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COUNTING POINTS ON CUBIC SURFACES, I 

by 

John B. Slater and Sir Peter Swinnerton-Dyer 

Abstract. — Let V be a nonsingular cubic surface defined over Q, let U be the open 
subset of V obtained by deleting the 27 lines, and denote by N(U, H) the number of 
rational points in U of height less than H. Manin has conjectured that if V(Q) is not 
empty then 
(1) N(U,H) = Ci£T(logH)r-1(l + o(l)) 
for some Ci > 0, where r is the rank of NS(V/Q), the Neron-Severi group of V over 
Q. In this note we consider the special case when V contains two rational skew lines; 
and we prove that for some Ci > 0 and all large enough H, 

N{U,H) > C2H{\ogH)r-1. 
This is the one-sided estimate corresponding to (1). It seems probable that the argu­
ments in this paper could be modified to prove the corresponding result when V con­
tains two skew lines conjugate over Q and each defined over a quadratic extension of 
Q; but we have not attempted to write out the details. 

Let V be a nonsingular cubic surface defined over Q, let U be the open subset of 
V obtained by deleting the 27 lines, and denote by N(U, H) the number of rational 
points in U of height less than H, and by k the least field of definition of the 27 lines. 
Once we have chosen our coordinate system, we shall define the bad primes for V 
as those p for which V has bad reduction at p or which ramify in any of the fields 
ki defined below. In what follows we shall use A\, A2,... and Ci, C2,... to denote 
positive constants depending only on V; the distinction between the Aj and the Cj 
is that the Aj will be rational and will be determined by divisibility considerations. 
Similarly B\, B2,... will each belong to a finite set of elements of k* and bi, 62,.. . 
will belong to a finite set of non-zero fractional ideals of k, in each case depending 
only on V. The Aj, Bj and bj will always be units outside the bad primes, though this 
is not important. Letters A, B, C without subscripts will have the same properties, 
but will not necessarily have the same values from one occurrence to the next. 

1991 Mathematics Subject Classification. — Primary 11G25; Secondary 14G25. 
Key words and phrases. — Cubic surfaces, Manin conjecture. 
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2 JOHN B. SLATER and SIR PETER SWINNERTON-DYER 

Manin has conjectured that if V(Q) is not empty then 

(1) N(U, H) = d i a l o g Hf-\l + o(l)) 

for some C\ > 0, where r is the rank of NS(V/Q), the Neron-Severi group of V 
over Q. In this note, which is the first of a sequence of papers concerned with various 
aspects of this conjecture, we consider the special case when V contains two rational 
skew lines; and we prove 

Theorem 1. — Suppose that V contains two rational skew lines. Then for some 
C2 > 0 and all large enough H, 

N(U,H) > C2H(log H)r-\ 

This is the one-sided estimate corresponding to (1). It seems probable that the 
arguments in this paper could be modified to prove the corresponding result when V 
contains two skew lines conjugate over Q and each defined over a quadratic extension 
of Q; but we have not attempted to write out the details. 

The truth or falsehood of Theorem 1 is not affected by a linear transformation of 
variables, though the value of C2 may be; so without loss of generality we can assume 
that the two given skew lines on V have the form 

l! : X0 = Xi = 0 and L" : X2 = X3 = 0, 

and that their five transversals on V have the form 

Li : X0 = aiXx, X2 = PiX* for l < t < 5 

where the c^, are integers in k. We shall denote by ki the least field of definition of 
so that k is the compositum of the ki \ since the are all distinct, as are the we 

have ki = Q(c^) = Q(A)- Since VL" and the Li are a base for NS(V/C) ®z Q, 
their traces are a base for NS(V/Q) ®z Q; and it follows at once that the Li form 
r — 2 complete sets of conjugates over Q. Because V contains V and L"\ its equation 
can be written in the form 

(2) fi(X0,X1,X2lXs) = f2(Xo,Xi1X2jX3) 

where /1 is homogeneous quadratic in XQ,XI and homogeneous linear in X ^ , ^ 
and the opposite is true for f2. We can assume that the coefficients of f\ and f2 
are rational integers and that we cannot take out an integer factor from (2). With 
these conditions, the bad primes for V include those which divide Yl^ji^i — otj)2 
or rii<j(A — Pj)2 and those which divide one side or other of (2). The resultant of 
fi and /2, considered as homogeneous polynomials in Xo and X±, has degree 5 in 
X2 and X3; so it has the form 

A1H(X2-(3iX3). 
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COUNTING POINTS ON CUBIC SURFACES, I 3 

Similarly the resultant of /1 and /2, considered as homogeneous polynomials in X2 
and X3, has the form 

(3) A2]l(Xo-aiX1). 
Moreover /1(0^, 1, X2, X$) is the product of (X2 — faXs) and a non-zero integer in 
ki\ and f2(ai, 1, X2, X3) is divisible by (X2 — PiX$). In particular, for each i both 
/1 and /2 are in the ideal in Oi[X0,..., X3] generated by XQ - ctiX\ and X2 - faXs, 
where is the ring of integers of 

Our argument depends on the following recipe for generating the rational points 
on V, subject to certain anomalies. Let 

iy = (£o,6,0,0) and P» = (0,0,6,6) 

be any rational points on L' and L" respectively, expressed in lowest terms; thus 
fo? £1 are coprime integers, as are £2, £3- Note that each point Pf corresponds to two 
pairs £0, £1 and similarly for P". The third intersection of P'P" with V is 

(4) P = (&/2(0,£i /2(0,6/i(£U3 / i(0)-
The expression (4) is not necessarily in lowest terms; indeed the highest factor which 
we can take out is precisely (/1(05/2(0)' where the bracket denotes the high­
est common factor. The point P is geometrically well-defined unless £0 — <^£i — 
£2 — Pi& = 0 for some i\ and every rational point of V can be uniquely obtained 
in this way except for those which lie on some L{. More generally, if we drop the 
condition that P' and P" are rational we can in this way generate every point on V 
except those that lie on some Li. 

Since we wish to exclude from our count the rational points on the 27 lines, it will 
be important to know how they are generated under this recipe. We have already dealt 
with the Li. If P is to be on V for example, we must choose Pf to be P and P" to 
be the unique point satisfying fi(Pf, P") = 0 in an obvious notation; since 

/i(JQ),Xi,X2,X3) = (XQ — aiXi)gi(Xo, Xi, X2, X$) 

+ (X2-f3iX3)hi(Xo,X1) 

and the highest common factor of (£0 — a*f 1) and /iz(£o, £1) in h divides the resul­
tant of (Xo — ctiXi) and hi(Xo,Xi) and is therefore bounded, there is a rational 
integer A3 such that J43(£2 - Pi£z) is divisible by (f0 - for each i. Next, let 
L\ be the third intersection of V with the plane containing V and Li\ since the one 
point of L" in this plane is (0,0, 1), the points of L\ are generated precisely when 
this point is taken to be P". A similar argument holds for the line L" which is the 
third intersection of V with the plane containing L" and Li. The remaining ten lines 
are the ones other than V and L" which meet three of the Li. To fix ideas, consider 
the line L123 which meets Li, L2 and L3. The condition that P is on L123 induces a 
one-one correspondence between P' and P" in which three of the pairs are given by 

Pf = (a^ 1,0,0), P" = (0,0, A, 1) for ¿ = 1,2,3; 
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4 JOHN B. SLATER and SIR PETER SWINNERTON-DYER 

so this correspondence has the form 
(<*3 ~ oaKfa ~ aigi) = (ft - &)(& - A 6 ) 
(as - ai)(& " a2&) (/% " A) (6 - a2&' 

For any pair P',P" each fraction is in lowest terms, up to a factor belonging to a 
finite set of ideals depending only on V\ so for % = 1 

(£o-arfi) = M & - A 6 ) 
as ideals, where bi belongs to a finite set of principal ideals of ki depending only on 
V. A similar result holds for i = 2,3. 

Assume that £o — c*if I and £2 — do not both vanish for any i9 and denote by 
di the ideal 

cti = (£0 M&-A6 - a2& 
Conversely, suppose that the â  are integral ideals, each ai lying in and two ai 
being conjugate over Q if the corresponding Li are. In what follows, sets a* will 
always be assumed to have these properties. We shall say that the ai are allowable 
for V if there exist coprime pairs £o> £1 and £2? £3 which give rise to this set of di. If 
the are allowable then their product is an ideal in Z, and we can therefore define a 
positive integer A such that (A) = M a*. 

Lemma 1. — (i) Suppose that the â  are allowable for V. Then the only primes in 
k which can divide more than one of the â  are those which lie above bad primes in 
Q, and the highest common factor of any two of the â  in k belongs to a finite set 
depending only on V. Ifp is a good prime, then for given i there is at most one prime 
p in ki which divides both p and Oi, and it is a first degree prime in ki. Moreover 

/2(0) — B\A where B\ belongs to a finite set of rationals depending only 
on V. 
(ii) Conversely, a sufficient condition for the â  to be allowable is that they are co-
prime in k and that none of them is divisible by any prime in k above a bad prime. 

Proof. — Since (a ,̂ dj) divides (£0 — foDSZ — oyf 1) and therefore also (a$ — ay), 
the first assertion in (i) is trivial. Since ki — Q(a*), a prime p in ki which is not first 
degree can only divide £0 — <^£i if either the prime p below it in Q divides both £0 
and £1 or a{ = c mod p for some c in Z. In the latter case there is an automorphism a 
of k not fixing ki elementwise and such that ap is not prime to p; and (ap, p) divides 
(ai — acti), whence p is a bad prime. If there were two primes p' and p" above p in 
ki both of which divide a*, then there would similarly be a a such that ap" was not 
prime to p' in fc, and en and era; would both be divisible by (p', ap"); hence again p 
would be a bad prime. This proves the second assertion in (i). As for the third, we 
know that the resultant of /1 and /2, considered as functions of X2 and X3, is (3); so 
(/i(£), /2(0) divides A2 n(£o - AIESL. It is therefore enough to prove that 

( Л ГЛ. fot П. А, - ruf л \ = bo(fn - «.-Л. fo - А-АЛ 
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where b2 belongs to a finite set of ideals in ki depending only on V. But using the 
remarks after (3) we have 

A(0 = Khiou, 1,6,6) = 6/2^, 1,6,6 ~ A6) mod 6 - a^i) 

and 

/2(0 = 6 / 2 ^ , 1,6,6) mod (£0 - 1), 

and /2(ai, 1,6,6) is divisible by (6 - A6)-
Now suppose that the a* satisfy (ii). Since the a* form complete sets of conjugates 

over Q and are coprime, the argument in the first half of the proof shows that each 
prime factor of ai in ki is a first degree prime. Moreover, if pi\ai and pj|aj with p̂  
and pj lying above the same good prime p, then we could find a as above such that 
api was not prime to pj; this would imply that (ap^, pj) divides (aai — ay), whence 
acti — ctj and therefore Lj = a Li and pj = api. Now choose 6 divisible by every 
bad prime and by no good prime, and choose 6 not divisible by any bad prime and 
such that for each prime pi dividing a* with pf || ai we have pf || (6 ~ a^6)- All 
this is possible by the Chinese Remainder Theorem, for every prime dividing ai is 
first degree in k% and we are imposing on 6 one p-adic condition for each p dividing 
A. Moreover a prime q̂  which divides 6 — ai€i but not ai is good, and hence is 
prime to every other aj and to A. We choose 6 , 6 by a similar recipe, but with the 
additional condition that no q̂  divides 6 — A6- D 

Let h denote the height function; then in the notation above we have 

h(P') = max(|£o|, 161), HP") = max(|&|, |£3|). 

It follows from (4) and Lemma 1 that 

(5) h(P) < Cz{h(P')h(P"))2lk. 

In order to prove Theorem 1, we shall obtain a lower bound for the number of rational 
points P in U with preassigned allowable ai such that h(P) < H. For simplicity, 
we confine ourselves to the case when none of the ai is divisible by any bad prime; 
hence in particular they are coprime. The natural way to proceed is to perform the 
count on V\ U Li and then allow for those rational points which lie on one of the 
lines other than the Li. The latter step presents no difficulties because almost all the 
rational points on these lines come either from very special sets of 6 or from values 
of A much larger in terms of N than those which we shall be considering. 

Lemma 2. — (i) If P is a rational point on L\ or L" then we have 6 — A 6 — 0 
6>r6 — a^i = 0 respectively. 
(ii) The number of rational points on Lf, L" or some L^ with preassigned a\,..., a$ 
and with h{P')h{P") < N is bounded by C(log N)4. 
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6 JOHN B. SLATER and SIR PETER SWINNERTON-DYER 

Proof. — We have already proved (i). Suppose for example that P is on L'; then the 
ideals (fo — <^£i) and ai differ by a factor drawn from a finite set depending only on 
V. This means that £o — — eli where 7$ is an integer in fc* drawn from a finite 
set depending for preassigned a* only on V and e is a unit in k{. By multiplying 7$ by 
a suitable unit in ^ we can ensure that \<r)i\ > C for every embedding a : k{ —> C. 
This and h(P') < N imply that \ae\ < CN for every cr; since [fc$ : Q] < 5, there are 
at most C(log N)4 units e with this property. If oti is not in Z a knowledge of e and 
7i uniquely determines £0 and £1. If however each a% is in Z then there are only two 
possible values of e for each 7$, and a knowledge of more than one of the £0 — 1 
determines £0 and £1. In either case P = P', so a knowledge of P1 determines P. 

Finally suppose for example that P is on L123. For i = 1,2,3 we know that 
(£0 — <̂ £i)> (£2 — and 0« differ by factors drawn from a finite set of ideals de­
pending only on V. Since if L123 is rational the set {Li, L2, L3} is a union of com­
plete sets of conjugates over Q, an argument like that of the previous paragraph shows 
that for any preassigned en there are at most C(log TV)2 possible P' with h(P') < N, 
and a similar result holds for P". • 

The next step will be to estimate, under suitable conditions, the number of rational 
points in U which satisfy 
(6) h(P') < TV', \N" ^ h(P") < N" 

for given en and given TV7, N". The pairs P', P" which satisfy 

(7) £0 - «zf 1 = f2 ~ A 6 = 0 mod ca 
are precisely those given by 
(8) £0 = A?7o + ar/i, £1 = r/i, £2 = A772 + £3 = 773 
for some integers where a, & have been chosen so that 

a — ai = b — @i = 0 mod ai 
for each i. (That we can find a, b with these properties depends on the facts that the 
en are coprime and divisible only by first degree primes.) We can clearly assume 
that both a and b are absolutely bounded by A. The condition that £07 £1 are coprime 
is equivalent to 7/1 being prime to both A and 770; and similarly for £2, £3- The first 
condition (6) is equivalent to 
(9) foil < IfjD + aA -Vl < A - 1 ^ 

and the second condition (6) is equivalent to either 
(10) \N" ^ \щ\ < N", \r¡2 + ЪА-%\ < A-'N" 

or 
(11) M < \ \N", ±A-lN" < \m + bA-%\ < A^N". 
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To obtain all the rational points on V which satisfy (6) and have the given values 
of the di, we let the m run through all sets satisfying (9) and either (10) or (11), 
and reject all those for which £o?£i are not coprime, or £2,̂ 3 are not coprime, or 
(£0 — <^£i,£2 — AC3) is a strict multiple of for some i. We shall say that a set 
of rji fails at a prime p if p divides both £0 and £1, or both £2 and £3, or if there is a 
prime factor p of p in ki such that pĉ  divides both £0 — and £2 — 3 for some 
i. We shall call a set of rji allowable if it does not fail for any p\ note that such a 
set may still give rise to a point on one of the 27 lines. Whether the rji fail at p only 
depends on the values of the rji mod p. For any prime p, let np be the number of 
sets 770,..., 773 mod p which fail at p. Here np depends on the a* as well as on V 
and p. It is not hard to give an explicit formula for np, but all we shall need are the 
obvious estimates, forp a good prime, that np = 2p3 + 0(p2) if p|A and np = 0(p2) 
otherwise. Because the a* are allowable, np < p4 for all p. 

Lemma 3. — Assume that the <Xi are coprime and that none of them is divisible by 
any prime in k lying above a bad prime. Suppose that 

A < n1/2 and log max(7V', TV") < n, 

where n = min(7V', N"). Then, provided that N' and Nn are large enough, the 
number of rational points in U which satisfy (6) and give rise to these ai differs from 

3(N'N"/A)2L[(l-p-4np) 

by at most C(N'N"/A)2(log log n)"1/2, for any T satisfying 

3 log nI log log log n > T > log n J log log log n. 

Proof. — It is well known that there is an absolute constant C4 such that 

(12) ^logj9 < C4X provided x > 2; 
p<x 

thus the condition on T ensures that TlogT is large compared to logn and that 
Q < nc/ log log logn where Q denotes the product of all the primes less than T. We 
assume n so large that all the bad primes are less than T, and to fix ideas we assume 
that n = Nf. In what follows we shall use square brackets to denote integral parts. 
The set of pairs 770, rji satisfying (9) contains 

^N'lQpK^N'/Q) 

disjoint parallelograms each of which consists of a complete set of pairs incongruent 
modQ; and the pairs left over are contained in a further 

[2N'/Q] + [2A-1 N'/Q] + 1 < CN'/Q 
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8 JOHN B. SLATER and SIR PETER SWINNERTON-DYER 

such parallelograms. A similar argument holds for the pairs 772,% which satisfy 
either (10) or (11); this time the number of filled parallelograms differs from 

3iV"2/AQ2 

by at most CN"/Q, and the pairs left over are contained in a further CN"/Q such 
parallelograms. Each product of two filled parallelograms contains Ylp<T{p4 ~~ nv) 
sets which do not fail at any prime less than T. Hence the number of sets of 77̂  which 
satisfy (9) and either (10) or (11) and which do not fail at any prime less than T 
differs from 

(13) 12(AT'AT"/A)2n(l-P~V> 
p<T 

by at most CN'N"2Qh~1. In going from sets rji to pairs P;, P" we lose a factor 
4. The sets with 770 = 771 = 0 or 772 = 773 = 0 have already been rejected because 
they fail at every p. The number of other sets 77̂  which satisfy £0 — ai£i = 0 or 
£2 — — 0 f°r some i with a ,̂ $ in Z is bounded by CN' N"2 K~l, which can be 
absorbed into the previous error term; since those of them which are allowable give 
rise to a point on some L[ or L", we can rule them out now. 

Next let p be a prime satisfying T ^ p < N'. By an argument similar to that in 
the previous paragraph, the number of sets 77̂  which satisfy (9) and either (10) or (11) 
but which fail at p is at most 

(14) C{p-2hrxNl2 + p^TV'XP^A"1^"2 + p^N^rip. 

There are at most C log A/ log T primes not less than T which divide A, and for each 
of them p ^ A and np < Cp3. Thus the sum of the expressions (14) taken over all 
such primes is bounded by 

CN'2N"2A~2 (log A / log T)T_1. 

If p does not divide A then np < Cp2. The sum of the expressions (14) over primes 
p not dividing A and such that T < p < N' is bounded by 

CN'2N"2A^T'1 + CN'N"2h~l log log N' + CN'2N"/ log TV', 

because ^2p~x taken over these primes is bounded by C log log Nf. 
Now suppose that p > N'. If p divides £0 and £1 we must have £0 = £1 = 

0, and we have already ruled out all 77̂  with this property. If there is a prime p 
above p such that pĉ  divides {0 - <*»£i and £2 - f°r some h then p must divide 
n(£o — <*t£i); we have already ruled out all 77̂  for which this vanishes and it is 
absolutely bounded by CN'5, so for preassigned 770,771 at most five primes p > N' 
come into consideration. For each of these p there are at most 

CN"(p~1A-1N" + l) 
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pairs 772,773 such that pĉ  divides £2 — $ £ 3 . Hence the number of sets rji which fail 
in this way for some p > Nf but which have not been previously rejected is bounded 
by 

CN^A^N'^N'^A^N" + 1) = CNfN"A~2(N" + ANf). 

Again, p can only divide £2 and £3 without them both vanishing if p ^ TV"; and in 
this case there are at most 

Clp-'A^N"' + p-lN") 

pairs 7/2, rjs with this property. Multiplying by CN' A-1 to allow for the choice of 
770, rj\ and summing over all p with Nf < p < TV", we find that the number of sets 77̂  
which fail in this way for some p > Nf but which have not been previously rejected 
is at most 

CN'N"A~2(TV" + N'A log log TV"). 

Gathering these estimates together, we find that the number of sets rji which do not 
fail at any prime differs from (13) by a sum of terms each of which is dominated by 

(15) C 
' N'N" 

A 

2 log T + log A 
TlogT 

We must also rule out the sets rji which do not fail at any p but which give rise to a 
point on one of the 27 lines. But we have already ruled out the rji which satisfy the 
condition in Lemma 2(i), and those which satisfy the condition in Lemma 2(ii) can 
be absorbed into the error term (15). • 

Corollary 1. — Assume that the ai are coprime, that none of them is divisible by any 
bad prime, that H is large enough and that A < iif Write 

T = log H/3 log log log H. 

Then the number of rational points in U of height at most H which give rise to these 
ai is at least 

(16) {C J J (1 ~P~Anp) - C(loglogHr^2}HA-llogH. 
P<T 

Proof — For each r with 0 < r < logiJ/61og2 apply Lemma 3 with N' = 
2rAi/4Hi/6 and Nn = 2-rC3~1/2A1/4#1/3, where C3 is as in (5). It follows from 
(5) that every point with these ai satisfying (6) has h(P) < H; and we have 

CAi/4jyi/4 > r = min(J/V/,N") > CA^H1^ 

and max(iV', N") ^ CA1/4^1/3, so that all the conditions of Lemma 3 are satisfied. 
Moreover the sets defined by (6) as r varies are disjoint. Hence the number of rational 
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10 JOHN B. SLATER and SIR PETER SWINNERTON-DYER 

points in U of height at most H and with these a* is at least 

J^HA-l{C H(l -p~4np) - C(loglogtf)-1/2)}, 
r p<T 

which is the result claimed • 

Remark 1. — The most we can say about Y\P<T(1 ~ P~*np) in general is that it 
is at least (logT)~c; so the error term in Lemma 3 is not always smaller than the 
leading term, and (16) is not always positive. But this blemish is coped with by the 
averaging process employed in the proof of Theorem 1. 

To complete the proof of Theorem 1, we have to sum the expression (16) over 
a sufficiently large collection of allowable sets az. Recall that the Li form r — 2 
complete sets of conjugates over Q. After renumbering, we can assume that no two 
of L i , . . . , LR-2 are conjugate over Q. For each % let Â  = Normc^; thus a good 
prime p divides at most one of Ai,. . . , Ar_2 and such a p can divide Â  only if it has a 
first degree factor in ki. Moreover A = Ai... Ar_2. We take T as in the Corollary to 
Lemma 3, and assume H so large that all the bad primes are less than T. Now write 
M — iJ1/11(r_2); bearing in mind Lemma l(ii), we shall allow the a* to run through 
all sets such that each pair ĉ , cij are coprime in k, no ai is divisible by any prime in 
k above a bad prime, and each Â  ^ M. In view of the Corollary to Lemma 3, in 
order to prove Theorem 1 it is only necessary to prove the following result: 

Lemma 4. — We have 

(17) Y*A_1 < C(log HY'\ YA~' I I ^ (C ( K ) + o(l)) > C' (log n y - \ A r x 

where the sum is taken over the sets ai specified above. 
Proof. — It is well known that for any algebraic number field K and any X > 1 
there is a constant C(K) such that 

(18) ^(Norma)-1 = (C(K) + o(l)) logX, 

where the sum is taken over all integer ideals a with Norm a < X. Now 

d9) A_1 = E ( A i • • • A-2)_1 < I I E Arx) 
¿=1 

where the sums on the left and in the middle are taken over the same collection as in 
(17) and the sum on the right is taken over all integer ideals in ki of norm at most M. 
By (18), the expression on the right of (19) is bounded by C(log H)r~2. 

The proof of the second inequality (17) is similar but more complicated. We can 
multiply each term in the sum on the left by an expression of the form ]̂ [(1 + cp), 
where the cp vary from one term to another but are uniformly 0(p~2)\ for in doing so 
we multiply the terms by uniformly bounded factors. Bearing in mind the information 
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about the np which appears just before the statement of Lemma 3, it is therefore 
enough to prove that 

(20) EA "I^1 -P"1)2 > C{\ogH)r-\ 
where the product is over those p <T which divide A and where the sum is over the 
same collection as in (17). Recall that J2i~2[^i : Q] = 5. If we multiply the left 
hand side of (20) by (J2 n~~2)10, which does not affect the truth or falsehood of the 
inequality provided we make a compensating adjustment of the value of C, we obtain 
an expression which exceeds ]P A-1 n ( l ~~ P1)2 where now the sum is taken over 
all sets of ai with each \ ^ M and the product is taken over all first degree primes 
pi in some ki which divide ai and have p = Normp^ < T. This expression is equal 
to 

r-2 n 
i = 1 

M K1 n ( i - jr1)2); 

so to prove the second inequality (17) it is enough to prove 

5 = EAr1II(1-^1)2>c'log^ 
But if we choose a first degree prime pi in ki with p = Normpi < T, the left hand 
side can be written as 

(21) (l+p-1(l-p-1)2)S1 + S2 
plus some terms arising from p2|a^ which we ignore; here 5i consists of those terms 
for which pi does not divide a; and Norm ai ^ Mp-1, and #2 consists of those terms 
for which pi does not divide ai and Norm ai > Mp~x. If we multiply the first term 
in (21) by 

(i +P-l(i -P-l)2)-\i -p-1) = 1 + 0(p~2) 
and delete certain terms, the effect is precisely to delete the factors (1 — p-1)2 in S 
corresponding to p .̂ We can do this for each p̂  in turn, and this reduces the inequality 
which we are seeking to prove to (18). • 

It may appear that by a slight refinement of the argument we could obtain a two-
sided estimate for N(U, H) under the hypotheses of the Theorem. But this seems 
not to be so. The problem is that we need estimates like those of Lemma 3 in three 
essentially different kinds of case: when N" ^ N' ^ A1/2, when N" > A1/2 > N' 
and when A1/2 ^ N" ^ N'. The first can be dealt with by the methods of Lemma 
3, and we can also deal with the second though the arguments are more complicated. 
But we do not at present see how to deal with the third case. 
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