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E Q U I D I S T R I B U T I O N T H E O R E M S 
(d'après P. D E L I G N E et N. K A T Z ) 

Benji FISHER 

1. I N T R O D U C T I O N 

T o fix i deas , let p b e a p r ime number , Fp the field with p e lements , and 

K = Fp(t). L e t Ksep b e a s epa rab l e closure of K and S a finite se t of p laces of 

K. L e t / b e a p r ime other than p and consider a (cont inuous) representa t ion 

p: Gai(Ks^/K) — > GLN(<Q>/) 

of the G a l o i s g roup , unramified outs ide S. For p laces v of K ou t s ide 5 , we 

define (a r i thmet ic ) F roben ius e lementss ss<j)v in the Ga lo i s g roup GQalcb(Kaep/K) 

and consider 

trp(v) 
dei Gai(Ks^/WX 

the " t race of F roben ius , " and 

det(rid-/>qq((^)), 

the "character is t ic po lynomia l of Frobenius ." (Actual ly , <f)v is only defined up 

to conjugat ion , bu t this does not affect the t r ace and charac ter i s t ic po lynomia l . ) 

For e x a m p l e , if E is an elliptic curve over K which ha s g o o d reduct ion 

ou ts ide S and if Ti(E) is the T a t e m o d u l e of E then we can t ake 

p = Pl: Gal(Kse*/K) —+ G L Q/ ®Ti(E)). 

It is well-known tha t 

d e t ( T i d - / > ( ^ ) ) = T 2 -tvp(v)T + qv; 

ti'p(v) = a + a = l + qv- #EV(KRR(V)) , 

where K(V) is the res idue field a t v, Ev is the (good) reduct ion of E a t v, 

Qv = # ^ ( ^ ) 5 and a , a a re the eigenvalues of Frobenius . Fur thermore , a and 
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B. FISHER 

a a re a lgebra ic numbers ; considered a s complex numbers , | a | = |a |QSQ =xxv<<<c 
whence the "error t e rm" in #EV(K(V)) is bounded: 

Gai(Ks^/!+D</„D-DD #EV 1.? | t r » | < 2,/!+</„q;. 

T h e goal of this pape r is to descr ibe De l igne ' s equidis t r ibut ion theorem in 
t e rms famil iar to a number theoris t . One appl ica t ion of this theorem is tha t 
the normal ized "error t e rms" 

trp(v) 

„- #EV 

12 
S1 

!+</„- . ! + < / „ - #EV 
/„- #EV € [ - 2 , 2 ] 

are a p p r o x i m a t e l y equidis t r ibuted in the interval [—2,2] ( a s s u m i n g tha t 
j(E) e K = ¥p(t) does not lie in Fp). 

It t akes s o m e work to descr ibe exac t ly what is mean t by a p p r o x i m a t e equidis­
t r ibut ion, bu t it is ac tua l ly qui te explici t . When giving expl ic i t e s t i m a t e s , it is 
convenient to fix a power of p. s ay 

V 

q = P»W 

a n d to consider p laces v, weighted by deg(v ) D= [K(V) : Fp], such tha t 
K(v) Q H?q- One consequence of Del igne ' s theorem is tha t ( to continue the 
ell iptic curve e x a m p l e ) 

1 

Nr 
V 

]deg(w) 
t r ( p ( v ) p / d e s < , ' > ) 

!+<X/„ = 0 
1 

^1 
a s r — > oo, 

where 

Nr = 
V 

] deg(v ) 

and bo th s u m s are over v £ S such that c leg ( i / ) | r . No te tha t m o s t v for which 
deg(w) |r ac tua l ly sat isfy deg ( i> ) = r. T h u s Nr is a p p r o x i m a t e l y r t imes the 
number of p laces v for which d e g ( i ; ) = r and the quant i ty inside the abso lu te 
va lue s igns is app rox ima te ly the average of the normal ized t r aces of Frobenius 
(or "error t e r m s " ) for such v. 

T o be comple te ly explici t , let E be the curve given by the Weiers t rass equa­

tion 
E : y2 = xs - tx2 + t. 

Accord ing to Tate's formulas ([7, §2] or [6, I I I . l ] ) , 

A = 1 6 * 2 ( 4 t 2 - 2 7 ) ; j = 
256* 4 

4 * 2 - 2 7 ' 
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EQUIDISTRIBUTION THEOREMS 

so E is elliptic and j is not constant for p > 2 . If p = 3 then £" has good 
reduction outside S = { 0 , oo} (and there is wild ramification at 0 ) and if p > 3 
then E has good reduction outside S = { 0 , oo, ± ( 2 7 / 4 ) X / 2 } . For p — 3 , 

1 

deg(ux <; 
deg(u) 

tr(/;(^r/deg(t;)) 

deg(u, 
< 2 ^ 

9 - 1 

for p > 3 , A^R = q - 1 - #{rr G F9|.T2 = 2 7 / 4 } and the bound is 4/(y/q - 1 ) or 
degudeg(uv<wx 

There are several sections labeled Trans l a t ion . These are intended to help 
the reader who wishes to consult sources written in the language of algebraic 
geometry rather than that of number theory. These sections can safely be 
skipped on a first reading. 

2 . G A L O I S G R O U P S 

N o t a t i o n 2 . 1 . Let K be a global field: that is, K is a finite extension either of 
Q (the unequal-characteristic case or the number-field case) or of Fg(£), where 
Fq denotes the finite field with q elements (q a power of a prime p) and t 
is an indeterminate (the function-field case or the equal-characteristic case). 
Deligne's equidistribution theorem applies only in the equal-characteristic case, 
but most of the ideas in this paper make sense in either context. Let 5 be a 
finite set of places (equivalence classes of discrete valuations) of A . (Elements 
of S are thought of as "bad primes" in the number-field case and as "points 
at infinity" in the function-field case.) Let /Qr be the maximal separable 
extension of K which is unramified outside 5; thus K^T is the union (in a fixed 
algebraic closure of A") of all the finite, separable extensions L/K which are 
unramified outside 5 . We will discuss representations of G a l ( A § r / A ) , i.e., 
representations of Gal(A'sep/-fQ (where A'sep denotes a separable closure of 
K) which are unramified outside S. 

R e m a r k 2.2. Ga l (A^r /A ' ) can also be described as the inverse limit of 
Gal(L/AT), where L runs over the finite Galois extensions of K which are 
unramified outside of S. Another description is as the quotient of Ga^AT^/AT) 
by the closed, normal subgroup generated by the inertia groups Iv for v S. 
Note that, for v G S, Iv has no/A-trivial image in Ga\(K§T/K). 

T r a n s l a t i o n 2.3. If K is a number-field, let X = Spec OK] if K is a function-
field, let X be the smooth, connected, projective curve with function field K. 
{E.g., X = Pjr when K = Fq(t)). In either case, let U = X - 5 . Then 
Ga l (A^r /A ' ) is called the fundamen ta l g r o u p of J7, denoted ni(U). It is a 
pro-finite group. 
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T o be precise , this is the fundamental group of U with the "base point" 
the choice of an a lgebra ic closure of K\ a different choice of b a s e point would 
amoun t to app ly ing an inner au tomorph i sm to 7Ti(?7), which is irrelevant for 
the p u r p o s e s of this paper . 

We will not try to just i fy call ing this a "fundamental g r o u p " . Suffice it to 
s ay tha t (a) there is such a just if icat ion; (b) there is a more general definition 
of which this is a spec ia l case ; (c) this is an e x a m p l e of the abi l i ty of a lgebra ic 
geomet ry to app ly geometr ic notions to number theory; and (d) a s imi lar def­
inition, with X a c o m p a c t R i e m a n n surface, K the field of ra t ional functions 
on X , and U equal to X with finitely m a n y points removed, l eads to TTI(U) iso­
morphic to the profinite complet ion of the ordinary ( topologica l ) fundamenta l 
g roup of U (with the i somorph i sm depending on the choice of b a s e po in t ) . 

3 . G A L O I S R E P R E S E N T A T I O N S 

A representa t ion of Gal(Kgr/K) is the s a m e a s a representat ion of 
Gal(ATsep/AT) on which the inert ia group Iv a c t s tr ivial ly for v £ 5 ; i.e., a 
Ga lo i s representat ion which is unramified outs ide S. We will consider / -adic 
representa t ions; i.e., representat ions over Z / , Q/, or finite ex tens ions of Q/, 
where / is a p r ime different from the residue character is t ics of p laces v for v £ S. 
(In par t icu lar , if we refer to a representat ion over Qt then we really m e a n a 
representa t ion over an unspecifed finite extension of Q/.) We are especia l ly 
interested in the characters of representat ions , which we refer to a s the t r a c e -
funct ions of the representat ions; and we eva lua te these trace-functions a t 
espec ia l ly nice points : 

Def ini t ion 3 . 1 . S ince K is a global field, the residue fields K(V) (where v is 

a p lace of K) are finite and so Ga\(K(v)sep/K(V)) = Z</>v, where <f>v is the 

(ar i thmet ic) Frobenius au tomorph i sm a \-t a^K^v\ 
L e t v b e any lift of v to A"sep and let D„ and I„ denote the decompos i t ion 

and iner t ia g roups a t v. (Of course , when we write 4 , a s we did above , we 
real ly m e a n I„ for s o m e such v.) Reca l l that 

(*) Z(f>v = Gal(*.( i ; )8ep/K : (*0) ^ Dy/h Q G a l ( A s e p / A ) / / i 7 ; 

thus if v £ S (v is a "good p r ime" ) there is a m a p Z(j>v — > Gal(AT§r/AT), 
which d e p e n d s on the choice of v. B y a b u s e of nota t ion, the i m a g e of (j>v 
(or the con jugacy c lass of this i m a g e , which is independent of the choice of 
v) is denoted <j)v G G a l (AT})1'/AT); it is cal led the F r o b e n i u s e l e m e n t a t v. 
Given a representat ion p of Gal(ATgr/AT) and a p lace v £ 5 , there is a well-
defined " t race of Frobenius" trp(v) = tv(p(</>v)) and "character is t ic po lynomia l 
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of Frobenius" det(Tid —p{<t>v))- If V is the representation space of p then we 
often write tr{(f)v\V) for tr(/>(0v)) and det (T id for det(T id-/&(&,)). 

Translation 3.2. Algebraic geometers usually work with the geometric Fro­
benius element Fr^ = (j)v~l G Gal(K,(v)sep//c(v)). In terms of the geometric 
Frobenius Frv, one considers the characteristic polynomial det(id—TFrv |V). 
It has the same roots as det(Tid — (f)v\V). 

Let Fq be a finite field and .T € U(Fq) an Fq-valued point of U which lies 
over v. I.e., let .T: Spec if —> U factor through Spec/^(t;) —> U. Then 
7Ti (Spec if) = Gs\{Fq/Fq) = ZFrjj , where Fr^ denotes the inverse of a9, 
and x induces a map TTI (Specif) —> ^i{U). If Fq = K(V) then this is the same 
map as (*) above. The image of Fr^ under this map is denoted Frx or Fr^jX. 
The map 

7Ti(SpecF9) —> 7ri(SpecK(v)) = Gal(K(v)sep/K(V)) 

takes Fr^ to Frv №':k(i,)] and so Fvx = Frv №>'Mv)] e ^{p)m 

Example 3.3. Let E be an elliptic curve over K, as in the introduction (except 
that now K can be any global field). Fix a prime number /. Let S be the set 
of all places at which E has bad reduction or which have residue characteristic 
/. Let p = pi be the representation of Gal(Ksep/K) on the Tate module 
Vi = Qi <g)Ti(E). By the criterion of Neron-Ogg-Shafarevich ([7, Theorem 4] or 

[6, III.7]), p is unramified outside 5. At a place v $ 5, Ti(E) = Ti(Ev), where 
Ev is the (good) reduction of E at v, by [7, Theorem 4] or [6, III.7 and VII.3]. 
Thus by [7, §5] or [6, V.l] the characteristic polynomial of Frobenius at v is 

det(Tid -p(</>v)) =(T- av)(T -aZ)=T2 - avT + qv, 

where qv = #K(V) and av = trp(v) = 1 + qv — #EV(K,(V)). 

Example 3.4 (Function-field case) . Let K = Fq(t). Let ^ be a non-trivial 
additive character of IEvy; for example, i/>(a) = exp(27rz trjFq/jFp (a)/p) = £ptTTfi/1Fp(aK 
Let % be a multiplicative character of Fq; even the case where x ls the trivial 
character is interesting. Let a be a solution to aq — a = t and let /3 be a 
solution to fiq~~l = t. Then the Artin-Schreier extension Fq(a)/Fq(t) gives a 
map 

Gal(F , (*RP /F,( t ) ) — » Gal(F,(a)/F,(t)) 4 F, Z[<p]x, 

where (p is a primitive root of unity of order the characteristic of Fq. Con-
sidering Z[CJX C Q/ , we get a one-dimensional /-adic representation p^\ 
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we denote i ts representat ion s p a c e by C^. Similar ly, the K u m m e r extension 

W)/Fq(t) g ives a map 

Gal(F,(i-)8ep/F«(*)) — » Gal(Fq(ß)/Fq(t)) ^ F / A Z[C,-i]x, 

and a representa t ion px on a one-dimensional s p a c e £ x . 

It is not hard to see tha t is unramified outs ide {00} a n d tha t Cx is 

unramified ou ts ide { 0 , 0 0 } . Wi th a little work, one can a l so see tha t if v ^ 00 

ex tends to a p lace v of Fq (t) and t — a is a generator of the m a x i m a l ideal of v 
11 
then 

t r ^ l ^ ) = ' 0 ( t r F q H / ^ ( a ) ) . 

Similar ly , if v & { 0 , 0 0 ) then 

t r ( 0 t , | £ x ) = x ( N ^ / H / ^ ( a ) ) . 

T r a n s l a t i o n 3 .5 . T h e notat ion here is non-s tandard . Usual ly , one defines 

and Cx to b e what is here called and Cx, so tha t the above formulas hold 

with <f>v rep laced with Frv. is a one-dimensional representat ion of ^ ( A 1 ^ ) 

and Cx is a one-dimensional representat ion of 7Ti(Gm)Fq)? where A1 = P1 — {00} 

and Gm = A1 — { 0 } . Any a E Fqr can be considered a s an element of A1(F9r), 

i .e., a s a m a p Spec Fqr —y A1, or a s a m a p Fq[t] —> F q r . If p denotes the 

kernel of Fq[t] —> Fqr and v denotes the p lace corresponding to p then we have 

the s i tua t ion descr ibed above . Le t F r^ r >a = FYv r/des(v). Then , us ing s t a n d a r d 

nota t ion, 

(Va € Fqr = A1 (F,r)) tr (Fra | £ 0 ) = 0 (tr* P /F, ( a ) ) ; 

(Va G F,rx = Gm(Fqr)) t r ( F r „ \CX) = x ( N v / n r ( a ) ) . 

R e m a r k s 3.6. Var ious a lgebra ic manipu la t ions can be done on the level of 

representa t ions . For e x a m p l e , t rP0a = trp + t iv and trp®a = t r p - t r a . In s o m e 

ca se s , it is a l so poss ib le to define convolutions. In par t icular , (general ized) 

K l o o s t e r m a n s u m s can be deal t with in this set t ing: given a non-tr ivial addi t ive 

character i\) and arb i t ra ry mul t ip l ica t ive characters xi ? • • • > Xn 

of Fqx, there 

is a representa t ion K of Gal(iTgr/.fiT) ( 5 = { 0 , o o } ) , ob ta ined by convolving 

C$ ® CXi (i = 1 , 2 , . . . ,n ) , so tha t 

tv(<j>v I K) = ( - I ) " " 1 

u\ ...un — a 

\ i/>(ui + • • • + un)xi(ui)... Xn(Un) , 

where the s u m is over n- tuples in Fq[a] with produc t a and where i\) and the 

Xi a re ex tended to Fq[a] by t race and norm. Tak ing n = 2 and bo th xi and X2 

to b e the tr ivial character , we get the ordinary K l o o s t e r m a n s u m . For de ta i l s , 

see [3, C h a p t e r 5] and [5, §8.1]. 
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4. E Q U I D I S T R I B U T I O N 

Del igne ' s theorem appl ies only to the function-field ca se , to which we will 
restr ict after a few more definitions. 

Defini t ion 4 . 1 . Le t p b e a representat ion of Gs\[K^T / K) on a vector s p a c e 
V. T h e (ar i thmet ic) m o n o d r o m y g r o u p of p, denoted Garith? is the Zariski-
closure of the i m a g e of p in G L ( F ) . In the function-field case , the g e o m e t r i c 
m o n o d r o m y g r o u p of p, denoted Ggeom, is the m o n o d r o m y group of 

p | G a l ( J Q r / J « Q , i.e., the Zariski-closure of p(Gal(Kf/K%)^ in GL(V). 

E x a m p l e 4 .2 . If p is the representat ion of Gal(K§T/K) on the T a t e m o d u l e 
of an elliptic curve in the function-field case then G g e 0 m = S L ( 2 ) according to 
[2, Lemme 3 . 5 . 5 ] , unless j is a constant . (This is why we a s s u m e d j £ Fp in 
the Introduct ion.) 

T r a n s l a t i o n 4.3. Recal l that G a l ( / Q r / 7 v ) = 7Ti(J7), where U is the curve 
X — 5 . We a lso have 

Gsl(K¥/K¥Q) = 7 r f o m ( t / ) d=f 7Ti(tf ® E ) C mfU). 

For e x a m p l e , if U = A 1 ^ then J 7 ® F„ = A ^ . 

R e m a r k s 4.4. It is often convenient to think of GL(y) a s an a lgebra ic group. 
When V is a vector s p a c e over Q/ or a finite extension of Q/, one can think of 
G L ( V ) a s an / -adic L ie group; or one can imbed Q/ C and think of it as 
a complex Lie group . Usual ly , one can work in whichever context one is m o s t 
comfortable; the representat ion theory is the s a m e in any of these contexts . 

Definit ion 4 .5 . A representat ion p is p u r e of weight 0 if, for all v £ S and 
all e igenvalues a of p(4>v), | a | = 1 for all Archimedian abso lu te values | • |. 

E x a m p l e 4.6. The re is a "twisted" K l o o s t e r m a n representat ion, denoted 
K l-n 

2 such tha t 

tv((j)v I /C 
(l-n 

cv 
7rfom(t/) d=f 7Txwf ®E) C mfU).cv 

T h i s twis ted K l o o s t e r m a n representat ion is pure of weight 0. 

T r a n s l a t i o n 4.7. Normal ly , one defines a representat ion T such tha t 
t r ( F r v | T) g ives the K l o o s t e r m a n s u m . Th i s T is the dual (contragradient) 
representat ion of /C: T = / C v . T h e relation between the normal ized (weight-0) 

representat ions is hk ' n - R 
2 

KKX 1 - 7 1 
2 

\ V 
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L e t p : Gal(K§T/K) —> GL(V) be an /-adic representat ion which is pure 
of weight 0 and let G = G a i i th be its (ar i thmet ic) m o n o d r o m y group , thought 
of a s a complex L ie group, ( i . e . , fix a complex imbedd ing of Qh or of an 
appropr i a t e finite extension of Qi if you do not like the a x i o m of choice, and 
let G denote the group of C-valued points of G a r i th - ) Le t T b e a m a x i m a l 
c o m p a c t s u b g r o u p of G. For any v £ 5 , p{4>v) has all e igenvalues of abso lu te 
va lue 1 s ince p is pure of weight 0. T h u s if p((/>v)s^s denotes i ts s emis imple par t , 
in the sense of (mult ipl icat ive) J o r d a n decomposi t ion , then the closure of the 
s u b g r o u p genera ted by p(<j)v)s/s is compac t , and so s o m e conjuga te of p((f>v)s^s 

lies in T. 
Of course , (f)v is only defined up to conjugat ion in G. S ince G and V have the 

" s a m e " representa t ions , and characters of representat ions s e p a r a t e conjugacy 
c las ses , p((f>v)s^s gives a well-defined element 9(v) E T\ where denotes the 
set of con jugacy c lasses of T. Since T is a c o m p a c t group, we can consider Haa r 
m e a s u r e on T (normal ized to have total m a s s 1) and its direct i m a g e , which 
will be denoted p \ on TK 

We are now ready to s t a t e Del igne ' s equidis t r ibut ion theorem. Our s t a t e ­
ment follows [3, T h e o r e m 3.6]; see also [2, Theo reme 3.5.3] . 

T h e o r e m 4.8 ( D e l i g n e ) . Let p : Gn\(K%r/K) —> GL(V) be an l-adic rep­
resentation which is pure of weight 0. Assume that G g e o m = Garith = = G. Then 
as v runs over the places of K, v £ S, the conjugacy classes 9(v) correspond-
ing to p(<f>v)s^s &re approximately equidistributed in with respect to p ^ , the 
direct image of Haar measure. More precisely: for any non-trivial, irreducible, 
complex representation AofT (or of G) and any r, 

1 
Nr 

V 

deg(v)trCVWXWA(6(v)r/de&(-v)) = 0 
d i m A 

v qr/2 

where Nr = Y^v d eg (v ) and both sums are over places v S such that deg(v) \ r 
The bounds implicit in the O can be made explicit. 

R e m a r k s 4.9. (1) It should be clear what a power of 6(v) G m e a n s . 
(2) T h e concrete e x a m p l e a t the end of the introduction was ob ta ined by tak­
ing A to b e the s t an d a rd two-dimensional representat ion of G = S L ( 2 ) . T h e 
power of p in the denomina tor a p p e a r s because the s t a n d a r d representat ion on 
the T a t e m o d u l e m u s t be twisted to m a k e it pure of weight 0. G e t t i n g explici t 
b o u n d s for p = 3 involves s o m e calculat ion because of wild ramificat ion. For 
ca lcu la t ing explici t bounds , see [3, equat ion 3.6.3] . 
(3) E s t i m a t e s for s u m s over v S such tha t deg(v) = r or deg(i ; ) < r follow 
from the e s t i m a t e given above . (Cf the remarks m a d e in the Introduct ion.) 
(4) If a set S of points in 1^ is perfectly equidis t r ibuted with respect to /i* then 
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averaging a continuous function over S is the s a m e a s integrat ing with respect 
to fjfi. Any continuous function on can be uniformly a p p r o x i m a t e d by a lin­
ear combina t ion of irreducible characters , so S is equidis t r ibuted if the average 
over S of tro A is 0 for all non-trivial, irreducible, complex representat ions A. 
T h i s is the sense in which this is an equidistr ibut ion theorem. 

C o r o l l a r y 4.10. When Deligne's theorem applies, { t r p((f>v)} = { * r p ( v ) } 15 

(approximately) equidistributed m tr ( r ) with respect to the direct image of Haar 
measure. 

R e m a r k 4 .11 . T h e condit ion Gge0m = Garith is rather mys te r ious . T h i s au­
thor does not even know whether it holds for p © a or for p ® a given tha t 
it holds for p and for a. K a t z has shown that it holds for a twisted K l o o s t -
e rman representat ion IC(a) by showing that Ggeom is "as large a s poss ib le . " 
Here a G Q/X is an / -adic unit and IC(a) = /C(g)Q/ (a ) , where Q / ( a ) denotes 
the one-dimensional representat ion on which Frv a c t s a s mul t ipl icat ion by a. 
More precisely, Gge0m < Garith and K a t z shows tha t the normalizer of Ggeom 
in G L ( n ) is (scalars)Ggeom; the exis tence of such an a follows. T h u s Del igne ' s 
theorem and i ts corollary apply, so the (generalized) K l o o s t e r m a n s u m s for a 
given E , are ( approx imate ly ) equidis t r ibuted. 

T h e o r e m 4.12 ( K a t z ) . Assurne thatp > 2n + l and that ( x i j - - - ? X n ) is not 
K u m m e r - i n d u c e d . Then the connected component Ggeom(JC)° is "as large as 
possible": it is either S L ( n ) or SO(n) o r S p ( n ) . In the S O case, G^om{K) is 

no£ contained in ( sca lars ) S O ( n ) . Furthermore, there is an l-adic unit a G Q/ 
suc/i i/ia£ twisted Kloosterman representation K(a) is vure of weiaht 0 and has 

G geom = G arith 

For comple teness ' sake , we give 

Definit ion 4.13. A n n-tuple (x i , • • •, Xn) of mul t ip l icat ive characters is 
K u m m e r - i n d u c e d if there ex is t s a non-trivial mul t ip l icat ive character A such 
tha t (Axi , • . •, Axn) is a permuta t ion of ( x i , . . . , Xn) . 

R e m a r k s 4.14. B y S p ( n ) we m e a n the subgroup of S L ( n ) which m a n y would 
call S p ( n / 2 ) . No te tha t ( 1 , . . . , 1) is not Kummer - induced . In this case , the 
condit ion p > 2n + 1 is not necessary: for p > 2, Ggeom is either S L ( n ) (if n 
is odd ) or S p ( n ) (if n is even) , whereas for p = 2, Gge0m is either SO(ra) (if n 
is odd) or S p ( n ) (if n is even) , except that Ggeom is the except ional Lie group 
C?2 for p = 2, n = 7. T h i s is [3, Theo rem 11.1]; the above T h e o r e m is 
[4, T h e o r e m 13 and Corol lary 16]. 
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5. EXPLICIT STATEMENTS FOR ELLIPTIC CURVES 

Notation 5.1. Let K be a function field of genus g over a finite field ¥q and 
E/K an elliptic curve with good reduction outside of S (a finite set of places). 
For v £ S (a place of good reduction) let deg(t>) be the degree of v, i.e., the 
degree of the residue field K(V) at v over the ground field F„: and define 9(v) 
by 

1 + ^**W-#EV(K{V))=2 qdeg(v) COS0(U); 

also, if r is a multiple of deg(v), let 6r(v) d= (r/deg(v))9(v). Finally, let / 
be a prime other than the characteristic of K and let Ti(E) denote the Tate 
module of E. 

Remark 5.2. Suppose a matrix A G SU(2) acts on a two-dimensional complex 
vector space V with eigenvalues e±l°. (For our purposes, V will be Ti(E) ® C.) 
Recall that the irreducible representations of SU(2) are given by the symmetric 
powers Symn(V) (n = 0, 1, 2 , . . . ). Then A acts on Symn(V) with eigenvalues 
ejiOe-ki$ ^j_^jc = nj an(j one can ciiec^ that the trace of A on Symn(Vr) is 
sin(n + 1)9/ sin 9. 

With the above notation, the explicit form of Deligne's theorem is that 

V 
deg(v) sin(n + \)9r{y) 

s\\\9r\v) 
< {n + l)hn^f. 

(The sum is over places v £ S such that deg(v) | r.) The not-quite-constant 
hn is given by 

hn = 2g - 2 + # 5 + 

ves n + l 

1 rSwv(Symn7H£)). 

Here Swv denotes the Swan conductor, a measure of wild ramification (i.e., a 
measure of the action of higher ramification groups on the given representa­
tion). In particular, 

• If p > 3 then there is no wild ramification, so hn = 2g — 2 + # 5 , 
independent of n. 

• If n = 1 then, in the notation of [Sil, Appendix C , §16], the Swan 
conductor of the Tate module is given by 

Swv(Ti(E)) = Sv = fv - 2 = ordv(VE/K) - 1 - mVJ 

where fv is the exponent of the conductor at v, T>E/K LS the minimal 
discriminant of E/K, and mv is the number of irreducible components 
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( ignoring mult ipl ici t ies) of the fiber a t v of the Neron mode l of E. T h u s 

2 h x ^ = [2(2g - 2 + # 5 ) + 6v]y/^. 

In general , 
1 

n + 1 
S w v ( S y m n Ti(E)) is a t m o s t the larges t break of 

Ti(E) a t i/, which is a t m o s t the Swan conductor (since the Swan 
conductor is the s u m of the b reaks ) . T h u s 

h n < 2 g - 2 + #S + 

ves 
R e m a r k 5.3. References to the Swan conductor are somewha t sca t te red . B e ­
s ides the reference to [Sil] a l ready ment ioned (and the references therein) , one 
should consul t [ K a - 1 , Chap te r 1] and Chap te r 19 of Ser re ' s Linear Represen­
tations of Finite Groups. 
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