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ON GROUPS GENERATED BY A PAIR OF ELEMENTS
WITH SMALL THIRD OR FOURTH POWER

by

Sergei Brodsky

Abstract. — The paper is devoted to an investigation of two-generated groups such
that the m—th power of the generating pair contains less than 2™ elements . It
is proved, in particular, that if the cube of the generating pair contains less than 7
elements or its fourth power contains less than 11 elements, then the group is solvable.
Otherwise, it is not necessarily solvable. The proofs use computer calculations.

1. Introduction

Let G be a group. A finite subset M of G is called a set with small m—th power
(m is some integer) if |[M™| < |M|™ (here M™ = {a1...amla1,...,6m € M} and
|.| denotes the cardinality of the set). The structure of the groups in which each
p—element subset has a small m—th power (for some small p and m), as well as
the structure of the set of all special elements (1), was investigated in papers [1-5,7],
among others. Notice that the notion of identification pattern, which is introduced
in the present paper, is close to the notion "type of square" which was introduced in
[3], but we will not discuss the relationship between these concepts.

In this paper we are interested in the structure of groups generated by a two-
element set M = {a, b} with a small third and fourth power. The proofs are based on
pure combinatorial considerations, and are ultimately reduced to enumerating a list
of very concrete groups, unfortunately; the total number of cases which appear here
is so large that we need to use a computer. All computer calculations were developed
by the author on an IBM PC using self-made programs which were written in the
frame-work of the mathematical package MATLAB-386 (2). These programs provide a
simplification of finite group presentations using Tietze transformations, a calculation
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256 S. BRODSKY

of a commutator subgroups in the case of a finite index, and also recognition of
groups of some types. The methods of programming are in some interest. Since their
description would lead us too far from the topic of the present paper, the topic could
be a subject of a separate publication. The results of the mentioned calculations are
given in the Appendix.

Acknowledgment. — The author would like to thank Prof. Ya. Berkovich for the
introduction into the subject of the investigations, as well as for useful discussions.

Let us formulate a general combinatorial assertion which will be needed below.
Let A be a finite set, 8 an equivalence relation on A, and R C A x A. We say that
the equivalence relation 0 is generated by R, and write § = eq(R) if 6 is the least
equivalence relation contaning R. The relation 8 will be called independent if 9 is the
minimal generating relation for its closure eq(R). The following lemma, can be easily
proved using induction on |R|.

Lemma l. — Let 0 be an equivalence relation on the set A generated by a relation
R C Ax A. Then |A/8]| > |A| — |R|. If, in addition, R is independent, then |A/0| =
|A| — |R|.

2. Identification graphs and their properties

Let G be a group generated by two elements a and b: G = gp(a,b). We fix a and b
as signature constants and regard the group G as the quotient-group of the free group
F = {a,b). The natural epimorphism ®5 : F — G defines an equivalence relation on
the group F' which will be denoted by the symbol 8. We define H(G) as the normal
closure of the element ab~! in G: H(G) = (ab—1)Y, and set u; = a’ba™*"! for each
i € Z,s0 H = gp(us|i € Z). For each element, or a subset P of H(G), we let P(®)
denote the element (the subset) a®Pa~*%; it is clear that P(*) can be obtained from
P by adding s to all indices of the u-symbols. We also apply the same notation to
elements and subsets of the Cartesian square Hg x Hg: (P,Q)®) = (P®) Q). Since

{a,b}™| = |{a,b}™a"™|, the condition |{a,b}™| = n < 2™ (m > 2) is equivalent
to the condition |H,,(G)| = n where H,,,(G) = {a,b}a™™. One can see that H,,(G)
consists of values in G of all strictly increasing positive words in symbols g, . . . , Upm—1:

Hp(G) = {usy ...uiy |0<iy <---<ip<m—1,0<k<m}C HQG).

We denote by U,, the set of all strictly increasing positive words in symbols ug, ...,
Um—1 itself, so that H,,(F) = gp(Un) and H,,(G) = gp(®c(Un)).

For S,T € U,, we say that the pair (S,T) is an irreducible m-pair if exactly one
of the words S,T begins with ug and exactly one of them ends with u,,_;. If the
irreducible m-pair e has the form (ugP, Qu.,—1) we say that it is positive, otherwise e
has the form (uoPum-1,Q) and in this case we say that e is negative. In both cases
we define i(e) = P and t(e) = Q. The set of all positive irreducible m-pairs is denoted
by I}, and the set of all negative irreducible pairs is denoted as I,.

For given R € Uy, let R be the word in symbols a and b which freely equals R;
it is clear that R is a positive word of length m. We say that an irreducible m-pair

ASTERISQUE 258


file:///A/-/R/

ON GROUPS GENERATED BY ELEMENTS WITH SMALL POWERS 257

(S,T) is degenerate if there exists some irreducible (m — 1)-pair (P, Q) € g such that
one of the words P, @ is a subword of one of the words S,T. The following lemma, is
obvious.

Lemma2. — LetOy = 0N (Un-1 XUpn—1) and let (S,T) be a degenerate irreducible
m-pair. Then (S,T) € 0 if and only if (S,T) € eq(fp U 0(()1) UOotm—1 U uoeél)).

Let us now define the positive identification m-graph '}, (G) of G as the oriented
graph with the set of vertices H,(i)_z and the set of edges E;} (G) = (®¢ x D) (ILN0g),
and the negative identification m-graph T, (G) of G as the graph with the same
set of vertices and the set of edges E,.(G) = (®g x ®q)(I,, N6g). The incidence
relations in both these graphs are given by the following rule: if e € E}, U E;; and
e = (®g x ®g)(ep), where e is some irreducible m-pair, then the initial vertex of e
is ®¢(i(ep)) and the terminal vertex of e is ®g(t(eo)).

The correctness of the last definition, as well as the validity of the following lemma,
can be easily verified.

Lemma 3. — Let G = gp(a,b) and m > 2. Then each vertex of the positive m-
identification graph T} (G), and each vertex of the negative m-identification graph
I (G), has at most one incoming edge and at most one outgoing edge.

For e € Ef(G) U E;;(G), we call e a degenerate edge if and only if the set (&g X
®;)!(e) contains some degenerate irreducible pair. Lastly, let def,,(G) denote the
total number of nondegenerate edges in the set E; (G) U E;,(G).

Lemma 4. — Let G = gp(a,b) and m > 2. Then
def,,(G) > —2™ — |H,(G)| + 4|Hpm—1(G))-

Proof. — Let d = 2™~! — |H,,_1(G)|- Then, by Lemma 1, the trace 6 of the
equivalence relation g on the set U,,_; is generated by some relation Ry of car-
dinality d. Since Up X Upm = (Um—1 X Um—1) U (UL} x U ) U (Un—1tm-1 %
Um—1Um—1) U (uoU,(,:)_l X uoU,(,i)_l), the trace 6 of the equivalence relation g on
the set U,, can be represented as the union of their traces 6g, 6,602,603 on the sets
Un-1, U,(nl)_l, Um_lum_l,uoU,(,:)_l, respectively, and the relation (Ig; Ulz;)Nég. Each
of the equivalence relations 6, (k = 1,2,3,4) is generated by a d-element relation
(Ro, R((,l), Roupm—1, uoR(()l), respectively). The union R of last the four relations con-
tains no more than 4d elements. By Lemma 2, the difference (I U IZ) N 6g \ eq(R)
is contained in the set of all nondegenerate irreducible m-pairs from 6. Now let us
define R; as the set which contains one 5 x ®5 pre-image of each nondegenerate
edge from E} (G) U E,.(G). Then 6y = eq(RU R;), and it only remains to apply
Lemma 1.

The inequality which was obtained in Lemma 4 provides us with good necessary

conditions for a group to be generated by a pair with a small power. However, we need
a more detailed version of this result which also includes some sufficient conditions.
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258 S. BRODSKY

Lemma 5. — Let G =gp(a,b) and Hp,—1(G) > 2™t —1 (m > 2). Then
def, (G) = =2™ — |Hpn(G)| + 4|Hpm-1(G)|.

Proof. — Let H,,_1(G) = 2™~ 1. Preserving the notations which were introduced in
the Proof of Lemma 4, we have here that R = @ and R; coinsides with E} (G) U
E..(G). Lemma 3 asures us that the last relation is independent. By Lemma, 1, the
inequality of Lemma 4 becomes an exact equality.

Let now H,,_1(G) = 2™~ ! — 1. In this case R consists of four pairs, and one can
verify that it is independent. Repeating the previous argument, and bearing in mind
that the definition of a nondegenerate edge provides the independence of the united
relation R; we again have an exact equality - instead of the inequality - in Lemma, 4.

The fact that the quotient group G/H(G) is cyclic reduces the investigation of the
group G(I') to an investigation of the group H(G). The following lemma shows that
in nontrivial situations this group is finitely generated.

Lemma 6. — Let |H,(G)| <2™. Then H(G) = gp(uo, ..., Um—2).

Proof. — If m = 1 then uo = 1 and H = 1. Hence, we may assume that m >
2. Without loss of generality, we may also assume that |H,,—1(G)| = 2™~!. By
Lemma 4, def,,(G) > 1, and thus there exists an irreducible m-pair (S,T) such
that G satisfies the equality S = T - implying that G also satisfies the equality
S() = T for each i € Z. Therefore, for each i € Z, u; € gp(Wi—m+1,---,Ui—1) and
u; € gp(Wit1,-.-,Ui+m—1). Now, using induction on %, one can prove that for each
1€ Z7 u; € gp(u07 . 'uum~2)'

It should be noted that in the case m = 2 Lemma 6 asserts that the group H is
cyclic. (In fact, this assertion is obvious and well known).

3. Identification patterns and their universal groups

Let us consider a finite sequence ' = (ES, E; , ..., E}, E,.) such that the set E,"
of its positive k-edges and the set of E, of its negative k-edges consist of positive
and negative irreducible k-pairs, respectively (2 < k < m). For each e € E}f UE, , we
define the initial vertex of e as i(e) and the terminal vertex of e as t(e); so for each
2 < k < m we obtain two oriented graphs with the set of vertices Ui_o: the positive
k-graph of T' which will be denoted by (')}, and the negative k-graph of T' which will
be denoted by (I'), . We write e = (w1, ws){ (or e = (w1, ws)y) if € is a positive (or
a negative) k-edge with the initial vertex w; and the terminal vertex ws. If we need
to describe any such sequence in a concrete situation, we do this by enumerating of
its edges. Further, we consider the sequence of groups {H(T')|2 < k < m} which are
defined in the set of generators {u;|i € Z} by the sets of relations | J{R(T')®)|s € Z},
where Ry (T') = {uoi(e) = t(e)uf,(_e“e €EEYUE,, 2<p<k}ele) =1foreec Ef
and e(e) = —1 for e € E;. For each of these groups, the natural epimorphism
®r i : Ur, = Hj, defines the equivalence relation on the group U which is denoted by
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the symbol Or . Let us denote the quotient-graphs (I‘)z' /0r k-2 and (T')% /6r k-2 by
the symbols [I']{ and (T[]}, respectively.

As above, we say that an irreducible k-pair (S,T) is degenerate (in respect to I')
if there exists some irreducible (k — 1)-pair (P, Q) € 6r  such that one of the words
P,(Q is a subword of one of the words 3, T".

Finally, we call the sequence I to be an identification pattern if, foreach3 < k < m,
the set E} U E; consists of nondegenerate pairs, and each of the graphs [[']{, [['];
has the property that each of its vertices has at most one incoming and at most one
outgoing edge.

For a given identification pattern T', we let the symbol G(I') denote the class of
all groups G = gp(a,b), such that for each 2 < k < m, Ef(G) 2 (¢ x ®c)(E})
and E; (G) 2 (&g x ®¢)(E, ). Let us now define the universal group G(I') of the
identification pattern I' as the infinite cyclic extension of the group H(T') = H,,(T)
with the naturally defined extending automorphism: G(I') = (a) AH(T'), au;a™! =
uit1. It is easy to see that for each identification pattern I', G(I') € G(T') and G(T')
consists of all quotient-groups of G(I"). The group H(T') itself we call the universal
kernel of I

Example1. — Let ' = ((1, 1);’, (ulug,uluz)j). Then the universal kernel of I" has
the following presentation: H(T') = (ug,u; | uou1uo = ujugui); and the inner auto-
morphism, afforded by a, acts in the following way: auga™' = u;,au;a™! = ug. Using
the Reidemeister-Schreier method (see, for instance, [8,9]), we see that the group H
is the infinite cyclic extension of the free group K = (vg,v;) with the extending au-
tomorphism defined by the equalities ulvoul‘l = v, ulvlufl = vo'lvl (uo = vouq).
Direct calculations show that |Hs(G(T'))| = 7 and |H4(G(I'))| = 11.

Example 2. — Let T' = ((1,1), (u1uz,u1uz)]). Then

H(F) = (U(),’U,l,’u,g [ UpUI U2 = UTULUY = uzu()ul),

1 1 1

aupa™! = ul,auja™! = up and auza™! = up. Using Tietze transformations (see,
for instance, [8,9]), we have H(T') = (vo,v1,v2 | vov2 = vavg,v1v3 = vav1), Where
up = Vo,U; = Uy 'w1,u2 = vj we. That is, H(I') is a direct product of the free
group (vg,v;) of rank two and the infinite cyclic group (vz). In this case we have
|H3(G(T'))] = 8 and |H4(G(I))| = 14.

In an informal way the above examples show that there exist arbitrarily large
groups generated by a pair of elements with small third and fourth powers. In precise
terms we have the following two theorems:

Theorem 1. — For each countable (finite) group L, there exists a (finite) group G =
gp(a,b) such that |{a,b}®| = 7, |{a,b}*| = 11, and the group L is the homomorphic
image of a subgroup of G.

Theorem 2. — For each countable (finite) group L, there exists a (finite) group G =
gp(a,b) such that |{a,b}?| = 8, |{a,b}*| = 14, and the group L is the homomorphic
image of a subgroup of G.
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260 S. BRODSKY

Proof. — In order to prove the infinite versions of these theorems, it is enough to
note that each of the groups G(I') in the above examples contains the free group
of rank two, and also to realize that each countable group can be embedded into a
two-generated group ([6]).

The proofs of the finite versions can be obtained by the method of the proof of
Theorem 1 in [10],which asserts that a semidirect product of a residually finite group
and a finitely generated residually finite group is residually finite.

Let us prove in details Theorem 1. Let Go = G(I'),H = H(T"), and K be the
groups from Example 1. First we embed the group L into some two-generated finite
group P (we can take, for instance, P = S, for the relevant permutation group
Sn). Consider the two-generator free group F of the variety generated by P and the
relevant verbal subgroup M of K, so that F=K /M and |F’| < oo (see, for instance,
[12]). The subgroup M is a normal divisor of the group H, the quotient-group H/M
is the semidirect product of an infinite cyclic group, and the group F: H /M =
(u1) A F. Since the group F is finite, the extending automorphism of this semidirect
product has finite order, say l, and hence we may consider the semidirect product
P, = (uy | v} = 1) \F" which is a finite group. We then obtain the following chain of
epimorphisms and embeddings:

H—s P« F—>sP« L.

Repeating these considerations, with the usage of P; instead of P, H instead of K,
and Gy instead of H, we can extend the above chain to the chain

Go > Po+—F, P« F—>yP«+ L,

where all groups besides G are finite. Now, using Theorem 1 from [10], we may assert
that the group Gy is residually finite. Therefore, it is possible to insert into the last
chain the finite group G which satisfies the conditions of Theorem 1:

Go G P+ F 5P+ F—>sP« L.

The proof of the finite version of Theorem 2 is obtained by similar considerations.

Theorems 1 and 2 show that if we want to obtain any definite information about
the groups generated by a pair with a small third or fourth power, we need to impose
stronger restrictions on the cardinalities of these powers than those used in the above
theorems. Noting that in the case where |H3(G)| < 4 the group H is cyclic, we have
to investigate only the following situations:

(a) |H2(G)| =4 and |H3(G)| <7;

(b) |H3(G)| =7 and |Hs(G)| < 115

(c) |Hs(G)| =8 and |H4(G)| < 14.

Using lemmas 2,3 and 5, one can easily verify the following three lemmas.

Lemma 7. — Let G = gp(a,b) and |H2(G)| = 4. Then |H3(G)| < 7 if and only if G
is a quotient of the universal group G(T) for some identification pattern TI' with two
3-edges (and no other edges).

ASTERISQUE 258
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Lemma 8. — Let G = gp(a,b) and |H3(G)| = 7. Then |H4(G)| < 11 if and only if G
is a quotient of the universal group G(I') for some identification pattern I' with one
3-edge and two 4-edges (and no other edges).

Lemma 9. — Let G = gp(a,b) and |H3(G)| = 8. Then |H4(G)| < 16 — k if and only
if G is a quotient of the universal group G(T') for some identification pattern T' with
k 4-edges (and no other edges).

The conditions of lemmas 7 - 9 provide the diagonality of the relations 6; r, 62,
and therefore the graphs [[']3, [[];, [Tl5, [[]; coinside with the graphs (I')§, (T')3,
(T)F, ()7 respectively. We see now that the problem of describing groups which
satisfy the conditions (a)-(c) above is reduced to enumerating the relevant graphs
with the sets of vetices Ul(l) and Uz(l) and calculating the relevant universal kernels.
The major part of this enumeration can be eliminated by using the considerations
below.

For a word P € Uy, we define the k-complementary word ay(P) as the word from
Ui, such that the set of all u—symbols which occur in ai(P) is the complement in
{uo, ...ug—1} of the set of all u-symbols which occur in P. If P = u;, u;, ...u;, we
define the k-opposite word By (P) = Uk—1—4; - - - Uk—1—ip Uk—1—i, - Extending these map-
pings componentwise onto the Cartesian square Uy x Uy, we obtain two sign preserving
involutions on the set of all irreducible k-pairs which we denote by the same symbols
ay and Bg. It follows from the definitions that these involutions commute, and hence
they define an action of the Klein four-group K on the set of all irreducible k-pairs.
Furthermore, for ¢ € K and any identification pattern I' = (ES,E;,...,E% E.),
we define g(T') = (g(ES), 9(E5 ), ..., 9(E}),g9(E;,)) and so we obtain the action of X
on the set of all identification patterns. We say that two identification patterns are
K — equivalent if they belong to the same orbit of this action.

Lemma 10. — If identification patterns I'y and I's are K-equivalent, then

Proof. — In order to prove this lemma it is enough to note that the map « is the
restriction of the automorphism of the free group F = (a,b) defined by the rule
a > b,b— a, and the map f is the restriction of the composition of the automorphism
of F defined by the rule a — a~!,b+ b1 and the group inversion g — g'.

4. Main results

Now we turn directly to the problem of calculating the universal kernel for a given
identification pattern I'. By Lemma 6, H(T") is finitely generated, but it is not nec-
essarily finitely presented. Let us denote by the symbol H[™(T") the group which is
defined in the set of generators {u;|0 < i < n — 1} by the set of all relations from
the union |J{R(T)®|s € Z} which contain only the symbols ug, ..., un_1; we call
this group the n-particular kernel of I'. The group H(I') is the direct limit of the
family of groups {H!"(T')|n > 0}; if we have, for some n, H!"(I') = H[*t1(T), and
the group H!"(T') is hopfian, then we may conclude that H(T') = HI"(T'). The lists
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1 and 2 of the universal kernels in the Appendix are obtained using this argument:
for each type of identification patterns which appears in lemmas 7-9, we enumerate
up to K-equivalence identification patterns of the given type, and calculate H®/(I")
and HS(T') (taking into account only the patterns for which the order of H[™(T') is
large enough). It is shown by the calculations that the first of above conditions holds
for each identification pattern of those types. On the other hand, all of the groups
in these lists are finite, except the first one in List 1 and the second one in List 2;
yet these two groups are finite extensions of residaully finite groups and so they are
residually finite themselves. Therefore, all groups in the lists 1 and 2 are hopfian,
so these lists present the exact description of the needed universal kernels. List 3
is obtained in the similar way using H("/(T") and HB(I"). For a few identificational
patterns of this type it turns out that H[7/(T") # HI8(T). In this case we also calculate
HBNT), and have HBI(T') = HI®N(T). Again, all of these groups are residually finite,
and therefore they are hopfian. In order to prove this assertion, we can apply the
same line of argument, or, in some cases, Malev’s theorem, which is mentioned in
the proof of Theorem 1.

Summarizing the information which is contained in the mentioned lists, and bearing
in mind lemmas 7-9, we obtain the following theorems:

Theorem3. — Let G = gp(a,b), |{a,b}?| = 4 and |{a,b}3| < 7. Then the normal
subgroup H = (ab=1)C of the group G, generated by the element ab™!, is isomorphic
to one of the following groups:

a) cyclic group of order 5;

b) direct product of two cyclic groups of the same order p (2 <p < 0);

¢) dihedral group of order greater than 2;

d) quaternion group.
All these possibilities are realizable.

Proof. — By Lemma 7, the group G satisfies the conditions of the Theorem if and only
if its subgroup H is a homomorphic image of some group in List 1 in the Appendix.
Taking into account that groups number 3,7 and 9 are all isomorphic to the quaternion
group, we see that all homomorphic images of the groups 1,3,4,6,7,8 and 9, which have
at least four elements, is one of the groups described in items a),c),d). The groups 2
and 5 are free abelian of rank two, and it is easy to verify that their free generators
are conjugated by the element a. Thus images of these generators are conjugated in
each quotient-group of the universal group G(I'). Therefore, these quotient-groups
satisfy the condition b) for H. A similar situation holds also for group 1 in List 1: it
is the free product of two groups of order two which are conjugated by a. It follows
that each normal subgroup P of this group is a-invariant (that is P is normal in the
group G(I')) and hence for each dihedral group H there exists homomorphic image
G of G(I') with H(G) = H.

Since the condition of |H| < 4 implies the cyclicity of H (Lemma 6) for all groups
satisfying b),c),d) we have that |H| = 4. Group 4 satisfies the condition a) which
may be checked directly.
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Corollary 1. — Let G = gp(a,b), |{a,b}3| < 7. Then the group G is solvable of derived
length not greater than three.

Theorem 4. — Let G = gp(a,b), |{a,b}3| = 7 and |{a,b}*| < 11. Then the normal
subgroup H = (ab=1)C of the group G, generated by the element ab™!, is isomorphic
to one of the following groups:
a) cyclic group of order 7;
b) direct product of two cyclic groups of the same order p (3 < p < o),
¢) direct product of cyclic groups of orders 2 and 4;
d) quaternion group;
e) nonabelian semidirect product of cyclic group of even finite or
infinite order with a cyclic group of order 3;
f) nonabelian semidirect product of cyclic group of order 3 with a Klein
four-group;
g) group defined by presentation (z,y | % = y?, (zy)? = 1) (eztension of
cyclic group of order 4 by group of order 2);
h) special linear group SL(2,3);
All these possibilities are realizable.

Proof. — At first let us remark that there exist identification patterns with one 3-
edge and two 4-edges such that H(T') is the cyclic group of order 7 (we may take
as the example I' = ((u1,1)3,(1,u1);, (u1,u2);)) and so there exists a group G
satisfying the conditions of the Theorem such that H satisfies the condition a). If
H is not isomorphic to the cyclic group of order 7 then, by Lemma 8, it must by a
homomorphic image of some group in List 2. Taking into account that the group 2
has the presentation (v,w | w® = 1,v"lwv = w~!), that the groups 12 and 19 are
isomorphic to the quaternion group and that the group 5 is isomorphic to SL(2, 3)
(the last isomorphism can be defined by the rule z — [~} _1],y = [71 _9]), we see
that each group in List 2 satisfies one of the conditions b)-h). In order to complete
the proof, it remains to make the following observations: it is possible to apply to
groups 2,14 and 18 considerations similar to those which were applied to the groups
1,2 and 5 in the proof of Theorem 3; the unique quotient-group of SL(2, 3) which has
order greater than 7 satisfies condition f); and the unique quotient-group of the group
1 which has order greater than 7, satisfies condition c).

Corollary 2. — Let G = gp(a,b), |{a,b}3| = 7 and |{a,b}*| < 11. Then the group G
is solvable of derived length not greater than four.

Theorem 5. — Let G = gp(a,b), |{a,b}3| = 8 and |{a,b}*| < 14. Then either the
normal subgroup H = (ab™1)C of the group G generated by the element ab~" is solvable
of derived length not greater than three, or it is a central extension of a cyclic group
of order not greater two by the alternating group As.

Proof. — By Lemma 9, our group is a homomorphic image of some group in List
3. All these groups except group 17 are solvable of derived length not greater than
three. Group 17 is presented in this list in the following way: H = (z,y | zyz =
yzy, zyz " lyx = y?), but in generators v = zy and w = zyz it has the presentation
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(vy,w | v® = w?, (vw™1)’w? = 1). The quotient-group of this group by the central
cyclic subgroup generated by the element w? is isomorphic (as was proved in ([11]) to
the alternating group As. Moreover, let us define homomorphism ¢ : H — As by the
rule v — (135) and w — (12)(34). A computation using the Reidemeister-Schreier
method shows that ¢ is an epimorphism, and its kernel is isomorphic to a cyclic group
of order two.

Remark. — Using List 3, one can make a full classification of groups which satisfy
the conditions of Theorem 5 as it has done in theorems 3 and 4, but it seems to be
too extensive for our liking.

Corollary 3. — Let G = gp(a,b), |{a,b}?| = 8 and |{a,b}*| < 14. Then either the
group G is solvable of derived length not greater than four, or it has an invariant
series 1 AN < H QG such that N is a cyclic central subgroup of H, H/N = A5 and
G/H is cyclic of order not greater two.

Theorem 6. — Let G = gp(a,b), |{a,b}?| = 8 and |{a,b}*| < 13. Then the normal
subgroup H = (ab™)% of the group G generated by the element ab™' is solvable of
derived length not greater than three.

Proof. — If G satisfies the conditions of the Theorem, but H does not satisfy its
conclusion, then, by Lemma 9 and properties of groups in lists 3,4, it must be a
quotient-group of some identification pattern with four 3-edges such that all of them
are contained in the union of C-orbit of the identification pattern number 17 in List
3. This union consists of edges (1,1)F, (u1,uiu2)], (wauz,u2)t, (1,u2)7, (u1,1)7,
(urusg, uluz)‘;F and it is easy to see that it is impossible to construct any four-element
identification pattern of these edges.

Corollary 4. — Let G = gp(a,b), |{a,b}®| = 8 and |{a,b}*| < 13. Then the group G
is solvable of derived length not greater than four.

Corollary 5. — Let G = gp(a,b) and |{a,b}*| < 11. Then the group G is solvable of
derived length not greater than four.

5. Appendix

Below are given results of mechanical computations of the universal kernels for the
identification patterns which appear in the proofs of the theorems of the last section.
These tables use the notation abel(my,...,m) for the direct product of k cyclic
groups of orders my,..., mg (2 < m; < 00).
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List 1

Universal kernels of the identification patterns with two 3-edges,
only for |H(T')| > 4.

N r H(T)
1| (LDF,(LY)35) | H=(z,y|a?y?), H = abel(1);
(L,DT, (ur,wm)5 H = abel(00, 00);

3 {1, 1), (ur, wm)3) = (z,y | yzyz, xywy"l),
H/H — abel(2,2), H = abel(2);

4 | (1,135, (1,u)F) H = abel(5);

5 1 (1,135, (u1,u1)3) H = abel(o0, 0);

6 | ((1,u1)F,(1,u1)3) H = abel(2,2);

7 {(Luw)3, (m, 1)) | H = (z,y] yzw‘2,ywyw‘1,ywy“w>
H/H = abel(2,2), H' = abel(2);

8 | ((1,u1)y, (u1,1) H = abel(2,2);

3)
((1,’11,1);, (ulv );)

b y2$2, .'Ey—lxy>,
H/H' = abel(2,2), H = abel(2)

H = (z,y | yzyz "

List 2

Universal kernels of the identification patterns with one 3-edge
and two 4-edges, only for |H(T')| > 7.

N r H(I)
1| (1,17, (w2, w7y, H=(z,y| y2x‘2,ywyw>
(uqug,1)7) H/H' = abel(2,4); H = abel(2);
2 | (LT, (w2, ), | H=(z,y|y’z % yayec 'y z),
(u1uz, u1us)y) H/H' = abel(co), H' = abel(3);
3| (DT, (ug, )i, = (z,y | v’z =2, yzyzy a1, y2a?),
(uru2, uyug)] ) H/H' = abel(4); H = abel(3);
4 | ((L1)F, (up,mauz)f, | H = (z,y | zyzy~tzy™, 92, 2%),
(uru2,1)]) H/H' = abel(3); H = abel(2,2);
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List 2
(continuation)

r

H(T)

10

11

12

13

14

15

16

17

18

19

((17 1);—’ (u2au1u2)15
(urug, u1)y)
<(1a 1);, (ulu?, 1)4_>
(uaug, u1)y)
((17 1)3—’ (1,u1’LL2)Z,
(u1,u2)y)
(Lu)g, (w1, )7,
(u2, 1)¥)
<(17 ul);: (ulv 1)4"
(Uluz,ul)j)
<(17 ul);a (ulv 1)Z7
(uruz,uz)y)
((lvul);a(u% 1)1_’
(urug,u1)?)
((Lwm)z, (L, 1),
(U1U2,U1u2)j>
(1, u1)g, (L, 1)5,
(w1, u2)f)

(1, u1)g, (1, 1),
(uruz, uruz)y )
((Lwn)z, (ur,u2)f,
(ulu?, 1)4—>
<(“’1a 1)??a (1’ ulu?)Z’
(u1,u1)y)
<(u1a 1)3—: (l’ul'u?);-’
(uz,u1)7)
((ul’ 1)??’ (Ul,ul)i’,
(uz,u2)y)
<(U1, 1);’ (ul?ul)zi—a

(u2,u2)y)

H = (z,y | zyzy~2,yzyz~2),H/H = abel(3);
H'/H" = abel(2,2); H' = abel(2);
H = (z,y | syzy~'zy~',y%,2%),
H/H' = abel(3); H = abel(2,2);
H = abel(2,4);

H = abel(3,3);
H = abel(3, 3);
H = abel(3, 3);
H = abel(3,3);

H = (z,y | zyz~ 'y, yzy 'z, z7%y?),

H/H' = abel(2,2); H = abel(2);
H = abel(3, 3);

H = abel(oo, 0);

H = (z,y | y3, 2%, zyxy),
H/H' = abel(3); H = abel(2,2);
H = abel(3, 3);

H = (z,y | y® 2% 2y~ tay™),
H/H' = abel(3); H = abel(2,2);
H = abel(oo, 00);

H = (z,y | zyzy~ ',z 'yzy),
H/H' = abel(2,2); H = abel(2)
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List 3

Universal kernels of the identification patterns with three 4-edges,
only for [H(T')| > 7.

N T H(D)
1| (L7, (u1,u)f, H = abel(2,2,2);
(1,1)1)
2 | {1, 1)f, (u1,u1)], H = abel(3, 00);
(1,uqu2)y)
3 (LT, (w, m)f, H = abel(9);
(ula 1);)
4 | (1, 0)F, (w,wm)y, H = abel(2,2,2);
(u1,u1)y)
5 | (1, 1], (u1,w)], H = abel(14);
(u1,u2)y)
6 | ((1,1)F, (u1,u1)f, H = abel(9);
(u2,1)5)
7 (L], (ur,un)], H = abel(14);
(u27u1)4_>
8 | (1, )F, (w1, )], H = abel(0o0, 00, 00);
(uz,u2)y)
9 | {1, D, (ur,m)f, H = abel(2,2,2);
(uz,u2)y)
10 | {(1, I)Za (ul,ul)f, H = abel(9);
(uruz,u1)g)
11| (L, 0], (ur,u)f, H = abel(9);
(uruz,u2)y )
12 | (L, D], (u1,u1)], H = abel(00, 00, 00);
(uruz, uruz)y)
13 | (1, 1), (ur,u1)], H = abel(2,2,2);
(wruz, uru2)y)
14 | (LD, (u1,u2)f, H = abel(o0);
(1,1,1,1’&2)4—)
15 | (1, 1], (u1,u2)f, H = (z,y | y?,z tyzy),
(ug, 1)) H/H' = abel(co), H = abel(3);
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List 3
(continuation)
N r H(T)
16 (L, )7, (u1,u2)f, H = abel(o0);
(urug, uruz)y)
17| (1, 0)F, (ur,wau2)f, H = (z,y | zyzy ‘z—1y—1,zyz " yzy~2),
(uruz,uz)) H/H =1;
18 (1, 1):1f-> (u2,u1)1_7 H = (z,y | yx—1y$—1’m2y$—1y—2>,
(1, uyuz)y) H/H' = abel(c0), H = abel(2,2);
19 (1, 0F, (uz,w)f, H = (z,y | yzye~ 'y~ 'z, "y~ %),
(uruz, uru2)}) H/H' = abel(c0),
H'/H" = abel(2,2), H' = abel(2);
20 | (1, )], (urua, uruz)y, H = (z,y,z | 22,92, 22, zzyzyz, xyzz2y,
(1,17) YzTYyTz), H/H' = abel(2,2,2), H = abel(2);
21 <(1a 1):;7 (U1U2,U1U2)I» H= <.’L‘,y | y2:v_1y2z‘ly_1w_1,x3y’3),
(1, uru2);) H/H' = abel(3,00), H' = abel(co, 00);
22 | (1, )], (uyug, uyus)y, H = abel(9);
(u1,1)5)
23 | ((1, 1)}, (urug, vaua)7, H = (z,y,z | zzzz~ !, y2y 'z, zyry ™!,
(u1,u1)7 ) 2wz, yzya, ayzly),
H/H' = abel(2,2,2),H = abel(2);
24 | ((1,1)], (urug, urua)7, H = abel(14);
(u1,u2)y)
25 | ((1,w)f, (u1, )], H = abel(2,2,2);
(L, u1)g)
26 | ((1,w1)7, (u1,1)7, H = abel(2,2,2);
(ula 1)4_>
27 | ((1,w)], (u1,1)], H = abel(2,2,2);
(uz, uru2)y)
28 | ((L,w1)f, (w1, )T, H = abel(2,2,2);
(uz,u1u2)y)
29 | ((L,w)f, (u1,1)], H = abel(2,2,2);

(urug,uz)f)
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List 3

(continuation)

N r H()
30 | ((1,w)f, (w1, )7, H = abel(2,2,2);
(urug,uz)y)
31| ((Lu1)f, (u1,u2)f, H = abel(9);
(L,1)y)
32| ((1,u1)f, (u1,u2)f, H = abel(9);
(u1,u1)y)
33 ((1,1111)1., (ul,UZ)Ia H = (a:,y | y$_2ya:, y“zxyx),
(u2, 1)) H/H' = abel(3),
H'/H" = abel(2,2), H" = abel(2);
34 | ((Lu1)f, (w1, u)y, H = abel(9);
(u2, u2)y)
35 | ((L,u1)f, (ua,u2)y, H = abel(9);
(uz, uruz)y)
36 <(1,’U,1)i_, (ul"u?)j’ H=(z,y | yz—lymym—1,$2’y3),
(urue,1)7) H/H' = abel(3), H = abel(2,2);
37| ((Lw)f, (u1,u2)f, H = abel(9);
(urug, uru2)y )
38| (L, w)f, (ug, )7, H = (z,y | 23, yzyz,y3),
(uruz,1)7) H/H' = abel(3),H = abel(2,2);
39 | (1, w1)y, (uz, vaus)f, H = abel(9);
(1,1)5)
40 | ((1,u1)F, (ug, urus)f, H = abel(2,2,2);
(1”“1);)
41 | ((L,u1)f, (uz, mug)y, H = abel(11);
(17u2)4_>
42 | ((1,u1)f, (uz, urug)f, H = abel(2,2,2);
(ulv 1)4_>
43 | ((1,u1)7, (u2, uaus)y, H = abel(9);
(ulau1)4_>
44 | (1, w7, (u2, urus2)y, H = abel(17);
(u1,u2)y)
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List 3
(continuation)
N r H(I")
45 | ((1,u1)T, (w2, uru2)f, | H = abel(3,3);
(u2,1)y)
46 | ((1,u1)7, (w2, urus)f, | H = abel(13);
(uz,u1)g)
47 ((17"1/1)2-’ (u2aulu2):{, H = abel(ll),
(urug, 1)F)
48 | ((1,w1)], (ua,wrus2)f, | H = abel(2,2,2);
(uruz, u2)f)
49 | ((1L,w)f, (urug, 1)f, | H = abel(11);
(1,U2)4_>
50 | ((1,u1)y, (uaug, 1)f, H = abel(11);
(u1,uru2)y)
51 | ((1,u1)7, (uruz,u2)f, | H = abel(2,2,2);
(1,?,&1)4_)
52 | ((1,w1)], (u1u2,u2)f, | H = abel(2,2,2);
(U1, 1)4_>
53 | ((1,u1)f, (wius,u2)f, | H = abel(2,2,2);
(u2,uru2)y)
54 | ((1,u1)], (uruz,us), | H = abel(2,2,2);
55 | ((1,u2)F, (u1,uius)f, | H = abel(2,2,2);
(1au2)4_>
56 | ((1,u2)], (u1,uaus)f, | H = abel(11);
(u1,1)1)
57 ((1,U2)I,(U1,U1U2)I, H = abel(19);
(u1,u2))
58 | ((1,u2)f, (u1,urua)f, | H = abel(2,2,2);
(uz2,1)F)
59 | ((1,u2)f ,(’U[l,“]_UQ)Z- H = abel(2,2,2);
(u27 ) >
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List 3
(continuation)

N T H(T)

60 | ((1,u2)7, (u1,urus)y, H = abel(11);
(U2,U1)Z)

61 <(1au1u2)ja (ulaul):}’-’ H = <$sy l xzaya:yx,y5>’
(1,uruz)7) H/H' = abel(2), H = abel(5);

62 | ((1,urua)f, (u1,u1)f, H = (z,y | y*, 2%, syzyzyzycy),
(u1,u1)y) H/H' = abel(2), H = abel(5);

63 | ((1,uru2)f, (u1,u1)}, H = (z,y | v?,yz yz~ 1, ztyz~1y),
(urug,1)F) H/H' = abel(2), H' = abel(5);

64 | (1, uru2)f, (u1,u2)f, H = abel(2,2,2);
(1, uruz)y)

65 | ((1,uru2)f, (u1,u2), H = abel(2,2,2);
(u1,u2)y)

66 | ((1,uru2)f, (u1,u2)y, H = abel(2,2,2);
(ug, u1)¥)

67 | (L, uru2)f, (u1,us2)f, H = abel(2,2,2);
(Uz,ul)ﬂ

68 | (L, uru2)f, (u1,u2)s, | H ={(z,y,2 | 2z2z~ !, yzyz"1,2%y~2,
(uuz, 1)) yryz~ L yrylx, 2%y 72 2z 2, yzy T l2),

H/H' = abel(2,2,2), H = abel(2);

69 | ((1,uau2)7, (u1,u2)7, H = abel(2,2,2);
(uruz, 1))

70 | {((1,uru2)y, (w2, u1)s, H = abel(2,2,2);
(17u1u2)<1_>

71| (1, uru2)f, (ua,u1)f, H = abel(2,2,2);
(u1,u2)y)

72 | (1, uru2), (u2,w1)7, H = abel(2,2,2);
(u2,u1)y)

73 | {(1,uruz2)y, (w2, 1)y, H = (z,y,z | 2222, 2%y?, 2" 1y2y,
(uruz,1)F) 27 zzx,yx " tyz, x 7 2z, 22y T2y TY),

H/H' = abel(2,2,2), H = abel(2);
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List 3
(continuation)
N r H(T)
74 | ((1,urus)7, (ug,u1)f, H = abel(2,2,2);
(ulu21 1);)
75 | (Lurua)f, (wiue, )T, | H = (z,y,2 | 2%, 2%, yzy2, yzz2zyzzz, yryz),
(1,uruz)y) H/H' = abel(2,2,2),H = abel(co,00);
76 | (1, uruz)f, (uruz, 1)7, H = (z,y | 2%, 9%, zyzyayzyzy),
(u1,u1)7) H/H' = abel(2),H = abel(5);
77 ((1,11,111,2)2_,(111111,2,1)1, H = abel(2,2,4);
(u1,u2)y)
78 | (1, urug)y, (wruz, 1), H = (z,y,z | 2%,y%, z222, 2y2y),
(urue,1)7) H/H' = abel(2,2,2),H = abel(co,00);
79 | ((u1,u1)7, (u2,us)y, H = (z,y,2 | zz7 12z, y lzyz,
(L, D7) 2 tyzy, 2y zy, 2 wza, Tyz 1Y),
H/H' = abel(2,2,2),H = abel(2);
80 | ((u1,w1)d, (ua,u2)f, H = abel(3, o0);
(17 u1u2)4_>
81| ((ur, )7, (ug,u2)], H = abel(9);
(u1,1)3)
82 | ((u1,u)d, (uz,u2)y, H = (z,y,z | 2%,y?,z2z2, zzyr2s " l1yT,
(u1,u1)g) yrzyzz~l, zoyzlzy, 27 lyzy),
H/H' = abel(2,2,2),H = abel(2);
83 | ((u1,w1)7, (uag,u2)f, H = abel(14);
(u1,uz2)y)
84 | ((u1,u2)f, (ug,m)y, H = (z,y | yz~'yz, 2y~ 2%y, 4°),
(1,1)7) H/H' = abel(4), H = abel(3);
85 | ((u1,us)d, (ug,u1)f, H = abel(2, 2, 00);
(1, uruz)y)
86 | ((u1,u)f, (uz,u1)f, | H = (wz,y,2|2% 227 w271, z222,y?, zyzy 1),
(u1,uz)7) H/H' = abel(2,2,2), H = abel(co,0);
87 | ((u1,u2)f, (u2,u1)s, H = (z,y,2 | ¥?, zyzz"lyz ™!, zyzzyz,
(urug, 1)7) 22yz~lyx~t yzyz 2z, 27 e 1 2),

H/H' = abel(2,2,4), H' = abel(2);
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List 3

(continuation)

N r H(T)
88 ((1,1)7, (u1,u1)y, H = abel(2,2,2);
(L))
89 (1, 1)7, (u1,w)g, H = abel(9);
(LUI)D
90 ((1,1);,(1111,1&1);7) H = abe1(2,7);
(17“'1“2):1’_
91 (1, 1)7, (u1,u1)g, H = abel(2,2,2);
(u1,u1))
92 (L, 1), (u1,u1)g, H = abel(3,00);
(Ul,uz):D
93 (L, 1)y, (u1,u1)y, H = abel(9);
(u2, 1)¥)
94 (L, 1)y, (u1,u1)y, H = abel(2,2,2);
(Uz,uz)zn
95 (L, 1)y, (w1,u1)y, H = abel(o0, 00, 00);
(u2,u2)y)
96 (1, 1), (u1,u1)g, H = abel(9);
(uz, uru2)f)
97 (L, 1)7, (u1,u1)y, H = abel(14);
(U1UQ, l)j)
98 (L, 1)g, (ur,wm)y, H = abel(9);
(wruz, 1))
99 (L, 1)y, (w1, u1)y, H = abel(2,2,2);
(urug, uruz)})
100 | {(1,1)g, (w1, u1)y, H = abel(co0, 00, 00);
(urug,ugu2)y )
101 | ((1,1)7, (wug,urue)y, | H = (z,y,z | 22,92, 22, 2zy2yz,

1,1)

TYZLTZY, Y2ZTYTZ, ZLYZYT),

H/H' = abel(2,2,2),H = abel(2);
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List 3

(continuation)

N r H(T)
102 | ((1,1), (uruz, uruz)y, H = abel(9);
(17u1)1->
103 | (1, 1)y, (uruz, u1u2)y, H = abel(14);
(1,’u1’u.2)1_)
104 | ((1,1);, (uius, uius)y, H = (z,y,z |y l2yz,y lzyz,
(u1,u1)7) xz Yxz, 27 Yyzy, yryz !, zo " 2x),
H/H' = abel(2,2,2),H = abel(2);
105 | ((1,1)3, (uruz, uruz)y , H = abel(3, c);
(u1,u2)7)
106 ((1,u1)y, (w1, 1)y, H = abel(2,2,2);
(laul)i—)
107 ((1,u1)y, (u1, 1)y, H = abel(2,2,2);
(u17 1)I>
108 | ((1,u1)g, (u1,1)g, H = abel(2,2,2);
(uz, uruz)y)
109 | ((L,u1)y, (u1,1)y, H = abel(2,2,2);
(uz,u1u2)y )
110 ((Lua)y, (u1,1)g, H = abel(2,2,2);
(urus, u2)y)
111 ((Lur)y, (w1, 1)y, H = abel(2,2,2);
(uruz, u2)y)
112 | ((1,u1)y, (uz, uru2)y, H = abel(2,2,2);
(L, u)f)
113 | ((1,u1)y, (uz, wrua)y, H = abel(11);
(1, uruz)y)
114 | ((1,u1)y, (u2,uru2)y, H = abel(2,2,2);
(ulv 1):1’.)
115 | ((1,u1)y, (u2,uru2)y , H = abel(11);
(u2, 1))
116 | ((1,u1)y , (u2, wauz2)y, H = abel(19);
(wrus, 1)])
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List 3
(continuation)

N r H(T)
117 | (1, u1)y, (wrus, u2)y, H = abel(2,2,2);
(1,u1)})
118 | ((1,u1)y, (wru2,u2)y , H = abel(2,2,2);
(u1, 1)T)
119 | (1, u1)y, (u1ue, u2)y , H = abel(2,2,2);
(uz, uruz)y)
120 | ((1,u1)y, (waus,u2)y, H = abel(2,2,2);
(urug,uz)y)
121 ((1,uru2)y, H = abel(9);
(ul? 1)4_7 (17 1);1}_>
122 | ((1,uqu2)y, (u1,1)5, H = abel(9);
(u17u1)2_>
123 | (1, wruz)y, (u1, 1)7, H = (z,y |y zyzy 'z, y’2’y '),
(ug, u9)}) H/H' = abel(9),H = abel(7);
124 | ((1,uqus)y, (w1, 1)7, H = (z,y|z® yoyzy~ 'z, y%),
(uyug,u1);) H/H' = abel(3),H = abel(7);
125 | ((1,uwue)y, (u1,1)5, H = abel(9);
(uru2,u2)y)
126 | ((1,u1u2)y, (u1,1),, H = abel(9);
(uruz, uruz)7)
127 | (L, uruz)y, (w1, u1)yg, H = (z,y | y*, yz~'yz ', zyzy, 2°),
(1, uruz)T) H/H' = abel(2),H = abel(5);
128 | ((Lurun)y, (ur,u1)y, | H = (2,y | zyzy, 2®, y’z~ y >z, 0y~ tey ),
(uy,u1)f > H/H' = abel(2),H = abel(5);
129 | ((1,uru2)y , (w1 H = abel(oco);
(u1,un)f )
130 | ((1,uwru2)y , (u1,u1)y, H = abel(0);
(u2,u2)y)
131 | (L uruz)y, (u1,u1)y H = (z,y| 27 yzy,y°),
(urug,1)7) H/H' = abel(c0), H = abel(5);
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(continuation)

N r H(T)
132 | ((1,uiu2)y, (u1,u2)y, H = abel(2,2,2);
(15u1u2)2—>
133 | ((1,u1u2)y, (u1,u2)y, H = abel(2,2,2);
(u1,u2)f)
134 | ((1,uqu2)y, (u1,u2)y, H = abel(2,2,2);
(uz,u1)y)
135 | ((1,urue)y, (u1,u2)y, H = (z,y,2 | 2222, za 7 L2z, 27 %y?,
(u2,u1)y) zyz~ly, 2ty T lya T y T ey, y T ey Y,
H/H' = abel(2,2,2),H = abel(2)
136 | ((1,uru2)y, (u1,u2)y, H = abel(2,2,2);
(u1uz, 1))
137 | ((L,urus)y, (u1,u2)y, H = (z,y,z | y?2?,y " L2yz, 2222,
(wrug, 1)7) zy~ oy, zyzly, v2x "z, y2z " lyz, wrz Y,
H/H' = abel(2,2,2),H = abel(2);
138 | ((1,wqu2)y, (u1ue, 1)y, H = (z,y,z | 2%, zyzy, 2zyz~ 1y, 22),
(1, uu2)7) H/H' = abel(2,2,2),H = abel(co, 0);
139 | ((1,u1u2);, (v1ue, )7, H = abel(2,2,);
(u1,u2)f)
140 | ((Luiua)y, (wius, 1)y, | H =(z,y,2 | 2%, zy tay~,y2z 1 za7 12,
(u2,u1)7) yzyza~?, xz " wyzy, 2°y°),
H/H' = abel(2,2,4), H' = abel(2);
141 ((u1,1)5, (u2,u1)yg, H = abel(11);
(1,u2))
142 ((u1,1)y, (u2,u1);, H = abel(11);
(u1, uruz)y)
143 | ((u1,1)7, (u2,u1)y, H = abel(11);
(wru2,u2)y)
144 | ((u1, 1)y, (uau2,u1)yg, H = (z,y | 2% y°, zyzy 'z 'y),
(ug,uz)}) H/H' = abel(3),H = abel(7);
145 | ((u1,1);, (u1ug,u2)y, H = abel(9);
(1,1)7)
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List 3

(continuation)

N r H(T)
146 | ((u1, 1)y, (u1uz,uz)y, H = abel(2,2,2);
(Lun)f)
147 | ((u1, 1), (uruz, u2)y, H = abel(11);
(1,u2)7)
148 | ((u1, 1)y, (u1uz, u2)y, H = abel(17);
(L uru2)f)
149 | ((u1,1)y, (u1ug, u2)y , H = abel(2,2,2);
(u1, 1)F)
150 | ((u1, 1)y, (uruz, u2)y, H = abel(9);
(u1,u1)¥)
151 | ((u1, 1)y, (uauz,uz2)y, H = abel(3,3);
(u2, 1)¥)
152 | ((u1, 1)y, (wrug, u2)y , H = abel(13);
(uruz, 1)])
153 | ((u1,u1)y, (u2,u2)y, | H = (z,y,2 | 2z2z~, zyzy ™!, yzyz~1,
(1, 1)) 2yzy~ Y, zzez T yzyzTl),
H/H' = abel(2,2,2),H = abel(2);
154 | ((u1,u1)y, (u2,u2)y , H = abel(9);
(1,U1)I>
155 | ((u1,u1)y, (u2,u2)y H = abel(14);
(L, uruz)?)
156 | ((u1,u1)y, (u2,u2)y, H = (z,y,z | 22,22, oy oy~ !,
(u1,u1)f) y 2T lyz eyt 2T e y2),
H/H = abel(2,2,2),H = abel(2);
157 | ((u1,u1)y, (u2,u2)y , H = (z,y | zy 2zyz~%y,y323),
(u1,u2)F) H/H' = abel(3,00), H = abel(co, 00);
158 | ((u1,u1)g, (u2,u2)y, | H = (z,y | 2?y~ 272y, y zya~ yz),
(urug,1)y) H/H' = abel(c0),
H'/H" = abel(2,6), H" = abel(2);
159 | ((u1,w1)y, (waup, 1), | H = (z,y|2*,y°, syzyzyayzy),

(L, uguz)f)

H/H' = abel(2); H = abel(5);
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(continuation)

r

H(D)

160

161

162

163

164

165

166

167

168

169

((U1, u1)4_? (’I_L1U2, 1)4_7
(w1, u1)y)
((u1,u1)g s (uruz, 1)y,
(u1,u2)f)
((u1,u2)g, (uz,u1)y ,
(1,U1u2)j>
((u17u2)21 (’u’27’u’1)Z,
(ulau2)1_>
<(u17u2)4_’ (Uz,ul)L
(ug,u1)7)
((u1,u2)y, (w2, w1y,
(uruz,1)y)

((u1,u2)y , (uruz, 1)y,
(1, urug)y)

<(u’17 ’u,2)4_, (uruz, 1)4_’
(UI’UQ)Z—)

((u1,u2)g , (uruz, 1)y,
(u27u1):1'-)

((u1,u2)y, (wruz, 1)y,
(u1uz, 1))

H = (z,y | 2%, y°, zyzyzyzyzy),
H/H' = abel(2); H' = abel(5);
H = (z,y |y, e*yz " yz'y),

H/H' = abel(co), H = abel(2,2);
H = abel(2,2,4);

H = (z,y,z | 22,92, zyzy, 2z22),
H/H' = abel(2,2,2), H = abel(co, );
H = (z,y,2 | 22,9y%, zz22, 2y2Y),
H/H' = abel(2,2,2), H = abel(co, o0);
2 2wz, zyr Ty,
1

H = (mayaz | Z2w2,y2z—
zy oy, yzy Tz, yz Yz, a7 2a2),
H/H' = abel(2,2,2),H = abel(2);

H = abel(2,2,2);
H = abel(2,2,2);
H = abel(2, 2, 2);

H = abel(2,2,2);
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