EDITH LIPKIN
 Subset sums of sets of residues

Astérisque, tome 258 (1999), p. 187-193
http://www.numdam.org/item?id=AST_1999__258_187_0
© Société mathématique de France, 1999, tous droits réservés.
L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

Astérisque 258, 1999, p. 187-193

SUBSET SUMS OF SETS OF RESIDUES

$b y$

Edith Lipkin

Dedicated to Grisha Freiman, with respect and affection

Abstract

The number m is called the critical number of a finite abelian group G, if it is the minimal natural number with the property: for every subset A of G with $|A| \geq m, 0 \notin A$, the set of subset sums A^{*} of A is equal to G. In this paper, we prove the conjecture of G. Diderrich about the value of the critical number of the group G, in the case $G=\mathbb{Z}_{q}$, for sufficiently large q.

Let G be a finite Abelian group, $A \subset G$ such that $0 \notin A$. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{|A|}\right\}$, where $|A|=\operatorname{card} A$.

Let

$$
A^{*}:=\left\{x\left|x=a_{1} \varepsilon_{1}+a_{2} \varepsilon_{2}+\cdots+\varepsilon_{|A|} a_{|A|}, \quad \varepsilon_{j} \in\{0,1\}, 1 \leq j \leq|A|, \quad \sum_{j=1}^{|A|} \varepsilon_{j}>0\right\}\right.
$$

and

$$
X:=\left\{m \in \mathbf{N}\left|\forall A \subset G,|A| \geq m \Rightarrow A^{*}=G\right\}\right.
$$

Since $|G|-1 \in X$, then $X \neq \varnothing$ if $|G|>2$. The number

$$
c(G)=\min _{m \in X} m
$$

was introduced by George T. Diderrich in [1] and called the critical number of the group G.

In this note we study the magnitude of $c(G)$ in the case $G=\mathbb{Z}_{q}$, where \mathbb{Z}_{q} is a group of residue classes modulo q. We set $c(q):=c\left(\mathbb{Z}_{q}\right)$. A survey of the problem was given by G.T. Diderrich and H.B. Mann in [2].

In the case when q is a prime number John Olson [3] proved that

$$
c(q) \leq \sqrt{4 q-3}+1
$$

1991 Mathematics Subject Classification. - 11 P99, 05 D99.
Key words and phrases. - Subset sum, residue.

Recently J.A. Dias da Silva and Y.O. Hamidoune [4] have found the exact value of $c(q)$ for which an estimate

$$
2 q^{1 / 2}-2<c(q)<2 q^{1 / 2}
$$

is valid.
If $q=p_{1} p_{2}, p_{1} \geq p_{2}, p_{1}, p_{2}$ - prime numbers, then

$$
p_{1}+p_{2}-2 \leq c(G) \leq p_{1}+p_{2}-1
$$

as was proved by Diderrich [1].
It was proved in [2] that for $q=2 \ell, \ell>1$

$$
\begin{gathered}
c(G)=\ell \text { if } \ell \geq 5 \text { or } q=8 \\
c(G)=\ell+1 \text { in all other cases. }
\end{gathered}
$$

Thus, to give thorough solution for $G=\mathbb{Z}_{q}$ we have to find $c(q)$ when q is a product of no less than three prime odd numbers.
G. Diderrich in [1] has formulated the following conjecture:

Let G be an Abelian group of odd order $|G|=p h$ where p is the least prime divisor of $|G|$ and h is a composite number. Then

$$
c(G)=p+h-2
$$

We prove here this conjecture for the case $G=\mathbb{Z}_{q}$ for sufficiently large q.
Theorem 1. - There exists a positive integer q_{0} that if $q>q_{0}$ and $q=p h, p>2$, where p is the least prime divisor of q and h is a composite number, we have

$$
c(q)=p+h-2
$$

To prove Theorem 1 we need the following results.
Lemma 1. - Let $A=\left\{a_{1}, a_{2}, \ldots, a_{|A|}\right\} \subset N, N=\{1,2, \ldots, \ell\}, S(A)=\sum_{i=1}^{|A|} a_{i}$, $A(g)=\{x \in A \mid x \equiv 0(\bmod g)\}, \quad B(A)=\frac{1}{2}\left(\sum_{i=1}^{|A|} a_{i}^{2}\right)^{1 / 2}$. Suppose that for some $\varepsilon>0$ and $\ell>\ell_{1}(\varepsilon)$ we have $|A| \geq \ell^{2 / 3+\varepsilon}$ and

$$
\begin{equation*}
|A(g)| \leq|A|-\ell^{\frac{2}{3}+\frac{\varepsilon}{2}} \tag{1}
\end{equation*}
$$

for every $g \geq 2$. Then for every M for which

$$
\left|M-\frac{1}{2} S(A)\right| \leq B(A)
$$

we have $M \subset A^{*}$.
Lemma 2. - Let ε be a constant, $0<\varepsilon \leq 1 / 3$. There exists $\ell_{0}=\ell_{0}(\varepsilon)$ such that for every $\ell \geq \ell_{0}$ and every set of integers $A \subset[1, \ell]$, for which

$$
\begin{equation*}
|A| \geq \ell^{\frac{2}{3}+\varepsilon} \tag{2}
\end{equation*}
$$

the set A^{*} contains an arithmetic progression of ℓ elements and difference d satisfying the condition

$$
\begin{equation*}
d<\frac{2 \ell}{|A|} \tag{3}
\end{equation*}
$$

We cited as Lemma 1 the Proposition 1.3 on page 298 of [5].
Proof of Lemma 2. - Let us first assume that A fulfills the condition (1) in Lemma 1. Since we have

$$
B(A) \geq \frac{1}{2} \sqrt{\sum_{i=1}^{|A|} i^{2}}>\frac{1}{2} \sqrt{\frac{|A|^{3}}{3}}>\frac{1}{2 \sqrt{3}} \ell^{1+\frac{3}{2} \varepsilon}
$$

and every M from the interval $\left(\frac{1}{2} S(A)-B(A), \frac{1}{2} S(A)+B(A)\right)$ belong to A^{*}, there exists an arithmetic progression in A^{*} of the length $2 B(A)>\ell$, if $\ell>\ell_{0}=\ell_{1}(\varepsilon)$.

Now we study the case when A does not satisfy (1). We can then find an integer $g_{1} \geq 2$ such that $B_{1} \subset A=A_{0}$ and B_{1} contains those elements of A_{0} which are divisible by g_{1} and for the set $A_{1}=\left\{x / g_{1} \mid x \in B_{1}\right.$ and $\left.x \equiv 0\left(\bmod g_{1}\right)\right\}$ we have

$$
\left|A_{1}\right|>\left|A_{0}\right|-\ell^{\frac{2}{3}+\frac{\varepsilon}{2}}
$$

Suppose that this process was repeated s times and numbers $g_{1}, g_{2}, \ldots, g_{s}$ were found and sets $A_{1}, A_{2}, \ldots, A_{s}$ defined inductively, B_{j} being a subset of A_{j-1} containing those elements of A_{j-1} which are divisible by g_{j} and

$$
A_{j}=\left\{x / g_{j} \mid x \in B_{j} \text { and } x \equiv 0\left(\bmod g_{j}\right)\right\}
$$

so that we have

$$
\left|A_{j}\right|>\left|A_{j-1}\right|-\ell^{\frac{2}{3}+\frac{\epsilon}{2}}, \quad j=1,2, \ldots, s
$$

From

$$
\left|A_{s}\right| \geq\left|A_{s-1}\right|-\ell^{\frac{2}{3}+\frac{\varepsilon}{2}}>|A|-s \ell^{\frac{2}{3}+\frac{\varepsilon}{2}}
$$

and

$$
\ell_{s}=\left[\frac{\ell_{s-1}}{q_{s}}\right] \leq \frac{\ell}{2^{s}}
$$

it follows that

$$
\begin{equation*}
\left|A_{s}\right| \geq \frac{1}{2}|A| \geq \frac{1}{2} \ell^{\frac{2}{3}+\frac{\varepsilon}{2}}>\ell_{s}^{\frac{2}{3}+\varepsilon} \tag{4}
\end{equation*}
$$

The condition (2) of Lemma 2 for A_{s} is verified, for some sufficiently large s the condition (3) is fulfilled and thus A_{s}^{*} contains an interval

$$
\left(\frac{1}{2} S\left(A_{s}\right)-B\left(A_{s}\right), \frac{1}{2} S\left(A_{s}\right)+B\left(A_{s}\right)\right)
$$

We have, in view of (4),

$$
\begin{align*}
B\left(A_{s}\right) & \geq \frac{1}{2} \sqrt{\sum_{i=1}^{\left|A_{s}\right|} i^{2}}>\frac{1}{2} \sqrt{\frac{\left|A_{s}\right|^{3}}{3}} \\
& \geq \frac{1}{4 \sqrt{6}} \ell^{1+\frac{3}{2} \varepsilon}>\ell \tag{5}
\end{align*}
$$

We have shown that A_{s}^{*} contains an arithmetic progression of length ℓ and difference $d=g_{1} g_{2} \cdots g_{s}$, and thus A^{*} has the same property.

We now prove (2). From

$$
\ell_{s}=\left[\frac{\ell}{d}\right], \quad \ell_{s} \geq\left|A_{s}\right| \geq \frac{1}{2}|A|
$$

we have

$$
\left[\frac{\ell}{d}\right] \geq \frac{1}{2}|A|
$$

or

$$
d \leq \frac{2 \ell}{|A|}
$$

Lemma 2 is proved.
Lemma 3 (M. Chaimovich [6]). - Let $B=\left\{b_{i}\right\}$ be a multiset, $B \subset \mathbb{Z}_{q}$. Suppose that for every $s \geq 2$, s dividing q, we have

$$
\begin{equation*}
|B \backslash B(s)| \geq s-1 \tag{6}
\end{equation*}
$$

There exists $F \subset B$ for which

$$
\begin{gathered}
|F| \leq q-1 \\
F^{*}=\mathbb{Z}_{q}
\end{gathered}
$$

Proof of Theorem 1. - Let $q=p_{1} p_{2} \cdots p_{k}, k \geq 4, p=p_{1} \leq p_{2} \leq \cdots \leq p_{k}$. We have

$$
\begin{equation*}
p^{k} \leq q \Rightarrow p \leq q^{1 / 4} \tag{7}
\end{equation*}
$$

Let $A \subset \mathbb{Z}_{q}$ be such that $0 \notin A$ and

$$
\begin{equation*}
|A| \geq \frac{q}{p}+p-2 \tag{8}
\end{equation*}
$$

we have to prove that $A^{*}=\mathbb{Z}_{p}$.
From (7) and (8) we get

$$
\begin{equation*}
|A|>\frac{q}{p} \geq q^{3 / 4} \tag{9}
\end{equation*}
$$

Let us consider some divisor d of q, and denote by A_{d} a multiset A viewed as a multiset of residues mod d. Let us show that for every δ dividing d the number of residues in A_{d} which are not divisible by δ satisfies the condition of Lemma 3.

The number of residues in \mathbb{Z}_{q} which are divisible by δ is equal to q / δ. Therefore the number of such residues in A (which are all different) is not larger than $q / \delta-1$, because $0 \notin A$.

From this reasoning and from (7) we get the estimate

$$
\begin{align*}
& \left|A_{d} \backslash A(\delta)\right| \geq|A|-\left(\frac{q}{\delta}-1\right) \geq \\
& \frac{q}{p}+p-2-\frac{q}{\delta}+1=\frac{q}{p}+p-\left(\frac{q}{\delta}+\delta\right)+\delta-1 \tag{10}
\end{align*}
$$

The function $x+q / x$ is decreasing on the segment $[1, \sqrt{q}]$.

The least divisor of q is equal to p, and the maximal one to q / p. Therefore

$$
p \leq \delta \leq \frac{q}{p}
$$

If $p \leq \delta \leq \sqrt{q}$, we have

$$
\begin{equation*}
\frac{q}{p}+p \geq \frac{q}{\delta}+\delta \tag{11}
\end{equation*}
$$

In the case $\sqrt{q} \leq \delta \leq \frac{q}{p}$, let $\rho=\frac{q}{\delta}$. Then $\delta=\frac{a}{\rho}, \sqrt{q} \leq \frac{q}{\rho} \leq \frac{q}{p}$ and $p \leq \rho \leq \sqrt{q}$ and we have

$$
\begin{equation*}
\frac{q}{p}+p \geq \frac{q}{\rho}+\rho=\delta+\frac{q}{\delta} \tag{12}
\end{equation*}
$$

From (11) and (12) it follows from (10) that we have

$$
\begin{equation*}
\left|A_{d} \backslash A(\delta)\right| \geq \delta-1 \tag{13}
\end{equation*}
$$

Let us apply the Lemma 3 to A_{d}. Condition (13) is condition (6) of Lemma 3. Therefore there exists $F_{d} \subset A_{d}$ such that $\left|F_{d}\right| \leq d-1$ and $F_{d}^{*}=\mathbb{Z}_{d}$.

Viewing F_{d} as a set of residues $\bmod q$, let

$$
A^{\prime}=\bigcup_{\substack{d / q \\ p \leq d<q^{1 / 3}}} F_{d}
$$

It is well known that the number of divisors $d(q)=O\left(q^{\varepsilon}\right)$ for every $\varepsilon>0$ so that

$$
\left|A^{\prime}\right|<q^{\frac{1}{3}+\varepsilon}
$$

for sufficiently large q.
Take now $A^{\prime \prime}=A \backslash A^{\prime}$. Take the least positive integer from each class of residues of the set $A^{\prime \prime}$ and denote this set by $\widehat{A}^{\prime \prime}$. We have $\widehat{A}^{\prime \prime} \subset[1, q-1]$. We set $\ell=q$ and see that all conditions of Lemma 1 are valid for $\widehat{A}^{\prime \prime}$. Thus, $\left(\widehat{A}^{\prime \prime}\right)^{*}$ contains an arithmetic progression \mathcal{L} with a length q and a difference Δ such that

$$
\begin{equation*}
\Delta<\frac{2 q}{q^{\frac{3}{4}}}=2 q^{1 / 4} \tag{14}
\end{equation*}
$$

If $(\Delta, q)=1$ then $\left(A^{\prime \prime}\right)^{*}=\mathbb{Z}_{q}$. Suppose that $D=(\Delta, q)>1$. Then \mathcal{L} (and therefore $\left(\widehat{A}^{\prime \prime}\right)^{*}$ which contains \mathcal{L}) contains the residues of \mathbb{Z}_{q} which are divisible by D. If \mathbb{Z}_{D} is a system of residues mod q representing a system of all residues mod D / q, then $\left(\widehat{A}^{\prime \prime}\right)^{*}+\mathbb{Z}_{D}=\mathbb{Z}_{q}$. But $F_{D} \subset A^{\prime}$ and $F_{D}^{*}=\mathbb{Z}_{D}$. Thus

$$
A^{*} \supset\left(\widehat{A}^{\prime \prime}\right)^{*}+\left(A^{\prime}\right)^{*}=\mathbb{Z}_{q}
$$

Theorem 1 is proved in the case $k \geq 4$.
Now we have to study the case when q is a product of three primes. Let $q=p_{1} p_{2} p_{3}$, $p=p_{1} \leq p_{2} \leq p_{3}$. Suppose that for some positive ε we have $p<p^{\frac{1}{3+\varepsilon}}$. The proof may be completed in a similar way to what was done.

In the general case we can use a stronger result than Lemma 2. Namely, the formulation of Lemma 2 is valid if in (2) we replace the number $2 / 3$ in the exponent by $1 / 2$ (see G. Freiman [7] and A. Sárkőzy [8]). So, in the case of q being a product of three primes, we can use this stronger version and prove Theorem 1.

As we have seen, the version of Lemma 1 with the exponent $2 / 3$ was sufficient in the majority of cases. It is preferable to use this version, for its proof is much simpler than the case $1 / 2$. Secondly, in the case $2 / 3$ estimates of error terms have been obtained explicitly by M. Chaimovich. It provides us with the possibility to get an explicit range of validity for Theorem 1.

Lemma 4. - Define a function of ℓ in the following manner:

$$
\begin{equation*}
m_{0}(\ell)=\left(\frac{12}{\pi^{2}}\right)^{1 / 3} \ell^{2 / 3}(\log \ell+1 / 6)^{1 / 3}\left(2-\frac{4 \gamma}{3}\right)^{1 / 3} \tag{15}
\end{equation*}
$$

where $\gamma=\left(\frac{12}{\pi^{2}} \frac{\log \ell+1 / 6}{\ell}\right)^{1 / 3}$.
Then for $\ell>155$ a subset sum of each subset $A \subset\{1,2, \ldots, \ell\}$ with $|A|=m>m_{0}(\ell)$ contains an arithmetic progression of cardinality ℓ.

Simplifying (15) we can take

$$
m_{0}(\ell)=1.3 \ell^{2 / 3}(\log \ell+1 / 6)^{1 / 3}
$$

In the case of four or more primes in a representation of q we have to verify an inequality

$$
\begin{equation*}
\ell^{3 / 4}>1.3 \ell^{2 / 3}(\log \ell+1 / 6)^{1 / 3} \tag{16}
\end{equation*}
$$

which is fulfilled for

$$
\ell \geq 3000
$$

In some special cases we can give better estimates. For example, if $p=3$ we have $m>q / 3$ and instead of (16) we have

$$
\begin{gathered}
\ell / 3>1.3 \ell^{2 / 3}(\log \ell+1 / 6)^{1 / 3} \\
\quad \ell>64(\log \ell+1 / 6)
\end{gathered}
$$

which is valid for

$$
\ell \geq 500
$$

References

[1] Diderrich G. T., An addition theorem for Abelian groups of order pq, Journal of Number Theory, 7, 1975, 33-48.
[2] Diderrich G. T., Mann H. B., Combinatorial problems in finite Abelian groups, J.N.Srivastava et al., eds., A Survey of Combinatorial Theory. North-Holland Publishing Company, 1973, 95-100.
[3] Olson J. E., An addition theorem modulo p, Journal of Combinatorial Theory, 5, 1968, 45-52.
[4] Dias da Silva J.A., Hamidoune Y.O., Cyclic spaces for Grassman derivatives and additive theory, Bull London. Math. Soc., 26, 1994, 140-146.
[5] Alon N., Freiman G. A., On sums of subsets of a set of integers, Combinatorica, 8(4), 1988, 297-306.
[6] Chaimovich M., Solving a value-independent knapsack problem with the use of methods of additive number theory, Congressus Numerantium, 72, 1990, 115-123.
[7] Freiman G.A., New analytical results in subset-sum problem, Discrete Mathematics, 114, 1993, 205-218.
[8] Sárkőzy A., Finite addition theorems, II. J. Number Theory, 48(2), 1994, 197-218.
E. Lipkin, School of Mathematical Sciences, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel-Aviv, Israel

