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N u m b e r Theoret ic Construct ions of R a m a n u j a n Graphs 

W e n - C h i n g W i n n i e Li 

§ 1 . Introduct ion 

A fundamental p rob lem in communicat ion network is to construct efficient 

networks at a cost not exceeding a fixed amount. B y interpreting a network as 

a finite graph, one may formulate the prob lem as constructing graphs with g o o d 

magnifying constant while the number of vertices and degree are left fixed. It 

was proved by Tanner [Ta] and Alon-Milman [AM] that the magnifying constant is 

intimately related to the spectrum of the graph, as explained below. 

Given a (finite) graph X, its adjacency matrix A = A(X) may b e regarded as a 

linear operator on the space o f functions on (vertices o f ) X, which sends a function 

/ to Af defined b y 

(Af)(x) = 
x y 

f(y) 

where y runs through all outneighbors o f x. T h e eigenvalues of A are called the 

spectrum of X. If X is fc-regular, that is, we have indegree = out degree = k at 

each vertex, then k is an eigenvalue of A and all eigenvalues A of A satisfy 

|A| < k. 

If, in addit ion, X is r-partite, that is, the vertices o f X are partitioned into r parts, 
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W.-C. W. LI 

and the outneighbors o f the vertices in the ith part are in the i' + 1st part for all 

i mod r, then £k is also an eigenvalue of A for all rth roots of unity f. Call the (k's 

trivial eigenvalues o f X, and the remaining ones nontrivial. Let A = A ( X ) b e the 

m a x i m u m nontrivial eigenvalue of X in absolute value. It was shown in [Ta] that 

the magnifying constant c has a lower b o u n d 

c> 1 -
k 

3 f c - 2 A 

and on the other hand an upper b o u n d of A was given in terms of c in [ A M ] : 

k - \ > 
1 

2 

1 

2 + c 2 ' 

Thus the smaller A is, the larger c is, and vice versa. 

H o w small can A be? If X is a connected fc-regular r-partite graph with A A ( X ) 

diagonalizable b y a unitary matrix, then a trivial lower b o u n d for X(X) is 

X(X)> 
n — rk 

n — r 
k. 

A nontrivial lower b o u n d was given by Alon and Boppana (see [LPS]) , which asserts 

that for fc-regular undirected graphs X, l iminf A ( X ) is at least 2y/k — 1 as the size 

of X tends to infinity. T h e above statement also holds for fc-regular directed graphs 

with adjacency matrices diagonalizable by unitary matrices. Following Lubotzky, 

Phillips and Sarnak [LPS], we call a finite (directed or undirected) graph X a 

Ramanujan graph if 

( i ) X is kfc-regular, 

( i i) X(X) < 2 v / F ^ I , 

(iii) the adjacency matrix A(X) is diagonalizable by a unitary matrix. 

Here the third condi t ion is automatically satisfied if X is an undirected graph, for 

its adjacency matrix is then symmetr ic and hence diagonalizable b y an or thogonal 

102 



NUMBER THEORETIC CONSTRUCTIONS OF RAMANUJAN GRAPHS 

matrix. In view o f the above analysis, a Ramanujan graph, roughly speaking, is 

a regular graph with small nontrivial eigenvalues, and hence has large magnifying 

constant. It is the kind of graph one is looking for in communicat ion theory. Ra­

manujan graphs often have other g o o d properties, such as small diameter (cf . [C]) , 

large girth and small chromatic number (cf . [LPS]) . They also have wide applica­

tions in combinator ics and computat ional complexity. The reader is referred to [C] 

and [B] for their connect ions with other fields. 

T o date, there are three systematic ways to construct Ramanujan graphs explic­

itly, they are all number-theoretic. W e shall survey these methods chronologically 

in the next three sections. T h e first construction is due to Margulis [M] and inde-

pentently, Lubotzky, Phillips and Sarnak [LPS], their graphs are defined on double 

cosets o f adelic points o f definite quaternion groups over Q. Such graphs are Ra­

manujan because the Ramanujan-Petersson conjecture for classical cusp forms of 

weight 2 is proved to b e true by Deligne [D2]. The second one is worked out by 

Chung [C] and Li [LI ] , where graphs are defined on finite abelian groups; they 

are shown to b e Ramanujan using certain character sum estimates resulting from 

the Riemann hypothesis for curves over finite fields proved by Weil [ W l ] . Terras 

and her students [Te and references therein] came up with the third construction 

of Ramanujan graphs, which are defined on right cosets o f GL2 over finite fields. 

T h e eigenvalues of such graphs are character sums arising from irreducible represen-

taions of GL2 over finite fields, and one uses the Riemann hypothesis for curves over 

finite fields to derive the desired bound on these character sums. It is an interesting 

combinat ion o f GL2 theory with GL\ theory. 

§2. R a m a n u j a n graphs based on adelic quaternionic groups 

Graphs constructed using this me thod will have valency k = p -f 1, where p 
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is a pr ime. T h e general me thod is as follows. Take a definite quaternion algebra 

H defined over Q unramified at p and ramified at oo . Let D be the multiplicative 

g roup Hx d ivided by its center. Let X be the double coset space of the adelic 

points o f D : 

X = D((Q)\D(AQ)/D(R) 

q prime 

D(Zq), 

where Zq is the ring of integers o f the g-adic field Q^. B y the strong approximat ion 

theorem, the above (g lobal ) double coset space can be expressed locally : 

X = D(Z1/p])\D{<i,)/D(Z,) 

= Z ? ( Z [ i ] ) \ P G L 2 ( Q p ) / P G L 2 ( Z p ) . 

Here D(Qp) is i somorphic to P G Z ^ Q p ) since H is unramified at p. T h e right coset 

space PGL2 (Qp)/PGL2 (ZP)Z has a natural structure as a ( p + l ) - regular infinite tree 

T (see [S]), and the discrete group Г = Z } ( Z [ ^ ] ) acts on T . Since H is ramified at 

o o , Г \ Т is a finite (p + l)-regular graph, which is the graph structure on X. W e 

may replace Г b y a congruence subgroup Г; and thus obtain a finite cover X' o f X. 

T o s tudy the eigenvalues of X', we first note that the functions o n X' are 

au tomorphic forms for the quaternion group D over Q which are trivial o n 2 } ( R ) 

and on an open compac t subgroup of the product o f the standard maximal compac t 

subgroups at nonarchimedean places. Included in such automorphic forms are the 

constant functions, which are eigenfunctions of the adjacency matrix A = A A ( X ' ) 

with eigenvalue p + 1. T h e or thogonal complement V of the constant functions is 

invariant under A , and the automorphic forms there, by the results in representation 

theory explained in [JL] and [GJ] , correspond to a certain kind of classical cusp 

forms o f weight 2 and trivial character. W h e n interpreted as classical cusp forms, 

the act ion of A on V is nothing but the action of the classical Hecke operator Tp 

acting o n weight 2 cusp forms. Hence the eigenvalues A of A on V, which are 
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also eigenvalues o f Tp on weight 2 cusp forms, satisfy the Ramanujan-Petersson 

conjecture 

|A| < 2YV/£=2Vk-l. 

This conjecture was established by Deligne, w h o first showed that Ramanujan con­

jecture follows from the Weil conjectures, and then proved the Weil conjectures 

[D2]. Therefore we have shown 

T h e o r e m 1. The graph X1 is a (p + l)-regular Ramanujan graph. 

T h e (p + l)-regular Ramanujan graphs studied in [Me] by Mestre and Oesterle 

were constructed b y choosing H = Ht ramified only at oo and at a pr ime £ ^ p , with 

the double coset space always m o d u l o the product o f real points and the standard 

maximal compac t subgroups at nonarchimedean places on the right; and by letting 

£ tend to infinity, they obtained infinitely many such graphs. O n the other hand, 

Margulis [M ] and, independently, Lubotzky, Phillips and Sarnak [LPS] (see also 

[Ch]) t ook H to b e the Hamiltonian quaternion, they obtained an infinite family of 

( p + l)-regular Ramanujan graphs by taking congruence subgroups of Y. In general, 

one may bo th vary quaternion algebras and take congruence subgroups to construct 

infinitely many Ramanujan graphs. 

T h e same argument works when the base field Q is replaced by a function field 

of one variable over a finite field. In that case the resulting graphs are Ramanujan 

because Drinfeld [Dr] has proved the Ramanujan conjecture for GL2 over function 

fields. This is done in Morgenstern 's thesis. Note that the graphs so constructed 

have valency k = q + 1 with q a power of a prime. In [P] Pizer constructed 

(p + l)-regular Ramanujan graphs allowing multiple edges by using the action o f 

the classical Hecke operator at p on spaces of certain theta series o f weight 2. 

105 



W.-C. W. LI 

§ 3 . R a m a n u j a n graphs based on finite abelian groups 

W e start b y giving a general recipe. Let G be a finite abelian group and 5 

a A;-element subset o f G. Define two ^-regular graphs on G, called the sum graph 

XS(G, S) and the difference graph -Xd(G, S) as follows : the out-neighbors o f x 6 G 

in the sum graph are elements in { y E G : i + y G 5 } = — x + S, and those in the 

difference graph are in { y £ G : y — x € S } = x + S, respectively. For Xs and X<j 

so constructed, one can show that their adjacency matrices are diagonalizable b y 

unitary matrices and the eigenvalues o f their adjacency matrices, al though different, 

have the same absolute value given explicitly b y 

sES 
q(s) for characters W o f G. 

Hence if we can find a suitable group G and a subset S such that 

ses 
1,(3) < 2Vk-l 

for all nontrivial characters tp o f G , then we will have constructed two Ramanujan 

graphs X3(G, S) and Xd(G, S). This observation converts a combinatorial p rob lem 

to a number-theoret ic p rob lem. 

In what follows, F denotes a finite field with q elements, and Fn denotes a 

degree n field extension of F. Let Nn b e the set o f elements in Fn with no rm to 

F equal t o 1. In [ D l ] , Deligne proved the following estimate of the generalized 

Kloos te rman sum : 

T h e o r e m 2 . (Del igne) For all nontrivial %j) o / F n , we have 

seNn 
P(s) < nq 

n — 1 
2 

W h e n n = 2, N2 has cardinality q + 1 = k. T h e above theorem implies that 

Xs(F2i,N2) and Xd(F2,,N2) are Ramanujan graphs. 
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Deligne proved the above theorem using étale cohomology and algebraic geom­

etry. W e exhibit more character sum estimates below using the Riemann hypothesis 

for curves over finite fields which was proved by Weil [ W l j . The reader is referred 

to [LI] for more detail. 

Let t b e an element in Fn such that Fn — F(t). Assume n > 2. Let 

5 = 
tq - a 

t — a 
: a e FU { 0 0 } 

W h e n a = 0 0 , the quotient is unders tood to be 1. Note that tq — a is the image of 

t — a under the Frobenius automorphism x xq, hence the set S is contained in 

Nn. 

T h e o r e m 3 . For all nontrivial characters x of Nn, we have 

s£S 

X(s) < (n-2)y Vq. 

T h e set S has cardinality <j+1 = k. Thus we get interesting Ramanujan graphs 

by taking G = Nn for n = 3 ,4 and S as above. 

Let 

5 , = 
1 

t — a 
: a G F U { 0 0 } 

Here the value o f 1 
t-a 

for a = 0 0 is zero. 

T h e o r e m 4 . For all nontrivial characters xj> of Fn, we have 

s£S' 

W(S) <(2п- 2)уVqq. 

Hence we obta in Ramanujan graphs by taking G = F2 and 5 = 5 ' . 
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Observe that S and S' are afiine transformations of each other, thus Theorem 

4 can b e restated as 

T h e o r e m 4 \ 

s€S 

W(s) < ( 2n - 2)yVq 

for all nontrivial characters %j> of Fn. 

W h e n n = 2, we find S = i\T2, hence the above statement yields immediately 

Corol lary 1. Deligne's theorem (Theorem 2) for n = 2 follows from the Riemann 

hypothesis for curves over finite fields. 

T h e o r e m 5 . For all nontrivial characters (x>V0 of Nn x Fn, we have 

ses 
X(S) W(s) < (2n - 2) y/q. 

Again we get Ramanujan graphs by taking G = iV2 x F2, and S the diagonal 

imbedding of the above set S in N2 x F2. 

A s noted before, S = N2 when n = 2, thus we get 

Corol lary 2. For all nontrivial characters (x,it>) of N2 x F2, we ^ave 

sEN2 
X(S) W(S) < 2Vq 

In view of the analogous character sum estimate for split degree 2 algebra 

extension of F p roved by Mordel l (Theorem 6 be low) , Deligne in [D l ] conjectured 

that the same b o u n d should hold for twisted generalized Kloosterman sums, namely, 

Conjec ture (Del igne) For all nontrivial characters (x?V0 of Nn x Fn, we have 

s£Nn 
X(S) w(s) < nq 

n - l 
2 
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Corollary 2 above establishes Deligne's conjecture for the case n = 2. In fact, 

the conjecture for n = 2 follows from the Riemann hypothesis for projective curves 

over finite fields. 

Using the same method , one can also re-establish the following known character 

sum estimates: 

T h e o r e m 6 . (Mordel l [Mo]) For each nontrivial character (x»V0 of Fx x F, we 

have 

s E F,x # 0 

X(x)ip(x + x 1) < 2c1/2. 

T h e o r e m 7 . (Katz [ K l ] ) Let B be an étale algebra over F of degree n and let x 

be a regular element of B. Then for every nontrivial character \ °f Bx » we have 

s EF 
s -a EB x 

X(x - a) < ( n - i y / 2 . 

Here in writing B as a product K\ x • • • x Kr of finite field extensions K{ of F 

with total degree n, an element x = (x\, • • •, xr) o f B is called regular if the field 

F(xii) = Ki for i = 1, • • • , r and no two components o f x are conjugate. 

B y taking B to b e F2 and x an element in F2 but not in F, one gets ^-regular 

Ramanujan graphs XS(F2X, F) and Xd(F2x, F) constructed in [C]. In fact, by taking 

B = F x F, x = (a , b) with a # 6, one obtains (5 — 2)-regular Ramanujan graphs 

X 9 ( F F x F, S) and Xd(F x F, S) with 5 = F - {a, b} as well. 

T h e way to prove Theorems 3-7 is to construct a nontrivial character £ of the 

idele class group o f the rational function field F(t) such that the nonzero terms in 

the given character sum are precisely the values of £ at uniformizers o f the places of 

F(t) o f degree one where £ is unramified. Hence the associated L-function LL(u,£) 
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is a po lynomia l in u o f finite degree, say, d, and the coefficient o f u is the character 

sum in question. It then follows from the Riemann hypothesis for curves over finite 

fields that the character sum has absolute value majorized by dq1/2. 

§ 4 . R a m a n u j a n graphs based on finite nonabelian groups 

In this section we shall construct Ramanujan graphs based on finite nonabelian 

groups , which enjoy certain properties already seen in the previous two methods . 

Again , we start with a general approach. 

Let G b e a finite g roup and let K b e a subgroup of G. Denote by L(G) the 

space o f complex-valued functions on G and by L(G/ K) the subspace of functions 

invariant under right translations by K. For a l f -doub le coset S = Ks K, define 

the opera tor As o n L(G) b y sending a function / on G to 

(Asf) (x) = 

yes 
f(xy), x G G. 

Let A be a nonzero eigenvalue of AK, and let / be a nonzero eigenfunction with 

eigenvalue A. Define h o n G by 

h(x) = 

k E K 
f(xk), x e G. 

T h e n for k' G K, x e G, we have 

h(xk') = h(x) = (AK f) (xx) = Xf(x) = X f (x k'). 

From A ^ O we get f(x) = f(xk') for all k' £ K and hence 

h{x) = \K\f(xx) = X f(x) for all x G G. 

A s f(x) ^ 0 for some x , this implies A = \K\. Denote by LQ the O-eigenspace of 

AK- W e have shown that 

L(G) = L (G / K) ®L0 

1 1 0 
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and each space is invariant under the left translation by G. Further, As acts on LQ 

as 0 operator , and L(G / K) is As-invariant. 

We assume that the operators As are diagonalizable and mutually commutative. 

A s As f is nothing but the convolut ion of / with the characteristic function of 

S " 1 , our assumption implies that the convolution algebra L(K \ G / K) o f the K-bi-

invariant functions o n G is commutat ive. Note that the assumption is satisfied 

if each double coset S is symmetric , that is, S = 5 _ 1 . Then L(G / K) is a direct 

sum of c o m m o n eigenspaces o f A s , and each c o m m o n eigenspace is invariant under 

left translations b y G , that is, g € G acts on / by (g • /) (x) = f{g~l x) for x e G. 

Hence L(G / K) decomposes as a direct sum of irreducible representations (V, w) of 

G such that on each space V the operators As act by multiplication by scalars A5. 

W e want to find a way to compute the A 5 . Denote by e the identity o f G. 

Proposi t ion 1. Let ( V , 7 r ) be an irreducible representation of G occurring in 

L(G / K). Then 

(i) If h is a K-bi~invariant function in V with h(e) = 0, then h = 0. 

(ii) There exists a unique K~bi-invariant function h in V with h(e) = 1. 

(Hi) The function h in (ii) satisfies 

1 

1*1 kE K 
h(xky) = h (x) h(y) for all x,y € G 

and for any K-double coset S = KsK, 

AS = l * | 2 
\Stab s\ 

Ms), 

where Stab s consists of h € K such that hsK = sK. 

Proof . Let / b e a nonzero function in V with f(g) = 1 for some g G G. Replacing 
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f b y ir(g 1)f if necessary, we may assume / ( e ) = 1. Define 

h(x) = 
1 

\K\ k EK 
f (kx) = 1 

1*1 k EK 
(*(*) /) (x) for x e G. 

T h e n h lies in V, is iiT-bi-invariant, and satisfies h(e) = / ( e ) = 1. This proves the 

existence part o f ( i i ) . T h e uniqueness part o f (i i) will follow from ( i ) . 

Let h b e a Hf-bi-invariant function in V. Then Ash = Xsh for all K K - d o u b l e 

cosets 5 = KsK. F ix s € G. W e have, for all x € G, 

1 

IA1 k EK 
H(XKS) = 

Stab s 

K 2 
y € S 

H(XY) = 
Stab s 
K 2 

(Ashh) (x) = 
Stab S 

\K\2 
Xsh (x). 

Setting x = e, we obtain 

h(s) = 
Stab S 

K|2 
Xsh(e). 

Hence h(s) = 0 for all s 6 G if h(e) = 0. This proves ( i ) . Suppose h(e) = 1. T h e 

above equation yields 

h(s) = 
Stab s 

\K\2 
As 

and hence 

1 

1*1 k eK 
H(XKS) = H (XX)H(S) for all X, S € G 

and A5 is as asserted. 

R e m a r k . If we take a jfif-bi-invariant function h in Lo , then the same p roof shows 

that h = 0. Hence Lo contains no nontrivial iiT-bi-invariant function. This proves 

that representations occurring in LQ have no if-invariant vectors. 

T h e proposi t ion above implies that in V, the 7r(*T)-invariant subspace is 1-

dimensional, generated b y h in ( i i ) ; and further, as remarked above, the represen­

tations occurr ing in L(G / K) are characterized by having a nonzero X-invariant 

vector . F ix x G G and consider the operator E 
KEK 

TRFKX-1) =: p(X) on V. Let / G V. 
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Then p(x)f is a bi-A"-invariant function in V whose value at e is equal to 

(? ( * ) / ) (e) = 
k EK 

f(xke) = \KK\f(x). 

Hence p(x)f = \K\f(x)hh. Choose a basis / 1 = h, / 2 , • • •, fr of V. Then the matrix 

representation of p(x) with respect to this basis is 

\K\h(x) 
0 

0 

l * | / 2 ( * ) 
0 

0 

\K\h(x) 
0 

0 

\K\fr(x) 
0 

0 

so that 
1 

1*1 
tr p(x) = 

1 

1*1 k€K 

trn(kx-1) = h(x). 

We summarize the above discussion in 

Theorem 8.(cf. [Tel]) The group G acts on the space L(G/K) of right K-invariant 

functions by left translations. The space L(G/K) can be decomposed into a direct 

sum of irreducible subspaces (V, 7r) such that on each subspace V the operators As 

act by scalar multiplications by As)7r for all K-double cosets S. Further, on each 

subspace V, the space of left K-invariant functions is one-dimensional, generated by 

OTOE := 
1 

1*1 k€K 
trn(kx-1). A ) 

Such a function is K-bi-invariant, satisfies hn(e) = 1 and 

1 

1*1 
Hn(xky) = HTTN^H^y) for all x,y € G. 

Moreover, the eigenvalues As)7r are given by 

As, Tr = 
\K 2 

Stab s 
ht (S) for any 5 6 5, 

where Stab s consists of k G K such that ksK = sK. 
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N o w we turn to the construction of graphs. Let T be a finite union of dou­

ble cosets. Define a graph X = X(G / K, T / K) on cosets G / K such that the 

outneighbors o f xK are xgiK, i = 1, ....., k, where T = 
K 

i=1 
giK. This is a Ar-

regulär directed graph, and it is undirected if T = T 1. W h e n G is abelian and 

K is trivial, this is the difference graph defined in the previous section. W h e n 

G = PGL2{%p), K = PGL2(ZP:) and T — K 
p 0 
0 1 

i f , the resulting graph is 

the (p + l )-regular infinite tree T associated to P G Z ^ C Q p ) in §2. 

T h e adjacency matr ix AT o f X = X(G / K, T / K) is l 
1*1 5 K — double coaet 

s c t 

AS. B y 

the theorem above , the eigenvalues of AT are given b y 

SCT 

K 

Stab s\ 
ht (S) for any element s in 5 , 

as 7T runs through the irreducible representations of G occurring in L(G / K). 

A s remarked before, an irreducible representation n o f G occurs in L (G / K) 

if and only if it has a nonzero if-invariant vector. Thus to construct Ramanu­

jan graphs o f the above type, it suffices to find suitable G, K and T such that 

L(K \ G I K) is a commuta t ive algebra, AT is diagonalizable, and for all nontriv­

ial irreducible representations n o f G containing a nonzero if-invariant vector , the 

function HN defined by (1 ) satisfies 

s c t 
S if —double coset 

K 

Stab s 
hJ(s) < 2 k - 1 

where 

k = 
SCT 

K 

Stab s 

A family o f (q + l)-regular Ramanujan graphs was constructed and studied b y 

A . Terras and her students ([Te2] and references therein, see also [E]). T h e y took 
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a finite field F o f q elements with q o d d , G = GL,2(F), and 

K = 
a b6 
b a 

eG : aa,beF 

for a fixed nonsquare element 6 in F. Then G / K can be represented b y 

H = У X 

О 1 
: y e Fx and x € F 

so that it is analogous to the classical upper half-plane. T h e group G has q double 

cosets, o f which K 
1 0 
0 1 

K = K and K 
- 1 0 
0 1 

K = 
- 1 0 
0 1 

K, and each 

o f the remaining q — 2 double cosets KtK is the union of (q + 1) A'-cosets. More 

precisely, each double coset KtK is associated to an ellipse x2 = ay+^y—l)2, where 

a e F, a T¿ 0 , 4¿ , such that KtK = • 
2/ x 

0 1 
ÜT with (x , y ) running through all the 

F-poin ts o f the ellipse. Also denote such a double coset Kt K by 5a. Choose T = 

5a, a / 0 ,4£, so that we get a (q + l )-regular graph X = X(G / K, T / K). Because 

all i f - d o u b l e cosets 5 are symmetric , i.e., S = S-1, the graph X = X(G / K, T / K) 

is undirected and the algebra L(K \ G / K) is commutat ive. Further, Stab t is the 

subgroup o f diagonal matrices in AT, hence \Stab t\ = q — 1 and \K\/ \Stab t\ — 

4 . + 1 = k. 

One checks from the known table o f representations of G in [PS] that there 

are two types of nontrivial irreducible representations of G containing a nonzero K-

invariant vector . T h e first type arises from the (q -f l ) -dimensional representation 

of G induced from the 1-dimensional representation of the Borel subgroup given b y 

a b 

0 d 
X(a)X-1 ((dd)) 

for a character \ of Fx. If X nas order greater than 2, then the above induced 

representation is irreducible, denote it b y 7rx; while if \ has order 2, denote b y irx 

the ^-dimensional irreducible subrepresentation of the above induced representation. 
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T h e realization of TTX in L(G/K) is the subspace generated by the left translations 

o f the function / on G/K denned by 

f y x 
0 1 

K = x(y). 

T h e eigenvalue \T,\ ° f A-T on the space of 7rx can be easily seen to b e 

AT,X = 
s EF 

« y + * ( y - l ) 2 = * 2 

x(y). 

It was shown by R . Evans and by H. Stark tha 

|Ar ,x | <2V£ = 2 k - 1 for x nontrivial, 

using Weil ' s estimate [ W 2 ] , which follows from the Riemann hypothesis for projec­

tive curves over F. So to-Andrade [SA] computed hx using (1 ) with 7r = TX and 

arrived at the same expression for AT,x- Here we note that since T = T - 1 , we have 

AT,r = 1*1 

q - l 
ht(t-1) = 1 

q - 1 
K€K 

trir(kt) 

for all representations IT occurring in LL(G/K). 

T h e second type of irreducible representations o f G in question, denoted by 

tw, is the representation of G associated to a multiplicative character w of the 

quadratic extension F(y/6) of F. Here u> ^ a;9, that is, a; is not the lift o f a 

multiplicative character o f F b y compos ing with the norm m a p from F(y/S) to F , 

and the representation is (q — l ) -d imens iona l . T h e eigenvalue AT,u> on the space 

of tw was compu ted by Soto-Andrade [SA] to be 

AT ,u; = 

z=x + y>/6£F(V6) 
x 2 - 6 i / 2 = l 

e a 
8 

- 2 + 2x)u>(z) 
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where e is the function on F equal to 1 on squares in Fx, —1 on nonsquares in Fx 

and 0 at 0. Using étale cohomology and algebraic geometry, N. Katz [K2] showed 

that 

AT,w < 2v£ = 2 J b - 1 . 

In fact, the above inequality can also be proved directly by constructing an idele 

class character r\ o f the rational function field F(x) such that the attached L-function 

L( 14,77) is a po lynomia l in u o f degree at most 2 and ATjU, is the coefficient o f u. 

T h e desired inequality then follows from the Riemann hypothesis for curves over 

finite fields, the same way as we obtained character sum estimates in the previous 

section. (See [L2], chap 9, for details.) This proves 

T h e o r e m 9 . The graphs X = X(G / K, 5 a / * ) , a € F , a ^ 0,46, are (q + l) -regular 

Ramanujan graphs. 

This is the third explicit construction o f Ramanujan graphs, which uses bo th 

representations o f GL2 over a finite field and character sum estimates resulting from 

the Riemann hypothesis for curves over finite fields. 
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