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AN ANALOG OF FREIMAN'S THEOREM IN GROUPS 

by 

Imre Z. Ruzsa 

Abstract — It is proved that in a commutative group G, where the order of elements 
is bounded by an integer r, any set A having n elements and at most cm sums is 
contained in a subgroup of size Cn with C — /(r, a) depending on r and a but not 
on n. This is an analog of a theorem of G. Freiman which describes the structure of 
such sets in the group of integers. 

Let A be a set of integers, \A\ = n, and suppose that \A + A\ < en. A famous 
theorem of Freiman [1, 2] provides a certain structural description of these sets; in one 
of the possible formulations, it says that A can be covered by a generalized arithmetic 
progression 

{a + qxXi + q2X2 H h qaXd : 0 < Xi < h - 1 } , 

where d < c and U < Cn with C depending on c. 
One can ask for a description of sets with few sums in every Abelian group. In this 

paper we consider groups which are in a sense very far from N. 

Theorem. — Let r > 2 be an integer, and let G be a commutative group in which the 
order of every element is at most r. Let A C G be a finite set, \A\ = n. If there is 
another B C G such that \B\ = n and \A + B\ < an (in particular, if \A + A\ < an 
or \A — A\ < an), then A is contained in a subgroup H of G such that 

\H\ < f(r,a)n, 

where 

f(r,a) = o 2 T 
a4 

. 
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324 I. RUZSA 

The proof goes along similar lines to my proof of Freiman's theorem [3, 4], but is 
considerably simpler. 

For a nonnegative integer k and a set A C G we introduce the notation 

kA = A + • • • + A , k summands, 

OA = { 0 } , 1A = A. 

Lemma. — If A,B C G, \B\ = n and \A + B\ < an, then for arbitrary nonnegative 
integers kA we have 

\kA - IA\ < ak+ln. 

See [3], Lemma 3.3. Observe the asymmetric role of A and B. No a priori bound 
is assumed for \A\; an alternative formulation (like in the Theorem) would be "if A is 
such that the union of n suitable translations has at most an elements, then A is so 
small that even the sets kA — IA are small". 

Proof of the Theorem. Let fei, 62 , . . . , bk be a maximal collection of elements such 
that bi G 2A — A and the sets bi — A are all disjoint. We have 

h - A C 2A - 2A, 

hence 

(bi - A) = kn< \2A - 2A\ < a4n 

(the last inequality follows from the Lemma). This implies k < a4 . 

Take an arbitrary x G 2A — A. Since the collection was maximal, there 
must be an i such that 

(x - A) fi (bi -A)4 0, 

that is, x — a\ = bi — CL2 with some a\«a,2 G A. which means 

x — bi + ai — a,2 G bi + (A — ^4). 

Hence 
2A - AC (bi + (A-A))=B + A - A, (1) 

where B = {61, . . . ,&*.} . 

Now we prove 
jA-Ac(j-l)B + A-A (j > 2) (2) 

by induction on j . By (1), this holds for j = 2. Now we have 

(j + 1)A - A = (2A - A) + (j - I)A 

C B + A — A + (j — I)A by (1) 

= B + O M L - A ) 

C £ + ( j - 1)B + A - A 

= jB + A — A , 

which provides the inductive step. 
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Let H and / be the subgroups generated by A and B, respectively. By (2) we have 

jA - A C / + (A - A) (3) 

for every j. We have also 

(jA -A) = H, (4) 

which easily follows from the fact that the order of elements of G is bounded. Relations 
(3) and (4) imply that 

Hcl + (A-A). 

Since I is generated by k elements of order < r each, we have 

\I\ < r k < r a4 

consequently 
\H\<\I\\A - A\<a 2 m r>4 n 

(the estimate for \A — A\ follows from the Lemma). QED 

Remarks. — Take a group of the form G = Z™, where Zr is a cyclic group of order 
r, and a set A c G of the form 

A = (ai + G') U • • • U (ak + G') 

with a subgroup G'. Here |A| = n = fe|G,|, and if all the sums a* + % lie in different 
cosets of G\ then 

\A + A\ = 
fc(fc + l ) 

2 
|G' | = an, a = fc + 1 

2 . 

The subgroup generated by A can have as many as r^lG'l elements, hence our function 

/ ( r , a ) = a 2 Ü a4 

cannot be replaced by anything smaller than 
rk _ r2a-l 

Conjecture. — The Theorem holds with / ( r , a) = rCa with a suitable constant C. 

The following conjecture of Katalin Marton would yield a more efficient covering 
in a slightly different form. 

Conjecture. — If \A\ — n, \A + A\ < an, then there is a subgroup H of G such that 
\H\ < n and A is contained in the union of ac cosets of H, where the constant c may 
depend on r but not on n or a. 

This also suggests that perhaps in Freiman's original problem a better result can 
be formulated in terms of covering by a small number of generalized arithmetical 
progressions than just one. 
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