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INVERSE THEOREMS AND THE NUMBER 
OF SUMS AND PRODUCTS 

by 

Melvyn B. Nathanson &; Gerald Tenenbaum 

Abstract. — Let e > 0. Erd<5s and Szemeredi conjectured that if A is a set of k 
positive integers which large k, there must be at least k2~e integers that can be 
written as the sum or product of two elements of A. We shall prove this conjecture 
in the special case that the number of sums is very small. 

1. A conjecture of Erdos and Szemeredi 

Let A be a nonempty, finite set of positive integers, and let \A\ denote the cardi­
nality of the set A. Let 

2A = {a 4- a' : a, a' E A} 

denote the 2-fold sumset of A, and let 

A2 = {aa' : a,af e A} 

denote the 2-fold product set of A. We let 

E2(A) = 2AU A2 

denote the set of all integers that can be written as the sum or product of two elements 
of A. If Ml = fc, then 

\2A\^ 
k+ 1 

2 

and 

\A2\< 
Jfc + 1" 

2 
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and so the number of sums and products of two elements of A is 

\E2(A)\ <k2 + k. 

Erdos and Szemeredi [3, p. 60] made the beautiful conjecture that a finite set of pos­
itive integers cannot have simultaneously few sums and few products. More precisely, 
they conjectured that for every s > 0 there exists an integer k0(e) such that, if A is 
a finite set of positive integers and 

\A\=k> k0(e), 

then 

E2(A) > e k2-£, 

Very little is known about this question. Erdos and Szemeredi [4] have shown that 
there exists a real number <5 > 0 such that 

\E2(A)\ys>k1+s, 
and Nathanson f i l l proved that 

\ E 2 ( A ) \ ^ c k ^ \ k 1 + s , 

where c = 0.00028.. . . 
Erdos and Szemeredi [4] also remarked that, in the special case that \2A\ ^ cfc, 

"perhaps there are more than k2/(logk)€ elements in A2 ". This cannot be true for 
arbitrary finite sets of positive integers and arbitrarily small e > 0. For example, if 
A is the set of all integers from 1 to fc, then Tenenbaum [16, 17], improving a result 
of Erdos [21, proved that 

(i) 
k2 

(log kY° 
log 2 k l o g 3 k 

C \A2\ < 
k2 

(log k)e° log2k 

where log r denotes the r-fold iterated logarithm, and 

(2) £ n = 1 — 
1 + logo 2 

log 2 
^ 0.08607 

(cf. Hall and Tenenbaum [8, Theorem 23]). 
Using an inverse theorem of Preiman, we shall prove that if A is a set of k positive 

integers such that \2A\ ^ 3fc — 4, then 

\A2\ > (fc/logfc)2. 

We obtain a similar result for the sumset and product set of two possibly different 
sets of integers. Let A\ and A2 be nonempty, finite sets of positive integers, and let 

Ai + A2 = {ai + a2 : ai e Aua2 e A2} 

and 

A\A2 — {a\a2 : ai G Ai,a2 G A 2 \ . } 

Let |A1|=|A2| = K We prove that whenever \Ai +A2\ ^ 3fc - 4, then we have 
| A i i 4 2 | > (fc/logfc)2. 
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2. Product sets of arithmetic progressions 

A set Q of positive integers is an arithmetic progression of length £ and difference 
q if there exist positive integers r, q, and £ such that 

Q = fr + uq:0<u<e}. 

We shall always assume that 

£ ^ 2. 

For any sets A and B of positive integers, let QA,B{™) denote the number of 
representations of m in the form m = ab3 where a G A and b G B. Let Q A ( ^ ) = 
QA,A{™)' Let r (m) denote the number of positive divisors of m. Clearly, for every 
integer ra, 

QA,B(rn) ^ r (m) . 

If A1 C Q 1 and A2 Ç Q 2 , then S A1, A2 (m) < Q Q1, Q2 (m) 

Lemma 1 (Shiu). l e í 0 < a < 1/2 and ie£ 0 < 8 < 1/2 Let x and y be real 
numbers and let s and q be integers such that 

(3) 0 < s 4. q and (s,q) = 1, 

(4) q<y1~a, 

and 

(5) a r < y ^ x. 

Then 

w=s (mod q) 
w=s (mod q 

t(w) <<a /3 
(p(q)y log x 

q2 

Proof. This is a special case of Theorem 2 in Shiu [14] (see also Vinogradov and 
Linnik [18] and Barban and Vehov [1]). 

Lemma 2. — Let s, q, h, and £ be inteqers such that h ^ 0, £ ^ 2, 0 < s ^ q, and 
(8,q) = l Let Q be the arithmetic progression 

Q = {s + vq : h ^ v < h + £}. 

If(h + l)q<e*, then 

weQ 

r(w) < C £log£. 

Proof. We apply Lemma 1 with a = (3= 1/6, x = (h + l)q, and y = lq The integers 
s and o satisfy (3). Since q<(h + l)q<£\ we have 1/6 < ¿ 5 / 6 and so 

q = g i / ^ s / e <(lq)5/6 = y1-a 

This shows that (4) is satisfied. 
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To obtain (5), we consider two cases. If h < l, then, since 2 <C £ <C £q. we have 

rf* = ({h + l)qf ^ (2£qf <C {tqfP = (iq)1/3 <£q = y^x. 

If h > £, then, since hq < £b, we have 

aP = {{h + l)q}p <{lhqf < £6f3 = £ < £q = y < x. 

This shows that (5) holds. 
Applying Lemma 1, we obtain 

w£Q 

T(W) = 
w=s (mod q) 

hq<w^(h+l)q 

T(W) < 
^{q){£q)\og{{h + £)q) 

q2 

< eiog(i(h+l)q) <C£logr < £ l o g £ . 

This completes the proof. 

Lemma 3. — Let Q\ and Q2 be two arithmetic progressions of length £ >>2, and let 
m E QiQ2. Then 

(6) Q Q1, Q2 (m) <E le 

for every e > 0, and 

(7) 

m€QiQ2 
Q Q1, Q2 (m)2 < (llog l)2 

Proof. Let Qi = {ri + uqi : 0 ^ u < £} for i = 1,2. We may assume without loss of 
generality that (ri,qA = 1. We write n = Si + h{qi1 where 0 < Si ^ qi and hi ^ 0. 
Then 

Qi = {s* -h vqi : hi ^ v < hi + £}. 

If W1 E Q1 and w2 G Q2j then, for suitable v\ € [fti, /ii + £[, v2 € [/i2, /¿2 -h -[q, we have 

(8) hiqi <wi=si+ vxqi < (/ii + l) <<l(h1+ l)qi 
and 

9 /l2^2 < W2 = S2 + V2q2 ^ (/l2 + €)<?2 ^ ^(/¿2 + 1)<?2. 

We can assume that 

(/i2 + l ) ç 2 ^ ( f t i + i)gi. 

There are two cases. In the first case, 

( / H + I ) « i < t . 

By (8) and (9), we deduce that 

wi ^ Ufa + l)gi < T , and w2 ^ £(h2 + l )g 2 ^ £(hi + l)gi < £ 6 . 

If m € QiQ2, then m is of the form m = w\w2l and so m < £12 Since, by a classical 
estimate, r ( r a ) < £ me'12, it follows that 

q Q1 , q2 (m) < (m) < £ m £ / 1 2 < £ £
£ . 

This proves (6). 
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To prove (7), we use the submultiplicativity of the divisor function, that is, T(UV) ^ 

T(U)T(V) for all positive integers u, v. Then 

m € Q i Q 2 

q S 1, q2 (m)2 
E E S ! W2EQ2 

QQi,Q2 ( ^ 1 ^ 2 ) 

wteQi W2EQ2 

T(WIW2) 

WIEQI 

T(WI) 

W E q2 

T(W2)4z£2(log £)\ 

where the last upper bound follows from Lemma 2. 
Consider now the second case 

(h + lìgi ^ F. 

We shall prove that 

(10) £ Q i , Q 2 ( m ) ^ 3 

for all m ^ 1. Suppose that w\ = r\ + uq\ € Qi and w[ = r\ + u'qi € Qi are distinct 
divisors of m, and that t^i < w[. Then (r i ,#i) = 1 implies that (wi,qi) = (u4,<?i) = 
1, and so ((wi, w[), qi) = 1. Since (1w, w'1) divides 

w[ — W\ — (uf — u)q\, 

it follows that (wi, tUi) divides u' — u. and so 

1 ^ (wi,w[) ^ u' — u < £. 

Suppose that Qquq2 (m) ^ 4. Then m has at least four distinct representations in 
the form m = wiw2 with w% £ Qi and w2 E Q2l and so m has at least four different 
divisors in Qi, that is, at least four divisors of the form 

T\ + u q i = si + (/ii + w)<2i 

with 0 ^ u < £. At most one of these divisors is s± + /ii#i, and so m has at least 
three different divisors, which we shall denote by wi,w[, and w", such that 

mm{wiJw'11w
,i} ^ s i + (/ii + l)g x > (/ii + l h i ^ € 5 . 

Let [wi,t^j, w'i] denote the least common multiple of w\, w[, and w'{. Since each of 
these three numbers is a divisor of m, we have 

m ^ [wi,w[,w"] ^ 
w1w1'w1'' 

(w1,w'1)(w1,w'1)(w1,w'1)(w1,w'1) 

> 
(hi + l)gi 

£ 

3 (fu + i)gi 
l3 (hi +1)2qe1 

> l3 (hi + \)qi 
2 

^ £(/ii + l)gi • £(h2 + l )g 2 ^ u?i^2 = m, 

which is impossible. This proves (10), and inequalities (6) and (7) follow immediately. 
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Lemma 4. — Let Q be an arithmetic progression of length £ ̂  2, and let m E Q2. 
Then 

( H ) QQ(m) < s I
e 

for every e > 0, and 

(12) 
meQ2 

QQ(mf « (£log£)\ 

Proof. This follows immediately from Lemma 3 with Q1=Q2 = Q. 

Lemma 5. — Let Q\ and Q2 be arithmetic progressions of length £^2. Then 

|Q1 Q2|> 
£ 

log*. 

2 

Proof. Let Qquq2 (m) denote the number of representations of m in the form m = qiq2l 

where q± G Qi and q2 E Q2. By the Cauchy-Schwarz inequality and inequality (7) of 
Lemma 3, 

l2 = 
meQiQ2 

QQi&2\m) ^ IQ1Q2I 
1 /2 

m£QiQ2 

QQuQ2(m)2) 

1/2 

| Q i Q 2 | 1 / 2 * l o g £ . 

Therefore, 

IQ1Q2I » 
£ 

loge 

2 

This completes the proof. 

Lemma 6. — Let Q be an arithmetic progression of length £^2. Then 

\Q2\ » 
£ 

\og£> 

2 

Proof. This follows immediately from Lemma 5 with Q\ = Q2 = Q. 

3. Application of some inverse theorems 

We shall use the following two inverse theorems of Freiman. 

Lemma 7 (Freiman). — Let A be a nonempty set of k positive integers. If 

\2A\ <C 3k - 4, 

then A is a subset of an arithmetic progression of length £ <2k. 

Proof. See [5, 7, 10, 12]. 
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Lemma 8 (Freiman). — Let A\ and A2 be nonempty finite sets of positive integers, 
and let \AA = ki for ¿ = 1,2. / / 

\AX + A2\ ^ fci + &2 + min{&i,&2} - 4 , 

then A\ and A2 are subsets of arithmetic progressions Q\ and Q2, respectively, where 
Qi and Q2 have the same difference and the same length £ < k\ + k2. 

Proof See [6, 9, 12, 15]. 

Theorem 1. — Let A be a finite set of positive integers, and let \ A\ = k ^ 2. If 

\2A\ <C 3k - 4, 

then 

| A 2 | > 
k 

log k 

2 

Proof By Lemma 7, if \2A\ ^ 3k — 4, then there exists an arithmetic progression Q 
of length £ <2k such that ACQ. Since 

gA(m) ^ QQ(m), 

it follows from (12) that 

k2 

= 
meA2 

QA{m) ^ \A2\X'2 

m Z A2 

QA{m) 
2 V / 2 

m E a2 M 2 . 1 / 2 

m € Q 2 

q Q (m)2 
1/2 

<< | A 2 | 1 / 2 * l o g * <C U 2 | 1 / 2fclogJfe. 

Therefore, 

(13) \A2\ » 
K 

logfc 
2 

This completes the proof. 

Theorem 2. — Let A ̂  1. Let A\ and A2 be finite sets of positive integers such that 
\AA = h ^ 2 for i = 1,2 and 

(14) 
1 

A 
<< 

fc2 

k1 
^ A. 

If 

l-^i + M\<<k1+k2 + min{fci,fc2} - 4, 

then 

\AiA2\ > A 
k1 k2 

log(fcifc2) 
2 • 
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Proof. It follows from (14) that 

(fci + k2f < (1 + A) fcj = (1 + A) 2 Afci(fci /A) < (1 + XyXk^ 

and so 

k1 + k2 <<y (k1 k2)1/2 

By Lemma 8, if |AiH-A2| ^ &i4-&2+niin{&i5 fc2} —4, there exist arithmetic progressions 
<2i and Q 2 , each of length I < k\ + k2l such that Ai Ç Q\ and A 2 C Q 2 - Since 

0 A I , A 2 ( m ) ^ QQliQ2{m), 

it follows from (7) that 

k1 k2 = 
m^A\A2 

QA1,A2(m) 

<< ÌAM1'2 

meAi A2 

QAX,A2 (m)2 

1/2 

<< |A1 a2|1/2 

m 6 Q i Q 2 

qQ1, q2 (m)2 
1 /2 

<< |A1 A2|1/2 l log <<|A1 A2| 1/2 (fci + Aa) log(*i + As) 

Therefore, 

(15) l ^ l ^ l > A 
k\ k2 

log(fcifc2) 
2 * 

This completes the proof. 

Theorem 3. — Let A\ and A2 be finite sets of positive integers such that \AA = 
\A2\ = k^2. If 

\A1+A2\ ^ 3 f c - 4 , 

then 

\AiA2\ » 
k 

logfc 

2 

Proof. This follows immediately from Theorem 2 with k\ — k2 — k and A = 1. 

4. Open problems 

By Theorem 1, if \A\ = k and |2A| < 3k - 4, then |A 2 | » k2~£. This gives the first 
general case in which we know that the conjecture of Erdôs and Szemeredi is true. It 
would be nice to prove that if c ̂  3 and if A is a finite set of k positive integers such 
that 

(16) \2A\ ^ ck, 
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then 

\A2\ » c , e k2~s. 

By a general inverse theorem of Freiman [7, 12, 13], a finite set of integers whose 
sumset satisfies inequality (16) is a "large" subset of what is called an n-dimensional 
arithmetic progression. This is a set Q with the following structure: For n ^ 1, there 
exist positive integers r, q\,..., qnj £\,..., £n such that 

(17) Q = {r + uiqi + • • • + unqn : 0 ^ Ui < U for i — 1 , . . . , n} . 

The length of Q is defined as £{Q) = £\ • • -£n. Clearly, 

IQI < t(Q) 

for every n-dimensional arithmetic progression. Freiman's inverse theorem 
should be applicable to the Erdôs-Szemerédi conjecture for sets satisfying the ad­
ditive condition (16). 

Let Q be an n-dimensional arithmetic progression of the form (17). If j is such 
that £j = max{£i : i = 1 , . . . , n} in (17), then 

Q D Qj = {r + Ujqj : 0 ^ uj < £j}. 

It follows from Lemma 6 that 

(18) \Q2\ > \Q)\ » 
lj 

log lj 

2 

The following example shows that this inequality is almost best possible. Fix n ^ 2. 
For £ ^ 2, consider the n-dimensional arithmetic progression Q with r = 1, qi = i 
and £i = £ for i = 1 , . . . , n. Then 

Û = {1 + J2" im : 0 ^ m < £} Ç l , l + | n ( n + ! ) ( £ - ! ) Ç [ l ,n^J . 

We apply the lower bound (18) with £ = max{£* : i = 1 , . . . , n} , and we apply the 
upper bound (1) with k = n2£. For sufficiently large £ we obtain 

£ 

Aog£ 

2 
<C \Q2\ <C 

k2 

(log A:)6» 
<< 

€ 2 

( log£) £ o 

where £q is defined by (2). Since £{Q) — £n, it is clearly not true that 

\Q2\ » „ , e e(Q)2~e. 

It would be interesting to obtain sufficient conditions for an n-dimensional arithmetic 
progression Q to satisfy 

\Q2\ » n , e \Q\2'e-

Let A be a set of k positive integers. For h ^ 3, let £^(A) denote the set of all 
numbers that can be written as the sum or product of h elements of A. Erdos and 
Szemeredi f4] also conjectured that 

\Eh(A)\ » , kh~e 

for all e > 0. Nothing is known about this. 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 1999 



204 M . B . N A T H A N S O N & G. T E N E N B A U M 

References 

[1] Barban M. B. and Vehov P. P., Summation of multiplicative functions of polynomials (in 
Russian), Mat. Zametki, 5(6):669-680, 1969. English translation: Math. Notes Acad. 
Sci. USSR, 5, 1969, 400-407. 

[2] Erdos P., An asymptotic inequality in the theory of numbers (in Russian), Vestnik 
Leningrad Univ., Serija Mat. Mekh. i Astr., 15(13) , 1960, 41-49. 

[3] Erdös P., Problems and results on combinatorial number theory III, In M. B. Nathanson, 
editor, Number Theory Day, New York 1976, volume 626 of Lecture Notes in Mathe­
matics, Berlin, Springer-Verlag, 1977, 43-72. 

[4] Erdös P. and Szemeredi E., On sums and products of integers, In P. Erdös, L. Alpár, 
G. Halâsz, and A. Sârkôzy, editors, Studies in Pure Mathematics, To the Memory of 
Paul Turân, Birkhäuser Verlag, Basel, 1983, 213-218. 

[5] Freiman G. A., On the addition of finite sets. I, Izv. Vysh. Zaved. Matematika, 13(6) , 
1959, 202-213. 

[6] Freiman G. A., Inverse problems of additive number theory. VI on the addition of finite 
sets. Ill Izv. Vysh. Ucheb. Zaved. Matematika, 28(3) , 1962, 151-157. 

[7] Freiman G. A., Foundations of a Structural Theory of Set Addition, volume 37 of Trans­
lations of Mathematical Monographs, American Mathematical Society, Providence, 
1973. 

[8] Hall R. R. and Tenenbaum G., Divisors, Number 90 in Cambridge Tracts in Mathe­
matics. Cambridge University Press, Cambridge, 1988. 

[9] Lev V. F. and Smeliansky P. Y., On addition of two different sets of integers, Preprint, 
1994. 

[10] Nathanson M. B., The simplest inverse problems in additive number theory, In 
A. Pollington and W. Moran, editors, Number Theory with an Emphasis on the M ark off 
Spectrum, Marcel Dekker, 1993, 191-206. 

[11] Nathanson M. B., On sums and products of integers, submitted, 1994. 
[12] Nathanson M. B., Additive Number Theory: 2. Inverse Theorems and the Geometry of 

Sumsets, Graduate Texts in Mathematics. Springer-Verlag, New York, 1995, to appear. 
[13] Ruzsa I. Z., Generalized arithmetic progressions and sumsets, to appear. 
[14] Shiu P., A Brun-Titchmarsh theorem for multiplicative functions, J. reine angew. Math., 

313, 1980, 161-170. 
[15] Steinig J., On G. A. Freiman's theorems concerning the sum of two finite sets of integers, 

In Conference on the Structure Theory of Set Addition, CIRM, Marseille, 1993, 173-186. 
[16] Tenenbaum G., Sur la probabilité qu'un entier possède un diviseur dans un intervalle 

donné, In Séminaire de Théorie des Nombres, Paris 1981-1982, volume 38 of Progress 
in Math., Birkhäuser, Boston, 1983, 303-312. 

[17] Tenenbaum G., Sur la probabilité qu'un entier possède un diviseur dans un intervalle 
donné, Compositio Math., 51, 1984, 243-263. 

[18] Vinogradov A. I. and Linnik Yu. V., Estimate of the sum of the number of divisors 
in a short segment of an arithmetic progression, Uspekhi Mat. Nauk (N.S.), 12, 1957, 
277-280. 

M.B. NATHANSON, Department of Mathematics, Lehman College (CUNY), Bronx, New York 10468, 
USA • E-mail : nathansn®dimacs .rutgers .edu 

G . TENENBAUM, Institut Élie Cartan, Université Henri-Poincaré-Nancy 1, 54506 Vandœuvre lés 
Nancy Cedex, France • E-mail : tenenbQciril.fr 

A S T É R I S Q U E 258 

http://tenenbQciril.fr

