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Number Theoretic Constructions of Ramanujan Graphs

‘Wen-Ching Winnie Li

§1. Introduction

A fundamental problem in communication network is to construct efficient
networks at a cost not exceeding a fixed amount. By interpreting a network as
a finite graph, one may formulate the problem as constructing graphs with good
magnifying constant while the number of vertices and degree are left fixed. It
was proved by Tanner [Ta] and Alon-Milman [AM] that the magnifying constant is

intimately related to the spectrum of the graph, as explained below.

Given a (finite) graph X, its adjacency matrix A = A(X) may be regarded as a
linear operator on the space of functions on (vertices of) X, which sends a function

f to Af defined by
(4f)(2) =) W),

T—y

where y runs through all outneighbors of z. The eigenvalues of A are called the
spectrum of X. If X is k-regular, that is, we have indegree = outdegree = k at

each vertex, then k is an eigenvalue of A and all eigenvalues ) of A satisfy
Al < k.

If, in addition, X is r-partite, that is, the vertices of X are partitioned into r parts,
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W.-C. W. LI

and the outneighbors of the vertices in the ith part are in the ¢ + 1st part for all
1 mod r, then (k is also an eigenvalue of A for all rth roots of unity (. Call the (k’s
trivial eigenvalues of X, and the remaining ones nontrivial. Let A = A(X) be the
maximum nontrivial eigenvalue of X in absolute value. It was shown in [Ta] that

the magnifying constant ¢ has a lower bound

>1 - ——
c2l-g %

and on the other hand an upper bound of A was given in terms of ¢ in [AM]:

1

1
CAD> e
k /\"2 2+ c?

Thus the smaller A is, the larger c is, and vice versa.

How small can A be? If X is a connected k-regular r-partite graph with A(X)

diagonalizable by a unitary matrix, then a trivial lower bound for A(X) is

AX) > /22 rrk VE.

n—
A nontrivial lower bound was given by Alon and Boppana (see [LPS]), which asserts
that for k-regular undirected graphs X, liminf A(X) is at least 2¢/k — 1 as the size
of X tends to infinity. The above statement also holds for k-regular directed graphs
with adjacency matrices diagonalizable by unitary matrices. Following Lubotzky,
Phillips and Sarnak [LPS], we call a finite (directed or undirected) graph X a
Ramanujan graph if

(1) X is k-regular,

(i) MX) <2vE -1,

(iii) the adjacency matrix A(X) is diagonalizable by a unitary matrix.

Here the third condition is automatically satisfied if X is an undirected graph, for

its adjacency matrix is then symmetric and hence diagonalizable by an orthogonal
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NUMBER THEORETIC CONSTRUCTIONS OF RAMANUJAN GRAPHS

matrix. In view of the above analysis, a Ramanujan graph, roughly speaking, is
a regular graph with small nontrivial eigenvalues, and hence has large magnifying
constant. It is the kind of graph one is looking for in communication theory. Ra-
manujan graphs often have other good properties, such as small diameter (cf.[C]),
large girth and small chromatic number (cf.[LPS]). They also have wide applica-
tions in combinatorics and computational complexity. The reader is referred to [C]

and [B] for their connections with other fields.

To date, there are three systematic ways to construct Ramanujan graphs explic-
itly, they are all number-theoretic. We shall survey these methods chronologically
in the next three sections. The first construction is due to Margulis [M] and inde-
pentently, Lubotzky, Phillips and Sarnak [LPS], their graphs are defined on double
cosets of adelic points of definite quaternion groups over Q Such graphs are Ra-
manujan because the Ramanujan-Petersson conjecture for classical cusp forms of
weight 2 is proved to be true by Deligne [D2]. The second one is worked out by
Chung [C] and Li [L1], where graphs are defined on finite abelian groups; they
are shown to be Ramanujan using certain character sum estimates resulting from
the Riemann hypothesis for curves over finite fields proved by Weil [W1]. Terras
and her students [Te and references therein] came up with the third construction
of Ramanujan graphs, which are defined on right cosets of GL, over finite fields.
The eigenvalues of such graphs are character sums arising from irreducible represen-
taions of GL, over finite fields, and one uses the Riemann hypothesis for curves over
finite fields to derive the desired bound on these character sums. It is an interesting

combination of GL; theory with GL; theory.
§2. Ramanujan graphs based on adelic quaternionic groups

Graphs constructed using this method will have valency k = p + 1, where p

103



w-C. W. LI

is a prime. The general method is as follows. Take a definite quaternion algebra
H defined over Q unramified at p and ramified at co. Let D be the multiplicative
group H* divided by its center. Let X be the double coset space of the adelic

points of D :
X =D(Q\D(AQ)/D®R) [[ D(z,),

¢ prime
where Z, is the ring of integers of the g-adic field Q,. By the strong approximation

theorem, the above (global) double coset space can be expressed locally :

X = D(Z[3])\D(Q,)/D(Z,)
= D(Z[X])\PGL(Q,)/PGLy(Z,).

Here D(Q,) is isomorphic to PGL»(Q,) since H is unramified at p. The right coset
space PGL3(Q,)/PGL2(Z,) has a natural structure as a (p+1)-regular infinite tree
T (see [S]), and the discrete group I' = D(Z [%]) acts on 7. Since H is ramified at
oo, T'\T is a finite (p + 1)-regular graph, which is the graph structure on X. We

may replace I' by a congruence subgroup I'' and thus obtain a finite cover X' of X.

To study the eigenvalues of X', we first note that the functions on X' are
automorphic forms for the quaternion group D over Q which are trivial on D(R)
and on an open compact subgroup of the product of the standard maximal compact
subgroups at nonarchimedean places. Included in such automorphic forms are the
constant functions, which are eigenfunctions of the adjacency matrix A = A(X')
with eigenvalue p+ 1. The orthogonal complement V of the constant functions is
invariant under A, and the automorphic forms there, by the results in representation
theory explained in [JL] and [GJ], correspond to a certain kind of classical cusp
forms of weight 2 and trivial character. When interpreted as classical cusp forms,
the action of A on V is nothing but the action of the classical Hecke operator T,

acting on weight 2 cusp forms. Hence the eigenvalues A\ of A on V, which are
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NUMBER THEORETIC CONSTRUCTIONS OF RAMANUJAN GRAPHS

also eigenvalues of T, on weight 2 cusp forms, satisfy the Ramanujan-Petersson

conjecture

M <2vp=2vE-1

This conjecture was established by Deligne, who first showed that Ramanujan con-
jecture follows from the Weil conjectures, and then proved the Weil conjectures

[D2]. Therefore we have shown
Theorem 1. The graph X' is a (p+ 1)-regular Ramanujan graph.

The (p + 1)-regular Ramanujan graphs studied in [Me] by Mestre and Oesterlé
were constructed by choosing H = H, ramified only at co and at a prime £ # p, with
the double coset space always modulo the product of real points and the standard
maximal compact subgroups at nonarchimedean places on the right; and by letting
£ tend to infinity, they obtained infinitely many such graphs. On the other hand,
Margulis [M | and, independently, Lubotzky, Phillips and Sarnak [LPS] (see also
[Ch]) took H to be the Hamiltonian quaternion, they obtained an infinite family of
(p+1)-regular Ramanujan graphs by taking congruence subgroups of I'. In general,
one may both vary quaternion algebras and take congruence subgroups to construct

infinitely many Ramanujan graphs.

The same argument works when the base field Q is replaced by a function field
of one variable over a finite field. In that case the resulting graphs are Ramanujan
because Drinfeld [Dr] has proved the Ramanujan conjecture for GL; over function
fields. This is done in Morgenstern’s thesis. Note that the graphs so constructed
have valency k = g + 1 with ¢ a power of a prime. In [P] Pizer constructed
(p + 1)-regular Ramanujan graphs allowing multiple edges by using the action of

the classical Hecke operator at p on spaces of certain theta series of weight 2.
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§3. Ramanujan graphs based on finite abelian groups

We start by giving a general recipe. Let G be a finite abelian group and S
a k-element subset of G. Define two k-regular graphs on G, called the sum graph
X,(G, S) and the difference graph X4(G, S) as follows : the out-neighborsof z € G
in the sum graph are elementsin {y € G: z +y € S} = —z + S, and those in the
difference graph are in {y € G:y—z € S} = z + S, respectively. For X, and X,
so constructed, one can show that their adjacency matrices are diagonalizable by
unitary matrices and the eigenvalues of their adjacency matrices, although different,
have the same absolute value given explicitly by

D (s)

SES

for characters ¢ of G.

Hence if we can find a suitable group G and a subset S such that

> w(s)| <ovE-1

SES

for all nontrivial characters ¢ of G, then we will have constructed two Ramanujan
graphs X,(G, S) and X4(G, S). This observation converts a combinatorial problem

to a number-theoretic problem.

In what follows, F' denotes a finite field with ¢ elements, and F, denotes a
degree n field extension of F. Let N, be the set of elements in F,, with norm to
F equal to 1. In [D1], Deligne proved the following estimate of the generalized

Kloosterman sum :

Theorem 2. (Deligne) For all nontrivial ¢ of F,, we have

> %(s)

SEN,

n-1

SngT.

When n = 2, N, has cardinality ¢ + 1 = k. The above theorem implies that
Xs(F2,N;) and X4(F3, N;) are Ramanujan graphs.

106
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Deligne proved the above theorem using étale cohomology and algebraic geom-
etry. We exhibit more character sum estimates below using the Riemann hypothesis
for curves over finite fields which was proved by Weil [W1]. The reader is referred

to [L1] for more detail.

Let ¢ be an element in F, such that F,, = F(t). Assume n > 2. Let

s:{f'::aepugxﬁ.

When a = oo, the quotient is understood to be 1. Note that t? — a is the image of
t — a under the Frobenius automorphism z +— z9, hence the set S is contained in

N,.

Theorem 3. For all nontrivial characters x of Ny, we have

> x(s)

s€S

<(n-2)va.

The set S has cardinality ¢g+1 = k. Thus we get interesting Ramanujan graphs
by taking G = N, for n = 3,4 and S as above.

Let

S’={tia:aeFU{oo}}.

Here the value of ﬁ for a = oo is zero.

Theorem 4. For all nontrivial characters ¢ of Fy,, we have

) w(s)

€S’

<(2n-2)4.

Hence we obtain Ramanujan graphs by taking G = F; and S = §'.
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Observe that S and S’ are affine transformations of each other, thus Theorem

4 can be restated as

Theorem 4'.

> w(s)

s€S
for all nontrivial characters v of Fy,.

<(@2n-2)yq

When n = 2, we find S = N,, hence the above statement yields immediately

Corollary 1. Deligne’s theorem (Theorem 2) for n = 2 follows from the Riemann

hypothesis for curves over finite fields.

Theorem 5. For all nontrivial characters (x,v¥) of Np x Fy,, we have

> x(s)¥(s)

s€ES

< (2n-2) V4.

Again we get Ramanujan graphs by taking G = N; x F3, and S the diagonal
imbedding of the above set S in N; X F3.

As noted before, S = N; when n = 2, thus we get

Corollary 2. For all nontrivial characters (x,v) of N2 x F3, we have

> x(9)%(s)| <2va.

SEN,

In view of the analogous character sum estimate for split degree 2 algebra
extension of F proved by Mordell (Theorem 6 below), Deligne in [D1] conjectured

that the same bound should hold for twisted generalized Kloosterman sums, namely,

Conjecture (Deligne) For all nontrivial characters (x,¥) of Np X Fy, we have

Y x(s)%(s)

SEN,

<ngT.
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Corollary 2 above establishes Deligne’s conjecture for the case n = 2. In fact,
the conjecture for n = 2 follows from the Riemann hypothesis for projective curves

over finite fields.

Using the same method, one can also re-establish the following known character

sum estimates:

Theorem 6. (Mordell [Mo]) For each nontrivial character (x,v) of F* x F, we
have

Y x(@w(z +27h)| < 2¢'2

z€F,z#0

Theorem 7. (Katz [K1]) Let B be an étale algebra over F of degree n and let z
be a reqular element of B. Then for every nontrivial character x of B*, we have

> x(z—a)

aEF
z—-a€BX

< (n-1)g'%

Here in writing B as a product K X - -- X K, of finite field extensions K; of F'
with total degree n, an element z = (z1,---,z,) of B is called regular if the field

F(z;) =K, for: =1,---,r and no two components of z are conjugate.

By taking B to be F; and z an element in F, but not in F, one gets g-regular
Ramanujan graphs X,(F,, F') and X4(F}', F) constructed in [C]. In fact, by taking
B =F x F, z = (a,b) with a # b, one obtains (¢ — 2)-regular Ramanujan graphs
X,(F x F, S) and X4(F x F, S) with S = F — {a, b} as well.

The way to prove Theorems 3-7 is to construct a nontrivial character £ of the
idele class group of the rational function field F () such that the nonzero terms in
the given character sum are precisely the values of ¢ at uniformizers of the places of

F(t) of degree one where ¢ is unramified. Hence the associated L-function L(u, &)
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is a polynomial in u of finite degree, say, d, and the coefficient of u is the character
sum in question. It then follows from the Riemann hypothesis for curves over finite

fields that the character sum has absolute value majorized by d ¢'/2.
§4. Ramanujan graphs based on finite nonabelian groups

In this section we shall construct Ramanujan graphs based on finite nonabelian
groups, which enjoy certain properties already seen in the previous two methods.

Again, we start with a general approach.

Let G be a finite group and let K be a subgroup of G. Denote by L(G) the
space of complex-valued functions on G and by L(G/K) the subspace of functions
invariant under right translations by K. For a K-double coset S = KsK, define

the operator As on L(G) by sending a function f on G to

(Asf)(z) =) f(zy), =€G.

y€ES

Let A be a nonzero eigenvalue of Ag, and let f be a nonzero eigenfunction with

eigenvalue A. Define h on G by

h(z)= > f(zk), z€G.
kEK
Then for k' € K, z € G, we have
h(zk') = h(z) = (Ak f) (z) = A f(z) = Mf(zk').
From A # 0 we get f(z) = f(zk') for all ¥' € K and hence
h(z) = |K|f(z) = A f(z) forall z € G.

As f(z) # 0 for some z, this implies A = |K|. Denote by Ly the 0-eigenspace of
Ag. We have shown that

L(G) = L(G/K) @ Lo
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NUMBER THEORETIC CONSTRUCTIONS OF RAMANUJAN GRAPHS

and each space is invariant under the left translation by G. Further, Ag acts on Lg

as 0 operator, and L(G/K) is As-invariant.

We assume that the operators As are diagonalizable and mutually commutative.
As Agf is nothing but the convolution of f with the characteristic function of
S~!, our assumption implies that the convolution algebra L(K\G/K) of the K-bi-
invariant functions on G is commutative. Note that the assumption is satisfied
if each double coset S is symmetric, that is, S = S~1. Then L(G/K) is a direct
sum of common eigenspaces of As, and each common eigenspace is invariant under
left translations by G, that is, ¢ € G acts on f by (¢ f)(z) = f(¢~'z) for z € G.
Hence L(G/K) decomposes as a direct sum of irreducible representations (V, ) of
G such that on each space V the operators As act by multiplication by scalars Ags.

We want to find a way to compute the As. Denote by e the identity of G.

Proposition 1. Let (V,m) be an irreducible representation of G occurring in

L(G/K). Then
(i) If h is a K-bi-invariant function in V with h(e) = 0, then h = 0.
(#) There ezists a unique K-bi-invariant function h in V with h(e) = 1.
(iii) The function h in (i) satisfies

I—Ilf—l > h(zky) = h(z)h(y)  for all z,y € G

kEK
and for any K-double coset S = KsK,

K[’
Ag=
s IStabslh(s)’

where Stab s consists of k € K such that ksK = sK.

Proof. Let f be a nonzero function in V with f(g) = 1 for some g € G. Replacing
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f by m(g7!)f if necessary, we may assume f(e) = 1. Define
1
h(z)= = Y flkz) = == Y (n(k)f) (z) for z€G.
et ”" kek

Then h lies in V, is K-bi-invariant, and satisfies h(e) = f(e) = 1. This proves the
existence part of (ii). The uniqueness part of (ii) will follow from (i).

Let h be a K-bi-invariant function in V. Then Agh = Agh for all K-double
cosets S = KsK. Fix s € G. We have, for all z € G,

Zh( ks) = .S;tabslz h(zy) = IStabsI(A B (z) = |St;;bs|,\sh( )

| & yes K| |K|?
Setting = = e, we obtain
|Stabd s|
h(s) =
(s) TG

Hence h(s) = 0 for all s € G if h(e) = 0. This proves (i). Suppose h(e) = 1. The

Ash(e).

above equation yields

|Stad sl)‘

h(s) =
()=

and hence

)" h(zks) = h(z)h(s)  forall z,s € G
IK | ek

and \g is as asserted.

Remark. If we take a K-bi-invariant function h in Ly, then the same proof shows
that h = 0. Hence Ly contains no nontrivial K-bi-invariant function. This proves

that representations occurring in Ly have no K-invariant vectors.

The proposition above implies that in V| the n(K)-invariant subspace is 1-
dimensional, generated by h in (ii); and further, as remarked above, the represen-
tations occurring in L(G/K) are characterized by having a nonzero K-invariant

vector. Fix z € G and consider the operator Y n(kz™!)=:p(z)on V. Let f € V.
kEK
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Then p(z)f is a bi-K-invariant function in V' whose value at e is equal to
(p(2)f) (e) = Y _ f(zke) = |K|f(z).
kEK
Hence p(z)f = |K|f(z)h. Choose a basis fi = h, fa, -+, fr of V. Then the matrix

representation of p(z) with respect to this basis is

KIh(z) |Klfa(2) |Klfs(a) - |KIf(z)
0 0 0 0
0 0 0 0

so that

rp(z ra(kz™!) = h(z
IKIt p(z) = IKI,é:(t (k2™") = h().

We summarize the above discussion in

Theorem 8.(cf. [Tel]) The group G acts on the space L(G/K) of right K -invariant
functions by left translations. The space L(G/K) can be decomposed into a direct
sum of irreducible subspaces (V,m) such that on each subspace V the operators Ag
act by scalar multiplications by As x for all K-double cosets S. Further, on each
subspace V, the space of left K -invariant functions is one-dimensional, generated by

ha(z) := IKI g;(tm(kz H. (1)

Such a function is K-bi-invariant, satisfies hr(e) =1 and

%h,(:cky) = ha(z)hx(y) for all z,y €G.

Moreover, the eigenvalues As » are given by

K|

mh"(s) for any s€ S,

As,ﬂ =

where Stab s consists of k € K such that ksK = sK.
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Now we turn to the construction of graphs. Let T be a finite union of dou-
ble cosets. Define a graph X = X(G/K,T/K) on cosets G/K such that the
outneighbors of zK are zg;K, i = 1,---,k, where T = |i| ¢g:K. This is a k-
regular directed graph, and it is undirected if T = T-1. V&::m G is abelian and
K is trivial, this is the difference graph defined in the previous section. When
G = PGLy(Q,), K = PGLy(Z,) and T = K (g ‘1)) K, the resulting graph is
the (p + 1)-regular infinite tree 7 associated to PGL2(Q,) in §2.

The adjacency matrix At of X = X(G/K,T/K) is ]%f . > Ag. By

K —double coset
SCT

the theorem above, the eigenvalues of At are given by

Z | SLKbI | hx(s), for any element s in S,
SCT

as 7 runs through the irreducible representations of G occurring in L(G/K).

As remarked before, an irreducible representation 7 of G occurs in L(G/K)
if and omly if it has a nonzero K-invariant vector. Thus to construct Ramanu-
jan graphs of the above type, it suffices to find suitable G, K and T such that
L(K\G/K) is a commutative algebra, At is diagonalizable, and for all nontriv-
ial irreducible representations m of G containing a nonzero K-invariant vector, the
function h, defined by (1) satisfies

) D - BB PPV gy
s |Stab s|

8§ K —double coset
where

Z _|Kl
|Stab |Stab 5|’

A family of (¢ + 1)-regular Ramanujan graphs was constructed and studied by

A. Terras and her students ([Te2] and references therein, see also [E]). They took
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a finite field F of g elements with ¢ odd, G = GL,(F), and

K={(Z bj)eG : a,beF}

for a fixed nonsquare element § in F. Then G/K can be represented by

H={(g ”1”) : ye F* and zeF}

so that it is analogous to the classical upper half-plane. The group G has ¢ double
cosets, of which K ((1) (1)) K=K and K <_01 (1)) K = (_01 (1)) K, and each
of the remaining ¢ — 2 double cosets KtK is the union of (¢ + 1) K-cosets. More
precisely, each double coset KtK is associated to an ellipse 22> = ay+8(y—1)?, where
a € F,a # 0,46, such that KtK = | (g f) K with (z,y) running through all the
F-points of the ellipse. Also denote such a double coset KtK by S,. Choose T =
Sa, a # 0,46, so that we get a (¢+ 1)-regular graph X = X(G/K, T/K). Because
all K-double cosets S are symmetric, i.e., S = S~!, the graph X = X(G/K, T/K)
is undirected and the algebra L(K\G/K) is commutative. Further, Stab t is the
subgroup of diagonal matrices in K, hence |Stab t| = ¢ — 1 and |K|/|Stab t| =

g+1=k.

One checks from the known table of representations of G in [PS] that there
are two types of nontrivial irreducible representations of G containing a nonzero K-
invariant vector. The first type arises from the (¢ + 1)-dimensional representation

of G induced from the 1-dimensional representation of the Borel subgroup given by

@ 5) s x@x(d)
(5 2)

for a character x of F*. If x has order greater than 2, then the above induced
representation is irreducible, denote it by m,; while if x has order 2, denote by

the ¢-dimensional irreducible subrepresentation of the above induced representation.
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The realization of 7y in L(G/K) is the subspace generated by the left translations
of the function f on G/K defined by

(5 1))

The eigenvalue Ar,, of A7 on the space of 7, can be easily seen to be

ATy = Z x(y)-

yEF
ay+6(y-1)2=z2

It was shown by R. Evans and by H. Stark that
|)‘T,x| <2,/g=2Vk—-1 for x nontrivial,

using Weil’s estimate [W2], which follows from the Riemann hypothesis for projec-
tive curves over F. Soto-Andrade [SA] computed h, using (1) with 7 = 7, and

arrived at the same expression for Ar,,. Here we note that since T = T71, we have

K]

1
A= ——hg(t7}) = — tr w(kt
re= o) = o 3 (e

for all representations 7 occurring in L(G/K).

The second type of irreducible representations of G in question, denoted by
7w, is the representation of G associated to a multiplicative character w of the
quadratic extension F(v/§) of F. Here w # w9, that is, w is not the lift of a
multiplicative character of F by composing with the norm map from F(v/6) to F,
and the representation is (¢ — 1)-dimensional. The eigenvalue At on the space

of m, was computed by Soto-Andrade [SA] to be

At = Z 6(% -2+ 2z)w(z),

21=z+yVEEF (V)
z2-6y2=1
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where ¢ is the function on F equal to 1 on squares in F*, —1 on nonsquares in F'*
and 0 at 0. Using étale cohomology and algebraic geometry, N. Katz [K2] showed
that

’/\T,wl <2/7=2vk-1.

In fact, the above inequality can also be proved directly by constructing an idéle
class character n of the rational function field F(z) such that the attached L-function
L(u,n) is a polynomial in u of degree at most 2 and At is the coefficient of u.
The desired inequality then follows from the Riemann hypothesis for curves over
finite fields, the same way as we obtained character sum estimates in the previous

section. (See [L2], chap 9, for details.) This proves

Theorem 9. The graphs X = X(G/K, So/K), a € F,a # 0,44, are (¢+1)-regular

Ramanujan graphs.

This is the third explicit construction of Ramanujan graphs, which uses both
representations of GL; over a finite field and character sum estimates resulting from

the Riemann hypothesis for curves over finite fields.
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