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POSITIVE LYAPUNOV EXPONENTS 
FOR LORENZ-LIKE FAMILIES WITH CRITICALITIES 

by 

Stefano Luzza t to & Marce lo V i a n a 

Dedicated to Adrien Douady on the occasion of his 60 T H birthday 

Abstract, — We introduce a class of one-parameter families of real maps extending 
the classical geometric Lorenz models. These families combine singular dynamics 
(discontinuities with infinite derivative) with critical dynamics (critical points) and 
are based on the behaviour displayed by Lorenz flows over a fairly wide range of 
parameters. Our main result states that - nonuniform - expansion is the prevalent 
form of dynamics even after the formation of the criticalities. 

1. Introduction and statement of results 

Numerical analysis of the now famous system of differential equations 

( i ) 
x = —ax -h ay 
y = rx — y — xz 
z = —bz + xy 

for parameter values r « 28, a « 10, 6 « 8/3, led Lorenz [11] to identify sensitive 
dependence of orbits with respect to the corresponding initial points as a main source 
of unpredictability in deterministic dynamical systems. His observations were then 
interpreted by [1], [6], who described expanding ("strange") attractors in certain ge­
ometric models for the behaviour of (1) . Conjecturedly, such an attractor exists also 
for Lorenz' original equations, although this has not yet been proved. 
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202 S. LUZZATTO & M. VIANA 

Further study of (1) revealed that relatively small variations of these parameter 
values may lead to quite different, albeit even more complex, dynamical features. 
Indeed, already as r is increased past r « 30 Poincaré return maps cease to be 
described by the cusp-type pictures corresponding to the geometric models, instead 
they exhibit "folded cusps", or "hooks"; moreover, these hooks persist in a large window 
of values of r (extending beyond r « 50), see [15] for a thorough discussion. Trying 
to understand this folding process and its effect on the behaviour of the flow was, in 
fact, a main motivation behind Hénon's model of strange attractor for maps in two 
dimensions, [7], [8]. In constructing this model he focused on the dynamics near the 
fold, in particular disregarding trajectories which pass close to equilibrium points. 

Here we aim at a more global understanding of the dynamics of Lorenz flows, ac­
counting for the interaction between singular behaviour (corresponding to trajectories 
near equilibria) and critical behaviour (near folding regions). Indeed, we introduce a 
one-dimensional prototype for this problem, largely inspired by the observations in 
[15], which we call Lorenz-like families with criticalities. Apart from their present 
motivation, these families of maps are also of interest in their own right, as models 
of rich nonsmooth dynamics in dimension one. Moreover, in an ongoing work we are 
further pushing the present constructions and conclusions to the context of smooth 
flows in three-dimensional space, cf. comments below. 

Let us begin by explaining what we mean by Lorenz-like families with criticalities. 
We consider one-parameter families fcp„l of real mans of the form 

y?(—x) = (f(x) — a if x > 0 

—<y?(—x) + a if x < 0 

where <p : M + M.+ is smooth and satisfies: 

L I : (f(x) = ift(xx) for all x > 0, where 0 < A < 1/2 and is a smooth map 
defined on K with ^ ( 0 ) = 0 and ^ ' ( 0 ) # 0; 

L2 : there exists some c > 0 such that <p'(c) = 0; 
L3 : <p"{x) < 0 for all x > 0. 

As we already mentioned, this definition is motivated by a fair amount of numerical 
and analytical data concerning the behaviour of Lorenz flows. In particular, the 
condition A < 1/2 corresponds to the fact that, for the parameter region we are 
interested in, the expanding eigenvalue Xu of (1) at the origin is more than twice 
stronger than the weakest contracting eigenvalue Xs (that is \ u + 2A S > 0 ) . 

For small values of the parameter the maximal invariant set of cpa in the interval 
[—a, a] is a hyperbolic Cantor set. Under certain natural conditions, implied by L4 
and L5 below, the entire interval [—a, a] becomes forward invariant as a crosses some 
value ai > 0. This situation persists for a certain range of parameter values and 
corresponds to the class of maps usually associated to the "Lorenz attractor" (see [5], 
[6], [1]). The dynamics of such maps is relatively well understood: they admit an 
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FIGURE 1. Lorenz-like families with criticalities 

invariant measure which is absolutely continuous with respect to Lebesgue and has 

positive metric entropy; they are not structurally stable but are fully persistent in 

the sense that any small perturbation also admits an absolutely continuous invariant 

measure of positive entropy. 

We are mainly interested in studying the bifurcation which occurs as the parameter 

crosses the value a — c. With this in mind, we add two natural assumptions on <p 

which ensure that a Lorenz attractor persists for all a < c. 

Let denote the unique point in (0 , c ) such that ip'^x^) — \ / 2 ; sometimes we 

also write — x ^ . Then we suppose 

L4 : 0 < <Pa[pyft) < <A*( a) < x ^ f ° r a U a € (a2,c\. 

The last inequality implies that given any y with \y\ G [x^^a) there exists a unique 

x e [—a, a] such that (pa(x) = y. Note that x and y have opposite signs. Moreover, 

the first inequality implies that \x\ < x ^ . Our last assumption is 

L5 : \((PcY(x)\ > 2 for all x e [ - c , c ] \ { 0 } such that \(pc(x)\ G [x^c]. 

Observe that this is automatic if (pc(x) = x ^ (because \x\ is strictly smaller than 
XV2> by the previous remarks) and also if <£>c(#) is close to c (then x is close to zero 

and so \((flY(x)\ w | # | 2 A _ 1 « oo ) . 

It is straightforward to check that L1-L5 are satisfied by a nonempty open set of 

one-parameter families, where openness is meant with respect to the C2 topology in 

the space of real maps ifi. Moreover, we shall show that these hypotheses do imply 

that (fa is essentially uniformly expanding for all parameters up to c: 

Proposition 1.1. — Given any a € [ a i , c ] , 

(1) the interval [—a, a] is forward invariant and (p\[—a, a] is transitive 

(2) \{Va)'(x)\ > m i n { \ / 2 , baOzOIXv^) 7 1 - 1 for all x e [ -a , a] such that <pj

a{x) ^ 0 
for every j = 0 , 1 , . . . , n — 1. 

After the bifurcation a = c such uniform expansivity is clearly impossible, due to 

the presence of the critical point in the domain of the map. However, our main result 
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204 S. LUZZATTO & M. VIANA 

states that - nonuniform - expansivity persists, in a measure-theoretical sense, and is 

even the prevalent form of dynamics after the bifurcation. We denote Cj(a) == (fJ

a(c) 
for each j > 1. 

Theorem. — Let {tpa} be a Lorenz-like family satisfying conditions L1-L5. Then there 

are a > 0 and A+ C M such that | ( c i ( a ) ) | > e a j for all a G * 4 + and j > 1 and 

lim 
£-*0 

m{A+ H [c ,c + e]) 

e 
= 1 (m = Lebesgue measure on M). 

Moreover, there is o\ > 0 swcft £/ia£ if a £ A+ then for m-almost all x G [—a, a] we 

ftawe lim sup ^ | l og (<p2)'(x)\ > o\ as n —¥ oo . 

Measure theoretic persistence of positive Lyapunov exponents (outside the class of 

uniformly expanding maps) was first proved by Jakobson [9], for maps in the quadratic 

family fa(x) = 1 — ax2 close to parameter values a satisfying ([12]) 

(2) inf 
jeN 

inf 
jeN 

- c > 0 (c = critical point = 0) . 

There exist today many proofs of this theorem, e.g. [4], [2], as well as generalizations 

to families of smooth maps with finitely many critical points [16], and to families of 

maps in which a single discontinuity coincides with the critical point [14]. A number 

of differences should be pointed out in this setting, between smooth maps and our 

Lorenz-like maps. 

While all proofs of Jakobson's theorem in the smooth context rely in one way or 

the other on the nonrecurrence condition (2) , here we need no assumption on the 

orbits of the critical points for a = c. Instead, we simply take advantage of the strong 

expansivity estimates given by Proposition 1.1 for that parameter value. 

Various technical complications arise in the present situation from the existence of 

discontinuities and of regions where the derivative has arbitrarily large norm. Sev­

eral estimates (including distortion bounds) , which in the smooth case rely on the 

boundedness and Lipschitz continuity of the derivative, now require nontrivial refor­

mulations together with a detailed study of the recurrence near the discontinuity (and 

not only near the critical points). 

Lorenz-like families with criticalities undergo codimension-one bifurcations which 

mark a direct transition from uniformly expanding dynamics (for a < c ) , to nonuni-

formly expanding dynamics (for a G A+), a kind of bifurcation which does not seem 

to be known in the smooth one-dimensional context. The fact that the bifurcation 

parameter a = c is a Lebesgue density point for A+ is related to the strong form of 

expansivity exhibited by ipc. An interesting question is whether some characterization 

of the density points of A+ can be given in terms of special hyperbolicity features of 

the corresponding maps {e.g. uniformly hyperbolic structure on periodic orbits ? ) . 

We remark here that the symmetry inherent in our definition of Lorenz-like maps, 

though partly justified by the symmetry which exists in Lorenz' system of equations, 
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LORENZ-LIKE FAMILIES WITH CRITICALITIES 205 

is not strictly necessary for the proof of the theorem. We carry out the proof in 
the symmetric case in order to simplify the exposition (in particular we shall often 
discuss some construction or result with explicit reference to only one of the critical 
points with the implicit understanding that the same statements apply to the other 
one as well, by symmetry) but all the arguments hold, up to minor modifications, in 
a nonsymmetric setting. 

Closing this section, we observe that the dynamics of the Lorenz flows in the 
parameter range we want to consider cannot be expected to fully reduce to that oi 
one-dimensional maps (as happens for the geometric models of the Lorenz attractor 
mentioned previously). Indeed, the very phenomenon of "folding" which we want 
to encompass in our description, is also an obstruction to the existence of invariant 
foliations transverse to the flow. Nevertheless, drawing on the results obtained in 
this article we are developing, in a forthcoming paper by the same authors [10], a 
natural extension of those geometric models to this wider range of parameters. Such 
Lorenz-like flows are amongst the simplest systems in which behaviour arising from 
the presence of equilibria interacts with dynamical features related to the presence 
of criticalities (homoclinic and heteroclinic tangencies). The understanding of the 
bifurcations taking place in this model is probably a necessary step towards a global 
description of the dynamics of flows, in the spirit of the program proposed a few years 
ago by Palis, see [13]. 

The proof of our main result is organized as follows. In Section 2 we identify a pair 
of conditions on the parameter a which ensure that a G A+. Sections 3 and 4 are then 
devoted to showing that the set of parameters for which such conditions are satisfied 
is large in the sense of the statement of the theorem. The whole global approach is 
inspired on [3]. 

Acknowledgements. — This work was started during the Conference on Real and 
Complex Dynamics held in Hiller0d, Denmark, in the Summer of 1993. It was con­
cluded two years later in the pleasant surroundings of Orsay, during the Colloquium 
Adrien Douady. We are thankful to the organizers of both conferences for a fine 
ambiance. We are also grateful to Colin Sparrow for stimulating conversations, to 
Warwick Tucker for a thorough reading of a preliminary version and for pointing out 
several misprints and to Jacob Palis for his friendship and encouragement. 

2. Positive Lyapunov Exponents 

We begin by proving Proposition 1.1. In doing this we focus only on a E [a2,c]: 
the case a < a2 corresponds to the situation in [6], and it also follows from (simpler 
versions of) these same arguments. 
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206 S. LUZZATTO & M. VIANA 

2 .1 . Proof of Proposition 1.1. — The invariance of [—a, a] is an immediate con­

sequence of lima-^o |</?a(#)| = |<£a(±a)| < < a (recall L4) , and the monotonicity 

of (fa on (—a,0) and (0 , a ) . 

Next, let x and 1 < j < n — 1 be as in part (2) . If |<#j(#)| < x ^ then we have 

l<£?o(<^o(a0)l — V^2- If 1 ^ ( ^ ) 1 > x\/2 then, by L4, there exists a unique z G [—c, c] 

such that <fc(z) = ^(^O ~ ^ ( ^ i - 1 (̂ O)- Moreover, z and </>£-1(#) have the same sign 

(opposite to that of <pJa(x)) and \z\ > | ^ _ 1 ( ^ ) | , because a < c. Using L5 we get 

\ t â ) \ à - \ * ) ) \ = \ v \ à - \ * ) ) v \ à { * ) ) v \ à - \ \ v \ à 

> b ' ( ^ ) ^ ( ^ a ( x ) ) | = | ( ^ ) ' ( 2 ) | > 2 . 

Part (2) follows directly from these remarks and it is easy to see that one even gets a 

somewhat better bound, with \ / 2 replaced by some slightly larger constant 9. 

To prove transitivity, we let t/o, Vb C [—a, a] be arbitrary open sets and show that 

(fa(Uo) D Vo / 0 for some n > 0. Suppose, without loss of generality, that 0 ^ Uo 

and Uo C (—^v^'^V^) (recall L4) . As long as 0 ^ ^ a ( ^ o ) , write = tpJa(Uo) and 

notice that > ^ | ? 7 o | . Thus we must have 0 G (faiU^-i) for some fci > 1. 

Let Ukl denote the largest connected component of <pa(JJki-i) \ { 0 } and observe 

that \Ukl\ > \\<Pa(Ukl-i)\ > l ^ l ^ o l . Suppose first that Ukl CUkl+j = V^(^fciUkl+j = V^(^fci where 

z~ < 0 < z+ are the preimages of zero under < â; observe that Ukl+j = V^(^fciUkl+j = V^(^fci< x as a 

consequence of the first inequality in L4. Then we proceed as before, with Uo replaced 

by Ukl. More precisely, we define Ukl+j = V^(^fci) until the first iterate k<z > k\ for 

which 0 G (fa(Uk2-i):> at that point we take Uk2 to be the largest component of 

<Pa(Uk2-i) and repeat the whole procedure again. As long as Uki C (z~,z+) we have 

ki+i > ki + 2, hence 

\Uki+1\ > 1 ^ ( ^ - 1 ) 1 / 2 > ek^~k<\Uki\/2 > 92\Uk,\/2 

grows exponentially with i. Thus, one eventually reaches some k = kj for which Uk 

contains either {z~, 0) or (0, z+). In the first case (fa(Uk) contains (0, a) D (0, z+) and 

then <fa(Uk) contains (—a, 0) , which ensures that either tpa(Uk) or <p\{Uk) intersect 

Vo. The second case is entirely analogous so the proof of the proposition is complete. 

Now we fix a number of constants to be used in the sequel of our argument. Recall 

that 0 < A < 1/2. We take a0 > 0 and a > 0 such that 0 < 2a < <J0 < log y/2 and 

also choose 

y > 1 and 5, i > 0 such that 1 < 7 + ô + L < 1/2A. 

We will be choosing 5 small with respect to A and t small with respect to 5. We 

remark for future reference that this implies 7 -I- 5 + £ < 1/A — 1. Then, we let 

0 < a < P be small, depending on the previous constants (the precise conditions are 

stated throughout the proof wherever they are required). 
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By conditions L1-L3 there exist /71,772 > 0 such that 

lim 
x->0 

\<p(x)\ 

\x\x = m and lim 
X—¥C 

\tp(x) -v>(c)\ 
\x — c\2 v\v-

For each i = 1,2, we fix constants 77̂  = rji — v and 77+ = 77* + *;, where v is some 

small positive number (once more, precise conditions are to be stated along the way). 

Then we have 

M l : for all x ^ 0 close enough to the origin, 

771 \x\x < <pa(x) + a < Vi\x\ if x > 0, 

-vt\x\x < <Pa(x) - a < -77, \x\x if x < 0, 

and i 7 f A N A - 1 < K ( a : ) | < f J i h A N A - 1 ; 

M 2 : for all x close enough to the critical point c 

71O (X - C)2 < \<Pa(x) - <Pa(c)\ < V2 (x ~ cf 

and 2t72 \X-C\< \(p'a(x)\ < 2rj^\x - c\ 

ana a similar iaci noias ior an x ciose enougn 10 — c. 

Now, for each small e > 0 we let A + , A + , A + c denote the e1- neighbourhoods of 
the origin and of the critical points c and — c, respectively. We define partitions of 
A% and A ± c by writing Ir = [s^e-r,s^e~r+1) and 

A ° = {0} U 1° 

|r|>l 

and A ± c 
: {±C} U 

|r|>l 

à-\ 

where I® = Ir and i"°r = — 7 r , for each r > 1, and the I^c = /J ± c are simply 
the translates of the 7°. We shall always assume that e > 0 is small enough so that 
A + and A:j: c are contained in the regions for which M l and M2 are valid. Moreover, 
we let r£ = [Slogs-1] (here [x] is the integer part of x) and we consider restricted 
neighbourhoods 

A 0 = {0} U 

|r|>re + l 

1° and v\à-\ { ± c } U 

\r\>rt+l 

J±C 

(of radius « eJ+°) of the origin and the critical points. We shall also need an even 
smaller neighbourhood (of radius « £2(t+<*)+^ Q f the origin. So let 

A < = { 0 } U 
|r|>r s+: 

7° rs = [(7 + 25 + 0 logl/e] . 

We shall prove below that the preimages of the critical neighbourhoods A+c are always 

contained in this smallest neighbourhood of the origin, i.e. ^"-"-(Azf:0) C A^ s . 
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2.2 . Breaking the hyperbolic structure. — The loss of expansivity occurring 

after the bifurcation a — c and caused by the critical points entering the domain of 

the map is, in some sense, local: for c < a < c + £, it occurs only in a neighbourhood 

of the critical points of size ey+s <C e. More precisely, any piece of orbit that does 

not intersect A ± c has an exponentially growing derivative. Proving this fact requires 

two preliminary lemmas. First we determine the position and size of the preimage of 

A ± c for a convenient range of parameter values. Then we estimate the accumulated 

derivative of points which pass close to the discontinuity or to the critical points. In 

all that follows we write p = 2_A. 

Lemma 2.1. — If e > 0 is sufficiently small then (s/vt)1^ ^ l^Pc+ei^10)] < te/Wi )1//A 
and 

1 

e 
< \ ^ â \ y ) \ < p 

\v7M±c)\ 
< e 

for every y G AiJ:c and a G [c + pe, c + e]. 

Proof. — By symmetry it suffices to consider the preimages of points in A^_. Using 

the second inequality in M l , 

-vt\Vc+e(c)\X < p â < C - ( c + e)<<pâ-Vl\f7+e(C)\X' 

which immediately gives the first claim. To prove the second one notice that, for any 

y and a as in the statement, y — a = (c — a) — (c — y) G [—e — e7, — pe + ey] and so, 

using M l in the same way as before, 

pe -
£7 > 

<pâ 

l/A 

î\<pâHv)\ 
e + £7 l/A 

?7i 

Combining with the first part of the present lemma, we get 

Vi pe-e^ 

vt e 
< 

c)el°_ 
vel°_ < I 

'rît e + e^ 

Jìi e 

l/A 

The left hand side is close to 1/2, and hence larger than 1/e, if e is small (and v has 

been fixed sufficiently small, recall the definition of rjf). Analogously, the right hand 

side is smaller than e if £ and v are small enough. The proof is complete. • 

Now we define rc — rc(e) > 1 by the condition c)el°_ c)el°_rc. Observe that 

(3) fracle 
e 

v\à 

à-\ 
v\à-\ s 

c)el 

l/A 

by the first part of the previous lemma. Moreover, the second part gives 

(4) ^ ( A ^ ) C I°_rc+1 U / « r c U 7 ° ^ , for every a G [c + pSjC + e]. 

Notice that we have from (3) e~rc < £l/A-7(r7-)l/A which yields 

rc > ( l / A - 7 ) log 1/e + l / A l o g r y f > (7 + 2(J + 0 1 o g l / 6 : 
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if e is small enough. This shows, as promised above, that <^a1(A^c) C A ° s . 

Lemma 2.2. — For every a G [c + ps, c + e] and x G I®, \r\ > 1, 

L) if(pa(x) <£ A ± c then \(v%)'(x)\ > cons t (^e- r )2A_1 > e2a°e^; 
(2) if(fa(x) G &%C, WITH (faix) Ge~rc < £l/A-7(r, 

then 

\<Pa(x)\ > const(e7e-r)A~1 > ea°e0M 

and 

\(<pl)'(x)\ > e ^ - ^ e - W > e2a°e-M. 

Proof. — We consider r, r > 1, the other cases being entirely analogous. For the sake 

of clearness let us split the proof of (1) into three different cases. 

Suppose first that r < rc — 2. Then, in view of (4) , \x — <p~1(±c)\ > | / r+ i | = 

(1 — l/e)erye~r. Thus, by the mean value theorem, 

\<Pa(x) ±c\ >\x- ipZx{±c)\ • m f { ^ ' ( z ) : z G [x^-^c)]} 
> (1 - l/e)e^e-rr)-\(e^e-r+1)x-1 

e~rc < £l/A-7(r7-)l/A 

with kx = (1 - l/e)77f AeA_1. It follows, using M l , M2, 

\(rf.Y(x)\ > \<pL(x)\\<p'(<Pa(x))\ e~r l / r ) î \ {e^e-r+1)x-12<q^xe-rX 
e~rc < £l/A-7(r7-)l/A> fc2e-r(i-2A)cr(i-2A) e~rc < £l/A-7(r7-

where k2 = 27?f AeA_177̂ ~fci and, for the last inequality, we suppose (3 < 1 — 2A and e 

sufficiently small. 

Clearly, exactly the same argument works for \r\ > rc — 2 where we have even 

greater expansion. 

Finally, suppose that (pa(x) G I~c C A + c . Clearly, 

\<Pa(x)\ > / 7 rA(^e - r+1 )A-1 > n r X e ^ e - ^ e ~ r c < £ l / A - 7 - ^ e ^ - V > ea°e0r 

if (3 and e are small. Moreover, by (4) , eye Tc 1 < \x\ < e^e rc+2, which gives 

\Ш(х)ù^$>Шх)\№ а(<р а(х))\e~rl/A-7(r7-)l\e~rc <l /A-7(r7-)l /A(e4e- r *+ 2 )^2r) 
> k5e^Xe(1-X^e~r e~rc < £l/A-7(r7-)l/A> fe5£7A+(l-A)(T-l/A)( - j ( l / A ) - l e - r 

> fc6e7-(1/A)+1e-r > e2aoe~r, 

where fc5 = 2rj1 \e2(x ^rf2 and kQ = k*>(r)1 )(1/A) 1 and we use the relation (3) in the 
fourth inequality. • 

Lemma 2.3. — For any a G [c + pe, c + s] and x G [—a, a], 

(1) if Wi(x)}^ n A ± c = 0 iften |(¥tf)'(aO| > min{e"° , Wa{x)\}e^n-^; 

(2) */, in addition, <p™(x) e A ^ c iften |(v?")'(ar)| > eCT°n. 
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being entirely analogous. If Xj-i G then \{<Pa)\xj-i)\ > e by part (1) of the 

previous lemma. Therefore, we may suppose Xj-i £ A + , that is | # ? - i | > e1Then, 

recall M l , M2 , c — (pc(xj-i) > r]^elfX and so \<p'(<Pc(Bj-i))\ > 2r/iV2£yX' Hence, 

using also (pa(xj-i) — (pc(xj-i) = a — c < s, we get 

e~rc < £l/A-7(r7-)l/A 

l(v>2)'(*i-i)l 

\<P (^afo - l ) ) 

l ^ ' O ^ c O j - l ) ) ! 

> 1 
e~rc < £l/A-7(r7-)l/Ae~rc < £l/A-7(r7-)l/A 

e~rc < £l/A-7(r7-)l/A 
1 - fcre1-^, 

where k*? = fc/(277^772"), with k a Lipschitz constant for cp' on {a: > — £o} (^o is 

some small constant, we take e < e0). Since 1 — A7 > 0, the left hand term is larger 

that e 2 a o / 2 if e is small enough and then the claim follows from L5. Moreover, the 

first statement in the lemma is a direct consequence of our claim (cf. the proof of 

lemma 2.1). 

In order to deduce the second part of the lemma we may suppose ^ e < 7 ° ? 

for otherwise there is nothing to prove. Observe also that if ^(x) G A ^ c then, by 

(3) , (4) , we have K t e ? " 1 ^ ) ) ! > k^e1'1^, with k8 = A e 2 ^ " 1 ) ^ " ) 1 /'A. 

Moreover, by hypothesis, x £ A ± c and so 1 ^ ( ^ ) 1 > r)^\e1+5. Altogether, writing 

kg = Vi^k8, 

\(<PÏ)'(x)\ > \^n(x)\e^(ri-2)\ f, ^ - i { x ) ) i > fc e -y+tf e f f 0 (n-2 ) e l - l /A 

e~rc < £l/A-7(r7-)l/Ae~rc < £l/A-7(r7-)l/Ae~rc < £l/A-7(r7-)l/A 

if e is small enough. 

2 .3 . Recovering expansion. — Now we deal with the expansion losses occurring 

when trajectories pass close to some of the critical points =hc. More precisely, we 

consider points x G A ± c . Assuming that the critical trajectories satisfy (exponential) 

expansivity and bounded recurrence conditions (during a convenient number of iter­

ates, depending on | # ± c | ) , we show that the small value of (f'a(x) is fully compensated 

in the subsequent iterates, during which the trajectory of x remains close to that of 

the critical point (and so exhibits rapidly increasing derivative). 

For each j > 0 let Cj = c?(a) = </?£(=Lc) and denote d(cj) = m i n { | c j | , \CJ ± c\}. In 

what follows e > 0 is fixed and we suppose a G [c 4- pe, c + e]. 

Lemma 2.4. — There exists 9 = 9{(3 — a) > 0 such that the following estimates hold. 

Let x G for some \r\ > r£. Suppose that there is n > \r\/a such that 

(5) e~rc < £l/A-7(r7-)l/A and e~rc < £l/A-7(r7-)l/A for all 1 < j < n — 1. 

Then there exists an integer p = p(x) > 1 such that 
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(1) For all yi,zi E hpa(x), (pa(±c)] and for all 1 < k < p, 

1 

9 

\QBr2j_1e 

l ( ^ ) ' ( y i ) l 
< 0 

(2) v < (2\r\ + !<YloKl/e)/a < n - 1; 

(3) (a) xi -Ci\< 6ye-^ > £2/'T/<re(l-2/J/<.)r; 

(b) xi -Ci\< 6ye-^ > e - / » / ' e l p l - ( a n / 2 ) ; 
(c) | ( ^ + 1 ) ' ( ^ ) l > eao+0p > e0(-p+1). 

Proof. — We suppose x 6 I£ with r > 1, the remaining cases being treated in pre­

cisely the same way. Define p = p(x) > 1 as the maximum integer such that 

(6) \xi -Ci\< 6ye-^ for all 1 < i < p 

where x\ — (fa(x). Recall that we fix ¡3 > a. Therefore, (6) and the first condition 

in (5) ensure that the intervals c*], 1 < i < p , do not contain the origin nor any 

of the critical points ± c . Therefore, (fa : [x\yci] —>• [#¿+1,(^+1] is a diffeomorphism 

for all 1 < i < p . In particular, given any 2/1,21 E [#i,Ci] we have y^Zi E for 

1 < i < p, where yi = tpa(y) and zt = <pa(z). By the chain rule, 

( v S ) ' ( * i ) 
{fka)'{yi) 

k 

ù$^$ù 

xi -Ci\< 6 

<Pa(Vi) 

k 

i=l 

1 + 
xi -Ci\< 6ye-^xi -Ci 

<Pa(Vi) 

and so part (1) will follow if we show that 

(7) 
k 

i=l I 

xi -Ci\< 6ye-^mpù 

<Pa\yi) 

is bounded by some constant depending only on /3 — a. By the mean value theorem 

there exists, for each 1 < i < k some & E [zi.yi] s.t. 

xi -Ci\< 6ye-^$^$^$$ 

xi -Ci\< 6ye-^ 

xi -Ci\< 6ye-^ 

xi -Ci\< 6ye-^ 
xi -Ci\< 6ye-^ xi -Ci 

<Pa(Vi) 

Thus it is sufficient to show that \<Pa(€i) / ip'a(yi)\ < consts_7eQ:1 to conclude that the 

terms of the sum (7) are decreasing exponentially and so the entire sum is bounded 

by a constant independent of k. We fix some small constant e' > 0 independent of s. 

The norm of (Pa(x) is bounded above and below outside (—e',e') by some constant 

C — s u p { | ^ ( x ) | : x £ ( — £ ' , £ ' ) } . For simplicity, and without loss of generality, we 

shall assume that this supremum is actually achieved at s'. Inside (—e',ef) we have 

by the form of the map <p that |<£a'(x)| < ?7+A(A — 1)|#|A~2. 

We distinguish two cases. If [xi,Ci] D (—e',e') = 0 then we have 

\<Pa(Vi)\ > 2 % \Vi -c\> 2^e\e-ai - e^) > 2 % ( 1 - ea~^e~ai 

and so 
ù$** 

^ o ( » i ) | 

<7 

" 2 % ( l - e « - 0 ) 
-e-Tea* 
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as desired. If [^^c^] D (—e',ef) / 0 we have the following estimates. To simplify the 

notation we shall suppose that [x^c*] C ( 0 , c ) . The other case ù^$^ùù$^$$^C (—c, 0) is 

dealt with similarly. Taking e' small and since \xi — c*| < e1 we can suppose that 

[xi,Ci] is contained in the neighbourhood of 0 for which conditions M l and M2 hold. 

We have 

\<Pa(Vi)\ > Wa(ci +e^e~^)\ > tirXia+efe-Py-1 

and 
xi -Ci\< 6ye-^xi -Ci\< 6ye-^xi -Ci\< 6ye-^xi -C6ye-^xi -Ci\< 6ye-^ù$^ùù$ 

This gives 

mp$ù 

ù^^$^ù 
< % + ( A - l ) 

///*89 
xi -Ci\< 6ye-^ 

ù^$^ù^^ù$ 

, A-l 

(d - £ 7 e - p ' ) - 1 < c o n s t ( ^ e - " 1 ) - 1 . 

This follows from the fact that \ci\ > s^e at and therefore 

<Pa(Vi)\ > Wa(ci +e^e~^)\ > tirXia+efe-Py-1ù^$^$$ const (^e-0*)-1 

and that (c* — £Te ^4)/ (c i 4- s^e < const. Indeed this last fact follows from 

observing that 

ci - e^e~ßi > €^e-ai - e^e~ßi > e 7 e " ^ ( l - e^~ß)i) > (1 - ea-ß)s^e~ai 

and similarly 

d + e^e~ßi < (1 + e a - ^ ) ^ e - t t i 

which together give 
xi -Ci\< 6ye-^ 

xi -Ci\< 6ye-^ 
1 - e<*~ß 

1 + ea"0 
= const . 

This proves (1) . 

Starting the proof of (2) , let q = m in{p , n — 1 } . As x £ we have \x — c\ > 

e1e~r and so \x\ — c\\ > r)^e2le~2r. Then, in view of the second condition in 

(5) and the distortion estimate we have just proved, the mean value theorem yields 

r]^e2^e-2r9-1e<J^-^ < \xq - cq\ < e^e~^. Thus 

q< 
2r 4- 7 l o g ( l / e ) + a - log 

a + ß 
< 2r 4 

3 

2 
7 l o g l / e 1° 

as long as e is sufficiently small. Since we also take an > r > [5 log I/e] » 1, we find 

that q < (2an 4- 3^ an/25)/a < n (if a is small), so that it must be q — p. In this 

way we have proved that p < (2r 4- §7 log l/e)/a < n, as claimed in part (2) of the 

lemma. 

Now, by the definition of p we havexi -Ci\< 6ye-^ — cp+i \ > £7e<Pa(Vi)\ > Wa(ci e^e~^. Thus ,us ing part 

(1) in conjunction with the mean value theorem, 

l(v>2)'(*i)l > 
1 \XP+i - Cp+il 

0 Ixi - c j 

5Te-/3(p+l) 

xi -Ci\< 6ye-^ù$^$ù 
> const e-^e2r-ßp. 
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Since |<£>tt(#)| > 2n2 eTe r, we find 

(8) \(<PP+1)'(X)\ > constER-ßP. 

Using part (2) we immediately get 

er-0P > er-§(2r+§7logl/s) > e ( l -M ) r_^ log l / e > ^ ^ l - M ) ^ 

This proves the first statement in part (3) since 

\{<PI+1)'{X) > Const £3/37/2CTe(l-2/3/<r)r > £2/37/«re(l-2/3/«r)r> 

Using part (2) again together with an > r > [(51ogl/s] 3> 1, we get 

ßp< 
2/3 
— 
(7 

§7log l/s 1/ 
454 lan 

1 
2an log l/£ 

4/3 
§7logl/ 

2/3. 
4/// oo 

1 
2« - a n -

2/3 

S 
logl/s 

as long as we take /3 < aSX/S (we also used 0 + 7 + I < 1/A). Replacing in (8), 
and supposing e sufficiently small, we get the second statement in part (3). Finally 
notice that |r| > [51ogl/e] and therefore p < 2/a(r + 7 log l / s ) < (1 + 7/<$)|H and 
lrl > + 7/<^)- therefore we have 

lOo^1)'*»! > conste7*-^ > conste(^7s-ß)p > eß{*+^ 

if /3 is small. This completes the proof of part (3) and of the lemma 

2.4. Proving positive Lyapunov exponents. — We can now state the main 
results of this section, asserting that, under two convenient assumptions on the pa­
rameter a to be stated below, the critical trajectories exhibit exponential growth oi 
the derivative and, in fact, the same is true for most trajectories of ipa. 

As before, we write Cj = Cj(a) = <^(c), for j > 1. For the time being we fix some 
n > 1 and assume that 

CPl (n ) : d(cj) = min{|c, | , \có ± c\} > e7e"aj' for all 1 < j < n. 

and 

EG(n - 1) : | (<^y(c i ) | > for all 1 < j < n - 1. 

Then we define sequences of integers vi, Pi, by v\ = inf{is > 1 : cv G A ± c } and 
(i) pt = p{cUi), as given by lemma 2.4; 
(ii) vi+i = inf{i/ > Vi +pi : cv £ A±c}. 

(CPl(ro) ensures that cUi £ for some |r| < avi < an). We take s > 0 maximum 
such that vs < n. Then either vs < n < vs + ps or i/s < vs + ps <n. Now we define 
Pn = Pi H \~Ps-i in the first case and Pn = pi -\ \-ps-i +Ps in the second one. 
Then we further assume that 

CP2(n) : Pi < j/2 for all 1 < j < n. 

All iterates occurring during a binding period [vi 4- 1, Vi 4- pi] are called bound iterates. 
All others (including returns vi) are called free iterates. 
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Lemma 2.5. — Suppose that some parameter a € [c + ps,c H- e] satisfies CPl(n), 

CP2(n), and EG(n — 1). Then it also satisfies 

E G ( n ) : | ( ^ ) ' ( c i ) | > e"* for all 1 < j < n. 

Proof — We let piy be as above and define qo = z/i — 1 and ^ = — (i/j + 1 ) 

for 1 < i < s — 1. If n > z/s + ps we also write gs = n — (vs + ps). Then 

(9) l(^)'(ci) | = l(vl0)'(ci)| 

^$-1 

¿=1 
l ( ^ + 1 ) ' ( ^ ) | | ( ^ ) , ( ^ + w + i ) | ) | ( ¥ > r , " + 1 ) ' ( c , J | . 

The first factor on the right can be estimated as follows. Since (-Pa(cqo) = cVl G A ± c , 

relations (3) and (4) yield |<^a(c^o)l > const(£Te_rc)A_1 > const e^1/^-1. Hence, using 

also the first part of lemma 2.3, 

I(^°) ' (c i ) | = К ^ У Ы П W ( c 9 „ ) | > c o n s t e ^ o £ i - i / ^ 

(note that the last inequality in L4 implies | c i | < x ^ and so |^a(ci)l > > e*70 

for all a close to c). On the other hand, lemma 2.4(3) and lemma 2.3(2) give, for 

1 < i < s - 1, 

0^+1)'(^§7logl/s) > 
§7logl/s) > and e^o+/3p^7+e^o+/3p^7+5eCr 

For estimating the last factor in (9) , we distinguish two cases. If n > vs + p8 then 

we use lemmas 2.4(3) and 2.3(1) once more and get 

l(Va0_1)'(ci)||((pa)'(cgo)| > const e^vmù^m^ùel(Va0_1)'(ci)||((pa)' 

> c * o + » . min{6-° , |^a(c,a+Pa+1)|}e^^-^ 

> const e^o+/3p^7+5eCr0QS 

(the final bound remains valid when n = vs + ps, i.e. qs = 0 ) . Replacing in (9) , 

(10) l(<*£)'(ci) | > cons t61- (1 /A)+^e^?=o-o^+Z:=1(^o+/3P0) , 

Now, CP2(n) implies (recall that we take a0 > 2a 

i=0 

s 
(To + 0 

s 

i=l 

((To + 0pi) > a0(n - Pn) + (3Pn > a0 
n 

2 
> an 

and the lemma follows by replacing this in (10) and assuming e sufficiently small. 

Suppose now that vs < n < vs + ps. In this case we cannot take advantage of the 

estimates in lemma 2.4(3), as we did before. Instead, we use C P l ( n ) , E G ( n — 1), and 

the distortion estimate in lemma 2.4(1), to conclude that 

\{V>T"'+I)'{cvm)\ = \<p\cVt)\ • \{vTu')'{cv.+l)\ > c o n s t ^ e - ° - const e*("-"->. 

This gives 

( i i ) l(Va) ' (Cl) | > COnst£ 1 - ( 1 / A ) + ' 1 ' -
1-^1/X^e^'1-^1/X^e^'1-^1/X^e^'1-^1/X^e^' 
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Now, 

5-1 

¿=0 
ero Ci + 

s-1 

L 
(<70 + PPi) — OLVS + 0~(n — US) 

> O-Q(Us - PUa) - OLVs + a(n - vs) 
Oro 
2 vs — OLVS 4- <j{n — vs) > an 

as long as we take 2a < ao — 2a. Replacing in (11) (and assuming e small) we get 
the conclusion of the lemma also in this case. Our argument is complete. • 

Proposition 2.6. — Suppose that some parameter a G [c 4- ps, c-\- e] satisfies CPl(n) 
and CP2(n) for all n > 1. Then \(<Pa)r(ci)\ > e < J n for all n > 1. Moreover, there is 
<Ti > 0 such that for any x G [—a, a] satisfying <pJ

a(x) £ {0 , ±c} for all j > 0 we have 
lim sup l o g | ( ^ ) ' ( x ) | ><JI. 

Proof. — The first claim follows directly from the previous lemma, by induction on 
n. Observe that the step n = 1 is an immediate consequence of L4 which, as we 
already remarked, implies |ci | < x^ and so |<^ a(ci)| > A/2 > ea. 

For the second statement we distinguish two cases according as to whether the 
orbit of x accumulates one of the critical points or not. If it does not, the result 
follows immediately from the previous lemmas which guarantee that | ( ^ ) ' ( a : ) | > 
Ce^-7, W j > 0 which immediately implies the result taking a\ < /3. If the orbit of x 
does accumulate one of the critical points then we claim that for every N > 0 there 
exists an n > N such that |(^a)'(^)| > e^n. This claim clearly implies the desired 
statement. Let \i\ < ¡1^ < • • • < fik < N be all the returns of x to A ± c before 
time N and let pi,P2>--- be the lengths of the corresponding binding periods. If 
N > Hk + Pk then we have by the same arguments used in the proof of lemma 2.5 
that |(<£^)'(#)| ^ e ( 3 N which proves the claim in this case. If N e (pk-,Pk)^ just take 
n = jj,k + pk 4- 1 and repeat the argument above. This completes the proof of the 
claim and of the proposition. • 

Remark 2.1. — A refinement of the previous arguments permits to show a stronger 
statement: liminf ^ log |(<^a)'( x)l ^ °~2 for some a2 > 0 and almost every point x. 
First one notes that this holds whenever x satisfies 

d(cpj(x)) = minila (a?) I , \ipt(x) ± cA\ > e~aj 

for all j > 0, by using essentially the same argument as we did above for the critical 
orbits. Then, using the distortion bounds we have been deriving, one shows that for 
Lebesgue almost every point y there is some k > 0 such that x = (fh(y) is as above. 

Finally, we make the simple, yet useful observation. 

Lemma 2.7. — Suppose that some parameter a G [c 4- pe, c 4- e] satisfies CPl(n) and 
CP2(n) for some n > 1. Let 1 < jbti < ¡12 < n be free iterates for the orbit of c. Then 

l ( ^ ™ ) ' ( ^ x ( a ) ) | > m i E [|У«(см(о))|,е^} е/3(/Х2-^1-1) 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000 



216 S. LUZZATTO & M. VIANA 

In particular, if |^a( cAn( a))l > e^> then \ 1-^1/X^e^'1-^1/X^e^'1-^1/X^e^'1-^1/X^ 

Proof — The proof follows easily by arguments almost identical to those used in the 

proof of lemma 2.5. • 

3. Partitions and distortion estimates 

3 .1 . Preliminary distortion estimates. — In this section we set up the ma­

chinery which will enable us, in the next section, to estimate the size of the set of 

parameters satisfying conditions CPl(ro) and CP2(n) for all n > 1. Most of this 

analysis deals with properties of the family of maps 

CJ : UJ0 — > [ - c - £ , c + e] , CJ(a) = <pj(c), 

where c^o = [c + p e , c + e] and j > 1. Our first result implies that the derivatives cfj(a) 

of such maps grow exponentially fast with j , as long as the phase-space derivatives 

{fiy(c1(a)) = (dxiPi)(ci(a)) do. 

Lemma 3.1. — There is r/ > 1 such that if |(<£a)'(ci ( a ))l > e < 7 J for 1 < 3< n> then 

1 
< 

K-+i(a)| 

l t ó ' ( c i ( a ) ) | 
^ù^$ù for all 1 < j < n 

Proof. — The arguments are fairly standard. Using the chain rule we can write 

c'j+1 = da<Pa(cj) + dx(pa(cj)da(Pa(cj-i) H h dxif{
 1 (c2)da(fa(ci) + dxy

3

a{cx)c'x 

and so 

(12) 
c'j+l 

(^a) ' (ci) 

j 

i=l 

1-^1/X^e^' 

1-^1/X $=*$ 

Note that c'x = 1 and \da<Pa{ci)\ — 1 for each i. Hence, our hypothesis implies that 

(12) is bounded from above (in norm) by r\ = e ~ a l -

The bound from below requires a more careful analysis. For the time being we 

restrict to a = c and note that the first two terms in (12) are both positive (L4 gives 

ci > 0 and so da^a(ci) > 0, ^ ( c i ) > °> a n d 9a(fa(ci) • (<£a)'(ci) > ° ) - W e distinguish 

three cases. 

If Wn(c2)\ > V2 and \<p'(c3)\ > V2 (i.e. \a\ < for * = 2 ,3) then 

M3Ì l ( ^ * + 1 ) # ( c i ) | > ( v ^ ) 2 * | ^ ( c i ) l and l ( ^ f e + 2 ) ' ( c i ) | > ( ^ ) 2 f c | ( ^ ) ' ( C l ) | , 

by Proposition 1.1. It follows that 

l<2fc+l<j 

1-^1/X^e^' 

( ^ + 1 ) ' ( C ! ) 
> 

1 
1-^1/ 

1 -
oo 

k=l 
2~K > 0 

and a similar estimate holds for the sum over even indices. Thus the quotient in (12) 

is bounded from below by c[(a) — 1, which proves the lemma in this case. 
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Suppose now that |<^^(c 2 ) | > V2 and |<^a(c3)l < \ / 2 . Clearly, we still have the first 

estimate in (13) and so the sum of all the terms in (12) corresponding to odd values of i 

is again nonnegative. In order to bound the sum of the even terms we use Proposition 

1.1 once more and get (recall that |v?'a(ci)| > y/2 by L4) |(<pf )'(ci)| > (y/2)2k for each 

fc. It follows that 

l<2A;<j 

da<Pa(c2k) 
da<Pa(c2k) > 0 -

oo 

k=2 

y/2)~2k > -
1 

2 ' 

Hence (12) is bounded trom below by 1/2. 
The case |<£>c(c2)| < \ /2 and |<£>c(c3)l > V2 is quite similar to the previous one. The 

second estimate in (13) is valid here and so the total contribution of the even terms 

in (12) is nonnegative. On the other hand, | (<Pa f e _ 1 ) ' (ci) | > ( \ / 2 ) 2 f e - 1 yields 

l<2k-l<j 

da<Pa(C2h-l) 

^lk-1)'{c1) 
> 0 -

oo 

k=2 

V 2 ) 1 " 2 * > -
1 

y/2 

and so (12) is bounded from below by 1 — 1/ / 2 > 1/4. 

Note also that we cannot have |y>a(c2)l < v 2 and |vL( c3)l < v 2 simultaneously, 

by L5 . This means that the lemma is proved for a = c. The general case now follows 

easily. Fix / > 1 large so that J$2i>l e _ < " < 1/10 and take e to be small enough so 

that 

c'j+1(a) 

da<Pa(c2k) 

da<Pa(c2k) 

( ^ c ) ' ( C l ( c ) ) 
< 

10 
for all j < I and all a € [c, c + s]. 

It follows, immediately, that c ^ + 1 ( a ) / ( < ^ ) ' ( c i ( a ) ) > (1 /4 ) - (1 /10) = (3 /20) for all 

j < I. Moreover, for j > I we have 

c',+i (a) 

( ^ ) ' ( d ( a ) ) 

C;+i (a) 
(^)'(ci(a)) 

3 

\i=l + l 

da<Pa(c2k) 

¥>î)'(ci) 

oo 

l+l 

¥>î)'(ci) 
10 

and so cJ + 1 (o ) / (^) ' (c i (o ) ) > (3 /20) - (1 /10) = (1 /20 ) . 

It follows from this lemma that as long as the space derivatives (<fJaY(ci(a)) are 

growing exponentially for all a belonging to some interval u of parameter values, the 

maps Cj : to —>• Cj(uj) are diffeomorphisms, since |c^(a) | > l/rj\(<£>£)'(ci(a))| ^ 0. In 

particular the same is true for the maps <fr : Ci(uj) —> Cj{u) defined by 

x Cj oc{

 x(x) 

for 0 < i < j, even though the space derivatives may not be growing exponentially 

between time i and time j. We have that 

(14) *'(ci(a)) 
\c'Aa)\ 

\c'(a)\ 
a G (v. 

Thanks to this fact we can still estimate the average expansion of the "intermediate" 

images of u. 
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Lemma 3.2. — Suppose that we have |(<^£)'(ci(a))| > eai for all 1 < j < n and 

a £ UJ. Then, for all integers l<k<l<nwe have for some £ £ UJ 

¥>î)'(ci)T)2 

¥>î)'(c 
M 0 ) | < 

¥>î)'(ci) 

|Cfc(a>) <r)2\(<plfk)'(ck(0)¥>î)'(ci)\ 

Proof — Defining * : Ck(uj) —> Q(CJ) as above, we have by the Mean Value theorem 
|c/(a;)| = \$>f(ck(0)\\ck(u)\ for some £ £ UJ. Thus from Lemma 3.1 and the formula 
above for the derivative of 3> we have immediately the statement in the lemma. • 

3 .2 . Partitions. — We shall now use the family of maps {CJ}, together with Lemma 

3.1, to construct two nested families {i^NLNEN and { i £ N } N € N of subsets of UJ0 

••¥>î)'(ci)•ÇEnÇFnÇ En-i Ç . - . Ç w o 

and a monotone sequence {Vn}neN of families of subintervals of UJQ 

--^Vn>- Vn-i > >- {UJ0} (given UJ eVn 3UJ' £ Vn-i with UJ C UJ1) 

as follows. All the parameters belonging to Fn satisfy CPl(n): d(cj) > eie~OL^ for 
a l l 1 < 3 < n - Each Vn is a partition of Fn into intervals. Moreover, En is a union 
of elements UJ £ Vn such that CP2(n): Pj < j/2 for all 1 < j < n and a £ to holds. 
In view of Proposition 2.6, the parameters in = f]neNEn will satisfy EG for all 
times (we shall take A+ = U£Af, where the union is over all small values of e > 0). 

The construction of the objects described above is carried out inductively. As the 
first step of the induction we simply set E0 = Fo = UJO and VQ — {uJo}- Now suppose 
that Fn—ijEn—i, Pri—i have been defined and let us explain how parameters are 
excluded at the nth stage and the partition Vn and the sets Fn, En are constructed. 
For that we consider separately the cases n < r$/a and n > rs/ay see Remark 3.5 
below. In what follows we denote A + = A ^ U A ^ U A + c and A = A 0 U A c U A _ c . 
For r > 0 we let A r denote the eTe _ r-neighbourhood of the origin and of the critical 
points. Recall also that r£ = [Slog 1/e] and rs = [(7 + 2 ( 5 + 6 ) log 1/e]. 

Suppose first that n < rs/a. Given any UJ £ Vn-i with UJ C En-i, there are two 
possibilities: 

1 : If cn{to) does not intersect A[an] then, by definition, UJ is also an element of 

Vn and it is contained in Fn and in En. 

2 : If cn(uj) fl A [ a n ] ^ 0 then parameters have to be thrown out in order that 

CPl(n) hold. We write UJ'€ = c~1(A[an] C\cn(uj)) and we also let UJ" be the union 

of those connected components of UJ \ UJ'€ whose image under cn is completely 

contained in A [ a n ] _ i . Both these sets of parameters are excluded from the 

sequel of the argument: by definition 

En H UJ = Fn H UJ = UJ \ {u'e U UJ") 

and the elements of Vn contained in UJ are precisely the connected components 

of UJ \ (uj'e U UJ'I). We observe, for future reference, that any such component UJ 
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contains an interval of the form 1% with \r\ — [an] — 1. We call this interval 

the host interval of u at the return n. Moreover this immediately implies that 

= Uk Ç Uk-i Ç • • • C CJI C co 

Thus we have for each k < rs/a and CJ € Vk a nested sequence of intervals 

eu = Uk Ç Uk-i Ç • • • C C J I C co>o with c î 6 7^, i = 0 , . . . , k 

and a sequence of escape times 

= Uk Ç Uk-i Ç • • • C CJI C co>o 

defined by the fact that the situation described in case 2 occurs precisely at these 

times. The corresponding components ujVi € VVi are called escaping components. 

By definition we also call the original parameter interval U>Q = (c + s/p, c + e) an 

escaping component. Notice that case 1 and 2 describe the only situations which can 

occur before time rs/a. Since case 1 does not involve making any changes to existing 

parameter intervals (i.e. UJI — t^ - i if Q O - ^ - I ) satisfies the conditions described in 1) 

we have ujVi+1 C = Uk Ç Uk-i = ujVi+1-2 = • • • = u)Ui. As we shall see this is not true in 

general for iterates larger that rs/a. 

Now we treat the case n > rs/a. In order to define Vni Fn, En, we need a 

refinement of the partitions { / * } , * = 0, dbc, introduced in the previous section: for 

each \r\ > 1 we let { / * z : 1 < / < r2} be the partition of 7* into r2 intervals of equal 

length. We suppose that / is increasing in the same direction as r, i.e. as we get closer 

to the singularity or the critical points. As above we associate to every u € Vn~i 

with u C En—i a nested sequence of intervals UJ = con-i C • • • C o;0 and a sequence of 

escape times 

1 < u\ < - - • < vi < rs/a < Z//.J-1 < • • • < vs < n — 1. 

Each u>i, 0 < i < n — 1, is just the element of Vi that contains u. For j < I the Vj 
are exactly the escape times described above. However, for / < j < s — 1 we also have 

between two consecutive escape times a (possibly empty) sequence of return times 

= Uk Ç Uk-i Ç • • • C CJI C co>o = Uk Ç Uk-i Ç • • • 

and similarly for j — s we have 

Vs < /¿0,5 < < V>q{8),8 <n~l. 

Moreover to each such sequence of return times is associated a sequence of integers 

= Uk Ç Uk-i Ç • • • C CJI C co>o 

As part of the inductive step of our construction we also explain when and how 

I/«+l>/igW+l,« and Pq(s) + l,s 5 are introduced, assuming that such sequences are defined 

for all iterates up to n — 1. We consider four cases separately: 

3 : If q(s) > 0 and £^(s)+i,s < n < ßq(s),s+Pq(s),s . then uj e Vn and LO C En C Fn. 
Moreover, we leave the sequences unchanged. 
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4 : If cn(oj) does not intersect A±c U A°a or if this intersection is completely 
contained in one of the extreme subintervals of A±c U A£ , i.e. 

c „ M n (A±c u < ) ç 4(r.+1),(P.+1). u/|(cr£+1))(re+1)2, 

then once more we let UJ G Pn and UJ C i£n C Fni and we keep the sequences 
unchanged. 

From now on we assume that neither 3 nor 4 hold. 

5 : If CU(UJ) intersects A±c U A°s but does not properly contain any subinterval 
ifi with \r\ > r£ or 7°z with \r\ > rs, we set UJ G Vn and UJ C Fn. Moreover, 
we let jJ>q(s)+i — n and Pq(s)+i — min{p(cn(«)) • « £ <̂ }5 recall Lemma 2.4, if 
cn(oj) n A°a = 0 , and = Uk Ç Uk-i Ç • = 0 otherwise. We say that n is an (inessential) 
return for u; G Pn and that = Uk Ç Uk-i Ç co>o is the length of the associated binding 
period. Note that cn(uj) is contained in the union of at most two JT*m. We 
shall prove in Lemma 3.4 that CPl(n) is automatically satisfied in this case. 
Then we take UJ C En if all a G UJ satisfy CP2(n) and En HUJ = 0 otherwise. 

6 : If cn(uj) intersects A±c U A ^ and contains some J^c with \r\ > r£ or I®s with 
\r\ > rs, we carry out the following construction. We start by excluding the 
parameters which do not satisfy CPl(n) . More precisely, we let 

= Uk Ç Uk-i (AUkÇcm I = Uk Ç Uk-

and UJ" be the union of the connected components of UJ \ uj'e whose image under 
cn contains no subinterval /*>m. By definition FnC)uj — UJ — uj\(ujfeUuj"). Then 
we partition UJ into subintervals UJ = (Ur,iUr,i) U ( U ^ ) where the first union 
runs over some subset of pairs (r,I) with r£ < \r\ < [an] or rs < \r\ < [an] 
(depending on whether n is a return to A±c or A0), the second one involves 
at most two u^, and 

a : cn(uJr,i) D I*i but contains no other interval I*m (thus it is contained 
in the union of I*t with the two 7*m adjacent to it). We call 7*z the 
host interval associated to ujr,i at time n. 

b : cn(uji) is disjoint from A±CUA^ but contains some 1^ with |r| = r£ or 
Zj?! with \r\ = rs. Again we call this interval the host interval associated 
to ¿¡5 and time n. 

The elements of Vn contained in UJ are precisely these ujTyi and UJI. For UJTJ we 
let liq(8)+i =nandpgW+1 = min{p(cn(a)): a Guv,/} if* = ±candpgW+i = 0 
if * = 0. In particular n is an essential return time for each uorj G Vn- For 
the intervals UJI described in 6b we let vs+i = n. In particular n is an escape 
time for UJ G Vn and these intervals are escaping components. Finally, En P» UJ 
consists of the union of the intervals described above which satisfy CP2(n). 

This completes the inductive definition of the sets En,Fn, the partitions Vn, and 
the sequences Vj, /JLJ , and pj. 
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Remark 3.1. — Host intervals can give some indication as to the type of situation we 

are dealing with. So, if u G V% has, at time i, an associated host interval of the form 

J°, \r\ = [an] — 1 then this implies that i = Vj is an escape time and that LJ is created 

at time i/j as a consequence of a situation like the one described in case 2. Similarly 

if the host interval is of the form Jj? l 5 \r\ = rs or J ^ , |r| = r£ then i = I/J is also an 

escape time as described in 6b. On the other hand if the host interval is of the form 

7 ° , with \r\ > rs + 1, 1 < I < r 2 or iff with \r\ > r£ + 1, 1 < I < r 2 then i = for 

some fc, j and fikj is either an inessential return as described in case 5 or an essential 

return as described in case 6a. 

A main difference between the latter two cases is that for essential returns we have 

upper and lower bounds for the length of c M f c i (u) in terms of the associated host 

interval. More precisely, recall case 6a, c/jtk^ (u) contains some I*t and is contained in 

the union of I*t and its two adjacent intervals of the form i £ m . Therefore we have 

e7e~r/r2 < | c^ f c . < 10eye~r/r2. In the case of inessential returns we have the 

same upper bound but no a priori lower bound. 

Remark 3.2. — We will sometimes talk about the sequence of escape times and re­

turns associated to a single parameter value a or a subinterval a/ C cv G Vn which 

does not itself necessarily belong to any partition (although we will always consider 

subsets of intervals which do belong to some Vn). In these cases the sequences are 

just those associated to the the interval LJ G Vn to which a or u' belong. 

Remark 3.3. — We will frequently talk about returning situations or escape times at 

time n for some interval u>n_i G Vn-i (and not in Vn). In these cases we will just be 

referring to the fact that c n ( u ; n _ i ) intersects a neighbourhood of the origin or of the 

critical points in a way which is described in one of cases 2,5 or 6 above. Therefore, 

at time n some action may be required (parameter exclusions, subdivision of c^ n_i 
into smaller intervals) which yields the final classification of the surviving pieces of 

LJn-i into pieces (now belonging to Vn) for which n is either a return (essential or 

inessential) or an escape time. 

Remark 3.4. — Notice that the definition of the binding period p = P(UJ) given here 

does not completely coincide with the definition given in Lemma 2.4 for a fixed pa­

rameter value a. However all the estimates obtained in that lemma continue to hold 

for the slightly shorter binding period defined here. 

To simplify the exposition we will often refer to a generic host interval of the form 

I*t. This will include the host intervals which occur in case 2 which, strictly speaking, 

are of the form I*. Moreover we shall often suppose that r > 0 since most of the 

times we are only interested in the norm of r and not its sign. 

Remark 3.5. — The condition n < rs/a means that A [ a n ] D A r s and so 

cn(u) n A ± c = 0 for all to G Vn. 
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Indeed, cn(a) G A ^ c would imply cn_ i (a ) G I® with \r\ « rc « ( ( 1 / A ) — 7) l o g s - 1 » 

(2(7 + 5) + t ) l o g £ - 1 « rs, recall (3) and (4), and so cn_ i (a ) G A ^ . This is a 

contradiction, as such a parameter a would have been excluded already at time n — 1. 

By construction (and the remark we have just made) all the elements of Vn obtained 

in that case contain some interval ij? with |r| = [an]. Combined with Lemma 2.3 this 

gives 

l ( ^ ) ' ( c i ) | > e " ° ' for all 1 < j < n and a G Fn. 

Finally, rs/a can be made arbitrarily large by fixing e and a sufficiently small. 

Remark 3.6. — We shall show below that for u G Vn the distortion 

sup{ | (^) ' (Cl (a) ) / (^) ' (c i (6) ) | : a,b e a,} 

is bounded above by some constant. It is crucial to the overall argument that this 

constant is independent of u as well as of n. The proof of this fact relies on the 

exponential growth of the intervals CJ(LJ) as well as on the fact that Cj{u) is small 

compared to its distance from the critical points and the discontinuity, where the 

distortion explodes. This is why no action is required in case 5 above whereas we 

need to cut LJ into smaller pieces in case 6. 

Throughout the rest of the paper we will use C (resp. C) to denote a generic small 

(resp. large) positive constant independent of e, u or the iterate under consideration. 

Lemma 3.3. — Letuj G Vn-\, uo c En-\ and suppose thatn is a return for LU G Vn-\. 

Let v < n — 1 be the last essential return or escape time of u before time n and let 

I*t be the host interval associated to v. Then we have the following estimates. 

(1) / / * — 0, i.e. if v is a return or escape time associated to A 0 , and 

(a) n = v -h i is a return to A±c: \cn(u>)\ > £1_K; 

(b) n > v + 1 is a return to A0 : 

k n M I > C(e^e-r)2X/r2 > enf-P/<re-(i-PMr. 

(c) n > v + 1 is a return to A ± c : 

= Uk Ç Uk-i Ç • • • C CJI C co>o = Uk Ç Uk-i Ç • • • C CJI C co>o = Uk Ç Uk-i Ç 

(2) If * = ±c, i.e. if v is a return or an escape time associated to A ± c , and 

re ^ r ^ (7 + <5 + ¿1 log 1 /£ then n is necessarily a return to A0 and 

e ^ r ^ (7 + <5 + ¿1 log 1 /£ te ^ r ^ (7 + <5 + ¿1 lo 

(3) If * = ±c and r > (7 + S + ¿) log 1/e and 

(a) n is a return to A u : 

M " ) | >e2^+ô+2^^e'20r^/r2 >e ^ r ^ (7 ¿1£y-P/<re-(i-PMr. 

(b) n is a return to A±c: 

k n M I > ^1~1/A+27+5+2/37/<7e-2/3r/o'/r2 > £ i - i / V " ^ < 7 e " ( 1 ' ^ ) r . 
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Proof. — The basic strategy of the proof is to estimate \(<p2~"y (ct,(a))\ f°r elements 

a G u>. Applying Lemma 3.2 and the Mean Value theorem we can then carry this 

expansion over to parameter space and get 

(15) |cn(u>)| > mî{\{ipTvy{cv{a))\ : a G W } | c M | / ^ 2 . 

Keeping in mind that the definition of host interval implies |ci/(a;)| > e^er/r2 we shall 

get the desired result in each case. 

Suppose first that v is a return to A0 and that n = v + 1 is a return to A±c. Then 

c„(a;) C <^~1(A=bc) for some a G CJ and Lemma 2.2 gives 

e ^ r ^ (7 + <5 + ¿1 log 1 /£ t| > Ce1/x/((l/ > e^e^1-

since r « (1/A - 7) log lie. Moreover |c„(u>)| > Ce1/x/((l/\ + 7) log 1/e)2 and so 

| c „ M | > C £ / ( ( l / A + 7 ) l o g l / e ) 2 >£1+ t 

for small i > 0. This proves ( l a ) . Now let i / b e a return to A0 and consider first the 

situation in which \r\ > rs + 1. We have that for all a G a;, by Lemmas 2.2 and 2.7 

we have 

\(fl)'(cAa))\ > ( e ^ ) 2 * - 1 and \{^~"-2)'(c„+2(a))| > C e ^ - ^ l 

For this last statement we have used the fact that cv G A0 implies | c „ + i | > and 

this in turn implies |c^_j_21 < (see condition L4) which in particular means that 

|(p*(c^_|_2)| > • Applying Lemma 3.2 we get |cn(a;)| > C(eye~r)2X/r)2r2 proving the 

first inequality in ( l b ) . The second inequality just follows by taking fi/a < 1 — 2A. 

If n is a return to A ± c then we have an additional factor of s1-1/A coming from the 

large derivative in cp~1(A±c) and we get ( l c ) . If r < rs we apply the same arguments 

to the subinterval uJ C u where c^(cU) = I*sl and get |cn(cJ)| > C(eye~r)2X/r)2r2 

respectively |cn(u>)| > Ce1~1^x(e'1e~r)2X/n2r2 which yields the desired result since 

\Cn(u)\ > \cn(uJ)\. 

Now suppose that v is a return to A ± c . If |r| = r€ then the binding period has 

zero length by definition and we simply have, defining uJ = c~1(/^^1) C oo , 

\cn(cj)\ > |cn(üJ)| > Ce^ô(eye-^)/r]2r2 > Ce2^+5)/rj2r2 > e-i/2syer°. 

If \r\ > r£ 4- 1 we have by by Lemmas 2.4 and 2.7 that, for all a G a;, 

( i 6 ) | ( v r " ) ' ( ^ ( a ) ) l > e ^ e ^ 1 - 2 ^ ) 1 - • i n f { ^ ( c , + p + 1 ( a ) ) , e ^ } ^ ( n - " - p - 1 ) 

(17; > ff7+<5+2/371ae(l-2ß/>)r 

if n is a return to A0 and \{<Pa~")'Ma))\ > £i-iM+7+<5+2/37/<xe(i-2/j/a)r if it is a 

return to A ± c . Notice that in both cases we have used \^p'{cv+p+\{a))\ > ey+s. Now 

applying Lemma 3.2 and equations (15)(16) we get 

(18) > e^e^1-2^)1- •inf{^(c,+p+1(a)),e^}^(n > e^en 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000 



224 S. LUZZATTO & M. VIANA 

Now if r < (7 + S + ¿) log 1/e then we have from (18) 

> e^e^1-2^)1- •inf{^(c,+p+1(a)),e^}^(n > e^e^1-2^)1- •ùinf{^(c,+p+1(a)),e^}ù^$%$$ 
n 

If r > (7 + 5 + 0 tog l / £ then we write e"2/3r^ = e-(i-/V^e(i-/V<x)r and e(i-/3/<x)r > 

£-(i_0/<r)(7+<5+O and therefore, using (18), 

k n ( ^ ) | > e2^+5+2^/°r-(^+(5+0+/3/^(7+5+0e-(l-/3/ > e^e^1-2^)1- •inf{^(c,+^)r > e^-p/ae-(l-/3/a)r^ 

This concludes the proof of the lemma. • 

We now formulate some easy consequences of these estimates. 

Lemma 3.4. — If n is an inessential return for some UJ E Vn-i with UJ C En-\, then 

CPl(n) holds for every a E UJ. 

Proof. — We claim that 

(19) > e^e^1-2^)1- •inf{^(c,+p+ 

This implies the statement in the lemma for the following reason. Suppose by contra­

diction that some a E UJ did not satisfy C P l ( n ) , i.e. d(cn(a)) < e1e~OLTl and in par­

ticular cn(uj) D A^n] / 0 , * = ± c , 0 . Then, either cn(uj) C Afan]_1 or cn(uj) D I^n]. 

The second alternative is not possible since it would contradict the fact that n is an 

inessential return. The first alternative cannot happen either since the claim implies 

l cn (^ ) | > 2eeye^an^~1 = |AjsQ;nj_1|. Thus we have reduced the proof of the lemma to 

that of (19). However this is an easy consequence of Lemma 3.3. Indeed recall that 

r < an and therefore if the last essential return v < n — 1 occurred in A0 we have 

\cn(uj)\ > Ce2X^e-2Xr/r2 » S s ^ e ' ^ . 

If v is return to A ± c and \r\ — rE then the result follows immediately from part (2) in 

Lemma 3.3 keeping in mind that returns to A±c can occur only for iterates n > a/rs. 

If |r| > r£ + 1 we distinguish two cases. Suppose first that |r| > (7 + 5 + log 1/e. 

Then 

\cn(uj)\ > £27+*+2/37/<Te-rel-2/V<rr/r2 > > e^e^1-2^)1- • i n f { ^ ( c , + p + 1 ( a ) ) , e ^ } ^ ( n ^ + 5 + 2 ( 3 ^ / a-(1-2(3 / a)(~f+5+i) e~r 

> el+2(3-Y/CT-I+2P{7+Ô+L)/ae-r > £-I /2^7E~R >^ g^7e~[ocn] ^ 

Now suppose that r < (7 + S + i)\ogl/e. Since v < n — 1 is a return to A ± c we 

also have n > rs/a — ([7 + 25 + t]/a) log l / ^ . Therefore it is sufficient to show that 

lcn(<^)| > 6eJe~Ts > £2(7+5)+^ This follows from part (2) of Lemma 3.3 which gives 

|cn(<^)| > e2l+5+2(3l/ae~2l3r/(T > £27+5+2/57/o"+2/3(74-5+0/^ ^ 6£2(t+5)+\ 

This concludes the proof of the lemma. 

Lemma3.5. — Suppose that UJ E Vn-\,uj C En—i is an escaping component created 

at some time v < n — 1. Then, if n is a return for UJ we have 

\cn(uj)\>s-L/2s^e->e^1-2^r*. 
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In particular n is a return to A0 for u and there is a component UJ C u for which n 
is an escape time. 

Proof. — The statement in the lemma follows immediately from Lemma 3.3. If v is 
a return to A±c the result is part (2). If v is a return to A0 then we have |cn(o;)| > 
C(e*e-r*)2X/r28 » e - * / V e - r - . • 

3.3. More distortion estimates. — For the following lemma we fix e1 independent 
of e. Let A£> and A2et denote respectively e' and 2e' neighbourhoods of the origin 
and of the critical points. We suppose that e' is chosen sufficiently small so that 
conditions Ml and M2 hold in A2e>. Let I C [—a, a] be an interval. For each x E I 
define d(x) = min{|x|,|a; ± c |} and d(I) = inf{d(x) : x e I}. Finally let D{I) = 
sup{|</?/J\x)IV'(y)\ : x,y E We call an interval admissible if / D A£> ^ 0 implies 
|/| < e>. 

Lemma 3.6. — For any constant C\ > 0 there exists a constant C2 > 0 such that if 
I is an admissible interval then 

\I\ < Cid(7) =4> D(I) < C2/d(I). 

Proof. — If InA£f = 0 then both (f'(x) and (f"(x) are bounded above and below by 
constants which depend only on the map and on e\ and the statement in the lemma 
follows immediately. So suppose that I fl Ae* ^ 0. Then, since I is an admissible 
interval we have | / | < e' and in particular I C A2e>. Therefore either I C A®^ or 
I C Aff,. If I C A%€, then, by condition Ml , 

\v"{x)\<Cd(I)x-2ù^ù 

and 

\<p'(x)\ > C(d(I) - I / D ^ 1 > C( ( l - CiMI))*-1 > Cdil)*-1. 

and so D(I) < C2/d(I) for some constant C2 > 0. If I C A ^ then 

\<p"(v)\ < C and \<p'(x)\ > Cd{I) 

which immediately gives D(I) < C2/d(I). 

Lemma 3.7. — There exists a constant A > 1 (independent of e or n) such that if 
u) E Vn-i with UJ C En-± and n is a return to A±c then 

(^l)'(Cl(â)) 
(^)'(ci(a)) 

< A for all a, a £ co and all 0 < k < n — 1. 

/ / n is a return to A0 we have the same result for any a, a belonging to a subinterval 
ZJGUJ with \cn(oJ)\ < m a x { ( ^ e - a n ) 2 A , e 2 ( ^ ) } . 
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Proof. — We shall prove the result for the case k = n — 1. It will be apparent from 

the proof that the result holds for all other values of k as well. Write ci — <Pa(c) and 

Ci = <p^(c). By the chain rule 

(^)'(d(â)) 

(^) ' (c i (a)) 

k 

i=l 
1 + 

> e^e^1-2^)1- • 

a)),e^}^(n 
< 

fc 

i=l 
1 + | i4i | , 

letting Ai = (<p^(ci) — <p'a(ci))/Vaici)i and thus the proof reduces to showing that 

]CiLi is bounded above by some constant independent of e, n, or UJ. By the 

Mean Value theorem we also have |<^(ci) — </?a(c*)l < l̂ i — ciW(Q f°r some £ E Ci(uj). 
Therefore we have 

(20) 1^.1 < \ci(u>)\ 'D(auj). 

Let 1 < < /bi2 < * * • < Us < Ms+i = n be the essential and inessential returns 

(cases 5 and 6a) of UJ in the time interval [1, n]. Notice that we do not include escape 

times in this list. Let p i , . . . ,ps be the corresponding binding periods as defined in 

the previous subsection (recall that pj = 0 if fij is a return close to A0) and r i , . . . , rs 

be the values associated to the corresponding time intervals. 

We start by considering the case in which the sequence of essential and inessential 

returns is empty, e.g. if n < rs/a. Then n is necessarily a return to A0 for otherwise 

n — 1 would have been such a return. We suppose without loss of generality that 

|cn(o;) | < (s'Ye~an)2X, for otherwise we could restrict ourselves to some subinterval UJ 
for which this condition is satisfied. Let e' be the constant fixed in Lemma 3.6 and 

suppose first that CI(UJ) n Ae/ = 0 . Then d(ci(uj)) > e1 and \<p'a(ci(uj))\ > Ce' for 

all a E UJ, and therefore by the standard arguments which we have used repeatedly 

above we get \CI(UJ)\ < C e - ^ ^ - ^ ^ e " ^ ) ^ < Cd(ci(uj)). Then by Lemma 3.6 we 

get |A i | < Ce-<T°(n-1). Now suppose that Ci(uj) n A ° , ^ 0 . A preliminary estimate 

for the length of CI{UJ) is given by 

(21) \ci(uj)\ < e-a^n-^\cn(uj)\ < e-<ro(n-i)(£ye-an^2\ ^ e, 

This shows that C{(UJ) is an admissible interval. Now we need to obtain a stronger 

estimate to show that it actually satisfies the hypothesis of Lemma 3.6. We distinguish 

two cases according as to whether d(ci(uj)) > (e/ye~an)2X or d(ci(uj)) < (s1 e~~~an)2X. 

In the first case we have from (21) that the hypothesis of the lemma are satisfied 

and \Ai\ < C\ci(uj)\/d(ci(uj)) < Ce~~a°(n~1^. In the second case we have that the 

maximum distance between Ci(uj) and the origin, for a E UJ is 

\d(uj)\ + d(ci(uj)) < 2(e^e-an)2X < e'. 

Therefore Ci(uj) is entirely contained in the region in which condition M l applies and 

it is easy to see by a simple variation of the argument in the proof of Lemma 2.2 that 

we have, for any a E UJ, 

> e^e^1-2^)1- •inf{^(c,+p+1(a)),e^}^(nù 
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From this we obtain an improved estimate for the size of c«(u;), namely 

> e^e^1-2^)1- •inf{^(c,+p+1(a)),e^}^(n > e^e^1-2^)1- •inf{^(c,+p+1(a)),e^}^(n > e^e^1 

Then, from this and Lemma 3.6, \Ai\ < \ci(<jj)\/d(a(u)) < Ce-070^-1) . Now suppose 

that Ci(uj) H Af,c ^ 0 . Since |y>'(c*(°))l ~ d(ci(uj) we have 

\Ci(ü>)\ < e ^ ^ ^ d f e M ) ) - 1 ! ^ ^ ) ! < C-^^-D(d(c.(a;)))-l(e7c-an)2A-

Moreover, in this case we necessarily have d(ci(cj)) > (s7e~an)2A for the following 

reason. Since to C S n - i and i < n — 1 we have that, by definition, all a G w 

satisfy condition C P 1 up to time n — 1 and, in particular, at time i — 1. Therefore 

d{ci-\{uj)) > sye~°c(l~1) > £7e_Q!n. Then because of the form of the map near the 

origin (condition M l ) this implies d(ci(co)) > («s7e_a^-1))A » (e7e~an)2A. Therefore 

Ci{u) is an admissible interval and we have 

\d(u>)\ < e-cro{n-i)(eye-(*n)-x(eye-an)2X 

which give |̂ 4.̂ | < \ci(cv)\/d(ci(uj)) < Ce*7^71 l\ Therefore we can sum over all iterates 

to get 

n-l 

i=0 

\Ai\ < a 

This proves the lemma if there are no essential or inessential returns for to before time 

n. 

Now we consider the cases in which there is a non empty sequence of returns. We 

start by estimating the values \A^5 \ for j = 1 , . . . , s. Since cili is contained in the 

union of three intervals of the form I*x we have \cIJLj (u)\ < Ceye~rj /r2 < Cd(cfJ/j (a;)) 

and therefore by Lemma 3.6, 

Dic^j (co)) < C/d(cßj(u)) < CsyerK 

Substituting in (20) we have 

\A^\<C/rl 

We now consider Ai where i is not a return iterate. Notice first of all that any 

return iJ,j+i to A±c is immediately precededby a return fij = —1 to A 0 . Therefore 

if i E (jjij, jjij+i) we necessarily have that is a return to A® . Therefore we only 

need to distinguish two cases according as to whether jij is a return to A0 or to A ± c . 

For the moment we also restrict our attention to values of j < s — 1. 

Suppose first that fij is a return to A0 . We distinguish two subcases: either 

| ^ ' ( c i ) | > e(S f°r all a E a; or there is some a E a; for which \tp'(ci(a))\ < e@. Then 

Lemma 3.2 and Lemma 2.3 give |(<^Mi+1~l)'(ci(a))| > e^^j+1~^ in the first subcase 

and \(^j+1~lY(ci(a))\ > £7+<5e^/Xj+1"~z_1) in the second subcase. Moreover applying 

Lemma 3.2 this gives 

IciMI < r72e-^+1-i)|c^.+1(u;)| < r f e - ^ + ^ h ^ + ^ / r 2 ^ 
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and 

\d(uj)\ < r ?2s -^e -^+1- i -1 ) | cA , i+1(o ; ) | < ^ - / ^ i + i - i - D £ ~ r + ô + c / R 2 ^ 

respectively, using the fact that \c^j+1^) \ < £lfe~rj+1 /r2+1 and that r^+i > rs since, 

as we mentioned above, /Xj+i is necessarily a return to A£s. Moreover we have that, in 

the first case, since i is not a return iterate, d(ci(uj)) > £2(T+<*)+^ jn the second case we 

know (from the fact that CI(UJ) is small and \cpf(ci(a))\ < e& for some a G UJ) that Ci(uj) 

is relatively far from A0 and relatively close to ± c and therefore since i is not a return 

iterate, d(ci(uj)) > £7+<5. In both cases we have that Ci(uj) is an admissible interval 

and applying Lemma 3.6 and substituting in (20) we get \At\ < Ce~^^j+1~t>}/r2+1 in 

each case. Moreover we can sum over all i G (Mj^Mi+i) to get 

> e^e^1-2 

>,e^}^(n 

* i \ < C / r ] + 1 . ^ ù $ 

Now suppose that jij is a return to A ± c . Then there follows a binding period 

{fij^jjij + pj] and a (possibly empty) free period (fij 4- Pj + 1 , F o r iterates 

i G (UJ +pj + l j / i j + i ) the situation is exactly as in the case considered above and we 

have \Ai\ < Ce-P^+i-^/r?+1 and E ? = ^ + i i + i 1 ^ 1 < C7/r?+1. So it just remains to 

consider bound iterates i G (/ i j , / i j H-Pj]. 

First of all recall that d(ctlj (UJ)) œ erye~rj and in particular, for all a G UJ, 

\Cl(a) - cH+1(a)\ < C(s~<e-r*^^$ù 

By the mean value theorem we have |c*(o;)| = \C^J+1(UJ)\ • |(<^_/ij'-1)'(C)I for some 

C £ Then using the bounded distortion estimate in Lemma 2.4(1) and the 

fact that |q(CC;)| < e7e^^j~1^ by the definition of binding period we get 

| ( ^ - ( « - D ) ' ( 0 | < 
£7e-/3(Mj-l) 

ù^$^ù$^ù 
< 

s7e~/3(Mi~l) 

(e^e~rj)2ù^$ 

Since |<£>'(x)| œ e^e Vj for all x G C^^UJ) we then have 

> e^e^1-2^)1- •inf{^(c,+p(a)),e^}^(n > em$^ù 

By Lemma 3.2 this gives 

\a(uj)\ < 
£7e- /3 (^ - l ) 

ù^$ù$ 
> e^e^1-2^)1- •inf{^(c,+p+1(e^}^(n 

Moreover d(ci(uj)) > £7e -« ( i -^ ) _ e-0(i-^) > Ce^e'01^-^ and therefore, substi­

tuting in (20) we get \Ai\ < Ce^-PW-^/r? which also yields 

ùm$^$ù 

ù^$ù^$ 

> e^e^1-2^)1- •inf{^( 

Finally we consider the last piece of orbit (/JLs + ps,jis+i — 1]. This interval can 

be empty if the return JJLS+I occurs immediately after the end of the binding period, 
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i.e. if jJLs+i = H>s + Ps 4- 1, or if > e^e^1-2^)1- is a return to A±c. Indeed, in the latter case 

we also have > e^e^1-2^)1- = jjls 4- ps 4- 1 keeping in mind that fis is necessarily a return to 

A0 and that therefore ps = 0 by definition. So suppose that i E 4-£>s,jus+i — 1]. 

By the comments above this implies that !ù!ù^^!ù is a return to A 0 . Moreover we are 

assuming, by the hypotheses in the lemma, that c^a+1 C A^y+Sy Suppose first that 

\(f'{ci{a))\ < e& for some a E uj. Then, repeating the exact same arguments used 

above we have 

> e^e^1-2^)1- •inf{^(c,+p+1(a)),e^}^(n > e^e^1-2^)1- •inf{^(c,+p+1(a)),e^}^(n 

Moreover, from Lemma 3.6 we have D(ci(u)) < Ce mp^m^^m ùp^$ and so 

\M < \*{u>)\ • D(a(u>)) < Ce-M"-'-1). 

Now suppose that |<^/(ci)| > e13. We distinguish two further subcases according as 

to whether d(ci(u>)) > 52(7+5) or not. Suppose first that d(ci(u)) > e2^+6\ i.e. 

Ci(u) fl A ° ( 7 + ^ = 0 . Then we have :p^ù mo $$ < e~P(n-i)e2(nf+s) ancj appiying Lemma 

3.6, 

\Ai\ < \ci(u>)\ - D(a(cj)) < C e - ^ - ' l 

If d(ci(Lv)) < e2^+6^ then we still have \ci{tu)\ < e-P(n-i)£2{y+8) and? appiying Lemma 

3.6 

D(ci(u)) < C/d{a{u)) < C e - 2 ^ ^ - L . ^ p m ù $ m ù 

Notice however that since Ci(u) is small ( < £2(7+<5)) and d(ci(u)) < e^1+5\ Ci(u) is 

completely contained in a small neighbourhood of the origin, say Ci(u) C A0 where the 

derivative is very large. In particular we have from Lemma 2.2 that \(ip2)f (ci(a))\ > 

£(7+<*)(i-2A) for any a ^ ^ Therefore arguing as above we can obtain a much stronger 

bound on the size of c^(cj), more precisely, 

C iMI < e -^ (n- i+2)^+*) (1-2A) |A2(7+Ä) | < C e - ^ - ^ s ^ ^ - ^ s 2 ^ ^ . 

and therefore substituting in (20) we get 

> e^e^1-2^)1- •inf{^(c 

Finally, let R(q) be the set of indices j for which \rj\ = q and when R(q) is 

nonempty we denote by j ( q ) the largest of its elements. Notice that for all j E R{q) 

we have cMj. (u) < Ce~(3^^^~^^\cfjijiq) | and therefore we have 

n - l 

l 

\Ai\ 

^ù$ù 

1 

Ai\ + 
n - l 

!$^$ 
= 

\AA < C 

q:R(q)^0 
q~2 + C < A. 

This completes the proof of the lemma. 
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Lemma 3.8. — There exists a constant B > 1 (independent of e or n) such that if 

UJ G Vn-i with UJ C En-i and n is a return to A ± c then 

ù$$ùù 

Wk{a) 
< B for all a, a G UJ and all 0 < k < n — 1. 

// n is a return to A0 we have the same result for any a, a belonging to a subinterval 

UJ d UJ with \cn(uJ)\ < m a x { ( ^ e - a n ) 2 A , £ 2 ^ ) } . 

Proof — This is a direct consequence of Lemmas 3.1 and 3.7, just take B = Aq. 

4. Parameter exclusions 

We now wish to estimate the total measure of the parameters excluded during 

every step of the induction. We shall treat separately the exclusions due to each one 

of the two conditions on the parameter. We shall start by showing that for some 

positive constants Si, oc\ we have 

\En-x\Fn\ < e * e - a i n | S n _ i | < ^e"a in |Eb | 

i.e. the proportion of parameters excluded by CP1 at each iteration is exponentially 

small a s n ^ o o and as e —> 0. Recall that there are no binding periods and therefore 

no exclusions due to CP2 for iterates n < N = [rs/a] and that TV can be made 

arbitrarily large by taking e small. Thus we have En = Fn for all n < N and so 

(22) \En-! \En\ < e*e-ain | .Eb | V n < N 

and, inductively, 

\En\ > |£n_i | - e * e - a i n | £ b | > \E0\(1 -
n 

i=0 

s^e-"1*) V n < N. 

For general n we shall show below that \Fn\ En\ < e ain|i?o| and therefore we get 

from (22), |JSn_i \ En\ < 2e-°iin\E0\. This then gives, for n > N, 

\En\ > \EN\ - \E0\ 
n 

z=N+l 

2e~°ùli > \E0\ 1 -

TV 

i=0 

sSle-aii 
n 

$^^ù$ 

2e~aii 

and 

> e^e^1-2^)1- 1 -
N 

i=0 

> e^e^1-2^) 
OO 

i=N+l 

2e~aii >\E0\(1-C(e)) 

where C(e) 0 as s —> 0. 
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4 .1 . Exclusions due to C P 1 . — Recall that for each n we need to throw away 

parameters a for which cn(a) falls into the £7e~an-neighbourhood of the origin and of 

the critical points, which we denoted Aan. Moreover, if exclusion of these parameters 

leads to the formation of small connected components in parameter space (smallness 

being expressed in terms of their image under cn) then such components are also 

excluded. 

Given an interval UJ E Vn-i with UJ C En-\, the subset UJ C UJ of parameters which 

get thrown out at the nth iteration satisfies cn(uj) C A[an]_1. The aim of this section 

is to show that the ratio |u>|/|a>| is exponentially small for small e and large n. In 

principle this is achieved by estimating the ratio |cn(cD)|/|cn(u>)| and then invoking 

the bounded distortion estimates in Lemma 3.8 to show that this ratio is essentially 

preserved when pulled back by c~x. This works well for returns to A ± c as the bounded 

distortion estimates (cf Lemma 3.8) can then be applied to the entire interval UJ. For 

returns to A0 we face the problem that the bounded distortion estimates only apply 

to intervals UJ which satisfy |cn(cJ)| < m a x { ( e 7 e " a n ) 2 A , £ 2 ^ } . Nevertheless the 

next lemma show that this is sufficient for our purposes. 

Lemma 4.1. — There exist constants 5\ > 0 and ai > 0 (independent ofn ore) such 

that 

| ^ n - l | 
ù^$^ù$ 

> 1 - eôle~ain for any UJ G Vn-i with UJ C En-±. 

Proof. — Consider an element UJ € Pn_i ,u; C En-\. Let UJ C UJ be those parameters 

which get excluded at time n for failing to satisfy CP1. Clearly it is enough to 

estimate |<2/|a;| and we can suppose that n is a returning situation for UJ otherwise 

the statement would be trivially true. 

Suppose first that if n is not a return to A ± c then |cn(u;)| < (e7e_<*n)2A, in par­

ticular the hypotheses of Lemma 3.8 are satisfied. Then we have 

| D | / M < B\^[an]^\/\cn{uj)\ < 2e2Be^e-an/\cn(üj)\. 

The estimates for cn(uj) have all been obtained in Lemma 3.3 and we just need to 
consider the various cases. If n is a return to A ± c we have either |cn(u;)| > e1+L from 
( l a ) or \cn(uj)\ > £i-i/*£y-0/cre-(i-0/*)r from (lc) and (3b^ Using the fact that 

r < an we clearly get the desired estimate in this case. If n is a return to A0 then 

( l b ) and (3a) give |cn(cj) | > ^y-^/^g-Ci-ZVo-)** which again yields the statement in 

the lemma since r < an. Finally case (2) gives |cn(o;) | > e~ll2e1 e~Ts. Notice that 

this case can only occur after a return to A ± c and such returns can only occur for 

large values of n, more precisely for n>rc/a^> rs/a. Therefore we have 

e1e-°in/e-L/2e^e-rs < £"/2e-^+rs < ei/2e-n{<*-a/n) < £i/2e-c*'n 

which proves the result in this case also. 
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Finally suppose that |cn(c«;)| > (eye~an)2X. Let & C u be such that |cn(cJ)| — 

(eye~ocn)2X, in particular, the hypotheses of Lemma 3.8 are satisfied by cJ and we 

have 

1 
2 < 

\w\ 
*/*/ |A[an]_i 

|CnM| 
< 2e/z 

m$m^ù 

{e^e-°Lri)2X 
< 2eB(eye-an)1-2X. 

This completes the proof of the lemma. 

4 . 2 . Exclusions due to C P 2 . — In this section we consider elements u C Fn,u € 

Vn which satisfy C P l ( n ) . We will set up a statistical argument to show that most of 

these elements (in measure theoretical terms) have spent a small proportion of their 

time in binding periods and therefore also satisfy CP2(n ) . 

Recall from Section 3.2 that a sequence of escape times 0 = vo < * * * < i = n is 

associated to each element u E Vn. Here we set i/o = 0 and v8+i — n for notational 

convenience and we call these escape times as well. Between any two escape times we 

have a (possibly empty) sequence of essential and inessential returns JJLQ < • • • < /j,q 

with fa = fiij and q = q(j). To each such return juti is associated a positive integer 

Pi > 0, the length of the associated binding period, and an integer Ti > 0 determined 

by the associated host interval. We let Pj = poj + • • • + pq,j, Rj = roj + • • • + rqj, 

P+ = Pi + • • • + Ps and R+ = Ri + ... Rs. In particular P+ = Pn, the total number of 

iterates before time n belonging to binding periods. From Lemma 2.4 we immediately 

get the following 

Lemma 4.2. — For u 6 Vn,ui C Fn we have 

Pn < 
2 ( P + + 3 / 2 1 o g l / £ ) 

a 
< . 2 ( l + 7 / ^ ) i ? + 

a 
In particular we can formulate an alternative condition 

C P 2 ' : R, < an!'4(1 + y/6) 

which immediately implies CP2: Pn < n/2. 

Lemma 4.3. — Let uVj E VVi and ù$$^$ $ 6 VVi be escaping components with uUj C 

Ui/j+x and suppose that there exists a non empty sequence /¿0 < • • • < fiq of essential 

returns between time ZA and time . Then 

ù^$^ù <ele->R\u>Vjù^^ù$^ù\. 

Proof. — Let uotli G be the subintervals of uo[Lj corresponding to the returns 

Hi, i = 0 , . . . ,q. We write 

(23 
1 + y/ 

1 + y/ 
== 

ù^^ 

ù^$ù^^ 
^$*= 
$=* 

ù$^ù 

k/XÇ-ll 

^$ 
1 ù$$ 

and begin by estimating |U;MO|/|U;Ì|. We have |C^0(CJÌ)| > e~L/2eye~rs, by Lemma 3.5. 

By the definition of the components UJ^ , notice that the first return after an escape 

time is always a return to A0 , we have |cMo(a>Mo)| < 10e7er° jr\ for some r0 > rs. We 
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distinguish two cases. Suppose first that c^,0(oJi) C A2(7+5). Then we can apply the 

bounded distortion estimates and we have 

(24) 1 ^ 0 I 
1 + y/ 

BWßo (^Vo)l , 

L ^ O ( ^ i ) L 
< 10Be~L/2ers~ro/rl. 

If c^0(uji) is not completely contained in A2(7+<5) then, using the fact that £7e r* « 

^2(7+5) we have 1 ^ ( 5 7 ^ ) 1 > e2(7+<5) - s^e-r* > e2(7+5)(l - eA> where ZJ C u>i is t h a t 

sub in terva l o f uv. whose image is completely contained in A2(7+<5). Then 

1 + y/ 

1 + y/ 
< ^Vol 

ù$^$ 
< B\Cßo ( ^ M O ) L 

1 + y/ 
< 

1 + y/1 + y/ 

1 + y/1 + y/1 + y/ 

< 10Bs-^2ô)e-ro/r2 « 1056-A/2ers-ro. 

We now turn to estimating the ratios \ujfJ/j\/\ujfJ,j_1 | for j = 1 , . . . , q. Each time we 

need to distinguish as above the cases in which cfJlj_1 (ojtij_1) is completely contained in 

A2(7+j) so that we can apply the bounded distortion estimates, and the cases in which 

this is not true. However, repeating the argument above we see that the estimates 

which we obtain in the former cases are always satisfied in the latter. Thus we shall 

consider in detail only the situation in which cfJtj_1(ujtJtj_1) C A2(7_|_#). Suppose that 

jjij-i is a return to A0. Then we have 

(25) 
ù$^ù 

17//* 
< 

105r?_1ere-p' 

y*2 £-2À7g—2Arj_i 
< 10JBr|_1e(1-2A>^e2A^-1-^ 

If /ZJ-iis a return to A ± c then we have 

(26) 
$*==* 

$=*$ 

10Br?_1e'*e-r* 
\QBr2j_1e~(1+6+2ßl/(T)e2ßri-l/(T-ri. 

< \QBr2j_1e~(1+6+2ßl/(T)e2ßri-l/(T-ri. 

Recall moreover that if JLLJ is a return to A±c we gain an extra factor of £1_1/A on the 

right hand side of (25) and (26). Finally we have l^+ i l / l^v j < 1-

Now let q denote the number of returns between JJLQ and n>q-\ (inclusive) which 

occur in A0 and g denote the number of those which occur in A±c. We do not include 

\xq in this count and therefore we have q = q + q -\- 1. Let R = 1 + y/ jh and -R = 

and R = YZ=o U = R + R + rq. Then we have from (23)(24)(25)(26) 

(27) 
ù^$ù$ 

$*$^^ < { l O B Y + 1 e l ^ e r ' e ^ - 2 X ^ e 2 X R e ( 1 / x - e r s £ ( 1 _ 2 A ) 7 ^ 1)я£-Ь+о+20у/<т)$е20п/<те-1г_ 

To simplify this expression we make the following three observations: 
n\ e2\R _ e(A+l/2)fie-(l/2-A)fl. 

(ii) ( 1 / A - l ) > 7 + 6 + 2/3-f/a and therefore 

e{l/\-l—f-6-2^/cr)qe2(3R/a Mc e2(5R/a ce2(5R/a e2(5R/a < e ( A + l / 2 ) f i . 
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(iii) IIQ is a return to A0 and therefore q > 1 and R> rs. 

From (27) and these observations we get 

ù^$^ù$ 

N 1 
lOjB)9+V/2ers£(1~2X)7e~^\Q\QBr2j_1e~(1+6+2ßl/(T)~(1+6+2ßl/(T)e 

Now using the fact that rs = [(7 + 28 -h £) log l / s and > re = [(7 4- 8) log 1/e] we 

see that 

(A-l/2)rs-(A+l/2)rg < (A-l/2)(7+2(5+0 + (A+l/2)(7+(5) 

<£A(27+3<5-ft)-(5+0/2 < £i/2 

Thus we have 

l^T+il 
ùù^^$ù 

< (10P )«+Ve(A+1/2 - i )* 

Finally, since g < R/r£ we have ( lOS)9 < ((KXB)1/Ve)R and so, taking e > 0 small we 

get 

N + i 1 

N 1 
< ele~lR. 

This concludes the proof. 

Now let rjq (R) denote the number of possible sequences r\,..., rq with ri > 8 log e 1 

and ri + (- rQ = i? and let T7(i?) = J2q>o Vq(R)-

Lemma 4.4. — For e > 0 sufficiently small we have that, for all R E N, 

r](R) < elRf2. 

Proof. — The result is purely combinatorial. We want to estimate, for each fixed g, 

nq{R) < R < 
R\ 

\QBr2j_1e~(1+ 

Using Stirling's approximation formula for factorials: 

V2^kkke~k <k\< V2nkkke~k{\ + l/4fc), 

we get 

Vq(R) < 
V2^RRRe-R(l 4- 1/4R) 

V2Wqqqe-^^/27r(R - q)(R - q)R-Qe-(R-<i) 

< 2 
RR 

\q(R- q)R-<* 
for small e > 0 (and therefore R large) 

< 2 
ù^ 
$ù 

q R 

<R-qj 

R-q 

< 2 
1 

I a/R 

, q/R 1 

1 - a/R 

i-q/R- ,R 

Now since q/R < 1/5log 1/e - » 0 we have that (l/(q/R))q/R and (1 / (1 - q/R))1^'11 

both tend to 1 as log£ - » 0. Thus we get nq(R) < e^lRl2^l2. Notice that the value of 
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q is bounded by q < R/(8\og 1/e) < R, for each i?, and so, summing over all possible 
values of q we get r)(R) < Y2q<R'nq(R) < eLR- D 

Now let UJUJ G Vv. be an escaping component and let rj(R) denote the total number 
of subintervals UJ C UJVJ which are escaping components of the form UJUJ+1 ? ^j+i = 
Vj+i(uj) which undergo a sequence of returns / / 0 , . . , / ^ between time Vj and time 

with Rj = R. Then we have 

Lemma 4.5. — For all R G N, 

rj{R) < e2lR. 

Proof. — Notice that the subintervals UJ can be indexed in a unique way by the 
sequence of host intervals corresponding to the returns / i o , . . . , \iq, i.e. by a sequence 
( * o , ^ o ^ o ) • • • (*qJq) where * = 0, ± c * and 1 < h < r\. It follows that for each 
r there exist at most 6r2 intervals with n = r and therefore the previous lemma 
immediately gives rj(R) < 6R2etR < e2iR. • 

For the final step of our argument we introduce the following notation. For UJ G Vn 
let UJVJ , j = 0 , . . . , s be the escaping components containing UJ as defined above. Then 
define for j = s + 1 , . . . , n, ujVj — UJ and call these escaping components as well. Thus 
we have a formally defined sequence of nested intervals 

UJ — ujn = • • • = uJys+1 C UJVS C • • • C UJVQ = UJ0 

associated to each UJ G Vn. For each such ujVj let (UJUJ) = UJUJ H Fn and let Qj denote 
the union of all the escaping components of the form ujVj. Notice that QQ = UJO and 
Q n — Pw 

Lemma 4.6. — For every n > 1, we have 

f F 
L n 

elR/4da < (1 + e ' ) n | w 0 | . 

Proof. — For a given u>Uj we have 

<u>„ • > 
elR/4da = |Ool + 

R>r, 
|fi(fi)|etÄ/4 < + ele-tR/A\u)i\ 

\QBr2j_1e~ 

R>rs 
e - t Ä / 4 ) K - | < ( l + e * ) K | . 

Clearly this implies 

'Qi 
eiR/Ada<(l+ei/2)\QBr2j_1eQi 

and, inductively, the statement in the lemma. 
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We are now in a position to estimate the proportion of parameters satisfying CP2' : 

R+ < crn/4(1 4- 7 / 5 ) . This condition is equivalent to elR/4 < e"m/iQ(i+^/5) < e£n 

where £ = ¿0-/16(1 + 7/8). Thus we have 

m{a e Fn : etR/4 > e^n}e^n < 
ù^$^ù 

eiR/4da < ( l+^/2)n|u;o | 

which gives 

m{En \ Fn} < (1 + sTe-tn\ouo\ < e~^2\uj0\ 

taking e small. 
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