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Speculations about the Topology of Rational Points: 
An up-date. 

B. Mazur 

In my talk, over a year ago,1 I tried a conjecture out on my audience 
which at first glance may have seemed unreasonable, but which surprisingly 
still eludes attempts at its demolition. Since an account of my talk has been 
subsequently published [Mz 1] there is no need for me to repeat much of it 
here. Nevertheless I want to present here a brief "up-date", to slip in some 
commentary on [Mz l],2 and to mention (why not?) a few more questions. 

First, the conjecture. A variety will mean a reduced scheme of finite type 
over a field (usually Q). 

Conjecture 1. Let V be a smooth variety over Q such that V(Q) is Zariski-
dense in V. Then the topological closure of V(Q) in V(R) consists of a (finite) 
union of connected components of V(R). 

In [Mz 1] the following consequences of Conjecture 1 (and the triangulability 
theorems of Hironaka [Hi] and Lojasiewicz [Lo]) were mentioned: 

Conjecture 2. The topological closure of the set of rational points of any 
variety over Q in its real locus is homeomorphic to the complement of a finite 
subcomplex in a Unite simplicial complex; it has the homotopy type of a finite 
simplicial complex. 

and: 

Conjecture 3. The topological closure of the set of rational points of any 
variety over Q has at most a unite number of connected components. 

1in the series of lectures at Columbia University whose write-ups are contained 
in this Astérisque volume 
2and to correct an erroneous assertion there: specifically in §5 of [Mz 1], 
replace the phrase "the same result holds" by the phrase "the Brauer-Manin 
obstruction is the only obstruction to weak approximation" 

S. M. F. 
Astérisque 228* (1995) 165 



B. MAZUR 

My original motivation to consider these conjectures in their full gener­
ality came from thinking about the work of Matijasevic. Conjecture 3, for 
example, would imply that Z is not Diophantinely Definable in Q. For 
further discussion of this, see [Mz 1,2]. 

The condition of smoothness in Conjecture 1 is necessary. For a counter­
example, in the nonsmooth case, consider the affine cone X : x2 + y2 — 3z2 = 0 
over Q. Since the corresponding conic has no points rational over Q 2 (or over 
Q 3 ) the only Q-rational point of X is its vertex. But its R-rational locus is 
connected and Zariski-dense in -X".3 

§1. Obstructions to the existence of rational points. 
It may be that conjecture 1 has remained undemolished for so long simply 

because we have very few "obstructions" to the existence of rational points. 
We have, of course, the Brauer-Manin obstruction, first studied in [Mn 1]; 
let us recall its definition. 

Let f\k denote the adele ring of a global field k. Let X be a smooth 
projective variety over k. Let Br(X) denote the Brauer group of the scheme 
X/k. Local Class Field Theory enables one to define a natural (continuous) 
right-linear pairing 

7 : X(f\k) x Br(X) -+ Q/Z 

(cf. 3.1 of [CT - Sa 2]) and by Global Class Field Theory, the restriction of 
the pairing 7 to X(k) x Br(X) is trivial. Let 

X(f\k)Br = {xe X(f\k) I 7(a, 6) = 0 for all b G Br(X)}; 

i.e., X(f\k)Br is the "left-kernel" of 7 , given the topology it inherits as a closed 
subspace of X(Afc). The image of the natural injection X(k) «—• X(f\k) is then 
contained in X(f\k)Br. 

Let X(k) C X(f\k) denote the topological closure of X(k) in X(f\k); so 

X(k) C X(f\k)Br. 

3I thank the referee for suggesting this simple example 
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SPECULATIONS ABOUT THE TOPOLOGY OF RATIONAL POINTS 

Definition. Say that "the Brauer-Manin obstruction is the only ob­
struction to weak approximation" to X over k if we have equality 

X(k) = X(f\k)Br. 

To simplify the terminology in this article, call a variety X/k such that 
X(k) = X(f\k)Br a Brauer-Manin variety. Conjecture 1 holds for all 
Brauer-Manin varieties. Although the condition of being "Brauer-Manin" is 
expected to be a very stringent condition we have no example, at present, of 
a variety V/Q which has been actually proven to fail to be Brauer-Manin. It 
might be interesting to rectify this situation. 

The Brauer-Manin invariant has a certain limited sensitivity in that it 
factors through the Chow group of zero-cycles mod rational equivalence, in 
the following sense. For L any field extension of Q, let CX(L) denote the set of 
classes of zero-cycles of degree one taken up to rational equivalence, rational 
over L. We have the natural mapping X(L) —> CX(L). Put CX{l\k) = 
YlvCX(kv). The right-linear pairing 7 induces a pairing on the product, 

C 7 : CX(Hk) x Br(X) — • Q/Z (cf.[CT - SD]). 

If CX(f\k)Br denotes the subset of elements c G CX(f\k) such that 
Cj(c, b) = 0 G Q/Z for all b e Br(X), i.e., the "left-kernel" of this pairing, we 
have a commutative diagram 

X(k) C X (Ak) Br C X(Afc) 

CX(k) C CX(f\k)Br C CX(l\k) 

(with the right-hand square Cartesian). 

For a detailed discussion of the Brauer-Manin (and related) conditions, 

see [CT-SD], [CT 1,2], and [CT-Sa 1,2]. In some recent work "Schinzel's 

Hypothesis4 (concerning the conditions on a finite set of polynomials 

Pi(x),... ,Pw(x) € T[x] sufficient to guarantee that there are infinitely many 

integers n for which P i (n ) , . . . , Pu(n) are all prime numbers) is shown to imply 

4sometimes called "Hypothesis (H)"; for a precise statement, see loc. cit. 
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the assertion that various classes V of algebraic varieties are Brauer-Manin. 
In particular, modulo Schinzel's Hypothesis, the following class Vo is proved 
in [CT-SD] to be Brauer-Manin, continuing earlier work of Colliot-Thelene-
Sansuc, and of Serre. 

Vo = the class of smooth, projective, geometrically integral varieties X/Q 
endowed with a dominant morphism <p : X —> P1 defined over Q, such that 
the generic fiber of <p is a "generalized Severi-Brauer variety" (see [CT-SD],) 
over the function field Q(£) of Pj^. 

This class of varieties X/Q includes, for example, the class of (smooth, 
projective) pencils of conies defined over Q possessing Q-rational points. 

§2. Abelian varieties. 
As a consequence of the local and global duality theorems of Tate, if A / Q 

is an abelian variety with the property that A(Q) is Zariski-dense in A, and 
if the Tate-Shafarevich group ( A / Q is finite, then A / Q is Brauer-Manin if and 
only if Conjecture 1 holds for A / Q (this was explained to me by Lan Wang; 
unpublished note). 

For an explicit example of an abelian variety which is, using the above 
result, actually proven to be Brauer-Manin, one can cite the elliptic curve 
y2 = 4xs —Ax + l which is a modular elliptic curve of conductor 37 isomorphic 
to Xo(37)+, whose Mordell-Weil group is infinite cyclic generated by the point 
(x, y) = (0,1), and which is proved to have vanishing Tate-Shafarevich group 
in [K]; since all elliptic curves over Q satisfy Conjecture 1, by the result of L. 
Wang quoted above, this elliptic curve is then Brauer-Manin. 

Conjecture 1 implies that, for a simple abelian variety A / Q with Mordell-

Weil group of positive rank, the topological closure of the Mordell-Weil group 

in A(R) is open (of finite index). 

The analogous statement is false if A(R) is replaced with A(QP); i.e., 

there are simple abelian varieties such that the topological closure of A(Q) in 

A(QP) is a p-adic Lie subgroup of A(QP) which is of dimension greater than 

0, and strictly less than the dimension of A(QP) = dim A. 
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The natural way to get such a simple abelian variety A is to find one 
with the rank of its Mordell-Weil group greater than 0 and strictly less than 
d = dim A. For d = 2 the only worked-out example of this that I know 
is the abelian surface studied in [G-G]. Factors of the jacobians of Fermat 
curves, however, provide a source of lots of d-dimensional abelian varieties 
A/Q for larger d, with Mordell-Weil rank r in the required range 0 < r < d. I 
am thankful to W. McCallum for communicating to me the following explicit 
examples of these. 

Let £ > 7 be a prime number, and s an integer in the range 1 < s < £ — 2, 
with s = (£ — l ) /2 . Let J(^, S ) / Q denote the jacobian, defined over Q, of the 
curve C{£,s) : y£ = xs(x — 1). Then the dimension of J(^, s), i.e., the genus 
of C(£,s), is (l-1)/2. 

Theorem. With the above restrictions on £ and s, the abelian variety J(£, s)/Q 
is simple and its Mordell-Weil group is of rank r in the range 0 < r < (£—1)/2, 
if the prime number £ is a regular prime number congruent to -1 mod 3. 

Remark. The same conclusion, i.e., simplicity of J(£, S)/Q and 

0 < rank A(Q) < (£ —1)/2, holds under the following more general hypothesis: 

(i) £ > 7, s 7̂  (£ — l ) /2 as before, and if £ = 1 mod 3, then s does not have 
order 3 modulo ̂ , 

and 
(ii) If Q(/i^) is the cyclotomic field of ^-th roots of unity, and if Ve denotes 
the Fe-vector space of £ -torsion in the ideal class group of Q(/i£), then 
dimF£y£<(^ + 5)/8. 

Briefly, the reason for the running conditions £ > 7 and 1 < s < £ — 2, 
with s / (£ — l ) /2 is to guarantee that the Gross-Rohrlich point ([G-R]) in 
J(^, s) have infinite order. The requirement that if £ = 1 mod 3 then s not be 
of order 3 modulo £ guarantees that J(£, s) be simple (K-R]). The condition 
that £ be regular (resp. the more general condition (ii)) guarantees that the 
Mordell-Weil rank is smaller than the dimension; see [F] (resp. [Mc]). 

Question. Under the above conditions on £ and s, is the topological closure 

of the Gross-Rohrlich point P in J(£, s)(R) open? 
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§3. Families of quadratic twists of elliptic curves 

Let G(x) G Q(#) be a monic cubic polynomial with distinct roots and let 

E be the elliptic curve over Q defined by the equation y2 = G(x). If d is a 

nonzero rational number, let Ed denote the elliptic curve d-y2 = G(x), which 

we will refer to as the twist of E by d. If D(t) is a polynomial in Q(£) not 

identically zero, consider the pencil of elliptic curves, all twists of E, defined 

by the equation 

ED(i) : D(t)-y 2 =g3(x). (*) 

Conjecture 1 implies that either the set T of t G R for which Ep(t) has 

Mordell-Weil rank > 0 is finite, or else it is dense in R. If the Birch Swinnerton-

Dyer Conjecture is true, and if D(t) takes both positive and negative values, 

then Rohrlich has shown that the set T is not finite (this follows from [R] 

Theorem 2; see also the discussion in §6 of [Mz 1]). 

For what polynomials D(t) is the set T dense in R? 

I am thankful to the referee for pointing out to me that if D(t) is separable 

and of degree 2 then the surface (*) is unirational over Q and that there are 

two approaches to seeing this, the cubic surface approach (Lemma 1.2, p. 33 

of [C-T]) and the Châtelet surface approach (Prop. 8.3 and Remark 8.3.1 of 

[CT-S-SwD]). Consequently one can show, if D(t) is of degree 2, that T is 

dense in R. 

Kuwata and Wang [K-W] have more recently extended this result (again, 

independent of any conjectures) to polynomials D(t) of degree < 3. Specifi­

cally, the case of degrees < 2 having been treated, there is no loss of generality 

in supposing that D(t) is a monic polynomial of degree 3, with no multiple 

roots, so that we have two elliptic curves E : y2 = G(x), and F : y2 = D(t), 

and excluding the special cases j(E) = j(F) = 0 and j(E) = j(F) = 1728, 

Kuwata and Wang show that T is dense in R, and, in fact, they show more: 

they prove that there are infinitely many square-free positive integers (also 

square-free negative integers) d for which the quadratic twists of E and F by 

d both have positive Mordell-Weil rank. 

As Kuwata and Wang ask in their article, does a similar result hold for 

three elliptic curves over Q? Or for N of them? Or for iV simple abelian 
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varieties over Q? 

Question. Are pencils of elliptic curves Brauer-Manin? 

A positive answer to this question in the case where the polynomial D(t) of 
(*) above is separable and of degree 2 may be found in [CT-S-SwD]. 

§4. Heights, measures, and dynamics 
Alongside the question of the topological placement of rational points 

in real loci is the question of how rational points are distributed, if they 
are ordered with respect to a chosen height function. In various guises such 
questions have been (explicitly and implicitly) studied in special cases via 
the classical circle method and its subsequent developments: by Siegel in the 
context of quadratic forms; by Weil and many others in the generalization 
of Siegel's work to adelic studies of the arithmetic of semi-simple groups; for 
homogeneous forms of higher degree in large numbers of variables, e.g., as in 
Birch's [B 1,2], or [D-L] or in [Sch], in which Schmidt axiomatizes a class (of 
systems) of homogeneous forms for which the circle method applies. Relevant 
to distributional questions, as well, are the studies of pre-homogeneous vector 
spaces continuing work of Sato and Shintani, cf., e.g., [D-W], [Wr], [W-Y] 
and the vast literature related to the analytic continuation of zeta-functions 
of quite general homogeneous forms of high degree: see Igusa's treatise [Ig], 
and, e.g., [Ca-N], [Ho], [Licht], [Sa]. 

That such questions are topical is clear from the recent work of Batyrev, 
Duke, Fomenko, Franke, Golubeva, Heath-Brown, Hooley, Iwaniec, Manin, 
Moroz, Rudnik, Sarnak, Schulze-Pillot, Silverman, Tschinkel, Vaserstein, and 
others (cf. Silverman's survey of some of this work in his article [Si 2] appear­
ing in this Astérisque volume; also [B-M], [C-S], [D], [D-R-S], [D-S-P], 
[F-M-T], [F-G], [Mn 2], [M-Tsch], [Tsch]). 

Measures coming from metric height functions. Fix a Z-lattice Q (i.e., 
free abelian group of finite rank) and a nondegenerate, positive-definite sym­

metric R-valued bilinear form, denoted ( , ) on fi. Let V be the Q-vector 
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space Q ®z Q, and define a non-negative real-valued function v i—• ||v|| for 
all vectors v G V by the rule 

IN2 := min 
w 

(w, w) 

where w ranges through all vectors in Q which are nonzero scalar multiples 
of v. This norm function || * || : V —> R+ admits a natural extension to 
V ® Q Q and its extension is invariant under multiplication by nonzero scalars. 
It induces, therefore, an R+-valued function H (which could be called the 
metric height function) on the Q-valued points of Py the projective space 
of all lines through the origin in V. More precisely, if x is a Q-valued points 
of Py , put H(x) := ||v||, where v is any nonzero vector on V ®Q Q which 
generates the line determined by the point x.5 

The metric on the vector space V also determines a Riemannian metric on 
the real locus of Py. Namely, the real locus Py(R) admits a 2:1 covering by 
the unit sphere in the (Euclidean) inner product space V(R) and the induced 
Riemannian metric on the unit sphere (being invariant under multiplication 
by -1) descends to yield a Riemannian metric on Py(R) . If X C P y is any 
smooth projective subvariety over Q, restrict the metric height H to the Q-
valued points of X , and the Riemannian metric on Py(R) to the real locus 
X(R). The restricted Riemannian metric defines a volume form on X(R) ; let 
us denote by /i the volume form obtained from this by multiplying by the 
appropriate scalar to obtain the normalization 

X(R) 
/1 = 1. 

Given an open set U in the real locus X(R) which is "nice" in the sense, 

say, that its boundary in X(R) is a piece-wise differentiate (C°°) subcomplex, 

5 More generally, if G is a reductive algebraic group over Q admitting an 
algebraic linear representation on a finite dimensional Q-vector space V, and 
if we endow V with a lattice and metric (compatible with the representation 
in a certain sense) then J.-F. Burnol [Bu] has defined an explicit "metric" 
height function on the quasi-projective variety M/Q defined as the quotient 
of the semi-stable points of V under the action of G. If G is the trivial group, 
then M, = Py and Burnol's height function is equal to the classical metric 
height function defined above. 
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one can try to form the limit as r i—• oo of the ratio 

{x € X(Q) H U\H(x) < r}/{x G X(Q)\H(x) < r}. 

If this limit exists, call it v(U). If v(U) exists for all "nice" open subsets, 

then it is visibly finitely additive on this class of subsets; call it a Diophan-

tine measure attached to H. If v exists, it is natural to try to compare it to 

/i. At one extreme, we can ask if the rational points of X are equidistributed 

in the sense that v (is defined, and) is equal to fi on "nice" open subsets 

U C X(R). For projective space itself, such equidistribution results are clas­

sical and straightforward: If V is a metrized finite-dimensional vector space 

over Q, and X is either Py , or, more generally, a subvariety isomorphic to 

projective space of some dimension imbedded in Py by a Veronese imbedding 

(over Q) then v = ¡1 on "nice" open subsets U C X(R).6 In particular, we 

have the equidistribution of rational points for plane conies X/Q possessing a 

rational point, since these curves can be realized as the image of the quadratic 

Veronese imbedding of P J Q . There are other methods for studying distribu­

tional questions in more general contexts, e.g., Hardy and Littlewood's "circle 

method" and its modern elaborations. Also, for quadrics of any dimension, 

and more generally, for homogeneous spaces of the for G/H where G is a 

reductive group, and H is either a reductive (see [D-R-S]) or parabolic sub­

group of G (see [F-M-T]). See also [Th] for an explicit count of rational 

points of flag varieties. A delicate type of "equidistributional question" origi­

nally posed by Linnik [Linn] (and towards which he had substantial results) 

is the following: fix a positive-definite ternary quadratic form g(x, y, z). For 

a given integer, consider the set Sn of integral solutions g(x, y,z) = n scaled 

back to the unit ellipsoid £, i.e., 

$n = { (s , y, z)/y/n I (a;, y, z) E T?,g(x, y, z) = n } . 

6but consider the projective plane with one point blown-up, imbedded in pro­
jective space via a complete linear system: the precise relationship between 
v and µ, here, does not seem to have been settled, even though the corre­
sponding asymptotic count of rational points has long been known (cf. [Se] 
2.12) 
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Linnik's Problem. Letting n run through any finite sequence of integers 
for which Sn is nonempty, is it the case that for all C°° functions / on 5, 
that the sequence of averages of / on the sets Sn tends to the integral of / 
on <?, computed with respect to the normalized measure on £ coming from its 
induced Riemannian metric? 

The complete solution of Linnik's problem (see [D], [F-G],[D,S-P]) uses 
Iwaniec's delicate bound ([Iw] on the Fourier coefficients of modular forms 
of half-integral weights (see also the prior work [A-J] on the diagonal form 
x2 + y2 + z2, and the even earlier work on the analogous problems for positive-
definite forms of rank > 4 [Mal], [P]). 

A good "test" of the power of the methods we have at hand for the treat­
ment of quadrics might be to try to apply them to equidistribution questions 
for certain pencils of quadrics. But, generally, if the circle method doesn't 
apply to a form of higher degree, we seem to have little other handle on 
distributional questions for it; e.g., consider the special cubic surface 

X3 : x3 + y* + z3- 3t3 = 0. 

For a discussion of this surface, see [H-B] and [SD]. Some extensive numer­
ical experiments being done by Vaserstein7 on this surface is consistent with 
Manin's general "linear growth conjecture" which, for this example, predicts 
that the number of integral points (x, y, z, t) on X 3 , with g.c.d. = 1, and 
x2 + y2 + z2 + t2 < R2 grows approximately linearly in R). For a discussion 
of the asymptotics for other cubic surfaces, see [Tsch]. 

Following the well-known construction of Tate, in some recent work 
([Si 1,2], [C-S]) Silverman and Call study the canonical height function 
HL,V (see also [Se]) associated to a self-morphism (p : X —• X defined over Q 
together with a "line bundle" L G Pic(X) ® R which is an eigenvector for <p 
with eigenvalue of absolute value a > 1. This is defined by taking any Weil 
height function 7i for L and setting 

HLAX) = lim 
y 88 

H{<p"x) q-v 

7Vaserstein tabulates this for points with max(|o:|, |y|, \z\, \t\) < 10,000. Also, 
for a study of integral points on this variety, see [C-V]. 
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If X also has trivial canonical bundle, then a nowhere vanishing section a of 
the canonical bundle (over R) is uniquely determined up to multiplication by a 
nonzero real number. Restricting a to the real locus X(R) gives us a nowhere 
vanishing volume form, and multiplying by the appropriate scalar so that the 
total integral over X(R) is 1 gives us a canonical volume form on X(R). 
The canonical volume form is preserved by all (biregular) automorphisms of 
X defined over R. 

In view of Silverman's work on Wehler A'3 surfaces,8 it would be interest­
ing to understand what (equidistributional) relationship, if any, the canonical 
heights of Wehler K3 surfaces have with respect to the canonical volume form. 
The dynamics of these K3 examples seem interesting. In [Mz 1] we repro­
duced a computer-drawn picture provided to us by Curt McMullen of a (piece 
of an) orbit of an automorphism of infinite order on a Wehler K3 surface. 

Here is another example of an automorphism of infinite order on a Wehler 
K3 surface given to me by McMullen. Consider the intersection of the zeroes 
o f the b i - h o m o g e n e o u s ( l , l ) - f o r m <p and the ( l , l ) - f o r m i/> in P2 x P2 g iven in 

affine coordinates (a, b) and (#, y) by the equations: 

(p = y + 6 — 2ax 
i/> = x2 + y2 + a2(l + y2) + b2(l + x2 + y2) - 7. 

This picture (diagram 1 below) is of the projection of seven orbits (14,000 
iterates) of Q-rational points onto the (a, 6)-plane. There is a pair of ellip­
tic fixed points lying over (a, b) = (0,0), and so appropriate neighborhoods 
of these points should have "Kolmogorov-Arnold-Moser" dynamics. In fact, 
reading from the projection of these elliptic fixed points "outwards", the seven 
orbits depicted below seem to be of the following types: 

1, 2: part of an elliptic island around (0,0) 

3: lies in an elliptic island of period 6 

8 Recall that a Wehler i f 3 surface Ar is a smooth subvariety in P2 x P2 defined 
as the complete intersection of two bihomogeneous forms, one of bidegree (1,1) 
and the other of bidegree (2,2). The two projections of X to the factors P2 are 
each of degree two, and therefore determine two involutions on the surface X 
which generate an infinite dihedral group of automorphisms of X; (see [We]). 
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4: is chaotic 
5" lies in an elliptic island of period 6 

6, 7: ?? these, as McMullen describes them, seem to "want to be" nice elliptic 
orbits but they "run into" the discriminant locus. 

In contrast to the picture in [Mz 1] (which is suggestive of something 
close to hyperbolic dynamics where, conceivably, there might be dense orbits) 
these KAM dynamics preclude, of course the possibility of dense orbits. For 
this type of Wehler K3 surface, then, the dynamics alone will not be sufficient 
to check Conjecture 1. 
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