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DIVISIBILITY IN THE CHOW GROUP OF ZERO-CYCLES 
ON A SINGULAR SURFACE 

by 

Claudio P E D R I N I 1 and Charles W E I B E L 2 

§0. Introduction. 

In this paper we study the divisibility of the Chow group CH2(X) of Ci-
cycles on a surface X over a field k. When X is smooth this question has 
been studied by several authors [MSw] [B2] [R] [CT-R], and we extend many 
of their resuit s to singular surfaces. 

The Chow group of a singular surface X is defined as follows. Choose a 
closed Y C X containing the singular locus of X but no irreducible component 
of X , and let Z2{X, Y) be the free abelian group on the set of codimension 2 
points of X — Y. For each closed curve T in X missing Y, and every rational 
function / on T, the divisor (/) should equal 0 in CH2(X). If dimY = 0, 
CH2(X) = CH2(X,Y) is the quotient of Z2{X,Y) by the subgroup spanned 
by thèse divisors ; it is independent of Y because by [PW1, 2.2] it is isomorphic 
to SKo(X), the subgroup of Ko(X) consisting of éléments of rank 0 and 
déterminant 1. If dimY = 1 we form CH2(X) = CH2(X,Y) by adding the 
extra relations that ( /) = 0 for every closed curve T on X which is locally 
eut out by a nonzerodivisor and every / G k{T) such that the support of (/) 
misses T ( 1 7 ; this group is also independent of Y, because by [LW] we have 
CH2(X,Y) = SK0(X). 

If X is a surface and /C2 dénotes the Zariski sheaf associated to the presheaf 
U t-+ K2(U), there is a well known isomorphism, called "Bloch's Formula" : 

(0.1) CH2(X) 9Ê SK0(X) Ç* H2ai(X,/C2). 
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C. PEDRINI, C. WEIBEL 

It was discovered by Bloch [Bl] for smooth quasiprojective surfaces, extended 
to ail smooth varieties by Quillen [Q], and to singular surfaces by Levine 
[Ll] ; see also [PW1, 8.9]. For regular surfaces, (0.1) also follows from the 
Brown-Gersten spectral séquence [BG]. For gênerai 2-dimensional noetherian 
schemes, (0.1) follows from Thomason's generalization [TT, 10.3] of the 
Brown-Gersten spectral séquence. 

Our results relate CH2(X) to the Zariski cohomology of a certain sheaf 
7ï2 on X. To define it, fix an integer n such that ^ G ky let jjbn dénote 
the étale sheaf of nth roots of unity, and set //®2 = /in <g) By définition, 
H2 = H2(n®2) is the Zariski sheaf associâted to the presheaf U i-> H2t (17, fJ,®2) 
of étale cohomology. Since this sheaf has exponent n, it is convenient to adopt 
the notation that G/n dénotes G/nG and nG dénotes {x G G : nx = 0} for 
any abelian group or sheaf G. Here is our first resuit. 

THEOREM A . — Let X be a quasiprojective surface over a field k con-
taining Then the Chern class c2,2 : K2{U) —> H2t(U, JJ,®2) induces an 
isomorphism : 

CH2(X)/n ~ #z2ar(X,/C2)/n - H?ar(X,H2(»®2)) 

This resuit was originally proven in the smooth case by Bloch and Ogus 
[BO], and generalized to the case of isolated singularities by Barbieri-Viale 
[BV1, 3.9]. We give a short proof of Theorem A in §1, using the Nisnevich 
topology on X, a method suggested to us by R. Thomason. 

After submitting this paper, which contained a second more technical proof 
of Theorem A in §2, we became aware of the following unpublished resuit of 
Ray Hoobler [Hoob] which, given Bloch's formula (0.1), immediately implies 
Theorem A. 

HOOBLER'S THEOREM 0.2. — Let k be a field containing ^. 
1) If A is a semilocal ring, essentially offinite type over k, then the Chern 

class C22 : K2{A) —± H2t(A, fi®2) is an isomorphism. 
2) If X is a quasiprojective scheme over k, there is an isomorphism of 

(Zariski) sheaves 
c2>2 : /C2/n^t t2( / i®2) . 

When X or A is smooth over fc, this theorem is implicit in Merkurjev and 
Suslin's work [MS, §18] ; see [B3, 3.3] [CT-R, p.168] and [PW2, 4.3]. When X 
is a singular curve, this theorem was proven in [PW2, 5.2]. 

Our original proof of Theorem A is therefore obsolète. As a favor to the 
reader, we have deleted it. It was the original §2 of this paper. 

The current §2 gives a short survey of the étale Chern classes Cij. We 
also prove that the isomorphism in Theorem A lifts Grothendieck's Chern 

372 



DWISIBILITY IN THE CHOW GROUP 

class c2,4 : Ko(X) —• H^t(X^ //®2) to SK0(X) in the sensé that c2,4 is the 
composite 

SK0(X)^SK0(X)/n ~ Hssss2at(X,H2) H^t(X,^2), 

7 being the edge map in the Leray spectral séquence for Xet —• XZSLT. When X 
is smooth this proves that the "cycle map" considered in [CT-R] and [Sai,§5] 
is just C2,4-

In § 3 we consider the normalization TT : X • X of X. Using Mayer-
Vietoris séquences, we relate CH2(X)/n to the Chow group CH2(X)/n. Let 
Y dénote the singular locus of X, and set Y = 7r_1(l^), so that we have a 
cartesian square : 

Y 
3 

X 

Y 
i 

7T 

X. 

THEOREM B . — Assume that k contains (in and ^. Then there is an exact 
séquence for the sheaf H2 = 7i2(/J,®2) : 

H1 (X, H2) 0 H1 (Y, H2) H1 (Y, H2) -> H2(X9 H2) H2(X, H2) -+ 0 . 

Using Theorem A and the two isomorphisms H1(Y^7ï2) = SKi(Y)/n and 
H1 (Y,H2) = SK1(Y)/n of [PW2, 5.1], we can restate Theorem B as follows. 

COROLLARY C . — With n as in Theorem B, there is an exact séquence : 

H^{Xs,U2) 0 SKs1(Y)/n SKsxty)/*. CH2(X)s/n CH2(sX)/n 0 

In the Appendix, we indicate how much of Corollary C can be obtained 
from pure K-theoretic techniques, i.e., without resorting to 7i2. 

In § 4 we relate the n-torsion in the Chow group of X to the term i / ^ X , 7i2) 
appearing in Corollary C, as well as to the quotient iï1(X,A^2) of SKi(X). 
When X is smooth, we know by [ B 3 , 1.12][MS, 8.7.8(e)] that there is an exact 
séquence : 

( 0 . 3 ) 0 — H1(X,K2)/n — H\X,n2(n®2)) — nCH2(X) — 0 . 
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C. PEDRINI, C. WEIBEL 

When X is a surface with isolated singularities, (0.3) needs to be modified 
because the subsheaf nK2 of n-torsion éléments in KL2 has more complicated 
cohomology. Indeed, the vanishing of H2(X, n/C2) in the smooth case is the 
basis for the proof of (0.3) in [MS], but if X has isolated singularities we show 
in 4.2 that 

H2(X,n!C2) 9é H^X^H1^®2)). 

This group is just H2(X,Ox)/n when /jin C fc, and we know that it can 
be nonzero for normal surfaces; see [PW1, 5.9]. We are able to prove the 
following generalization of (0.3) in §4. (Again, we have deleted those parts 
which Hoobler's Theorem makes obsolète.) 

THEOREM D . — Let X be a quasiprojective surface over a field k containing 
^. Assume that X is normal, or more generally that Sing(X) is finite. Then 
there is an exact séquence : 

H°(X, K2/n) ^ H2(X, NK2) ^H^X, JC2)/n ̂ H\X, K2/n)-> nCH2(X)->0 

Remark. Presumably the map H°(X,H2) H2(X,1H}) in Theorem D is 
the differential in the Leray spectral séquence converging to H*t(X, ^n2)- ^ 
so, and we write NH3(X) for the kernel of H*t(X,n®2) H°{X,H3), then 
we may restate Theorem D as the following exact séquence, which generalizes 
part of the séquence of [Suslin, 4.4]. 

(0.4) 0 Hx{X,K2)ln -> NH3(X) -> nCH2(X) 0 

COROLLARY E (Collino [C]). — Suppose that k is either an algebraically 
closed field, or the reals M, or a local field. Let X be a surface having only 
isolated singularities. Then the n-torsion in CH2(X) is finite for every n with 
J e * . 

Proof Fix n and let k be any field such that H\t(k,M) is finite for 
constructible n-torsion sheaves M. Then each Hçt(X, /J,®*) is finite by [SGA4, 
XVI.5.1]. When X is a surface, the Leray spectral séquence Hp(X,?ïq) 
H2t{X^iJL®i) dégénérâtes enough to show that the group H1 (X,H2{JJL®2)) = 
H1(X,K,2/n) is finite. Now apply Theorem D. [] 

There is a "degree" map CH2(X) —• Z°, where c dénotes the number of 
irreducible proper components of X. The image A has finite index in Zc, and 
CH2(X) = A 0 A0(X), where Ao(X) is the group of zéro cycles of relative 
"degree" zéro. Therefore ail of our divisibility results are actually statements 
about the divisibility of the subgroup Ao(X) of CH2(X). 
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In §5 we apply our structural results to surfaces over spécial kinds of 
fields : algebraically closed fields, number fields and the field IR of real 
numbers. If k = k we show that AQ(X) is n-divisible — and hence that 
CH2(X)/n = (Z/n)c — for every surface X and every n prime to char(k), a 
well-known resuit for smooth surfaces. 

If k is a number field and X is smooth, Bass has conjectured that Ko(X) 
and therefore SK0(X) = CH2(X) is a finitely generated abelian group. 
This would imply that CH2(X)/ n is finite. By results of Colliot-Thélène and 
Raskind [CT-R91], and of Salberger, this finiteness is known to hold for every 
smooth projective surface X such that H2(X, Ox) = 0 and Bloch's Conjecture 
holds for X (see 5.3.1) ; in particular it holds for ail surfaces which are not 
of gênerai type. Bass' conjecture does not carry over to singular surfaces ; we 
give examples of seminormal affine and projective surfaces over any number 
field k such that both CH2(X)/n and NCH2(X) are infinité. 

Finally we consider varieties over the real numbers R, relating CH2(X) to 
the topologicaLspace .X(K). If the singular locus of X has codimension > 2 
and d = dim X , we show in theorem 5.8 that 

(0.5) CHd{x) ^ zc e (z/2y-R e v, 

where t = dim.HD(X(M),Z/2), R is the number of irreducible proper com-
ponents of X having a smooth real point and V is a divisible abelian group. 
This calculation extends results of Colliot-Thélène and Ischebeck [CT-I] for 
smooth projective varieties. When d = 2, the case of a real surface with iso-
lated singularities, (0.5) yields isomorphisms 

SK0(X)/2 ^ CH2(X)/2 9i (Z/2)t+c"il, A0(X)/2 ^ (Z/2)t"K, 

where c, R and t = d imiJ2(X(R), Z/2) are defined above. Finally, we use 
Corollary C to extend (0.5) to any real surface in theorem 5.12. (For technical 
reasons, we need to add a summand (Z/2)e to (0.5) when X is not smooth, but 
we suspect that e = 0 in ail cases.) Thèse results may be applied to compute 
CH2(X)/2 of real surfaces having a one-dimensional singular locus, including 
the so-called "real umbrellas" (see 5.13). 

Notation 

We fix an integer n. If G is an abelian group or sheaf, we shall write 
G/n , n - G and nG respectively for the cokernel, image and kernel of the 
homomorphism G ——• G. 

X will always dénote a noetherian scheme over Z[^] ; by "surface" we will 
mean a 2-dimensional quasiprojective scheme defined over a field k (with 
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^ G k). The étale sheaf of n* roots of unity is and we shall also consider 
/j,®2 = /j,n We write 7iq or Ti*^®*) for the Zariski sheaf on X associated 
to the presheaf U i—• H*t(U, p®1), and JCn for the Zariski sheaf associated to 
the presheaf U h-» Kn(U). 

§1. Proof of Theorem A 

Our goal in this section is to give a short proof of Theorem A, without 
using Hoobler's Theorem (0.2). The only Chern class used in this section is 
c 2 2 : K 2 ( X ) / n ^ H 2 t ( X , ^ 2 ) . 

Let febea field containing ^ . If X is any surface over not only do we have 
Bloch's formula (0.1), but we can apply the right exact functor H2aT(X, — ) to 
the séquence fC2 — 1 ^ 2 —• JC2/n—+ 0 to get canonical isomorphisms : 

CH2(X) /n °Ê H2aT(X,lC2)/n 9É H2ai(X, JC2/n). 

Therefore, Theorem A just states that there is an isomorphism 

(1-1) H^(X,)C2/n) ~ H2ai(X,H2(^2)) . 

If X is a smooth variety over k then, as mentioned in the introduction, 
Theorem A is well known. Indeed, the sheaf map c22 : ^2 -^^2(i^n2) induces 
an isomorphism of sheaves 

(1.2) c22 : fC2/n QÊ H 2 ( ^ 2 ) . 

The following elementary lemma, whose proof is left to the reader, imme-
diately proves Theorem A — that (1.1) holds — for surfaces with isolated 
singularities, i.e., surfaces X with dim(Sing(X)) = 0. 

LEMMA 1.3. — Let f : J7 —> G be a map of Zariski sheaves on a noetherian 
scheme X . Suppose the kernel and cokernel of f are supported on a union 
of closed d-dimensional subschemes of X . Then Hd~*~1(X, J7)—+Hd+1(X,G) is 
onto, and 

H ^ X , ? ) 9É Hl{X ,G) for a l l i > d + 2. 

For gênerai surfaces, our proof of Theorem A uses a resuit of Y. Nisnevich 
which was pointed out to us by R. Thomason. Let Xnis dénote X endowed 
with the Nisnevich topology introduced in [NI]. This topology is intermediate 
between the étale and Zariski topologies on X in the sensé that there are 
natural morphisms of sites Xet —> Xnis —• Xzar. Let )C21S and T^isC^n2) dénote 
the (Nisnevich) sheaves on Xn{s associated to the presheaves U H-> K2(U) and 
U »—> H2t(X, fJ>®2)<> respectively. The following resuit essentially follows from 
Gabber's theorem [G, Th. l ] , see also [N2, 8.6]. 
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DIVISIBILITY IN THE CHOW GROUP 

THEOREM 1.4. — Let X be a quasiprojective scheme over a field k with 
— G k. Then the Chern class C22 induces an isomorphism of sheaves on Xn{s : 

c22: /Cr / n -^2 i s ( /x®2) 

COROLLARY 1.5 (Nisnevich version of theorem A). — Let X be a quasipro­
jective surface over a field k with £ G k. Then SK0(X) = H2is(X, /Qis) and 

SK0(X)/n - HÎis(X,Kt)/n - iï2is(X,/Cnis/n) S iïn2is(X,«L(m£2)). 

Proof When d i m X = 2, Xnis has cohomological dimension 2. Therefore 
ffn2is(X,-) is right exact hence H^X, /C£is)/n S* tfn2is(X,/Cnis/n). The 
argument that S l foPO — ̂ n i s (^?^2LS) is identical to the argument for the 
Zariski topology, using the spectral séquence of [TT, 10.8] : 

Îis(X,Kt)/n - iï2is(X,/Cnis/n) S iïn2is(X,«L 

In détail, the following terms of E2 are known to live to : 

H°(X,K™) = H°(X,IC0) = H°(X,Z) 

H ° i s ( X , / C n = H^iXt/d) = H0zai(X,O*x) 

H*is(X,)C™) Si H^X,^) Si Pic(X). 

Therefore this spectral séquence yields a filtration on Ko whose associated 
graded groups are the same as those associated to the analogous spectral 
séquence for Xzar. Q 

The morphism Xnis —> Xzar yields a commutative diagram, in which the 
maps labelled are isomorphisms by (0.1) and (1.5) : 

SK0(X)/n Si H^(X,K;2/n) 
C22 

H^(X,H2(^2)) 

re 

Hlis(X,Kr/n) 
— H^(X,H2(^2)) k +dxk 

We claim that both the kernel and cokernel of the Chern class map c22 : 
K^jn - ^ ^ ( / i ^ 2 ) are sheaves supported on the subscheme Sing(Xred) of 
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Xza.T, which has dim < 1. Lemma 1.3 will then yield the surjectivity of the 
map H2ar(X, K2/n) —• H2aT(T-C2(/jL®2)), and theorem A will follow from a chase 
of the above diagram. 

This claim is immédiate from (1.2) when X is reduced, because then X 
is smooth in codimension 0. When X is not reduced, we argue as follows. 
Let }C2ed and 7ï2ed dénote the Zariski sheaves associated to the presheaves 
U i—• i^2(£/red) and U • HGt(Ured>M®2), respectively. Since the canonical 
isomorphism of sites Xet = (Xred)et identifies the sheaves fxn on X and on 
Xred, we have H2(/J,®2) ^ H2ED. Therefore it suffices to show that K2 ^ /C£ed ; 
we prove this assertion in 1.7 below. 

The ability to ignore nilpotent ideals in theorem A, as well as in the other 
results in this paper, rests upon the following lemma and its corollary. 

LEMMA 1.6. — If A is a commutative ring containing ^ then K2(A)/n = 
K2(ATed)/n. 

Proof Let I be the nilradical of A, so that Ared = A/I. In the iïT-theory 
séquence 

K2 ( A, J) — 1T2 ( A) — K2 (A/I) — S Ri ( A, / ) — 0 

both K2(A,I) and SK1(A,I) are uniquely n-divisible by [Wl, 1.4]. Hence 
K2(A,I)/n = SK^A.Pj/n = 0 and Tor(Z/n, SKX(A, I)) = 0. The lemma is 
now élément ary. Q 

COROLLARY 1.7. — If X is any scheme over Z[^] then K2jn = JC^/n- In 
particular, 

(i) / / d i m ( X ) = 1 then SK1{X)/n S SK^X^/n ; 
(ii) i / d im(X) = 2 then SK0(X)/n SK0(XTed)/n. 

Proof From the Brown-Gersten spectral séquence of [TT], we see that : 
(i) when d i m p O = 1 then SK^X) 2ê HX{X,K2), hence SK1(X)/n ^ 
H1(XJK2/n)9 and (ii) when dim(X) = 2 then SK0(X) 2é H2(X,K2), hence 
SK0{X)/n^H2{X,K2/n). D 

§2 The étale Chern classes 

We begin this section with a short summary of étale Chern classes. Then 
(in 2.3) we show that the isomorphism in Theorem A is a lift of Grothendieck's 
Chern class c24 : K0(X) —» H*t (X, //®2). Recall that with our fixed notation 
the integer n is fixed, and ail schemes X are defined over Z[^] . 

Classical étale Chern classes 2.1. The classical étale Chern classes are 
set maps Ci = Cii2i : K0(X) —•» H2l(X, /x®1), constructed by Grothendieck to 
satisfy the following axioms. They are natural in X. By convention, CQ(X) = 1 
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for ail a? G -Ko(X). The Ci satisfy the Whitney sum formula ci(x + y) = 
X^*+j=^ c%(x) U cj(y)- The first Chern class c\ = c\2 is the composition of the 
déterminant map det : KQ(X) —* Pic(X) = i ï ^ X , Gm) with the boundary 
map c? : H^T(X9Gm) —• H2T(XYfin) arising from the Kummer séquence on 
Xet- K L is a line bundle on X , Ci(L) = 0 for ail i > 1. 

Thèse axioms détermine ail the other Chern class maps Cj as follows. A 
typical élément of KQ(X) has the form [E] — [F], where E and F are vector 
bundles on X . It is possible to replace X by a flag bundle X1 over X because 
Hlî{X,nV) injects into H2I(X',^) by [J, 2.2.4]. Doing so, we may assume 
that [E] and [F] are sums of classes of line bundles in Ko(X). The Whitney 
sum formula then détermines Ci([E]), C{([F]) and finally (by induction on i) 
Ci([E] — [F]). Note that if F is a trivial vector bundle then C{(F) = 0 for i 7̂  0 
and we have the simple formula Ci([i£] — [F]) = C{(E). 

The Product Formula [Gr, 1(1.6), 11(2.7)] is sometimes listed as an axiom. It 
expresses Ci(x-y) as a universal polynomial Qi in the classes c i ( x ) , . . . , C{^.1(x) 
and c i ( y ) , . . . , Ci_i(?/) when x and y have rank zéro. The polynomial Q2 is 
c2(x - y) = —ci(a;)ci(y), but Q3 has 4 terms and Q4 has 10 terms ; see [Gr, 
1(1.18)] and [W3, 3.6]. 

Higher étale Chern classes 2.2. Less classical are the higher Chern classes 
d = Cij, defined by Quillen and Illusie in 1974 and exposed in the articles 
[Shek][Soulé][GilRR]. Fixing the indices i > 1, 0 < j < 2i and setting 
m = 2i — j > 0 for convenience, is an additive homomorphism from 
KRN(X)/n to i ï^t(X, //®2). Thèse Cij are natural in the scheme X over Z[ l /n ] . 

The most important higher Chern class is e n ; it is defined on Ki(X) 
as the composite of the natural projection det : Ki(X) —• iï"°(X, O^) = 
H®t(X, <Gm) with the boundary map d : H^T(X^Grn)—• iï^t(X, fjb) associated 
to the Kummer séquence. AU other Chern classes vanish on the summand 
H°(X, 0%) of i^ i (X) . The Chern class c10 vanishes on K2(X) [Soulé, p.279]. 

The Product Formula for Cij is simpler for higher iîT-theory than it is for 
KQ. If x G iTmi(X), y G Km2(X) with mi ,m2 > 0 then this formula reads 

(2.2.1) Ci(x • y) = 
l(x)Uci2s 

-A - i v 

(h - l)!(i2 - 1)! 
cil(x)Uci2(y). 

In particular, c22 • K2(X)H2t(X^^2) coincides up to sign with the 
classical Galois symbol : if x ,y G K\(X) then c22({x,y}) = — c1(x) U ci(y). 
(Cf. [Shek].) 

Mod n variation 2.2.2. We can extend higher Chern classes to -RT-theory 
with coefficients, replacing Km(X)/n with the larger group i^m(X; Z /n ) when 
m > 2. Thèse classes were defined by Soulé in [Soulé] for affine schemes; 
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we can immédiately extend the définitions to quasi-projective schemes using 
Jouanolou's trick. The first new aspect of thèse mod n Chern classes is that 
cio is the projection K2(X-Z/n) nKi(X) -> nH0(X,O*x) = H°{X^n). 

As long as n is odd, thèse C{ are additive and satisfy the Product Formula 
(2.2.1). There are technical problems that arise when n is even, starting 
with the possible lack of additivity of c22 ; we refer the reader to [W3] for 
a discussion. 

This complètes our survey of étale Chern classes. 

We now turn to the study of c24 : K0(X) H*t(X/JL$2). If dim(X) = 2, 
the Leray spectral séquence for s : XGt —> XZSLT and the sheaf ji®2 yields an 
exact séquence : 

HÎJX. u_ ) —>H"(X.7t (u_ )) H*(X.H l u r ddd sd-Us iï.VX.udv?'^. 

THEOREM 2.3. — Let X be a 2-dimensional noetherian scheme over WDD 
Then the following diagram commutes. 

SKa(X) K0(X) 

H2(c22) ^ 

fir2(c22)(A1 d+d;d+ d;d 
re 

C24 

fir2(c22)(A1x+xdksd 

Here H2(c22) is induced by the map c22 : K2 -^TC2(/J,®2) via Bloch's formula 
(0.1). 

Proof Replacing X by a suitable flag bundle X' and using the splitting 
principle, we may write any élément s of SKQ(X) as a product u\ • u2 in 
Ko(X'), where Ui = [Li] — 1 for appropriate line bundles L{ on XF. Since 
H*T{X, fi®2) injects into H*T (X' , # ) by [J, 2.2.4] we may replace X by X1 in 
Computing 024(5). Let À; dénote the image of U{ in iJ1(X, O^) under the map 
det : K0(X) —• Pic(X) ^ i ï ^ X . / C i ) . Under Bloch's formula, 5 corresponds 
to the product Ai • À2 in H2(X,JC2). Therefore we must show that 7 sends 
the élément iï2(c22)(Ai • A2) of #2ar(X,H2{^2)) to the élément c24(^i • u2) 
ofiJe4t(X,/^2). 

The Product Formula for the Chern classes C24 and C22 (see 2.1 and 2.2) 
yields 

c2±{ux • u2) = -c i2(ui ) U c12(u2) 
fir2(c22)(A1 • A2) = -Srl(c11)(A1) Uif1(c11)(A2) 
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where H\cxl) : H^T(X, Kx) H^T(X, U1^)) is induced from c n : 
/Ci —• rH1(/J>n)- Now the Leray filtration on H*t(X,/LI®*) is preserved by 
cup products, such as H2t(X9iin) (g) H2t(X, /in) —• H*t(Xy /x®2), and the in­
duced product on the associated graded groups, such as H1(XJ7ï1(/j/n)) <g> 
HX(X,H1^)) — iJ2(X, W2(/x®2)) is the usual product. This compatibilité 
together with the vanishing of H3(XzaLT, — ) and H4(XZSLI, —) when d i m X = 2, 
implies that there is an injection p : ̂ (X^Ti1) «—• iï2t(X,/in)/£*iJ2ar(X,//n) 
compatible with 7 in the sensé that for ai G H1(Xy7ï1) we have 7(ai U a2) = 
(pa1)U(pa2) in H*t(X,p,®2). Taking ai — i ï1(cn)(Ài), it suffices to show that 
in H2t(X, /xn)/e*iï2ar(X, /xn) we have c i2(^) = /9iJ1(cn)(Ai). This assertion 
about C12 is a spécial case of the more gênerai resuit 2.4 below. Q 

Our factorization of c12 requires some observations about the filtration on 
H2t(X, p,n) associated to the Leray spectral séquence for the morphism of sites 
s : Xet —• XZSiT. In rows q = 0 and q = 1 of the spectral séquence we have Hp 
of the sheaves W°(//n) = p,n and W1()t/n) = sss dd dd Therefore the bottom layer 
of the filtration is the image of e* : iJ2ar(X, /J,N) —• H2t (X, Assuming for 
simplicity that ii£far(X, /zn) = 0, the next layer of the filtration is given by an 
injection 

p : HLT(X,0*x/n) — H2(X^n)/e*H2(X,fin). 

Finally, we define d to be the map 

H^{X,0*x) ~ HÎt(X,dddGm) A HÏt(X,Vn) 

arising from the Kummer séquence on Xet. 

PROPOSITION 2.4. — Let X be a scheme over Z[^] . Then : 
a) The map i J1(cn) is induced from the natural quotient map 0 \ —• ^x/71' 
b) Assuming for simplicity that H^^X, jjLn) = 0, the following diagram 
commutes. 

K0(X) 
Cl 2 

Hl(X,nn) Hl{X^n)/e*H^{X^n) 

det a 

Pic(X) = HÎ&t(X,Ox) 
d+dld+d 

evr 

Hl&I{X,Ox/n) 

Remark 2.4-1 •' Part b) remains valid if .ff̂ ar (X, fin) ^ 0, provided we replace 
H^T(X, 0*x/n) by the kernel of the différentiel 

d2 : H^t(X,Ox/n) -» H^r(X,i*n). 
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Proof : By définition, the sheafification K\ —•» T~C1(firi) of the Chern class 
en is the composite of the sheafification det : /Ci O^- of det : i^ i (X) —•> 
H0(X,O*x) and the natural map 0 \ -> - W 1 ^ ) , which is the 
sheafification of the Kummer map H°(X, Ox) —> H^X, p,n). Thus the sheaf 
version of en is naturally isomorphic to the map Ox —+ Ox/n. Applying H1 
yields JHrl(cn), proving a). 

The left-hand square of b) commutes by the définition of C12. For the 
right-hand square, observe that the Leray spectral séquence for HGt(X, /j,n) 
is just the hypercohomology spectral séquence for H*(X, Ré:*/^), where Re* 
dénotes the total higher direct image functor. We compare this with the 
hypercohomology spectral séquence for the cochain complex C : Ox Ox 
concentrâted in degrees 0 and 1. The natural map Ox —> Re*Gm induces 
a map 77 : C —• R£*/zn fitting into a morphism of triangles in the derived 
category of Xzar : 

c d+d n Cl* c m 

re V 

(X,C)^Md d+d,d=rd n d+d!d+dk re (X,C)^M2( +x 

Since i ï*t(X, JF) = H*(X, R£*JF) for every étale sheaf T, the bottom row is 
the Kummer séquence. From the right-hand square, we see that d is the map 

(2.5) H\X,0\)^m\X,C[l]) =M2(X,C)^M2(X,ILe*iiri) = #e2t(X,/x„). 

Since H°{C) = pn and H1^) = 0*x/n, H2{X,C) is the second level of the 
Leray filtration of H2t(X,pn) and we have a commutative diagram : 

Hx{X,0*x) M2(X,C) H^(X,Ox/n) 

re V P 

(X,C)^M2( +xc; Fi 
Hl(X,nn) Hl{X^n)/e*H2ai{X^n) 

Since the top row is JHrl(cn), we conclude that d = p • H1(cn) modulo 
e*H2ai(X,^n). 
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§3. A Mayer-Vietoris séquence 

Let X be a quasiprojective variety defined over a field k (with 1 / n G /c), 
having normalization TT : X —•X^ We let Y dénote the scheme SingX defined 
by the conductor idéal, and set Y = TT~1ÇY), forming the cartesian square 

(3.1) 

Y 3 
c V X 

l 17 

Y i X. 

In [ P W 2 , 2 . 1 ] we proved that, for every torsion abelian sheaf T on the big 
étale site of X , there is a Mayer-Vietoris séquence in étale cohomology 

• • • - tf«(X, T) - H«t(X,T) © H?t(Y, T) - tf«(Y, T) - fT«+1 (X, T) - , • • •. 

This séquence is natural in X , so we may sheafify in the Zariski topology of 
X. For T = a®2, the resulting exact séquence of sheaves on Xzar is : 

(3.1.1) . . — - R^O"®2) © i*HqY - R«(xi).(/*®2) skskskkkkkkkkksks- • • •. 

Our notation in ( 3 . 1 . 1 ) is that 7ïx and are the sheaves On -Xzar 
and YZSLT associated to the presheaf U \—• H*t (£/, /xf2), while R*7r*(/x®2) 
and Rg(7rj)*(yLX®2) are the sheaves on XZSLT associated to the presheaves 
U i-> ^ ( T T - ^ C / ) , ^ ) and C/ i-> iïeçt ((TTJ)-1 (C/) , ^ 2 ) . We shall also need 
the sheaves Ti,2- on XzaT and 7-£~ on Yzar? which are defined similarly. We 
propose to break up ( 3 . 1 . 1 ) into shorter séquences. 

PROPOSITION 3 . 2 . — / / d i m ( y ) < 1 and fin C Ox then R2(TTJ)*(/X®2) 9* 
('KJ)*7î~, and the map 

R2^(^2)-R2(^') . (^2) 

is onto. 

Proof. We proceed stalkwise. If x £ Y then the stalks of R2(7rj)*(/x®2) 
and (irj)*'H'~ are zéro at x, and there is nothing to prove. Fix y G Y and 
let A dénote the stalk of K+O— at ?/, i.e, A is the semilocal ring such that 
SpecA = 7r_1(Spec Ox,y)- The stalk of (KJ)*0~ at y is A/I, where i" is the 
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conductor idéal from A to Ox,y As TT is finite, A/I is semilocal of dimension 
< 1. 

The stalk of R2(TTJ)*( /^2) at y is H2t(A/I, (i®2) and the stalk of (icj)+Hl 
is H°(A/I,?ï2). We first show that they are isomorphic. Since dim(A/7) < 1, 
the Leray spectral séquence for /J.®2 yields an exact séquence 

0 - H^iA/ItH1) - Hl(A/I^T) - fl?„(A/J,W2) - 0. 

If //n C A/I, then H1^®2) S* W1^*») = 0*/n. Because A/I is semilocal, we 
calculate that 

H* (A/I, <D*/n) SÈ H1 (A/I, 0*)/n 2é Pic( A/I)/n = 0. 

Hence H2t(A/I, fi®2) SE H%ai(A/I,H2), proving the first assertion. 
Since the stalk of R27r*(/z®2) is H2t(A, /i®2), the sheaf map 

rV(aO-rVsdddddj%redr(/£2) 

is stalkwise the map H2t(A, n®2) —» H2t(A/I, /z®2). Consider the commutative 
diagram given by cup product on étale cohomology : 

Hlt(A, {IN) ® Hlt(A, FIN) u 
H2t{A^T) 

onto 

Hlt(A, {IN) ® Hlt(A, FIN KLDKL 
U 

flâ(sdA//,,if2) 

The left vertical map is onto because A and A / / are semilocal, so that 
Hlt(A, Un) 9é A*/n and Hlt(A/I^n) Qê (A/I)*/n. By Hoobler's Theorem 
(0.2) we have H2t(A/I, n®2) Se K2(A/I)/n. Since K2(A/I) is generated by 
symbols, the bottom map is onto. 0 

COROLLARY 3.3. — i / dim(Y) < 1 and /j,n C O j , then there is a short 
exact séquence of sheaves on XzaT : 

0-^H2X-^ R27r*(/i.®2) © i*U\ ^{TTJ)*H2~ — 0. 

Proo/. We must show that the map Rxx.(//®2) —• R1(7rj).(/i®2) in (3.1.1) 
is stalkwise onto, hence onto. Given y € Y, let A be the stalk of 7r*0~ at y, 
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and I Ç. A the conductor idéal from A to Ox,y> as in the proof of 3.2. The 
stalk map is then H*t (A, /z®2 ) —• H*t (A/1, /i®2 j . 

If C A, then Hlt(A, yu®2) *é A* <g> //„ and M®2) S* (A/ / )* <g> /xn 
by Kummer Theory. Therefore the stalk map is onto. [] 

Remark 3.3.1. The restriction that fjbn C Ox is not necessary in 3.2; we 
présume that it is not necessary in 3.3 either. If n = l is prime and /xn Çt Ox> 
the usual transfer argument involving B = shows that both 3.2 and 3.3 
hold in this case as well. 

The long exact cohomology séquence attached to the séquence of sheaves in 
3.3 is 

(3.4) • H1 ( x , n2) -+ H1 ( x , r 2 T T * ^ 2 ) e H1 (y, n2)DDD^HX(Y, n2) 

— H2(X, H2) — H2(X, H27r*fi®2) — o. 

Our next resuit compares the cohomology of the sheaf R97r*^®2 to the 
cohomology groups H\X,Uq~) = U*(X, TT*W?~). 

PROPOSITION 3.5. — Let X be a surface over a field k containing 1/n, with 
normalization 7r : X —• X, and fix q > 0. Then the natural map 

H\X, R%.(m®2)) - H\X,H%) 

is an isomorphism for ail i > 2 and onto for i = 1. If X is regular it is an 
isomorphism for ail i. 

Proof First suppose that X is regular. By the Bloch-Ogus style argument 
of [PW2, 2.7], R*7r*(/zf2) *É ir+H*L. In gênerai the normal surface X has 
only isolâted singularities, so the kernel and cokernel of the j ia tural map 
r)q : R97r*(/z®2) —+ 7ï*TLQ~ are supported on the finite set 7r* SingX. Now apply 

1.3. D 

Remark 3.6. As observed in [PW2, 2.4] the map R^TT. (JU®2) —• TR*Hq~ is not 
X. 

an isomorphism in gênerai. For y G Y let A be the semilocal ring of X at the 
finite set 7r~1(y). Then there is a Leray spectral séquence converging to the 
stalk at y : 

H1 (x, n2) -+ H1 (x, r2TTSSSSS*^2) e H1 (y, n2DD)^HX(Y, WWWW, 

Since A is semilocal and normal of dimension 2 the sheaves 7i° and Tï1 on 
SpecA have flasque resolutions of lengths respectively 2 and 3 ; see (4.1.2). In 
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particular H1'(X,?î0) = 0 for i > 2, so the spectral séquence dégénérâtes to 
the exact séquence 

0 - H1 (A, H1) ^ (R27r*^2 )y ̂ (R27r*^2 dxds - H2(A, H1) ^ ( R 3 ^ 2 ) ^ 

If k contains a primitive nth root of 1, then H1^®2) 9* /d/n 9É 0*x/n and 
the group Jff1(A,7^1) may be described via the exact séquence in [BV1, 3.4] : 

0 -» Pic(A)/n H1 (A, H1) — nH2(A, O*x)->0 

Since A is semilocal this yields an isomorphism : H1 (A, Ti1) = nIt2(A, /Ci). 
This group may be nonzero for a seminormal local ring A of dimension 2 ; see 
[PW1, 5.9] and 4.2.1. 

THEOREM B. — Let X be a surface defined over a field k containing 1/n and 
Un. Set Y = SingX and Y = 7r~1(Y) where TT : X —>X is the normalisation 
of X. Then there is an exact séquence for the sheaf 7i2 = 7^2(//®2) ; 

H1 (x, n2) e H1 (Y, n2) -+ HX(Y, H2) -+ H2(X, n2) -> H2(X, n2) -+ o. 

Proof Use the cohomology exact séquence (3.4) and 3.5, which gives an 
isomorphism 

H2(X,R27r*fi®2) ^ H2(X,H2) 

and a surjection 
H\X, R/V./x®2) — H\X, H2). 

COROLLARY C . — With the same hypothèses as in Theorem B there is an 
exact séquence : 

H1 (X, H2) 0 SKX (Y)/n -» SKX (Y)/n CH2(X)/n -+ CH2(X)/n 0. 

Proof Theorem A yields the two isomorphisms H2(XyH2) = CH2(X)/n 
and H2{X,H2) CH2(X)/n. So we are left to show that ^(Y.TÏ2) is 
jff^Yj/Ca/n) 9* SK1(Y)/n and that H1 (Y, H2) is ^(Y.^/n) ^ S l T ^ l ^ / n . 
This follows from [PW2, 5.1] when Y and Y are reduced, and from 1.7 in the 
gênerai case. (Of course, it also follows from Hoobler's Theorem 0.2.) [] 
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§4. Proof of Theorem D 

In order to prove theorem -D, we shall need flasque resolutions for each 
of the sheaves ?i2, /C2, n • /C2, fC^jn and nK-2 on a surface with isolated 
singularities. The following standard method is implicit in [PW1, (5.1)]; in 
our applications, X will always be a scheme with isolated singularities over a 
field fc, and Y will be a finite set containing SingX. 

If X is a scheme, we set X% = {x G X of codimension i} . If x G X we shall 
write ixM for the direct image sheaf of an abelian group M under x X. 

Resolutions 4.1. Let Y be a finite set of closed points of a scheme X. Given 
functors Fp (p — 0 ,1 , 2) on schemes over fc, let Tv dénote the Zariski sheaf on 
X associated to the presheaf U FP(U). Suppose given a flasque resolution 
of F° on X - Y : 

0 vJ*\(X-Y) re 

dd4d4r 

isF°(s) e 

tex1 

itF\t) d 

xex2 
d+d1 

ixF2(x)^C 

If dim(X) > 2, the following is a flasque resolution of T° on X. 
(4.1.1) 

0 rvrd 

dd1+rd 
i3F°(s) © 

vrd 

d-dnd+d,r 
a o\ 

-a 

+d,d+dmlr 

iyH° (3,^)^0 
Y€Y S<Y 

iyF°(s) 
dv+d1 
Va a) 

dd+d4 
d+d1d 

ixF2(x) © 
YGYT<Y 

TT i.&is.u® 

Here the notation S < Y (resp. T < Y) means the set of ail points S G X (resp. 
T G X1) whose closure contains ?/, and A is the obvious diagonal. 

Now suppose that X is a scheme with isolated singularities over a field fc, 
and that Y contains SingX. Setting F0 = H°(-,/J,®2) and F1 = F2 = 0 
yields the flasque resolution 

(4.1.2) 
d+d,nd+dle 

S 

iyH° (3,^)^0x+x iyH°(Ox,y,^2) 
S<Y 

iyH° (3,^)^0 

This yields the observation that £T*(X,W0) = 0 for i > 2. Similarly, if we set 
F0 = H1^ —,//®2) and F1 = we obtain the flasque resolution 

(4.1.3) 

iyH° (3663> 
TT i.&is.u®2) re 

LLtex1 HHn{t) © 

TT i.&is.u®2)k;c+cn TT i.&is.u®2) jxc vrd 
TT i.&is.u®2) 
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(Cf. [BV1, (3.6)].) Consequently H\X, H1) = 0 for i > 3. As another example, 
let nK2 be the kernel of K2 K2. On the smooth variety X — Y we have 
the resolution 

0 rexg+d E 

s 

is(nK2(s)) d 

t 

ixF2(x)^C 

from the universal exactness of the Gersten resolution for K2 given in [Gray, 
Cor. 6] ; cf. [MS, 8.7.8]. Hence we have a resolution for the sheaf rtK2 on X 
which is identical to (4.1.3) except that Hx{ —, /J>®2) has been replaced by nK2. 

PROPOSITION 4.2. — Let X be a quasiprojective scheme with isolated 
singularities, defined over a field k containing 1/n. Then 

H1) H2(X,(D*x)/n *Ê [®yeYCl(Od+d 

In particular, if k contains jjLn and dim(X) > 2 then Ji1^/^®2) = Ox/n and 

^(X.H1) H2(X,(D*x)/n *Ê [®yeYCl(Ox,y)/n]/image of Cl(A), 

where A is the semilocal ring of X at Y and Cl(A) dénotes the divisor class 
group of A. 

Proof By [Suslin, 3.13], there is a surjection H^t(F] p®2) —• nK2(F) for any 
field F. In addition, the following diagram commutes by [Suslin, 3.14]. 

t 
Mn(t) © 

s<y 

ixF2(x)^C 
(A,9) 

t<y 

d+d1d H^^X.U1) o 

onto 

t 
Vn(*) © 

s<y 
nK2(s) 

(A,ô) 

t<y 

d+d1r H2{X,NK2) 0 

The right vertical map is an isomorphism by the 5-lemma. 
Now suppose that k contains a primitive rft1 root of unity £. The map 

k(s)*/n —• nK2(s) sending / to {£, / } is onto by [MS]. If we tensor the exact 
séquence of [PW1, (5.4)] 

t 
z e ' 

&<y 
k(sy 

t<y 
Z^H2(X,O^)->0 
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with /xn(fc) = Z /n , we obtain an isomorphism H2(X^OjC)/n = H2(XynfC2). 
The final interprétation in terms of divisor class groups is just a restatement 
of [PW1, 5.5]. D 

Remark 4.2.1. The group H2(X^7i1) can be nonzero if X has more than 
one singular point. An example of a normal surface with H2(Xy Ti1) = 
H2(X,0*x) = Z/2 is given in [PW, 5.9]. That example is easily modified 
to replace Z/2 by Z / n when /zn C k. 

For Theorem Z), we shall need to consider flasque resolutions of K2/n and 
U2 = H2(n®2). On X - Y it is well-known (see [B3, 2.3], [MS, §18], [CT-R, 
p. 168] and [PW2, 4.3]) that the flasque resolution 

(4.3.1) 0->/C2/n-

sex° 

isK2(s)/n-
tex1 

itk(t)*/n-
xex2 

ix'Z/n —• 0 

may be identified with the Bloch-Ogus flasque resolution of 7ï2^ giving an 
isomorphism c22 : fC2/n —^7ï2 of sheaves on X — Y. The method of 4.1 gives 
a morphism of flasque resolutions covering c22 : /C2/n—>T~i2. In fact, thèse 
resolutions are isomorphic by Hoobler's theorem (0.2). 

Here is a useful variation which uses the resolution (4.1.1) to establish 
acyclicity for j*j*(TC2). Let Xy dénote the semilocal scheme of X at the finite 
set Y, and let j : XY ^ X dénote the inclusion. 

LEMMA 4.4. — If X is a surface with isolated singularities, the sheaves 
j*j*(K>2/n) and j*j*(J~C2) are isomorphic and acyclic on X. 

Proof The sheaves are isomorphic by Hoobler's theorem (0.2). The method 
of 4.1 gives us a flasque resolution 
(4.4.1) 

0 - > j . r ( / C 2 / n ) 

d+d1r 

isK2(s)/n<Z 

y 

iyK2(Ox,y)/n 

tex\r 

itk(t)*/n e 
vr+d5 

iyK2(s)/n-

t<y 

iyk(t)*/n->0. 

(cf. [PW1, 4.1].) In particular, H*(XJJ*!C2/n) ^ H*(XY,1C2/n). 
Now XY is semilocal, so H2(XY, K2) = SK0(XY) = 0, and ^(Xy, K2) = 

0 as well, because it is a quotient of SKi(Xy) = 0. That is, K2 is acyclic 
on Xy (cf. [PW1, 6.5]). Since IC2/n and n • K2 are both quotients of /C2, and 
H2(XY,-) is right exact, we get H2(XY, K2/n) = H2(XY,n•/C2) = 0. From 
the cohomology séquence associated to the exact séquence of sheaves 

0 —y n • /C2 y /C2 —̂  /C2/n —y 0, 
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we conclude that HX(XY,fC2/n) ^ H2(XY,n- /C2) = 0. D 

Prom the standard resolution (4.1.1) of JC2/n on X associated to (4.3.1), it 
follows that every élément of HX(X, K2jn) = H1(X^7ï2) may be represented 
by a family (ft<,wsy) with ft G k(t)*/n and wsy G K2(s)/n. We shall need a 
simpler family of représentatives with wsy = 0 and ft = l whenever t < y 
for some y. To this end, we give another acyclic resolution of 7ï2 = 7-C2(/j,®2)y 
following [PW1, 3.1]. Recall that for any sheaf T on X there is a natural 
adjunction map rj : T • j^j^J7. 

PROPOSITION 4.5. — Let X be a surface with isolated singularities, and 
suppose that Y contains SingX and meets every irreducible component of X. 
Let X% dénote the set of points in Xp whose closure misses Y. Then the 
following diagram commutes, and its rows are acyclic resolutions of fC2/n and 
n2. 

0 /C2/n v J*R(IC2/n) 

texi 
itk(t)*/n 

xexi 

J*R(IC2/n 

vrd C22 xexi c22 

0 n2 V xexi +xci 
texi 

itk(t)*/n 
xexi 

ixX/n —• 0. 

Proof {cf. [PW1, 3.2]). On X - y , we have the flasque resolution (4.3.1) of 
K2/n and 7ï2. Therefore we get flasque resolutions of the type (4.1.1) on X , 
and a morphism of resolutions covering fC2 /n —» TL2. The resolution of K,2 /n 
maps onto the flasque resolution (4.4.1) of j*j*)C2/n ; since every component 
of X meets Y', the kernel complex is : 

0 - > 0 -
d+d 

itk(t)*/n 

xi 

ix1j/n —y 0. 

But this is also the kernel complex of the map from the resolution of T~L2 to the 
resolution of j*j*7i2. The resuit now follows from 4.4 and a diagram chase. 

Porism 4.5.1. Using the resolution of type (4.1.1), we can represent any 
élément of Hx{X^K2jn) by an élément of UtGxi k(t)*/n © U3<y K2(s)/n. 
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The proof of 4.5 shows that this élément differs by a coboundary from an 
élément of the subgroup UT€A-i k(t)*/n. 

Définition 4.6. Let H?srri be the Zariski sheaf in X defined by 

xexi +dxlo +dx 

texi 

itk(t)*/n d 

+dyio +rej 

ix1,/n —y 0. 

By construction, the acyclic resolution of 4.5 gives an exact séquence : 

H°(XY,H2) H°(X,H3am) - H\X, H2) -0. +6xc 

This séquence is due to L. Barbieri-Viale [BV2], who identified Ti^m with the 
sheaf associated to smooth étale cohomology H^m. Taking cohomology, we get 
an exact séquence 

(4.6.1) H°(XY,H2) H°(X,H3am) - H\X, H2) - 0 . 

Every élément of 7i3m) is represented by a family of éléments ft G 
k(t)*/n such that Y2&ft = 0- Since the Bloch-Ogus differential d is the 
réduction of the divisor map, any choice ft G k(t)* of liftings of the ft 
détermines a divisor D (of codimension 2 on X) such that the divisor ^ (ft) 
equals nD. 

LEMMA 4.6.2. — The class of the divisor D in CH2(X,Y) is independent 
of the choices made, so T({ft}) = [D] détermines a homomorphism 

f : H°(X,HÏm)^CH2(X,Y). 

The image of f is the n-torsion subgroup nCH2(X,Y) of CH2(X,Y). 

Proof If f[ is another lifting of / t , then there are gt G k(t)* such that 
fi = ftg?. Therefore £ ( / t ) = nD + n^2(gt). Since [D] = [D + £(<?*)] in 
CH2(X,Y), [D] is independent of the choice, and f is well-defined. Since 
iJ°(X,7i3m) has exponent n, so does the image of r . Conversely, if D is a 
divisor with n[D] = 0 in CH2(X,Y), there are ft G t G X*, such that 

= E (ft) and therefore [D] = f ( { / t } ) . D 

PROPOSITION 4.7. — 77&e map f induces a surjection 

r : H1(X,H2)-^rtCH2(X,Y). 

Proof Combining (4.6.1) with 4.6.2, we see that it suffices to show that 
the image of H°(Iy^2) —• H°(X,H3srn) lies in the kernel of f. Using the 
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resolution (4.4.1) for 7i2 on XY> we can represent an élément of H°(XY^T~C2) 
by a family of éléments oty G H°(Ox,yi A*®2)* 1 / 6 ^ , such that : (i) the images 
ût5 G iï2(s,/i®2) are independent of the pair s < y for each s G X ° , and (ii) 
9YÇ%2 cts) = 0, where dy is the map 

d+d,r6d 

H°(XY,H2)k 

d+d;rd 
k(t)*/n. 

The image /3 of ^ Q j j in LI{fc(t)*/n : t £ X^} represents the image 
of this élément under the map H°{XY,H2) ^ H° (X,HzSTn). To compute 
f(/3), we consider the commutative diagram of Gersten-Quillen complexes 
for K.2 —* Ki/ri on X — Y. 

0 L U x o K2{s) 
tame dH°(XY,H2) div H\X, H2) -0. 0 

0 L L e x ° K2(s)/n 
re 

Utexi Kty/n 
d+d 

Ux€x* z/n 0 

As with (4.3.1), we can identify the bottom complex with the Bloch-Ogus 
complex for 7ï2. Lifting each o>3 to an élément &s G K2(S) and setting ft = 
Y] tame(53), the associated divisor ^ (/t) vanishes because div(tame(<5s)) = 
0. Since r(/3) is defined via (/t)? we have ^(/^) = 0. Q 

By abuse of notation, we will also use the symbol r to dénote the map 
from H1{X^K2/n) to CH2(X) = iï2(X,/C2) obtained by precomposing r 
with iï"1(X, K^jn) —• H1(XJ7i2). Let n • /C2 dénote the image of /C2 ——> /C2, 
and let 7r dénote the quotient map /C2 —> n • ^2 • 

COROLLARY 4.7.1. — The composite 

Hx{X,K,2ln) T ff2(X,/C2) 7T iJ2(X,n. /C2) 

£/ie boundary map in the cohomology séquence associated to the exact 
séquence 

0 —• n • /Co —• /C? —• /C? / n —• 0. 

Proof. Since the Gersten-Quillen resolution of /C2 is universally exact [Gray, 
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Cor. 6], we have a short exact séquence of resolutions on X — Y : 

0 n - fC2 \Ji3n • K2(s) H°(XY,H2) \Jix n • Z 0 

0 /c2 UisK2(s) IIH2(X,n-K2) II**Z 0 

0 /C2/n UisK2(s)/n H2(X,n-K2) \JiXZ/n 0. 

The method of 4 . 1 gives a short exact séquence of resolutions on X of type 
( 4 . 1 . 1 ) . By 4 . 5 , an élément / of H1(X^)C2/n) is represented by a family 
{ft G k(t)*/n,t G X * } . Lift / t to ft G &(£)* ; the boundary map sends / 
to the élément of i i2 (X, n • /C2) represented by the divisor nD = X* (/*)• But 
by construction TTT(/) = 7r([Z)]) = [ni?]. Q 

LEMMA 4 . 8 . — The composite H1(X,K2) -> Hx{X,K2jn) C i J 2 ( X , y ) 
is zéro. 

Proof. Using the resolution [ P W 1 , 3.2] of /C2, which is the intégral analogue 
of 4 . 5 , an élément À G H1(X^IC2) is represented by a family of units 
{ft G k(t)*,t G X*} whose total divisor ^ (ft) is zéro. Reducing modulo 
n, the image À of À in iJ1(X, /C2/n) is represented by {/t}. Using this choice 
in the construction of r shows that r(À) = 0 . [] 

COROLLARY 4 . 8 . 1 . — in £/ie cohomology séquence 

Hx(Xy n • /C2) i i2 (X, n/C2) -+ i i2(X, /C2) i i2 (X, n • /C2) ^ 0 , 

£/ie map d is onto and there is an isomorphism 7r : i i2(X, /C2) = i ï2(X, n-/C2). 

Proof Using 4 . 7 . 1 , we have constructed a commutative diagram 

H\X,K2) Hx{X,K2jn) H2(X,n-K2) H2{X,K,2) 

T 

H2(X,IC2) 
7T 

H2(X,n-/C2) 0 

with exact rows in which the image of r is the kernel of the composite 
H2(X,JC2) A H2(X,K2). Hence ker(7r) Ç im(îr). It follows from 4 . 8 that 
7r is an isomorphism, and hence that d is onto. V\ 
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PROPOSITION 4.9 (= Theorem D ) . — There is an exact séquence : 

H0(X,/C2/n)^H2(X,n1)^H1(X,K:2)/n^H1(X,K2/n)^(R27r*^2sssssssCH2(X)^0. 

Proof. Combine the cohomology exact séquence of 4.7.1, 

H°(X, K2/n) -> H1 (X, n-/C2) —s-iï1 (X, K2) -* H1 (X, K2/n) 7TT H2(X,n-}C2), 

with 4.8.1 and 4.2, which gives the exact séquence 

HX{X, /C2)^H1(X,n- /C2) a H2{X,Hr) •0, 

together with the observation that multiplication by n equals the composite 
HX{X, K2) H\X, n.K2)^ HX(X, K2). D 

§5. Applications 

In this section we apply our structural results to describe CH2(X) when 
X is a reduced surface over a field k which is either algebraically closed, a 
number field or the field M. of real numbers. 

If y is a closed subspace of X containing Sing(X), the relative Chow group 
CH2(X, Y) is defined as the quotient of the free abelian group on the set X% of 
points of codimension 2 in X — Y, modulo the subgroup generated by divisors 
of functions / G k(Z)*, where Z is a closed curve on X locally defined by a 
regular function, having no components in common with V, and the support 
of the divisor ( / ) belongs to X — Y. If Y is finite then this agrées with the 
group CH2(X, Y) of [PW1] used in the proof of Theorem D. We know by [LW] 
that CH2(X, Y) is isomorphic to SKQ(X), and hence that it is independent of 
y , so we shall omit Y from the notation and write CH2(X) for CH2(X,Y). 

There is a natural map from CH2(X) to the classical group CHo(X) of 
cycles of dimension zéro modulo rational équivalence. For singular surfaces X 
we do not always have CH2(X) ^ CH0(X), as [PW1, 2.6] and 5.6.1 below 
show. 

It is useful to restrict our attention to a slightly smaller group, the subgroup 
Ao(X) of 0-cycles of degree 0 in CH2(X). If X{ is a component of X which 
is proper, there is a nonzero degree map CH2(X{) —• Z; it is onto if k = k or 
if Xi(k) ^ 0. If X has c proper components we define Ao(X) = A0(X, Y) to 
be the kernel of the resulting degree map 

deg : CH2(X) ®CH2(Xi) Zc. 
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If k is algebraically closed, the degree map is a split surjection and we have 
CH2(X) = Zc © AQ(X). In gênerai the image A of deg is a lattice isomorphic 
to Zc, and we have a décomposition : 

( 5 . 0 ) CH2(X) = A © A0(X), A ^ Zc. 

Clearly this yields a direct summand A / n 2* (Z/n)c of CH2(X)/n 2Ê 
SKo(X)/n. If k is algebraically closed, we now show that the other summand 
vanishes. 

THEOREM 5 . 1 . — Let X be a surface deflned over an algebraically closed 
field k. 
If X has isolated singularities, A0(X) is divisible and CH2(X)/n = ÇZ/n)c 
for ail n. 
//char(fc) = 0 , then A0(X) is divisible and CH2(X)/n (Z/n)c for ail n. 
IfchsLT(k) 0 and 1 / n G k, A0(X) is n-divisible and CH2(X)/n 2Ê (Z/n)c. 

Proof. First suppose that Y = SingX is finite. If D is a 0-cycle of degree 
zéro on X — Y then by Bertini's Theorem we can find a curve Z missing 
Y but containing the support of D. The resulting map 7r : Z —• X from the 
normalization Z of Z induces a map from Pico(Z) to Ao(X), and [D] is in the 
image of this map. Now Pico(^) is a divisible abelian group by [Mum, p .62 ] . 
Thus [D] is divisible in AQ(X). 

In the gênerai case, the proper components of X are in bijective cor­
responden t with the proper components of X , so the above proves^that 
CH2(X)/n ^ (Z/n)c. By corollary C, A0(X)/n is a quotient of SK1(Y)/n, 
which is zéro by lemma 5.2 below. [] 

Remark 5 . 1 . 1 . If X has isolated singularities, then CH2(X) ^ CH2(X) 
because SK\(Y) = 0 . (This follows from the exact séquence ( A . 2 ) of the 
appendix; see A . 3 or [ P W 1 , 8 .6] ) . It then follows from [C] that NCH2(X) is 
finite for every n prime to char(fc), an upper bound being the n-torsion in the 
Chow group CH2(X) of the projective closure X of X . If X is affine, then we 
actually know that NCH2(X) = 0 by [L2, 2 . 6 ] . 

However, when Sing(X) is 1-dimensional we cannot bound NCH2(X) unless 
we know more about SK\(Y), Y — TT"1 (SingX). 

LEMMA 5 .2 . — Let Y be a 1-dimensional quasiprojective scheme of finite 
type over an algebraically closed field k. Then SK\{Y) is n-divisible for every 
n prime to char(&). 

Proof Suppose first that Y is reduced. By [Gil, 1 .27] , the map 

Pic(Y) ® k* -+ H1 (Y, K2) = SK^Y) 
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is onto. Since fc* is n-divisible, so is SKxÇY). If Y is not reduced then by 1.7 
we have 

SKx{Y)/n = SK^Y^/n = 0. Q 

Remark 5.2.1. If Y is affine then SK1(Y) = SK1(Yred). In gênerai, however, 
SK\(Y) —* 5î i(l̂ ed) is neither injective nor surjective; see [W2, ex.2]. 

We now briefly consider the situation where k is a number field. If X 
is smooth, the situation is somewhat conjectural. We cannot hope for the 
singular case to be any better, and the following example shows that it is 
worse. 

Example 5.3. Let Y be the coordinate axes (xy = 0) in the affine plane 
X = A | , and let X be the affine scheme obtained by glueing the two 
axes together into a line Y = A1, as in [P]. The coordinate ring for X is 
the subring {/ 6 k[x^y] : f(ty0) = f(0>t)} of k[x,y]. It is classical that 
SKi(Y) — SKi(X) — SKQ(X) = 0; an almost equally classical Mayer-
Vietoris argument (in the style of [P]) shows that 

CH2(X) ^ SKo(X) 9* SK^Y) 2É K2(k). 

If k is a number field, this group is a direct sum of infinitely many finite cyclic 
groups, and both CH2(X)/n and NCH2(X) are infinité for ail n prime to 
char(fc). 

A slightly more sophisticated calculation, left to the reader (using A.3), 
shows that the projective closure X of X satisfies CH2(X) = Z © K2(k), 
which has the same qualitative properties as CH2(X). 

In contrast to this example, we would like to point out the following finite-
ness resuit of Colliot-Thélène & Raskind and Salberger [CT-R91, thm.C](cf. 
[Sai]). Note that if k is the ground field of fc(X), then X is geometrically 
connected over k. 

THEOREM 5.3.1. — Let X be a smooth projective variety over a number 
field. If H2(X,Ox) = 0 then the torsion subgroup of CH2(X) is finite. 

In order to summarize the conjectural state of afFairs for a smooth surface 
X over a number field fc, let Albx(&) dénote the group of fc-rational points 
on the Albanese variety of X. By the Mordell-Weil theorem, this is a finitely 
generated abelian group. Bloch's conjecture asserts that if H2(X,Ox) = 0 
then the kernel of AQ(X) —• Albx(fc) is contained in the torsion subgroup of 
Ao(X), which is finite (for X projective) by 5.3.1. Bloch's conjecture is known 
to be true for ail surfaces except those of gênerai type [BKL]. 
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PROPOSITION 5.4. — Consider the following assertions about a smooth 
surface X over a number field k. 

(1) (Bloch's conjecture). If H2(X,Ox) = 0 then the torsion subgroup of 
Ao(X) contains the kernel of A0(X)Alhx(k). 

(2) Ao(X) is a finitely generated abelian group. 
(3) (Bassy Conjecture) Ko(X) is a finitely generated abelian group. 
(4) Ao(X)/n is finite for every n. 
(5) The kernel of c2± : SK0(X)/n H£t(X9 fi®2) is finite. 

Then (1) implies (2), (2) 4=> (3), (3) implies (4) and (4) O (5). Moreover, if 
H2(X,Ox) = 0 then (1) ^ (2). 

Proof. We have seen that (1) (2). Since Pic(X) is finitely generated by 
the Mordell-Weil Theorem, (2) <=> (3) (4) is clear. Finally, S. Saito proved 
in [Sai] that the image of the "cycle map" 

CH2(X)/n & SK0(X)/n Si iJ2(X, H2(n®2)) -> iJe4t(X, 

is finite. By Theorem 2.2, this map is just c24. Since CH2(X) ^ Zc © A0(X)y 
this gives the équivalence of (4) and (5). [] 

Finally, we consider varieties over the real numbers IR, and interpret our 
results in terms of topological invariants. By a "real variety" we shall mean 
a reduced quasiprojective scheme X over IR. Let X be an m-dimensional 
real variety and let Y dénote Sing(X). Let L be the union of ail irreducible 
components of X having dimension strictly less than m. 

Since X lies in some Pj^ we can topologize the set X(IR) of real points 
as a subspace of the real projective space IRP^ = Pj^(IR). The subspace 
M = X(IR) — ï̂ (IR) — L(M) is a smooth m-dimensiona! manifold, and in fact 
X(IR) has the structure of a stratified manifold with top stratum M. Our first 
resuit interpret s dim iï*m(X(IR)) in terms of M. 

PROPOSITION 5.5. — Let t dénote the number of path-connected components 
Mi of M whose closure Mi in X(IR) is compact. Then 

t = dimiJm(X(IR),y(IR);Z/2). 

7/rdimlr(IR) < m — 2, then in addition 

t = dimiïm(X(IR);Z/2) = dimiïm(X(IR); Z /2) . 

Proof. The second assertion follows from the first, using the exact séquence 

0 — Hm(X(R)) — Hm(X(R),Y(R)) -> ffm_!(y(R)). 
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By excision, iïm(X(IR), Y(WL)) ^ ®Hrn(Mi,Ml - Mi), the sum being taken 
over ail path-connected components of M. Fix i and give M i the structure of a 
cell complex such that every (m — l)-cell in the m-manifold Mi is the boundary 
of exactly two m-cells ; every pair of m-cells in Mi may be connected by a finite 
séquence of m-cells and (m — l)-cells. A cellular m-chain a is therefore just a 
finite sum of m-cells in Mi, and if a ^ 0 then a cannot be a cycle unless it 
is the sum of ail the m-cells in Mi. If Mi is compact, there are finitely many 
m-cells and Hrn(Mi, Mi — Mi) = Z /2 . However, if Mi is not compact then 
there are infinitely many m-cells, and therefore Hm(Mi, Mi — Mi) = 0. G 

We now assume that the singular set of X has codimension > 2, for 
example that X is a surface with isolated singularities. Exactly as in the 
case of surfaces, the group CHRN(X) = CHRN(X,Y) is defined to be 
Zm (X, Y)Ii?m (X, Y), where ZRN(X,Y) is the free abelian group on the set 
X™ and i?m(X, Y) is generated by divisors (/) of rational functions on curves 
in X missing Y. We are going to relate CHRN(X) to t = d i m i ï m X ( t t ) . 

Let X<c = X ®k C be the complexification and r : Xc —• X the natural 
map. Pushing forward zéro-cycles missing Yc produces a transfer map r* : 
Ciarm(Xc)-^Ciïm(X). The following resuit was proven in [CT-I, 3.1] for 
smooth, proper real varieties. 

THEOREM 5.6. — Let X be an m-dimensional real variety such that 
Y = Sing(X) has codimension > 2. Then there is an isomorphism 

0 : CHRN(X)/R^CHRN(XC) = i?m(X(IR); Z/2) ^ (Z/2)*, 

where t is the number of connected components of M having compact closure 
in X ( M ) . 

Remark 5.6.1. For any proper real variety X , [CT-I, 3.1] yields 

CHO(X)/T*CH0(XC) = (Z/2)5, 

where s is the number of connected components of X(R) . For singular X we 
can have s ^ t, hence CH2(X) ^ CH0(X). 

For the proof of 5.6, we shall need some information about the Picard group 
of a smooth real curve Z. Topologically, Z(R) is a smooth 1-manifold, every 
component of which is diffeomorphic to either S1 or R. The following resuit 
is proven in [PW2, 1.4]. 

COMESSATTI-WITT THEOREM 5.7. — Let Z be an irreducible smooth real 
curve with Z(M) ^ 0. If Z(M) has À components Zi diffeomorphic to S1, there 
is an isomorphism 

Pic(Z)/2 (Z/2)A 
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whose ith component Pic(Z) ->Z /2 sends [P] to 1 iff P G Zi (1 < i < A). 

Historical Remark 5.7.1. Comessatti [Com] and Witt [Witt] calculated 
Pic(Z) when Z is projective and smooth, and the gênerai case follows easily. 
Their key step used the 1882 calculations of period matrices by Weichold 
[Whd]. This transcendental step may be replaced by the algebraic resuit [Kn, 
3.4], which is valid over any real closed field. 

Proof of Theorem 5.6 : Let Mi be a path-connected component of M whose 
closure in X(IR) is compact. Define the homomorphism 

Oi : Z7n{X,Y)-^X/2 

to be the characteristic function of Mi C X™. 
We first claim that 0; induces a map 0; : CHrn(X)/r^CH7ri(Xc) -* Z/2 . 

If P G (XC)T then diT*([p]) = 0 because either r ( P ) £ Mi or else 
r*([P]) = 2[r(P)]. Thus Oi sends r*Zm(Xc, Yc) to zéro. To establishthe claim, 
it suffices to check that <9; sends the relations i ïm(X,Y) for CHrn(X,Y)_to 
zéro. For this, choose a curve Z on X missing Y and / G k(Z)*. Because Mi 
is compact and Z(M) C M , Z(M) H M; is a compact subspace of Z(M). On the 
real locus Z(M) of the normalization Z of Zevery component A lying over 
Z(M)C\Mi must be a circle. By the Comessatti-Witt Theorem 5.7, the divisor 
( /) has even degree on each A, so di((f)) = 0. This establishes the claim. 

The map 0 = (0 i , . . . ,04) : CHrn(X)/rittCHrn(Xc) ->(Z/2)* is onto, since 
a basis of (Z/2)* is given by the 9{[Pi]) with Pi e Mi. To prove that 6 is 
injective, we argue as in [CT-I]. Since CHm(X) -+ CHm(Xc) CHrn(X) 
is multiplication by 2, 2CHrn(X) Ç T^CHrn(Xc). lî P g M then P is a 
smooth complex point of X and 0([P]) = 0; moreover, [P] G T^CHrn(Xc) 
because [P] = T*([P;]) for either of the two points P ' of Xc over P . 

Two points P and Q of M are said to be related if there is a smooth 
real curve Z\ a proper morphism TT : Z —> X with 7r(Z) D Y = 0 and a path 
/ : [0,1] —• ZQBL) such that TT/ is a path in M from P to Q. If P and Q lie in the 
same component Mi of M, then there is a finite séquence P = P o , . . . , Pn = Q 
such that Pj and Pj+i are related for every j . It suffices to show : (1) [P] = [Q] 
in CHrn(X)/2 whenever P and Q are related (hence whenever P and Q lie 
on the same M;), and (2) if Mj is not compact then there exists some point 
Q of Mi such that [Q] = 0 in CH2(X)/2. 

Suppose first that P and Q are related by TT : Z —> X and / : [0,1] —•> Z(R). 
Then / (0) and / ( l ) lie on the same path component Zi of ZQEL), which is 
diffeomorphic to either S1 or R. By the Commessatti-Witt Theorem 5.7, 
[/(0)] = [/(l)] in Pic(Z)/2. Via the map Pic(Z) -+ C i ï m ( X ) , we see that 
[P] = ^*[/(0)] equals [Q] = TT*[/(!)] in CHm(X)/2. 
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Now suppose that Mi is a component of M but Mj is not compact. Embed 
X as an open subvariety of a projective variety X1 such that Y1 = Sing(X') is 
the closure of Y, and let M- be the component of X'(M) — Y7(M) containing 
Mi. Since Mi is compact there is a point P at infinity in Mi which is related 
(in X') to some point Q of M;, say by TT : Z' X' and f : [0,1] —• Z'(R). 
The subscheme Z = TT~1X of Z1 is a smooth curve, and / ' ( l ) lies on an 
unbounded component A of Z(M). But the Comessatti-Witt calculation then 
yields [/ '(l)] = 0 in Pic(Z)/2, and hence [Q] = 7r*[/'(l)] = 0 in CHrn(X)/2. 
D 

In order to relate theorem 5.6 to the Chow group CHm(X), we need to 
choose an explicit form of the décomposition CHrn(X) = ZC©_A0(X) in (5.0). 
Let E dénote the number of proper components X% ofX having no smooth real 
points; pick a smooth complex point Pi on each such X%. Pick a smooth real 
point Pi on each of the remaining R = c—E proper components X1. Thèse [Pi] 
form a basis for a summand ZC of CHrn(X) which is mapped isomorphically 
onto the image A = (2Z)E © (Z)R of deg : CH7n(X) - > ZC. As the kernel of 
deg is A0(X) this gives our explicit décomposition CHrn(X) = ZC © A0(X). 

Now Xc has cf > c proper components (cf = c if every proper component 
of X is geometrically irreducible). As Q runs over ail points of X c such that 
T(Q) = Pi for some i, the [Q] span a summand ZC of CHrn(Xc) ; this yields 
an explicit décomposition CHrn(X(c) — ZC © Ao(Xc). As in the case m = 2, 
AQ(X<Ç) is a divisible abelian group (the proof of 5.1 goes through). The 
explicit décompositions are compatible with r* in the sensé that T*(ZC ) Ç ZC 
and T*A0(XC) C A0(X). That is, 

CHrn(X)/r,CHrn(Xc) ^ ZC/T*(Zc ' ) © A 0 ( X ) / r ^ o ( X c ) . 

THEOREM 5.8. — Let X be an m-dimensional real variety such that 
Sing(X) has codimension > 2. Let R (resp. E) dénote the number of proper 
components of X having some (resp. no) smooth real point, and set t = 
dim.HM(X(M.);Z/2). 

The décomposition (5.0) is CHM(X) SE ZR+E © A0(X), and we have : 

A0(X) S (Z/2y-R © r .Ao(Xc). 

Since the group T*AQ(XC) is divisible (by 5.1), this yields 

CHM(X)/2 S (Z/2)t+E. 

Proof Suppose that Q G XC has r(Q) = Pi. If P{ G X(R) then 
rm[Q] = 2[Pi]; if Pi g X(R) then rm[Q] = [Pi]. Hence ZC/T*{ZC') S (Z /2)* . 
By Theorem 5.6 this yields A0(X) /nA0(Xc) = (Z/2)f_iï. This must be a 
summand of Ao(X) since the subgroup T*AO(XC) is divisible, whence the 
description of AQ(X). The calculation of CHM(X)/2 is immédiate. [] 
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COROLLARY 5.9. — Let X be a real surface with isolated singularities, and 
set t = dimH2(X(R);Z/2). Then 

SKQ(X)/2 *Ê CH2(X)/2 *Ê (Z/2)t+E 

and the torsion subgroup of CH2(X) contains (Z/2)t_i* as a summand. 

Example 5.10. Let X be the real affine surface in defined by the équation 
y2 + z2 = x2 (x — 1). X(R) is a surface of révolution having two connected 
components : the isolated point (0,0,0) and a smooth unbounded component. 
In fact X is normal with (0,0,0) the only singularity. Corollary 5.9 yields 
SK0(X)/2 = 0. 

Hère is a direct computation giving the stronger resuit that SKo(X) = 0. 
SKQ(X) is generated by ail [P] as P ranges over the smooth points of X. If P 
is real then there exists a real line in A3 meeting X only at P transversely. If 
P is complex then a computation similar to that in [W5] shows that [P] = 0 
in SKo(X) because P is a complète intersection in X. 

(5.11) In order to extend our results to ail real surfaces, we need a gen-
eralization due to Scheiderer [Sch] [CT-S, 2.3.2] of a resuit of Colliot-
Thélène and Parimala [CT-P]. Let Specr(X) dénote the real spectrum of 
a d-dimensional real variety and let <p : Specr(X) —>Xzar dénote the support 
map. The main resuit of [CT-P] is that if X is smooth, then the natural map 
TC™(Z/2) —•» <p*(Z/2) is an isomorphism when n > d. Scheiderer proves that it 
is a surjection for n = d, and that Rl(p*Z/2 = 0 for i ^ 0 and ail X. As in 
[PW2, 5.5.3] this yields a natural map from iP(X,?*n) to 

HI(X,cp*Z/2) Ç* iT(Specr(X) ,Z/2) = HI(X(U);Z/2). 

If X is smooth and n > d, this map is an isomorphism for ail i. 

PROPOSITION 5.11.1. — Let X be a quasiprojective scheme over R of 
dimension d. Then the natural map 

HD(X, Hn(Z/2)) HD(X(R), Z/2) 

is onto for n — d and an isomorphism for n > d. 

Proof If n > d this follows from Lemma 1.3. Let Ti dénote the image of 
Hd^<p*Z/2. As HD is right exact, HD(X, Hd(Z/2)) -+ HD(X, H) is onto. As 
the cokernel of Ti <—+ (p*Z/2 is supported on Sing(Xred), lemma 1.1 gives a 
surjection from HD(X, H) to HD(X, <p*Z/2) ^ HD(X(R); Z/2) . Q 

Example 5.11.2. When X is a real curve the resulting isomorphism 
^(X.H2) ^ H1(X(M)]Z/2) was proven by other methods in [PW2, 5.5]. 
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Example 5.11.3. Suppose that X is a real surface. The composition 

w2 : CH2(X)/2 sdd K0(X)/2 ^ H2(X, H2(Z/2)) dd H2(X(R); Z/2) 

is a surjection by 5.11.1. If X has isolated singularities we claim that w2 is 
exactly the map 6 of 5.6 having kernel (Z/2)E. To see this, we observe that 
ail groups involved are finite and that (Z/2)E Ç kev(w2) as Xc(IR) = 0. Hence 
k.ex(w2) = (Z/2)E. To see that w2 = 0 it suffices to choose a component Mi 
with M i compact and pass to an affine open neighborhood U of M i containing 
no other relatively compact smooth components, where the two isomorphisms 
Z /2 Z/2 must be the same. 

Remark 5.11.4. Consider the natural map 

wx : H1SSSS(X,?ï2(Z/2))-^H1(X(R);Z/2). 

If X is a smooth surface, Colliot-Thélène and Scheiderer [CT-S, (3.2)] have 
shown that w\ is always a surjection, but need not be an isomorphism. 
We do not know if w\ is always a surjection for normal surfaces ; our 
ignorance about w\ for X forces us to introduce the term Q = coker(tt;i) = 
(Z/2)€ in theorem 5.12 below. As a lower bound, we know that the rank of 
H1 (X,H2 (Z/2)) is at least t - R. This foUows from 5.8, using the surjection 
H\X,U2(Z/2)) -+ 2CH2(X) of Theorem D. 

From a topological viewpoint, wx : HX(X, 7ï2(Z/2)) —> HX(X(M)] Z/2) is 
a kind of "first Stiefel-Whitney class" in the sensé that it is induced from the 
composition of the algebraic-to-topological K-m&p K\(X)—>KO~1(X(R)) 
and the Stiefel-Whitney class KO~1(X(R)) H1(X(M)] Z /2) . To see this, 
note that H1(X,7ï2(Z/2)) is isomorphic to H1(X,K2/2), which in turn is 
the quotient of SK\(X) corresponding to the quotient H1 (X(M); Z/2) of 
KO~1(X(R)) in the Atiyah-Hirzebruch spectral séquence. 

THEOREM 5.12. — Let X be a real surface with normalization X. Write 
R (resp. E) for the number of proper components of X having a (resp. no) 
smooth real point. Then : 

a) The décomposition (5.0) is CH2(X) ZR+E © A0(X). 
b) Set t = dimif2(X(IR);Z/2) and e = dim(Q), where Q ^ (Z/2)e dénotes 

the cokernel of wx : HX(X, H2(Z/2)) —• HX{X{^i)\Z/2). (If X is smooth then 
e = OJ Then : 

A0(X) ^ (Z/2y-R+* © T*AQ(XC). 

c) The subgroup T^AQ(XC) is divisible, and we have 

CH2(X)/2 9é H2(X(R); Z/2) © (Z/2)E © Q S (Z/2)t+E+e 

CH2(X)/T*CH2(XC) = H2(X(R)-, Z/2) © Q = (Z/2) '+e. 

402 



DIVISIBILITY IN THE CHOW GROUP 

Proof. It sufRces to calculâte CH2(X)/2, since the other calculations ail 
follow from it via the argument of 5.8 and the décomposition 

CH2{X)/T*CH2(XC) S Z7r.(Z=') e A0(X)/T*A0(XC)-

Sin.ce X —• X is a birational isomorphism, there is a bijection between the 
proper components of X and X, both with and without smooth real points. 
Writing H*M for Hïop(M; Z /2), and <£ for (Z/2)E, the considérations of 5.11 
give a commutative diagram 

H1(X,H2)®SK1(Y)/2 -+ SK1(Y)/2 s sdd CH2(X)/2 >CH2(X)/2 ^ 0 

dvr zz tU2 l/>2 

1(X,H2)®SKSD1(Y2(X)/2 1(X,H2)®SK1(Y)/2 -+ SK1(Y)/2 sdd dCH2(X)/2 sw+ 

The top row is the exact séquence of Theorem B. The bottom row is the 
Mayer-Vietoris séquence for singular cohomology, resulting from the excision 
isomorphism H*(X(R), Y(R)) = H*(X(R),Y(R)). The right vertical map is 
an isomorphism by 5.9 and 5.11.3. By 5.11.2 or [PW2, 5.5] and a diagram 
chase we get the desired exact séquence : 

0^Q^CH2(X)/2 VU 2 H2X(R) © (Z/2)E -+0. 

Example 5.13. A "real umbrella" is a real surface whose singular locus is a 
line sticking out of the smooth locus. For example, consider the affine surface 
X C Aj| defined by #4 + y4 = x2(l — z2). The singular locus Y is the z-
axis and J¥~(IR) — 1̂ (IR.) has two bounded components. From 5.5 we see that 
H2(X(R)]Z/2) ^ (Z/2)2, i.e., t = 2. The normalization X is the surface in 

defined by y2 = tx, x2 + z2 + t2 = 1, and X(M) is homeomorphic to S2 
even though Sing(X) has 2 points. Since H1(S2;Z/2) = 0 we have e = 0 in 
theorem 5.12 and hence 

CH2(X) S* (Z/2)2 e T*CH2(XC). 

We claim that the divisible group T*CH2(XC) is torsionfree. Since the 
composition r*CH2(Xc) -^CH2(Xc) T*CH2(XC) is multiplication by 2, 
it suffices to show that CH2(Xc) is torsionfree. The Mayer-Vietoris séquence 
(given as (A.2) in the Appendix) is : 

SKAYr) -> CH2(Xc) CH2(XC) 0. 
Since Y is defined by z2 +12 = 1 and x = y = 0, Yc — Spec(C[/u, u"1]) for u — 
z + it. It is well-known that SlTi(C[t/, n"1]) = 0, so CH2(XC) = CH2(XC). 
But by [L2, 2.6] (see 5.1.1), CH2(XC) is torsionfree. 
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Appendix : Jf-theoretic excision methods 

For purposes of comparison, it is useful to see what can be proven about 
the groups SKo(X) using i^-theoretical methods. 

(A.O) Standing Assumptions. We assume that X is a finite-dimensional 
noetherian scheme with finite normalization 7r : X—>X, and that the con-
ductor subscheme Y of X has dimension at most 1. Letting Y dénote its 
preimage Y XX X , this data fits together into the following cartesian square. 

Y j X 

Y i x. 

7T 

Since dim(Y) < 1 we have K0(Y) = H°(Y,Z) 0 Pic(Y), Le., SK0(Y) =SK1(X)BSK 0. 
(See [TT, 10.8] when Y is not quasiprojective.) Similarly, SK0 (Y) = 0. If X 
is affine, it is classical that there are exact Mayer-Vietoris séquences 

(A.i) ^ ( x ^ i f x ^ e j ^ c n ^ ! ^ SK1(X)BSK SK1(X)BSK 1(X)BSK1(Y) 

(A.2) SK1(X)^SK1(X)BSK1(Y) -^SK^Y) ^SKQ(X) -+SK0(X) ^ 0 . 

We want to extend thèse séquences to non-affine X. 

THEOREM A . 3 . — Let X be as in (A.O), with dîm.(Y) < 1. Then 
SKQ(X) —• SKQ(X) is always onto. Moreover the séquences (A.l) and (A.2) 
are exact, provided that any one of the following holds : 

• d im(y) = 0 or Y is contained in an affine open subset of X ; 
• the generic points of Y are separable over the generic points of Y ; 
• we localize ail groups by inverting the primes in the set {char k(y), y G Y}. 

COROLLARY A.4 . — Let X be as in (A.O) with d im(Y) < 1. If 1/n £ Ox 
then there is an exact séquence 

SK, (Y)In SK0(X)/n SK0(X)/n -+ 0. 

To prove A.3, we show that the "double relative" obstruction K-i(X, X , Y) 
to excision always vanishes when dim(Y) < 1. This easily yields the exactness 
of the séquence 

K0(X) - K0(X) 0 K0(Y) — K0(Y) 
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and hence surjectivity of SK0(X) —» SKQ(X). Under the supplémentary hy­
pothèses of A.3, we shall prove that the obstruction Ko(X, X, Y) also vanishes, 
which formally yields the exact séquence (A.l) ; see [GW, 5.1]. The argument 
of [PW1, 8.6] shows that exactness of (A.l) implies exactness of (A.2). 

If Y" is contained in an affine open subset of X , exactness of (A.l) and (A.2) 
was proven in [PW1, 8.5] ; when X is not quasiprojective one needs to replace 
the space BQ7ïz(X) in loc. cit. by the relative term K(X on Z) of [TT, 5.1]. 

In the other cases we use the following Brown-Gersten spectral séquence to 
calculate X , Y) ; the desired vanishing results follow from A.6 below. 

PROPOSITION A.5. — Let Fq dénote the Zariski sheaf on X associated to 
the presheaf U t—• Kq(U, X X j [ / , YxxU) of "double relative" K-theory. Then 
each Fq is supported on Y, Fq = 0 for q < 0 and there is a fourth quadrant 
Brown-Gersten spectral séquence 

EP2q = H?ai(Y,F_q) K_p_q(X,X,Y). 

Proof We say that a presheaf F of (fibrant) spectra on X has the Mayer-
Vietoris property if for every open U and V the square of spectra 

F(UUV) F(U) 

F(V) F(u n v) 

is homotopy cartesian. By [TT, 8.1] the presheaf KB has the Mayer-Vietoris 
property. Let K(U, YxU) dénote the homotopy fiber of KB(U) -+ KB(Y x U), 
and let F(U) = K(U,X x U,Y x U) dénote the homotopy fiber of K(U,Y x 
U)^K(X x U,Y x U). By définition, Kq(U,X x U9Y x U) = 7rqF(U). 
Using the Réduction and Cobase-change Lemmas of [W4], it follows that 
the presheaves K(—,Y x — ) and F both have the Mayer-Vietoris property. 
Since X is finite-dimensional and noetherian, this implies the existence of the 
Brown-Gersten spectral séquence. 

The stalk of Fq at x G X is the usual double relative if-group 

1(X,H2)VD+DH2(X)/2 

which is classically known to vanish for q < 0. For U Ç X — Y we have 
F(U) ~ *, hence each 7rqF(U) = 0. This implies that each Fq = 7rqF is 
supported on 7 . [] 
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COROLLARY A.6. — / / dim(Y) < 1 then 

K0(X,X,Y) ~ H^Y,!/!2 <g> QY/Y) 

and K-i(X,X, Y) = 0. In particular, if the generic points ofY are separable 
over the generic points ofY then KQ(X,X,Y) = 0. 

Proof By [GW, (1.1)], Fx is the sheaf X/t2 ® Q^/Y. The genericaUy 
separable condition ensures that the support of &Y/Y ^ias dimension 0. [] 
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