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MARKOV EXTENSIONS AND DECAY OF CORRELATIONS 

FOR CERTAIN HENON MAPS 

by 

Michael Benedicks & Lai-Sang Young 

Abstract. — Hénon maps for which the analysis in [BC2] applies are considered. Sets 
with good hyperbolic properties and nice return structures are constructed and their 
return time functions are shown to have exponentially decaying tails. This sets the 
stage for applying the results in [Y]. Statistical properties such as exponential decay 
of correlations and central limit theorem are proved. 

0. Introduction and statements of results 

Let Ta b : R2 R2 be defined by 

Ta?6(>, y) = (1 - ax2 + y, bx). 

In [BC2], Carleson and the first named author developed a machinery for analyzing 
the dynamics of Ta^ for a positive measure set of parameters (a, b) with a < 2 and 
b small. For lack of a better word let us call these the "good" parameters. The 
machinery of [BC2] is used in [BY] to prove that for every "good" pair (a, 6), T = Ta,b 
admits a Sinai-Ruelle-Bowen measure v. The significance of v is that it describes the 
asymptotic orbit distribution for a positive Lebesgue measure set of points in the 
phase space, including most of the points in the vicinity of the attractor. The aim 
of the present paper is to show that (T, u) has a natural "Markov extension" with 
an exponentially decaying "tail", and to obtain via this extension some results on 
stochastic processes of the form {<p o Tn}ri=o,i,2,...? where : E2 h> 1 is a Holder 
continuous random variable on the probability space (M2, v). 
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1 4 M. BENEDICKS & L.-S. YOUNG 

Consider in general a map f : M O preserving a probability measure v. By 

a Markov extension of (f,v) we refer to a dynamical system F : ( A , ? ) O and a 

projection map ix : A i-> M ; .F is assumed to have a Markov partition (with possibly 

infinitely many states), F and TT satisfy 7ro.F = /o7r, and 7r*i/ = We do not require 

that TV be 1-1 or onto. 

Let ( / , v) be as in the last paragraph, and let X be a class of functions on M. We 

say that ( / , v) has exponential decay of correlations for functions in X if there is a 

number r < 1 such that for every pair (p,i/j E X , there is a constant C = C((p,ip) 

such that 

o f < to f < to f <pdv <pdv < Crn V n > 0. 

Also, we say that ( / , v) has a central limit theorem for cp with / <£>dz/ = 0 if the 

stochastic process 9?, cp o / , <̂> o / 2 , . . . satisfies the central limit theorem, i e . if 

1 
Vn 

n—1 

i=0 
<p°r 

dist  ^ K(0 , ( j ) 

for some a > 0. For a > 0 this means that V£ E M, 

v 
1 

Vn 

n - l 

0 
V o f < t 

1 

o f < t 

t 

' —00 
<pdv<o f < t 

as n ^ 00. 

For / = Taj>, (a, b) "good" parameters, we have the following results: 

Theorem 1 ( [BY]) . — / admits an SRB measure v. (See Section 1.7 for the precise 

definition.) 

Theorem 2 ( [BY]) . — v is the unique SRB measure for fn for every n > 1. This 

implies in particular that (/n,^) is ergodic V n > 1. 

By the general theory of SRB measures, the ergodicity of ( / n , ^ ) for all n > 1 is 

equivalent to ( / , u) having the mixing property, or that it is measure-theoretically 

isomorphic to a Bernoulli shift, see [L]. 

For 7 > 0, let 3<7 be the space of Holder continuous functions on IR2 with Holder 

exponent 7 . 

Theorem 3. — (/5^) has exponential decay of correlations for functions in !K7. The 

rate of decay, r, may depend on 7 . 

Theorem 4. — ( / , v) has a central limit theorem for all cp E CK7 with f (pdu = 0; the 

standard deviation a > 0 iff ip 0 f — ip for some ip E L2(u). 

Theorems 1 and 2 are proved in [BY] , while theorems 3 and 4 are new and are 

proved in this paper. But since an SRB measure is constructed in the process of 

proving Theorem 3, this paper also contains an independent proof of Theorem 1. 
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DECAY OF CORRELATIONS FOR CERTAIN HÉNON MAPS 1 5 

Questions of ergodicity or uniqueness of SRB measures, however, are of a different 

nature. We will assume Theorem 2 for purposes of the present paper. 

As mentioned earlier on, our proof of theorems 3 and 4 are carried out using a 

Markov extension with certain special properties. The second named author has 

since extended this scheme of proof to a wider setting. We will refer to [Y] for certain 

facts not specific to the Henon maps, but will otherwise keep the discussion here as 

self-contained as possible. 

The following is a comprehensive summary of what is in this paper, section by 

section. 

In Section 1 we recall from [BC2] and [BY] some pertinent facts about / . 

The aim of Section 2 is to clean up the notion of distance to the "critical set" 

previously used in [BC2] and [BY] . We prove that the various distances used before 

are equivalent. 

Section 3 is devoted to organizing the dynamics of / in a coherent fashion. We 

focus on a naturally defined Cantor set A with a product structure defined by local 

stable and unstable curves and with A intersecting each local unstable curve in a 

positive Lebesgue measure set. The dynamics on A is analogous to that of Smale's 

horseshoe, except that there are infinitely many branches with variable return times. 

A precise description of A is given in Propostion A in Section 3.1. 

In Section 4 we study the return time function R : A —> Z + , i.e. z £ A returns to 

A after R(z) iterates in the representation above. (Note that R(z) is not necessarily 

the first return time.) We prove that the measure of {R > n} decays exponentially 

fast as n —> oo. This estimate is stated in Lemma 5 in Section 4.1; it plays a crucial 

role in the subsequent analysis. 

In Section 5 we consider the quotient space A obtained by collapsing A along 

W ^ - c u r v e s . We prove, modifying standard arguments for Axiom A systems where 

necessary, that A has a well defined metric structure and that the Jacobians of the 

induced quotient maps have a "H61der"-type property. This step paves the way for the 

introduction of a Perron-Frobenius operator. The results are stated in Proposition B 

in Section 5.1. 

Let fR:AO denote the return map to A. In Section 6 we construct a tower map 

F : A O over fR:AO with height R (see Section 6.1). F is clearly an extension 

of / . A Perron-Frobenius operator is introduced for F : A (3, the object obtained 

by collapsing W ^ - c u r v e s in A . At this point we appeal to a theorem in [Y] on 

the spectral properties of certain abstractly defined Perron-Frobenius operators. We 

explain briefly how a gap in the spectrum of this operator implies exponential decay 

of correlation for / , referring again to [Y] for the formal manipulations, and finish 

with a proof of the Central Limit Theorem. 
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16 M. BENEDICKS & L.-S. YOUNG 
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1. Dynamics of certain Hénon maps 

The purpose of this section is to review some of the basic ideas in [BC2] and [BY], 
and to set some notations at the same time. We would like to make the main ideas 
of this paper accessible to readers without a thorough knowledge of [BC2] and [BY], 
but will refer to these papers for technical information as needed. The summary in 
Section 1 of [BY] may be helpful. 

1.1. General description of attractors. — In this paper we are interested in 
the parameter range a < 2 and near 2, b > 0 and small. The facts in Section 1.1 are 
elementary and hold for / = Ta¿ for an open set of parameters (a, b). 

There is a fixed point located at approximately ( | , it is hyperbolic and its 
unstable manifold, which we will call W', lies in a bounded region of IR2. Let ft be the 
closure of W. Then ft is an attractor in the sense that there is an open neighborhood 
U of ft with the property that \/ z G £/, fnz —>• ft as n oo. 

Away from the y-axis, / has some hyperbolic properties. For example, let S ^> b 
and let s(v) denote the slope of a vector v. Then 

(i) on {\x\ > S}, Df preserves the cones < S}; 
(ii) 3M0 E Z+andco > 0 such that if z, f z,..., fM~xz e {\x\ > 6} and M > M0, 

then 

\Df^v\ > eCoM\v\ \/v with \s(y)\ < S. 

It is easy to show, however, that ft is not an Axiom A attractor. 

In contrast to Section 1.1, the statements in Section 1.2-1.6 hold only for a positive 
measure set of parameters. For the rest of this paper we fix a pair of "good" parameters 
(a, b) and write / = Ta¿. 

1.2. The critical set. — A subset G C W, called the critical set, is designated to 
play the role of critical points for 1-dimensional maps. Points in 6 have ^-coordinates 
« 0; they lie on C2(b) segments of W (a curve is called C2(b) if it is the graph of 
a function y = (f(x) with |<¿?'|, |<¿/'| < 106); and they have "homoclinic" behaviour in 
the sense that if r denotes a unit tangent vector to W, then for z G 6, |Z>/|r | < 
(5&V V j > 0. 

Other important properties of z G 6 are that V n > 1: 

(i) \Df2(l) I > e ^ " 1 ) for some C w log 2; 
(ii) "dist"(/n^, e) > e~an for some small a > 0. (The precise meaning of "dist" 

will be given shortly.) 
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The idea in [BC2], roughly speaking, is that when an orbit of ZQ G G comes near 

6, there is a near-interchange of stable and unstable directions (hence a setback in 

hyperbolicity); but then the orbit of z0 follows that of some z G G for some time, 

regaining some hyperbolicity on account of ( i) . To arrange for (i) , it is necessary to 

keep the orbits of G from switching stable and unstable directions too drastically too 

soon; hence (ii). 

We now give the precise meaning of "dist"(-, G). Consider z G G and let n i > 0 be 

the first time its orbit returns to (—5,5) x EL It is arranged that there is z\ G G of 

an earlier generation (see below) with respect to which fni z is in tangential position, 

i.e. z lies in a C2(b) segment of W extending > 4 \fniz — z\\ to each side of 2i , and 

the vertical distance between fniz and this segment is < \fniz — z\\4; see e.g. [BY] , 
Subsection 1.4.1. Here "dist"(/ni, G) means | / n i * - 2 i | . 

We say that fni z is "bound" to z± G G for the next pi iterates, where pi is the 

smallest j s.t. \fni+jz — fjz±\ > e-/3j for some fixed ¡3 > a. At time n\ + pi, we 

say that the orbit of z is "free", and it remains free until the first n<i > n\ + p\ when 

it returns again to (—5, S) x EL The binding procedure above is then repeated, with 

bound period P2 etc. 

It is convenient to modify slightly the above definitions of pi so that the bound 

periods become "nested", i.e. if a bound period is initiated in the middle of another 

one, it also expires before the first one does. (See Section 6.2 of [BC2].) 

We return to the notion of "generations" to which we referred a few paragraphs 

back. There is a unique ZQ G G lying in the roughly horizontal segment of W containing 

our fixed point. The part of W between f2zo and fzo is denoted by W\ and called 

the leaf of generation 1. Leaves of higher generations are defined inductively by 

Wn = fn~1Wi — W n _ i , and a critical point is of generation n if it is in Wn. 

1.3. Dynamics on W. — In Proposition 1 of [BY] , it is shown that the orbit 

of every z G W can be controlled using those of G. More precisely, consider z in a 

local unstable manifold of our fixed point, and let n\ > 0 be the first time its orbit 

goes into (—5, S) x M. It is shown that there is a "suitable" z± G G to which we will 

regard fniz as bound for some period of time. "Suitable" here means that (1) fniz 

is in generalized tangential position wrt z\ (generalized tangential positions are slight 

generalizations of tangential positions; see Section 1.6 of [BY]); and (2) the angle 

between r(fniz), the tangent vector to W at fniz and a certain vector field about 2i 

is "correct"; this will be explained in Section 1.5. After a bound period as defined in 

Section 1.2, the orbit of z then becomes free until it gets into (—5, S) x E again, finds 

another suitable point Z2 G C to bind with, and the story repeats itself. 

Not only do suitable binding points always exist ([BC2], Section 7.2), it is shown 

in [BY] , Lemma 7, that one could systematically assign to each maximal free segment 

7 intesecting (—<S, 8) x R a critical point 2(7) that is suitable for binding for all z G 7. 

The picture is as follows: 
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18 M. BENEDICKS & L.-S. YOUNG 

(i) If 7 contains a critical point z, then ¡3(7) = z; this is always the case if neither 

end point of 7 lies in (—5, 5) x E. 

(ii) If only one end point of 7 lies in (—5, 5) x E, say the left end point 7 _ , and 

7 does not contain a critical point, then ^ (7 ) is taken to be the binding point 

of 7_ (note that 7_ is also in bound state); 0(7) always lies to the left of 7 _ , 

away from 7. 

(hi) If both end points 7 ± of 7 are in (—5,5) x E and 7 does not contain a critical 

point then the binding point of at least one of 7 ± lies on the opposite side of 

7 ± as 7 and can be taken to be 2(7) . 

We state some estimates for \Df^r\, z G W, that are consequences of the behaviour 

of the critical set and the binding process above. Unless otherwise referenced, these 

estimates are proved in Corollary 1 of [BY]: 

(I) Free period estimates. 

(i) Every free segment 7 has slope < 2b/5, and 7 D (—6,5) x E is a C2(b) 

curve (Lemmas 1 and 2, [BY]). 

(ii) There is M0 G Z + and c0 > 0 s.t. if z is free and z,fz,..., fM~1z g 

(S,S) x E for M > M0, then \Df™r\ > ec°M. 

(II) Bound period estimates. 

The following hold for some c « log 2: if z G (—6,6) x E is free and is bound 

at this time to z G G with bound period p, then 

(i) if e~v~x <\z-z\< e~v, then \v <p< 5z/; 

(ii) \Dflr\ >\z-z\ e°i for 0 < j < p; 

(hi) \Dfgr\ > ecp/s. 

(Ill) Orbits ending in free states. 

There exists ci > | log 2 s.t. if z G W Pi (—5, 5) x E is in a free state, then 

\Df-*r\ < e~Clj V j > 0 

(Lemma 3, [BY]). 

1.4. Bookkeeping, derivative and distortion estimates. — Let 7 be the fol

lowing partition of the interval (—5,6): first we write (—5,5) as the disjoint union 

U { ^ : W\ > some ^0} where Iv = ( e ~ ( " + 1 \ e_I/) for z/ > 0 and = -Iv for */ < 0; 

then each Iv is further subdivided into v2 intervals {Ivj} of equal length. 

For xo G E, we let [̂̂ 0] denote a copy of CP with 0 "moved" to #0. Similarly, if 7 is 

a roughly horizontal curve in E2 and z0 G 7, we let denote the obvious partition 

on 7 . Once 7 and zo are specified, we will use I^j to denote the corresponding 

subsegment of 7. Also, if J G we let nJ denote the segment n times the length 

of J centered at J. 

The following derivative estimate is very similar to the derivative estimates in the 

proof of Lemma 7.2 in [BC2]. 
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Derivative estimate. — Suppose that the point z belongs to a free segment of W and 

satisfies dist( /J£, C) > 8e~ocj V j < n for some integer n. Then there is a constant 

C2 > 0 such that 

(1.1) \Df?r\ > 8ec*n. 

Since the proof follows step by step the proof of Lemma 7.2 in [BC2], it is omitted. 

The only difference is that in the present situation the allowed approach rate to the 

critical set is much slower than that in Lemma 7.2 of [BC2]: d i s t ( /n£ ,C) > 6e~ocn 

V n > 0, versus d is t ( /n£, 6) > e~36n V n > 0. This leads to the the expansion estimate 

of (1.1). 

The following is proved in Proposition 2 of [BY]: 

Distortion estimate. — Let 7 C (—6,6) x E be a segment of W. We assume that the 

entire segment has the same itinerary up to time N in the sense that 

(i) all z E 7 are bound or free simultaneously at any one moment in time; 

(ii) if 0 — ¿0 < t\ < ' • * < tq are the consecutive free return times before N, then 

V k < q the entire segment ftkj has a common binding point z ^ E C and 

ftkj C 5Jk for some Jk E V^wy 

Then 3C± independent of 7 or N s.t. V21,^2 G 7 , 

o f < t^ 

o f < t^ 
< C i -

1.5. Fields of contracted directions. — First we state a general perturbation 

lemma for matrices. Given A\, A2,..., we write An := An - • • A\. The following is a 

slight paraphrasing of Lemma 5.5 and Corollary 5.7 in [BC2]. All the matrices below 

are assumed to have |det| = b. 

Matrix perturbation lemma. — Given k b, 3A with b <C A < m i n ( l , K ) s.t. if 

A i , . . . , An, A[,..., A'n e GL(2, M) and v e E2 satisfy 

| A ^ | > ^ ^ and \\Ai - A'iW < \* V * < n , 

then we have, for all i < n: 

(i) A lv > 1 ; 

(ii) < ( A l v , X l v ) ^ ^ < A*/4. 

If A E G(2 , E) is s.t. \Av\ /\v\ ^ const, let e(A) denote one of the two unit vectors 

most contracted by A. We will write en(z) := e (Df™) wherever it makes sense. From 

the perturbation lemma above, it follows that if |Z)/|0t>| > K/7, 0 < J < n, for some k 

and some v, then there is a ball Bn of radius (A/5)n about ZQ on which en is defined 

and has the property that \Dfnen\ < 2(B/K)N. 
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20 M. BENEDICKS & L.-S. YOUNG 

Assuming that k is fixed and en is defined in a neighborhood of zo as above, the 
following hold (Section 5, [BC2]): 

(i) ei is defined everywhere and has slope = 2ax + 0 ( 6 ) ; 
(ii) \en - em\ < 0(6m) for m < n; 

(iii) for (#1,2/1), («2,2/2) G some Bn with I2/1 — 2/21 < W ~ «21, 

|en(«i ,2/i) - en(ar2,2/2)1 = (2a + 0 (6 ) ) |«i - x2 | • 

The perturbation lemma above applies in particular to critical points; see Sec
tion 1.2. Indeed, every ZQ G C is constructed as the limit of a sequence {zn} where zn 
is the unique point in the C2(b) segment of W containing zo with r(zn) — en(zn). Go
ing back to the notion of "suitability" of binding points at the beginning of Section 1.3, 
a formulation of requirement (2) could be that 

3\zi-fniz\<<(r<(r(fn*z),eei ( f n i z ) ) < ( f n i z ) ) < 5 \ I 1 - f n ^ z \ 

where £1 « — e • log \fniz — z\\ is small enough that is defined on a neighborhood 
of Z\ containing fniz. 

1.6. M o r e on the geometry of the critical set. — The following facts about 
the relative locations of critical points are used in sections 2 and 3 of this paper. 

Fact 1 (Lemma 5, [BY]). — Let z G 6 be contained in a C2{b) curve 7 C W. Assume 
that 7 extends to > 2d on each side ofz, and let £ G 7 be s.t. \z — £| = d. Then there 
are no critical points z with \z — Q\ < d2. 

Fact 2 (Existence of critical points, [BC2] Section 6.2, [BY] Subsection 1.3.1) 
There is a number ft « /? « 1, s.t. the following holds: if z = (x,y) lies in a 

C2(b) segment 7 C W of generation n with 7 extending > 2pn to each side of zy and 
there is a critical point z = (x,y) G C s.t. 

(i) X = X, 

(ii) z is of generation < n, 
(iii) \z-z(fniz))<\< bn^A0, 

^ ^ ^ ^ ~ 1 /2 then there is a unique critical point z = («, y) G 7 with \x — x\ < \y — y\ / . 

One way to get a sense of the relative location of a point to the critical set is to do 
the "capture" procedure introduced in [BC2], sections 6.4 and 7.2. This procedure 
guarantees that near every free z G W there are many long C2 (b) segments of W some 
of which will contain critical points. The picture is as follows (for a precise statement 
see [BY] Subsection 2.2.2): 

If z G W is free, then there is a family of C2(b) subsegments of W labeled 
{7i}i=i,2,...,i(^)? where i(z) is the last integer i with 3Z+1 < gen(z) , s.t. 

(i) m < generation of 7$ < 3m, m = 3% 
(ii) ji is centered at « z, and has length « 10pm, 

(iii) dist(*,7i) < (Cb)™. 
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(iv) if is the point on 7* with the same ^-coordinate as z then \r(z) — r(z^)\ < 
(C6)m/6. 

There are, in fact, two such families, one above and one below z. 
One may assume that 71 contains a critical point. If this critical point is sufficiently 

near the middle of 71, then by Fact 2, 72 would also contain a critical point. This 
may continue all the way down the stack, or there may exist an i s.t. zi G C n 72 is 
so far to one side that no critical point lies in 7^+1. If this happens z is in tangential 
position with respect to zi. 

1.7. SRB measures. — In this article (and also in [BY]), an /-invariant Borel 
probability measure v is called an SRB measure if / has a positive Lyapunov expo
nent z/-a.e. and the conditional measures of v on unstable manifolds are absolutely 
continuous with respect to the Riemannian measures on these leaves. The following 
are proved in [BY]: 

(i) / admits an SRB measure z/; 
(ii) v is unique (i.e. f admits no other SRB measure); hence (/, v) is ergodic; 

(iii) (ii) is in fact true for fn for all n > 1. 
It follows from general nonuniform hyperbolic theory that (iii) is equivalent to (/, v) 
having the mixing property, the iT-property, and in fact to its being isomorphic to a 
Bernoulli shift (see e.g. [L]). 

2. Preliminaries: cleaning up the notion of dist(-,C) in [BC2] and [BY2] 

In this section as in the rest of the paper, it is assumed that / = Ta?& where (a, b) 
are "good parameters" as discussed in Section 1. 

Two notions of the distance to the critical set for a point z on & free segment of 
W have been used in [BC2] and [BY]. The first is a pointwise definition, in which 
we think of dist(z, G) as \z — z(z)\, where J is a certain critical point captured by z. 
We will call this distance dC8iP(z,G). The second notion is more globally defined. It 
is shown in [BY] that one could systematically assign a critical point 2(7) to every 
maximal free segment 7. Let us define dy(z, G) to be \z(j) — z\, where 7 is the maximal 
free segment containing 7. Precise definitions of rfCaP(-, G) and d7(-, C) are given below. 
The main purpose of this section is to prove 

Lemma 1. — For each point belonging to a free segment of Wy we have 

^ ) = l + 0(max(M^,), 

where d = min(<icap(z, C), d1(z, C)). 

We state also a related fact which is, in some ways, more basic: 

SOCIÉTÉ MATHÉMATIQUE E>E FRANCE 2000 



22 M. BENEDICKS & L.-S. YOUNG 

Lemma 1'. — Suppose that z is a point that is in tangential position to two different 
critical points z\ and z2. Let d\ — \z — z\\> d2 = \z — z2\ and d = min(di, d2). Then 

^ = l + 0(max(6,d2)). 
d2 

We now begin to justify these claims. The following technical sublemma along 
with Lemma 5 in [BY] (see Fact 1 Section 1.6) will be used repeatedly to rule out 
the presence of critical points in certain regions. Part (b) has independent interest; 
it plays an important role, for instance, in the proof of Lemma 1. 

Sublemma 1. — Let 70 and 7 be two free C2(b) segments of W. Suppose that 70 
contains a critical point zo, and that there exist two points Co G 7o and C G 7 with the 
same x-coordinate. Let do — |Co — z§\. 

(a) If\C~ Co| < d$ and | r (C)— t(Co)| < d§> then for all z G 7 with \z — z0\ — d > do, 
there can be no critical point at a distance < d2 from z. 

(b) The assumptions in part (a) are satisfied if C is (say) the left end point of 7, 
it is in a bound state, and its binding point zo lies to the left of 7. 

In the situation of part (b), Sublemma 1 allows us to essentially regard 7 as a 
continuation of 70 (which may not be very long compared to 7) . 

Proof — The proof of (a) is a slight modification of that of Lemma 5 in [BY] and 
will be omitted. 

To prove (b) let us first briefly review the binding procedure. For a detailed account 
see [BC2], sections 6 and 7 and [BY], subsections 1.6.2 and 2.2.2. Let n be the 
generation of 7, and assume that attached to the left endpoint Q of 7 is a bound 
segment B. Recall that there is a hierarchy of bindings associated with B. We let z0 
be the critical point with the property that at this time, i.e. at time n, B is bound 
to Zm = fmzo and zm is free. Let z* denote the new binding point acquired by ?m 
at this time. Then z* is located on a segment of generation mi < m. The capture 
procedure resulting in z* calls for zm_mi to be in a favorable position (in particular 
out of all fold periods); ;?m_mi then draws in a segment 7' of W\ and lies on /mi7; . 

We claim that / _ m i C is outside of all fold periods. First, it cannot be in a fold 
period initiated in the time interval [n — m,n], since bindings and the corresponding 
fold periods initiated in this time interval are the same as those of 2q. Suppose then 
f~MIC is in a fold period initiated before time n — m. The corresponding bound 
period in this case would have to last > (Clog( l /6))m iterates beyond time n — mi, 
contradicting our assumption that C is free. 

Having established that f~RNIC lies in a segment of W sufficiently parallell to 
Wi, the estimates in (a) follow immediately from capture arguments and the Matrix 
Perturbation Lemma in Section 1.5. • 
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Definition of dca,p(z,G). — Let {7i}z=i,...,& be a stack of leaves captured by z. We 
let i* be the largest integer i such that 7̂  contains a critical point. 

Case 1: < k. — Let z(z) be the critical point on 7^ . 

Case 2: z* = k. — We will show in this case that there is a critical point on 7, the 
maximal free segment containing 7. This critical point is unique (this follows e.g. 
from Lemma 5 in [BY]); it will be our z(z). The existence of z(z) follows readily 
from Fact 2, Section 1.6, once we verify that 7 extends > 2p9 on both sides of z and 
z*, g being the generation of z and the critical point on 7^ . We leave this as an 
exercise. 

Definition of d7(z,&). — Let 7 be a maximal free segment. In Lemma 7 of [BY], 
we established a rule for assigning a critical point z(y) to each 7. See Section 1.3 
for what is proved. Given that the binding points of all critical orbits are selected 
and fixed, the only situation for which there might be some ambiguity in the choice 
of z(j) is when both end points of 7 are in (—6,6) x M, i.e. case (iii) in Section 1.3. 
Figure 1 shows all possible configurations of the locations of the binding points z+ 
(resp. z-) relative to 7+ (resp. 7_) . 

5(7") i(7+) 

(a) 

¿(7 ) 5(7+) 

(b) 

z(l ) 5(7+) 

(c) 

FIGURE 1 

In [BY] we ruled out (a); (b) will be eliminated in Sublemma 2 below. What is 
left is (c) (and its mirror image). If (c) occurs , 2(7) = z _ . 

Proof of Lemma 1. — Let where 7 is a maximal free segment of W. The idea of 
our proof is as follows. Look at the contractive fields centered at z(j) and z(z). We will 
show that for a suitable choice of m, z lies in the domains of the em-fields induced by 
both points. Since the angle between erTl(z) and r(z) is supposed to reflect the distance 
between z and the respective critical points, we must have \z(j) — z\ « \z(z) — z\. 

We consider the case where 2(7) $ 7. (The proof is slightly simpler when 7 contains 
a critical point.) Let dy = \z — z\, dc = \z(z) — z\. First we observe the weaker estimate 
d2 < dc < c?y2; to see that dc > d2, use Sublemma 1 (both (a) and (b)); to see that 
dy > d2,, use Lemma 5 in [BY]. Let m7 and mc be defined by 

'A 
,5 

2mc 
<dc< 

'A' 
5 

2mc —1 

.5, 

2m, 
< d7 < 

A 
5 

2m7-l 
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and let m = min(ra~, rar). Then the above relation between cL and dr implies that 

1 
2 

< 
m 

ra7 
m 

<12 
< 1. 

Thus z lies well inside the balls B^x/5)^(z(z)) and B(X/5)™{z(l)), the domains of em 
around these points. 

Let z be the point on 7, the C2(&)-segment containing 2(2), having the same in
coordinate as z. Since |r(?(^)) — ern(z(z))\ — 0(6m) and 7 is C2(6), it follows that 

(2.1) \r(z) - em(z)\ = (2a + 0(fe))rfc. 

We would like to duplicate the estimate in the last paragraph with z playing the 
role of z and 2(7) instead of z(z), except that z does not lie on 70, the C2(b) segment 
containing 2^7), and in any case we do not know how long 70 is. To get around this, 
note that 

< ( T ( z ( 7 ) ) , T ( * ) ) < < ( r ( ? ( 7 ) ) , r ( C o ) ) + < ( T ( C ò ) , r ( C ) ) +<<(r<(r(t(C),t(Z)), 

where £ is the end point of 7 closer to 2(7) and Co is the point on 70 with the same 
«r-coordinate as £. Part (b) of Sublemma 1 then gives 

(2.2) \r(z) - em(z)\ = (2a + max (0(6), 0 (|C - ?(7) |2))) • dy. 

Finally, since 7 is obtained by capturing we have \r(z) — r(z)\ <C c^, say. Also, 
|em(?) — em(z)\ < lOd* (apply Property (iii) of Section 1.5 twice). These together 
with (2.1) and (2.2) give the desired result. • 

We omit the proof of Lemma 1 ', which is very similar to that of Lemma 1. 

Remark 1. — This proof shows that the intuitive definition of the distance to the 
critical set for a point z G W really ought to be the angle between r(z) and em(^), 
where em is the contractive field of a "suitable" order. 

In order to make the definition of dy(z, 6) unambiguous it remains to prove 

Sublemma 2. — The configuration in Figure 1(b) does not occur. 

Proof of Sublemma 2. — The proof is based on the same ideas as that of Lemma 1. 
Fix an arbitrary z G 7. Then Sublemma 1 applied to z± tells us that 

\z - z+\2 <\z- z-\ <<(r\z- z+\1/2. 

Let d = max(|^ — \z — z-\) and m an integer defined by (A/5)2m « d as in the 
proof of Lemma 1. Then z lies well inside the balls B^\/^m(z—) and J3(a/5)™(2-), 
the domains of em around these points, and we obtain a contradiction since the field 
arround z- says em(z) must have positive slope and the one around 2+ says that the 
slope is negative. 
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3. Construction of a "horseshoe" with positive measure 

3.1. Goal of this section. — "Horseshoes" are well known to be building blocks 
of uniformly hyperbolic systems. We will show in this section that / can be viewed 
as the discrete time version of a special flow built over a "horseshoe". In order to have 
positive SRB measure, the "horseshoe" here must necessarily have infinitely many 
branches with unbounded return times. This picture will be made precise in the 
statement of Propostion A. 

We begin with some formal definitions. 

Definition 1 
(a) Let Tu and Vs be two families of C1 curves in M2 such that 

(i) the curves in Tu, respectively Ts, are pairwise disjoint; 
(ii) every 7W G Tu meets every 7s G Vs in exactly one point; and 

(iii) there is a minimum angle between ju and 7s at the point of intersection. 
Then the set 

A: = { 7 " n 7s : 7U € Tn,7s G Ts} 

is called the lattice denned by I " and 1 *. 
(b) Let A and A' be lattices. We say that A' is a u-sublattice of A if A' and A have 

a common defining family Vs and the defining family Tu of A contains that of 
A'; s-sublattices are defined similarly. 

(c) Given a lattice A, Q c M2 is called the rectangle spanned by A if A C Q and 
dQ is made up of two curves from Tu and two from Vs. 

In Propostion A we will assert the existence of two lattices A+ and A- with es
sentially identical properties. For notational simplicity let us agree to the following 
convention: statements about "A" will apply to both A+ and A- . For example, "let 
Tu and rs be the defining families of A" means there are four families of curves; the 
families (rw)+ and (Ts)+ define A+ while {Tu)~ and (Ts)~ define A~. 

Proposition A. — There are two lattices A+ and A- in M2 with the following prop
erties. Let Tu and Vs be the defining families of A; for z € A, let 7w(z) denote the 
7W-curve in Tu containing z. Then: 

(1) (Topological structure) A is the disjoint union of s-sublattices A$, i = 1, 2 , . . . , 
where for each i, 3Ri G Z+ s.t. fRiAi is a u-sublattice of A+ or A- . 

(2) (Hyperbolic estimates) 
(i) Every 7W G Tu is a C2(b) curve; and 3X± > 1 s.t. 

Df*r I > Af* 

Vz G 7U fl Qi, r being a unit tangent vector to 7W at z and Qi being the 
rectangle spanned by A^. 
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(ii) \f z G A and VC G 7s (2) we /mve 

<(r<(r < cv Vi > 1. 

( 3 ) Leb(A H 7U) > 0 V T U G P . 

( 4 ) (Return time estimates) Let R: A -> Z + 6e defined by R(z) = Ri for z G A¿. 
Tften 3 Co > 0 and #o < 1 0ft every 7n, 

Leb G 7W :<(r<(r> n} < Co0% Vn > 1. 

The rest of this section is devoted to proofs of Assertions ( 1 ) and ( 2 ) in Propos-
tion A; Assertions ( 3 ) and ( 4 ) are proved in Section 4 . There are slight (and totally 
harmless) inaccuracies in the above formulation of Propostion A. They are noted in 
Remarks 2 and 4 in Section 3.4. 

3.2. Some preliminary constructions. — First we assume / is a 1-dimensional 
map and construct for / a Cantor set that would play the role of A in Propostion A. 
Then we carry this construction over to W±, the top leaf of W (see Section 1.2). We 
will address certain technical problems in 2-d that are not present in 1-d, and conclude 
that the two Cantor sets we have constructed have identical geometric estimates. 

Temporarily then, we think of / as a map of [—1,1] given by f(x) = 1 — ax2 for 
some a < 2 , and let Qo be one of the two outermost intervals in the partition T defined 
in Section 1.4. We define inductively ílo ^ íli Z> ÍÍ2 D . . . as follows. Let u be a con
nected component of íín-i- First we delete from uj the interval f~n (—áe-c*n, Se~an); 
and if the /n-image of a component of what is left of uo does not contain some 
then we delete that also. What remains goes into fin. Our desired Cantor set is 

^00 — fin ^n-
We assume the following is true: if Mi is the minimum time it takes for x G (—5, S) 

to return to (—¿, £), then eaMl > 10. We assume also the corresponding fact for our 
2-d map. This is easily arranged since a is fixed before we choose a or S. 

Returning to 2-d, we let fío be the corresponding segment in W\ and try to con
struct Qn using the same rules and same notations as in 1-d. Let u be a connected 
component of fln-i. We assume for the moment the following geometric fact: 

(*) if part of fnoj is bound and part is free, then the bound part lies at one or both 
ends of fnu. 

If all of fncv is in the bound state, or if fnu> n {—8,6) x E = 0 , do nothing; i.e. put 
u C Q,n. If not, let 7 be the free part of fnu>, and let 7 be the maximal free segment 
containing 7. We will use as binding point ^(7), where z(-) is as defined in Section 2 . 
Deletions are then made with respect to this binding point, and f ioo = H £ in as before. 

To justify (*), consider the function t defined on fnuj where t(z) is the time to 
expiration of all bound periods at z (counting only the ones initiated before this step). 
We take as our induction hypotheses not only (*) but that t\fnu has the following 
profile: it is either decreasing (by which we mean non-increasing) or it decreases from 
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one end to its minimum and increases from there to the other end. It is easy to check 
that this type of profile is maintained on each component of Qn even if new bindings 
are imposed. 

We note also that the bound part at each end of fNU> (if it exists) is small relative 
to where Iv$ is the element of the partition determined by ^(7) that meets it. 
We know from 1-d or [BC2] that this is true wrt the partition determined by some 
binding point and Lemma 1 assures us that all binding points are essentially the same. 
This reasoning also gives us that no bound part is ever deleted. 

3.3. Stable curves. — The purpose of this subsection is to construct Ts, which will 
consist of a family of local stable manifolds through QQ C W\. We noted in Section 1.4 
that 3c2 > 0 s.t. \Df?r\ > 5eC2n Vz G iln. From Section 1.5 then it follows that en, 
the field of most contracted directions of Dfn, is defined in a neighborhood of every 
z G f)n. To construct Vs, however, we need to know that the domain of en is larger 
than this. 

As noted in Section 1.5, e\ is defined everywhere. We integrate e±, and let Qo = 
[jzeQ0 7 1 ( 2 ) where 7 1 ( 2 ) is the integral curve segment of length 106 centered at z, and 
Cto is the (Cfr)-neighborhood of Qo in W\. We will not need this for some time, but 
the 71-curve in Qo have slopes « ±2aS depending on whether we are working with 
QQ or QQ . 

Suppose that at step n, corresponding to every connected component u> of iln-i 
we have a strip foliated by integral curves of en. More precisely, Q^ — Uze% ln{z) 
where jn(z) is the integral curve segment of length 106 centered at z and u3 is the 
(C6)n-neighborhood of u in W\. We think of 7n as temporary stable manifolds of 
order n. 

Let u/ C u be a component of iln. We want to show that Q^1 is well defined and 
is contained in Qw. For z G a/, let Un(z) be the (C6)n-neighborhood of 7n(^) in M2. 
First we claim that en+i is defined on all of Un(z). Since |Z>/|r | > KJ, V j < n + 1, 
it suffices, by Section 1.5, to check that d(fjQ,fjz) < \j, V j < n + 1, VC e Un(z). 
Let be the point in jn(z) nearest to £. Then 

d(fjC fjz) < d(fjC fJC) + d ( / ' 'C ' , fjz) 

< (Cb)n • 5j + C\P < Xj. 

Next we claim that jn+i(z) is well defined and lies inside Un(z). We see this in two 
steps: first we use the Lipschitzness of en (Property (iii), Section 1.5) and a Gronwall 
type inequality to see that en\Un(z) can be mapped diffeomorphically onto d/dy on M2 
via a diffeomorphism 3>N with | |D4>N|| < e510&; then use |en+i — en\ < (Cb)n and the 
"straightened out" coordinates of en to conclude that the HausdorfT distance between 
jn+i(z) and 7n(^) is < 106 • (Cb)n < | (C6)n. Finally, observe that these arguments 
are easily extended to 7n+i-curves through points in ((76)n+1-neighborhoods of a/, 
proving Qu> C Qu;. 
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Taking limits of these "temporary stable manifolds", we obtain genuine stable man
ifolds for points in ttoo. 

Lemma 2 

(1) \f z G ftoo, there is a C1 curve joo(z) of length 106 and centered at z s.t. 

V C e 7 o o ( ^ 
d(fjÇJjz)<CV V J > 1 ; 

(2) V* ,* ' G floo, z^ z' => loo(z) H 7oo(^) = 0; 
(3) if fnloo{z) n7oo (^ )+ 0 , *Äen /n7oo(^) C ioo{z'). 

Proof of (1). — Let zn be the right end point of u>n-i, the component of Qn-i con
taining z. Since P|n un = {2:} (reason: |JD/nr| > 5eC2n on ujn~\ and fnu>n-i has 
length < 2), it follows from the estimates above that as n 00, 7n(zn) converges 
uniformly to a curve which we will call 7^(z) . Because the en's have a uniform Lip-
schitz constant (Section 1.5, property (hi)), 7n(^n) in fact converges in the C1 sense 
to 700(^0 • Thus the contractive estimates for fi | 7n(^n) carry over to /J | 700(2)- • 

Before proving (2) and (3) we need to do some preparatory work. Consider a C2(6) 
curve 7 lying in Q0 and joining dsQo, the two boundary components of Q0 that are 
not part of W. For each connected component oj of fln-i, we let 7^ denote 7 n 
Note that every point in 7^ is connected to some point in uj by an integral curve 7n, 
and also that if uj' C ttn is contained in oj, then 7^/ C 7^. For 0 G 7 we will use 
r{fiz) to denote the unit tangent vector to fiy at f^z. 

Sublemma 3. — Let 7 be as above. Then if uj C ftn-i is s.t. part of fnuj is free and 
intersects {—8,8) x M, £/ien £/ie binding point z for fnuj selected earlier is also suitable 
for /n7cj' where uj' = u;nf2n (see Section 1.3 and Section 1.5 for the meaning of "suit
able"). It follows from this that for all uj G fln~i, /J | 7^, j < n, has the bound/free 
estimates expressed in Section 1.3 and the distortion estimate in Section 1.4-

Proof of Sublemma 3. — We fix ( E 7a; and investigate the suitability of ? as a bind
ing point for (fnC,Df£T(Q). Let z G £ be s.t. C £ 7n(z). Then d(fnz,fnQ < Cbn. 
This cannot jeopardize the generalized tangential position part of the requirement 
since Cbn is totally insignificant compared to d(fnz,z), which is > e_cm. As to the 
angle part of the requirement, write 

i(DfÏT(z\DfZr{QQ)-) ; :<(Df?T(z)<(,DfMQ)-Q)-<(Df?T(<(Df?T(z),DfMQ)-$ù 

The first term is < 20b Cbn because both r(z) and r (C) have slopes < 106, \\Df?\\ > 1, 
and both r(^) and r(C) make angles « 2a5 with en(z). The second term is < Cbn/A 
by the matrix perturbation lemma in Section 1.5. The difference between r(fnz) and 
r ( / n C ) , therefore, are insignificant relative to (2a ± 1) • d(fnz, 2), the size of the angle 
they are supposed to make with the relevant contracting field about z. 
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The estimates in Section 1.3 depend on the pair (C ,T), C € being "controlled". 
(For the precise definition see 1.4.2 and 1.5.1 of [BY].) The distortion estimate in 
Section 1.4 holds for C2(b) segments all of whose points and tangent vectors are 
controlled. • 

Proof of Lemma 2 (continued). — We prove (3); the proof of (2) is similar. We will 
try to derive a contradiction assuming / n7oo (z) 9- 7oo (z1). Let N be a sufficiently large 
number to be specified. Let 77 and 77' be points in fn^oo{z) and 700(2') respectively 
s.t. 

(i) 77 and rjf are joined by a horizontal line segment 7 C Qo and 
(ii) 77 G dQu where uj is the component of fi;v-i containing z'. Since 77 and rj' lie 

in some 7^, Sublemma 3 tells us that if fNUJ is free (our 1st requirement on 
AO,then 

fNn fNv' > ECN 77-r7'| I > ECN 1 

' 2 
Cb)N. 

On the other hand, if q € /n7oo(z) l~l 700(2')) then 

f V fNv' < l / V Q ) -f Q + fN9 Q)-Q)-

< 
CbN+nQ)-
( 6 / 5 ) " Q ) -

+ CbN = ( 5 N + 1 CbN. 

These two estimates of fNv fNv' are clearly incompatible for N ^> n. 

3.4. Definition of A and return times. — We now specify the two families Yu 
and Vs that define A. 

Definition ofTs. — We let Vs = {700(2): z G Qooj where 7oo(0 is as in Lemma 2. 
Definition ofFu. — We let Tu = {7 C W: 7 is a C2(b) segment connecting the two 
components of dsQo}-> and let Tu — {7 : 7 is the pointwise limit of a sequence in Tu}. 

Remark 2. — (1) We have not proved that the curves in Fu are pairwise disjoint. 
However, since every 7 G Tu is the monotone limit of curves in Tu, there are at most 
count ably many pairs that intersect. It is easy to see that they play no role. 

(2) Without further analysis, we also cannot conclude that 7 G Tu is better than 
C 1 _ H L ( 6 ) , since they are uniform limits of C2(b) curves. This also is inconsequential. 

Having completed the definition of A, we now proceed to define the s-sublattices 
that make up A and their return times R. Let us remind ourselves again that in 
actuality we are interested in the set A+ U A - , where A^1 correspond to the lattices 
we have constructed near fi^ x [ — 6 , 6 ] , and J1Q being the two outermost intervals 
in the partition V introduced in Section 1.4. When we speak about return times, we 
are referring to return times from the set A+ U A " to itself, i.e. a point in A+ may 
return to A+ or A - . To keep the notations simple we will continue to write just UA". 
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We stipulate ahead of time that V2; E A, R(z) = R{z') Vz' G 7s(z), so R need 
only be defined on Anf io - We will construct partitions on subsets of Qo and use 1-
dimensional language. For example, fnx = y for x, y G Anfio means that fnx G 7s (y). 
Similarly, for subsegments LO,LO' C Qo, fnw = u>' means that fnLon A, when slid along 
7s-curves to Qo, gives exactly LO' n A. (We caution that ufNL0 — LO'" does not imply 
fn(u; fl A) = a/ n A!) For a; C Qn-i, CP \ fnu refers to CPp] where 2 is the binding 
point for fnuo selected earlier. 

We will construct below sets Qn C Qn and partitions CPn on Qn so that fio >̂ ^1 3 
3 . . . and £ G On-i — Qn iff -R(^) = n. As usual, we think of points belonging 

to the same element of CPn as having indistinguishable trajectories up to time n. We 
augment CP defined in Section 1.4 to CP = {LO G original CP} U {[—1, —5), (5,1]}, and 
let CP be the partition on Qo — Qoo dividing this set into connected components. The 
symbol "V" refers to the join of two partitions, i.e. A V *B = {A n B: A G A, B G £ } . 

An interval LO C ffcn is said to make a regular return to f£o at time n if 

(i) all of fnco is free; 

(ii) D 3fî0. 

Rules for defining lìn, CPn and i?: 

(0) ft0 = fto, ?o - №0}. 
Consider LO G CPn_i. 

(1) If a; does not make a regular return to fio at time n, put a; fl Qn into f£n, and 

let 
^ | ( ^ n n n ) = Crn3>) ( (co D Hn) 

with the usual adjoining of end intervals (this is always done with or without 
our saying so explicitly). 

(2) If LO makes a regular return at time n, we put LO' = (LO — f nQoo) H Qn in _. 1 1 
Qn, and let CPn u = ( /~ny V f~n<P) LO'. For Z E LO s.t. / n z G fico, we define 

#(2) = n. 
(3) We require that R > no for some no to be specified in Section 6.1. To comply 

with this, if LO G CPn_i makes a regular return at time n with n < no, then we 
treat LO accordine: to Rule (1) and not Rule (2). 

(4) For z G fin ^n, set i?(^) = oc. 

Remark 3. — We digress to make the following adjustments in our definitions of CPn; 
they will simplify the proofs in Section 4. Let us say that a C2(b) segment 7 C (—5, S) 
is of "full length" ifBuJ s.t. jnl^^ 0 and £(7) « Recall that in Section 3.2 
we made sure that when something is deleted from fNL0, to G Qn-i, no "short" segment 
is left behind. We wish to do the same for fNL0 for every LO G CPn_i. For definiteness 
suppose that LO G CPn_i was created at step k < n — 1, and that not all of LO will 
remain in Qn. We distinguish between the cases where fKL0 « some I^j and where 
fku is a gap of A. 
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If fkuj is a gap of A, then dist(/n(<9a;), e) > de~a(n-V > 105e" a n , so the end 
points of fnuj straddle the forbidden interval (—5e~ a n , Se~an) by wide margins and 
no problem will arise. 

Suppose fk UJ ^ some Ij/j • Since deletions occur only at free returns, we have 
£(fnuj) » 8e~ocn. The only problematic scenario is when a tiny part of fnuj sticks 
out, say, to the left of (—8e~° i n

y Se~ocn). If this awkward bit remains in f ) n , then there 
must be something in ffcn_i that is mapped by fn to the left of it. The reasoning of 
the last paragraph rules out the possibility that the left end point of fnuj is a limit 
of infinitely many small segments coming from the gaps of A. Thus 3UJ' G 7n-i 
that shares this relevant end point with UJ. Hence 3UJ" G *Pk with this property and 
fkuj" « some I„'j>. We now retroactively move the boundary between UJ and UJ" SO 
that the awkward bit in question belongs to the image of UJ1 or UJ" . It is easy to see 
that no boundary is moved more than once, for a gap beween the adjacent elements 
appear immediately thereafter. 

It is now clear what the sublattices in Propostion A (1) are: each A* is an s-
sublattice corresponding to a subset of fto H A of the form /~ n f ioo Pi A Do;, UJ G y n - i 
making a regular return at time n. Note that if A^ is one of the s-sublattices, and 
7 = Qi n 7 W , 7 W G P , Qi = the rectangle spanned by A$, then fnj G P . To see 
this, first assume 7 C W. Then fnj is C2(b) because it is free; hence it is in Tu. 
This property clearly passes on to curves in Yu, proving fnA{ C A. Note also that 
the hyperbolic estimates in Propostion A are simply Estimate III in Section 1.3 and 
Lemma 2 (1). 

To complete our objective of proving Assertions (1) and (2) in Propostion A then, 
it remains only to show that fRiAi is a n-sublattice. This requires proving that the 
Cantor set fRiAi somehow matches completely with A in the horizontal direction. We 
claim that this is a consequence of our construction but defer the proof to Section 3.5. 

Remark 4. — We have not proved that R{z) < 00 for every z G A. Indeed, the 
assertion in Propostion A (1) that A = |J A* is inaccurate and should be ammendec 
to read "for every 7™ G Yu, Leb((A — (J A*) Pi ju) = 0". That R < 00 a.e. on A n 7^ 
will follow from the Main Lemma in Section 4. 

3.5. Matching of Cantor sets. — To complete the proof of Propostion A (1), we 
need to show that whenever Rule (2) in the previous subsection is applied, 

fn(uj nn^) D ^ oc 

We formulate this as 

Lemma 3. — Let UJ G ftn-i be s.t. fnuj crosses QQ completely. Then \l z G A, 
3 zr G UJ H A s.t. fnz' G 7 s (z) . 
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Let us first explain the central idea of the proof assuming that / is a 1-dimensional 
map. Given z G ffcoo, there is (by hypothesis) z' G LO with fnz' = z; what is at 
issue is whether z' G fioo* First, G í í n because u; C í í n - i and / n £ ; G fío- It 
suffices therefore to show that | / J + n £ ' | > 2<5e~( J ' + n) a Vj > 0. This is true because 
\f*+nz'\ = | / ' * | > ¿e~ a-?, which is > 10Se-Q^+r^ since e a n > 10. 

For the 2-dimensional situation at hand, what complicates matters is that different 
layers of W require different binding points, and that the binding point at step n 4- j 
for fn+jz' may not be vertically aligned with the binding point at step j for fjz. Our 
aim in this subsection is to dispel with these technicalities so that the 1-d argument 
prevails. 

Lemma 3'. — Let to be a connected component of Ctn-i, and suppose that fnQu 
crosses Qo completely in the horizontal direction. Then V j > 1, if LOJ is a component 
offlj, then there is a component LOU+J of Qn+j s.t. Q(JJj D fnQuj C fnQun+j' 

z' 
z -

Q)-+3 (J 

fnJ+33 (J 
+3 (J 

FIGURE 2 

In this subsection we will regard Q^ as foliated by temporary stable curves through 
LO, ignoring the slight discrepancies between the temporary curves of various gener
ations or their slightly different domains of definition. Those matters were dealt 
with in Section 3.3. We remark that if Lemma 3' holds, then it will follow that 
(IL,. Q»i) n fnQ* C L l n + J fnQun+j for all j > 1. Taking the limit as j -> oc, we 
will obtain (\JzGQoo 7s(z)) H fnQcv C Uzen^ fnls(z), which gives Lemma 3. 

Proof of Lemma 3'. — Let n and LO be fixed, and assume the conclusion of Lemma 3' 
for all components of ftj-i. We pick one uij—i, and let un-\-j-\ be as in the lemma, 
see Figure 2. We will examine what is deleted from / j Q C t , i _ 1 at step j versus what is 
deleted from fn+3QU;n+j_1 at step n + j . 

Let z G fn+jLOn+j-i fl fiQiVj_1 be such that z is deleted at step n + j , and let 
z1 G 7 | (z) H fjLOj-i. We will show that z' is deleted at step j . The notations and 
results of Section 2 will be used heavily in the next few lines. First if d1(z

l, G) < <5e - a j , 
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we are done. Suppose not. Then since \z — z'\ < (Cb)j, 

\z - z{z')\ > \z' - z(z')\-\z- z'\ > 9_ 
10 

5e~aj, 

and z is in tangential position wrt z(z'). But we also have 

\z-z{z)+3(J\+3J<5e-^+j^^+j^ < _2_ 
ÏÔ 

+3 (J+3 (J 

and this is incompatible with our estimate on \z — z(z')\. 

4. Return time estimates 

The goal of this section is to prove Assertions (3) and (4) in Propostion A. 

4.1. Statement of lemmas and ideas of proofs. — Let fto C W± be as in 
Section 3, and recall that there are sets ft0 = ft0 ^ fti ^ ft 2 3 • • • and partitions 7n 

on ftn so that for all z G ftoo? z G ftn iff R(z) > n, and points in the same element 
of T n are viewed as having the same itinerary up to time n. (See Section 3.2 and 
Section 3.4.) Let | • | denote the Lebesgue measure on 7 n-curves. 

Lemma 4. — l^ool > 0. 

Proof. — This is a 1-d argument using estimates in [BC1]. In the construction of 
{ f t n } , let UJ C ftk be a component that is formed at step fc, and suppose that some 
part of it will be deleted at step n. Since fk UJ Z) some Ivji we are guaranteed that 
\fnuj\ > S3Pe~3aPk > S3(3e-3oi(3n. But the subsegment of fnuj to be deleted has length 
< 46e~an. Taking distorsion into consideration when pulling back to Qo, we have 
that 

\iin-i — ftn I 
|ftn-l| 

< c s(l-30)+3 (J+3 (J-a(l-3ß)n 

and the statement of the lemma follows since 
oo 

n=Mi 
1 _ Cl$(l-3ß)e-cx(l-3ß)n'+3 (J > o , 

where M± is the minimum time for a point in (—5,6) to return to (—5,5); see Sec
tion 3.2. 

Lemma 5 (Main Lemma). 3C0 > 0 and 0O < 1 s.t. 

ftn < CQ9O Vn > 1. 

Remark 5. — We have stated lemmas 4 and 5 for ftn on Wi, but the corresponding 
statements are true for every j u G Tu with uniform estimates (independent of ju). 
The proofs are in fact identical through the use of Lemma 2. A related fact that will 
not be needed till later is in fact the absolute continuity of { 7 s } as a "foliation"; see 
Sublemma 10 in Section 5. It says in particular that 3C > 0 s.t. for all 7, 7' G Tu, 
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if * : 7 H A »-> 7' is denned by = 7(2?) fl 7', then < C\A\ for every Borel 
subset A of A n 7. 

We postpone the proof of Lemma 5 for later, but use instead the remainder of 
this subsection to discuss the main ideas behind this tail estimate for R. Consider a 
segment a; C Oj^. 

(1) It is easy to see that once fnuj becomes sufficiently long, then it will make a 
regular return to ft0 within a finite number of iterates. Our situation is as follows: 
as we iterate / , UJ grows in length — except when it comes near 6, at which time 
it may lose a piece in the middle and it may get subdivided into i ^ ' s for distortion 
control; these components are then iterated individually. An unfortunate component 
of UJ may get cut faster than it has the chance to grow, but our contention is that 
because of the estimates in Section 1.3 the general tendency is for a component to 
grow long. 

(2) When a regular return occurs, small pieces corresponding to the gaps of A are 
created, and these small pieces are handled individually as they move on. We must 
therefore carry out the large deviation estimate in (1) simultaneously for the entire 
collection of gaps; such an estimate will involve the distribution of gap sizes. 

(3) As has already been suggested in (2), it is not quite the end of the story when 
a component of UJ grows long, for at regular returns only a (fixed) percentage of the 
long segment gets absorbed into the Cantor set A. To estimate distribution of return 
times we must estimate the frequencies with which the components containing typical 
points makes regular returns. 

These ideas are made rigorous in Sections 4.2, 4.3 and 4.4. We remark also that 
(1) is essentially dealt with in [BC2] in the slightly different context of parameter 
exclusions, and that we learned some of the estimates for (2) and (3) from [C]. 

4.2. Growth of components of a segment to a fixed size: a large deviation 
estimate. — In this and the next subsections we will be studying the time evolution 

of a curve 7 which is contained in f^ftj for some j > 0. It is convenient to think of 

points as being in 7 at time 0, so let us introduce the following notations: fl^ = {z E 

7 : f-'z G ftj+fc}, similarly for ft(

k

j\ and 7(

k

j)(z) = { /767 : f~jV G $j+k(f~~jz)}. 

We will also use the following language. For z E 7, we say that z makes an essential 

free return (= e.f.r.) to (—6,6) x R at time k if z € fij^i and fk7>^l1(z) is free and 

contains some IVj. We say z makes a regular return to fto at time k if z E fijjf2i and 

fky(^l1(z) makes a regular return. We define the stopping time 

E(z) = the smallest k E Z + s.t. 

either z £ fl^ or z makes a regular return at time k 
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and let 
In - {z e 7 : E(z) > n}. 

Sublemma 4 (cf. Section 2, [BC2]). — There exist D[ > 0 and 0[ < 1 for which the 
following holds. Let 7 = f^co for some LO G WJ, and let n G Z + . We assume that 7 is 
free and is « some with \r\ < n/6. Then 

L7N| < ^ W M -

Proof. — We will prove that 

(*) |7n| <Z>ie-* n + ra" r l |7| 

for some D[ independent of 7 or n. This implies the Sublemma immediately: for 
\r\ < n/6y D[e-iN+T6^ < ^ e - * n + ^ t = Z^e"**, so it suffices to take 6[ =e~1/60. 

Consider z G 7 with E(z) > n , and suppose that z makes exactly s e.f.r.'s in the 
first n iterates, at times 0 = to < t\ < • • • < ts < n. It follows from Remark 2 in 
Section 3.4 that fufyj)(z) « some Iriii for each i. A slightly extended version of our 
estimates in Section 1.3 gives for all i < s: 

U+i - t i < 4 \ r i \ N =R}. and f t i + 1 - u I r i i i N = R } . ^+j^^+j^^+j^ 

This second inequality can be used to estimate the fraction 

(p (r u . . . , r s )N =R} . N =R}. 
N =R}. > G 7: &(z) ( r i , . . . , r a ) } | 

where ^(z) denotes the relocations of the e.f.r.'s of z. Letting C± be the distortion 
constant in Section 1.4 and writing ro = r, we have 

(f(ru ... ,rÄ) ci 
s 

i=l 
exp - | r < | + 3 ) 9 1 ^ - 1 1 } 

< Ci exp = 
7 
8 

^+j 

i=l 
\ri\ + 3ß\r\ 

Next we make, for fixed s and i?, the purely combinatorial estimate on the number 
of all possible s-tuples (7*1,. . . , r s ) , r$ G Z , with X^—1 l r * l = This is clearly 
< 2 s ( ^ ^ F " 1 ) . For us, since the time between consecutive e.f.r.'s is > A = log(l /5) , 
the number of feasible ( r i , . . . , r$) as locations of e.f.r.'s is in fact < 2R/A • (jR+^/^~1) > 
which by Sterling's formula is < 2R/A(1 + a(5))R with a(5) - » 0 as 5 0. 

Let 

4n 

N =R}.R}. 
2 G 7n: 2 makes exactly 5 e.f.r.'s up to time n and N =R}. 

N =R}. 
N =R}. 

We may then estimate | 7 n | by 

L7N| 
all relevant s,R 

AU 
^syR 

00 

R=(n/4)-\r 

R/A 

s—1 with 
ri , . . . ,r s; 

N =R}.N =R}. •V?(ri,...,r a) • |7|. 
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The lower limit of summation for R comes from the fact that |r| + 4i? must be > n, 
otherwise the (s H- e.f.r. or a regular return, whichever happens first, would have 
taken place by time n. We do not need to concern ourselves with s = 0 because 7 
must make an e.f.r. by time n/2 (because e-™/6ecm/2 ^ Note that this is an 
overestimate also in the sense that some of the ( r i , . . . , reconfigurations are forbidden 
due to the Iri£^s being too close to C. 

Plugging our earlier estimates into this last inequality, we obtain 

Ы <c 
00 

R=(n/4)-\r\ 

2*/*(i + a(S))R • tff/де-«к+з/з|г| . ы> 

which is less than the right side of (*) provided S is sufficiently small. 

We now re-state Sublemma 4 in anticipation of how it will be used. 

Corollary to Sublemma 4. — There exist D\ > 0 and 9\ < 1 for which the following 
holds. Let 7 be contained in a free (C2(b)) segment ofW. We assume that either 

(i) 7 = f^uj for some UJ E TJ, 7 need not be of "full length"; or 
(ii) 7 = [Ji f^oji where for each i, UJI E 7j and f^uj% ~ some Iri£{. 

Then 
E(z) > nE(z) Vn > 1. 

Proof. — First we prove (ii). For fixed n, we have by Sublemma 4 that 

{z E 7 -e~n/6,e~n/6> : E(z) > n < D'Xnh\ E(z) > n 

and also that 
7 n -e~n/6,e~n/6 < 2e~n/6. 

To prove (i), fix n and observe as above that we may assume I7I > e ™/6, and that 
7 makes an e.f.r. at time jo < n/2. Suppose that this is not a regular return, and 
let 7' = p ° 7 . Then \-yn\ < \fjojn\ < \{z E 7' : E(z) > n / 2 } | , and this last quantity 
is estimated as in the proof of (ii). • 

4.3. Growth of "gaps" to a fixed size. — First we prove a sublemma about the 
distribution of дар sizes. 

Sublemma 5. — There exist C > 0 and a > 0 s.t. for all ju E Tu, if 9 = 
{components of 7" — A } , then 

7€S: h\<i 
\7\<Cr. 

Proof. — In view of Sublemma 3, it suffices to consider 7™ = Q0-
Observe first that all the gaps of ftoo created at step n have length 

> СГ145е-(ХПЕ-С1П. 
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(If fnuj partially crosses (—5e~ a n , 5e~an), then the part deleted is attached to an 
earlier gap, making it even bigger.) Given £, let Nn be s.t. £ « e ~ ^ + C l ) i V o . Then 

-ye y 
\<Y\<1 

17 l < 
n>N0 cj=comp. 

of ttn-! 

C i 4 e - ^ - 3 / 3 ^ n | o ; | 

(cf. Lemma 4). Thus 

| 7 |<* 

| 7 | < C e " a i V o ( 1 - 3 / 3 ) < C T 7 , 

some a > 0. 

Sublemma 6. — Le£ A c = fio — A, and /or 2 G A c , define E(z) as in Section 4-2 
with 7 = the component of Ac containing z. Let = {z G A c : i£(z) > n } . Tften 
• Z>2 > 0 and <92 < 1 

\K\ < D2E% Vn > 1. 

Proof. — Let 9 be the set of all components of A c . For each n G Z"1-, let Sn = v^7 £ 
S: < D^O™} where D\ and #i are as in the Corollary to Sublemma 4, and let 
c" = c _ c' # 

By Sublemma 5, 

E(z) > n 

\UJ\ < CiDxO^Y = £>2^
N. 

For a; G Sn^ w e know from the Corollary to Sublemma 4 that ujn := {z e UJ : E(z) > n} 
has length \ojn\ < D\9?, and from Sublemma 5 that if 

Nk = #{UJ: D±E
K < M < D1EÌ~1}, 

then 

E(z) > n 
C(Dxd\-XY 

^ Nk < D"0 

E(z) > nE(z) > n 

Thus 

^ Nk < D"0ln. 

^ Nk < D"0ln. 

k<n 

^ Nk < D"0ln. 

4.4. Frequencies of regular returns and Proof of Lemma 5. — We define a 
sequence of stopping times To < T\ < • • • on subsets of ft as follows. Let TQ = 0, 
and assuming that Tfc_i(^) is defined, let Tk(z) be the smallest j > Tk-i s.t. 7j-i(z) 
makes a regular return to ft0 at time j . Let 0& = {z G fto : Tk(z) is defined}. It 
follows from the Corollary to Sublemma 4 that Qk D ^00 a.e. for each k. Observe 
that @k is the disjoint union of a countable number of segments {UJ} with the property 
that each UJ is an element of some J^-i, Tk\uj = j , and a certain proportion of UJ is 
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absorbed back into A at time j. This is to say, 3s0 > 0 such that for all LO C Bk as 
above, 

\u;n{R = Tk}\ 

M 
^ Nk < 

This implies inductively that for every fe, 

\{ze Gk :R(z) >Tk}\ < (l-e0)
h. 

Let 8\ > 0 be a small number to be determined. Then for all n, 

n n c { z e n n : T[£in](z) >n}u{ze e [ £ i n ] : R(z) > T[£in](z)}. 

The measure of the second set on the right has already been estimated. It remains 
therefore to prove 

Sublemma 7. — 3 Ds > 0, #3 < 1, and 8\ > 0 such that 

\ { z e n n : T [ £ i n ] ( z ) > n } ^ N k < D " 0 l n . \ < D 3 0 2 Vn > 1. 

Proof — Let 1 < ni < n 2 < • • • < n£ < n be fixed for the time being. For k < n, we 
define Ak = Ak (n±,..., n^) to be 

Ak = fz € Qk' the regular return times of z up to time k are 

exactly those n^s with ni < fc}, 

and we estimate \An\ following these steps: 

(i) | A n i _ i | < £>i#™1_1 by Sublemma 4 applied to 7 = Q0-
(ii) Note that Ani _i is a union of elements of 9 n i _ i , and that Ani _i could be seen 

as 

4̂ni = {cj — U' U LO" : LO G 3>ni _i I ^4 n i _ i , LO^ Nk < D"0ln. making a regular return at time n i} , 

where LO' = LO D / ~ n i A c and LO" = (LO - / " n i f i 0 ) H flni. 

(iii) Using Sublemma 4 to deal with LO' and Sublemma 6 to deal with LO" we obtain 

An2—i 
Ani—i 

< ^ Nk < D"0ln. 

| « o | 

for some D 3 and #3 independent of the n^'s. 

(iv) Proceeding inductively, we obtain 

= An 

Ane—l 

An£—i I 

l^n«- i - l | 

< D"0ln. 

D"0ln. 
Ani—1 

< ^ Nk 

I f i o l ^ . 
^ Nk  
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We may now choose e\ > 0 small enough that 

^ Nk < D"0ln. #3 = ^3 < 

and conclude that 

{z G fìn : T [ e i n ] > n] 
[em] 

¿=0 (ni,...,n£): 
<ni <• '-<ne <n 

A n ( n i , . . . ,n*)| 

^ Nk < 

¿=0 u . 
(6'')n 

<DsffS 

provided ei is sufficiently small. 

5. Reduction to expanding maps 

5.1. Purpose of this section. — From Assertion (1) in Propostion A, we know 
that fR: A (3 sends 7 s-fibers to 7 s-fibers, so that topologically a quotient map is well 
defined. More precisely, let A = A/ « where « is the equivalence relation defined by 
z « z' iff z1 G 7 5 (^ ) . Then A O makes sense, and with A$ having the obvious 
meaning, fR maps each one of the Cantor sets A$ homeomorphically onto A. 

The aim of this section is to study the differential properties of fR: A O in the sense 
of the Jacobian of fR with respect to a certain reference measure. Let T: ( X i , m i ) —>• 
№ , ^ 2 ) be a measureable bijection between two measure spaces. We say that T is 
nonsingularii T maps sets of mi-measure 0 to sets of ra2-measure 0. For a nonsingular 
transformation T, we define the Jacobian of T with respect to mi and ra2, written 
Jmlym2(T) or simply JT, to be the Radon-Nikodym derivative d(ni2 o T)/dm\. 

Proposition B. — There is a measureable family of reference measures { r a 7 , 7 G Tu} 
with the following properties: 

(1) Each vrtry is supported on 7(1 A; it is a finite measure equivalent to the restriction 
of 1-dimensional Lebesgue measure on 7 to 7 n A. 

(2) ra7 is invariant under sliding along 7 s , i.e. if 9: 7 D A —>• 7' n A is defined by 
{9(z)} = 7 ' D 7 5 0 z ) , then for E C 7 n A, mY(9E) = m 7 (£ T ) . 

(3) For z G 7 PI Ai, let JfR(z) denote the Jacobian of fR | (7 fl A*) a£ # 
respect to our reference measures on the respective ju-curves (we know that 
fR I (7 H A,-) nonsinoular on account of fl)). Then 

JfR(z) = J / ' V ) 

/or a// z ' G 7 s (z). 
(4) 3A > 1 s.t. JfR(z) > A* a.e. 
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(5) Restricted to each 7 Pi A¿, (log JfR) O (fR) 1 is "Holder" in the sense to be 
made precise in Section 5.4Y with uniform estimates independent of 7 ori. 

Property (2) above tells us that {m7} defines a reference measure fh on our quotient 
space Á. Property (3) says that fR: Á O is nonsingular w.r.t. m; we will call its 
Jacobian JfR. Properties (4) and (5) allow us to view fR: (A, ra) O as a piecewise 
uniformly expanding map whose derivative has a certain "Holder" property. We use 
" " for "Holder" because it is not the usual Holder condition; the relevant condition 
here is dynamically defined and will be explained in Section 5.4. 

Our proof of Proposition B is essentially an adaption of some ideas used in the 
construction of Gibbs states. See e.g. [B] for an exposition. 

5.2. The reference measures. — In this subsection we define { r a 7 , 7 € Tu} and 
prove Properties (1) and (2) in Proposition B. For simplicity of notation we will write 
ra instead of ra7 when there is no ambiguity about 7. The Jacobian w.r.t. ra will be 
denoted J ( ) , while the one w.r.t. 1-dimensional Lebesgue measure on 7M-curves will 
be denoted (•)', i.e. f'(z) = \Dfzr{z)\ for z G <yu. 

We pick and fix an arbitrary 7w-curve in the definition of A and call it 7. For 
z G A, let z denote the point in 7 n 7^(2:), and let <p(z) — log f'{z). We define for 
n = 1 ,2 , . . . 

un(z) 
n-1 

i=0 
^ Nk < D"0ln.^ Nk < 

Sublemma 8. — 3 C > 0 and b' with & < 6' « 1 s.t. Vn > k > 0 , 

n 

i=k 

^ Nk < D"0ln.^ Nk <^ Nk < D D"0ln. 

Proof. — First we write 

V>(f'z) - <p(fz) = log 
^ Nk < 
D"0ln. < J 

/'(/**)- f'(f*z)\ 
^ Nk < D"0ln. 

Then letting r¿ = r(flz) and r¿ =. r(flz), we have 

\f'(fz) - f'(fz)\ < \Df,izTi - Dffisn\ + \Df,itTi - Dff^nl . 

The first term above is clearly < C'b* since d(fiz,fiz) < Cbl (Lemma 2 (1)). The 
second term is < 5|r^ — Tf|, which we estimate by 

<(Ti,r<) < <(DfÍT0,D^ Nk < D"0ln.fÍT0) + <(Dfir0,Dfi%) 

(5.1) ^ Nk < D"0ln.ùù$ 

the first because of the Matrix Pertubation Lemma in Section 1.5 and the second 
because P>f\ is hyperbolic and To and TQ are bounded away from their most contracted 
direction. 
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To complete the proof, observe that f'{fjz) > 6/5 V j , and that f'(fjz) > S for 
the first few j ' s . The desired conclusion follows easily with, say, b' > 61/8. • 

It follows from Sublemma 8 that u = limn un exists for all z G A. We know in 
fact that \u\ can be made arbitrarily small for b small. On each 7, let m be the 
measure whose density w.r.t. Lebesgue measure on 7 is XAn-y * X() being the 
characteristic function. Property (1) of Proposition B is immediate. Next follows a 
lemma, which gives a Lipschitz estimate for the tangential derivative at free return 
times: (fn)' z. This estimate is used in several places: in the proofs of the Holder 
regularity of the Jacobians (Section 5.4), and the in variance of the reference measures 
ra7 (Assertion (2) of Proposition B). 

For z i , Z2 G 7, let [zi,z2] denote the segment of 7 between z\ and z2. 

Sublemma 9. — EIC2 depending on 8 s.t. the following holds for each 7W and every 
n > 0. Let UJ C 7U be a segment in Qn, and suppose that 

(i) for each i G n, f%uj C 37^ for some^)[zuz2 

and 
(ii) fnuj is free. 

Then V z\, z2 € UJ we have 

(1) log C2ean^)[zuz 

C2ean^)[zuz 
< C2ean\fn[^)[zuz2zuz2]\; 

(2) log 
C2ean^)[zu 

(fN)'Z2 )̂[zuz2 
<C2\fn[zuz2]\ ^)[zuz2iffn0JDn0. 

Proof. — We follow the proof of Proposition 2 in [BY] p. 562-564, but make an 
improvement in the estimates. As in this proof we obtain 

T dH log (fn)'zi 
(fn)'z>> -

< C 
C2 

k=o 

ftk[zi,Z2]\^)[ 
e-vk 

where {tk}k=o are the ^ree return times, tq = n, and ftkuj ê J„fe. We then define 

m(v) = maxjtfc : »k = 

and using the fact that I f*fc+i Z\,Z2\ > 2 ^)[zuz2 we have 

T <C 

^)[zuz2 

fm^)[zuz2[^)[ 
^)[zuz2 

where S is the set of i/ '̂s not counted with multiplicity. Since f%uj lies > Se al from 
the critical set for each i, and the m(z/)'s are distinct for different z/s, we obtain 

^)[z 

^)[zuz2^)[z 

uz2 
^)[zu 

Q 

U=0 

2-k \fn[zuz2]v^)[ 
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proving (1). To prove (2) we have as in the proof of Proposition 2 in [BY] 

T <C 
^)[zuz2 

\fm^d6* 1py>[z1,z2]\ 
^)[zuz2 

<C'\ 
V 

1 
^2 = Ci, 

where C± is the usual distortion constant (see Section 1.4). Now for each v apply this 
to points in fm^uj for the time interval [m(v),ri\ to obtain 

|/m(l%i,*2]| 
\f™(»)u>\ ^)[zuz2 

\fn[zi,z2]\ 
l/n"l ' 

and conclude that 

T < C 
^)[zuz2 

I fM(^UJ 

^)[zuz2 
\fm{l,)[zud6* 1 

\f™(»)u>\ 

^)[zuz2 
^)[zuz2 

^)[zuz2 
^)[zuz2 Ci 

fn[zi,d6* 1py>z2 
^)[zuz2 

cl 
|H0| 

\fn[zuz2]\. 

Let 7 and 7' be arbitrary curves in Tn, and let 9 : 7 fl A —> 7' be defined by 
9(z) G 7s(z)D7/ . Property (2) of Proposition B follows from the following sublemma: 

Sublemma 10. — Temporarily let py and py> denote the Lebesgue measures on 7 and 
7' respectively. Then 9~1py is absolutely continuous wrt ply written 9~x p^ -<x plf 
and 

d6* 1py> 
dp^y 

(Z) = eu(z)-u(0z) for p~ a.e. z G 7 H A. 

Absolutely continuity arguments are well known in dynamical systems (see e.g. 
[PS]), but since our setting is a little nonstandard let us include a proof. Observe 
that the ra-measures are designed precisely so that 9 takes ra-measures to ra-measures. 

Proof. — Let LO C cD be subsegments of 7 with the property that LO makes a regular 
return to fio at time fc, LO is free at time k > fc, and all points in LO have the same 
itinerary up to time k in the usual sense. We require that 0 <C k <C k and that 
\fkLo\ » (Cb)k/4. (The second condition requires that k not be too much larger than 
k; it is not a serious imposition.) Let LO' C UJ' be the corresponding subsegments of 
7'. In what follows "a « 6" means that a/b is very near 1 and tends to 1 as all the 

tend to 00. 
Let z be an arbitrary point in LO fl A, and let z' = 9z. We claim that 

d6* 1py> \fku/\ 
(P)'z' 

d6* 1py> 

d6* 1py> 
d6* 1py> 

d6* 1py> 

d6* 1py> 

d6* 1py> 
s |u;| • e«(2)-«(2'). 
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For the first use the fact that ( / * ) ' is roughly identical at all points in a/. This 
is true by Sublemma 9 provided that k — k is sufficiently large. The same argument 
is used for UJ in the second Additionally we need the fact that \fkuj'\ « |/feu;|, 
which is true because the two curves are so short they can be regarded as straight 
lines, and their lengths are (Cb)k/4 while their slopes are < (Cb)k/4 apart (by the 
Matrix Perturbation Lemma in Section 1.5) In the third we use Sublemma 8 and 
the fact that k is large. 

Let A = {z G A : z makes infinitely returns to A } . We leave it as an excercise for 
the reader to verify that there is a cover U of A by pairwise disjoint sets of the type 
UJ above with M arbitrarily large. To prove 0~x -<-< /x7, let A be a closed subset 
of 7 Pi A. Choosing a subcover {wi} of U s.t. ^(\JuJi) < /JL^(A) 4- £, we have that 
^>(0A) < c2maxW^/ i7 ' (wi ) < e2max|ti|(^(^) To prove the statement on 

Radon-Nikodym derivatives, consider a Lebesgue density point z of 7 fl A and choose 
to containing z with \UJ fl A| « \UJ' Pi A| « \UJ'\. • 

5.3. The Jacobians. — For a.e. z G A fl 7, 7 G ru, we have 

d6* 1py>d6* 1py>d6* 1 
eu{fRz) 

eu{z) 

Proof of Property (3) in Proposition B. — We will verify that J(fR)(z) depends only 
on z and not on z: 

log J(fR)z--
R-l 

i=0 
d6* 1py> 

00 

¿=0 
d6* f (fRz) d6* 1 

> SRz 
I ) ) ) 

i=0 
^(fiz)-<p(fiz))d6* 

R-l 

d6* 1py> 

<P (fz) 
OO 

i=0 
V(f*(fRZ))-d6*1py>v(f(fRz))). 

Proof of Property (4) in Proposition B. — As observed earlier on, \u\ can be made 
arbitrarily small; it is in fact of order b. Our Jacobian J(fR)z is therefore a small 
Pertubation of (fR)',z, which is > eClR for some ci > | l o g 2 (see Section 1.3). • 

5.4. Regularity of the Jacobian. — Having established that m and J(fR) make 
sense on A, we now introduce a dynamically defined notion of "Holderness" satisfied 
bv J f W o f f Ä ) - 1 . 

For z±YZ2 G A, define their separation time syz\,z<2) to be the smallest n s.t. fnziy 
fNZ2 do not lie in three contiguous 7^'s. Here we have taken the liberty to confuse 
z G A with the representative on some 7 G Tw, and to include [—1,-5) and (5,1] 
when we speak about Iu^s. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000 



4 4 M. BENEDICKS & L.-S. YOUNG 

Definition 2. — A function tp: A —» 1R is said to be Holder with respect to the sepa
ration time s(-, •) if 3 C > 0 and /? < 1 s.t. for m-a.e. z\,z2 G A, \ipzi — tpz2\ < 
C/38(Zl>z*\ 

The following lemma gives the precise statement of Property (5) in Proposition B. 

Lemma 6. — 3C2 > 0 and /3 < 1 s.t. for every i and V' z\,z2 G A ^ 

JUR){*i) 
J(fR)(z2) 

- 1 < C2(3s^Rzi^Rz2K 

This can be rephrased as follows. For each i let ( / : A —> A$ 6e inverse of 
fR | A*. T/ien z —> J{fR) o (f11)^1^) is Holder w.r.t. s(-, •) above with uniform C2 
and ft independent of i. 

Remark 6. — Some explanations are probably in order here. 

(1) Why would the regularity of the Jacobian involve separation times? If we were 
working with a 1-d map / : [—1,1] O , then x h->> logf'(x) is Holder in the usual sense 
— provided that near the critical point 0, we compare two points only if they are much 
closer to each other than to 0, e.g. if they lie in 3 contiguous J^-'s. In particular, 
two points on opposite sides of 0 cannot be compared. In the present situation A is 
obtained by collapsing W ^ - c u r v e s , so that points in A represent not points in E2 but 
futures of orbits, and J(fR)(z) has incorporated into it information on the entire orbit 
of the point z G A. Now two points z\,z2 G 7W could be arbitrarily near each other, 
and be mapped at some future time to opposite sides of the critical set. The sooner 
this takes place, the less one could expect J{fR){z\) and J(fR)(z2) to be comparable. 
Hence separation time enters. 

(2) Why C/3s(fRziifRz2) ? Built into this formulation is the assumption that the map 
/ is expanding on average. Consider for simplicity a C2 uniformly expanding map 
g with g' « A > 1. Fix 8 > 0 small enough that d(gxygy) « \d(x,y) whenever 
d(gx,gy) < 8. Consider x,y and n s.t. d(glx,gly) < 8 Vi < n. The following 
estimate is standard: 

\log(gn)'x-log(gnyy\ < 
n-l 

i=0 

l o g ^ ( ^ x ) - log g'igty) 

<C 
n-l 

0 

d6* 1py>d6* 1py>d6* 1py>d6* 1py 

Now if s{x',y') is the first time d(gsx',gsy') > 5, then d(gnx,gny) « CX~S^ x^ y\ 
so that 

CX~S^ x^ y\CX~Sd6* 1py>CX~S^ x^ y\CX~S^ x^ y\CX~S^ x^ y\ 

Here (3 plays the role of A 1, and separation may occur long before two orbits move 
> 8 apart. 
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We now proceed with the proof of Lemma 6. 

Sublemma 11. — 3C£ > 0 and (3 < 1 s.t. Vz1,z2 G 7uflA; \u{z{) - u(z2)\ < 
C%(3*(Zl>Z2). 

Proof. — Let n — s(zi,z2), and pick k G [f, f ] s.t. fk[z1,z2] is free. We know that 
k exists because if /n^3[^i, z2] is in bound state, then it was > e~ta from the critical 
set when the last (total) bound period was initiated, which means that this bound 
period must expire before time \n + Aa\n < \n (see Section 1.2). Write 

u(zx) - u(z2) — 
oo 

i=0 

CX~S^ x^ y\CX~S^ x^ y\< C2eOLk\fk[z1, z2<z2]\]\ 

The part 
k-l 

< C2eOL 
{•} is estimated by 

k-l 

i=0 
< log 

< C2eOLk\fk 

< C2eOLk\f 
log 

< C2eOLk\fk[z1 

(fk)'z2\' 

The first term on the right is < C2eOLk\fk[z1, z2]\ by Sublemma 9 (1). Observing that 
separation can occur only when fn[z\,z2] is free and using the estimates for orbits 
ending in free states in Section 1.3, we have that l / * ^ , ^ ] ! < e~Cl(n~k>)\fn[zi,z2]\ 
for some c\ > | l o g 2 . Altogether this first term contributes < C2ea%~Cl% < C2/3n 
for some (3 < 1. The corresponding term for Si, i = 1, 2, is handled similarly. 

For ^2i>k{-} we have, by Sublemma 8, 

oo 
< C2e, z2]\ 

oo 
E < C2eOLk\fk[z1, z2]\< C2 

oo 

ù$ù^ 
( v » ( / ^ 2 ) - <p(f%)) 

< 2C'(b')k < 2C'bn/8. 

Proof of Lemma 6. — It suffices to work with one 7"-curve. We consider 21,2:2 G 
7" D Aj and let n = s(fRzi, fRz2). We noted in Section 5.3 that 

log J(fR)zi 
JUR)Z2 

lot 
(fR)'z, 

' UR)'Z2 ' 
- (u(fRZl) - u(fRz2)) - (u(Zl) - u(z2)) 

d^(I) + (II) + (III). 

Since z\ and z2 lie in a segment that makes a regular return to fto at time i?, we have 
by Sublemma 9 (2) that (I) < C2\fR[zi, z2]\. Using Section 1.3 again we see that 
\fR[zuz2]\ < < C2eOLk\fk[z1, z2]\e-c'n< C2eOLk\fk[z1, z2]\\fn[fRzufRz2]\ < e"cin. Also, (II) < C^(3n by Sublemma 11, 
and (III) < C'4(3s(Zl^ where s(zuz2) is obviously > n. • 
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6. Proofs of Theorems 

To study the rate of mixing of / it is not sufficient to consider fR : A O alone: the 
return time function R also plays an important role. In this section we construct a 
tower A = (J2=o ̂  ^he bottom level of which is A and construct a map F : A O in 
a way analogous to that of building a special flow over fR:AO under the function 
R. This allows us to consider the Perron-Probenius operator or transfer operator 
associated with F : A O, the quotient map of F : A O obtained by collapsing 
along local stable leaves. Spectral properties of this operator are summed up in 
Proposition C in Section 6.3. We refer the reader to [Y] for a proof of this Proposition, 
and derive from it the results of this paper. 

6.1. Construction of a tower. — Let 

A d= { ( * , £) : z G A, £ = 0,1, 2 , . . . , R(z) - 1} . 

We introduce F : A O defined by 

F(zJ) 0 M + 1) if £ + 1 < R(z) 

{fHz,0) Xe+l = R(z). 

It is clear that there is a projection IT : A —>• E2 s.t. 7r|Ao is the identity map on A 
and / o 7T = 7T o F. 

An equivalent but less formal way of looking at A is to view it as the disjoint union 
I J f c o A^ where Ae d= {z e A : R(z) > £} denotes the £th level of the tower. Next 
we subdivide each level into components A^ — [Ji A ^ in such a way that F has a 
Markov type property with respect to the partition { A ^ } . Again using 1-d language, 
a natural subdivision of A^ might be the restriction of the partition 7i constructed 
in Section 3.4; but this partition is too "big". We introduce instead a sequence of 
partitions yn on Ctn so that is coarser than lPn and each element of yn contains 
no more than finitely many elements of yn+i- This is easily done by following the 
algorithm in the construction of 9n, except that when fnu> is a regular return, no 
subdivisions are made on that part of UJ that gets mapped onto fio — f̂ oo- (Elements 
of yn are not necessarily intervals; they may have "holes" due to absorption into Sloo-) 
We say that z\,z*z G A^ are in the same component A ^ if they both lie in the same 
element of 3V 

We summarize the topological properties of F : A Q: 

(I) A is the disjoint union U f c o ^ where the £th level A^ is a copy of {z G A : 
R(z) > £}; each A^ is further subdivided into a finite number of "components" 
Atj each one of which is a copy of an s-subrectangle of A. 

(II) Under F, each A ^ is mapped onto the union of finitely many components of 
A _̂f_i and possibly a i^-subrectangle of A^1. Let AJ^ = A ^ n ir'_1Ao. We 
think of points in ( J AJ i as "returning to the bottom level" under i7", while 
other points "move upward" to the next level. 
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From the description above it is clear that the quotient map F : A O obtained by 
collapsing 7s-curves as in Section 5 is well defined. Let fh be the reference measure 
on A or Ao- Since each A^* is a copy of a subset of A0, fh is defined on A ^ via 
the natural identification. Let J(F) denote the Jacobian of F with respect to m; 
more precisely, if z G A ^ and Fz G A^+i^', then JF(z) is the Jacobian of the map 
F | (^Ai^ D F 1 (A^+i^/ )^ . Also, given the present setting it is natural to define the 
separation time of zi,z2 G A to be 

s{z\,z2) = the smallest n > 0 s.t. fnzi and fnz2 lie in different A ^ ' s . 

This definition of will permanently replace the one in Section 5.4. Observe 
that under the present definition, z\,z2 G AQ separate faster than under the old one. 
Hence the distortion estimate in Lemma 4 is all the more valid. Again we summarize: 

(III) There is a reference measure fh on A uniformly equivalent to the restriction 
of Lebesgue measure on ju fl A for every ju such that with respect to m, the 
Jacobian JF of F satisfies: 

(i) JF (« ) = 1 V ^ U % 
(ii) 3C2 > 0 and /3 < 1 s.t. Vzi,Z2 G F (Ajf), 

\JF(Zl) 
JF(z2) 

- 1 < C20s(Fzi>Fz2). 

Here A^" and AN are the two components of AQ. Let 

c3 
m (A0) 

min (m (AJ) ,ra (A0 )) 

We state for the record the following very important tail estimate on the height of 
the tower A (or equivalently the return times to A0). 

(IV) The height function R : A0 %>+ has the following properties: 
(i) R > N where N is chosen so that C2eC2C3j3N < 1/100; 

(ii) 3 C0 > 0 and Go < 1 s.t. 

fh{R > n} < Co0% Vn > 0. 

The lower bound for R in (i) is for purposes of guaranteeing a definite amount of 
contraction for the Perron-Frobenius operator between consecutive returns of an orbit 
to the base. The feasibility of such a bound was arranged in Section 3.4. Note the 
order in which the constants in (III) and (IV) are chosen: C2, C3 and /3, and hence 
N can be chosen to depend only on the derivatives of / and not on the construction 
of the tower; whereas Co and 0Q depend on / as well as on N. The tail estimate in 
(ii) is a slight reformulation of Propostion A (IV)(ii). 
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6.2. SRB measures: Proof of Theorem 1. — We construct in this subsection 
an SRB measure v for / with v(A) > 0. This gives an alternate proof of Theorem 1 
to that in [BY]. 

Let fR : A O be the mapping with fR\Ai = fRi\Ai for each i, and let ¿¿0 denote 
the restriction of 1-dimensional Lebesgue measure on Slo to A fl QQ. For ra = 1, 2 , . . . , 
let 

< C2 
1 
ra 

n-l 
(fR) < C2eO 

Then //n is supported on a countable number of 7w-curves on each one of which it 
has a density pn. Clearly, pn — 0 on ju — A. The distortion estimate in Sublemma 9 
tells us that 

Pn(x) 

Pn(y) 
< C i for a.e. x, y G A fl 7W. 

From this and from the absolute continuity of the curves in Fs and the boundedness 
of the Radon-Nikodym derivatives (see Sublemma 10), it follows that if pn | <yu := 
pn/P>n (7U)> then M_1 < pn < M a.e. on 7W n A for some M independent of ra and 

Letting ra —>• oo, a subsequence nnk converges weakly to fi^. We have immediately 
that ŷ oo is /^-invariant and that it is supported on A. 

Let {^2o} be the conditional measures of p^ on 7u-curves, and let be an s-
subrectangle of Q corresponding to an arbitrary subsegment UJ of some ju. Then for 
a.e. 7 G Tu, we have 

M-1 mm < C2eOLk\ < M 7 J ^ n 7 ) < M max Qo,n7ul, 

proving (again using the absolute continuity of Ts) that *s uniformly equivalent 
to the arclength measure s \ (7 n A). 

To extract from //oo an /-invariant measure, simply let 

v — 
00 

¿=0 
fl (Â oo R > i 

That v is a finite measure follows from Propostion A (4) (ii); we may therefore 
normalize and assume v (M2) = 1 . It is clear that v satisfies the definition of an 
SRB measure as defined in Section 1.7. 

By the same token, we could view /z^ as a measure on Ao, and construct as above 
an F-invariant measure v on A with — v. It is also clear from the discussion 
above that 1/, the measure on A that is the quotient of is uniformly equivalent to 
our reference measure ra. 

6.3. Definition and properties of the Perron-Frobenius operator associated 
with F : A O . — First we introduce the function space on which our operator acts. 
Fix e > 0 with the following two properties: 
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(i) e2£00 < 1 where <90 is as in Section 6.1 ( I V ) (ii); 

r)k\\Li^r)k\\Li^r)k\\Li^r)k\\Li^ 
Note that property (ii) is consistent with 

1 

mA0 
< C 

mAli = 1. 

We remark for future reference the relative sizes of f3 and e £: from Section 6.1 
( I V ) (i) we have that J3N times various constants is < 1 /100 , while (ii) above implies 
that eeN < 2. Thus f3 should be thought of as < e~£. 

Our function space X will consist of those Tp : A —>• C with ||<^|| < oo, where || • || 
is a weighted L°°+ Holder norm defined as follows: let Tpti — Tp | A ^ , and let | • \v 
denote the L^-norm (1 < p < oo) wrt the reference measure fh. We define 

e~£ 
loo 

e~£ 
oo 

e~£e~£ 

and 

e~£ 
Hh 

ess sup 
e~£e~£ 

\^pzx - (pz2 
e~£e~£e~£ 

e~£e~£ 

where e is as above. Finally let 

i ^ i i = i i^ i ioo + \\nh 

where 

M L = s ] i p | k / , i l L and i m i * = s u p | k / , i l L -

The Perron-Frobenius operator or transfer operator associated with the dynamical 
system F : A (3 is defined by 

0» ( ? ) ( * ) = 

w.Fw—z 

<p(w) 

JF(w) 

Our choice of (X, || * ||) was to ensure that IP has the following spectral properties: 

Proposition C 

(1) 7 \ X X is a bounded linear operator; its spectrum cr(IP) has the following 

properties: 
- vi?) C { | A | < 1} 
— 3r0 < 1 s.t. (T{7) fl { | A | > To} consists of a finite number of points the 

eigenspaces corresponding to which are all finite dimensional. 
(2) 1 G <t(!P), and p G X is an eigenfunction corresponding to the eigenvalue 1. 

Moreover, if the greatest common divisor (gcd) of {R(z) : z G A Q } = 1, then 1 
is the only element of a(IP) with |A| = 1 and its eigenspace is 1-dimensional. 

See [Y] for a proof of Proposition C. 
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6.4, Decay of correlations: Proof of Theorem 3. — Recall that we are con
cerned with a "good" Henon map / : M2 O which we know has an attractor E and a 
unique SRB measure v. We assume for the rest of this paper that (/n,^) is ergodic 
for all n > 1. The following conventions will be used: if (p is a function on M2 or on 
E, then the lift of <p to A will be called (p; and if (p : A —>> C is constant on 7s-curves 
then we will sometimes confuse it with the obvious function on A called Tp. 

For 7 > 0, let Diy = 3~C7(E) denote the class of Holder continuous functions on E 
with exponent 7, i.e. 

3K:T = {(p : E - » E I 3C = s.t. Vx,y <E E, \cpx - <py\ < C\x - yp}. 

We will use as shorthand for the correlation between <p and ip o fn with respect to v 
the notation Dn(<p. ib: v), i.e. 

e~£> o fn) cpdv U> o fn) cpdv - (pdv ipdv 

We outline below the steps needed to derive from Proposition C an exponentially 
small bound for Dn((pjtfj; v). Since the derivation is completely formal and (with the 
exception of one small geometric fact noted below) has nothing to do with the present 
setting, we will refer the reader to [Y] for details of the proofs. 

Here are the main steps of the argument: 

(1) Observe that Dn((p,*l)',v) = Dn> o fn) cpdv (p,ip;v , and that by considering a power 01 
/ if necessary, we may assume gcd {R(z) : z G A0} = 1. 

(2) In preparation for using the Perron-Frobenius operator, we maneuver Dn((p, -0; v) 
into an object describable purely in terms of functions on A. This is done in 
two steps: 

(i) Fix K G (0, | ) , and let k = KU. Let M be the partition of A into 
{Aij}, and let ipk : A —> R be the function constant on elements 77 of 
M2k '= V?=o1 F~lJA with ipk \ r/ := ip o Fk (some selected point in n). 
t r • r 1 1 i 

> o fn) cpdvM2k '= V?=o1 F~lJAM2k '= V?=o1 F~lJA:= d (i7^ (^fc^):= d 

(ii) Let (fk be defined as above, and let (fk := d (i7^ (^fc^)) /d*7-
Verify that 

Dn-k iy^k'iv) ^ Dn-k (VkitPk^) 

and observe that 

Dn-k ((fk^k;u) = ^ 0 > N (<pkp)dm- ipkpdm <pkpdm 

(3) Use Proposition C to prove that, for some T\ < 1, 

:= d (i7^ (^fc^ (pkpdm P < COnst -T!"-2*. 
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In Step (2) above, it is neccessary to translate the Holder property for cp,ip G IK7 
to a Holder type condition for <p and ip. The following geometric fact is used: 

Sublemma 12 — V z G A, diam (nFk (M2k(z))) < 2Cak. 

We leave the proof as an easy exercise. 

6.5. Proof of the Central Limit Theorem. — Theorem 4 (the CLT) is also 
proved in [Y] but we prefer to give another proof here. As in [Y] this proof is based 
on a theorem of Gordin [G] but we apply Gordin's theorem to test functions in the 
Banach space X and use an L2 approximation argument (which in fact uses the decay 
of correlation) to prove the theorem for Holder test functions on A. 

The version of Gordin's theorem we need may be stated as follows: 

Theorem 5 ([G]). — Let (ft, 3u) be a probability space, letT : ft C be a non-invertible 
measure-preserving transformation, and let <p G L2(v) be s.t. Ecp = 0. Suppose that 

(*) 
j>0 

\E((p7=0\T-f?)\2 < oc 

Then 

1 

7=0 

n-l v—> 

7=0 

> o T f n N(0, er) 

where 

a2 - lim 
71—>OC 

1 
n 

7=0 

^z=0 
LO O 1 

2 
du. 

Exponential decay of correlations alone is not sufficient to conclude that (*) holds. 
Suppose, however, that there is a reference measure m with respect to which T is 
non-singular, and suppose that dv — pdm for some p > c > 0. Then we have a 
well-defined Perron-Frobenius operator given by !P(<£>) = where ip is the density of 
T*(<pm), and a gap in the spectrum of 7 (with respect to a suitable function space) 
is sufficient to conclude that (*) converges exponentially. In fact, we have 

(**) \E(LP\T-iM)\2dv<7=07=0Moo \7j(<pp)\dm 

see [K] or [Y]. See also Ruelle's earlier work [R]. 
For (p G IKy let ip(z) = (p o 7R(z) be the lift of cp to A. For k G Z+, we use cp(ki to 

denote <p o Fk and define Tpk by 

7=07=0 1 

v(A) A 
up o Fk dv, 

where the A's are the elements of the partition M2& defined in Section 6.4. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000 



52 M. BENEDICKS & L.-S. YOUNG 

As in Section 6.3, for functions on A we use | • \p to denote the Lp-norm, 1 < p < oo, 
with respect to the reference measure ra and || * || to denote the norm on the space 
X. Let || • \ \^c denote the usual 7-Holder norm for functions <p : R2 —> C, i.e. 

I M I * , = sup (f(x)\ r sup 
X^Y 

\(p(x) ~ (f(y)\ 
\x-yp 

The following estimates are used in several places. 

Sublemma 13. — There is a constant C = C(f) such that for all functions y? G X 
we have. 

W\i < c\\JP\\. 

This is an easy exercise (see [Y], Section 3.2). 

Sublemma 14. — For (p G fK1 

sy iV \pk -yoFk \<C{ f ) \ \ i p \ \ ^ \ kHp) <r (Hp) <r ( Vfc > 0, 

where A = A(/, 7) satisfies 0 < A < 1. 

This sublemma is a direct consequence of Sublemma 12. 

Let us introduce the notation 

Snffî = 
1 

7=0 

n-l 

3=0 
cpo FJ. 

We now fix G jKy with f IJj du = 0 and prove the CLT for this function. 
Observe first that there is a constant K0 = K0(I/j) such that for all e > 0, if 
N{e) := [K0 log(l /e)] , then 

sup 7=07=0 - t P o F N ^ \ H p ) < r ( < e. 

This follows immediately from Sublemma 14. 

Lemma 7. — There is a function r(e) with r(e) -+ 0 as e —± 0 such that for each 
e>0, if 

fTn=Hp)<r( nUoFN^) 

Un — Sn(^lV(^) 
then 

sup 
n>0 

Hp) <r( LHp) <r(e). 

For the proof of this lemma we need the following estimates: 

Sublemma 15. — There exist constants C > 0 and 0 < /?o, T < 1, /?o and r depending 
only on f and C = C(f-0), such that for all j,N G Z+ the following hold: 

(i) f ^N^N ° Fjdv\ •<\<Cfa*NTI; 

Hp) fi>Nib(N) oFidv Hp) <r(Hp) <r( 
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(iii) j&N^NoFJdv rjo Fk) o Fj~klpdu 

(iv) J>(iyv(a° <>F*dP < C(3-2NtJ. 

Since ipN can also be viewed as a function on A, that the left side of (i)-(iv) 

above is < CrJ for some C = C(f,ip,N) follows from the decay of correlations proof 
outlined in Section 6.4. The proof of this sublemma consists of re-doing the estimates 

there and making transparent the dependence on iV.. We carry this out for (i) and 
(ii) and leave the rest as exercises. 

Proof of Sublemma 15(i) and (ii). — For <p, rj G X we have 

<p\oo\\noFk rj o F3\pdu — ( (p du)( rj du) 

<p\ V <p\oo\\n if p dm P dm 

< \v\oc 
<p\oo p p dm p ; 

From the spectral information of the Perron-Frobenius operator and Sublemma 13 
wp ronrlnrlp t.Vmt. 

Dj(p,mu) < <p\oo\\noFk$ù 

< CMoo max {||p||, \p\ 
OO J 

max ilMI, IrjFj~klpdu 
^P OO 

Now replace both cp and ri by ibN and note thai 
rjo Fk) o Fj~klpdu 

It follows that 

(i) holds. 
As for the proof of (ii) let rj be the lift of a function rj G IK7, let (p G X and consider 

rjo Fk) o Fj~klpdu 
(rj o Fj)cpdu (rjo Fk) o Fj~klpdu 

< [rjoFk -fjk] oFj~klpdu rjk o F3 kp>du 

< rjo Fk) o Fj~klpdurjo Fk) o fjkVj k(pip) dm 

< C | v | o c l W I ^ a * + C | f 7 j o o | | v l W - * . r ) k 

We have here used Sublemma 14 to estimate \\rj o Fk — r)k\\Li^). 

Finally we choose k — [kj] for a suitable small k and substitute ipN for Tp and ip(N) 
for rj above. The conclusion of (ii) with suitable choices of /?o and r then follows from 

the estimates \\^ofN\\^ < K?\№\\^, Kx = Kx(fn), and \\$N\\ < C(^)(3~N. • 
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Proof of Lemma 7. — We have 

\\Tn-Un\\22 = - n *poFN -I/JN 2 
71 l 2 

n- l 

.7 = 1 

\n- 3) poF n-l poF ip 
ip o 

ip ip o 

We pick jo = jo(s)- The exact choice of jo will be made later. For 1 < j < io we 
estimate the covariances by Cauchy's inequality 

*poFN -I/JN *poFN -I/JN o Fjdv < *poFN -I/JN < j < io ip ip 

< e • e — e2. 

For j in the range jo < j < n — 1 we use the estimates of Sublemma 15. Combining 
these estimates we obtain 

\\Un-Tn\\22 <e2(l+Jo) + 
4C 

ßLN 

n-l 

3=30 + 1 

1 
n 

( n - j ) e - V i p o 

with T — e e. 
The last sum is estimated as 

1 
n 

n-l 

)e-°j <e-ejo 
( n - j ) e i p ip o-°j <e-ejo. 

Hence \\Un - Tn\\22 < (1 + j0)e2 + ( 4 C / / 3 ™ o g l / > - ^ < \ By choosing 

ip ip oip ip o 
1 

>0 
log 

5 ' 
log 

1 
€ 

we obtain the estimate 

\\Un-Tn\\l <r(e) =0 
ip iip ip og ë 

Proof of lheorem 4. — We will prove the Central Limit Iheorem tor ip E Jty. More 
specifically, we will show that Fn{i) —> N(0,cr) in distribution, where 

Fn(t) = v z : 
1 

)e 

n-l 

j=0 
ip ip oip ip 

a2 = 
00 

3=0 ' 
ip ip o f3 dv > 0. 

We will in the following assume a > 0. It is in fact true that a = 0 iff ip — <p — f 
for some function cp £ L2. (This fact was communicated to us by Bill Parry.) Hence 
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the CLT is true for a = 0 with the Normal Distribution Function interpreted 
as the unit step function. 

We shall first see how we can use Gordin's theorem to conclude that the CLT holds 
for test functions from the class X. 

Let Tp € X with f Tppdfh = 0. The spectral properties of the Perron-Frobenius 
operator 7 guaranties that 

\\?jQpp)\\ < Crj Ay> o. 

Then \73 (up p)\\ < Cr3 \/j > 0 and from (**) it follows that condition (*) in 
Gordin's theorem is valid. We conclude that 

(* * *) v z : 
1 

ip ip 

n-l 

3=0 
\TpoFj(z) < t TpoFj(z) <Tp 

Note that from the invariance of the measure v under F it follows immediately 
that 

<r2TpoFj(z) <= Var [ rn] = Var[Sn(tf<">)] = Var[5n(</>)] = <t2(i/>) 

We will also use the notation erf = CR(^)N) — Var[C/n]« 
From Lemma 7 we conclude that 

a2 F TpoFj(z) ip ip oip ip o as <s —> 0 

and hence we can assume that a£ > 0 by chosing e sufficiently small. 
By moving up to the tower A and using the invariance of v under F we can also 

write 

Fn(t) =v z : 
1 

ip ip 

n-l 

?=0 
V(7V) oFj{z) < t 

We wish to compare Fn(i) with the distribution function 

Gn(t) = v z : 
7^ 

n-l 

3=0 

é N o F 3 ( z ) < t T 

It follow from (* * *) with up replaced by ipN that Gn(t) —> N(0, a£) in distribution. 
Now pick n > 0. By Tjebyshev's inequality 

Fn(t) <Gn(t + rj) + Z{\TTn-Un\ >n} 

<Gn{t + ri) + — \\m^$ùTn-Un\\l 

<Gn(t + r))̂ m + 
1 

ip ip 
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Letting n —» oo we conclude that lim Fn(t) < $ae {x + r)) + ±r(s). 
n—>OC 'I 

. Here 

TpoFj(z) < Tpo 
\/2Ïr<r 

ù^$ 

— oo 
TpoFj(z) <ù$ 

By letting e —> 0 we have 
lim Fn(t) < $a(x + n). 

n—> co 
Now let rj —>> 0. It follows that lim, -+00Fn(t) < &a{x). The proof that 

+00Fn(t) < &a{x)+00Fn(t) < 

is completely analogous. 
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