region enclosed by some fixed equipotential 

curve.) 

Most of these preliminary puzzle pieces n have the Markov property that / maps n 

homeomorphically onto some union of preliminary puzzle pieces. However, the puzzle 

piece containing the critical point is exceptional: Its image under / covers the critical 

value puzzle piece twice, and also covers some further puzzle pieces once. To obtain 
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a modified puzzle with more convenient properties, we will subdivide this exceptional 

piece into two connected sub-pieces. 

Let III be the preliminary puzzle piece containing the critical value. Then <9IIi 

consists of the two rays whose angles bound the characteristic arc for V, together 

with their common landing point, say z±. The pre-image n0 = / _ 1 ( I I i ) is bounded 

by two rays landing at the point zo = f~1{z1) n O, together with two rays landing 

at the symmetric point — ZQ. Note that IIo is a connected set containing the critical 

point, and that the map / from IIo onto IIi is exactly two-to-one, except at the critical 

point 0, which maps to c. 

The pv rays landing on O, together with these two additional rays landing on 

—zo, cut the complex plane up into pv — p + 2 closed subsets which we will call 

the pieces of the corrected puzzle associated with V. These will be numbered as 

IIo, IIi , • • •, npv_p_(_i, with IIo and IIi as above. The central piece IIo will be called 

the critical puzzle piece, and IIi will be called the critical value puzzle piece. This 

corrected puzzle satisfies the following. 

Modified Markov Property. — The puzzle piece n0 maps onto IIi by a 2-fold branched 

covering, while every other puzzle piece maps homeomorphically onto a finite union 

of puzzle pieces. 

We can represent the allowed transitions by a Markov matrix Ma, where 

$^ùmù 1 if Hi maps homeomorphically, with /(11^) D Hj 

0 if f(Hi) and Hj have no interior points in common, 

and where Moi = 2 since IIo double covers IIi . Since / is quadratic, note that 

the sum of entries in any column is equal to 2. Equivalently, this same data can be 

represented by a Markov graph, with one vertex for each puzzle piece, and with Mij 

arrows from the i-th vertex to the j-th. 

As an example, for the puzzle shown in Figure 13, we obtain the Markov graph of 

Figure 14, or the following Markov matrix 

[Mij] = 

"0 2 0 0 0 0" 

0 0 1 0 0 0 

0 0 0 1 0 0 

1 0 0 1 0 1 

1 0 0 0 1 1 

0 0 1 0 1 0 

(8) 

To illustrate the idea of the proof of 7.1, let us show that any / having an orbit with 

this portrait V must also have a repelling orbit with portrait Q = { { 1 / 7 , 2 / 7 , 4 / 7 } } . 

(Compare the top implication in Figure 5.) Inspecting the next to last row of the 

matrix (8) , we see that /(II4) = IIo U II4 U II5. Therefore, there is a branch g of 

/ - 1 which maps the interior of II4 holomorphically onto some proper subset of itself. 
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4/15 /3/15 

n2 
n0 

"4 

"S n3 

N2 

n4 
Zl 

ù$ no 

*2 
*$ 

*3 

N 5 

n3 

FIGURE 13. Julia set with a parabolic orbit of period four with character
istic arc I(V) = (3/15, 4/15), showing the six corrected puzzle pieces; and 
a corresponding schematic diagram. (For the corresponding preliminary 
puzzle, see the top of Figure 5.) 

1 2 

8 

7 6 

5 

FIGURE 14. Markov graph associated with the matrix (8), with one vertex 
for each puzzle piece. Since / is quadratic, there are two arrows pointing 
to each vertex. 

This mapping g must strictly decrease the Poincaré metric for the interior of II4. On 

the other hand, it is easy to check that the 1/7, 2 /7 and 4 / 7 rays are all contained 

in the interior of II4. Hence their landing points, call them w\, w2 and u>3, are also 

contained in U.4y necessarily in the interior, since the points of K n dU.4 have period 

four. Now 

g : wi H> W3 H> W2 *-> Wi, 

and all positive distances are strictly decreased. Thus if the distance from Wi to Wj 

were greater than zero, then applying g three times we would obtain a contradiction. 

This proves that W\ — w2 = ^3, as required. This fixed point must be repelling, since 

g clearly cannot be an isometry. 
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A similar argument proves the following statement. Suppose that f = fc has an 
orbit O with some given portrait V. By a Markov cycle for V we will mean an infinite 
sequence of non-critical puzzle pieces 11^, Iii2 . . . which is periodic, ij = ij+m with 
period m > 1, and which satisfies / ( 1 1 ^ ) D Hia+1, so that Mia ia+1 = 1, for every a 
modulo m . 

Lemma 7.2 (Realizing Markov Cycles). — Given such a Markov cycle, there is one 
and only one periodic orbit z\ •—> • • • t—>• zm for fc with period dividing m so that 
each za belongs to 1T^, and this orbit is necessarily repelling unless it coincides with 
the given orbit O (which may be parabolic). In particular, for any angle t which is 
periodic under doubling, if the dynamic ray with angle 2a t lies in Tlia for all integers 
a, then this ray must land at the point za. 

(Note that the period of t may well be some multiple of m, as in the example just 
discussed.) 

Proof. — There is a unique branch of f~x which carries the interior of ILia+1 holo
morphically onto a subset of . Let gia be the composition of these m maps, in the 
appropriate reversed order so as to carry the interior of 11^ into itself. 

A similar construction applies to the associated external angles. Let J{ C M/Z 
be the set of all angles of dynamic rays which are contained in 11^. Thus each Ji is 
a finite union of closed arcs, and together the Ji cover 3R/Z without overlap. Now 
there is a unique branch of the 2-valued map t \-+ t/2 which carries Jia+1 into Jia 
with derivative 1/2 everywhere. Taking an ra-fold composition, we map each Jia into 
itself with derivative 1 /2m. This composition may well permute the various connected 
components of Jia. However, some iterate must carry some component of Jia into 
itself, and hence have a unique fixed point t in that component. The landing point of 
the corresponding dynamic ray will be a periodic point Z& G . 

Case 1. — If this landing point belongs to the interior of , then it is fixed by some 
iterate of our map gia. This map gia cannot be an isometry, hence it must contract 
the Poincaré metric. Therefore every orbit under gia must converge towards za. Thus 
za is an attracting fixed point for <7^, and hence is a repelling periodic point for / . 

Case 2. — If the landing point belongs to the boundary of Uict then it must belong 
to O U {—ZQ}, and hence to the original orbit O since —ZQ is not periodic. Evidently 
this case will occur only when the angle t belongs to the union A\ U • • • U Ap of angles 
in the given portrait V. • 

Note. — It is essential for this argument that our given Markov cycle {n.ia } does not 
involve the critical puzzle piece n0. In fact, as an immediate corollary we get the 
following statement: 
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Corollary 7.3 (Non-Repelling Cycles). — Any non-repelling periodic orbit for f must 
intersect the critical puzzle piece IIo &s well as the critical value puzzle piece II i . 

Proof of 7.1. — If I(V) C I{Q), then it follows from Lemma 2.9 that there exists a 
map / having both an orbit with portrait V and an orbit with portrait Q. The latter 
orbit determines a Markov cycle in the puzzle associated with V. (The condition 
I{V) C I{Q) guarantees that this cycle avoids the critical puzzle piece.) Now for any 
map / with an orbit of portrait V, we can use this Markov cycle, together with 7.2, to 
construct the required periodic orbit and to guarantee that the rays associated with 
the portrait Q land on it, as required. • 

In fact an argument similar to the proof of 7.2 proves a much sharper statement. 
Let O be a repelling periodic orbit with non-trivial portrait V. 

Lemma 7.4 (Orbits Bounded Away From Zero). — Given an infinite sequence of non-
critical puzzle pieces { 1 1 ^ } for k > 0 with f(Hik) D Hik+1, there is one and only one 
point wo G K(f) so that the orbit wo ^ Wi H-J> • • • satisfies Wk G 11^ for every k > 0. 
It follows that the action of f on the compact set K-p consisting of all wo G K(f) such 
that the forward orbit {wk} never hits the interior of Ho is topologically conjugate to 
the one-sided subshift of finite type, associated to the matrix [Mij] with 0-th row and 
column deleted. In particular, the topology of K-p depends only on V, and not on the 
particular choice of f within the V-wake. 

Proof Outline. — First replace each puzzle piece 11̂  by a slightly thickened puzzle 
piece, as described in [M3]. (Compare §8, Figure 18.) The interior of this thickened 
piece is an open neighborhood Ni Z) Hi, with the property that f(Ni) D Nj whenever 
/ ( I I i ) D II j . It then follows that there is a branch of / - 1 which maps Nj into A^, 
carrying KnUj into KnUi, and reducing distances by at least some fixed ratio r < 1 
throughout the compact set K DUj. Further details are straightforward. • 

Presumably this statement remains true for a parabolic orbit, although the present 
proof does not work in the parabolic case. (Compare [Ha].) 

8. Renormalization 

One remarkable property of the Mandelbrot boundary is that it is densely filled 
with small copies of itself. (See Figures 11, 14 for a magnified picture of one such 
small copy.) This section will provide a rough outline, without proofs, of the Douady-
Hubbard theory of renormalization, or the inverse operation of tuning, which provides 
a dynamical explanation for these small copies. It is based on [D4] as well as [DH3], 
[D3]. (Compare [Dl ] , [ M l ] . For the Yoccoz interpretation of this construction, see 
[Hu], [M3] , [Mc], [Ly]. For a more general form of renormalization, see [Mc], [RS].) 
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P*l/2- p*3/8+ P* 1 /4+ 

>*3/8-

p* 1 /2+ 

5/8-

p* 1 /4-

p*l/8+ 

P*5/8+ 

P*3/4-

P* 1 /8-

P*0+ 
= 1/5 

P*3/4+ /p* 
7/8-

p*7/8+ P*1-
= 4/15 

FIGURE 15. Detail near the period 4 hyperbolic component Hp of Figure 
12, where V — 7^(1/5,4/15), showing the first eight of the parameter 
sectors which must be pruned away from M to leave the small Mandelbrot 
set consisting of P-renormalizable parameter values. 

To begin the construction, consider any orbit portrait 7^ of ray period n > 2 and 

valence v > 2. Let c be a parameter value in Wj> U so that / = fc has a periodic 

orbit (9 with portrait V, and let 5 = S(f) be the critical value sector for this orbit 

(so that S is the critical value puzzle piece). To a first approximation, we could try 

to say that / is "T^-renormalizable" if the orbit of c under fon is completely contained 

in S. In fact this is a necessary and sufficient condition whenever the map / o n - 1 | s 

is univalent. However, in examples such as that of Figures 1, 2 one needs a slightly 

sharper condition. 

Let I-p = (t-,t+) be the characteristic arc for this portrait, so that OS consists of 

the dynamic rays of angle t- and together with their common landing point z\, 

and let £ = t+ — t- be the length of this arc. 

Lemma 8.1 (A (Nearly) Quadratic-Like Map). — The dynamic rays of angle t[ = t- + 

£/2n and t'2 = t+ — £/2n land at a common point z' ^ z\ in S fl f~n(z\). Let S' C S 

be the region bounded by dS together with these two rays and their common landing 
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S ' 

s 

z l 

*2 
z4 

*3 

FIGURE 16. The n-fold pull-back of the critical sector S along the orbit 
Oy illustrated schematically for the orbit diagram of period n = 4 which 
has characteristic arc (1/5,4/15). Compare Figures 5 (top), 12, 16. 

point. Then the map fon carries S' onto S by a proper map of degree two, with critical 
value equal to the critical value / ( 0 ) = c. 

This region Sf can be described as the n-fold "pull-back" of S along the orbit O. 
(Compare Figure 16, which also shows the first three forward images of 5 ' . ) 

Proof of 8.1. — First suppose that c G W-p is outside the Mandelbrot set. Then, 
following Appendix A, we can bisect the complex plane by the two rays leading from 
infinity to the critical point. (Compare the proof of 2.9.) In order to check that the 
two rays of angle t[ and t'2 have a common landing point, we need only show that 
they have the same symbol sequence with respect to the resulting partition. In other 
words, we must show, for every k > 0, that the 2kt[ and 2kt2 rays lie on the same 
side of the bisecting critical ray pair. For k > n this is clear since 2nt[ = t+ and 
2nt2 EE t- modulo Z . 

Now consider the critical puzzle piece n0 of §7. Evidently n0 is a neighborhood, 
of angular radius € /4 , of the bisecting critical ray pair. For k < n — 1 the dynamic 
rays with angle 2kt- and 2kt+ both lie in the same component of C \ IIo- Since 2ktj 
differs from 2ktj by at most € /4 , it follows that the 2kt[ and 2kt2 rays have the same 
symbol. Finally, for k — n — 1, it is not difficult to check that the 2kt[ and 2kt2 rays 
both land at the same point — zo ^ ZQ. This proves that the t[ and t2 rays land at the 
same point, different from z\, when c ^ M . A straightforward continuity argument 
now proves the same statement for all c G Wj>. 
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Thus we obtain the required region S' C S. As in §2, it will be convenient to 

complete the complex plane by adjoining a circle of points at infinity. Note that the 

boundary of S' within this circled plane © consists of two arcs of length £/2n at 

infinity, together with two ray pairs and their common landing points. As we traverse 

this boundary once in the positive direction, the image under fon evidently traverses 

the boundary of S twice in the positive direction. Using the Argument Principle, it 

follows that the image of S' is contained in 5 , and covers every point of S twice, as 

required. Thus fori\s' must have exactly one critical point, which can only be c. • 

Thus we have an object somewhat like a quadratic-like map, as studied in [DH3]. 

Note however that S' is not compactly contained in S. 

Definition. — We will say that / is V-renormalizable if / ( 0 ) = c is contained in 

the closure S , and furthermore the entire forward orbit of c under the map fon is 

contained in S . If this condition is satisfied, and the orbit of c is also bounded so that 

c G M , then we will say that c belongs to the "small copy" V * M of the Mandelbrot 

set which is associated with V. (This terminology will be justified in 8.2. If the orbit 

is unbounded, then we may say that c belongs to a V-renormalizable external ray.) 

4/1 S '1/5 

1/5 

/4/15 

FIGURE 17. Julia set for the center point of the period 12 satellite com
ponent of Figure 12 (the point c of Figure 15), and a detail near the 
critical value c, showing the first eight of the sectors of the dynamic plane 
which must be pruned away to leave the small Julia set associated with 
'P-renormalization, with V as in Figures 12, 15. (Here the right hand figure 
has been magnified by a factor of 75.) This can be described as the Julia 
set of Figure 13 (left) tuned by a "Douady rabbit" Julia set. 

Closely associated is the "small filled Julia set" K' = K{fon\St) consisting of all 

z € S such that the entire forward orbit of z under fon is bounded and contained in 

S . (Compare Figure 17.) Thus the critical value / ( 0 ) = c belongs to K' if and only 
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if / is 'P-renormalizable, with c E M. As in the classical Fatou-Julia theory, c belongs 

to K1 if and only if K' is connected. 

V 
T 

FIGURE 18. The sector S and the thickened sector T. 

In order to tie this construction up with Douady and Hubbard's theory of polynom

ial-like mappings, we need to thicken the sector S, and then cut it down to a bounded 

set. (Compare [M3].) We exclude the exceptional special case where c is the root 

point r-p. Thus we will suppose that the periodic point z\ E dS is repelling. Choose a 

small disk D£ about z\ which is mapped univalently by f°n and is compactly contained 

in f°n(D£). Choose also a very small 77 > 0 , and consider the dynamic rays with angle 

t— — TJ and t+ + 77. Following these rays until they first meet D£, they delineate an 

open region T D S U De in C. (Compare Figure 18.) Now let T' be the connected 

component of fc~n(T) which contains Sf. It is not difficult to check that T C T , and 

that f°n carries X" onto T by a proper map of degree two. 

To obtain a bounded region, we let U be the intersection of T with the set {z £ 

C ; GK(z) < 1 } , where GK is the Green's function for K = K(fc). Similarly, let U' 

be the intersection T' with {z ; GK(z) < l / 2 n } . Then U' is compactly contained in 

E7, and f°n carries U' onto U by a proper map of degree two. In other words, fcn\U' 

is a quadratic-like map. 

Evidently the forward orbit of a point z E U' under / ° n is contained in U' if and 

only if z belongs to the small filled Julia set K'. In particular, for c E M , the map fc 

is P-renormalizable if and only if c G K', or if and only if K' is connected. 

If these conditions are satisfied, then according to [DH3] the map f°n restricted 

to a neighborhood of K' is "hybrid equivalent" to some uniquely defined quadratic 

map fC', with d E M. Briefly, we will write c = V * c ' , or say that c equals V tuned 

by d. Douady and Hubbard show also that this correspondence 

d v+V*d 

is a well defined continuous embedding of M \ { 1 / 4 } onto a proper subset of itself. 

As an example, as d varies over the hyperbolic component H{{o}} which is bounded 

by the cardioid, they show that V * d varies over the hyperbolic component Hp. 

It is convenient to supplement this construction, by defining the operation V, d 

V * d in two further special cases. If d is the root point 1/4 = ^ { { 0 } } ° f then we 
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define 

V * (1 /4 ) = rv 

to be the root point of the P-wake. Furthermore, if V = { { 0 } } is the zero orbit 

portrait, then we define { { 0 } } * to be the identity map, 

{ { 0 } } * c ' = c' 

for all d G M. With these definitions, we have the following basic result of Douady 

and Hubbard. 

Theorem 8.2 (Ttoning). — For each non-trivial orbit portrait V, the correspondence 

c H-> V * c defines a continuous embedding of the Mandelbrot set M into itself The 

image of this embedding is just the "small Mandelbrot setv V * M C M described 

earlier. Furthermore, there is a unique composition operation V, Q I-> V * Q between 

non-trivial orbit portraits so that the associative law is valid, 

(V *Q)*c = V*(Q*c) 

for all V, Q and c'. Under this * composition operation, the collection of all non-

trivial orbit portraits forms a free (associative but noncommutative) monoid, with the 

zero orbit portrait as identity element. 

The proof is beyond the scope of this note. 

We can better understand this construction by introducing a nested sequence of 

open sets 

S = S^ D S' = SW D S(2) D • • * 

in the dynamic plane for / , where g ^ 1 ) is defined inductively as nf~~n(S^) for 

k > 1. Thus S = is bounded by the dynamic rays of angle t- and £+, together 

with their common landing point z\. Similarly, is bounded by dS^ together 

with the rays of angle t- + £/2n and t+ — t/2n, together with their common landing 

point, which is an n-fold pre-image of zx. If c G so that is a 2-fold branched 

covering of S^1), then has two further boundary components, namely the rays of 

angle t- + £/22n and t- -h £/2n — £/22n and their common landing point, together 

with the rays of angle t+ — £/2n + £/22n and t+ — £/22n and their common landing 

point, for a total of 4 boundary components. Similarly, if c G S^2\ then has 8 

boundary components, as illustrated in Figure 17. 

The angles which are left, after we have cut away the angles in all of these (open) 

sectors, form a standard middle fraction Cantor set /C, which can be described as 

follows. Let <fi be the fraction 1 — 2/2n. Start with the closure [£_, £+] of the charac

teristic arc for V, with length £. First remove the open middle segment of length 4>£, 

leaving two arcs of length £/2n. Then, from each of these two remaining closed arcs, 

remove the middle segment of length (f>£/2n, leaving four segments of length £/22n, 

and continue inductively. The intersection of all of the sets obtained in this way is 

the required Cantor set /C C [£_, £+] of angles. These are precisely the angles of the 
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dynamic rays which land on the small Julia set dK' (at least if we assume that these 

Julia sets are locally connected). 

There is a completely analogous construction in parameter space, as illustrated in 

Figure 15. As noted earlier, parameter rays of angle t- and t+ land on a common 

point r p , and together form the boundary of the V-wake. Similarly, the parameter 

rays of angle t- -f £/2n and £+ — £/2n must land at a common point. These rays, 

together with their landing point, cut Wp into two halves. For c in the inner half, with 

boundary point rp , the critical value of fc lies in Sf — S^x\ while for c in the outer 

half, this is not true. Similarly, for each pair of dynamic rays with a common landing 

point in OK, forming part of the boundary of S^k\ there is a pair of parameter rays 

with the same angles which have a common landing point in dM and form part of the 

boundary of a corresponding region in parameter space. The basic property is 

that c G Wpk^ if and only if c belongs to the corresponding region in the dynamic 

plane for fc. 

Dynamically, the Cantor set /C C R / Z can be described as the set of angles in 

[*_, t- +£/2n] U [*+ -£/2n, t+] 

such that the entire forward orbit under multiplication by 2n is contained in this set. 

Evidently the resulting dynamical system is topologically isomorphic to the one-sided 

two-shift. Thus each element t G K can be coded by an infinite sequence (60, b\, • •) 

of bits, where each bk is zero or one according as 2nht belongs to the left or right 

subarc. We will write t = V* (&0&1&2 * * * )• Intuitively, we can identify this sequence of 

bits bi with the angle .bob\b2 * • * = b^/2k+1. However, some care is needed since the 

correspondence .bob\b2 * • • •->• V * (6061 • • • )has a jump discontinuity at every dyadic 

rational angle, i.e., at those angles corresponding to gaps in the Cantor set /C. Thus 

we must distinguish between the left hand limit V * OL— and the right hand limit 

V * a + when a is a dyadic rational. 

With this notation, the angles of the bounding rays for the various open sets S^k\ 

or for the corresponding sets in parameter space, are just these left and right 

hand limits V * a ± , where a varies over the dyadic rationals; and the composition 

operation between non-trivial orbit portraits can be described as follows: / / Q has 

characteristic arc (£_,£+), then V * Q has characteristic arc (V * V * £+)• For 

further details, see [D3]. 

9. Limbs and the Satellite Orbit 

Let V be a non-trivial orbit portrait with period p > 1 and ray period rp > p. 

(Thus V may be either a primitive or a satellite portrait.) Recall that the limb M-p 

consists of all points which belong both to the Mandelbrot set M and to the closure 

W-p of the V-wake. By definition, a limb MQ with Q ^ V is a satellite of M p if its 
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root point TQ belongs to the boundary of the associated hyperbolic component Hp. 

(See 6.4.) We will prove the following two statements. (Compare [Hu], [S0], [S3].) 

Theorem 9.1 (Limb Structure). — Every point in the limb Mp either belongs to the 

closure Hp of the associated hyperbolic component, or else belongs to some satellite 

limb MQ. 

(For a typical example, see Figure 12.) For any parameter value c in the wake Wp, 

let 0(c) = Op(c) be the repelling orbit for fc which has period p and portrait V. 

Clearly this orbit 0(c) varies holomorphically with the parameter value c. 

Corollary 9.2 (The Satellite Orbit). — To any c G Wp there is associated another orbit 

0*(c) = 01p(c), distinct from 0(c), which has period n — rp and which also varies 

holomorphically with the parameter value c. As c tends to the root point rp, the 

two orbits 0(c) and 0*(c) converge towards a common parabolic orbit of portrait V. 

{Compare 4.1.) This associated orbit 0*(c) is attracting if c belongs to the hyperbolic 

component Hp C W-p, indifferent for c G dHp, and is repelling for c G Wp \ Hp, 

with portrait equal to Q if c belongs to the satellite wake WQ . 

As an example, both statements apply to the zero portrait, with M { { 0 } } equal to 

the entire Mandelbrot set, with W { { o } } = C \ ( l / 4 , +00), and with # { { 0 } } bounded by 

the cardioid. In this case, for any c G W^{{o}}> the orbit O(c) consists of the beta fixed 

point (1 + \ / l — 4 c ) / 2 while (D*(c) consists of the alpha fixed point (1 — y/1 — 4 c ) / 2 , 

taking that branch of the square root function with \ /T = 1. 

Proof of 9.1. — For each c G Hp let 0*(c) be the unique attracting periodic orbit. 

By the discussion in §6, this orbit extends analytically as we vary c over some neigh

borhood of the closure Hp, provided that we stay within the wake Wp. Furthermore, 

this orbit becomes strictly repelling as we cross out of Hp. Therefore we can choose 

a neighborhood N of Hp which is small enough so that this analytically continued 

orbit (D*(c) will be strictly repelling for all c G N D Wp \ Hp. If c also belongs to 

the Mandelbrot set, so that c G i V D Mp \ Hp, it follows that at least one rational 

dynamic ray lands on the orbit 0*(c); hence there is an orbit portrait Q = Q(c) of 

period n associated with (9*(c). Choosing the neighborhood N even smaller if neces

sary, we will show that the rotation number of Q(c) is non-zero, and hence that this 

portrait Q(c) is non-trivial. In other words, we will prove that c belongs to a limb 

MQ which is associated to the orbit 0*(c). 

First consider a point c which belongs to the boundary dHp. Then 0*(c) is an 

indifferent periodic orbit, with multiplier on the unit circle. Consider some dynamic 

ray Hff which has period n, but does not participate in the portrait V, and hence 

does not land on the original orbit 0(c). Such a ray certainly cannot land on 0 * ( c ) , 

for that would imply that £>*(c) was a repelling or parabolic orbit of rotation number 

zero. However, for c in the boundary of Hp the orbit 0 * ( c ) is never repelling, and 
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is parabolic of rotation number zero only when c is the root point of Hp, so that 
(9*(c) = 0(c). Since we have assumed that the ray IZf does not land on (9(c) , 
it must land on some repelling or parabolic periodic point which is disjoint from 
0*(c). In fact it must land on a repelling orbit, since a quadratic map cannot have a 
parabolic orbit and also a disjoint indifferent orbit. (Compare §6.) Now as we perturb 
c throughout some neighborhood of c it follows that the corresponding ray still lands 
on a repelling periodic point disjoint from 0*(c). Since 0*(c) has period n, but no 
ray of period n can land on it, this proves that the rotation number of the associated 
portrait Q(c) is non-zero, as asserted. 

Let X be any connected component of Mp \ Hp. Since the Mandelbrot set is 
connected, X must have some limit point in dHp. Therefore, by the argument above, 
some point c G X must belong to a wake WQ associated with the orbit 0*(c). Since 
the portrait Q has period n, the root point VQ of its wake must lie on the boundary 
of some hyperbolic component H' which has period n and is contained in W-p. In 
fact, for suitable choice of c, we claim that H' can only be Hp> itself. There are 
finitely many other components of period n, but these others are all bounded away 
from Hp, while the point c G X can be chosen arbitrarily close to Hp. Thus we may 
assume that WQ is rooted at a point of dHp, and hence is a satellite wake. Since the 
connected set X cannot cross the boundary of WQ, it follows that X is completely 
contained within WQ, which completes the proof of 9.1. • 

Proof of 9.2. — As in the argument above, the orbit 0 * ( c ) is well defined for c in 
some neighborhood of Wp n Hp, and we can try to extend analytically throughout 
the simply connected region Wp. There is a potential obstruction if we ever reach 
a point in Wp where the multiplier An of this analytically extended orbit is equal 
to + 1 . However, this can never happen. In fact such a point would have to belong 
to the Mandelbrot set, and hence to some satellite limb MQ. But we can extend 
analytically throughout the associated wake WQ, taking 0*{c) to be the repelling 
orbit OQ{C) for every c G WQ. Thus there is no obstruction. It follows similarly that 
the analytically extended orbit must be repelling everywhere in Wp \ Hp. For if it 
became non-repelling at some point c, then again c would have to belong to some 
satellite limb MQ, but 0*(c) is repelling throughout the wake WQ. • 

Corollary 9.3 (Limb Connectedness). — Each limb Mp = MnWp is connected, even 
if we remove its root point rp. 

Proof — The entire Mandelbrot set is connected by [DH1]. It follows that each Mp 
is connected. For if some limb Mp could be expressed as the union of two disjoint non-
vacuous compact subsets, then only one of these two could contain the root point rp. 
The other would be a non-trivial open-and-closed subset of M, which is impossible. 
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Now consider the open subset Mp \ {rp } . This is a union of the connected set Hp \ 
{rp}, together with the various satellite limbs MQ, where each MQ has root point 
rQ belonging to Hp \ {rp}. Since each MQ is connected, the conclusion follows. • 

Remark 9.4.. — It follows easily that every satellite root point separates the Mandel
brot set into exactly two connected components, and hence that exactly two param
eter rays land at every such point. For a proof of the corresponding statement for a 
primitive root (other than 1/4) see [Ta] or [S3]. 

Appendix A 

Totally Disconnected Julia Sets and the Mandelbrot set 

This appendix will be a brief review of well known material. For any parameter 
value c, let K — K(fc) be the filled Julia set for the map fc(z) = z2 + c, and let 

G(z) = GK(z)=l^o J L ] o g | r » ( * ) | 

be the canonical potential function or Green's function, which vanishes only on K, 
and satisfies G(f(z)) — 2G(z). The level sets {z; G(z) = Go} are called equipotential 
curves for K, and the orthogonal trajectories which extend to infinity are called the 
dynamic rays TZf", where t G M/Z is the angle at infinity. 

Now suppose that K is totally disconnected (and hence coincides with the Julia 
set J = dK). Then the value G(0) = ( 7 (c ) /2 > 0 plays a special role. In fact there 
is a canonical conformal isomorphism tpc from the open set {z; G(z) > (7 (0)} to the 
region {w; log\w\ > ( 7 ( 0 ) } . The map z i-> f(z) on this region is conjugate under 
ifjc to the map w »—>• w2, and the equipotentials and dynamic rays in the z-plane 
correspond to concentric circles and straight half-lines through the origin respectively 
in the w-plane. In particular, if we choose a constant Go > (7(0), then the locus 
{z; G(z) — Go} is a simple closed curve, canonically parametrized by the angle of 
the corresponding dynamic ray. In particular, the critical value c G C \ K has a well 
defined external angle, which we denote by t(c) G R/Z. Thus if>c(c)/\ipc(c)\ = e2nit(c\ 
and c belongs to the dynamic ray 7Zt(c) — ^t(c) * 

However, for Go — (7(0) this locus {z; G(z) = (7(0)} is a figure eight curve. The 
open set {z\ G(z) < (7 (0)} splits as a disjoint union Uo U U±, where the Ub are the 
regions enclosed by the two lobes of this figure eight. (We can express this splitting in 
terms of dynamic rays as follows. The ray 7?^c) C C \ K has two preimage rays under 
fc, with angles t(c)/2 and (1 + t(c))/2 respectively. Each of these joins the critical 
point 0 to the circle at infinity, and together they cut C into two open subsets, say 
Vo D Uo and V\ D U\. If c does not belong to the positive real axis, then we can choose 
the labels for these open sets so that the zero ray is contained in Vo, and c G V±.) 
We then cut the filled Julia set K into two disjoint compact subsets Kf, — K fl U^. 
These constitute a Bernoulli partition. That is, for any one-sided-infinite sequence of 
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\t(c) 

t(c)/2 

.G=G<c) 

t(c) 

G=G(cT̂  

FIGURE 1 9 . Picture in the dynamic plane for a polynomial fc with c & M , 
and a corresponding picture in the parameter plane. 

bits 60, b±, • • • E { 0 , 1 } , there is one and only one point z E K with flk(z) G Khk for 

every k > 0. To prove this statement, let [/" be the region {z; G(z) < G(c)} and let 

4>b : U Ub be the branch of /_1 which maps 17 diffeomorphically onto Using 

the Poincaré metric for £7, we see that each <pb shrinks distances by a factor bounded 

away from one, and it follows easily that the diameter of the image 

<t>b0 ° 06i 0 • * * 0 <t>bn (U) 

shrinks to zero, so that this intersection shrinks to a single point z E K, as n —» 00. 
Thus each point of J = K can be uniquely characterized by an infinite sequence 

of symbols (60, 61, . . . ) with bj E { 0 , 1 } . In particular, K is homeomorphic to the 

infinite cartesian product { 0 , 1 } N , where the symbol N stands for the set { 0 , 1 , 2 , . . . } 

of natural numbers. We say that the dynamical system (K, fc\i<) is a one sided shift 

on two symbols. 

Similarly, given any angle t E M / Z , if none of the successive images 2k t (mod Z ) 
under doubling is precisely equal to t(c)/2 or (1 + t(c))/21 then t has an associated 

symbol sequence, called its t(c)-itinerary, and the ray TZf lands precisely at that 

point of K which has this symbol sequence. For the special case i = £(c), this symbol 

sequence characterizes the point c E K, and is called the kneading sequence for c 

or for t(c). (However, if t(c) is periodic, there is some ambiguity since the symbols 

bn-ii &2n-i5 • of the kneading sequence are not uniquely defined in the period n 

case.) 

If t is periodic under doubling, then the itinerary is periodic (if uniquely defined), 

and the ray lands at a periodic point of K. For further discussion, see [LS], as 

well as Appendix B. 

Here we have been thinking of c = f(0) as a point in the dynamic plane (the 

^-plane), but we can also think of c E C \ M as a point in the parameter plane (the 
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c-plane). In fact Douady and Hubbard construct a conformal isomorphism from the 
complement of M onto the complement of the closed unit disk by mapping c E C \ M 
to the point ipc(c) = exp(GK(c) + 2nit{c)) G C \ D . Thus they show that the value 
of the Green's function on c and the external angle t{c) of c are the same whether c 
is considered as a point o / C \ K(fc) or as a point o / C \ M. In particular, the point 
c E C \ M lies on the external ray ^ ^ c ) for the Mandelbrot set. 

Appendix B 

Computing Rotation Numbers 

This appendix will outline how to actually compute the rotation number g / r of a 
periodic point for a map fc with c $ M. Let r = t(c) 6 E / Z be the angle of the 
external ray which passes through c. We may identify this critical value angle with a 
number in the interval 0 < r < 1. The two preimages of r under the angle doubling 
map ra2 : K / Z —» 1R/Z separate the circle M/Z into the two open arcs 

/ ( 0 ) = Jr(0) = ( ^ , 0 and / (1 ) = JT(1) = ( l , ^±Tj . 

(We will write IT instead of I whenever we want to emphasize dependence on the 
critical value angle r . ) For any finite sequence b0, b±, . . . , bk of zeros and ones, let 
I (bo, &i, . . . , bk) be the closure of the open set 

/(&o, bu bk) = / ( 6 0 ) D m : 7 1 / ( 6 i ) n - - - n m ^ / e / ( 6 f e ) 

consisting of all t E M / Z with m^it) E /(&*) f°r 0 < i < k. (Caution: This is not the 
same as the intersection of the corresponding closures m^"t/(6i), which may contain 
additional isolated points.) An easy induction shows that /(feo? &i> • • • ? bk) is a finite 
union of closed arcs with total length l/2fe+1. If a = (6o, &i, . . . ) is any infinite 
sequence of zeros and ones, it follows that the intersection 

7(<7) = P | T ( 6 o , &i, . . . , & * ) 
k 

is a compact non-vacuous set of measure zero. For each angle t E ffi/Z there are two 
possibilities: 

Precritical Case. — If t satisfies m ^ t ) = r for some i > 0, then there will be two 
distinct infinite symbol sequences with t E I (bo, 6i, 62 • • • )• In this case, the associated 
dynamic ray TZf does not land, but rather bounces off some precritical point for the 
map fc. (Compare [GM].) 

Generic Case. — Otherwise there will be a unique infinite symbol sequence with 
t E /(60, b\, - • • ) . The corresponding ray TZf will land at the unique point of the 
Julia set for fc which has this same symbol sequence, as described in Appendix A. In 
particular, if t is periodic under doubling, then 7Z^ must land at a periodic point of 
the Julia set, possibly with smaller period. 
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Lemma BA (Symbol Sequences and Rotation Numbers). — For any symbol sequence 

a = (bo, 6 1 , . . . ) G { 0 , 1 } N which is periodic of period p, the map m^* on the compact 

set Ir(&) C M / Z has a well defined rotation number rot(&o, • • • •> &p-i ; T ) € IR/Z which 

is invariant under cyclic permutation of the bits bi. This number increases monoton-

ically with r, and winds bo + • • • + &p-i times around the circle as r increases from 0 

to 1. 

To see this, we introduce an auxiliary monotone degree one map which is defined 

on the entire circle and agrees with m02 on IT(a). (Compare [ G M ] . ) By definition, a 

monotone degree one circle map ip : IR/Z -> IR/Z is the reduction modulo Z of a map 

\I> : M. —)• IR which is monotone increasing and satisfies the identity &(u-\-l) = + 

Such a \I>, called a K/fc of is unique up to addition of an integer constant. The 

translation number of such a map \P is defined to be the real number 

Trans(tf) = lim (*ok(u) - u) Ik. 

This always exists, and is independent of u. The rotation number r o t ( ^ ) of the 

associated circle map is now defined to be the image of this real number Trans(\£) 

under the projection E -> R / Z . This is well defined, since Trans(^ + 1 ) = Trans(^) + 

1. One important property is the identity 

Trans(*i o * 2 ) = Trans(*2 0 * 1 ) , (9) 

where * i and ^ 2 are the lifts of two different monotone degree one circle maps. If ^ 1 

is a homeomorphism, this is just invariance under a suitable change of coordinates, 

and the general case follows by continuity. 

Given any 6 G { 0 , 1 } , and given a critical value angle r, define an auxiliary mono

tone map &b,r by the formula 

$ùùl^^$$ min(2ti, r ) if 6 = 0, 

max(2?x, r ) if 6 = 1 , 

for u between ( r — l ) / 2 and ( r 4- l ) / 2 , extending by the identity &(u + 1) = <&(u) 4-

for u outside this interval. (See Figure 20.) Note that 1(b) is just the set of poinl 

on the circle where the associated circle map 4>b,T is not locally constant, and the 

<f>b,r(u) = %u (mod Z ) whenever u G 1(b). 

For any symbol sequence a which is periodic of period p, we set $ o - , r equal to th 

p-fold composition 4>&p_ljT o • • • o 3 > 6 0 ? r - (Note that IT(&) is just the set of all poinl 

t G IR/Z such that the orbit of t under the associated circle map </>ajT coincides wit 

the orbit of t under .) This composition is also monotone, with <J>(t + l ) = $(£) + ' 

and therefore has a well defined translation number, which we denote by 

Trans(60? * • * ybp-i] r) = Trans(^0-jT) G IR. 

It follows from property (9) that this translation number is invariant under cycl: 

permutation of the bits &o> &p-i. Since each $&)T(iz) increases monotonicall 
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FIGURE 2 0 . Graphs of $o,r and <l>i,T (with r = 0.6) . 

with r , with 3>&,o(0) = 0 and $£>?i(0) = 6, it follows easily that Trans($a?r) depends 

monotonically on r, increasing from 0 to b0 4- • • • + fep-i as r increases from 0 to 1. 

In other words its image in R / Z wraps &o + * * * + &p-i times around the circle as r 

varies from 0 to 1. By definition, the rotation number rot(6o, - • • •> &p-i ; T ) of on 

the compact set IT(&) is equal to the image of the real number Trans(^CT,T) in the 

circle R / Z . • 

If a map / c has critical value angle t(c) = r, then it is not hard to see that 

rot(&o> • • 9 bp-i ; r ) coincides with the rotation number as defined in 2.12 for the 

orbit with periodic symbol sequence 6 o v » &p-i = (fro, • • • ? &p-i> • • •, frp-i, • • • ) , so 

long as at least one rational ray lands on this orbit. (Compare [ G M , Appendix C].) 

We will use the notation S(q/r) for the orbit portrait with orbit period p = 1 and 

rotation number q/ry associated with the #/r-satellite of the main cardioid. (Compare 

[G].) If V is an arbitrary orbit portrait, then V*S(q/r) can be described as its (q/r)-

satellite portrait (See 6.4, 8.2.) 

To any orbit portrait V with period p > 1 and ray period n = rp > p we can 

associate a symbol sequence a = a(V) of period p as follows. Choose any c £ M in 

the wake W-p, and number the points of the /c-orbit with portrait V as ZQ I-> Z\ , 

where ZQ is on the boundary of the critical puzzle piece and z\ is on the boundary 

of the critical value puzzle piece. Now let cr(P) be the symbol sequence for zo, as 

described in Appendix A. This is independent of the choice of c E W-p \ Mp. 

There is an associated satellite symbol sequence a* = cr*(P) of period n = rp, 

constructed as follows. (Compare 9.2.) By definition, the fc-th bit of cr* is identical to 

the fc-th bit of a for k ^ 0 (mod n ) , but is reversed, so that 0 1, when k = 0 (mod n ) . 
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FIGURE 21. The translation number as a function of the critical value 
exterior angle r for the period 3 point with symbol sequence 110 = 
(1 ,1 ,0 ,1 ,1 ,0 , . . . ) . 

Lemma B.2 (Satellite Symbol Sequences). — For every satellite V *S(q'/rl) ofV, the 

symbol sequence a(V * S(q'/r1)) coincides with the satellite sequence a*(V). The 

translation number Trans(cr(7:>), r ) is constant for r in the characteristic arc Tp, 

while Trans(<j*(7:>),r) increases by + 1 as r increases through T-p, taking the value 

q'/r' (mod Z ) on the characteristic arc of V * S(qf /r'). 

Intuitively, if we tune a map in Hp by a map in Hs{q>/r') then we must replace 

the Fatou component containing the critical point for the first map by a small copy of 

the filled Julia set for a (q1 /r')-rabbit. Here the period p point ZQ for V corresponds 

to the /3-fixed point of this small rabbit, while the period n point ZQ for V * S(q'/r') 

corresponds to the a fixed point for this rabbit. Perturbing out of the connectedness 

locus M , these two points will be separated by the ray pair terminating at the critical 

point. Further details will be omitted. • 

For example, starting with < r ( { { 0 } } ) = 0, where the overline indicates infinite 

repetition, we find that 

a(S(q/r))=a*({{0}})=J=1m$ù, 

while 

(7* (S ( l / 2 ) ) = 01, a*(S(q/3)) = O i l , a*(S(q/4)) = 0111, . . . . 

We can use this discussion to provide a different insight on the counting argument of 

§5. Since Trans(cr*(7:>); r ) increases by -1-1 on the characteristic arc X p , we see that the 

total number of portraits (or the total number of characteristic arcs) with ray period 

rp = n is equal to the sum of bo -\- ' * * -{- bn—i taken over all cyclic equivalence classes 

of symbol sequences of period exactly n. But the number of such symbol sequences, 

up to cyclic permutation, is 2/2(n)/n, and the average value of b0 H— • + &n-i is equal 
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to n/2, since each symbol sequence with sum different from n / 2 has an opposite with 

zero and one interchanged. Therefore, this sum is equal to z/2(ro)/2, as in §5. 

Examples. — (Compare Figure 4 ) . Here is a list for all cyclic equivalence classes of 

symbol sequences of period at most four: 

Trans(0; r ) is identically zero. 

Trans(l; r ) increases from 0 to 1 for 0 < r < 1, taking the value q/r in the charac

teristic arc for S (q/r). 

Trans( l ,0 ; r ) increases from 0 to 1 as r passes through (1 /3 , 2 / 3 ) , the characteristic 

arc for S(1/2). 

Trans( l ,0 ,0 ; r ) increases from 0 to 1 as r passes through the characteristic arc 

(3 /7 , 4 / 7 ) for the period 3 portrait with root point c = —1.75. 

Trans(l , 1,0; r ) increases by one in the arc (1 /7 , 2 /7) for <S(l/3), and by one more 

in the arc (5 /7 , 6 /7) for S(2/3). (Compare Figure 21.) 

Trans ( l ,0 ,0 ,0 ; r ) increases by one in the arc (7 /15 , 8 /15) , corresponding to the 

leftmost period 4 component on the real axis. 

Trans(l , 1, 0, 0; r ) increases by one in the arcs (1 /5 , 4 /15) and (11/15, 4 /5 ) associated 

with the period 4 components on the l/3rd and 2/3rd limbs. (Figure 12.) 

Trans(l , 1,1,0; r ) increases by one in the arcs (1 /15 , 2/15) and (13/15, 14/15) for 

S(l/4) and <S(3/4), and also in the arc (2 /5 , 3 /5) for the portrait <S(l/2) * <S(l/2) 

with root point —1.25. 
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