Astérisque

JEAN-MARC DESHOUILLERS GREGORY A. FREIMAN

On an additive problem of Erdős and Straus, 2

Astérisque, tome 258 (1999), p. 141-148

http://www.numdam.org/item?id=AST_1999__258__141_0

© Société mathématique de France, 1999, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ON AN ADDITIVE PROBLEM OF ERDŐS AND STRAUS, 2

by

Jean-Marc Deshouillers & Gregory A. Freiman

Abstract. — We denote by $s^{\wedge}A$ the set of integers which can be written as a sum of s pairwise distinct elements from A. The set A is called admissible if and only if $s \neq t$ implies that $s^{\wedge}A$ and $t^{\wedge}A$ have no element in common.

P. Erdős conjectured that an admissible set included in [1, N] has a maximal cardinality when A consists of consecutive integers located at the upper end of the interval [1, N]. The object of this paper is to give a proof of Erdős' conjecture, for sufficiently large N.

Let \mathcal{A} be a set of positive integers having the property that each time an integer n can be written as a sum of distinct elements of \mathcal{A} , the number of summands is well defined, in that the integer n cannot be written as a sum of distinct elements of \mathcal{A} with a different number of summands. This notion has been introduced by P. Erdős in 1962 (cf. [2]) and called **admissibility** by E.G. Straus in 1966 (cf. [5]). In other words, if we denote by $s^{\wedge}\mathcal{A}$ the set of integers which can be written as a sum of s pairwise distinct elements from \mathcal{A} then \mathcal{A} is **admissible** if and only if $s \neq t$ implies that $s^{\wedge}\mathcal{A}$ and $t^{\wedge}\mathcal{A}$ have no element in common.

Erdős conjectured that an admissible subset \mathcal{A} included in [1, N] has a cardinality which is maximal when \mathcal{A} consists of consecutive integers located at the upper end of the interval [1, N]. As it was computed by E.G. Straus, the set

$${N-k+1, N-k+2, \ldots, N}$$

is admissible if and only if $k \leq 2\sqrt{N+1/4}-1$.

Straus himself proved that \sqrt{N} is the right order of magnitude for the cardinality of a maximal admissible subset from [1, N]. More precisely, he proved the inequality $|\mathcal{A}| \leq (4/\sqrt{3} + o(1))\sqrt{N}$. The constant involved has been slightly reduced by P. Erdős, J-L. Nicolas and A. Sárkőzy (cf. [3]) and we proved (cf. [1]) the inequality

¹⁹⁹¹ Mathematics Subject Classification. — 11 P99, 05 D05. Key words and phrases. — Admissible sets, arithmetic progressions.

J.-M. D.: Cette recherche a bénéficié du soutien du CNRS (UMR 9936, Université Bordeaux 1) et de l'Université Victor Segalen Bordeaux 2.

 $|\mathcal{A}| \leq (2 + o(1))\sqrt{N}$. The object of this paper is to give a proof of Erdős conjecture, at least when N is sufficiently large.

Theorem 1. — There exists an integer N_0 , effectively computable, such that for any integer $N \ge N_0$ and any admissible subset $A \subset [1, N]$ we have

Card
$$\mathcal{A} \leq 2\sqrt{N+1/4} - 1$$
.

The proof is based on the description of the structure of large admissible sets we obtained previously, namely:

Theorem 2 (J-M. Deshouillers, G.A. Freiman [1]). — Let \mathcal{A} be an admissible set included in [1, N], such that $\operatorname{Card} \mathcal{A} > 1.96\sqrt{N}$. If N is large enough, there exist $\mathcal{C} \subset \mathcal{A}$ and an integer q having the following properties:

- (i) Card $C \leq 10^5 N^{5/12}$
- (ii) for some t the set $t^{\wedge}C$ contains at least $3N^{5/6}$ terms in an arithmetic progression modulo q.
- (iii) $A \setminus C$ is included in an arithmetic progression modulo q containing at most $N^{7/12}$ terms.

Although we do not develop this point, it will be clear from the proof that our arguments may be used to describe the structure of maximal admissible subsets of [1, N], leading for example to the fact that when N has the shape n^2 or $n^2 + n$ (and n sufficiently large), the Erdős - Straus example is the only maximal subset of [1, N].

1. We first establish a lemma expressing the fact that if a set of integers \mathcal{D} is part of a finite arithmetic progression with few missing elements, then the same is locally true for $s^{\wedge}\mathcal{D}$.

Proposition 1. — Let us consider integers r, s, t and a, q such that $t \geq 2s - q$, $s \geq 4r + 3 + q$ and $0 \leq a < q$.

Let further $\mathcal{D} = \{d_1 < d_2 < \cdots < d_t\}$ be a set of t distinct integers congruent to a modulo q such that $d_t - d_1 = (t - 1 + r)q$, and denote by m (resp. M) the smallest (resp. largest) element in $s^{\wedge}\mathcal{D}$. Then, among 2r + 1 consecutive integers congruent to sa modulo q and laying in the interval [m, M], at least r + 1 belong to $s^{\wedge}\mathcal{D}$.

Proof. — We treat the special case when a = 0, q = 1 and \mathcal{D} is included in [1, t]. We notice that the general case reduces to this one by writing $d_l = d_1 + q(\delta_l - 1)$ and considering the set $\{\delta_1, \ldots, \delta_t\}$.

Let x be an integer in $s^{\wedge}\mathcal{D} \cap [m, (m+M)/2]$. We first show that the interval [x, x+3r] contains at least 2r+1 elements from $s^{\wedge}\mathcal{D}$. Since x is in $s^{\wedge}\mathcal{D}$, we can find $d(1) < \cdots < d(s)$, elements in \mathcal{D} , the sum of which is x.

Let us show that d(1) is less than t - s - 3r. On the one hand we have

$$m+M \le (r+1)+\cdots+(r+s)+(t+r-s+1)+\cdots+(t+r)=\frac{s}{2}(2t+4r+2),$$

and on the other hand we have

$$x \ge d(1) + (d(1) + 1) + \dots + (d(1) + s - 1) = \frac{s}{2}(2d(1) + s - 1).$$

The inequality $x \leq (m+M)/2$ implies that we have

$$2d(1) + s - 1 \le t + 2r + 1,$$

whence

$$2d(1) < 2(t-s-3r) - (t-s-4r-2),$$

and we notice that t-s-4r-2 is positive, by the assumptions of Proposition 1.

Since d(1) is less than t-s-3r, the interval [d(1), t+r] contains at least s+4r+1 integers. We denote by $i_1 < \cdots < i_l$ the indexes of those d's such that $d(i_l+1) - d(i_l) \ge 2$, with the convention that $d(i_l+1) = 3Dt+r+1$ in the case when d(s) < t+r. The set

$$\bigcup_{k=1}^{l}]d(i_k) + 1, d(i_k + 1) - 1[$$

contains at least 4r + 1 integers. We now suppress from those intervals those which contain no element from \mathcal{D} , and we rewrite the remaining ones as

$$|d(j_1) + 1, d(j_1 + 1) - 1[, ...,]d(j_h) + 1, d(j_h + 1) - 1[...]$$

They contain at least 3r + 1 integers, among which at most r are not in \mathcal{D} .

Let us define u_1 to be the largest integer such that $d(j_1) + u_1$ is in \mathcal{D} and is less than $d(j_1 + 1)$, and let us define u_2, \ldots, u_h in a similar way. We consider the integers

$$x = y + d(j_1) + \dots + d(j_h)$$
 (which defines y), $x + 1 = y + d(j_1) + 1 + d(j_2) + \dots + d(j_h)$, \dots $x + u_1 = y + d(j_1) + u_1 + d(j_2) + \dots + d(j_h)$,

$$x + u_1 + \dots + u_h = y + d(j_1) + u_1 + d(j_2) + u_2 + \dots + d(j_h) + u_h.$$

One readily deduces from this construction that the interval

$$[x, x + \min(3r, u_1 + \cdots + u_h)]$$

contains at most r elements which are not in $s^{\wedge}\mathcal{D}$.

What we have proven so far easily implies that any interval [z-r,z] with $m \le z \le (M+m)/2$ contains at least one element in $s^{\wedge}\mathcal{D}$. Let us consider an interval [y,y+2r] with $m \le y \le (M+m)/2$. By what we have just said, the interval [y-r,y] contains an element in $s^{\wedge}\mathcal{D}$, let us call it x. As we have shown the interval [x,x+3r] contains at most r integers not in $s^{\wedge}\mathcal{D}$, so that [y,y+2r] contains at most r integers not in $s^{\wedge}\mathcal{D}$, which is equivalent to say that it contains at least r+1 elements from $s^{\wedge}\mathcal{D}$.

A similar argument taking into account decreasing sequences and starting with M shows that any interval [y-2r,y] with $(m+M)/2 \le y \le M$ contains at least r+1 elements from $s^{\wedge}\mathcal{D}$.

2. We now prove the following result concerning the structure of a large admissible finite set.

Theorem 3. — Let $\mathcal{A} = \{a_1 < \cdots < a_A\}$ be an admissible subset of [1,N] with cardinality $A = 2N^{1/2} + O(N^{5/12})$, and let us define q to be the largest integer such that \mathcal{A} is contained in an arithmetic progression modulo q. We have $q = O(N^{5/12})$ and there exists an integer u in $[N^{11/24}, 2N^{11/24}]$ such that

$$a_{A-u} - a_{u+1} = q(2N^{1/2} + O(N^{11/24})).$$

Proof. — The proof is based on the structure result we quoted in the introduction as Theorem 2. We keep its notation and first show that an integer q satisfying (ii) and (iii) is indeed the largest integer such that \mathcal{A} is contained in an arithmetic progression modulo q. We let \mathcal{B} denote $\mathcal{A} \setminus \mathcal{C}$.

A simple counting argument will show that \mathcal{A} is included in the same arithmetic progression as \mathcal{B} . Otherwise, let us consider an element $a \in \mathcal{A}$ which is not in the same arithmetic progression as \mathcal{B} modulo q. The set $s^{\wedge}\mathcal{A}$ contains the disjoint sets $s^{\wedge}\mathcal{B}$ and $a+(s-1)^{\wedge}\mathcal{B}$. We thus have $|s^{\wedge}\mathcal{A}| \geq |s^{\wedge}\mathcal{B}| + |(s-1)^{\wedge}\mathcal{B}|$. It is well-known (cf. [4] for example) that $|s^{\wedge}\mathcal{B}| \geq s(|\mathcal{B}| - s)$ for $s \leq |\mathcal{B}|$, and since $\mathcal{A} \subset [1, N]$ is admissible we have

$$\begin{array}{lcl} N(|\mathcal{B}|+1) & \geq & \operatorname{Card} \ (\bigcup_s (s^{\wedge}\mathcal{B} \cup (a+(s-1)^{\wedge}\mathcal{B})) \\ & \geq & 2\sum_s |s^{\wedge}\mathcal{B}| \geq 2\sum_s s = 20(|\mathcal{B}|-s) = \frac{1}{3}|\mathcal{B}|^3 + O(N), \end{array}$$

which implies $|\mathcal{B}| \leq (\sqrt{3} + o(1))\sqrt{N}$, so that we have $|\mathcal{A}| = |\mathcal{B}| + |\mathcal{C}| \leq (\sqrt{3} + o(1))\sqrt{N}$, a contradiction.

We have so far proven that q divides $g := gcd(a_2 - a_1, \dots, a_A - a_1)$. Property (ii) implies that q is a multiple of g, so that we have q = g, as we wished to show.

The second step in the proof consists in showing that for $0 < k \le |\mathcal{B}| - q$, any element in $k^{\wedge}\mathcal{B}$ is less than any element in $(k+q)^{\wedge}\mathcal{B}$. Let us call J the $3N^{5/6}$ consecutive terms of the arithmetic progression modulo q, the existence of which is asserted in (ii). Since \mathcal{B} is included in an arithmetic progression modulo q with less that $3N^{5/6}$ terms, the sets $k^{\wedge}\mathcal{B} + J$ and $(k+q)^{\wedge}\mathcal{B} + J$ consists of consecutive terms of arithmetic progressions modulo q, and moreover, they are in the same class modulo q. Since \mathcal{A} is admissible, the sets $k^{\wedge}\mathcal{B} + J$ (included in $(k+t)^{\wedge}\mathcal{A}$) and $(k+q)^{\wedge}\mathcal{B} + J$ (included in $(k+q+t)^{\wedge}\mathcal{A}$) do not intersect. To prove that any element of $k^{\wedge}\mathcal{B}$ is less that any element of $(k+q)^{\wedge}\mathcal{B}$, it is now sufficient to notice that $k^{\wedge}\mathcal{B}$ contains an element (we can consider the smallest element of $k^{\wedge}\mathcal{B}$), which is smaller than some element of $(k+q)^{\wedge}\mathcal{B}$.

We now prove that $q = O(N^{5/12})$. The cardinality of \mathcal{A} and Theorem 2 imply that $|\mathcal{B}| = 2N^{1/2} + O(N^{5/12})$. We choose k so that 2k + q is $|\mathcal{B}|$ or $|\mathcal{B}| - 1$. (We notice that this is always possible since \mathcal{A} contains at least $N^{1/2}$ integers from [1, N] in an arithmetic progression modulo q, so that $q \leq N^{1/2}$). By the second step, the largest element in $k^{\wedge}\mathcal{B}$ is smaller than the largest element in $(k+q)^{\wedge}\mathcal{B}$. Let z be (k+q)-th element from \mathcal{B} , in the increasing order. We have

$$z \leq N - (k-1)q$$

and

$$(z+q) + \cdots + (z+qk) \le z + (z-q) + \cdots + (z-(k+q-1)q)$$
;

by an easy computation, we get

$$(q+2k)^2 < 2N + 2k^2 + 3q,$$

but $2k + q = |\mathcal{B}| + O(1) = |\mathcal{A}| + O(N^{5/12})$, which implies

$$2k^2 \ge 2N(1 + O(N^{-1/12})),$$

so that we have

$$k = N^{1/2} + O(N^{5/12}).$$

We now use again the same argument, being more precise. Let us write $\mathcal{B} = \{b_1 < \cdots < b_{k+q} < b_{k+q+1} < \cdots < b_{2k+q} \leq b_B\}$. We have

$$b_{k+q+1} + \cdots + b_{2k+q} < b_1 \cdots + b_k + b_{k+1} + b_{k+q}$$
.

Let t be any integer in [1, k]. We have

$$b_{k+1} + \dots + b_{k+q} > (b_{2k+q} - b_1) + \dots + (b_{2k+q-t+1} - b_t) + \dots + (b_{k+q+1} - b_k).$$

We clearly have the inequalities

$$\begin{array}{l} b_{k+q+1} - b_k \geq (q+1)q, \\ b_{k+q+2} - b_{k-1} \geq (q+3)q, \\ \dots \\ b_{2k+q-t-1} - b_{t+2} \geq (q+1+2(k-t-2))q, \\ b_{2k+q-t} - b_{t+1} \geq b_{2k+q-t} - b_{t+1}, \\ b_{2k+q-t+1} - b_t \geq (b_{2k+q-t} - b_{t+1}) + 2q, \\ \dots \\ (b_{2k+q} - b_1) \geq (b_{2k+q-t} - b_{t+1}) + 2tq. \end{array}$$

We thus obtain

$$\begin{array}{ll} b_{k+1} + \dots + b_{k+q} & > (t+1)(b_{2k+q-t} - b_{t+1}) \\ & + q \sum_{l=0}^{k-t-2} (q+1+2l) + q \sum_{h=0}^{t} 2h. \end{array}$$

Taking into account that $b_{k+q} \leq N - kq$, a dull computation leads to

$$(t+1)(b_{2k+q-t}-b_{t+1}) \le q(N-k^2+2kt+O(N^{11/12})),$$

when $t = O(N^{11/24})$. This in turn leads to

$$b_{2k+q-t} - b_{t+1} \le q(2k + O(N^{11/24})),$$

when $t = \frac{3}{2}N^{11/24} + O(1)$.

Let C the cardinality of C. Since $A = B \cup C$, we have

$$b_{t+1} \le a_{t+C} \le a_{A+t+C-2k-q+1} \le a_{2k+q-C-t} \le b_{2k+q-t}$$
;

we choose u = A + t + C - 2k - q and recall that $A - 2k - q \le C + 1 = O(N^{5/12})$, so that Theorem 3 is proven.

3. We now embark on the proof of Theorem 1 which will follow from Theorem 3 and Proposition 1. Let \mathcal{A} be an admissible subset of [1, N] with maximal cardinality. By [1], we know that $A = 2\sqrt{N} + O(N^{5/12})$, so we can apply Theorem 3: there exists integers u and r such that

$$a_{A-u} - a_{u+1} = q(A - 2u + r),$$

with $u \in [N^{11/24}, 2N^{11/24}]$ and $r = O(N^{11/24})$.

We let

$$\mathcal{D} := \mathcal{A} \cap [a_{u+1}, a_{A-u}], \quad t := A - 2u, \quad \sigma := [(t-q)/2],$$

and we shall apply Proposition 1 with $s = \sigma$ and $s = \sigma + q$ (one readily checks that the conditions of application of Proposition 1 are fulfilled). Let us further denote by m(s) (resp. M(s)) the smallest (resp. largest) element in $s^{\wedge}\mathcal{D}$.

As a first step, we show that $a_1 + a_2 + \cdots + a_q$ cannot be too small. We have

$$M(\sigma) - m(\sigma) \ge (a_{A-u-\sigma+1} - a_{u+\sigma}) + \dots + (a_{A-u} - a_{u+1})$$

$$\geq q(2+4+\cdots+2(\sigma-1))=q\sigma(\sigma-1)$$

$$= qN + O(qN^{23/24}).$$

If $\alpha_q := a_1 + \cdots + a_q$ were less than $M(\sigma) - m\sigma - (2r+1)q$, the intersection of $[m(\sigma), M(\sigma)]$ and $[m(\sigma) + \alpha_q, M(\sigma) + \alpha_q]$ would be an interval containing at least (2r+1) integers in each class modulo q. By the property of $\sigma^{\wedge}\mathcal{D}$ established in Proposition 1, property obviously shared by $\alpha_q + \sigma^{\wedge}\mathcal{D}$, the pigeon-hole principle would imply that $\sigma^{\wedge}\mathcal{D}$ and $\alpha_q + \sigma^{\wedge}\mathcal{D}$ have an element in common, and this would contradict the admissibility of \mathcal{A} . (We may notice that this implies that a_1 itself is not too small, but we shall not use this fact).

By using the same pigeon-hole argument, we see that the admissibility of A implies

$$M(\sigma) + a_{A-n+1} + \cdots + a_A < m(\sigma + q) + a_1 + \cdots + a_n + (2r-1)q$$

that is to say

$$a_{A-u-\sigma+1} + \cdots + a_{A-u} + \cdots + a_A \le a_1 + \cdots + a_u + a_{u+1} + \cdots + a_{u+\sigma+q} + (2r-1)q$$

whence we deduce

$$(a_A - a_1) + (a_{A-1} - a_2) + \dots + (a_{A-u-\sigma+1} - a_{u+\sigma}) \le a_{u+\sigma+1} + \dots + a_{u+\sigma+g} + (2r-1)q.$$

We have $a_{A-u-\sigma+1}-a_{u+\sigma}\geq q(A-u-\sigma+1-u-\sigma)=q(A-2u-2\sigma+1)$ and, by the definition of σ , we can write

$$A - 2u - 2\sigma = q + \theta$$

where $\theta = 0$ if A - q is even and $\theta = 1$ if A - q is odd. We thus have

$$urq + q(1+q+\theta) + q(3+q+\theta) + \dots + q(2(u+\sigma)-1+q+\theta) \le a_{u+\sigma+1} + \dots + a_{u+\sigma+q} + (2r-1)q.$$

Since $u \geq 2$ and $r \geq 0$, we have

$$q(u+\sigma)(u+\sigma+q+\theta) \leq a_{u+\sigma+1} + \dots + a_{u+\sigma+q} - q \leq N - (A - u - \sigma - 1)q + \dots + N - (A - u - \sigma - q)q - q \leq Nq - Aq^2 + uq^2 + \sigma q^2 + \frac{q^2(q+1)}{2} - q.$$

We now replace $u + \sigma$ by $\frac{A-q-\theta}{2}$, which leads to

$$q\left(\frac{A-q-\theta}{2}\right)\left(\frac{A+q+\theta}{2}\right) \leq Nq-q^2\left(\frac{A+q+\theta}{2}\right) + \frac{q^2(q-1)}{2}.$$

If A - q is even, we get

$$A^2 - q^2 \le 4N - 2Aq - 2q^2 + 2q^2 - 2q,$$

whence

$$A^2 + 2Aq + q^2 \le 4N + 2q^2 - 2q,$$

or

$$(A+q)^2 \le 4N + 2q^2 - 2q.$$

if q = 1, this is $(A + 1)^2 \le 4N$; if $q \ge 2$, we have

$$\begin{array}{lll} (A+1)^2 & \leq & (A+q)^2 - (A+q)^2 + (A+1)^2 \\ & \leq & 4N + 2q^2 - 2q - A^2 - 2Aq - q^2 + A^2 + 2A + 1 \\ & \leq & 4N + 2A(1-q) + (q-1)^2 \\ & \leq & 4N - (q-1)(2A-q+1) \leq 4N. \end{array}$$

If A - q is odd, we get

$$A^{2} - (1+q)^{2} \le 4N - 2Aq - 2q^{2} - 2q + 2q^{2} - 2q.$$

if q = 1, this is $A^2 + 2A + 1 \le 4N + 1$; if $q \ge 2$, we have

$$(A+1)^2 \le A^2 - (1+q)^2 + 2q + q^2 + 2 + 2A$$

$$\le 4N - 2A(q-1) + q^2 - 2q + 2$$

$$\le 4N - (q-1)(2A - q + 1) + 1$$

$$\leq 4N + 1$$
.

In all cases, we thus have $(A+1)^2 \leq 4N+1$, which ends the proof of our main result.

References

- [1] Deshouillers J-M. and Freiman G.A., On an additive problem of Erdős and Straus, 1, Israël J. Math., 92, 1995, 33–43.
- [2] Erdős P., Some remarks on number theory, III. Mat. Lapok 13, 1962, 28-38.
- [3] Erdős P., Nicolas J-L., Sarkőzy A., Sommes de sous-ensembles, Sem. Th. Nb. Bordeaux 3, 1991, 55–72.
- [4] Freiman G.A., The addition of finite sets, 1,(Russian), Izv. Vyss. Ucebn. Zaved. Matematika, 6(13), 1959, 202–213.
- [5] Straus E.G., On a problem in combinatorial number theory, J. Math. Sci., 1, 1966, 77-80.

J.-M. Deshouillers, Mathématiques Stochastiques, Université Victor Segalen Bordeaux 2, 33076 Bordeaux, France • E-mail: j-m.deshouillers@u-bordeaux2.fr

G.A. Freiman, School of Mathematical Sciences, Department of Mathematics, Raymond and Beverly Sackler, Faculty of Exact Sciences, Tel Aviv University, 69978 Tel Aviv, Israel E-mail: grisha@math.tau.ac.il