LEv F. Vsevolod
 On small sumsets in abelian groups

Astérisque, tome 258 (1999), p. 317-321
http://www.numdam.org/item?id=AST_1999__258__317_0
© Société mathématique de France, 1999, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

$\mathcal{N u m d a m}^{\prime}$

Article numérisé dans le cadre du programme

ON SMALL SUMSETS IN ABELIAN GROUPS

by

Vsevolod F. Lev

Abstract

In this paper we investigate the structure of those pairs of finite subsets of an abelian group whose sums have relatively few elements: $|A+B|<|A|+$ $|B|$. In 1960, J. H. B. Kemperman gave an exhaustive but rather sophisticated description of recursive nature. Using intermediate results of Kemperman, we obtain below a description of another type. Though not (generally speaking) sufficient, our description is intuitive and transparent and can be easily used in applications.

1. Introduction

By G we denote an abelian group. A finite non-empty subset $S \subseteq G$ is said to be an arithmetic progression with difference d if S is of the form

$$
S=\{a+i d: i=1, \ldots,|S|\} \quad(a, d \in G) .
$$

If, in addition, the order of the group element d satisfies ord $d \geq|S|+2$, then we say that S is a true arithmetic progression.

Let A and B be finite subsets of G. We write

$$
A+B=\{a+b: a \in A, b \in B\}
$$

and consider the following condition:

$$
\begin{equation*}
|A+B| \leq|A|+|B|-1 \tag{*}
\end{equation*}
$$

The aim of this paper is to prove the following
Main Theorem. - Let A and B satisfy $(*)$, and suppose that $\max \{|A|,|B|\}>1$. Then there exist a finite subgroup $H \subseteq G$ and two finite subsets $S_{1}, S_{2} \subseteq G$ such that $A \subseteq S_{1}+H, B \subseteq S_{2}+H$, and one of the following holds:
i) $\left|S_{1}\right|=\left|S_{2}\right|=1$, and $|A+B| \geq \frac{1}{2}|H|+1$;
ii) $\left|S_{1}\right|=1,\left|S_{2}\right|>1$, and $|A+B| \geq\left(\left|S_{2}\right|-1\right)|H|+1$;
iii) $\left|S_{1}\right|>1,\left|S_{2}\right|=1$, and $|A+B| \geq\left(\left|S_{1}\right|-1\right)|H|+1$;
iv) $\min \left\{\left|S_{1}\right|,\left|S_{2}\right|\right\}>1$, and $|A+B| \geq\left(\left|S_{1}\right|+\left|S_{2}\right|-2\right)|H|+1$; moreover, S_{1} and S_{2} are true arithmetic progressions with common difference d of order at least ord $d \geq\left|S_{1}\right|+\left|S_{2}\right|+1$.

It can be easily verified that the conclusion of Main Theorem implies

$$
|A+B+H|-|A+B| \leq|H|-1
$$

in cases ii)-iv), and

$$
|A+B+H|-|A+B| \leq \frac{1}{2}|H|-1
$$

in case i): just observe that

$$
|A+B+H| \leq\left|S_{1}+S_{2}+H\right| \leq\left|S_{1}+S_{2}\right||H|
$$

Thus, $A+B$ "almost" fills in a system of H-cosets, while both $(A+H) / H$ and $(B+H) / H$ are in arithmetic progressions - unless some of them consists of just one element.

The Main Theorem will be proved in Section 3. Now, we give two definitions.
We say that the subgroup $H \subseteq G,|H| \geq 2$ is a period of the finite subset $C \subseteq G$ if C is a union of one or more H-cosets, that is if $C+H=C$. In this case C is called periodic and we write $H=P(C)$.

We say that the subgroup $H \subseteq G,|H| \geq 2$ is a quasi-period of the finite subset $C \subseteq G$, if C is a union of one or more H-cosets and possibly a subset of yet another H-coset. In this case C is called quasi-periodic and we write $H=Q(C)$.

If $H=P(C)$, we also say that H is a true period of C, as opposed to $H=Q(C)$, when C is a quasi-period. Obviously, if $H=P(C)$ or $H=Q(C)$ then $|H|<\infty$. Notice that according to the above definitions each periodic set is also quasi-periodic.

2. Auxiliary results

The following deep result due to Kemperman (see [1]) plays the central role in our proof.
Theorem 1 (Kemperman). - Let A and B be finite subsets of G such that (*) holds and $\min \{|A|,|B|\}>1$. Then either $A+B$ is an arithmetic progression or $A+B$ is quasi-periodic.
Corollary 1. - Under the assumptions of Theorem 1, one of the following holds:
i) $A+B$ is in true arithmetic progression;
ii) $A+B=c+H \backslash\{0\}$ where $H \subseteq G$ is a subgroup, and $c \in G$ - an element of G;
iii) $A+B$ is quasi-periodic.

The next lemma also originates in [1].
Lemma 1 (Kemperman). - Suppose that (*) holds and that $A+B$ is in true arithmetic progression of difference d. Then also A and B are in true arithmetic progressions with the same difference d. Moreover, in (*) equality holds, and therefore ord $d \geq|A|+|B|+1$.

We need three more lemmas.
Lemma 2. - Let A and B be finite non-empty subsets of G, and let $H \subseteq G$ be a finite non-zero subgroup of G, satisfying

$$
(|A+H|-|A|)+(|B+H|-|B|)<|H| .
$$

Then $H=P(A+B)$.
Proof. - We choose $c=a+b \in A+B$ and $h \in H$ and we prove that $c+h \in A+B$. We have:

$$
|(a+H) \cap \bar{A}|+|(b+H) \cap \bar{B}| \leq|(A+H) \cap \bar{A}|+|(B+H) \cap \bar{B}|<|H|
$$

hence

$$
\begin{aligned}
|(a+H) \cap A|+|(b+H) \cap B| & >|H|, \\
|H \cap(A-a)|+|h-H \cap(B-b)| & >|H|,
\end{aligned}
$$

and therefore there exist $h_{a}, h_{b} \in H$ such that

$$
h_{a}=h-h_{b}, h_{a}=a^{\prime}-a, h_{b}=b^{\prime}-b \quad\left(a^{\prime} \in A, b^{\prime} \in B\right)
$$

But then $c+h=a+b+h_{a}+h_{b}=a^{\prime}+b^{\prime} \in A+B$ which was to be proved.
Lemma 3. - Let $A, B \subseteq G$ satisfy (*). Suppose that $A+B$ is quasi-periodic, and write $H=Q(A+B)$. Denote by σ the canonical homomorphism $\sigma: G \rightarrow G / H$, and set $A_{1}=\sigma A, B_{1}=\sigma B$. Then
i) $\left|A_{1}+B_{1}\right| \leq\left|A_{1}\right|+\left|B_{1}\right|-1$;
ii) $\left|A_{1}+B_{1}\right|<|A+B|$;
iii) $|A+B|-1 \geq\left(\left|A_{1}+B_{1}\right|-1\right)|H|$.

Proof. - i) Suppose first that $H=P(A+B)$. Obviously, $|A+B| \leq|A+H|+$ $|B+H|-1$. But the left-hand side, as well as $|A+H|$ and $|B+H|$, divides by $|H|$, so we also have $|A+B| \leq|A+H|+|B+H|-|H|$. Eventually, $|A+H|=\left|A_{1}\right||H|,|B+H|=\left|B_{1}\right||H|$ and $|A+B|=\left|A_{1}+B_{1}\right||H|$.

Now consider the situation, when H is a quasi-period, but not a true period of $A+B$. Then by Lemma 2 ,

$$
|A+B|+1 \leq|A|+|B| \leq|A+H|+|B+H|-|H|
$$

hence (since the right-hand side divides by $|H|$) we also have $|A+B+H| \leq$ $|A+H|+|B+H|-|H|$, and the proof finishes as in the case $H=P(A+B)$.
ii) Follows from iii).
iii) If $H=P(A+B)$, then

$$
|A+B|-1=\left|A_{1}+B_{1}\right||H|-1>\left(\left|A_{1}+B_{1}\right|-1\right)|H|
$$

If H is not a true period of $A+B$, then $A+B$ contains $\left|A_{1}+B_{1}\right|-1$ full H-cosets, and at least one element in yet another H-coset, therefore $|A+B| \geq$ $\left(\left|A_{1}+B_{1}\right|-1\right)|H|+1$.

Lemma 4. - Let $A+B=c+H \backslash\{0\}$ and suppose that $\min \{|A|,|B|\} \geq 2$, where $A, B \subseteq G$ are subsets, $H \subseteq G$ a subgroup, and $c \in G$ an element of G. Then $|H| \geq 4$.

Proof. - We have: $|H|-1=|A+B| \geq|A| \geq 2$, hence $|H| \geq 3$. Suppose $|H|=3$, and so $|A|=|B|=|A+B|=2$. Let $A=a+\left\{0, d_{1}\right\}, B=b+\left\{0, d_{2}\right\}$. Then $A+B=a+b+$ $\left\{0, d_{1}, d_{2}, d_{1}+d_{2}\right\}$, hence $d_{2}=d_{1}, d_{1}+d_{2}=0$, and $H=\{0\} \cup\{a+b-c, a+b+d-c\}$, where $d=d_{1}=d_{2}, 2 d=0$. Therefore $d=(a+b+d-c)-(a+b-c) \in H$, which contradicts to $|H|=3,2 d=0$.

3. Proof of the Main Theorem

Denote $G_{0}=G, A_{0}=A, B_{0}=B$ and consider the following conditions:

1) $|A|=|B|=1$;
2) $|A|=1,|B|>1$;
3) $|A|>1,|B|=1$;
4) $A+B=c+\widetilde{H} \backslash\{0\}$, where \widetilde{H} is a subgroup, and $c \in G-$ an element of G;
5) $A+B$ is in true arithmetic progression.

If all these conditions fail, then by Corollary 1 the sum $A_{0}+B_{0}$ is quasi-periodic, and we put $H_{1}=Q\left(A_{0}+B_{0}\right), G_{1}=G_{0} / H_{1}$, denote by σ_{1} the canonical homomorphism $\sigma_{1}: G_{0} \rightarrow G_{1}$ and set $A_{1}=\sigma_{1} A_{0}, B_{1}=\sigma_{1} B_{0}$, so that A_{1}, B_{1} satisfy ($*$) by Lemma 3, i). Now check, whether some of the conditions 1)-5) is met with G_{1}, A_{1}, B_{1} substituted for G, A, B. If not, we continue the process by defining

$$
\begin{gathered}
H_{2}=Q\left(A_{1}+B_{1}\right), G_{2}=G_{1} / H_{2} \\
\sigma_{2}: G_{1} \rightarrow G_{2}, A_{2}=\sigma_{2} A_{1}, B_{2}=\sigma_{2} B_{1}
\end{gathered}
$$

and so on. At each step we obtain a pair of subsets $A_{i}, B_{i} \subseteq G_{i}$, satisfying (*) and also $\left|A_{i}+B_{i}\right|<\left|A_{i-1}+B_{i-1}\right|$ (by Lemma 3, ii)). Eventually we obtain a pair $A_{k}, B_{k} \subseteq G_{k}(k \geq 0)$, which meets at least one of the conditions 1)-5). We write $\sigma=\sigma_{k} \cdots \sigma_{1}: G \rightarrow G_{k}\left(\right.$ or $\sigma=\mathrm{id}_{G}$ in the case $k=0$) so that $A_{k}=\sigma A, B_{k}=\sigma B$, and we write $H=\sigma^{-1} \widetilde{H}$ if the first condition met is 4), or $H=\operatorname{ker} \sigma$ otherwise. We distinguish 5 cases according to the first condition satisfied.

1) Here $k>0$ and $A_{k-1}+B_{k-1}=c+H_{k}$, where $c \in G_{k-1}$ (since H_{k} is a quasiperiod of $\left.A_{k-1}+B_{k-1}\right)$, therefore $A_{k-1} \subseteq a+H_{k}, B_{k-1} \subseteq b+H_{k}\left(a, b \in G_{k-1}\right)$, whence $A \subseteq a^{\prime}+H, B \subseteq b^{\prime}+H\left(a^{\prime}, b^{\prime} \in G\right)$. We choose now $S_{1}=\left\{a^{\prime}\right\}, S_{2}=\left\{b^{\prime}\right\}$ and observe, that by Lemma 3, iii)

$$
\begin{aligned}
|A+B|-1 & \geq\left(\left|A_{1}+B_{1}\right|-1\right)\left|H_{1}\right| \geq \cdots \geq \\
& \geq\left(\left|A_{k-1}+B_{k-1}\right|-1\right)\left|H_{k-1}\right| \cdots\left|H_{1}\right|= \\
& =\left(\left|H_{k}\right|-1\right)\left|H_{k-1}\right| \cdots\left|H_{1}\right| \geq \\
& \geq \frac{1}{2}\left|H_{k}\right|\left|H_{k-1}\right| \cdots\left|H_{1}\right|=\frac{1}{2}|H| .
\end{aligned}
$$

2) Also here we may assume $k>0$, since otherwise the result is trivial if we choose $S_{1}=A, S_{2}=B, H=\{0\}$. Furthermore, as in 1) we have $A \subseteq a+H$. We choose $S_{1}=\{a\}$, and for S_{2} we choose the system of arbitrary representatives of all
H-cosets, containing at least one element of B, so that $A \subseteq S_{1}+H, B \subseteq S_{2}+H$ and $\left|S_{2}\right|=\left|B_{k}\right|$. Then

$$
|A+B|-1 \geq \cdots \geq\left(\left|A_{k}+B_{k}\right|-1\right)\left|H_{k}\right| \cdots\left|H_{1}\right|=\left(\left|S_{2}\right|-1\right)|H| .
$$

3) This case is analogous to the previous one in view of the symmetry between A and B.
4) In this case there exist $a, b \in G$ such that $A \subseteq a+H, B \subseteq b+H$ and we choose $S_{1}=\{a\}, S_{2}=\{b\}$. Then

$$
\begin{aligned}
|A+B|-1 & \geq \cdots \geq\left(\left|A_{k}+B_{k}\right|-1\right)\left|H_{k}\right| \cdots\left|H_{1}\right|= \\
& =(|\widetilde{H}|-2)\left|H_{k}\right| \cdots\left|H_{1}\right| \geq \frac{1}{2}|\widetilde{H}|\left|H_{k}\right| \cdots\left|H_{1}\right|=\frac{1}{2}|H|
\end{aligned}
$$

(since $|\widetilde{H}| \geq 4$ by Lemma 4).
5) In this case, by Lemma $1, A_{k}$ and B_{k} are in true arithmetic progressions with common difference d of order ord $d \geq\left|A_{k}\right|+\left|B_{k}\right|+1$, and $\left|A_{k}+B_{k}\right|=\left|A_{k}\right|+$ $\left|B_{k}\right|-1$. It is easily seen that we can choose two true arithmetic progressions $S_{1}, S_{2} \subseteq G$ with a common difference d^{\prime} in such a way, that $A_{k}=\sigma S_{1}, B_{k}=\sigma S_{2}$ and $\left|S_{1}\right|=\left|A_{k}\right|,\left|S_{2}\right|=\left|B_{k}\right|$, ord $d^{\prime} \geq$ ord d. Then

$$
A \subseteq S_{1}+H, B \subseteq S_{2}+H, \text { ord } d^{\prime} \geq\left|S_{1}\right|+\left|S_{2}\right|+1
$$

and

$$
|A+B|-1 \geq \cdots \geq\left(\left|A_{k}+B_{k}\right|-1\right)\left|H_{k}\right| \cdots\left|H_{1}\right|=\left(\left|S_{1}\right|+\left|S_{2}\right|-2\right)|H| .
$$

This completes the proof.

References

[1] Kemperman J.H.B., On small sumsets in an abelian group, Acta Math., 103, 1960, 63-88.

[^0]
[^0]: V.F. Lev, Inst. of Mathematics, Hebrew University, Jerusalem, Israel 91904

 E-mail : seva@math.huji.ac.il • Url : http://www.ma.huji.ac.il/~seva/

