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NEW ALGORITHM FOR DENSE SUBSET-SUM PROBLEM 

by 

Mark Chaimovich 

Abstract. — A new algorithm for the dense subset-sum problem is derived by using 
the structural characterization of the set of subset-sums obtained by analytical meth
ods of additive number theory. The algorithm works for a large number of summands 
(m) with values that are bounded from above. The boundary (€) moderately depends 
on m. The new algorithm has 0(ra7/4/log3/4 m) time boundary that is faster than 
the previously known algorithms the best of which yields 0(m2/ log2 m). 

1. Introduction 

Consider the following subset-sum problem (see [13]). Let A = { a i , . . . , am}, 
a{ € IV. For B ÇA, let SB = J2aieB a* and let A* = iSB I B C A}. The problem is 
to find the maximal subset-sum 5* G A* satisfying S* < M for a given target number 
M e IV. 

Although the problem is NP-hard (the partition problem is easily reduced to the 
SSP), its restriction can be solved in polynomial time. Denote £ — max{a^ | G A}. 
Introducing restriction £ < ma where a is some positive real number (or equivalently 
m > €1/Q;), one can easily solve problems from this restricted class in 0(m2£) time 
using dynamic programming. 

This work belongs to the school of thought that applies analytical methods of 
number theory to integer programming (see [8], [2]). It continues the application of a 
new approach, the main idea of which is as follows: analytical methods enable us to 
effectively characterize the set A* of subset-sums as a collection of arithmetic progres
sions with a common difference (see [7], [12], [1], [10]). Once this characterization 
is obtained, it is quite easy to find the largest element of A* that is not greater than 
the given M. 

Efficient algorithms have recently been derived using the new approach. In almost 
linear time (with respect to the number m of summands) they solve the following class 
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364 M. CHAIMOVICH 

of SSP: the target number M is within a wide range of the mid-point of the interval 
[0, SA] and m > c£2/3 log1/3 £, £ > £Q when A is a set of distinct summands ([9], [4], 
[6], [11]) or m > 6£log€ when A is an arbitrary multi-set without any limitation on 
the number of distinct summands ([5]). Here and further on £Q, c, c i , C2,... denote 
some absolute positive constants. 

The latest analytical result ([10]) allows one to apply the algorithm from [9] to 
problems with density m > ci(^logf)1/2. The algorithm from [11] works for density 
m > C2I1/2 log I which is almost the same as in [10]. For m < £2/3, the time boundary 

for both algorithms is estimated as 0 ( ( e 
m 

\2> , i.e., O TT>2 
log2 m 

) for the lowest density 

(m ~ (£log£) 1/2 ). 
This work refines the structural characterization of the set of subset-sums which 

allows us to use more efficient conditions in the process of determining the struc
ture. These refinements are discussed in Section 2. They lead to the develop
ment of a new algorithm which is described in Section 3. It works in Oimlo&m + 

min{ l5/4 log 1/2 j 
m3/4 

, ( £ 
m 

)2}) time which improves [9] and [11] for m < £3/5 
log2/5 £ 

and yields 

0{m 7/4 / log 3/4 m) time for m ~ (£\og£) 1/2 
. 

2. Refinement of the structural characterization of the set A* of 
subset-sums 

The following Theorem 2.1 [10] determines the structure of the set A* of subset-
sums for rn > ci(€log£)1/2 as a long segment of an arithmetic progression. 

Theorem 2.1 (G. Freiman). — Let A = { a i , . . . , arn} be a set of m integers taken from 
the segment Assume that m > Ci(€log€)1//2 and £ > £Q. 
(i) There is an integer d, 1 < d < such that 

(1) \A(0,d)\ >m-d 

and 
{M : Af = 0(modd), \M - |5A(0,d)| < c2dm2} C A*(0,d) , 

where A(s,t) = {a : a = s(modt) ,a G A}, 
(ii) If for all prime numbers p, 2 < p < ~, 

(2) l^(0 ,p)| < rn -
3l 

m 

then the assertion (i) of the Theorem holds true with d = 1. 

Simple consideration shows that verification of condition (2) is crucial for the struc
tural characterization of a set ^4* of subset-sums. Algorithms from [9] and [11] use 
this condition directly ([9]) or indirectly ([11]). Our intention is to replace condition 
(2) by a condition (or a set of conditions), verification of which is easier in the sense 
that the number of required operations is smaller. To do this we introduce the notion 
of d-full set. We say that set A is d-full if A* contains all classes of residues modulo 
d1 i.e., in other words, A*(modd) = { 0 , 1 , . . . ,d— 1 } . 

Let us study some properties of d-full sets. 

ASTÉRISQUE 258 



NEW ALGORITHM FOR DENSE SUBSET-SUM PROBLEM 365 

Define S r(mod d) = min{5 € A*,s = r(mod d ) } . 

Lemma 2.2. — Let A be a set of integers taken from the segment [!,£]. Suppose that 
A is d-full. Then for each r, 0 < r < d, 

(3) s r(mod d) < dt 

Proof — Assume that for some r condition (3) is not true, i.e., Sy(modd) > dt. This 
means that Sr(mod d) — «n + ai2 H h aik for some k > d. Consider the sequence of 
subset-sums Ts = % ) 1 < 5 < k. Obviously, at least two of these sums (assume 
Ts and Tq, s < q) belong to the same residue class modulo d (since k > d). Then 
Tq-Ts = O(modd) and subset-sum Tk - (Tq-Ts) = H \-ais +aiq+1 H \-aik = 
r(modd) and this subset-sum is smaller than 5r(modd)- This fact contradicts the 
minimality of 5r(mod d). • 

Lemma 2.3. — Suppose that the set A is d-full. Then there is a d-full subset of A 
with cardinality less than d. 

Proof. — Let us assume that contrary to the Lemma the smallest d-full subset of A 
has more than d—1 elements. Denote this subset by A' = { o i , . . . , a ^ } . In fact, d fai 
for all Vs. 

Let B be the multi-set of non-zero residues modulo d in A!, that is B is composed 
with \A'{i, d)\ times i for any 1 < i < d. Naturally one has B* = (A')*(modd). Then, 

as a multi-set, \B\ = d-l 
i=l 

\At(ijd)\ > dj by the assumption. 

Define a sequence of multi-sets BQ, 2?I, . . . , Bk as follows: Bo is an empty set and 
Bi = { & i , . . . , bi} for i > 0. Note that 0 G B* (since it is the sum of an empty subset), 
and that 

(4) B* = B*_x + {0 , bi} - B*_x U (£*_! + bi), 1 < i < k. 

Thus, obviously, \B*_± \ < \B*\. 
Taking into account that \BQ\ = 1 and that \B\ — k > d, for some i we have 

|BI -1| = \B*\ implying that residue bi (and element respectively) does not add 
new residue classes, i.e., (B \ bi)* = B*. Therefore, A' \ a* is d-full as well as A1. This 
fact contradicts the assumption that A' is the smallest d-full subset of A and proves 
the Lemma. • 

The next lemma refines the second assertion (ii) of Theorem 2.1. 

Lemma 2.4. — Let A be a set of integers taken from the segment [l,t]. Assume that 
\A\ = m > ci(^log£)1//2? t > to, and suppose that A is q-full for each q, 2 < q < ^ . 
Then the assertion (i) of Theorem 2.1 holds with d = 1. 

Proof. — Assume that d > 1 in Theorem 2.1. By the theorem, a long segment of 
an arithmetic progression belongs to A*(0,d). On the other hand, A is d-full (since 
d < 3£ 

m 
) and subset-sum S r(mod d) exists for each r, 1 < r < d. Combine a long 

segment of an arithmetic progression (with dinerence d) m interval 

i 
n 
2 

S A(0,d) - C2dra2, is A(0,d) + c2dm2] 
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(belonging to A*(0,d)) with subset-sums Si(modd), S2(modd), • • •, $d-i(modd) (these 
subset-sums are obtained without using elements of A(0,d)). Thus we obtain an 
interval 

[ | 5 A(0,d) - c^dm 4- max{5r (mod d) : 1 < r < d}, 2^ 4(0, d) + c2dm2], 

all integers of which belong to A*. In fact, if the length of this new interval is 
sufficiently large (0(m2) , for example), we will obtain the result of Theorem 2.1 
with d' — 1. Actually, since we are interested only in the case d > 1 and since 
max{5r(modd) :l<r <d} < dl = 0(dm2 / log rn), the length of the obtained interval 
is 

0 ( d r a 2 - m a x { S r(mod d) :l<r<d}) =0(dm2 -
dm2 

logm 
) = 0(dm2) 

which completes the proof. 

The latest property (Lemma 2.4) shows that in order to obtain a structural char
acterization of A*, it is sufficient to verify that set A is g-full for all g's, 2 < q < ^ . 
Clearly, the new condition is weaker than (2): A can be g-full even if \A(0, q)| > m—~. 
However, from an algorithmic point of view this new condition is difficult to verify. 
To correct this we have to use some lemmas which determine different sufficient con
ditions implying that set A is g-full. We will also show that it is sufficient to verify 
the prime numbers only. 

Lemma 2.5 ([3]). — If p is prime and 

(5) 
p-i 

i=i 
\A(i,p)\ >p~l 

then A is p-full. 

The proof of this lemma is presented here because of the difficulty in accessing of 
reference [3]. 

Proof. — Using the fact that all elements of A(i,p),i ^ 0, are relatively prime to 
p, introduce ring %p of residues mod p. In the following reasoning it is implied that 
all arithmetic operations, including the operations for computing subset-sums, are 
operations modulo p in 2ZV. 

Put, as in the proof of Lemma 2.3, B — {6i, 62? • • • ? for the multi-set of non-zero 
residues modulo p in A and define the sequence of multi-sets So, B±,..., Bk where 
Bo is an empty set and Bi — { 6 1 , . . . , b*} for i > 0. 

By the hypothesis, IJ5I = 0 -1 
i=1 \A(i,p)\ > P - 1. If for alH < p - 1, \BU\ < \Bt\9 

then \B*\ > \B*_X \ + 1 > \BQ \ + i = i + 1, i.e., > p, which concludes the proof, 
since we are dealing with residues modulo p. 

Otherwise, the fact that |,B|_1| = |B*| for some i < p — 1 implies that for any 
c G B*_±, c + bi also belongs to B*_X. Continuing this reasoning we obtain c + 
rbi G B*_X C B* for any r. Recalling that all operations are modulo p and that 
gcd(6i,p) = 1, one obtains that all residues modulo p are in I?*, i.e., A is p-full. • 
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Lemma 2.6 (Olson [14]). — If p is prime and 

(6) \{i:\A(i,p)\^ 0,1 <i<p}\>2p 1/2 

then A is p-full. 

Lemma 2 J (Theorem 7, Sârkozy [15]). — If p is prime and 

(7) 
p-1 

¿=1 
\A(i,p)\f >c5p logp 

P-I 

i=1 
\A(i,P)\2 

where C5 = 4 • 106, then A is p-full. 

Note that condition (7) implies P-I 
i=1 

\A(i,p)\ > (csplogp)1/2 in view of 

P-I 

¿=1 
\A(i,P)\ < 

P-I 

i=l 

\A{i,p)f. 

The next two lemmas show that it is sufficient to verify the prime numbers only. 

Lemma 2.8. — If for prime numbers p, 2 < p < Q1^2, 

(8) \A(0lP)\ < m - Q , 

and for prime numbers p, Q1/2 < p < Q, the set A is p-full, then the set A is t-full 
for all integers t, 2 < t < Q. 

Proof. — The proof employs induction for the total number of prime divisors of t. 

1. t is prime. Condition (8) ensures that Lemma 2.5 can be applied to all prime 
numbers t < Q1/2. For prime numbers t > Q1/2, the set A is t-full by definition. 

2. For n > 1, assume that the Lemma is true for each number whose total number 
of prime divisors is less than n. Now we are going to prove the Lemma for any 
integer t having n prime divisors. 

Let t = pi - - • pn where p\ < p2 < * • • < pn are the prime divisors of t. One has 
Pi < t1/2 < Q1/2 and, in view of (8), \B\ = \A\A(0,t)\ > \A\A(0,px)\ >Q>t. 

Denote s = t/p%. This integer s has n — 1 prime divisors. By the induction 
hypothesis, A is s-full. Thus, according to Lemma 2.3, there is A1 C A such that 
A' is s-full and \A'\ < s. Put, as in the proof of Lemma 2.5, B = {61,62,..., bk} 
for the multi-set of non-zero residues modulo t in A and define Bi — {61,. . . , bi}. 
Without losing generality, assume that the first residues in B corresponds to 
elements of A'. Thus, B*A,\ contains all classes of residue modulo s implying 
|-B*A/|| > s. Continue with the same reasoning as in Lemma 2.5. 

Again, if for all i,\A'\ < i < t - 1, \B*_X\ < |Bt?|, then \B*\ > \B*_X\ + 1 > 
IBj^jl + (i — I A ' | ) > i + 1, i.e., |B t̂__1| > t, which concludes the proof, since we 
are dealing with residues modulo t. 

Otherwise, the fact that |23*_i| = \B*\ for some i, \A'\ < i < t — 1 implies 
that for any c G B*_Xl c + bi G B*_x. Continuing this reasoning we obtain 
c 4- rbi G B*_x C B* for any r. Recalling that J5*A,| contains c i , . . . , cs -
different residues modulo s - we generate s disjoint sequences Cj + rbi. Since 
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each sequence has r = | elements modulo £, all sequences together cover the 
entire set of residues modulo £, i.e., A is £-full. 

This concludes the proof that the set A is t-full for alH < Q. • 

Now we can formulate a sufficient condition for a long interval to exist in the set 
A* of subset-sums: 

Corollary 2.9. — Let A be a set of integers taken from the segment [1,£]. Assume 
that \A\ = m > c i ^ log^)1 /2 , £ > £$, and suppose that for all primes p, 2 < p < 
(m)1//2> condition (2) holds and for all primes p, (f̂ )1//2 < p < at least one of the 
conditions (5), (6) or (7) is satisfied. Then A* contains a long interval: a segment 
of an arithmetic progression with difference 1 and length 0(m2). 

Proof. — The corollary follows from previously mentioned Lemmas 2.4, 2.5, 2.6, 2.7 
and 2.8. • 

3. Algorithm 

In the previous section we determined a sufficient condition, ensuring the existence 
of a long interval contained in A*. In the case where this condition is not satisfied, 
namely, if for somepi either condition (2) (if pi is small) or conditions (5), (6) and (7) 
(if pi is large) fail, the process similar to the process described in [9] may be applied. 
This process finds a number d such that an arithmetic progression with difference d 
belongs to the set of subset-sums. It is implemented in the first step of the algorithm. 
The second step of the algorithm finds all non-zero residues modulo this d in A* by 
using a modification of dynamic programming approach modulo d. 

Now we are ready to describe the algorithm. 

Notation. — np(i), 0 < i < p: the counter of summands belonging to residue class i 
modp (when all summands of A are verified np(i) = \A(i,p)\); 
rp = \{i | 1 < i < p,np(i) 7̂  0 } | : the counter of different non-zero residues modulo p; 

Rp = v-l 
<i=l 

np(i); Rp = Rp + np(0); Sp = p-1 
i=i n 2 

M (0; 
A(0,p) 

v 
= {a | ap E A (0, p) | }; 

prevpr(x): the prime number preceding x; 
nextpr(x): the prime number following x\ 

In this notation conditions (5), (6) and (7) will take form Rp > p - 1, rp > 2px/2 
and Rp > (c5plogp)5p, respectively. 

Algorithm 1. 

1. Finding d 
(a) Initialization: d <- 1, p <- 2, Q « - [mJ-
(b) Rp <- 0. 

For each a G A where a = 0(modd), compute s = | — L ^ J P an(l if s ^ 0 
then advance the counter Rp <— Rp -f 1; 
Continue this process until Rp > Q or all elements are processed. 
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If Rv > Q then set p <- nextpr(p); 

otherwise set d i- dp, Q <- 3£ 
•d\A(0,d) 

and p <— 2. 

If p < Q1'2 return to 1(b); 
otherwise set p 4- prevpr (Q) and go to 1(c). 

(c) nJi) <- 0 (0 < i < p) , Rv <- Q, S„ 0, RL <- 0, rp <- 0. 
For each a G A for which a = 0(modd) compute s — n. 

d - [ a 
dp 

\p and 

advance the counters: 
np(s) « - np(s) + 1, R'p <- + 1; 
if 5 # 0 then (i?p « - J?p + 1, 5P « - 5P + 2np(s) - 1; 

if np(s) = 1 then rp <— rp + 1); 
Continue this process until one of the following inequalities is true: 

(9) rp > 2p 1/2 > Rp > P — lj -R 3 
p 

> (c5p log p)Sp, 

or all elements are processed. 
If all elements are processed (np(0) > |-A(0, d)| — p) then d «— dp. 

i f i ? ; > ( 16c5r„̂ log€ 
P 

)1/2 then p «— prevpr (min{p — 1, 4r„£ 
pR' } ) ; 

otherwise p <— prevpr (p — 1). 
If p > Q1/2 return to 1(c); otherwise go to 1(d). 

(d) Find nd{i), 1 < i < d, and for the set A. 
2. Finding C - the set of all non-zero residues modulo d in A*. 

Define the sequence of sets Co, C i , . . . , C^-i in the following way: Co = { 0 } 
and, for i > 0, Ci = Ci-i + { 0 , i , . . . ,nd(i)i}(modd) if ra<*(i) / 0 or C» = C»_i 
if nd(i) = 0. Clearly, Cd-i = C. 

Let v be a vector with d coordinates (numbered from 0 to d — 1) which 
represents Ci in the way that if j e Ci then v(j) = i and if j & Ci then 
v(j) = - 1 . 

(a) Initialization: v «— (0, — 1,. . . , — 1). 
(b) For all i, 1 < i < d, for which nd(i) ^ 0 do 

for all j , 1 < j < d, for which 0 < v(j) < i do 
^ ( j ) —̂ « and 
for 5 running from 1 to n<i(i) while v(j + si (mod d)) = — 1 

t>(j + si (mod d)) «— i. 
3. Finding S*. Define s = M(modd), 0 < s < d. 

Find 5* = M — s + so, where so = max{sj | Si € C, ŝ  < s}. 

To prove the validity of the algorithm we need to ensure that its step 1 finds a 
proper number d such that a set A^d^ satisfies all the conditions of Corollary 2.9. 
Indeed, sub-steps 1(b) and 1(c) use the conditions of the corollary. Therefore, the 
only thing that needs to be proved is the validity of the condition in sub-step 1(c) 

R'P> 16c5rpeiog£' 
p 

1/2 
which allows us to skip verification of some p's. 

Recall that R'p is the counter of elements of the set that have been checked for 
divisibility by p and that we stop the verification process for a particular prime number 
p once one of the conditions in (9) is satisfied. Therefore, the number of elements 
that have been checked for a particular p may be small (if many different non-zero 
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residues are found in the beginning of the process) but this value may also be quite 
large. However, the fact that many elements have been checked for some p' > Q1/2 

ensures that A is p-full for many p's, namely, for p > 4r p'l 
p' R'p' This is proved in the 

following lemma. 

Lemma 3.1. — Let B be a set of integers taken from the segment [!,£]. Assume that 
there is a prime p' < I1/2 which satisfies the inequality 

(10) I-BI > 
16c5r p' llogl 

p> 

1/2 

5 

where ry = \{i : \B(i,p')\ ^ 0,0 < i < p'}\ and c$ is the constant from Lemma 2.7. 

Then, for prime numbers p, 4rn,£ 
p' |B| < p < t1/2, p ^ p', the set B is p-full 

Proof. — We are going to show that condition (7) of Lemma 2.7 is satisfied for all p's 
from the required interval. Prom this point on, for convenience we will use r without 
a subscript to denote ry . 

Let . . . , br} be the set of all classes of residues modulo p' of the set B and let 
ti, 1 < i < r, be the number of occurrences of residues from class bi in the set B. 
Without losing generality, assume that U > to > • • • > tr. Among the ti elements 
which are in the class of bi modulo p ' , only f l 

PP> l < 2£ 
PP1 

elements can belong to the 

same class of residues modulo p, p ^ p . Therefore, these ti elements of B belong to 
at least 1 tipp 

21 
1 different classes of residues modulo p. 

To estimate from above the value of p-i 
i=l 

\B(i,p)\2 in the left-hand side in (7) we 

have taken the worst case scenario where the number ot difterent classes ot residues 
modulo p is the smallest possible. For a given \B\, this case occurs when each class 
of residues contains the maximum possible number of elements. Thus, the number of 
classes is at least | ti run 

2£ 
1 and each class can include the following number of elements 

of B: less than 2£r 
PP' elements in f trpp' 

2£ 
] classes, 2£(r-l) 

PP 
elements in [ tr-ipp 

2£ i - r tr pp' 
2£ 

1 

classes, . . . , and 2£ 
pp' 

elements in [ ti pp 
2£ i - r tipp 

2£ 
] classes. (Recall that |B | = r 

•i=l 
ti 

is being given.) Using these values we can estimate 

p - 1 

i=i 
\B(i,p)\2 < 

2£r 

Kpp' 

2 Upp1 

21 
+ 

2£(r-l) 

pp' 

2 tr-lPP 

2£ 
-

UPP 
2£ 

+ · · · + 
2£ 

PP' 

2 hpp' 
2£ -

t2pp 
2£ 

- |£(0,P)|2 

= 
2£ 

PP' 

2 Upp 

2£ 
(2r - 1) + tr~lPP 

2£ 
(2r - 3) 

+ · · · + 
hpp' 

2£ 
• 1 - | B ( 0 , p ) | 2 
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< 
2£ 

PP' 

2 UPP' 
2£ 

(2r - 1) + 
tr-iPP 

21 
(2r - 3) 

+ ••••+ 
t\PP 

2£ 
+ r2 -\B(oiP)\2 

< 
2£r 

.PP 

2 
. 

|B| 

r 
. 

pp' 

2€ 
+ 

2fr 

PP' 

2 
- |£(o ,p)f 

= 
2*r|fl| 
pp' 

1 + 
2ir 

\B\pp' 
-

pp'\B(0,p)\2 

2£r\B\ 

and, taking into account (10) and that \B\ > Art 
PP1 , we continue 

P-I 

¿=1 

\B(i,p)\2 < 
IBI3 

8c5plogi 
1 + 

1 

2 -
2|B(0,p)|2 

|B|2 

= 
KV-1 
•I=l l^(^P)l)3 
8c5p log £ 

. 
3 
2 

- 2 a 2 

( 1 - a ) 3 ' 

where a = \B(0tP)\ 
|B| 

. To prove now the validity of (7) for p it is sufficient to show that 

|-2a2 
(1-a)3 

< 8. It is easy to see that the function in the left-hand side of this inequality 

increases with a for a < 2 
3 

and, therefore, the inequality holds true for a < l 
2' 

Indeed, 

since the number of elements in one class of residues modulo p cannot exceed 2£r 
PP' and 

\B\> Air 
PP' , a = 

|B(0,p)L 
1*1 

< I that concludes the proof. 

The complexity. — Step 1 checks the divisibility of elements ai by different prime 
numbers p. Since < £, the number of prime divisors of ai cannot be more than log2 L 
Therefore, the overall number of occurrences where some p divides some element of 
A is 0(m log m). In order to estimate the number of occurrences where some p does 
not divide some element of A we need to investigate each part of Step 1 separately. 

In Step 1(b), in the worst case, we may find Q elements not divisible by p while 
verifying this number p. Since this part of Step 1 deals with prime numbers less 
than Q1/2, the number of operations in Step 1(b) where some p does not divide some 
element of A is 0(Q3/2) = 0 ( ( ^ ) 3 / 2 ) . (Recall that Q - £.) 

In step 1(c), again, no more than p elements not divisible by p may be found. Thus, 
the number of operations in Step 1(c) where some p does not divide some element 

of A is limited by 0(Q2) = Q((^)2). In fact, for m < /3/5 

log2/5 I 
this estimate can be 

improved. 
If the number of verified elements is sufficiently large {R > ( 16c5rp£\og£ 

P 
1/2 ) for 

some p, we are able to skip verification of some numbers according to Lemma 3.1 
(The above "skipping" condition supersedes condition R' > 4rp£ 

P2 for p > £ 2/5 which 

ensures that the next number to be verified is less than p.) 
Let us analyze this situation. The worst scenario (from a complexity point of view) 

occurs when we do not reach the "skipping" condition during verification. Thus, the 
number of operations in Step 1(c) where some p does not divide some element of A 
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is limited by 

L/2/6j 

P=rQ1/2l 

p + 
LQJ 

p=[£2/5J+1 

16c$rp£ log £ 

p 

1/2 
= O 

l2/5 

QL/2 
xdx + 

Q 

/£2/5 

(*log*) 1/2 

x1/4 
dx . 

Here we took into consideration the first condition in (9) which implies rp < 2px'2. 
By keeping after integration only the most significant term in each integral, we obtain 
complexity 

(H) 
0(£L/2g3/4LOGL/2£)=0 £b'A\ogl^£ 

m3/4 . 

This estimate is obtained assuming p > £2/5. Observe that p can be greater than 
£2/5 Qniy for m < £3/5 gince p < Q ~ l 

m 
Comparing (11) with the first estimate -

O(( £ 
m 

)2) - one can see that (11) improves it for m < ¿3/5 
LOG2/5r 

Combining the results for sub-steps 1(b) and 1(c), one can get the overall complex
ity of the process that verifies divisibility of elements of A: 

(12) O m log m + min 
£ 

m 

2 
, 

£5/4l 1/2 E 

m3/4 . 

This estimate also holds true for the overall complexity of the algorithm, since in the 
worst scenario both steps 1(d) and 2 have complexity 0{m). 

In conclusion, the only thing that remains is to analyze the above expression (12). 

The second term dominates for m < i 2/3 LOG 1/2 £. It is equal to 0 £5/4log1'2£ 
m3/4 

) for 

m < ¿3/5 
LOG2/5 £ and 0(( t 

m 
2 ) otherwise. This improves the algorithms from [9] and 

[11] for low density ( m < /3/5 
LOG2/5 £ 

. In the worst case (m ~ (£log£)lj/'2) time is 

0(m7/4/log3/4 m). 
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