# Astérisque

# HERVÉ BILLARD

# Répartition des points rationnels des surfaces géométriquement réglées rationnelles

Astérisque, tome 251 (1998), p. 79-89

<a href="http://www.numdam.org/item?id=AST\_1998\_\_251\_\_79\_0">http://www.numdam.org/item?id=AST\_1998\_\_251\_\_79\_0</a>

© Société mathématique de France, 1998, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.



Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

# RÉPARTITION DES POINTS RATIONNELS DES SURFACES GÉOMÉTRIQUEMENT RÉGLÉES RATIONNELLES

par

### Hervé Billard

**Résumé.** — Nous étudions la répartition des points rationnels des modèles minimaux des surfaces rationnelles et vérifions que ces surfaces satisfont les conjectures de Batyrev-Manin sur le corps des rationnels. Pour ce faire, nous rappelons d'abord quelques propriétés et descriptions géométriques de telles surfaces. Ensuite, pour chaque plongement considéré, une hauteur naturelle apparaissant, nous établissons directement le comportement asymptotique des points rationnels de hauteur bornée. Finalement, nous regardons les sous-variétés accumulatrices.

### 1. Introduction

Lorsque V est une variété algébrique définie sur un corps de nombres k, il est naturel de s'intéresser à la répartition des points k-rationnels de V. Pour étudier V(k), on définit d'abord une hauteur H qui permet de « mesurer la taille » d'un point krationnel de V (cf. [La 83] chap. 3 et 4 ou chap. 6 de [Co-Si 86]); ensuite on s'intéresse au comportement asymptotique de card $\{P \in U(k) \mid H(P) \leq B\}$  pour tout ouvert Zariski dense U de V. Ce comportement asymptotique illustre parfaitement la répartition des points k-rationnels de V (voir [Ba-Ma 90]). Pour essayer de le déterminer, il existe actuellement, à notre connaissance, quatre méthodes. La première est la méthode du cercle pour certaines intersections complètes (voir par exemple [Bir 62]); la deuxième consiste à définir « correctement » la hauteur H et de considérer la fonction zêta associée,  $\sum_{P\in U(k)} H(P)^{-s}$  (cf. [Fr-Ma-Ts 89], [Ba-Ma 90], [Pe 95], [Ba-Ts 95], entre autres); la troisième est de construire des hauteurs canoniques à la Néron-Tate (cf. [Ne 65], [Si 91], [Bi 97]); la quatrième consiste « à expliciter » un plongement de la variété V, à considérer une hauteur associée et à déterminer «directement» le comportement asymptotique de card $\{P \in U(k) \mid H(P) \leq B\}$ (cf. [Ba-Ma 90], [Th 93], [Pe 95], par exemple). C'est cette dernière méthode que nous emploierons par la suite.

Classification mathématique par sujets (1991). — 11G35, 14G05, 14G25, 14J26. Mots clefs. — Points rationnels, hauteur, surface de Hirzebruch. D'autre part, lorsqu'on s'intéresse à la répartition des points rationnels d'une classe de variétés, on est tenté de regarder cette répartition sur les modèles minimaux. Nous proposons dans ce travail d'étudier cette question sur les modèles minimaux des surfaces rationnelles, et donc sur les surfaces géométriquement réglées  $F_m$  (voir §2), qui sont également connues comme les surfaces de Hirzebruch. Signalons que les surfaces  $F_m$  sont des variétés toriques. Les résultats que nous présentons affinent, par une tout autre méthode, un théorème plus général sur les variétés toriques dû à Batyrev et Tschinkel [Ba-Ts 96] restreint à notre cas.

Dans un premier temps, nous rappellerons la définition de telles surfaces, ainsi que quelques-unes de leurs propriétés géométriques. Au deuxième paragraphe, nous déterminons le comportement asymptotique de

$$\operatorname{card}\{P \in U(\mathbb{Q}) \mid H_D(P) \leqslant B\}$$

pour une famille de diviseurs amples, et verrons, que s'ils sont uniformément répartis pour les plongements considérés, ils ne le sont pas pour d'autres.

Nous tenons à remercier Marc Hindry avec qui nous avons eu de nombreuses et fructueuses discussions lors de l'élaboration de ce travail, ainsi qu'Emmanuel Peyre, Philippe Satgé et le rapporteur de ce travail.

### 2. Géométrie des surfaces de Hirzebruch

Dans ce paragraphe, nous travaillons sur  $\overline{\mathbb{Q}}$ .

Rappelons tout d'abord la définition d'une surface réglée et d'une surface géométriquement réglée.

## Définition 2.1

- (a) Une surface S est réglée si elle est birationnellement isomorphe à  $C \times \mathbb{P}^1$ , où C est une courbe lisse. Si C est isomorphe à  $\mathbb{P}^1$ , S est dite rationnelle.
- (b) Une surface est géométriquement réglée de base C, où C est une courbe lisse, s'il existe un morphisme lisse  $p:S\to C$  dont les fibres sont isomorphes à  $\mathbb{P}^1$ .

Un Théorème de Noether-Enriques nous assure qu'une surface géométriquement réglée est réglée, ce qui n'est pas évident *a priori* ([Be 78], chap. 3). D'autre part les modèles minimaux de  $C \times \mathbb{P}^1$ , où C est une courbe lisse non rationnelle, sont les surfaces géométriquement réglées de base C. Intéressons-nous maintenant aux surfaces géométriquement réglées rationnelles (voir [Be 78] chap. 3 et 4, ou [Ha 77] chap. V, §2).

**Proposition 2.2.** Les seules surfaces géométriquement réglées rationnelles sur  $\overline{\mathbb{Q}}$  sont les surfaces  $F_m$  définies par :

$$F_m = \mathbb{P}(O_{\mathbb{P}^1} \oplus O_{\mathbb{P}^1}(m)) \qquad (m \geqslant 0).$$

Les surfaces  $F_m$  sont minimales sauf pour m=1 et  $F_m$  n'est pas isomorphe à  $F_\ell$  si  $m \neq \ell$ .

Rappelons que  $F_0$  est isomorphe à  $\mathbb{P}^1 \times \mathbb{P}^1$ ,  $F_1$  est isomorphe à  $\mathbb{P}^2$  éclaté en un point et les surfaces rationnelles minimales sont les surfaces  $F_m$ , sauf pour m=1, et  $\mathbb{P}^2$ .

Notons h (respectivement f) la classe dans  $Pic(F_m)$  du fibré  $O_{F_m}(1)$  (respectivement d'une fibre).

**Proposition 2.3**. — Soit une surface  $F_m$ .

**a)** On a  $\operatorname{Pic}(F_m) = \mathbb{Z}h + \mathbb{Z}f$  avec :

$$f^2 = 0,$$
  $h^2 = m,$   $f \cdot h = 1.$ 

**b)** Si  $m \ge 1$  il existe une unique courbe irréductible  $C_m$  sur  $F_m$  de carré négatif. La courbe  $C_m$  est rationnelle et si l'on note c sa classe dans  $\text{Pic}(F_m)$ , on a:

$$c = h - mf, \qquad c^2 = -m.$$

**c**) Notons  $\omega_m$  la classe du diviseur canonique dans  $Pic(F_m)$ , alors :

$$\omega_m = -2h + (m-2)f.$$

**d)** Soit D = ah + bf. Alors:

D est très ample  $\iff$  D est ample  $\iff$  a > 0, b > 0.

e) Notons  $\overline{NE}(F_m)$  le cône fermé dans  $\operatorname{Pic}(F_m) \otimes \mathbb{R}$  engendré par les classes des courbes irréductibles de  $F_m$ , alors :

$$\overline{NE}(F_m) = \{D \in \operatorname{Pic}(F_m) \otimes \mathbb{R} \mid D = ah + bf \text{ avec } a \geqslant 0 \text{ et } b \geqslant -ma\}.$$

Soient  $m \geqslant 1$ , C une courbe irréductible sur  $F_m$  et  $\alpha h + \beta f$  sa classe dans  $Pic(F_m)$ . Alors :

$$C \neq C_m \Rightarrow \alpha \geqslant 0 \text{ et } \beta \geqslant 0,$$

en particulier  $\alpha m + \beta \geqslant 1$ .

f) Soient D = ah + bf une classe de diviseurs amples et

$$\alpha(D) = \min\{t \in \mathbb{R} \mid tD + \omega_m \in \overline{NE}(F_m)\}.$$

Alors, pour  $m \geqslant 2$ :

$$\alpha(D) = \frac{2}{a}$$
.

La démonstration des assertions a), b), c), d), et e) peut être consultée dans [Ha 77] chap. V, §2, ou [Be 78] chap. 3 et 4. L'assertion f), est une conséquence immédiate de e). Notons que  $-\omega_m$ , pour  $m \geqslant 2$ , appartient à l'intérieur de  $\overline{NE}(F_m)$ , mais qu'il n'est pas ample.

Géométriquement, les surfaces  $F_m$  peuvent être interprétées comme des transformations élémentaires de  $\mathbb{P}^2$  (c'est-à-dire comme une succession d'éclatements et de

contractions, [Be 78] chap. 3 exo 1, ou [Ha 69]), ou encore comme une réunion de courbes rationnelles. Notons que c'est surtout du point de vue de la répartition asymptotique que  $F_m$  doit être vue comme la réunion de courbes rationnelles, d'un point de vue géométrique le fait que  $F_m$  soit réglée est plus intéressant et donné par hypothèse.

**Proposition 2.4.** — Soient  $m \ge 0$  et  $b \ge 1$  deux entiers, et posons d = m + 2b. Soient  $R_b$  et  $R_{d-b}$  les deux courbes rationnelles de  $\mathbb{P}^{d+1}$  définies par :

$$R_b = \{ (U_1^b, U_1^{b-1}V_1, \dots, U_1V_1^{b-1}, V_1^b, 0, \dots, 0) \mid (U_1, V_1) \in \mathbb{P}^1 \}$$

$$R_{d-b} = \{(0, \dots, 0, U_2^{d-b}, U_2^{d-b-1}V_2, \dots, U_2V_2^{d-b-1}, V_2^{d-b}) \mid (U_2, V_2) \in \mathbb{P}^1\},\$$

et  $\psi$  un isomorphisme de  $R_b$  sur  $R_{d-b}$ . Soit alors  $F_{m,b}$  définie par :

$$F_{m,b} = \left\{ (SU_1^b, SU_1^{b-1}V_1, \dots, SV_1^b, TU_2^{d-b}, TU_2^{d-b-1}V_2, \dots, TV_2^{d-b}) \middle|$$

$$(S,T) \in \mathbb{P}^1, (U_1, V_1) \in \mathbb{P}^1, (U_2, V_2) \in \mathbb{P}^1$$

$$\psi(U_1^b, \dots, V_1^b, 0, \dots, 0) = (0, \dots, 0, U_2^{d-b}, \dots, V_2^{d-b}) \right\}.$$

Alors la surface  $F_{m,b}$  est isomorphe à la surface  $F_m$  plongée par le système |h+bf| dans  $\mathbb{P}^{d+1}$ ; notons  $\varphi_b$  le plongement associé tel que  $\varphi_b(F_m) = F_{m,b}$ .

Donner l'image d'une fibre de la surface  $F_m$  (resp. de  $C_m$ ) par  $\varphi_b$  revient à fixer  $U_1$  et  $V_1$  (resp. à fixer T=0); notons  $F_{(U_1,V_1)}$  son image.

On trouvera une démonstration de ce résultat dans [Gr-Ha 78] p. 523-524, ou [Be 78] chap. 4, exo 2, ou [Ha 77] chap. V, Corollaire 2.19. Terminons par une remarque.

**Remarque 2.5**. — Toute surface lisse de degré d dans  $\mathbb{P}^{d+1}$  qui n'est pas contenue dans un hyperplan est une surface  $F_m$ , ou la surface de Veronese dans  $\mathbb{P}^5$ , ou  $\mathbb{P}^2$ .

# 3. Répartition des points rationnels des surfaces de Hirzebruch

Rappelons tout d'abord quelques propriétés vérifiées par la fonction de Möbius  $\mu$  et l'indicatrice d'Euler  $\varphi$  (voir par exemple [Ap 76] chap. 2) qui nous seront très utiles lors du décompte des points  $\mathbb{Q}$ -rationnels de hauteur bornée des surfaces  $F_m$ . Quelque soit le réel x notons [x] sa partie entière.

**Lemme 3.1**. — Soit 
$$x \ge 2$$
.

$$\mathbf{a)} \qquad \sum_{d \leqslant x} \frac{\mu(d)}{d^{\alpha}} = \frac{1}{\zeta(\alpha)} + O\left(\frac{1}{x^{\alpha-1}}\right) pour \, \alpha > 1,$$

$$\sum_{d \leqslant x} \frac{\mid \mu(d) \mid}{d} = O(\operatorname{Log} x),$$

$$\sum_{d \leqslant x} \mu(d) \left[\frac{x}{d}\right]^2 = \frac{x^2}{\zeta(2)} + O(x \operatorname{Log} x).$$

$$\mathbf{b} \qquad \sum_{n \leqslant x} \frac{\varphi(n)}{n} = \frac{x}{\zeta(2)} + O(\operatorname{Log} x),$$

$$\sum_{n \leqslant x} \frac{\varphi(n)}{n^2} = \frac{1}{\zeta(2)} \operatorname{Log} x + O(1),$$

$$\sum_{n \leqslant x} \frac{\varphi(n)}{n^{\alpha}} = \frac{\zeta(\alpha - 1)}{\zeta(\alpha)} + O(x^{2-\alpha}) pour \, \alpha > 2.$$

On pourra consulter [Ap 76], chap. 3, pour les démonstrations de ces égalités. Signalons également que les deux égalités

$$\sum_{n \le x} \frac{\mu(n)}{n} = o(1) \qquad \text{et} \qquad \sum_{n \le x} \mu(n) = o(x)$$

sont équivalentes au Théorème des nombres premiers.

Soient  $F_m$  une surface  $\mathbb{Q}$ -rationnelle,  $\varphi_b$  le plongement associé à h+bf tel que  $\varphi_b(F_m)$  est égal à  $F_{m,b}$  (cf. §2) et un point  $P\in F_m(\mathbb{Q})$ . Quite à changer l'isomorphisme  $\psi$  de  $R_b$  sur  $R_{d-b}$ , on peut supposer dans la proposition 2.4 que  $U_1=U_2$  et  $V_1=V_2$ ; posons donc:

$$\varphi_b(P) = (SU^b, \dots, SV^b, TU^{d-b}, \dots, TV^{d-b}),$$

avec  $(S,T) \in \mathbb{Z}^2 \setminus \{0\}, (U,V) \in \mathbb{Z}^2 \setminus \{0\}, \operatorname{pgcd}(S,T) = 1 \text{ et } \operatorname{pgcd}(U,V) = 1.$ 

Dans ces conditions, on peut définir la hauteur de P associée à h+bf comme étant :

$$H_{h+bf}(P) = \max(|S| \max(|U|, |V|)^b, |T| \max(|U|, |V|)^{d-b}).$$

En effet, si un entier q divise S il ne peut diviser U et V, donc également,  $TU^{d-b}$  et  $TV^{d-b}$ . La hauteur naturelle sur  $\mathbb{P}^{d+1}$  induit donc bien la métrique  $H_{h+bf}$ .

Posons aussi  $H(U,V) = \max(|U|,|V|)$  et notons :

$$N(X, g, B) = \operatorname{card}\{x \in X \mid g(x) \leqslant B\}.$$

Etudions maintenant la répartition des points  $\mathbb{Q}$ -rationnels des surfaces  $F_m$  pour  $m \ge 2$ . Nous nous restreignons aux cas  $m \ge 2$  pour deux raisons; la première

est que la répartition des points rationnels de  $F_0$  et  $F_1$  est déjà connue sur tout corps de nombres. La deuxième est par souci de clarté. En effet, l'estimation de  $N(F_m(\mathbb{Q}), H_{h+bf}, B)$  admet trois cas particuliers, b=1 et m=0, b=2 et m=0, b=1 et m=1, par la méthode que nous emploierons. Nous laissons en exercice la vérification que la méthode qui suit, appliquée aux surfaces  $F_0$  et  $F_1$  redonne les résultats escomptés.

**Théorème 3.2.** — Soient les entiers  $b \ge 1$ ,  $m \ge 2$ ,  $F_m$  une surface  $\mathbb{Q}$ -rationnelle,  $F_{(t)}$  une fibre de  $F_m$  qui par le plongement  $\varphi_b$  a pour image  $F_{(U,V)}$  et  $C_m$  la courbe irréductible de  $F_m$  de carré négatif. Alors :

(a) 
$$N(F_m(\mathbb{Q}), H_{h+bf}, B) = \frac{8}{\zeta(2)} \cdot \frac{\zeta(2b+m-1)}{\zeta(2b+m)} B^2 + \begin{cases} O(B \log B) & pour \ b \geqslant 2\\ O(B \log^2 B) & pour \ b = 2\\ O(B^{1+\frac{1}{m+1}} \log B) & pour \ b = 1 \end{cases}$$

(**b**) 
$$N(F_{(t)}(\mathbb{Q}), H_{h+bf}, B) = \frac{2B^2}{\zeta(2)}H(U, V)^{-2b-m} + O(B \operatorname{Log} B)$$

(c) 
$$N(C_m(\mathbb{Q}), H_{h+bf}, B) = \frac{2B^{\frac{2}{b}}}{\zeta(2)} + O(B^{\frac{1}{b}} \operatorname{Log} B).$$

**Remarque 3.3.** — Ainsi que l'a remarqué le rapporteur de ce travail, suite à la démonstration de ce théorème, on peut interpréter la constante asymptotique pour  $F_m$  de la manière suivante. Pour chaque fibre  $F_{(U,V)}$  de  $F_m$  donnée par deux entiers U et V premiers entre eux et paramétrée par (S:T) décrivant  $\mathbb{P}^1_{\mathbb{Q}}$ , la restriction de la hauteur est donnée par

$$H_{F_{(U,V)}}((S:T)) = \max(|S| \max(|U|, |V|)^b, |T| \max(|U|, |V|)^{d-b})$$

si pgcd(S, T) = 1. La constante correspondante est donnée par

$$\begin{split} C_H(F_{(U,V)}) &= \frac{1}{2} \operatorname{Vol}(F_{(U,V)}(\mathbb{R})) \prod_p L_p(1,\operatorname{Pic} \overline{F_{(U,V)}}) \operatorname{Vol}(F_{(U,V)}(\mathbb{Q}_p)) \\ &= \frac{1}{2} \cdot \frac{4}{H(U,V)^b H(U,V)^{d-b}} \cdot \prod_p (1 - \frac{1}{p})(1 + \frac{1}{p}) \\ &= \frac{2}{\zeta(2)} H(U,V)^{-2b-m}. \end{split}$$

La constante pour  $F_m$  est alors la somme sur toutes les fibres de ce terme.

Avant de présenter un corollaire, rappelons une notation usitée.

Si g' et g sont deux fonctions réelles nous noterons,  $g' \gg \ll g$ , s'il existe deux constantes strictement positives  $c_1$  et  $c_2$  vérifiant pour tout réel x:

$$c_1 g'(x) \leqslant g(x) \leqslant c_2 g'(x).$$

**Corollaire 3.4**. — Soient a et b deux réels vérifiant  $b \ge a > 0$ , alors :

$$N(F_m(\mathbb{Q}), H'_{ah+bf}, B) \gg \ll B^{2/a}$$

où  $H'_{ah+bf}$  est une hauteur de Weil associée à ah+bf. De même, pour tout ouvert Zariski dense U de  $F_m$ 

$$N(U(\mathbb{Q}), H'_{ah+bf}, B) \gg \ll B^{2/a}$$

Remarquons que lorsque b/a est entier, on obtient en fait une formule exacte en considérant la hauteur  $(H_{h+\frac{b}{-}f})^a$ .

Nous discuterons des sous-variétés accumulatrices de  $F_m$  après la démonstration de ce théorème et de son corollaire.

Démonstration. — Commençons par démontrer les assertions a) et b) du Théorème 3.2. Elles sont conséquences des deux lemmes suivants :

**Lemme 3.5.** — Soient  $B \ge 2$ ,  $n \ge 1$ ,  $\alpha > 0$ ,  $\beta > 0$  avec  $\beta - \alpha \ge 1$ , et posons :

$$G(B, n, d, \alpha, \beta) = \operatorname{card}\{(S, T) \in \mathbb{Z}^2 \setminus \{0\} \mid |S| \leqslant |T| n^{\alpha},$$
$$|T| n^{\beta} \leqslant B \text{ et } \operatorname{pgcd}(|S|, |T|) = d\}$$

$$J(B, \alpha, \beta) = \operatorname{card}\{(S, T), (U, V) \in (\mathbb{Z}^2 \setminus \{0\})^2 \mid |S| \leqslant |T| \max(|U|, |V|)^{\alpha}, \\ |T| \max(|U|, |V|)^{\beta} \leqslant B, \operatorname{pgcd}(S, T) = 1 \text{ et } \operatorname{pgcd}(U, V) = 1\}.$$

Alors:

$$G(B, n, 1, \alpha, \beta) = \frac{2B^2}{\zeta(2)} n^{\alpha - 2\beta} + O(Bn^{\alpha - \beta} \operatorname{Log} Bn^{-\beta}),$$

et

$$J(B,\alpha,\beta) = \frac{16}{\zeta(2)} \cdot \frac{\zeta(2\beta - \alpha - 1)}{\zeta(2\beta - \alpha)} \cdot B^2 + \begin{cases} O(B \log B) & \text{si } \beta - \alpha > 2\\ O(B \log^2 B) & \text{si } \beta - \alpha = 2\\ O(B^{1 + \frac{1}{\beta}} \log B) & \text{si } \beta - \alpha = 1 \end{cases}$$

**Lemme 3.6.** — Soient  $B \geqslant 2$ ,  $m \geqslant 1$ ,  $\gamma \geqslant 2$ ,  $\delta \geqslant 1$ , et posons :

$$G'(B, n, d, \gamma, \delta) = \operatorname{card}\{(S, T) \in \mathbb{Z}^2 \setminus \{0\} \mid |T|n^{\gamma} < |S|,$$
$$|S|n^{\delta} \leqslant B \text{ et } \operatorname{pgcd}(|S|, |T|) = d\}$$

$$J'(B, \gamma, \delta) = \operatorname{card}\{(S, T), (U, V) \in (\mathbb{Z}^2 \setminus \{0\})^2 \mid |T| \max(|U|, |V|)^{\gamma} < |S|, \\ |S| \max(|U|, |V|)^{\delta} \leqslant B, \operatorname{pgcd}(S, T) = 1 \text{ et } \operatorname{pgcd}(U, V) = 1\}.$$

Alors:

$$G'(B, n, 1, \gamma, \delta) = \frac{2B^2}{\zeta(2)} n^{-\gamma - 2\delta} + O(Bn^{-\gamma - \delta} \operatorname{Log} Bn^{-\delta}),$$

et

$$J'(B,\gamma,\delta) = \frac{16}{\zeta(2)} \cdot \frac{\zeta(2\delta+\gamma-1)}{\zeta(2\delta+\gamma)} B^2 + O(B \operatorname{Log} B).$$

Admettons provisoirement ces deux lemmes, et vérifions que les assertions a) et b) du Théorème 3.2 en découlent. En effet on a :

$$N(F_m(\mathbb{Q}), H_{h+bf}, B) = \frac{1}{4}(J(B, m, m+b) + J'(B, m, b)),$$

$$N(F_{(t)}(\mathbb{Q}), H_{h+bf}, B) = \frac{1}{2}(G(B, H(U, V), 1, m, m + b) + G'(B, H(U, V), 1, m, b)).$$

Pour démontrer les assertions a) et b), il reste donc à démontrer ces deux lemmes. Commençons par le premier, le Lemme 3.5. Posons

$$F(B, n, \alpha, \beta) = \operatorname{card}\{(S, T) \in \mathbb{Z}^2 \setminus \{0\} \mid |S| \leqslant |T| n^{\alpha}, |T| n^{\beta} \leqslant B\}.$$

Ainsi:

$$F(B,n,\alpha,\beta) = 2\sum_{1\leqslant T\leqslant Bn^{-\beta}} (2[Tn^{\alpha}]+1) = 2B^2n^{\alpha-2\beta} + O(Bn^{\alpha-\beta}).$$

Or:

$$F(B, n, \alpha, \beta) = \sum_{1 \leq d \leq Bn^{-\beta}} 1 \cdot G(B, n, d, \alpha, \beta).$$

Comme 1 est Dirichlet inversible, d'inverse  $\mu$ , on en déduit :

$$\begin{split} G(B,n,1,\alpha,\beta) &= \sum_{1\leqslant d\leqslant Bn^{-\beta}} \mu(d) F\Big(\frac{B}{d},n,\alpha,\beta\Big) \\ &= \sum_{1\leqslant d\leqslant Bn^{-\beta}} \mu(d) \left\{ \frac{2B^2}{d^2} n^{\alpha-2\beta} + O\Big(\frac{B}{d} n^{\alpha-\beta}\Big) \right\} \\ &= \frac{2B^2}{\zeta(2)} n^{\alpha-2\beta} + O(Bn^{\alpha-\beta} \operatorname{Log} Bn^{-\beta}) \end{split}$$

où la dernière égalité découle du Lemme 3.1.

Déterminons maintenant  $J(B, \alpha, \beta)$ . On a :

$$\begin{split} J(B,\alpha,\beta) &= \sum_{n\leqslant B^{1/\beta}} 8\varphi(n)G(B,n,1,\alpha,\beta) \\ &= \sum_{n\leqslant B^{1/\beta}} 8\varphi(n)\{\frac{2B^2}{\zeta(2)}n^{\alpha-2\beta} + O(Bn^{\alpha-\beta}\log Bn^{-\beta})\} \\ &= \frac{16}{\zeta(2)}\frac{\zeta(2\beta-\alpha-1)}{\zeta(2\beta-\alpha)}B^2 + \begin{cases} 0(B\log B) & \text{si } \beta-\alpha>2\\ 0(B\log^2 B) & \text{si } \beta-\alpha=2\\ 0(B^{1+\frac{1}{\beta}}\log B) & \text{si } \beta-\alpha=1 \end{cases} \end{split}$$

d'après le Lemme 3.1.

La démonstration du Lemme 3.5 étant terminée et celle du Lemme 3.6 étant identique à celle ci-dessus (en faisant attention), les assertions a) et b) sont démontrées. Pour l'assertion c), on a :

$$N(C_m(\mathbb{Q}), H_{h+bf}, B) = \frac{1}{2} \operatorname{card} \{ (S, T), (U, V) \in (\mathbb{Z}^2 \setminus \{0\})^2 \mid S = 1, T = 0$$
et max  $(|S|H^b(U, V), |T|H(U, V)^{b+m}) \leq B \}$ 

$$= \operatorname{card} \{ (U, V) \in \mathbb{P}^1(\mathbb{Q}) \mid H^b(U, V) \leq B \}$$

L'assertion c) est donc conséquence du Théorème de Schanuel [Sc 79].

Le Théorème 3.2 est donc démontré. Démontrons le Corollaire 3.4. Soient a et b deux réels,  $b_1$  et  $b_2$  deux entiers vérifiant  $b \ge a > 0$  et  $1 \le b_2 \le b \le b_1$ . En particulier donc, il existe deux constantes strictement positives  $c_3$  et  $c_4$  tel que

$$c_3H_{h+b_2f}\leqslant H'_{h+bf}\leqslant c_4H_{h+b_1f}.$$

Ainsi:

 $N(F_m(\mathbb{Q}), H_{h+b_1f}, B) \ll N(F_m(\mathbb{Q}), H'_{h+bf}, B) \ll N(F_m(\mathbb{Q}), H_{h+b_2f}, B)$  ou encore, d'après le Théorème 3.2 :

$$N(F_m(\mathbb{Q}), H'_{h+bf}, B) \gg \ll B^2$$
 (b réel,  $b \geqslant 1$ ).

D'autre part :

$$N(F_m(\mathbb{Q}), H'_{ah+bf}, B) \gg \ll N\left(F_m(\mathbb{Q}), H'_{h+\frac{b}{a}f}, B^{1/a}\right)$$
  
  $\gg \ll B^{2/a}$ 

L'estimation de  $N(U(\mathbb{Q}), H'_{ah+bf}, B)$  est identique, d'où notre corollaire, terminant ainsi notre démonstration.

Cherchons maintenant les sous-variétés accumulatrices des surfaces  $F_m$  pour  $m \ge 2$ . Rappelons qu'une sous-variété W de  $F_m$  sera dite accumulatrice, pour ah + bf, s'il existe un ouvert Zariski dense U de  $F_m$  tel que

$$N(U(\mathbb{Q}), H'_{ah+bf}, B) = o(N(W(\mathbb{Q}), H'_{ah+bf}, B)).$$

D'autre part, lorsqu'il n'existe qu'un nombre fini de sous-variétés accumulatrices, voire aucune, une sous-variété W' sera dite faiblement accumulatrice si pour tout ouvert Zariski dense U' de  $F_m$  suffisamment petit (i.e. ne contenant pas les sous-variétés accumulatrices)

$$N(U'(\mathbb{Q}), H'_{ah+bf}, B) \gg \ll N(W'(\mathbb{Q}), H'_{ah+bf}, B).$$

D'après le Théorème 3.2 les fibres de  $F_m$  sont faiblement accumulatrices pour les classes de diviseurs h+bf  $(b\geqslant 1)$  et la courbe  $C_m$  l'est pour la classe de diviseur h+f. En fait ce sont les seules.

**Proposition 3.7**. — Soient a > 0 et b > 0.

- (i) Si b > a, alors  $F_m$  n'admet pas de courbes accumulatrices, les fibres de  $F_m$  sont faiblement accumulatrices et ce sont les seules pour ah + bf.
- (ii) Si b = a, alors  $F_m$  n'admet pas de courbes accumulatrices, les fibres de  $F_m$  et la courbe  $C_m$  sont faiblement accumulatrices et ce sont les seules pour ah+bf.
- (iii) Si b < a, la courbe  $C_m$  est l'unique courbe irréductible accumulatrice, les fibres  $F_m$  sont faiblement accumulatrices et ce sont les seules pour ah + bf.

*Démonstration.* — Soient a > 0, b > 0, une courbe irréductible C de  $F_m$  et  $\alpha h + \beta f$  sa classe dans  $Pic(F_m)$ . On a :

$$(ah + bf) \cdot (\alpha h + \beta f) = a(\alpha m + \beta) + \alpha b.$$

Démontrons les assertions (i) et (ii). D'après le Corollaire 3.4 il n'existe pas de courbes accumulatrices. Pour que C soit une courbe faiblement accumulatrice, pour ah+bf, il est nécessaire, d'après le Théorème de Schanuel [Sc 79] et le Corollaire 3.4, que

$$a(\alpha m + \beta) + \alpha b = a,$$

outre le fait d'être rationnelle.

Or  $\alpha\geqslant 0$ ,  $\alpha m+\beta\geqslant 0$ ,  $\alpha m+\beta=0$  si et seulement si  $C=C_m$  (donc  $\alpha=1$ ,  $\beta=-m$ ), et si  $C\neq C_m$  alors  $\alpha\geqslant 0$  et  $\beta\geqslant 0$  (cf. Proposition 2.3). Ainsi les fibres  $F_m$  sont faiblement accumulatrices ( $\alpha=0,\beta=1$ ), la courbe  $C_m$  l'est pour b=a et ne l'est pas si b>a. D'autre part, si C n'est pas une fibre et n'est pas  $C_m$ , C étant irréductible, nécessairement  $\alpha>0$ , et donc (1) n'est pas vérifiée, d'où les assertions (i) et (ii).

Démontrons maintenant l'assertion (iii).

D'après le Théorème de Schanuel [Sc 79], le Théorème de Batyrev-Tschinkel [Ba-Ts 96], pour que C soit accumulatrice, il est nécessaire que

$$a(\alpha m + \beta) + \alpha b < a,$$

et pour que C soit faiblement accumulatrice l'égalité (1) doit être vérifiée. Ainsi comme pour (i) et (ii), nous en déduisons l'assertion (iii).

Terminons par un début de justificatif du fait que la courbe  $C_m$  soit accumulatrice, et pas seulement faiblement accumulatrice, dans le cas (iii) : le système linéaire |h|

sur  $F_m$  définit un morphisme  $F_m \to \mathbb{P}^{m+1}$ , qui est un plongement en dehors de  $C_m$  et contracte  $C_m$  sur un point ([Be 78], chap. 4).

Les Conjectures de Batyrev et Manin sont donc satisfaites par les surfaces  $F_m$ .

### Références

| [Ap 76]       | T. Apostol, Introduction to analytic number theory, Springer-Verlag                                                                          |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| [Ap /0]       | (1976).                                                                                                                                      |
| [Ba-Ma 90]    | V. Batyrev, Y. Manin, Sur le nombre des points rationnels de hauteur bor-                                                                    |
|               | née des variétés algébriques, Math. Ann. 286 (1990), p. 27–43.                                                                               |
| [Ba–Ts 95]    | V. Batyrev, Y. Tschinkel, <i>Manin's conjecture for toric varieties</i> , prépublication IHES/M/95/93.                                       |
| [Ba-Ts 96]    | V. Batyrev, Y. Tschinkel, Height zeta functions of toric varieties, Algebraic                                                                |
|               | geometry 5 (Manin's Festschrift), Journal Math. Sciences 82 n°1 (1996),                                                                      |
|               | p. 3220-3239.                                                                                                                                |
| [Be 78]       | A. Beauville, Surfaces algébriques complexes, Astérisque <b>54</b> (1978).                                                                   |
| [Bi 97]       | H. Billard, Propriétés arithmétiques d'une famille de surfaces K3, Compo.                                                                    |
|               | Math. <b>108</b> (1997), p. 247–275.                                                                                                         |
| [Bir 62]      | B. Birch, Forms in many variables, Proc. Royal. Soc. London 265 (1962),                                                                      |
|               | p. 245–263.                                                                                                                                  |
| [Co-Si 86]    | G. Cornell, J. Silverman (Eds), : Arithmetic geometry, Springer Verlag                                                                       |
|               | (1986).                                                                                                                                      |
| [Fr–Ma–Ts 89] | J. Franke, Y. Manin, Y. Tschinkel, <i>Rational points of bounded height on Fano varieties</i> , Invent. Math. <b>95</b> , (1989) p. 421–435. |
| [Gr–Ha 78]    | P. Griffiths, J. Harris, <i>Principles of algebraic geometry</i> , Wiley Interscience                                                        |
| [01–11a 76]   | (1978).                                                                                                                                      |
| [Ha 69]       | R. Hartshorne, Curves with high self-intersection on algebraic surfaces,                                                                     |
| ,             | Publ. Math. IHES <b>36</b> (1969) p. 111–125.                                                                                                |
| [Ha 77]       | R. Hartshorne, Algebraic geometry, Springer Verlag (1977).                                                                                   |
| [La 83]       | S. Lang, Fundamentals of diophantine geometry, Springer Verlag (1983).                                                                       |
| [Ne 65]       | A. Néron, Quasi-fonctions et hauteurs sur les variétés abéliennes, Ann. of                                                                   |
|               | Math. <b>82</b> , N°2 (1965) p. 249–331.                                                                                                     |
| [Pe 95]       | E. Peyre, Hauteurs et mesures de Tamagawa sur les variétés de Fano, Duke                                                                     |
|               | Math. J. <b>79</b> , N°1 (1995) p. 101–218.                                                                                                  |
| [Sc 79]       | S. Schanuel, <i>Heights in number fields</i> , Bull. Soc. Math. France <b>107</b> (1979),                                                    |
|               | p. 433–449.                                                                                                                                  |
| [Si 91]       | J. Silverman, Rational points on K3 surfaces: a new canonical height,                                                                        |
|               | Invent. Math. <b>105</b> (1991), p. 347–373.                                                                                                 |
| [Th 93]       | J. Thunder, Asymptotic estimates for rational points of bounded height on                                                                    |

flag varieties, Compo. Math. 88 (1993), p. 155-186.

HERVÉ BILLARD, Université de Brest, Département de Mathématiques, 6 av. Le Gorgeu, B.P.809, 29285 Brest Cedex, France • E-mail: Herve.Billard@univ-brest.fr