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The explicit reciprocity law of Bloch-Kato

Ehud de Shalit

Introduction. In §2 of their paper [B-K] Bloch and Kato proved a
remarkable theorem relating the Coates-Wiles homomorphisms, which play
an important role in the theory of cyclotomic fields, to the structure of
Fontaine’s ring B rjs ([F2], [F-MI]). This theorem is one of the two ingredients
in the proof of the "Tamagawa number conjecture" for the motive @(r), r
even and positive. (Cf. [B-K], §6. The other ingredient is the Main Conjecture
of Iwasawa theory, proved by Mazur and Wiles.)

Starting from B.,js @nd using the "fundamental exact sequence” (see
below), one constructs, for each r21, a canonical class in H‘((Dp,@p(r)). (We
write HI(K,M) for HI(Gal(K/K),M).) The theorem of Bloch and Kato identifies
this class essentially as the rth Coates-Wiles homomorphism. In §2 of [B-K]
the authors reduce their theorem to the case r=1. This case, in turn, follows
from more general “explicit reciprocity laws", proven in [K].

The proofs in [B-K] and [K] are difficult, and use the relation between
Bcris @and crystalline cohomology, Fontaine’s syntomic cohomology, and the
main results of Fontaine-Messing. In our attempt to understand them, we
found a simpler proof of the case r=1, where we deduce the theorem directly
from the explicit reciprocity laws of Artin-Hasse and Iwasawa. We have
somewhat simplified the presentation of the general case too, although
mainly in style, and not in substance. Perrin-Riou ([P, prop. 3.4(i)) found
another way to reduce the general case to the case r=I.

The proof given below might cover p=2 too, which was excluded from
the discussion in [B-K]. Strictly speaking, §9 relies on part Il of [F-M],
where p=2 causes some difficulties. (Elsewhere, e.g. in the case r=1 of the
main theorem, p=2 is not a problem.) However, the results needed here
should extend to p=2. In particular, lemma 8.2, which is of "qualitative"
rather than "quantitative” nature (and which is the only troublesome point)
should remain valid. We hope that when the details of [F-M] finally appear,
they will allow us to include p=2. This should help to eliminate the
unknown powers of 2 in theorem 6.1(i) of [B-K].

S.M. F.
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E. DE SHALIT

Chapter I (§1-84) is devoted to a preliminary study of the ring A s In
§4 we show how to derive the "fundamental exact sequence". Despite its
importance for the constructions of [B-K], the proof of the right-exactness
of this sequence was unavailable in print until now. (In [F-M] the authors
only say that it is done by “explicit 1aborious computations”, but their notes
on the proof were never made public!.)

Chapter 11 (§5-8§89) contains the proof of the theorem of Bloch and Kato
along the lines discussed above.

Chapter 11l contains the seeds to generalizations to other Lubin-Tate
formal groups (in the spirit of [W]). The author hopes to expand on this in a
future paper. Recently, K. Kato kindly informed the author that he had
generalized his work to any Lubin-Tate group, but in a direction that seems
different than the path taken in chapter 11l

Acknowledgements. Chapters | and Il of this paper are based entirely on the work of others,
mainly J.-M. Fontaine and K. Kato, and except for the presentation, we claim no originality on our
part. This work was written while the author was visiting Princeton University. He would like to
thank the department of mathematics for its support, and A. Wiles for many pleasant discussions.

I. The ring B.rig and the fundamental exact sequence

1. The ring R. The construction of the ring R (resp. A .js and B.;s) reviewed
below is due to Fontaine and Wintenberger (resp. Fontaine, see [F-M] ch., §I
and the references therein). One should think of B..is as the ring of all p-

adic periods of motives with good reduction over the maximal unramified
extension of @,

Let p be a prime number, and (ﬁp an algebraic closure of the p-adic
numbers. Let R be the "perfection” of the ring 0(Q,)/po(Q,),

(1) R=1lim. 0((1_)p)/p0((1_)p)

the inverse limit taken with respect to the Frobenius map of raising to
power p. Clearly R is an integral domain in characteristic p, on which

1 The referee has pointed out that a proof of the fundamental exact sequence will appear in
[F4], and some of the ideas involved may be found also in [F3].
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THE EXPLICIT LAW OF BLOCH-KATO

Frobenius ¢ is bijective. If x=(xo.x;...)€R, where x;€0(Q)/pO(Q,) and x;P=x;,

let %; be any representative of x; in @(Q,), and define xM=1im %, P" €d(C,).
Here C,, is the completion of @,. It is easy to see that the limit exists, is
independent of the choice of representatives, and that the association x =
(x(® x(M,_y identifies R as a set (and as a multiplicative monoid) with the
set of all infinite series in &(C,) such that (x(D)P=x(-1,

For xeR, define vR(x):vp(x(O)), where v, is the p-adic valuation,

p
normalized by vp(p)=l. Then R becomes a complete valuation ring, whose

residue field is [Fj. Let { be an element of R such that (=1, {M=1. Then
IFp[[C-I]]QR. the field of fractions of R contains a separable closure
[Fp((c-l))sep of [Fp((c—l)), and is identified with its completion. In particular,
R is integrally closed.

2. Witt vectors over R. Let W(R) be the ring of Witt vectors over R. For
aeR let [al=(a,0,0,...)eW(R) be its Teichmuller representative. Since the
absolute Frobenius homomorphism ¢ is bijective on R, every element of
W(R) has a unique expression in the form

(2) a = (ao.a,p,azpz,...) = 2 0<n<ooPMap].

Define the map 6 : W(R) — 0(C,) as

(3) 6(a) = 2p<n<ooP” an(o).

Then 6 is a surjective ring homomorphism. Indeed, © is already surjective
when restricted to the set of Teichmuller representatives, because
6([al)=a(®) is arbitrary, a fact that will be used below. That © is a
homomorphism follows directly from the way addition and multiplication
are defined in W(R) ([S], ch. 2 §6).

Let J = Ker(®). Then J is a principal ideal, generated by any a as in
(2), for which 6(a)=0 and a,(O)ew((tp)x. The proof is not difficult. See [F1],
proposition 2.4.

The Frobenius of W(R), still denoted ¢, is bijective. It preserves
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E. DE SHALIT

J+pW(R), but not J. The Galois group Gal(d—)p/tnp) acts by functoriality on R
and on W(R), and commutes with ¢ and 6.

Lemma 2.1 (i) The elements of W(R) satisfying ¢(a)=aP are precisely the
Teichmuller representatives [a], aeR.

(ii) For aeR, ¢ ~N([a])=alM.

Proof. The first assertion is a general and well known property of Witt
vectors. The second follows from the fact that for xeR, ¢™(x)(M=x(m+n) g

For each n=0, let {, be a primitive p" root of 1in (ﬁp, such that ¢, P=(,.
The element LeR for which {(M=¢, gives a generator € = [{] € W(R) of a

"multiplicative Tate module” eZp ¢ W(R)*. Put Kn=Qp(Cp), and Koo=UK .
Lemma 2.2 The following sequence of multiplicative groups is exact:

p-0
(4) 0 — ep — 1+J — 14pW(R) — O.

Proof. It BeW(R)*, a=BP~% € 1+pW(R), and by successive approximations one
checks that every element a of 1+pW(R) is of this form. Choose reR such

that r(®)=g(B). Then B/Ir] e 1+J, but still a=(B/[r])P=%. This proves the
surjectivity of p-¢. If P~®=1, by lemma 1(i) B=[r], and since r(0)=g(B)=1, r is
a p-adic power of €. m]

Remark. When p=2, -1el+pW(R), so lemma 2 shows that € has a square root
Jeel+d. Since -1 is not in 1+J, this square root is unique.

3. Divided powers. Let A’;s be the divided power envelope of W(R) with
respect to J. If y is a generator of J, A%.is = W(R)[Y2/21,y3/3),..] € W(R)®Q.
Let A5 De the completion of A5 in the p-adic topology (it is easy to see
that A’.s 1S separated, so it embeds in A

cris)
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THE EXPLICIT LAW OF BLOCH-KATO

©) Acris = 1M A%eris/PMA i

Since ¢(J) € J+pW(R), and since (p) already admits divided powers in W(R),
¢ extends to A’.s. It then extends by continuity to A..js. Clearly the Galois
action carries over too. The map 6 extends to A5 €asily, since e(y)=0.

We denote the kernel of © in A .is by J.rjs (it is not principal, nor even

finitely generated). Its divided powers are the ideals Jcrism (r=1) given by

(6) et = (Y /et YT/ (4 1L A s

Obviously Jcrismz Jeris- One further defines

Jcris<r> = { OLG‘Jcris[r} L 0(a) € prAgpig )

Observe that for any B € 1+J, 10g(B) € A s is defined by the usual

power series in B-1, which converges nicely. Moreover log(B)eJcr‘-s<'>. In
particular

o) t = log(e) (recall e=[¢])

is a generator of an "additive Tate module” Zp(l) c Jcris<]>- We denote by

Zp(r) the subgroup generated by t'. Let

ST = { X€A rig PPXEZ () for some n ) € Jpis<™.
Since A s is p-torsion free, for some non-negative c(r),
(8) ST =p=c(NZ (r).
In fact, c(r) = Yi50lr(p-D)7'p711, where [x] denotes the largest integer <x, but

we shall make no use of this exact value.
Bcris 1S defined as A .;[t7']. Our primary concern is nevertheless with
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E. DE SHALIT

ACl‘iS'

4. Proposition (The fundamental exact sequence). For every r=0 the
sequence

1-p~"o

(9) 0 — 5" — J..— A

.— 0
cris cris

is exact.

Remark. When r=1 the exact sequences (4) and (9) are related by the
following diagram

p-0
0 — 2P — 14J — 14pW(R) — O

tog | tog | Lp™"10g
1-p7'o

0— sl — g P — A

cris cris 0.

If p>2, the vertical arrows are injective, the last one is onto W(R), and the
first one is an isomorphism, since S'=Zp(l). If p=2, the last vertical arrow
has {1} for its kernel, which is also the cokernel of the first one, since now
§1=271Z,(1) (see the remark following lemma 2.2).

Proof. That the kernel of 1-p~T¢ on Jcr,»s<r> is ST, is essentially proven in

[F1], théoréme 4.12. (The ring B of [F1] is different from B.;s but the proof
can be adjusted to B..js.) We show the surjectivity of 1-p~¢ in several

steps. We shall prove a little more, i.e., that for any unit veAcrisx
(10) ((D'Vpr)‘Jcris[r] 2 prAcriS'
It will be convenient to fix as a generator of J = yW(R) the element

() y = [1l+p,
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THE EXPLICIT LAW OF BLOCH-KATO

where TieR is some fixed element with m(0)= -p.

4.1 The element u = (e-1)P~1/p. ([F-M] suggests the use of tP~1/p, but the
two elements are associates in A ;) From (11) we get
yP = [1]P mod pW(R),
and clearly
(e-1)P~1 = [£-11P7! mod pW(R),
so since (L-1)P~1/mPeRX, there exist AeW(R)* and veW(R) such that
u = A(yP/p)+v.
This shows that ueA’ . Furthermore, pv is divisible by yP=1in W(R), and
since p is a prime in W(R), and p does not divide vy, v is divisible by yP~1. we
conclude that

(12) u = A(YP/p)+pyP! AeW(R)X, ueW(R).
4.2 Corollary. Inside W(R)[1/p] we have
(13) A’cris = WRY™/mI] = WR)EY™/(np)H] = W(R)U'/ill.

Proof. The first equality is the definition of A% s. The second follows from
the observation that if m=np+j, 0<j<p, m! and (np)! are divisible by the same
power of p. Since UeJcpig = 2msW(R)X(Y™/mI), its divided powers ul/iled qpig
as well. On the other hand, we prove by induction on n that y"P/(np)! €
W(R)[Ui/ill. If n=1 this is clear from (12). In general, we may replace y"P/(np)!
by (yP/p)"/nl, since (np)! and (p!)™n! are divisible by the same power of p. So
(yP/phHN/nt = (A u+pyyPH/nt e W(R)U/i1]
since, by the induction hypothesis, yM/m! € W(R)[ui/il] for all m<np.

4.3 Claim: (eP-1)/p(e-1) € Acpis™.

Proof. (eP-1)/p(e-1) = (e-1)P~1/p mod Acris SO bY 4.1 it lies itself in A s
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E. DE SHALIT

Furthermore 6(g) = 1, so 6((eP-1)/p(e-1)) = 1, and (eP-1)/p(e-1) € 1+Jpiq. BUt if
X€J rigs Zo<i<°°xi converges in A s, Since x"/i!eAmS and A s is p-adically
complete. It follows that 14+J jsSAris™-

4.4 Lemma. Let veA X, r20, exr+l, and consider the series

(14) f(X(€=-1)8) = Y pcicooVIPTH)(X(-1)8), XEA ris:

Then (14) converges to an element of J...<"” and

cris
(1-v7lpTd)(f(x(e-1)8)) = x(e-1)e.

Proof. By 4.3, (v7'p Td)(x(g-1)€) = pe~Tv-1d(x)-((eP-1)/p(e-1))e-(e-1)¢ =
peTx,(e-1), with x,€A js. Iterating, the ith summand in (14) will be divisible

by p'(e-M)(e-1)e, which guarantees convergence to an element of Jcris<e>g

Jcris<r>, again by 4.3. The last statement follows formally.

4.5 Corollary. (q)—vpr)dm-slr] 2 prApigU/il i i(p-1)>r.

Proof. In addition to what was already said, one only has to note that if
(e-1)& is divisible by p™ in A s, SO is (14).

4.6 Lemma. If O<r and veA ™, for every i>0
(r]

(@-vP"Wcris 2 PrAcrgu'/i!

Proof. By induction on r, we may assume that (10) holds for all r’s smaller
than our r. When r=0, (10) follows from corollary 4.5, and lemma 4.7 below.
So suppose i is such that 0<i(p-1)sr (bigger i’s are taken care of by 4.5).
write ¢p(u) = pP~Tut, where ¢ is the unit ((eP-1)/p(e-1))P™! (see 4.3). Let x be a
variable. Then

((p-vpr)(xu‘/i!) = pi(p-l).gi.(q)_vg—ipr-i(p-l))(x).ui/“,
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THE EXPLICIT LAW OF BLOCH-KATO

and by the induction hypothesis (¢-vg~ipr=i(P=D)(x) gives everything in

[r-i(p-1)I]

-3 _I . . .
priP=DA is as x runs over Jipis . The claim follows, since

[r-i(p-1] (r]

1/i]. . .
ul/ilderis € Jeris

4.7 To finish the proof of (10), it remains, by 4.2, and the density of A”..;q in

to prove that (¢—Vpr)Jcris[r]

Acris 2 p"W(R). We first do the case r=0. Write
V=2 gci<ooViuiZil, where v;eW(R) tend p-adically (in W(R)) to 0. This is
possible by 4.2 and the density of A’ s In Acrjs- APPIYing 6,
8(vg)=8(v)ed(Cp)*, so vy must be a unit in W(R). By corollary 4.5, it is
enough to show that (¢-vg)A..js 2 W(R) (see the argument in the next
paragraph), so we may assume that veW(R)X. In this case (¢-Vv)W(R)=W(R).
Indeed, it is enough to prove the "mod p" version of this, i.e., that for aeRX,
xP-ax=b is solvable in xeR for every beR. This is true since R is integrally
closed.

The case r=0 concludes the proof of (10) when r=0, hence we can start
the induction on r, and we may assume that lemma 4.6 holds. By that lemma,
the proof of (10) is reduced again to the case veW(R)*. Indeed, write
V=2 0<i<ooViUl/il @s above, let bepTA s, and instead of solving (¢-vp")(x) = b,
solve (¢-vop"(x) = b. Then (¢p-vp")(x) = b-p"xY <;viu'/il = b-b’ (say). Lemma
4.6 supplies a solution of (¢-vp")(x) = b’, and x+x” is the desired element of
[r]

Jcris

Let therefore veW(R)*. We wish to show that (q)-vp")dcm-s[r] 2 p"W(R).

An easy computation shows that

o(y") = p"(dg+dju+ - +dou)
where d;eW(R), and dyeW(R)*. To see this simply write ¢(y) = yP+pb, and
check that beW(R)*. Then use (12) to eliminate yP, and raise to power r. Now

let X be a variable. Then

(¢-vp")(xy") = pr((dg+ - duM)(x) - vxyr).
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By lemma 4.6 again, and by the fact that dy is in W(R)*, it is enough to show

that every element of W(R) is of the form ¢(x)-vxy", for some xeW(R). Once
again, it is enough to prove the "mod p" version of this, so we have to solve
xP-ax=b in R, which can be done thanks to the fact that R is integrally
closed. o

4.8 Corollary (of the proof). The fundamental exact sequence splits over
(&= 1A ris:

Proof. This follows from step 4.4 in the proof. O

II. The explicit reciprocity law

S. The classical explicit reciprocity law. Let K =@,({), and let U, be
the group of principal units of K. If a, B eK X, we denote by Og the Artin

symbol of B (on any abelian extension of K ), and define [a,B],€Z/p"Z by
(15) ogla)/a’ = cn[“'B]n

where a’ is any p" root of a. If B = (B,) is a norm-compatible sequence
(Bne€Kp™, Nps1n(Bns)=Bp), and aek * for some n, then there exists a well-
defined [a,BleZ, such that for all n large enough [o,B] mod p" = [a,By ], Let

(16) B = 1im K X, U= lim U,
(inverse limits with respect to the norm).

Recall ([C], [dS]) that for any u € U Coleman associated a unique power
series g,eZ,[[TI* with the property

(17) 9u(Ln-1) = up Vn1.
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THE EXPLICIT LAW OF BLOCH-KATO

Introduce a formal variable t via T=et-1, and identify d)p[[t]] with (Dp[[T]]. Let
(18) 8g = (1+T)g™'dg/dT = g7'dg/dt € Z[[T]].

Let x : G = Gal(Koo/(Dp) — pr be the cyclotomic character. For later
reference we let Gal((ﬁp/tnp) act on power series in T (or t) in a way
compatible with the specialization maps sending T to (-1, i.e.

(19) o(T) = +TXO1, G(t)=x(o)t.

The rth Coates-Wiles homomorphism (r21) is the G-homomorphism U —
Zp(r) given by

(20) ®rey(u) = (d/dt)" log(g,)(0)-tF.

Thus &le (u) = 8g,(0)t. It is easily checked that these homomorphisms are

independent of the choice of {.

Theorem (explicit reciprocity law). Let ueU, and aeU, where nl.
write Trn=TrKn/Qp. Then

(21) [a,ul = p"Tr (log(a)-8g,(L,-1)).

Proof. See [Iw]. Our notation follows [dS], ch.l, §4, where we give a short
proof, as well as generalizations to other formal groups (due to Wiles [W]).O

6. The explicit reciprocity law of Bloch and Kato. Let r=1, and
consider

(22) "1 Qp = HO(QpAris®Q) = HI(@,,Qp(r),

the connecting homomorphism derived from (9). (Galois cohomology is
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always based on continuous cochains, and the modules are given their p-
adic - or ind-p-adic, after we invert p - topologies, in which they are
always complete.) Since restriction to the Galois group over K., induces an
isomorphism

(23) HI(@,,Qp(r)) = HO(G,H(K oo, @p(r))) = Homg(U, @y (r))

(an easy exercise), we may ask what is 0"(1) as a G-homomorphism from U
to (Dp(r). The answer is given in terms of the Coates-Wiles homomorphisms.

Theorem. ([B-K], theorem 2.1) For each rz|
(24) a"(1) = = @My, /(r-1)!

Proof. It seems better to consider, right from the beginning, cohomology
over Ko. Let T=g-1 (so that T=et-1), and observe that zZ,[[Th ¢ HO(K oo A cris):
while H(K,S"™) = Hom(B,S") projects onto Hom(U,ST). Restricting the map

obtained from the connecting homomorphism to these subgroups, we obtain
a continuous pairing of G-modules

(25) oM Z[[TNxU—sr a"(f,u)=o"(f)(u)

which we wish to study. The theorem will follow from the following
statement:

(26) o"(f,u) = -Res(t™"f(T)-dlog(g,))-t".

Here f(T) is the power series obtained by substituting T (a formal variable)
for T, and, as before, we have identified Q,((t)) with @,((T)). Indeed, if f=1,

Res(tr-dlog(g)) = (d/dt)M10g(g)(0)/(r-1), so (26) and (24) coincide. The proof
of (26) will be done in two steps. In §7 we do the case r=1. In §8 and §9 we
reduce the general case to that of r=1.

7. Proof of (26) when r=1. Start with lemma 2.2. Let & € HO(Ko,,1+pW(R)),
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THE EXPLICIT LAW OF BLOCH-KATO

and pick B € 1+J such that pP~® = a. Then
Bpn_(pn - ap""+p”'2¢+"'+D¢n'2+¢”".
Now 6(B)=1 implies
(27) 00 "(BP" = 0 (a)P" o1 ()P 2. - 09 1(a).
In particular, take o = a(T) € 1+pZ,[[T1], and define

(28) a™ = (TP a1+ TIP-1P" 2 (4TI ),

so that 69 ~"(B) = a(n)((n-l)‘/Pn, because 8¢ (a)=a(f;-1). Thus, for every
0€6al(Qp/Koo)

(29) 6(1)'”(80") - 6(1)‘”(8)0_' - {a(“)(Cn—l)'/Pn}o".

By theorem S and lemma 2.1(ii), if ueU and

(30) pouT = gl@V)

then (a,u) = [aM(C,-1),ul = p™Tr,(Tog(aM)(L,-1)-8g,({,-1)} mod pM. However,
comparing (4) and (9) (cf. remark following proposition 4), one gets (a,u)t =
d'(p~Mog(a),u). We must therefore show that for nx1

(31) p"Tr,{log(aM)(¢,-1)-6g,(¢,-1)} = -Res{t~'p~"1og(a)-d10g(g,)} mod pn.
7.1 Lemma. For nx1, the following equality holds:

Tra(10g(a™)(ty=18g, (L0} = pM1T g | n(10g(a)yBg )(E,-1).

Proof. The proof is a straightforward computation, based on the fact that
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for a p" root of unity &,
2np=t 89y(n-1) = p-8g,(E-1).

Observe that log(a)epZ,[[T]l, and if p=2, log(a)€4Z,I[TIl. The proof of
(31) will now be complete, provided we show

7.2 Lemma. For any feZ[[T]], n>1,
(32) Zo<i<pn (€n'-1) = -Res(t7!f(T)dt) mod p"
(if p=2, mod 2n71).

Proof. It is enough to check (32) with f=(1+T)™M, m=0, because then it will
hold for all erp[T]. Both sides of (32) are continuous homomorphisms from

Zp[[T]] to Zp, so if they agree on polynomials, they are equal. So let f=(1+T)M,

The left hand side is equal then to p"-1 if p"m, and to -1 otherwise. The
right hand side is computed as

-Res{T1(1+T/2- =)(A+T)MdT/(1+T)} = -1.
This concludes the proof.

Remark. Coleman’s power series are defined for any BeB, and not only for
ueU, and if v(B)=d (i.e. at each level n the valuation of B in K, is d), the

corresponding gg € T9Z[[T11*. Thus dlog(gg) € TT'ZIITNAT in general.
Formula (26) generalizes :
o (f,B) = —Res(t‘rf(T)~dlog(gB))-tr

for all erp[[T]] and BeB. When r=1, the proof given above needs only minor
modifications. Lemma 7.2, for example, has to be checked for f in T"Zp[[T]].
It is here, when one checks (32) for f=T~! that p=2 gives some trouble. The
sum on the left comes out to be (1-p")/2, while the residue on the right is
1/2. Fortunately, we only need the congruence modulo 2" if p=2.
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8. Reduction of the general case to the case r=1. Formula (26) is
proven by reduction to the case r=1. We need two lemmas.

8.1 Lemma. If feHO(Koo Agpig) and r>1 then af(tf) = ta"I(f).
Proof. The lemma follows immediately from the commutative diagram

1-p~"o

0— sF— g_.

cris Acris 0

(33) t| t| t|
1-p~ 1o
0 — st — ‘Jcris<r+‘> - Acris—" 0.
8.2 Lemma. The pairing Z,[[T]IxU » ST (f,u) » 37(f,u) factors as Yrew(f,u),
where @ @ Z[[TlxU » Q = Z([T]dT is w(f,u) = f(T)-dlog(g,), and Yy : Q > ST

is some G-homomorphism (G=GaI(K°°/(Dp)).

The proof of this lemma, explained in full detail in §3, seems to require
rather difficult concepts from syntomic cohomology, as developed by
Fontaine and Messing.

8.3 Conclusion of the proof of (26). Granted lemmas 8.1 and 8.2, we
proceed as follows. First, note that w is surjective, because, for example,
1+T occurs as a possible g, Define

(34) J(0) = Res(tTw)tr.

We have to check that {i.=y,, a statement that is equivalent to (26) by the
surjectivity of w. For r=1 this was done in §7. By induction we may assume
it to hold for r-1. Now i annihilates T™*'Q (even T'Q), hence extends to a

homomorphism (Dp[[T]]dT/(T”') — Q,(r). The same is true for Y, by

211



E. DE SHALIT

corollary 4.8. Indeed, that corollary shows that a"(f,u)=0 if feT"“Zp[[T]], S0
lemma 8.2 implies Y (w)=0 if weTr+1Q. Having replaced Z, by Q,, we may
replace T by t, and we view Y. and J}r as homomorphisms from
Q,[[t]ldt/(t™+1) to @p(r). By 8.1 and (34)

Y=ty (o), Jte)=tf._ (o),

so the induction hypothesis implies Y =y, on tQp[[t]ldt/(t"+1). The
difference ‘l‘r“‘Fr therefore induces a G-homomorphism from (l)p to (Dp(r).
which must be 0, so we conclude that \pr:LTJr.

9. Proof of lemma 8.2. The proof is based on the commutative diagram of
[B-K], p. 348. Here we present a slight variation of that diagram, and
hopefully fill in some of the missing details. Let ® = Z[[T]l € Acpis, let A, =
Acris/PM"Acris Ry = R/P"R, R, = the image of &, in A, J<f>,\:
IS ie/PMIST s, @nd STL=ST/pNST. Let also Uy, = the principal units of K.
Taking coinvariants of multiplication by p" in the fundamental exact
sequence (9) we get the "mod p™ exact sequence

(35) 0 — st — K, — AL — 0,

which is exact also on the left because A..is is p-torsion free. Take
cohomology over K., m2n, and observe that ®, < HO(K,,A,) (an easy
excercise; note that ®, is the image of & in A, and not ®/p"®). The
connecting homomorphism will therefore give us a pairing

- n
(36) A Ry x Uy /U P — ST

whose composition with the natural projection ®xU — .99n><Um/UmF’n is
simply o" mod p". It is clearly enough to show that for every nx1, 3" mod p"
factors through the homomorphism feu — f-dlog(g,). In proving this we will

work at the finite level m, but which m we choose is unimportant, as long
as m2n.
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9.1 We shall have to assume familiarity with the contents of [F2], §3.2-§3.7.
It is shown there that A, may be canonically identified with Hocriszn) =
1im,HO 5(@| ). L ranging over all the finite extensions of K in K. Here we
used the short-hand notation Hi . s(@ ) = Hi(Spec(aL/pnal_)cris.wl_/wn)
(@ yw,, is the crystalline structure sheaf on the crystalline site).

Let L = K, and define £_, and D, as in [F2], §3.2, where we choose y =
{m~1. Note that £ | = R, = W[[T]], where W, = Z/p"Z. Let feRSW(R)SA s,
and assume m2n. Let a, , and B, be the maps defined in [F2], §3.3 and §3.7
respectively. Then B, (f)ew (F )sW . (Fg) (it is enough to check this with
f=g). Furthermore, when we identify f as an element of HC . ;i(@ ) via

a noB, we get that o B (f) is the class of ¢"(f) in
(37) Hocris(gL,n) = Ker (d: DL.n - DL.n‘g’ZL nQ]ZL n)

(cf. [F2] §3.2). In (37) we mapped ¢"(f) to £, first, then to D , where it
lands in the kernel of d.
We can also map, in the obvious way, Q,, := Q‘ZL o= WhllTIldT to

(38) Hlris(@ ) = Coker (d: D, — DL'n®ZL,nQ‘ZL,n)'

Let T, be Coleman’s "trace operator” on & [C]. It is characterized by
(39) Tpod(f) = pf,
its image is p&, and the "projection formula” T,(¢(f)g) = ¢()T,(g) holds.
Extend the definition of T, to differentials in Z[[T]ldT as in [B-K], so that

Tp(f(T)dT/(I+T))=p“Tpf(T)dT/(l+T). Then T, fixes dlog(g,) for ueU. Now
define a map

(40) Q, — chris(OL.n)
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to be the composition of Tpn with the "obvious” map coming from (38). Then
the discussion above may be summarized in the following lemma.

Lemma. Map &, to HO ;s(0 ) by o neB. and Q, into Hl (0 ) by (40).
Then these maps are compatible with the natural action of HO on H' (and of
R, 0n Q).

9.2 Recall the definition of the (small) syntomic site (Spec @ )gy, [F-MI,
and that of the sheaves 0ncr"5 and 8™, on the syntomic site. In our notation,
proposition I1.1.3 of [F-M] states that

(41) Heris(OL ) = HI(SPec(O )gyn 0TS i=0,1.
Now consider the diagram

(f.u) = f-dlog(g,)

Ry x U/UP" Q,
l A l
HO(Spec(O| ) gy @19 v
x  H(Spec(d|)gyn.S) —— HI(Spec(O)gyn@n°'®)
(@ synx! | B (a”‘n)sgn l
HI(Spec(O )gyns"y) v
x  H(Spec(d )gyns'y) —— HZ(Spec()synS 'y
l . l
HI(L,ST,) x HI(L,S!,) H2(L,S™1)
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Explanations: The exact sequence (35) may be sheafified to produce an
exact sequence of similar sheaves in the syntomic site. The vertical arrows
in B are the connecting homomorphisms for that sequence. The horizontal
arrows of B are cup product pairings. The commutativity of B is deduced
from an analogue of (33) (lemma 8.1). The vertical arrows in C are the
comparison maps between the syntomic cohomology and Galois cohomology.
Just in order to define them, one needs the construction of the syntomic-
étale site (cf. [F-M] §5). Square B and square C are the same as the bottom
sqaures in [B-K], except that there the authors multiply the sheaves Sf by
some p™ to map them into Z/p"Z(r).

The vertical arrows in square A are constructed using (i) the maps
defined in lemma 9.1 and the compatibility between them, (ii) the first
Chern class map Uy— H(Spec(®)gynS') (derived from the Kummer exact
sequence in syntomic cohomology) and its relation to logarithmic
differentials, and (iii) the comparison between syntomic cohomology of the
sheaf @, 'S and crystalline cohomology (41). In contrast with [B-K], we
start with Spec(@,) and not with Spec(®), which allows us to map ®, and
not just Z/p"Z into it. The ring & is (topologically) smooth, so its
crystalline conomology is dull, while that of @ is rich!

The composition of the three vertical arrows on the left with the
bottom horizontal arrow thus factors the way we want it to factor, since
the top horizontal row is induced from w. To conclude the proof of lemma
8.2 observe that the bottom horizontal arrow factors through H2(L,S",®S',)

= ST, (canonically!), and that the map we have constructed by following the
vertical arrows on the left and then the bottom horizontal arrow (call it
6,) is the composition of o with ST, — H2(L,ST+!,). The latter has bounded
kernel (as n increases), so from the validity of the lemma for 8", for all n,

follows its validity for o7, as well. o
IT11. Other formal groups

10. Notation. From now on let K be an unramified extension of Q of degree
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d, T a uniformizer, g=p9, and ¢, =¢9. Fix a power series fe®,[[X]] such that

(42) f=mX+ - =Xdmod .
Let F((X.Y) be the corresponding Lubin-Tate formal group law, and Ag(X)=X+--

€ KI[[X]] its logarithm (cf. [dS], chapter L1 for the notation used here). For
aedy let [al; be the endomorphism of F; whose power series expansion

starts with aX+-. Thus f=[n];. Let w, be a primitive T" division point of Fy,
such that

(43) f(wp)=0n, n1,

and denote by w = (w,) the corresponding generator of the Tate module of
Ft.

(44) Ta(F) = lim Ker [1"] = [0 ]w.

write also V¢ = Ta(F)® Q. Let K =K(w,) be the Lubin-Tate tower, analogous
to the cyclotomic tower. Let K : Gal(Ko/K) = @, * be the character giving

the action of the Galois group on the m"-torsion points (for all n), i.e.
o(wy)=[k(o))(wy). Then V; is a one-dimensional vector space over K, on
which the Galois group acts via k.

10.1 Proposition. (i) There exists a unique T = T in W(R) such that

(45) 09 ™) = w, n=0.

(i1) For 0€6y=6al(K/K), o(T =T ()= K(ON(T ) i (T =TT ).
(iii) Let t=t  be defined as A((T ). Then teA ;5 and

(46) o(t)=k(o)t VoeGy, dt=mt.

Remarks (i) When K=Q, and T=p, so that F( is (up to a change of variable)
the multiplicative formal group, T=g-1 (cf. (7)).
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(ii) V¢ is a crystalline representation of Gy. More generally this holds,
f y K

by a theorem of Fontaine, with the Tate module of any p-divisible group
over @y . The existence of t as in (46) is therefore not a new result (our
proposition re-proves the fact that the Tate module is crystalline). What
we want to emphasize is that a choice of a generator for the Tate module
gives us, in a canonical way, an element of B..is. In other .words,

HomQP[GK](Vf, Bcris) is not only d-dimensional over K, but has a
distinguished basis, consisting of the homomorphisms that send w to t,
Oty .. $97't,. Note that the Iine K-¢'t in Home[GK](vf. Beris) May be
characterized as those homomorphisms that intertwine the K-action on V;

with the ¢'-twisted action of K on B_js. In particular

HomK[GK](Vf, Beris) = { x€Bpig | 0(x) = k(o)x VoeGy } = Kt

is one dimensional over K.

Proof. Everything, except the construction of T, is easy. For example, the
unicity, as well as the action of Galois and Frobenius, are deduced from the

fact that N¢"(J)=0 (recall J=Ker(8)). That t is in A ;5 follows from the
well known fact that A¢(X)ed@[[X]], while TedJ.
Let wgn=wp. We shall define, by induction on i, w; , € @(C,) Vn20, and

prove

(47) ©in= O, Mod T,
, , qMm

Then if we let Xin = 11Myse0 Ojnem

we shall clearly have Xin = Xjnm®

We will also know that Xjn = ©jnmodT,

so we will be justified in setting, as the next step of the inductive
definition,

Wippn = (@47 0)/ T
Observe that x; = (w;, mod )50 = (X;, Mod )50 € R, and with the notation
of §1, x; ,=x;{9). Therefore the element
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(48) T = Jis0 Mix;l € W(R),

and 69, ™(T) = ;50T'X; = @, Everything now hinges on the proof of (47),
which at first sight seems rather surprising. At least for i=0 it is obvious,

since mo'n=f(w0’n+])5wo'n+‘q mod Ti. We need a lemma.

Lemma. If heK[[X]] has bounded denominators, and h(w,)e@y for infinitely
many n, then hed[[X]l.

The proof of the lemma is clear, since [w | = 1 as n = oo,

We assume now that Ojn have been defined for 0<j<i, and that they satisfy
(47). We define x;, and w,, as above, and we wish to prove (47) with i+1.

Claim. For each 0<j<i and each v21 there exists a natural number u(j,v) and
a power series h; ,€0[[X]], such that

(49) Wjn = hj (@ v)en) mod TV Vn=0.

The claim (with v=1 and j=i) will clearly imply (47). When j=0 it holds
trivially, with hg, = X and pg, = 0, so we prove the claim by induction on j.
By the lemma, it is enough to find h;, as above in K[[X]] (the proof will
guarantee bounded denominators). Now

\ v

v
— q° _ q" _ q
Xi-tn = Xj-tnev = @joinsv = hj—l.l((‘)p(j-l.l)+n+v) mod v+,

- a’
SO Wjn = {hj-l,v+l(“)p(j-l,v+l)+n) - hj—l,l(wu(j-l,l)+n+v) Y/ mod Y.

Suppose that a = p(j-1,v+1)-pu(j-1,1)-v = 0 (the case a < 0 being treated
similarly). Define u(j,v) = u(j-1,v+1), and

\%
hj,V = {hj'l,V+| - (hj_l.lofofo of)q }/T[,
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where f is composed with itself a times. Then (49) holds. o

10.2 Proposition. There exist exact sequences

fl-ledgk
(50) 0 — [ONT) — Ff(J) —_— Ff(TtW(R)) — 0
and
]‘T[_]¢K
The proof is left out. It is similar in principle to lemma 2.2. O
Now define
(52) Filfe Acris = { aederis™ | dlat) € A ).

This is a filtration similar to J....<">. It depends on the formal group in

cris
question. Note that A¢(J) € Fill((A  iq)-

11. Speculations. Propositions 10.1 and 10.2 may be viewed as the
beginning of an attempt to generalize the results of this paper to other
Lubin-Tate formal groups. For example, the analogue of the "fundamental
exact sequence”, with Kt'mA_ ;s replacing S™ as the left term, (52) replacing

the middle term, and 1-m "¢, replacing I-p~"¢, seems to be incorrect (i.e.,

not exact). The reason is that A is somehow "too big". There might be a

cris
smaller "A..is" that will be the ring of p-adic periods, not for all motives
with good reduction, but only for those whose p-adic realizations have
coefficients in K, and with which the analogue of the fundamental exact
sequence will hold. One would expect this smaller ring to be stable only

under ¢=¢9, but not necessarily under ¢. In particular, it should contain t,
but not ¢'t for I<i<d. If so, is there a formula for the connecting
homomorhpism of that sequence in terms of the Coates-Wiles
homomorphisms ? The case r=1requires only the existence of the sequence
(S1), and the proof given in §7 most probably generalizes, mutatis mutandis,
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to general Lubin Tate groups. The general case needs to await analogous
generalizations of the sheaves S’ and the main theorems of [F-M].

Work on p-adic periods of formal groups of abelian varieties has been
done by Colmez [Cz] and by Winterberger [Win]. The first interesting non-
ordinary case is the formal group of an elliptic curve with supersingular
reduction. The easiest formal groups beyond the ordinary (i.e. essentially
multiplicative) ones are Lubin-Tate groups of height > 1. We believe that
relations between the structure of rings similar to A g and the arithmetic
of Lubin-Tate groups should exist in general. In retrospect, this might be
the motivation for the path taken in this paper.
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