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EQUIDISTRIBUTION THEOREMS
(d’aprés P. DELIGNE et N. KATZ)

Benji FISHER

1. INTRODUCTION

To fix ideas, let p be a prime number, F, the field with p elements, and
K =E,(t). Let K®°P be a separable closure of K and S a finite set of places of
K. Let [ be a prime other than p and consider a (continuous) representation

p: Gal(K*P/K) — GL,(Q)

of the Galois group, unramified outside S. For places v of K outside S, we
define (arithmetic) Frobenius elements ¢, in the Galois group Gal(K*®**?/K)

and consider
def

trp(v) = tr(p(dy)),

the “trace of Frobenius,” and

det(Tid —p(4y)),

the “characteristic polynomial of Frobenius.” (Actually, ¢, is only defined up
to conjugation, but this does not affect the trace and characteristic polynomial.)

For example, if E is an elliptic curve over K which has good reduction
outside S and if T;(F) is the Tate module of F then we can take

p=pu: Gal(K***/K) — GL(Q 9 Ti(E)).

It is well-known that
det(Tid —p(¢y)) = T? — tr,(v)T + qo;
trp(v) =a+a=1+gq, — #E, (n(v)),

where k(v) is the residue field at v, E, is the (good) reduction of E at v,
gv = #k(v), and «, @ are the eigenvalues of Frobenius. Furthermore, o and
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B. FISHER

@ are algebraic numbers; considered as complex numbers, |a| = |[&] = /gy,
whence the “error term” in #F, (x(v)) is bounded:

|1+ 0 = #Bu (5(0)] = 1, (0)] < 2V,

The goal of this paper is to describe Deligne’s equidistribution theorem in
terms familiar to a number theorist. One application of this theorem is that
the normalized “error terms”

tr,,(v) 1
Vv Vv
are approximately equidistributed in the interval [—2, 2] (assuming that
J(E) € K = E,(t) does not lie in E,).
It takes some work to describe exactly what is meant by approximate equidis-

tribution, but it is actually quite explicit. When giving explicit estimates, it is
convenient to fix a power of p, say

L (14— ) €122

q=p,
and to consider places v, weighted by deg(v) < [£(v) : E,], such that
k(v) C F,. One consequence of Deligne’s theorem is that (to continue the
elliptic curve example)

L e S (1)
M;(leg(u) 7 =0 7 as r — 0o,

where
N, = Z deg(v)

and both sums are over v ¢ S such that deg(v)|r. Note that most v for which
deg(v)|r actually satisfy deg(v) = ». Thus N, is approximately r times the
number of places v for which deg(v) = r and the quantity inside the absolute
value signs is approximately the average of the normalized traces of Frobenius
(or “error terms”) for such v.

To be completely explicit, let E be the curve given by the Weierstrass equa-
tion

E:y?=2a%—ta? +t.

According to Tate’s formulas ([7, §2] or [6, III.1]),

256t4

A= 16t2(4t2 =-27);, j= proppyd
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EQUIDISTRIBUTION THEOREMS

so E is elliptic and j is not constant for p > 2. If p = 3 then E has good
reduction outside S = {0, 00} (and there is wild ramification at 0) and if p > 3
then E has good reduction outside S = {0, 0o, £(27/4)!/2}. For p = 3,

1 tr(p(o)/4e™) | 2./
q_lﬁvjdeg(v) 7 Pt

for p > 3, N, = ¢ — 1 — #{z € E|2® = 27/4} and the bound is 4/(,/g — 1) or
4,/q/N;.

There are several sections labeled Translation. These are intended to help
the reader who wishes to consult sources written in the language of algebraic
geometry rather than that of number theory. These sections can safely be
skipped on a first reading.

2. GaLois GROUPS

Notation 2.1. Let i’ be a global field: that is, K is a finite extension either of
Q (the unequal-characteristic case or the number-field case) or of F(t), where
E, denotes the finite field with ¢ elements (¢ a power of a prime p) and ¢t
is an indeterminate (the function-field case or the equal-characteristic case).
Deligne’s equidistribution theorem applies only in the equal-characteristic case,
but most of the ideas in this paper make sense in either context. Let S be a
finite set of places (equivalence classes of discrete valuations) of K. (Elements
of S are thought of as “bad primes” in the number-field case and as “points
at infinity” in the function-field case.) Let K§' be the maximal separable
extension of I’ which is unramified outside S; thus K¢ is the union (in a fixed
algebraic closure of I{) of all the finite, separable extensions L/K which are
unramified outside S. We will discuss representations of Gal(K&/K ), i.e.,
representations of Gal(/{**? /K) (where K*®" denotes a separable closure of
K) which are unramified outside S.

Remark 2.2. Gal(K¥'/K) can also be described as the inverse limit of
Gal(L/K), where L runs over the finite Galois extensions of K which are
unramified outside of S. Another description is as the quotient of Gal(K*P /K)
by the closed, normal subgroup generated by the inertia groups I,, for v ¢ S.
Note that, for v € S, I,, has non-trivial image in Gal(Kg-r/K).

Translation 2.3. If K is a number-field, let X = Spec O if K is a function-
field, let X be the smooth, connected, projective curve with function field K.
(Eg., X = ]P’I}.;’ when ' = F,(t)). In either case, let U = X — S. Then

Gal(K¥/K) is called the fundamental group of U, denoted 7 (U). It is a
pro-finite group.

A



B. FISHER

To be precise, this is the fundamental group of U with the “base point”
the choice of an algebraic closure of I’; a different choice of base point would
amount to applying an inner automorphism to m;(U), which is irrelevant for
the purposes of this paper.

We will not try to justify calling this a “fundamental group”. Suffice it to
say that (a) there is such a justification; (b) there is a more general definition
of which this is a special case; (¢) this is an example of the ability of algebraic
geometry to apply geometric notions to number theory; and (d) a similar def-
inition, with X a compact Riemann surface, I{ the field of rational functions
on X, and U equal to X with finitely many points removed, leads to 7, (U) iso-
morphic to the profinite completion of the ordinary (topological) fundamental
group of U (with the isomorphism depending on the choice of base point).

3. GALOIS REPRESENTATIONS

A representation of Gal(/'¥'/K) is the same as a representation of

Gal(K*?/K) on which the inertia group I, acts trivially for v ¢ S; i.e., a
Galois representation which is unramified outside S. We will consider l-adic
representations; i.e., representations over Z;, @Q;, or finite extensions of Qy,
where [ is a prime different from the residue characteristics of places v forv ¢ S.
(In particular, if we refer to a representation over Q, then we really mean a
representation over an unspecifed finite extension of Q;.) We are especially
interested in the characters of representations, which we refer to as the trace-
functions of the representations; and we evaluate these trace-functions at
especially nice points:

Definition 3.1. Since K is a global field, the residue fields k(v) (where v is
a place of K) are finite and so Gal(k(v)**P/k(v)) = Zé., where ¢, is the
(arithmetic) Frobenius automorphism a +— a##(®),

Let T be any lift of v to I{*¢P and let Dy and I denote the decomposition
and inertia groups at 7. (Of course, when we write I,, as we did above, we
really mean I3 for some such v.) Recall that

(%) Z¢, = Gal(k(v)**? /k(v)) > Dy/Iz C Gal(J*P /K I;

thus if v ¢ S (v is a “good prime”) there is a map Z¢, — Gal(K¥/K),
which depends on the choice of . By abuse of notation, the image of ¢,
(or the conjugacy class of this image, which is independent of the choice of
?) is denoted ¢, € Gal(K¥/K); it is called the Frobenius element at v.
Given a representation p of Gal(K¥/K) and a place v ¢ S, there is a well-
defined “trace of Frobenius” tr,(v) = tr(p(¢,)) and “characteristic polynomial
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of Frobenius” det(Tid —p(¢,)). If V is the representation space of p then we
often write tr(¢,|V) for tr(p(¢,)) and det(Tid —¢,|V) for det(Tid —p(¢»)).

Translation 3.2. Algebraic geometers usually work with the geometric Fro-
benius element Fr, = ¢,”! € Gal(x(v)*P/k(v)). In terms of the geometric
Frobenius Fr,, one considers the characteristic polynomial det (id —T Fr, |V)
It has the same roots as det (T id —¢,|V).

Let F, be a finite field and @ € U(E,) an F,;-valued point of U which lies
over v. le., let x: SpecF, — U factor through Specx(v) — U. Then
71 (SpecF,) = Gal(E,/E,) = ZFr[E’, where Frg, denotes the inverse of a — a?,
and z induces a map 7 (SpecF,) — 1 (U). If E; = (v) then this is the same
map as (*) above. The image of Frg, under this map is denoted Fr; or Frg, ;.
The map

™1 (SpecE,) — 1 (Speck(v)) = Gal(k(v)*P /k(v))
takes Frg, to Fr, [E ()] and so Fr, = Fr, B0 ¢ w1 (U).

Example 3.3. Let E be an elliptic curve over K, as in the introduction (except
that now K can be any global field). Fix a prime number [. Let S be the set
of all places at which E has bad reduction or which have residue characteristic
I. Let p = p; be the representation of Gal(/{*¢P/I) on the Tate module
Vi=Q % T,(E). By the criterion of Néron-Ogg-Shafarevich ([7, Theorem 4] or
[6, IIL.7]), p is unramified outside S. At a place v ¢ S, T}(E) = T|(FE,), where
E, is the (good) reduction of E at v, by [7, Theorem 4] or [6, III.7 and VIL.3].
Thus by [7, §5] or [6, V.1] the characteristic polynomial of Frobenius at v is

det(T id —/)(qﬁv)) =(T-a,) T -a) =T% - a, T + qu,
where ¢, = #£(v) and a, = tr,(v) = 14 ¢, — #E, (k(v)).

Example 3.4 (Function-field case). Let K = F,(t). Let 1 be a non-trivial
additive character of Fj; for example, ¢)(a) = exp(2i trg, s, (a)/p) = ot (@),
Let x be a multiplicative character of F,; even the case where x is the trivial
character is interesting. Let « be a solution to a? — a = t and let 3 be a
solution to 397! = t. Then the Artin-Schreier extension F,(a)/F,(t) gives a
map

Gal(E, (t)**P /E, () —» Gal(F,(a)/Fy(t)) 3 E, 5 Z[¢,)%,

where (,, is a primitive root of unity of order p, the characteristic of ;. Con-
sidering Z[(,)* C @,X, we get a one-dimensional [-adic representation py;
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we denote its representation space by L,. Similarly, the Kummer extension
E,(B)/E,(t) gives a map

Gal (E, (£)°*" /E, (t)) —» Gal(Fy(8)/E;(t)) = B> 2 Z[¢g1]%,

and a representation p, on a one-dimensional space L.

It is not hard to see that L, is unramified outside {oo} and that L, is
unramified outside {0, 00}. With a little work, one can also see that if v # oo
extends to a place T of E,(t) and ¢ — a is a generator of the maximal ideal of 7
then

tr(¢’()|£d)) = 1/)(131'15’[“]/]1.;‘ (a))
Similarly, if v ¢ {0, 00} then

tr(bo]Lx) = X(NE, (/g ()

Translation 3.5. The notation here is non-standard. Usually, one defines L
and £, to be what is here called £E and Ly, so that the above formulas hold
with ¢, replaced with Fr,. £y is a one-dimensional representation of m; (Aln.;,)
and L, is a one-dimensional representation of 71 (Gm F,), where Al = P! — {c0}
and G,, = A' — {0}. Any a € E,- can be considered as an element of Al (F,-),
i.e., as a map SpecF,r — A', or as a map F;[t] — E,-. If p denotes the
kernel of F,[t] — F,- and v denotes the place corresponding to p then we have
the situation described above. Let B, o = Fr, v/ deg(v) Then, using standard
notation,

(Va € Br = A (Er))  tr(Fro|Ly) = ¢(trg,. /g, ();
(Va € B ™ = Gm(Eyr))  tr(Fra|Lx) = X(Ng, /g, (a)).-

Remarks 3.6. Various algebraic manipulations can be done on the level of
representations. For example, tr,q, = tr, +tr, and trogs = tr, - tr,. In some
cases, it is also possible to define convolutions. In particular, (generalized)
Kloosterman sums can be dealt with in this setting: given a non-trivial additive
character v and arbitrary multiplicative characters xi, ..., xn of >, there
is a representation K of Gal(K§"/K) (S = {0,00}), obtained by convolving
Ly®Ly, (i=1,2,...,n),so that

tr(gy | K) = (=1)""" Y t(ur + -+ ua)xa(u1) .. . Xn (un),

0] U =0

where the sum is over n-tuples in F,[«] with product a and where 9 and the
xi are extended to F,[a] by trace and norm. Taking n = 2 and both x; and x»
to be the trivial character, we get the ordinary Kloosterman sum. For details,
see [3, Chapter 5] and [5, §8.1].
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4. EQUIDISTRIBUTION

Deligne’s theorem applies only to the function-field case, to which we will
restrict after a few more definitions.

Definition 4.1. Let p be a representation of Gal(K ¥/K ) on a vector space
V. The (arithmetic) monodromy group of p, denoted Garitn, is the Zariski-
closure of the image of p in GL(V). In the function-field case, the geometric
monodromy group of p, denoted Ggeom, is the monodromy group of

p| Gal(K/KF,), i.e. the Zariski-closure of p(Gal(K¥'/KT,) ) in GL(V).

Example 4.2. If p is the representation of Gal(K$'/K) on the Tate module
of an elliptic curve in the function-field case then Ggeom = SL(2) according to
[2, Lemme 3.5.5], unless j is a constant. (This is why we assumed j ¢ F, in
the Introduction.)

Translation 4.3. Recall that Gal(KY"/K) = m(U), where U is the curve
X — 5. We also have

Gal(K¥/KF,) = m*"(U) Y m(USE) € m(U).

For example, if U = Alg, then U}F®E =A B

q
Remarks 4.4. It is often convenient to think of GL(V') as an algebraic group.
When V is a vector space over ) or a finite extension of (Y, one can think of
GL(V) as an l-adic Lie group; or one can imbed @, < C and think of it as
a complex Lie group. Usually, one can work in whichever context one is most
comfortable; the representation theory is the same in any of these contexts.

Definition 4.5. A representation p is pure of weight 0 if, for all v ¢ S and
all eigenvalues « of p(¢,), |a| =1 for all Archimedian absolute values | - |.

Example 4.6. There is a “twisted” Kloosterman representation, denoted
K(152), such that

2
(g | K£(152)) = 6,02 tr(gy | K).
This twisted Kloosterman representation is pure of weight 0.

Translation 4.7. Normally, one defines a representation F such that
tr (Fr, | F) gives the Kloosterman sum. This F is the dual (contragradient)
representation of K: F = KV. The relation between the normalized (weight-0)

representations is F ( "_%1) = K( %) v
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Let p: Gal(K¥/K) — GL(V) be an l-adic representation which is pure
of weight 0 and let G = Gy, be its (arithmetic) monodromy group, thought
of as a complez Lie group. (ILe., fix a complex imbedding of Q,, or of an
appropriate finite extension of Q; if you do not like the axiom of choice, and
let G denote the group of C-valued points of Gayith.) Let I' be a maximal
compact subgroup of G. For any v ¢ S, p(¢,) has all eigenvalues of absolute
value 1 since p is pure of weight 0. Thus if p(¢,)*/* denotes its semisimple part,
in the sense of (multiplicative) Jordan decomposition, then the closure of the
subgroup generated by p(d)v)sf ® is compact, and so some conjugate of p(qb,,)s/ s
lies in T".

Of course, ¢, is only defined up to conjugation in G. Since G and I" have the
“same” representations, and characters of representations separate conjugacy
classes, p(¢,)*/® gives a well-defined element 6(v) € T, where I'! denotes the
set of conjugacy classes of I'. Since I' is a compact group, we can consider Haar
measure on ' (normalized to have total mass 1) and its direct image, which
will be denoted u!, on I'%.

We are now ready to state Deligne’s equidistribution theorem. Our state-
ment follows [3, Theorem 3.6]; see also [2, Theoréme 3.5.3].

Theorem 4.8 (Deligne). Let p: Gal(K¥"/K) — GL(V) be an l-adic rep-
resentation which is pure of weight 0. Assume that Ggeom = Garith = G. Then
as v runs over the places of I{, v ¢ S, the conjugacy classes 8(v) correspond-
ing to p(qbv)s/ s are approzimately equidistributed in T with respect to ub, the
direct image of Haar measure. More precisely: for any non-trivial, irreducible,
complez representation A of I' (or of G) and any r,

dim A
=0 ( qr/? ) ’

where N, = % deg(v) and both sums are over placesv ¢ S such that deg(v) | r.
The bounds implicit in the O can be made explicit.

1 T eglv
N Edeg(v) tr A(6(v) / deg( ))

Remarks 4.9. (1) It should be clear what a power of §(v) € I' means.

(2) The concrete example at the end of the introduction was obtained by tak-
ing A to be the standard two-dimensional representation of G = SL(2). The
power of p in the denominator appears because the standard representation on
the Tate module must be twisted to malke it pure of weight 0. Getting explicit
bounds for p = 3 involves some calculation because of wild ramification. For
calculating explicit bounds, see 3, equation 3.6.3].

(3) Estimates for sums over v ¢ S such that deg(v) = r or deg(v) < r follow
from the estimate given above. (Cf the remarks made in the Introduction.)
(4) If a set S of points in It is perfectly equidistributed with respect to p! then
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averaging a continuous function over S is the same as integrating with respect
to . Any continuous function on I'* can be uniformly approximated by a lin-
ear combination of irreducible characters, so S is equidistributed if the average
over S of troA is 0 for all non-trivial, irreducible, complex representations A.
This is the sense in which this is an equidistribution theorem.

Corollary 4.10. When Deligne’s theorem applies, {tr p(¢,)} = {trp(v)} s
(approzimately) equidistributed in tr(T') with respect to the direct image of Haar
measure.

Remark 4.11. The condition Ggeom = Garith is rather mysterious. This au-
thor does not even know whether it holds for p @ o or for p ® o given that
it holds for p and for . Katz has shown that it holds for a twisted Kloost-
erman representation () by showing that Ggeom is “as large as possible.”
Here o € Q,” is an l-adic unit and K(a) = K ®Q,(c), where Q;(a) denotes
the one-dimensional representation on which Fr, acts as multiplication by .
More precisely, Ggeom < Garith and Katz shows that the normalizer of Ggeom
in GL(n) is (scalars)Ggeom; the existence of such an « follows. Thus Deligne’s
theorem and its corollary apply, so the (generalized) Kloosterman sums for a
given F, are (approximately) equidistributed.

Theorem 4.12 (Katz). Assume thatp > 2n+1 and that (x1,...,Xn) is not
Kummer-induced. Then the connected component Ggeom (K)® is “as large as
possible”: it is either SL(n) or SO(n) or Sp(n). In the SO case, Ggeom(K) is
not contained in (scalars) SO(n). Furthermore, there is an l-adic unit a € Q"
such that twisted Kloosterman representation K(a) is pure of weight 0 and has
Ggeom = Glarith -

For completeness’ sake, we give

Definition 4.13. An n-tuple (x1,..., X») of multiplicative characters is
Kummer-induced if there exists a non-trivial multiplicative character A such
that (Ax1,...,Axn) is a permutation of (x1,...,Xn)-

Remarks 4.14. By Sp(n) we mean the subgroup of SL(n) which many would
call Sp(n/2). Note that (1,...,1) is not Kummer-induced. In this case, the
condition p > 2n 4 1 is not necessary: for p > 2, Ggeom is either SL(n) (if n
is odd) or Sp(n) (if n is even), whereas for p = 2, Ggeom is either SO(n) (if n
is odd) or Sp(n) (if n is even), except that Ggeom is the exceptional Lie group
G, for p =2, n = 7. This is [3, Theorem 11.1]; the above Theorem is

[4, Theorem 13 and Corollary 16].
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5. EXpPLIcIT STATEMENTS FOR ELLIPTIC CURVES

Notation 5.1. Let K be a function field of genus g over a finite field F; and
E/K an elliptic curve with good reduction outside of S (a finite set of places).
For v ¢ S (a place of good reduction) let deg(v) be the degree of v, i.e., the
degree of the residue field x(v) at v over the ground field F,; and define 6(v)
by
1+¢8®) — #E, (s(v)) = 2v/¢36() cos §(v);

also, if r is a multiple of deg(v), let 6,(v) ©f (r/ deg(v))6(v). Finally, let !
be a prime other than the characteristic of K and let T;(F) denote the Tate
module of E.

Remark 5.2. Suppose a matrix A € SU(2) acts on a two-dimensional complex
vector space V with eigenvalues e**?. (For our purposes, V will be T;(E) ® C.)
Recall that the irreducible representations of SU(2) are given by the symmetric
powers Sym"™ (V) (n =0,1,2,... ). Then A acts on Sym"(V') with eigenvalues
e’e~*% (j + k = n) and one can check that the trace of A on Sym"(V) is
sin(n + 1)8/sin 6.

With the above notation, the explicit form of Deligne’s theorem is that

. sin(n + 1)8,.(v)
|zv: deg(v) sin 4,.(v)

< (n+1)hav/g"

(The sum is over places v ¢ S such that deg(v) | r.) The not-quite-constant
h, is given by

1
hn=2g—2+#S+) e Sw, (Sym" T}(E)).
vES

Here Sw, denotes the Swan conductor, a measure of wild ramification (i.e., a
measure of the action of higher ramification groups on the given representa-
tion). In particular,

e If p > 3 then there is no wild ramification, so h, = 29 — 2 + #5S,
independent of n.

e If n = 1 then, in the notation of [Sil, Appendix C, §16], the Swan
conductor of the Tate module is given by

SW,,(T[(E)) = 5,, = fv -2= Ordv(DE/]() -1- my,
where f, is the exponent of the conductor at v, Dg/k is the minimal

discriminant of E/I, and m, is the number of irreducible components
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(ignoring multiplicities) of the fiber at v of the Néron model of E. Thus
2hiVa" = [2(29 - 2+ #5) + 8.1V
e In general, ﬁ-—l Sw,(Sym" T)(E)) is at most the largest break of

T)(E) at v, which is at most the Swan conductor (since the Swan
conductor is the sum of the breaks). Thus

veS
Remark 5.3. References to the Swan conductor are somewhat scattered. Be-
sides the reference to [Sil] already mentioned (and the references therein), one
should consult [Ka-1, Chapter 1] and Chapter 19 of Serre’s Linear Represen-
tations of Finite Groups.
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