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Bloches higher Chow groups revisited 

Marc L E V I N E 

Introduction 

Bloch defined his higher Chow groups CHg( —,p) in [B], with the object 
of defining an integral cohomology theory which rationally gives the weight-
graded pieces Kp(—)(q) of iif-theory. For a variety X , the higher Chow group 
CH9(X,p) is defined as the pth homology of the complex Zq(X, *) , which in 
tu rn is built out of the codimension q cycles on X x Ap for varying p , using 
the cosimplicial s tructure on the collection of varieties {X x Ap | p = 0 , 1 , . . . } . 
In order to relate CHq(X,p) with KP(X), Bloch used Gillet's construction of 
Chern classes with values in a Bloch-Ogus twisted duality theory [G]; this 
requires, among other things, tha t the complexes Zq(X, *) satisfy a Mayer-
Vietoris property for the Zariski topology, and tha t they satisfy a contraviant 
functoriality. Bloch a t tempted to prove the Mayer-Vietoris property by prov­
ing a localization theorem, identifying the cone of the restriction map 

Z(X,*)-* Z(U,*), 

for U —> X a Zariski open subset of X , with the complex Z(X\U, *)[1], up to 
quasi-isomorphism. There is a gap in Bloch's proof, which left open the local­
ization property and the Mayer-Vietoris property for the complexes Zq(X, *); 
essentially the same problem leaves a gap in the proof of contravariant functo­
riality. Recently, Bloch [B3] has provided a new argument which fills the gap 
in the proof of localization; this, together with a new argument for contravari­
ant functoriality, should allow Bloch's original program for relating CHg(X, p) 
with Kp(X) to go through without further problem. 

As par t of the argument in [B], Bloch defined a map 

(1) CH(X,p)-* Q(U,*),(X),(q) 

for X smooth and quasi-projective over a field, relying on a A-ring s t ructure 
on relative iiT-theory with supports. It turns out tha t this approach can be 
followed and extended to show tha t the map (1) is an isomorphism, without 
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relying on Chern classes (Theorem 3.1). An important new ingredient in this 
line of argument is the computat ion of certain relative Ko-groups in terms 
of the Ko of an associated i terated double (see Theorem 1.10 and Corollary 
1.11). A bit more work then enables us to prove the Mayer-Vietoris property 
(Theorem 3.3), a weak version of localization (essentially Poincare duality) 
(Theorem 3.4), and contravariant functoriality (Corollary 4.9) for the ratio­
nal complexes Zq(X, * ) <g) Q. We also construct a product for the rational 
complexes Zq(X, * ) <g) (Q), and prove the projective bundle formula (Corollary 
5.4). The arguments used in [B] then give rational Chern classes 

cqy. K2q-P(X) CH*(X, 2q - p) <g> Q, 

satisfying the s tandard properties. 
It tu rns out tha t it is somewhat more convenient to work with a mod­

ified version of Zq(X, *) , using a cubical s tructure ra ther t han a simplicial 
s t ructure. We show tha t the cubical complexes Zq(X, *)° are integrally quasi-
isomorphic to the simplicial version Zq(X, *) (Theorem 4.7), and have a nat­
ural exterior product in the derived category (see §5, especially Theorem 5.2). 
We also consider the "alternating" complexes Afq(k) defined by Bloch [B2], 
and used to construct a candidate for a motivic Lie algebra. We show tha t 
there is a na tura l quasi-isomorphism 

Z*(Spec(Jb), *)c <8> Q -> Afq(k) 

(Theorem 4.11). The product structures are not quite compatible via this 
quasi-isomorphism; it is necessary to reverse the order of the product in one 
of the complexes to get a product-compatible quasi-isomorphism (Corollary 
5.5). 

The paper is organized as follows: We begin ia §1 by proving some ex­
tensions of the results of Vorst on i*Tn-regularity, which we use to prove a 
basic result on the Ko-regularity of certain i terated doubles. We also recall 
some basic facts about relative -fif-theory, and use the Ko-regularity results to 
compute certain relative Ko groups in terms of the usual K0 of an i terated 
double. In §2 we use, following Bloch, the A-operations on relative i f - theory 
with supports to give a cycle-theoretic interpretation of certain relative K0 
groups, analogous to the classical Grothendieck-Riemann-Roch theorem re­
lating the rational Chow ring to the rational Ko for a smooth variety (see 
Theorem 2.7). In §3, we use this to show tha t B loch's map 

C H * ( X , p ) < g > Q - > KP(X)M 
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is an isomorphism for X smooth and quasi-projective. In §4, we relate the 
cubical complexes with Bloch's simplicial version, and also with his al ternat ing 
version. In §5 we define products and prove the projective bundle formula for 
the rat ional complexes. 

As a ma t t e r of notation, a scheme will always mean a separated, Noethe-
rian scheme. For an abelian group AY we denote A®zQ. by AQ; for a homolog-
ical complex C*, we denote the cycles in degree p by ZP(C*), the boundaries 
by BP(C*) and the homology by HP(C*). 

We would like to thank Spencer Bloch and Stephen Lichtenbaum for 
their encouragement and suggestions, and thank as well the organizers of the 
Strasbourg i^-theory conference for assembling this volume. We would also 
like to thank Dan Grayson for his comments on an earlier version of this 
paper, and especially thank Chuck Weibel for pointing out the need for the 
Ko-regularity results in §1, and suggesting the use of his homotopy K-theory 
functor KH. 

§1. NK and relative K0 

In this section, we give a description of relative K0j KQ(X; Y Í , . . . , yn) , 
in terms of the K0 of the so-called i terated double D(X] Y i , . . . , Kn), under 
certain assumptions on the scheme X and subschemes Y^,. . . , Yn. We begin 
by extending some of Vorst's results on NKp of rings (see [V]) to schemes 
over a ring. 

Fix a commutative ring A, and let Alg^ denote the category of com­
mutat ive A-algebras, Ab the category of abelian groups. For a ring R, let 
PR: R[T] —+ R be the i2-algebra homomorphism PR(T) = 0. For a functor 
F: AlgA Ab, let NF: AlgA -> Ab be the functor 

NF(R) = ker[F(pR): F(R[T]) - F(R)]. 

Define the associated functors NqF for q > 1 inductively by 

NgF = N(Ng~1F). 

We set №F = F. 
For R € Alg^4 and r E R, the i?-algebra map 

<f>r:R[T]^ R[T] 
4>r(T) = vT 
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gives rise to the endomorphism NF(<f>r): NF(R) -» NF(R), thus NF(R) be­
comes a Z[T]-module with T acting via <f)r. Let NF(R)[r] denote the localiza­
tion Z[T, T " 1 ] ®Z[T] NF(R). If r is a unit , then the map NF(R) NF(R\r] 
is an isomorphism; letting Rr denote the localization of R with respect to the 
powers of r, the na tura l map 

NF(R) -+ NF(Rr) 

factors canonically through N(R)[ry. 

NF(R) NF(R)[r] 

NF(Rr) 

For elements r i , . . . , rn of i2, form the "augmented Cech complex" 

( i . i ) 
0 -^NF(R) 

l<i<n 
NF(Rri ) 

l<i0<U<...<2p<n 
NF(Rriotrilt...9n1 NF(Rri_rn)-^0. 

where the m a p 

l<io<H <...<ip<n 
NF(Rriotrilt...9n1 

l<i0<ii <...<2p_|_i <Tl 
NF(Rrio,rii,...,rip+i) 

is given as the direct sum over indices (1 < io < ii < . . . < ip+i < n) of the 
al ternat ing sums: 

n+1 

j = 0 
( - 1 ) ' * ; : 

p+i N(F) ( * r . - r- ) NF(Rrio,...,rip+i), 
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and where 

8j\ NF(R riQ_rip+i) >NF{RriQ_rip+i) 

is the canonical map . The map e is the direct sum of the canonical maps 

NF(R) -+ NF(Rrj). 

Lemma 1.1. Suppose R is a commutative A-algebra, r i , . . . , rn elements of 
R which generate the unit ideal. Suppose further that the map 

8j\ NF(R riQ_rip+i NF(R[T]riot...,r{p) 

is an isomorphism, for each set of indicies 1 < ¿0 < . . . < ip < n. Then the 
complex (1.1) is exact. In particular, the map 

e: NF(R) -* ®]=1NF(Rrj ) 

is infective. 

Proof. This is proved in ([V], Theorem 1.2); there the functor F is a functor 
from Algz to Ab, but , as the proof uses only the restriction of F to the 
category Alg^, the argument works as well in the case of a functor F: Alg^ —» 
Ab. • 

Let X be a scheme. We let Vz denote the category of locally free sheaves 
of finite rank on X, and let K(X) denote the space fiBQ'P^; the p th lif-group 
Kp(X), p > 0, is thus defined as the homotopy group 7rp(K(X)). Lett ing 
denote the affine line over X , and Gmx the open subscheme A ^ \ 0 x , we have 
the "fundamental exact sequence" for p > 0 

(1.2) 
0 — KP+1(X) -H. Jfp+ifAV) e J f . + i ( A U -H. Kp+1(Gmx) — KJX) 0 

where the maps are those arising from a spectral sequence computing the 
X-groups of via the s tandard cover 

p x = A x u A x 
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This allows the inductive definition of the iiT-groups Kp(X) for p < 0 by 
forcing the exactness of 

tfp+i(A3r) Ф ̂ P + I ( A V ) -> i í P + 1 ( G m x ) -> А Г „ ( Х ) - + О 

for all p; it then follows (see [T], Theorem 6.6) tha t the sequence (1.2) is exact 
for all p G Z. 

Let ¿ 0 : X —> A ^ be the inclusion as the zero section. Recall the inductive 
definition of the groups NqKp(X) as 

NqKp(X) = 
KP(X) 
ker[zS: Nq~1Kp(Ax) -> Nq~'Kp{X)\ 

for q = 0 , 
for q > 0. 

We recall tha t a scheme X is Kp-regular if NqKp(X) = 0 for each > 0. 
Let = be a Zariski open cover of X. Then there is a spectral 

sequence (see [T], Proposition 8.3) 

(1-3Ì E™ = ®(ao a,N*K-9(Uao n...nUa.)=* N*K-P-JX). 

The ^ 2 - t e r m is the Cech cohomology with coefficients in the presheaf NqK-p, 
H^Gch(U^NtK-p)] the sequence is strongly convergent for finite covers. 

For an A-scheme X , and element / G A, we let Xf denote the open 
subscheme defined by the non-vanishing of / . Let Fx' A.lgA —» Ab be the 
functor 

FX(R) = KP(X ®A R); 

in part icular , we have NqF(R) = NqKp(X ®A R). For / G A, we use the 
nota t ion NqKp(X)[f] for NqFx(A)[f]. 

Lemma 1.2. Let A be a commutative ring, f G A and X an A-scheme. 
Suppose we have a covering of X by affine open subsets UQ = Spec(Aa) such 
that, for each a, either f is a non-zero divisor in Aa, or f is contained in some 
minimal prime ideal of Aa. Then the natural map 

N*Kp(X)[fi - №Kp(Xf) 
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is an isomorphism. 
Proof. Let B be a commutative ring and suppose g 6 B is either a non-zero 
divisor in JB, or is contained in some minimal prime ideal of B. Then Vorst 
([V], Lemma 1.4) has shown that the natural map 

N"Kp{B)[g] - WKp(Bg) 

is an isomorphism (Vorst only proves this for p > 0, but the general result 
follows from this and the fundamental exact sequence (1.2)). The general 
result follows from this and the spectral sequence (1.3). • 
Theorem 1.3. Let A be a commutative ring, X a reduced A-scheme. Sup­
pose we have elements / i , . . . , fn in A generating the unit ideal such that Xf. 
is Kp-regular for each j = 1 , . . . , n. Then X is Kp-regular. 

Proof. Take q > 0. Let F be the functor Nq~1FX- Since X is reduced, the 
scheme X 0A B is reduced for all flat A-algebras B, in particular, for all B 
which are localizations of a polynomial ring -A[T]. By Lemma 1.1 together 
with Lemma 1.2, the map 

N*KP(X) ®]=1NqKp(Xfj) 

is injective. Since each Xf. is A"p-regular, the groups NqKp(Xf. ) are all zero 
for all q > 0, hence NqKp(X) is zero for all q > 0, i.e., X is A"p-regular. • 

Corollary 1.4. Let X be a scheme. If X is Kp-regular, then X is Kp^1-
regular. 
Proof. The exact sequence (1.2) gives the exact sequence: 

№KP(A1X) © WKpiA1*) №Kp(Gmx) -» №KP^(X) -> 0 

for all q > 0. If X is Ap-regular, then is clearly A"p-regular; applying 
Lemma 1.2, with A = Z[t], / = t, we see tha t Gmx is also A^-regular. 
The exact sequence above then shows tha t X is Kp-\-regular, completing the 
proof. • 

We recall tha t the n-cube <n> is the category associated to the set of 
subsets of { l , . . . , n } , ordered under inclusion, i.e., the objects of < n > are 
the subsets / of { 1 , . . . , n } , and there is a unique morphism / — J if 
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and only if I C «7. If C is a category, we have the category of n-cubes in C, 
C ( < n > ) , being the category of functors from < n > to C, e.g., n-cubes of sets, 
schemes, topological spaces, etc. The split n-cube is the category <n>spi, 
got ten by adjoining to < n > morphisms picJ: J ~~> I if I C J , with 

fldlUJ O pJciUJ = />A'C/ ° ^A'C JÎ ^ C / N J 

PlC. J ° PICK = />/CA' 

A functor from <n>spi to C is called a split n-cube, and an extension of 
i71: < n > —> C to i^sp/: <n>sp / —•> C is a splitting of JP. We note tha t sending 
/ to its complement l*c defines isomorphisms < n > —•> <n>op and <n>sp j —• 
< n > ^ ^ ; we often define an n-cube or a split n-cube on the opposite category 
via these isomorphisms; when we wish to maintain the distinction, we will 
refer to an opposite n-cube, or a split opposite n-cube. 

Let X be a scheme, Y a closed subscheme. The double of X along Y, 
D(X; Y), is the scheme making the following square co-Cartesian: 

F À X 
i i I n 
X 3 D(X;Y); 

i.e., D(X; Y) is two copies of X glued along Y. 
If X = Spec(i2) is affine, and Y is defined by an ideal J, then D(X; Y) 

is Spec(D(jR; / ) ) , where D(Rm, I) is the subring of R x R consisting of pairs 
(r, r ' ) with r — r' £ / . If -R is Noetherian, then the i2-submodule D(R; I) of 
i2 x R is thus a finite iZ-module, hence D(R; I) is Noetherian if R is. Sending 
the pair (i?; J ) to the ring D(R; I) is clearly functorial; thus, as every scheme 
has an affine open cover, the double D(X; Y) exists for each scheme X and 
closed subscheme Y. 

We have the map 

p:D(X,Y) -> X 

splitt ing the two inclusions r^X —> D(X;Y). If Z is a closed subscheme of 
X, there is a na tura l identification of D(Z;Y DZ) with p~1(Z); we denote the 
closed subscheme p_1(Z) by D(Z,Y). This allows us to define the i terated 
double Yi, V2) as the double of the D(X; Yi) along p~1(Y2). The further 
i terated double D(X; Y i , . . . , Yn) is defined inductively along these lines: 

D(X; Y1,...,Yn) = D(D(X; Yx,..., F„_i); D(Yn; F l 5 . . . , yn_i)). 

242 



BLOCHS HIGHER CHOW GROUPS REVISITED 

Suppose we have closed subschemes Yi , . . . , Yn of a scheme X . We form 
the opposite n-cube of subschemes of X , (X; Y i , . . . , Yn)*, by 

(X;Yu...,Yn)I = nieIYi 

for each subset i" C { 1 , . . . , n } ; the map 

(X; Yu ..., Yn)! (A"; Y i , . . . , Yn)j 

for J C / is the natura l inclusion. We call the collection of closed subschemes 
Y i , . . . , Yn split if the resulting opposite n-cube is split. We say tha t Y i , . . . , Yn 
define a normal crossing divisor on X if for each subset / of { 1 , . . . , n } , the 
subscheme (X; Y i , . . . , Yn)j is a regular scheme of codimension | / | on X (or is 
empty); we call the resulting divisor Y\ + . . . + Yn a normal crossing divisor. 

Lemma 1.5. Let X be a scheme, Y a closed subscheme. Suppose that the 
inclusion i:Y —+ X is split. Then the sequence 

0 — Ko(D(X;Y))ir^;)Ko(X) 0 K0(xf^K0(Y) - 0 

is exact. 
Proof. For a scheme Z , let IsoVz the set of isomorphism classes in Vz\ we let 
[E] denote the isomorphism class of a locally free sheaf. The category Vo{X\Y) 
is equivalent to the category of triples where E and E' are locally 
free sheaves on X , and </>: i*E i*E* is an isomorphism. Since the inclusion i 
is split, each automorphism p of i*E lifts to an automorphism p of E\ thus the 
isomorphism class of (E,E\$) is independent of the choice of isomorphism 
<f>. Thus , I s o ' P j d ( X ; Y ) *s the set of pairs ([£"], [Ef]) of isomorphism classes of 
locally free sheaves on X , such tha t i*[E] = i*[E']. Using the splitting of i 
again, this implies tha t the sequence 

Z[IsoVd(X;y)] -» Z[IsoVx] 0 Z[lsoVx] -» Z[Iso7V] -> 0 

is exact, and the kernel of the first map is generated by elements of the form 

(1.4) a*?], [e']) - a*?], [e"]) + an [£"]) - an №']). 
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For a scheme Z , let TZz denote the kernel of the surjection 

•Z[IsoVz] -+ K0(Z); 

i.e., lZz is the subgroup of Z[IsoVz] generated by expressions of the form 
[E] - [E'] - \E'% where 0 -> E' -• E -» 0 is exact. Since t is split, the 
sequence 

TlD(X;Y) ^ n x ®1lx -+1IY -+0 

is exact. On the other hand, for elements ( [£ ] , [£ ' ] ) , ( [£ ] , [E"]),([F], [E"]), 
([F], [E1]) in lsoVD{X;Y) we have the relations in K0(D(X; Y)): 

([E],[E']) + aF],[E"}) = ([E ® F],[E'® E"]) 
= ([E ® F],[E" ® E']) 
= ([E],[E"]) + ([F],[E'}). 

Thus , elements of the form ( 1 . 4 ) are contained in T^D{X\Y)\ a diagram chase 
finishes the proof. • 
Theorem 1.6. Let X be a reduced A-scheme, A a commutative ring, and 
let Yi , . . . , Yn be subschemes of X, defining a normal crossing divisor on X. 
Suppose that there are elements / 1 , . . . , / * of A such that the collection of 
closed subschemes Y1 D Xf.,. . . , Yn Pi Xf. of Xfj is split for each j = 1,. . . , k. 
Then the iterated double D(X; Y\,.. . , Yn) is Kp-regular for all p < 0 . 
Proof By Corollary 1.4, we need only consider the case p = 0 . If we replace 
X and Yi,. . . , Yn with and Ay^, . . . , Ayn, the hypotheses of the theorem 
remain valid; thus , we need only show tha t 

iV1/iTo(Z>(X;F1,...,yn)) = 0 . 

We have the na tura l map 

D(X;Yi,...,Yn)-*X; 

which identifies the i terated double Z>(X/; Y i f l X / , . . . , YnC\X f) wi th the local­
ization D(X; Yi , . . . , Yn)f for each / G A By Theorem 1 .3 , and our hypothe­
ses, we may assume tha t the collection of subschemes Yi , . . . , Yn is split. The 
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split, normal crossing hypotheses pass to the collection of closed subschemes 
F i f l Y n , . . . , Yn-i n F „ ; by induction we may assume tha t D(X; Yi , . . . , Y"n_i) 
and D(Yn; Y\ D Y n , . . . , Yn_i fl Yn) are -Ko-regular. Our hypothesis tha t the 
collection of subschemes Y\,... , Yn is split implies tha t the natura l inclusion 

D(Yn;Yi ПУ„ У В _ 1 ПГ„) D(X] l i , . . . , l"n_i 

is split. 
We use the notat ion 

Dn(X;Y*) :=D(X;Yu...,Yn) 
Z>„_i(X, F.) := D(X; Y i , . . . , Yn) 

£>„_i(Fn; Ym n Yn) := Z?(Fn; Yi n F n , . . . , Fn_! n Fn). 

The i terated double Dn(X;Y*) is the same as the double of the scheme 
Dn-i(X\ F*) along the subscheme Z?n_i(Fn; F* D Fn). Thus we have the com­
mutat ive diagram 

0 

K0(Dn(X;Y*)) 
i 

K0(Dn^(X;Y^) 

X o ( f l n - i № i ; ) ) 

^ ( D n - i ^ n n r , , ) ) 

0 

0 

tfo(£>n(A3r;Ak)) 

X o C ^ n - i C A ^ j A ^ ) ) 

tfo(A,-i(A3r;Ai)) 

K o ( £ > n - i ( A ^ n ; A k n y n ) ) 

0 

By Lemma 1.3, the columns above are exact; since the i terated doubles 
Dn-i(X;Y*) and Dn-i(Yn;Y* C\ Yn) are X 0 - regular , and we have na tura l 
isomorphisms 

О п _ а ( А ^ ; А ^ ) A 1 
^ ( X i Y i , . . . , ^ - ! ) 

A * - i ( A ^ ; A ^ N Y J • A D n - i ( y n ; n n y n ) 5 
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the last two horizontal arrows are isomorphisms, hence the first horizontal 
arrow is an isomorphism. Thus N1 KQ(Dn(X\ Y*)) = 0, completing the proof. 

• 
For a scheme X , let KB(X) denote the (possibly non-connective) spec­

t r u m defined by Thomason in ([T], §6) with icn(KB(X)) = Kn(X), for n € Z. 
If X is regular, all negative homotopy groups vanish. We also will consider 
the spect rum KH(X) (defined by Weibel [W] for X affine and extended to 
the case of a scheme by Thomason in [T] §9.11); the n t h homotopy group 
of KH(X) is denoted KHn{X). We recall from [W] and [T] tha t there is a 
na tura l m a p 

KB(X) KH(X). 

There is a spectral sequence (Theorem 1.3 of [W] for X affine, extended to 
the case of a scheme using [T] §9.11) 

(1.5) E™ = N~pK-g(X) =• KH-p-g(X). 

In part icular , if X is Xp-regular for all p < n, then the m a p 

KP(X) -* KHP(X) 

is an isomorphism for all p < n. In addition, the "homotopy iiT-groups of X", 
KHn(X), satisfy: 
KH-1) (Homotopy) the map 

KHn(X) KHn(à}x) 

is an isomorphism. 
KH-2) (Excision) Let ^ : A - ^ B be a map of commutative rings, / an ideal 
of A such that I = <f>(I)B. Then, letting KH{A, I) and KH(B, I) denote the 
respective homotopy fibers of the maps 

KH(A) -+ KH(A/I) 
KH(B) -+ KH(B/I) 

the m a p KH(A, I) —• KH{B, I) induced by <j> is a weak equivalence. 
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KH-3) (Mayer-Vietoris for open subschemes) If X = U U V, with U and V 
open subschemes of X , then 

KH(X) -+ KH(U) x Ä\ff(V) ÜT#(Z7 H V). 

is a homotopy fiber sequence. 
We now recall the definition of relative Üf-theory, using the language of 

n-cubes. 
If X : < n > —» C is an n-cube in C, we form the map of (n — l)-cubes 

X ^ : X + X" 

by taking 

Xf = Xr, XJ = XIU{n};Xf = X(I C / U {n}). 

This determines a functor from the category of n-cubes in C to the category 
of maps of (n — l)-cubes in C. If X : <n> —• Top* is an n-cube of pointed 
spaces, let F ib (X) : <n — 1> —> Top* be the (n — l)-cube defined by setting 
F i b ( X ) / equal to the homotopy fiber of the map 

xt:Xt -* x i -

This gives the functor 

Fib: Top*(<n>) Top*(<n - 1>) ; 

i terating Fib n t imes defines the iterated homotopy fiber functor 

Fibn:Top*(<n>) -> Top*; 

we call F i b n ( X ) the iterated homotopy fiber of X . A similar construction 
defines the i terated homotopy fiber of an n-cube of spectra. 
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Let X be a scheme, and Y i , . . . , Y n subschemes. Applying the func­
tor K(-) to the opposite n-cube (X; Y i , . . . , Yn)* gives the n-cube of spaces 
K ( X ; Y 1 , . . . , Y n ) * with 

K(X; Y i , . . . , Yn)j = K(C\ieIYi) 

Let K(X; Y i , . . . , Yn) denote the i terated homotopy fiber over this n-cube 
of spaces. K(X; Yi , . . . , Yn) is a model for the A-theory of X relative to 
Yi , . . . , Yn and the relative AT-groups are given by 

KP(X; YU...,YN) = TTP(K(X; l ' i , . . . , YN)). 

Applying the functors KB(-) and KH(-) to (X; Y i , . . . , Yn)* and taking 
i terated homotopy fibers defines the spectra 

KB(X; YU ..., YN) and ÜTi^X; YU..., YN); 

denote the nth homotopy groups, n € Z, by 

i f f (X ; Y i , . . . , YN) and K # n ( X ; YU ..., Fn), 

respectively. If Y" := Y\ + ... + YN is a normal crossing divisor, we often write 
K(X; y ) , KB(X; Y) and KH(X; Y) for 

K(XFi , . . . , YN), KB(X; Y1,..., YN) and KH(X; Y1,..., Fn), 

respectively. 
We have the natura l map 

KB(X; F a , . . . , YN) - KH(Xi Y 1 , Y i , . . . , YN) 

and a na tura l isomorphism 

K N ( X : Y L Ì . . . , Y N ) - + K ? ( X ; Y U . . . Ì Y N ) K H 
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for n > 0. If all the subschemes Yj := H^/Y^ are regular, then 

KB(X; Y i , . . . , yn) — KH(X; Y1,...,Yn) 

is a weak equivalence. 
Let D = D(X; Y i , . . . , Yn), with X reduced. As a topological space, D is 

quotient of the disjoint union of 2n copies of X: 

D 

/€<n> 
x/ = 

where x in the copy of X indexed by I is identified with x in the copy of X 
indexed by J if I D J and x is in Y / \ j . We denote the copy of X indexed 
by / C { l , . . . , n } by X j , and let ij:Xj —* D denote the inclusion. Let 
Z>i,. . . , Dn be the reduced closed subschemes of Z), 

Dj = Uj with jeiXi 

Then i^(Dj) = Yj (scheme-theoretically) for each j = 1, . . . , n, so the inclusion 
¿0 defines the maps 

i*9:K(D; Du...,Dn)^ K(X; Yu...,Yn) 

. J : KB(D; D1,.. ., Dn) — Ä"B(X; F i , . . . , Fn) 

t j : £>i , . . . , .Dn) A'iJ(X; Yu . .., Yn) 

If is a closed subscheme of X , the i terated double 

D(Z; Yi n Z , . . . , r „ fl Z) 

is natural ly a closed subscheme of D; we denote this closed subscheme of D 
by P ( Z ; F i , . . . , F n ) . 
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Lemma 1.8. Let Z be a scheme, W\,..., Wn closed subschemes. Then the 
map 

KH(D(Z; Wn); D(Wi; Wn),..., D(Wn-i\ Wn), Z>i) 

ÌÌKH(Z;W1,...,Wn) 

is a weak equivalence. 

Proof. We may suppose Z is affine; the general case follows by taking an 
affine open cover of Z , noting tha t D(Z\ Wn) is a finite Z-scheme, and using 
Mayer-Vietoris (KH-3) for the resulting open covers of Z and D(Z; Wn). 

The spectra 

KH(D(Z; Wn); D{W1; Wn), • • •, D ( ^ „ - i ! Wn), Dt) 

and 

KH(Z;Wu...,Wn) 

are the i terated homotopy fibers over the n-cubes of spectra: 

/ ^ KH(D(Z; Wn); £>(Wl5 Wn), • • •, D(Wn-i;Wn), £>i)/ 

I » KH(Z;Wi,...,Wn)i 

The m a p ¿0 thus gives the map of n-cubes of spectra 

KH(D(Z; W); D(Wi; Wn),..., D(Wn-i; Wn), 

^KH(Z;W1,...,Wn), 

whence the commutative square of (n — l)-cubes 

(1.6) 
KH(D(Z; W); D^Wr, Wn),..., D(Wn-i; W„), D1)t 

KH(Z; Wi,..., Wn)j 

KH(D(Z; W); D{W1; W „ ) , . . . , D(Wn-i; W„), r> i )7 

KH(Z;Wu...,Wn)-. 
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For each I C { 1 , . . . ,n — 1}, we have 

(£>(Wi; Wn),..., D(Wn-i;Wn), -Di)/ = Z>(W>; Wn) 
(Z>(Wi; W„), - . . , D(W„_i; £>i)/u{n} = Z>(W>; Wn) n P i 

Taking * = J i n ( 1 . 6 ) thus gives the commutative square 

(1.7) 
KH(D(Wj;Wn)) KH(WT) 

KH(D(WI;Wn)DD1) KH(Wj n Wn). 

Since Z is affine, so are Wj and Wn; thus, (1.7) is gotten by applying the 
functor KH to the diagram of rings 

D(R; I) Q R 
Pi i i P 

R A R/I 

Here, Wj = Spec(i2), and the subscheme Wj fl Wn of Wj is defined by the 
ideal I; the maps po and p\ are the maps 

Po(r, r') = r; p i ( r , r') = r' , 

and p: R —> is the quotient map. Since pi is surjective with kernel (7, 0), 
we may apply excision to the square (1.7), and conclude tha t the induced map 

(1-8)/ KH(D{Wr, Wn)\ WT) KH(WT- Wj n Wn) 

is a weak equivalence. As the i terated homotopy fiber over an n-cube of 
spectra X is formed by first taking the (n — l ) -cube of homotopy fibers Fih(X) 
of the map X^: X + —> X - , and then taking the i terated homotopy fiber over 
the (n — l)-cube F ib (X) , the weak equivalences (1.8)/ for J C { 1 , . . . , n — 1}, 
together with the Quetzalcoatl lemma, imply that ijj is a weak equivalence, 
as desired. • 
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Proposition 1.9. Let X be a scheme, Y i , . . . , Yn closed subschemes. Then 
the map 

. J : KH(D(X; Yu ..., Yn); Du ..., Dn) -* KH(X; Y1,...,Yn) 

is a weak equivalence. 
Proof. Repeatedly applying Lemma 1.8, we have the weak equivalences 

KH(D(X- Y a , . . . , Yn); £ > i , . . . , £>„) 
-> KH{D{X- Yr,..., Yn-г); D i , . . . , - D n - i , D( Y„; F x , . . . , F n _ a ) ) 

-+KH(X;Yu...9Yn). 

This proves the result. • 

Theorem 1.10. Let X be a scheme, Y i , . . . , Yn closed subschemes. Suppose 
that 

i) For each Id { 1 , . . . , n} the scheme Yj is regular. 
ii) The iterated double D(X] Yi, . . . , Yn) is K ^-regular. 

Then the map 

i;:KB(D(X]Ylì...,Yn);D1,...ìDn)^KB(X;Y1,...,Yn) 

is an isomorphism. If m > 0, then the map 

i;:Km(D(X;Yu...,YnyiDlj...,Dn) -+ Km(X; Y i , . . . , Yn) 

is an isomorphism. 

Proof. Under the assumption (i), the map 

KB(Yj) - KH(YT) 
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is a weak equivalence for each J c { l , . . . , n } . Thus, the natura l map 

KB(X; Yx,..., Yn) - KH(X- Yli...,Yn) 

is a weak equivalence. Under the assumption of Km-regularity, it follows from 
Corollary 1.4 and the spectral sequence (1.5) tha t the natura l map 

KB(D(X; Y i , . . . , r n ) ) KHm(D(X; Y1? . . . , Yn)) 

is an isomorphism. 
The opposite n-cube of schemes 

D(X;Y1,...,Yn);D1,...,Dn)* 

is split; thus there are natural projections 

KB(D(X; F i , . . . , Yn)) - KB(D(X; Yu ... ,Yn); Du ..., Dn) 
KHm(D(X; F i , . . . , Yn)) -> KHm(D(X; Yu ... ,Yn); Du ..., Dn) 

making the diagram 

KB(D(X;Yu...,Yn)) KB(D(X-Yu...,Yn);Du...,Dn) 

KHm(D(X;Yx,...,Yn)) KHm(D(X; F i , . . . , Y„); D i , . . . , Dn) 

commute. Thus , the natura l map 

Kn\(D(X-Y1,...,Yn);D1,...,Dn)^KHrn(D(X;Y1,...,Yn);D1,...,Dn) 

is an isomorphism as well. From the commutative diagram 

KB(D(X;Yu...,Yn);Du...,Dn) -> KB(X; Yu ... ,Fn) 
I I 

KHrn(D(X;Yu...,Yn);D1,...,Dn) -> KHm(X; Y l t . . . , Yn) 
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we see tha t 

K*(D(XiY1,...,Yn);D1,...,Dn)^K%(X;Y1,...,Yn) 

is an isomorphism, completing the proof of the first assertion. The second 
follows from the fact tha t 

K*(D(X;Yu...ìYny,D1,...ìDn) Km(D(X;Y1,...,Yn);D1,...,Dn) 

K%(X;Yu...,Yn) K%(X;Yu...,Yn) 

for all m > 0. • 

The results of this section fit together to give an explicit description 
of certain relative K$ groups, in the following form. Let X be a scheme, 
Yi,. . . , Yn closed subschemes; let 

if. Yj - > X , i)tk: Yjtk - Yj, Yj,k - Yk 

be the inclusions. Let Vx\Yx,...,Yn be the following category: The objects are 
pairs (£?*, "0*,*)? where E* is a map from the set of subsets of { 1 , . . . , n} to 
the objects of Vx, 

I Et e Vx, 

and is a collection of isomorphisms 

^ : д а ) - . « ; ( £ | ; и { Л ) 

such tha t ifiij = id if j G / , and 

ij*k№lu{j},k) ij*k№l,j) i)*k(*f>lu{h}j) o i2j*k(i/>i,k). 

for I C {1, . . . , n} and j , k € { 1 , . .. , n}. A map 

/ * : 0*,*) —• (F*, 0*,*) 

254 



BLOCHS HIGHER CHOW GROUPS REVISITED 

in /Px;Yi, . . . ,yn is a collection of maps 

//: ET FT 

in Vx, with 

»¿(//u{,-}) ° Фи = Фoi](fi) 
A sequence 

О - > (Е.,фт,т)' -* (Е.,ф*,.) - > (Ет,ф*,*)" - > О 

is exact if the sequence 

0 -* -> Ei -+ E'{ -» 0 

is exact for each I C { 1 , . . . , n } . We have the functors 

Sj:Vx;YL9...TYN 'Px;YLL...,YN 

defined by 

6j(E+,rl>m9*) =SjiE^Sjty*,*)), 

with 

Öj(E+)l = £A{j},¿j(^*,*)j,fc 
*l>I\{j},k if k ^ j 
id if k = j . 

We have the commuting projections 

6j(E+,rl>m9*) = (SjiE^Sjty*,*)),(^*,*)j,fc 

j = 1 , . . . , n, defined by 

Pj((E*, V>.,*)) = (E*, V>*,*) - Sj((E*, Ф*,*))-
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Let 

p:üfo(^x;y1>. . .>y„) - > tfo(Px;Y1,...,yn) 

be the composition 

P = Pn ° Pn-1 ° . . . o p i . 

Corollary 1.11. Let X be a regular A-scheme, Y i , . . . , Yn closed subschemes. 
Suppose 

i) The closed subschemes Yj are regular for each J c { l , . . . , n } . 
ii) There are elements / 1 , . . . , / * of A, generating the unit ideal, such that 

the opposite n-cube of schemes (Xf; Yi D Xf,.. . , Yn D X / ) * is split, for 
f = fi >•••?/ = fk • 
Then there is a natural isomorphism 

K0{X;Y^..., Yn) - piK0(VXIYL,...,YN)) 

Proof. Let T denote the i terated double D(X; Y i , . . . , Yn). We have the ob­
vious equivalence of exact categories 

P = Pn ° Pn-1 ° 

giving the isomorphism 

*:K0CPX;Yl,_Yn)^K0(T) 

The isomorphism \& then induces a natura l isomorphism 

*:p(K0(Vx;YL9...9YN)) Ko(T; D1,..., Dn). 

By Theorem 1.6 and Theorem 1.10, the natura l map 

K0(T; Dx,..., Dn) - > Ko(X; Yu...,Yn) 

is an isomorphism, completing the proof. 
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§2 Relative cycles and relative K0 
We use Bloch's idea of a relative cycle to give a cycle-theoretic interpre­

ta t ion of the relative K0. We start with a discussion of relative iiT-theory with 
supports , and the functorial A-operations on these groups. 

If X = Spec(i?) is an affine scheme, Hiller [H] and Kratzer [K] have 
defined A-operations XK: KP(X) —• KV(X), satisfying the special A-ring iden­
tities, by giving maps 

\kn:BGLn{X)+ -> BGL(X)+ 

which are stable, up to homotopy, in n. 
Let F be a scheme, and U an open subscheme; let Z be the complement 

Y\U. Define the space KZ(Y) as the homotopy fiber of the restriction map 
K(Y) —• K(U). Similarly, if we have closed subschemes D\,... Dn of Y, 
define KZ(Y; D1,. .., Dn) as the homotopy fiber of the restriction map 

K(Y; D i , . . . , D n ) ^ K(U; U D Dx, -. -, U D Dn). 

The group 

K}{Y) := *,{KZ{Y)) 

is the p th iiT-group of Y with supports along Z; the group 

K?(Y; DU...,DN):= TP(KZ(Y; DU..., DN)) 

is the pth K-group of Y with supports along Z , relative to Z ? i , . . . , Dn. 
Suppose tha t X is a regular scheme over a field. Then, following Gillet 

[G], we have the following sheaf-theoretic description of KP(X). Form the 
sheaf Kx of simplicial sets on X associated to the pre-sheaf 

V I—* BGL(T(V, CV))+ x z. 

Then there is a natura l isomorphism KP(X) —> W~P(X, K,x)> We have as well 
the sheaves of simplicial sets /Cx,n gotten by using BGL+ instead of BGL+; 
the stability results of Suslin [S] show tha t , for fixed p, H~P(X, K,x,n) — 
KP(X) for all n sufficiently large. 
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Soule [So] has given A-operations on the sheaf level, A*:/Cx,n —• fc>x, 
which satisfy the special A-ring identities in the closed model category of 
simplicial sheaves on the big Zariski site over X , and are stable, in the model 
category, in n. This then gives functorial A-operations \ k on the groups 
Kp(X), satisfying the special A-ring identities. These operations agree with 
the A-operations of Hiller and Kratzer on Kp(X) when X is affine. 

Grayson [Grl] has another approach to the construction of A-operations, 
which gives functorial operations for an arbitrary scheme, and agrees with 
the operat ions of Soule or with those of Hiller-Kratzer when defined. It is not 
known, however, whether Grayson's A-operations satisfy the special A-ring 
identities. We now give a brief sketch of Grayson's construction. 

If V is an exact category, Grayson and Gillet [GG] have constructed a 
functorial simplicial set GGiV) whose geometric realization is natural ly ho­
motopy equivalent to Q,BQV. Grayson constructs the A-operation A* as a 
simplicial m a p from a certain subdivision of GGiV) to a certain other sub­
division. This gives the operation Xk on the geometric realization of C?G('P), 
functorial in the category V. Grayson has shown tha t these operations agree 
with those defined by Hiller and Kratzer in the case V = Vx for X affine; 
this implies tha t they agree with the operations of Soule in the regular case. 
In any case, we may apply the construction of Grayson to any i terated ho­
motopy fiber as above, giving functorial A-operations on the relative groups 
with supports Kp(X; Z? i , . . . , Dn) , which agree with the operations defined 
by Hiller-Kratzer or Soule, when the lat ter operations are defined. Grayson's 
A-operations also agree with the classical A-operations on the Grothendieck 
group KoCPx)- Since Grayson's operations are functorial, they defines func­
torial Adams operations i/>k on K^{X\ T>\,. . . , -Dn), al though the s tandard 
propert ies of the Adams operations are only known in the cases discussed by 
Hiller-Kratzer, Soule, or for K0(X). Additionally, Grayson [Gr2] has defined 
a delooping of ij>k\ in particular, the operations i}>k on A^f (X ; Z?i,. . . , Dn) are 
group homomorphisms for all p > 0. 

We fix an integer k > 1, and let K%(X; D1,. . . , £>n)(g) denote the kq-
characteristic subspace of i^k acting on Kp{X\ D\,. . . , DU)Q; i.e., the set of 
v e K%(X\ D1,..., Dn)Q such tha t 

- kq -id)N(v) = 0 

for some N > 0. 
Lemma 2.1. If X is regular and D1 + ... + Dn is a normal crossing divisor, 
we have the functorial finite direct sum decomposition 

RZ(X; DU ..., DN)Q = ®qK?(X; DU ..., Dn)<*>, 
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In addition, there is an integer N such that KZ(X; D1,... , Dn)(<7) is the 
subspace for which (i/)k — kq - id)N = 0. 

Proof Let V be a Q-vector spaces with an endomorphism L, and suppose we 
have an L-stable flag 

0 = V0CV1C.CVn = V 

in V. Suppose further tha t each quotient Wi := Vi/Vi-i breaks up into a 
finite direct sum of subspaces 

Wi = ®qwlq\ 

where L acts on by multiplication by kq. Then one easily sees tha t V 
is a finite direct sum of subspaces V^q\ where is the subspace of V on 
which (L — kq • id)n = 0. Thus the finite direct sum decomposition 

V = ®qV^q) 

is functorial on the full subcategory of the category of Q[L]-modules consisting 
of those -modules with finite filtration as above. 

By considering the various long exact localization and relativization se­
quences associated with Z, X and D-±,. .. , DN, we see tha t each relative K-
group with supports KZ(X; D 1 , . . . , DU)Q has a t/>*-stable filtration with suc­
cessive quotients being ^ - s u b q u o t i e n t s of V^-niodules of the form Kq(Y)Q, 
where Y is a regular scheme. Thus, the considerations of the previous para­
graph prove the lemma. • 

In the general setting, we have only the functorial subspaces 

K*(X; £ > ! , . . . , £>„)(î) C K*(X; DU..., DN)Q. 

Let X be a regular ^-scheme, and s a finite set of closed subsets of X 
with X G 5 . Let Zd(X) denote the group of codimension d cycles on X , 
Zg(X) the subgroup of Zd(X) consisting of cycles which intersect S properly 
for each S € $• We will always assume tha t X is in s, if s = { X } , we 
note t ha t Zf(X) = Zd(X). If D \ , . . . , DN are distinct locally principal closed 
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subschemes of X , and 7 is a subset of { 1 , . . . , n } , let Dj = Di^jDi. Let D be 
the divisor Dx + . .. + Dn, let s(D) = {Dj \ I C { 1 , . . . , n } } , and s(D) n s the 
set of closed subsets Dj Pi 5 , for I C { 1 , . . . , n) and S 6 s. Let Zd(X; D) be 
the subgroup of -2^(£>)na(-X") consisting of cycles Z with Z • D = 0; we often 
write Zd(X]D) for Zdx^(X; D). Bloch [B] has defined a homomorphism 

cycd:Zt(X;D)^K0(X;D)(d\ 

which now describe. 
If W is a closed subset of X , let Zd(X\ D)w denote the subgroup of 

Zd(X\ D) consisting of cycles supported on W. 
If W C T are closed subsets of X , let 

iw,T*: К?(Х; D)™ - КТ(Х; D)™ 

be the na tura l map . Similarly, suppose we have W C Y C X , where Y is 
a regular closed subscheme of X , of pure codimension c, with Y intersecting 
each Dj properly. The natura l maps 

K(Y fi £>/) -> KYnDl(DT); K(Y n DAW) KrnjD/ \^(D/ \w; 

followed by the natura l maps 

KYnDl(D!) K(D1); # y n D / W ( D A W ) -> AX-DAW) 

defines the m a p 

p^x: KW(Y; Y (~) D) —> KW(X; D). 

Composing PY^X w ^ h the inclusion 

K™(Y; Y H £>)<*"c> -> F n D)Q 
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and the projection 

K ^ ( X ; D ) Q ^ K ^ ( X ; D ) ( Q ) 

defines the map 

PYCX-K™(Yi y n L>)(g"c) -» A ^ ( X ; £>)<*>. 

Similarly, the inclusions W C T and Y" C X induce the maps 

iw,T*: Zd(X; D)w - > i ^ ( X ; £>)T; pWrX:Z
d-c(Y;Yí]D)w Zd(X;D)w. 

Lemma 2.2. Let W be a pure codimension d closed subset of X, such that 
each irreducible component of W intersects each Dj properly. Then 

i) There is an isomorphism 

cycw:Zd(X;D)^-,K^(X;Dr\ 

functorial for pull-back by Hat maps X' —*• X. 
ii) If W is another pure codimension d closed subset of X with W C W, 

and Z is in ZD(X; D)%, then 

iw,w*(cycw{Z)) = cycw\Z). 

iii) Suppose W C Y C X, where Y is a regular codimension c closed sub-
scheme of X such that Y intersects each Dj properly. Then the diagram 

Zd-c(Y;DnY)$ Cî^ K^(Y: D П y ) ( d - c > 
PYCXI lP?cx 

Zd(X;D)$ 
W 

cyc^ I<W(X;D)W 

commutes. 
Proof, (following Bloch) We have D = D\ + . .. + Dn, with each Dj regular. 
We first show, by induction on n, tha t 

(2.1) K™(X; D)(6> = 0 ; for a > 0, b < d. 
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Suppose first tha t n = d = 0; we may then suppose W = X. If F is a field, 
Soulé [So] has shown tha t 

(2.2) Ka(F)(g) = 0 for 8 > 0, q < 0. 

Let _X"P denote the set of codimension p points of X. Since X is regular over 
a field, we have the Quillen spectral sequence 

(2.3) E?'9 = ®xex>K-a(k(x)YB-*> =*• K-n-„(Xyb> 

By (2.2), this proves (2.1) for n = 0, W = X. Now suppose W is regular of 
codimension d. By the Riemann-Roch theorem [G], the map 

(2.4) E?'9 = ®xex>K-a(k(x)YB-(A+D) 

is an isomorphism. This proves (2.1) in this case. If W is an arbi t rary closed 
subset of X of pure codimension d, let Wf be a closed subset of W such tha t 
W\W' is regular, and W has pure codimension d+1. By downward induction 
on d (s tar t ing with d = d im(X) + 1) we may assume tha t (2.1) is t rue for W . 
Then (2.1) for W follows from the exact localization sequence 

E?'9 = ®xex>K-a(k(x)YB-*> =*• K-n-„(Xyb> 

This completes the proof of (2.1) for n = 0. The general case follows by 
induction and the exact relativization sequence 

KwnD„ (Dn5 Dn n o i , . . . , Dn H D1-1)<6> -> A ^ ( X , £ > ! , . . . , L>n)(b) 

tfe

W(X, £ > ! , . . . , £>»_!)<*> 

We now prove the statement of the lemma, proceeding by induction on 
n. For n = 0, we use (2.4) to give the isomorphism 

(2.5) p%cX:K0(W)(°^K™(XYd\ 
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in case W is regular. Using the spectral sequence (2.3) (with X = W ) , we see 
tha t the restriction map 

(2.6) K0(WY°> — K0(k(W)Y°> 

is an isomorphism. As Ko(k(W))(°^ = Ko(k(W))Q is the Q-vector space 
on the irreducible components of W, the inverse of the isomorphism (2.6) 
composed with the isomorphism (2.5) defines the isomorphism 

cycw:Z°(W)Q-+ K™(X)W. 

If W is an arbitrary closed subset of codimension g?, let W C W be a closed 
subset of codimension d + 1 on X such that W \ W is regular. Then the 
spectral sequence (2.3) implies the map 

K™{X)W K ^ W ' ( X \ W ' ) W ( X \ W ' ) 

is an isomorphism. As Z°(W) —• i ? ° ( W \ W ' ) is also an isomorphism, the 
map cycw\w induces the isomorphism 

cycw:Z\W)Q^K™{Xyd\ 

in this case as well. Let T D W be a closed subset of X , of pure codimension 
d The compatibility 

(2.7) IW,T* ° = CÎ/C O lw,T* 

is obvious if W is a connected component of T; in general, we may remove a 
closed subset of T of codimension d + 1 on X to reduce the proof of (2.7) to 
this case. 

If Y is a regular closed codimension c subset of X , and W C Y C X 
is a regular closed codimension d closed subset of X , we have the homotopy 
commutative diagram 

K(W) KW(Y) 

KW(X) 
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This gives the compatibility 

(2.8) w w w w 
PYCX ° CVC = CVC ° PYCX 

in this case; for W an arbitrary closed codimension d closed subset, the com­
patibili ty (2.8) follows by localization as above. 

In addition, Serre's intersection multiplicity formula shows tha t , for A a 
closed regular subscheme of X, intersecting each component of W properly, 
we have the commutative digram 

Zd(X)W eye™ K(w (X) (d) 
•A i гА 

Zd(X)W eye K(w (X) (d) 

For gênerai n, we have the divisor (D — Dn) • Dn on Dn. We have the 
long exact relativization séquence 

K™(X; D - Dn)W -, K™nD»(Dn; (D - Dn) • Dn)^. 

K™(X; D - Dn)W - , K™nD»(Dn; (D - Dn) • Dn)^. 

Since K^VnD"(Dn; (D — Dn) • Dn)^ — 0, we have the exact sequence 

0 - K™(X; D)W - K™(X, D - Dn)™ - K™nD» ( D B ; (D - Dn) • Dn)™. 

This in turn gives the commutative ladder with exact columns 

о 

K™(X;D-Dn) 

K™(X;D-Dn)W 

Un 
Zd(Dn;(D-Dn)-Dn)™nD" 

0 

w 
cyc 

XV 
cyc 

XV 
cyc 

0 

K™(X;D-Dn) 

K™(X;D-Dn)W 

K™nD"(Dn;(D-Dn)-Dn)(dh 

0 
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The lemma now follows by induction and the five lemma. • 

Let s be a finite set of closed subsets of X , with X G s. Let Kd(X; D)id^ 
denote the direct limit of the groups K^(X] D)^d\ as W ranges over pure 
codimension d closed subsets of X which intersect each Dj properly and 
intersect each Dj D S properly for each S G s. From Lemma 2.2, we have the 
isomorphism 

cycd: Zd(X; D)Q -+ Kd(X; D)id\ 

We now investigate the natural map Kd(X] D)(sd) -> K0(X; D)(d\ 
Theorem 2.3. Suppose X is a regular, quasi-projective scheme over a field k, 
and the divisor D = Y1 +.. .-\-Yn is a normal crossing divisor. Supppose further 
that X is an A-scheme for some ring A, and there are elements / 1 , . . . , fn of A, 
generating the unit ideal, such that, for each f = fi, the collection of closed 
subschemes Y i / , . . . , Ynf of Xf is split. Let s be a finite collection of closed 
subsets of X. Then the map 

cycd: Zd(X; D)Q -+ Kd(X; D)id\ 

is surjective. 
Proof. Let G denote the Galois group of k over k. Then 

(K*(X-k; D-k)W)G = K*(X; D)™ 
(K0(X-k;D-k)W)G = K0(X;D)<*>, 

so we may assume tha t k is infinite. We may also suppose tha t X is irreducible. 
Let T be the i terated double 

T:=D(X;Y1,...,Yn) 

We recall tha t T has 2n irreducible components, each isomorphic to X ; as in 
section 1, we index the components of T by the subsets / of { 1 , . . . , n } , and 
let T i , . . . , Tn denote the closed subschemes 

Tj — U j with jeiXi. 
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Via this indexing we have the inclusion ¿0: X —» T, and we have 

i%{Tj) = Yj, j = l , . . . , n . 

By Theorem 1.6 and Theorem 1.10, the map 

i$: X0(T; Tu . . . , Tn) - ^ ( X ; Y l5 . . . , Yn) 

is an isomorphism. The map ¿0 is therefore an isomorphism of wk-modules. 
The group ( Z / 2 ) n acts on T: for each i — 1 , . . . , n , we may view T as the 

double 

(2.9) T - D ( D ( X ; y a , . . . , Yit..., Yn); DCY* Y1,..., Yit..., Yn)) 

We then have the involution 

Ti-.T-*T 

gotten by exchanging the two copies of D(X; Yi, . . . , Yi,. . . , Yn) in the above 
representation of T. Similarly, the representation (2.9) of T defines the zth 
inclusion 

ii:D(X;Yr,...,Yi,...,Yn)->T 

identifying D(X; Y\,.. . , YJ,.. . , Yn) with Ti, and also defines the zth projec­
tion 

7r»: T —• D(X; Y i , . . . , Y j , . . . , Yn) 

The inclusion 

KQ(T;Tu...,Tn)^ K0(T) 

is then split by the projection operator 

O 
n 

i—\ 

( i d - < o t ? ) . 
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Similarly, if W is a closed subset of T, invariant under the automorphisms r;, 
we have the splitting of the map 

K™(T;T1,...,Tn)-+K?(T), 

with splitting crw defined by the same formula as above i.e., we have the 
commutative diagram 

w 

Kw{T) % K™(T;Tu...,Tn) 
i i 

KP(T) ^ K0(T;Tu...,Tn). 

By Grothendieck [Gro], Kq(T) is a special A-ring; as Ko(T; T i , . . . , TN) is 
a A-summand of K0(T), it follows tha t Kq(T', T i , . . . , TN) is a special A-ring 
(without identity) as well. 

We recall the result of Fulton [F]: Let Z be a quasi-projective scheme over 
a field and let r\ be an element of K${Z). Then there is a map f:Z—* H, 
where H is a homogeneous space for GLn/k, for some n, H is proper over 
Spec(&), and there is an element p of Kq{H) with f*(p) = rj. 

Let then rj be an element of K0(T; Tu . . . , Tn)<d> = K0(X; Yi , . . . , YN)(D)• 
Consider 77 as an element of K0(T)^DK Take f:Y —+ H and p £ K0(H)Q as 
above, so tha t f*(p) = 77 in K0(T)(D\ We may project p to 6 K0(H)W; 
since iiToC^1; T i , . . . , Tn) is a special A-ring, the projection on this subspace is 
thus functorial, and we have 

/ V d ) ) = > 7 -

On the other hand, using the Riemann-Roch theorem on the smooth 
variety H, there is a pure codimension d closed subset Z of H and an element 
X of Kg(H) with image p^ in K0(H)Q. 

For S e s, let T(S) denote the subscheme D ( 5 , Y i , . . . , YN) of T. We 
now apply the tranversality result of Kleiman [Kl], which states tha t there 
is an element g of GLn(k) such tha t f~x(gZ) is pure codimension d on T 
and intersects X/t Pi . . . Pi Xjt f l T ( 5 ) of T properly, for each collection of 
indices / 1 , . . . , It, Ij C { 1 , . . . , n } , and each closed subset S € s. Additionally, 
GLn(k) acts trivially on Kq(H), SO we may assume g = id, after changing 
notat ion. Let W be a pure codimension d closed subset of T containing 
f~1(Z), intersecting each Xjx D . . . C\Xjt Pi T(S) properly and invariant under 
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all the Ti, i = 1 , . . . , n. Let 7 be the element <r(f*(x)) of K^(T). Then 7 is in 
K^(T; T i , - - . , T„) and has image r? in K0(T; Tu . .., T„)Q. Let W = i%(W) 
and let /3 = ¿5(7), 

ßeK™'(X;Yu...,Yn). 

Then /3 goes to 77 in i ^ o C ^ " ; ^ 1 , • • • ? 5^)Q- By Lemma 2.1, we have the functorial 
finite direct sum decomposition 

K™'(X; D) = ®qK™'{X- D)l*\ 

Let a be the projection of /3 to the factor (X; D)^; then a has image 77 
in KQ(X; D)Q, proving the theorem. • 

Let 

eye: Zd(X; D)Q -, K0(X; 

be the composition of the map 

eycd: Zd(X; D)Q - , ütf (X; D)^ 

and the na tura l map 

Kd(X;D)(D) Kd(X;D)(D). 

Corollary 2.4. Suppose X is a regular, quasi-projective scheme over an 
infinite field, and the divisor D = D1 + . . . + Z>n is a normal crossing divisor. 
Suppose further that X is an A-scheme for some commutative ring A, and 
there are elements fi,..., fn of A, generating the unit ideal, such that, for 
each f = fi, the collection of closed subschemes D\/,..., Dnf of Xf is split. 
Let s be a finite collection of closed subsets of X. Then the map 

eye: Zd(X; D)Q -, K0(X; 

is surjective. 

Proof This follows directly from Lemma 2.2 and Theorem 2.3. 

268 



BLOCHS HIGHER CHOW GROUPS REVISITED 

We now investigate the kernel of the map eye. For a set s of closed subsets 
of X , let s x A1 denote the set of closed subsets S x A1 of X x A1 with S € s. 
We have the group ZfxA1(X x A 1 ; Z ) x A 1 + X x l ) and the subgroup 

^ x o u . x A ! ^ x A1 ; Z> x A1 + X x 1) c ^ x A i ( X x A1; D x A1 + X x 1) 

consisting of cycles which intersect X x 0 properly. This gives the map 

^ r x o u . x A * (X x A1; D x A1 + X x 1) - Zsd(X; £>) 

by identifying X with X x 0 and intersecting a cycle in Zd(X x A1; £> x A1 + 
X x 1) with X x 0. We let CHf (X; D) denote the quotient group 

^ ( X ; ö ) / I m ( ^ x 0 U 5 x A 1 ( X x A1; D x A1 + X x 1)). 

Lemma 2.5. The map 

eye: Zd(X; D)Q i*r0(X; £>)<<*> 

descends to a m a p 

eye: CHf (X; D)Q tfopf; 

Proof. We have the commutative diagram 

Z^X0(X x A1; D x A1 + X x 1)Q ( ^ 0 ) Zd(X; D)Q 
eye i I eye 

K0(X x A1; D x A1 + X x l)<d) '^5° K0(X; D)(d\ 

We have as well the exact relativization sequence 

• KP+1(X x Ax;£> x A1) - • x l ; D x l ) 

^ ( X x A1; D x A1 + X x 1) -> u f / X x A1; D x A1) 

-»• Äp(X x 1; D x 1) -> . . . ; 
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since the maps 

KP(X x A1; D x A1) -> KP(X x 1; D x 1) 

are all isomorphisms by the homotopy property for the A"-groups of regular 
schemes, the groups 

KP(X x A1;!? x A1 +X x 1) 

are all zero. Thus the composition 

c y c o ( - . I x 0):ZdXx0(X x a 1 ; x a 1 + x x 1)q —• a t0№z>) (d ) 

is the zero map , proving the lemma. • 
Let U be an open subset of X , W the complement X\U, Djj t he divisor 

D CiU'. Using the model BQP- for fì_1AT(—), we form the spaces 

O"1 A ( X x a 1 ; D x a 1 + X x 1 + X x 0), 

ft^A^X x a 1 ; Z) x a 1 + X x 1 + [7 x 0), 

n~xKw(X;D) 
and 

С1-гК(и;Ои)-

U x 0 is not closed, but we define 0 _ 1 K ( X x A 1 , £ > x A 1 + X x l + 1 7 x 0 ) 
as the homotopy fiber of the map 

QTXK{X x a 1 , D x a 1 + X x 1) —• Çl^KiJJ xO,DV x 0) 

By the Quetzalcoatl lemma, the homotopy fiber of the map 

Q^KiX x A \ D x a 1 + X x 1 + X x 0) 

ft-^X x a 1 ; D x a 1 + X x 1 + U x 0) 
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is the homotopy fiber of * ft"1 KW(X; D), i.e., KW(X;D). This gives us 
the homotopy commutative diagram 

(2.10) 

KW(X;D) = KW(X;D) 
i I 

K(X;D) Ü~XK(X x A 1 ; £ ) x A 1 + X x l + X x O ) 

K(U;Du) -»• Jif(X x A 1 ; Z > x A 1 + X x l + Z7xO) 

where the columns are homotopy fiber sequences. 
Let 

E = D1 x A 1 + . . . + D n x A 1 + X x l + X x O . 

Let T be a closed subset of X x A1 such tha t T intersects each Ej properly, 
let W x O = T n X x O and let U = X\W. Since T n U x 0 = 0, we have a 
canonical lifting of the map 

Q _ 1 K T ( X x A1; -D x A1 + X x 1) —> 0 _ 1 K ( X x A ^ D x A1 + X x 1) 

to a m a p 

</>: ^ _ 1 K T ( X x A1; D x A1 + X x l ) - » ß ^ X p r x A1; D x A1 + X x 1 + U x 0). 

Additionally, the space Q 1K(X x A1; D x A1 +X x 1) is contractible, hence 
the horizontal arrows in (2.10) are homotopy equivalences. 

Lemma 2.6. Let rj be an element of K^(X x A1; D x A1 + X x 1), and iet 
r £ K\{U; JD) be tJie element going to (f>{rj) under the natural map 

K!(U;D) -+ K0(X x A1; D x A1 + X x 1 + U x 0) 

given by the diagram (2.10). Let 6: KX(U, Dv) K^(X] D) be the boundary 
map in the long exact localization sequence 

KriU, Du) - i C ( X ; D) - K0(X; D) - K0(U; Du), 
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and let 

il: K0T(X x A1; D x A1 + X x 1) -> K^(X; D) 

denote the pullback by the zero-section io-X —> X x A1. Then 

6(r) = ifa). 

Proof. Let 

T r ^ O " 1 K ( X x A1; D x A1 + X x 1 + U x 0)) A ^ ( X ; Z>) 

be the boundary map coming from the second column in (2.10). Then 6(r) = 
6'(4>(ri)), by the homotopy commutativity of (2.10). The relevant relativiza-
tion sequences gives the homotopy commutative ladder 

(2.11) 
KW(X,D) KW(X, D) 

n-1 KT(X x A1; D x A1 + X x 1 + X x 0) 

ft-ìKiX x A ' j f l x A ' + I x l + I x O ) 

Q.-1KT{X x A 1 ; Z > x A 1 + X x l + £ 7 x 0 ) 

Q-iRiX x AU,D x A1 + X x I + U x 0) 

*6 i 
ft-iXW(X,D) QrxKw(X;D^ 

where the columns are homotopy fiber sequences. This shows tha t 

¿'(¿(•7)) = Ml), 

proving the lemma. • 

Theorem 2.7. Let X be a regular, quasi-projective scheme over an infinite 
Held, and D = D\ + .. . + Dn a normal crossing divisor. Let s be a finite set 
of closed subsets of X . Suppose that 
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i) X is an A-scheme for some commutative ring A, and there are elements 
fi ? • • • > fn of A, generating the unit ideal, such that, for each f = fi, the 
collection of closed subschemes D \ D n f of Xf is split. 

ii) Let W be a closed subset of X of pure codimension d, such that W 
intersects each Yj and each Yj Pi S, S £ s, properly. Then there is a 
closed, pure codimension d subset W of X, containing W, such that W 
intersects each Yj and each Yj Pi S properly, and, for each f = fi, the 
collection of closed subschemes D1 / \ W , . . . , Dnf\W of Xf\W is split. 

Then the map 

eye: CHf (X; D)Q - K0(X; D)^ 

is an isomorphism. 

Proof. Surjectivity follows from Corollary 2.4. Let then Z be in Zd(X; D)Q 
and suppose cyc(Z) = 0. Let W be the support of Z and let U = X\W. 
We may suppose tha t W satisfies the conditions of (ii) above. We have the 
localization sequence 

K^U-Duf^-^K^iX-D)^ K 0 ( X ; D ) W i X - D 

so there is an element r of K^U; Dc/)(d) with 6(r) = cycw(Z). We have the 
isomorphism 

K0(U x A 1 ; / ? x A1 + U x 1 + U x 0)(d) -> KX(U\ DV)W\ 

let 77 be the element of K0(U x A1 ; D x A1 + U x 1 + U x 0)^ corresponding 
to r . Let 

E = D1 x A1 + . . . , Dn x A1 + X x 1 + X x 0, 

Eu = E PI U x A 1 . Note tha t ( X x A 1 , ^ ) and (U x A 1 , Ev) bo th satisfy 
the splitting conditions of Corollary 2.4; indeed, we need only replace the 
ring A with the ring A[x], and the elements / 1 , . . . , fn of A with the elements 

. . . , xfn, (x — l ) / i , . . . , (x — l)fn of A[x\. By Corollary 2.4, there is a pure 
codimension d closed subset Tu of U x A , intersecting each Eui and each 
Eu 1 Pi S x A1 properly, and an element r)u of K^u(U x Al9,Eu)^ mapping 
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to FJ under the natura l map. By Lemma 2.2, there is a cycle ZJJ in ZD(U x 
A1; J E c / ) ^ with cycTv{Zu) = Vu. 

Let T be the closure of Tjj in X x A 1 . We claim tha t T intersects each 
component of Ej and Ej D S x A 1 properly. Indeed, each is either of the 
form Dj x A 1 , DJ x O o r D j X 1, for some J . Additionally we have 

T n £ / C ((W x A1) fi Ej) U ( lb fi JS^/j). 

Since TJJ intersects Eui properly, the term TJJ fl EJJI has the proper dimen­
sion. Since W intersects each Dj properly on X , it follows tha t W x A1 
intersects Dj x A1, Dj x 0 and Dj x 1 properly on X x A1. Thus the te rm 
( W x A1) Pi .Ej has the proper dimension as well, proving our claim for Ej\ 
the proof for Ej D S x A1 is similar. In particular, we have 

Zd(X x h}f = ZdEuaxA1(X x A1)T. 

Let ¿ 0 : X —• X x A1, i\: X —> X x A1 be the inclusions as the zero-section 
and the one-section. Let Z £ ^EUSXA1^ x A1)7" be the closure of ZJJ. Let 
Z\ = Z • (X x 1). As ^c/ • U x 1 = 0, it follows tha t Zi has support contained 
in W. Replacing Z with Z — (Z\ x A1), and changing notat ion, we have 
Z • (X x 1) = 0 and Zu = Z fl (U x A1). 

Let i be an integer, 0 < i < n — 1. Since 

Z • (D° x A1) n U = Zu • (Di x A1) 

= 0, 

it follows tha t Z • (D? x A1) = Zf x A1, for some cycle Zf supported on W. 
Thus 

0 = (Z -X x 1) • (D°i x A1) 

= ( Z . ( ^ ° x A 1 ) ) - ( X x l ) 

= (Zf x A ^ - C X x 1) 

Similarly, Z • (L>2- x A ! ) = 0, hence Z is in the subgroup 

4 x o , , X A I ( ^ x A 1 ; ^ x A1 + X x 1 ) J 
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° f - Z | u . x A i ( * x A % Let 

TJ = cycT(Z) e K^(X x A1; Di x A 1 , . . . , Dn x A\J\T x !)<*>. 

By Lemma 2.6, we have 

cycw(Z • ( X x 0)) = il{cyc{Z)) 
= I*M 

= 8{T) 

= cycw(Z). 

Since cycw is an isomorphism, we see tha t 

Z • ( X x 0) = Z 

so Z = 0 in CHf (X; D)Q, proving injectivity. 

§3 Relative cycles and Kp 
Following Bloch [B], we give a cycle-theoretic description of the rational 

higher A"-groups of a regular, quasi-projective scheme over a field. We use 
a "cubical" version rather than a simplicial version for reasons which will 
become apparent . We will define an isomorphism of the cubically defined 
groups with Bloch's simplicial version in the next section. 

Let k be a fielde, X a scheme, and s a finite set of closed subsets of 
X with X E s. Let Un = An. Let D] be the subscheme = 1, 2?? the 
subscheme XI = 0, and Di the subscheme X{(XI — 1) = 0. Let DOLN be divisor 
! ? ! + . . . + Z>n, and let <9+Dn be the divisor DNN — Dn. If s is a finite set of 
closed subsets of X, and E = E\ is a reduced divisor on a fc-scheme 
y , we let s x E denote the set of closed subsets 

{S x Ej \ S E s,i C { l , . . . , * } ] 

of X x Y. By a face of X x DOPwe mean a irreducible component of an 
intersection of some of the divisors X x Di, i = 1, . . . ,p ; we also consider 
X x CP as a face of X x DCF. 
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Let Zj(X, n)c be the group 

ZI(X,ny = Z * ( X x nn;X x d+an)-

Intersection with the face £>° defines map dn:Zj(X, n)c —+ Zj(X,n — l)c 
Since 

dn-1odn(Z) = Dn_1-(D°n-Z) 
= D°n • (Di-, • Z) 
= 0, 

we have the complex (Zj(X, *)c,d) 

. ̂ ZJiX, n)ch ... ^Z«(X, oy. 

By definition, we have 

HP(Z«(X, *)c) = CH*(X x r f ; I x dcP). 

We define CB.qs(X,p)c to be Hp(Zj(X, *)c); we often omit the subscript s 
when s = {X}. 
Theorem 3.1. Let X be a smooth, quasi-projective k-scheme, s a Bnite set 
of closed subsets of X. Then the map 

eye: CH* ( X xcf:X x doDo -»• K0(X x t f r X x dnf)(q) 

defines an isomorphism 

Cycq,p:CHl(X,p)cQ^ KP(X)M. 

Proof. Using the homotopy property of Jif-theory of regular schemes, there is 
a na tu ra l homotopy equivalence 

K(X x rf>;X x dcP) №(K(X)) 
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giving the isomorphism 

K0(X x t f ; I x K 0 ( X xtf;IKp(X)(q\ 

Suppose we have verified the hypotheses of Theorem 2.7 for the normal cross­
ing divisor 

D = Xxdcf = D1+... + Dp 

on X x OF; then the map 

eye: CRqsxnP(X xnf;X x dcf)Q -> K0(X xuf;X x dcf){q) 

is an isomorphism, proving the theorem. 
We now proceed to verify the hypotheses of Theorem 2.7. Let A = 

k[x\,..., xp]. For each I C { 1 , . . . let fj be the element of A defined by 

I 

iei 
X\ X 

I&I 

(XI - 1), 

and let vj = C\i£i(xi = 0)nDi^j(xi = 1). Then, for each 2", vj is a closed point 
of Cf (with coordinates either 0 or 1), and the divisor fj = 0 is the sum of com­
ponents of def passing through vj. Thus, the n-cubes (tff7; D i / 7 , . . . , Dpfi) 
for different I are all isomorphic; for I = { 1 , . . . , n } , this n-cube is the collec­
tion of coordinate hyperplanes X{ = 0 in the open subscheme YIII^- ~ XI) ^ ® 
ofef. In particular, the collection {// \ I C { l , . . . , n } } generate the unit 
ideal in A. Additionally, the n-cube (nffi; Di/7,.. - , -Dp//)* is a split n-cube; 
for I = { 1 , . . . , n } , the splitting is generated by the linear projections 

тг?:пР -> D°i 
^ ( ^ l ? • • • itp) _ ( < ! , . . . ,^l? • • • itp 0 1 , . . tp). 

This verifies the condition (i) in Theorem 2.7. 
For condition (ii), let n j be the linear projection 

тг?:пР -> D°i 

7rJ(*i, . . . ,tp) — (¿1, . . .^l? • • • itp . . . ,tp). 
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Let W be a pure codimension d closed subset of 1 x Lf, intersecting each 
face of DCF properly. From the condition it follows tha t for each z, the closed 
subsets WF and W} defined by 

WF = (TT^IW' H X x £>?); WL = ( t t ^ - ^ W H X x 

are of pure codimension d on I x Lf, and intersect each face of X x DOP 
properly. Indeed, for a face F of X x dcP, the projection ^(l*1) is again face 
of X x c t P , and is contained in X x We have 

codim F(W? H F) = codim ^ F ) ^ ' n X x 27?) n vr?(F)) 

= c o d i m i r o ( F ) ( ( W n 7 r ? ( F ) ) 

The computat ion for WF is similar. Thus, letting W be the closed subset of 
X x 

w = w'U (u?=1w?) u (uf=1 W,1), 

T̂ F has pure codimension d on X x DOP, and intersects each face of X x DOP 
properly. By construction, the linear projections 7r° and IT] map X x Uf\W 
into D®\W and DJ\W', respectively. Thus the n-cube 

((X x cf\W)fl;(Di\W)ftt..., (Dp\W)fl) 

is split for each I 6 verifying condition (ii). This completes the 
proof of the theorem. • 

For a scheme X , the space BQVx gives the canonical delooping of the 
space K(X). If we have closed subschemes Y î , . . . , Yn, the i terated homotopy 
fiber over the n-cube 

11 • #QTY7 

gives the canonical delooping of the i terated homotopy fiber K(X] Y i , . . . , Yn); 
denote this delooping by ft"1 K(X; Yu ..., Yn). We let BQVqx{n) denote the 
connected component of the base point in Q~1K(X x Dn;X x DNN) and 
let BQ'P^iri + 1 ) + denote the connected component of the base point in 
fi-^X x nn+1;X x d+dn+1). 
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Corollary 3.2. Let X be a smooth quasi-projective variety over a Geld k, 
and let s be a finite set of closed subsets of X. Then the map 

zx-,*)EQ-*zq(-,*)h 

is a quasi-isomorphism. 
Proof. We have the commutative diagram 

HJZ*(-,*yn) 

Cycq,p 
HJZ*(-,*yn) 

" cyc9'p 

KP(X)^ 

As the maps cycq>p are isomorphisms for all p by Theorem 3.1, the map 

zx-,*)EQ-*zq(-,*)h 

is a quasi-isomorphism, as desired. • 
Theorem 3.3. The complexes Zq{ —, * ) Q satisfy the Mayer-Vietoris axiom 
for the Zariski topology, i.e., ifU and V are open subsets of X with X = UUV, 
then the natural map 

Z*(X, *yQ -> Cone(Z*(U, *YQ © Z*(V, *)CQ -> Z*(U n V, *)CQ){-1} 

is a quasi-isomorphism. 
Proof. Let C denote the complex 

Cone(Z*(Z7, . ) £ © Z*(y, *)CQ -+ Z«{U n V, . ) £ ) [ - ! ] . 

We first show how the isomorphism 

cyc:Hp(Z«(X,PyQ) - KP(X)M 

extends to a map 

cyc:Hp(C) -+KP(X)(*\ 
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Let FQ be the i terated homotopy fiber over the square 

(3.2) 
BQVl(n + 1)+ x BQVqv(n + 1)+ BQV*UnV(n + l)+ 

BQVfj{n) x BQV^(n) BQV«UnV(n). 

As each te rm in this square can be functorially delooped, the homotopy groups 
of FQ are all abelian groups, including 7r0 . 

Let ir\^ denote the complex of abelian groups associated to the double 
complex 

^(BQVfjin + 1)+) © TT^BQVUn + 1)+) i n ( f l ( ^ > + i ) + ) 

^(BQVl(n)) © *i(BQVl{n)) i^(BQVqUnV{n)), 

with differential decreasing degree and with 7ri(BQ/PL;NV(N)) in degree — 1 . 
The long exact fibration sequences associated to the square (3.2) then give 
the following exact sequence describing 7To(FQ): 

(3.3) T 2 ( W n v ( » ) ) - MFQ) - ^ 0 « ) -> 0. 

The Adams operation I\)K acts on the square (3.2), inducing an action on 
the homology H^{ix\^) and a functorial finite decomposition 

# O « ) Q = © « ^ o « ) ( o ) i 

there is also an action on 7r0(ir'g), but this lat ter action may conceivably be 
non-additive. On the other hand, the maps cycq induces an isomorphism of 
the square 

(3.4N 
z*(u,p + i)Q e zq(v,P + i)Q Zq(U,p + l)Q 

Zp(Zq(U,*))Q® Zp(Zq(V,*))Q Zp(Zq(U,*))Q 

to the square ( ^ i * ) ^ . Letting Tot(3A) denote the total (homological) com­
plex of the square (3.4), with Zp(Zq(U, * ) ) Q in degree — 1 , the map cycq thus 
gives an isomorphism 

Ho(cyci)0:H0(Tot(3A)) - # o « ) ( ? ) -
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Composing this with the surjection Zp(C) —* H0(Tot(3A)) gives the map 

Zp(cycfi):Zp(C)^Ho№m)M. 

Let F = F°. The spaces 

BQVu(p + 1)+, BQVv{p + 1)+ and BQVunv(p + 1)+ 

are all contractible, hence we have the homotopy equivalence 

F flFib(BQ7V(p) x BQVv(p) -> BQVunv(p)), 

compatible with the wk-action. By the Mayer-Vietoris property for the func­
tor K(—), this gives the homotopy equivalence 

F JAT(X x tf; X x dnf), 

compatible with the wk-action similarly, the exact sequence (3.3) for q = 0 
gives the commutative diagram of abelian groups 

(3.5) 
ir2(BQVUnV(n)) BQVUnV 

Ki(U nV xnf;U nV x dcf) Ko(X X ¡JP;X X доГ); 

here the m a p 

K^UDV x r f ; [ / n V x ft?) üToCX" x t f ; X x Stf) 

arises from the Mayer-Vietoris sequence for the covering {U xcf,V xEf} of 
X x EF. The maps in (3.5) are compatible with the V^-action and the vertical 
maps are isomorphisms; in particular, the ^fc-action on TT0(F0) is additive 

Let 

p": 7 T o ( F * ) Q - * K0(X x cf; X x ä t f ) < * > 
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be the composition 

*o(F9)Q 7r0(F°)Q K0(X x L f ; I x OOF)Q -> K 0 ( X x nf ; X x ôrf)(<?), 

where the first map in induced by the map F« F°, the second comes from 
the square (3.5) and the third is the projection of K0(X x Uf;X x <9DP)Q 
onto the summand Ko(X x t f ; X x doP)^. Suppose we have an element 77 of 
7T2{BQVlfnV(n)) with image /1 G 7r0(F«) under the map in (3.3). Then pq(h) 
can be got ten by applying the composition of maps 

n2(BQVqUnV(n)) - n2(BQVQUnV(n)) 

-> K0(X хоР;Х х дсР) 
-»• K0(X X п?;Х X ô t f ) ( î ) 

to the élément 77. As this composition is the same as the composition 

TT2(BQV?r^(n)) - *2(BQVhnV{n))iq) 
- > » i (BQ^nV(n) )« 

-• Ko(X xüf;X X dc?)(q) 

and as 7T2 (BQ^nV,(n))<») = 0 b y (2.1) in the proof of Lemma 2.2, we see 
tha t pq(h) = 0. Thus the map pq factors through the quotient i f o ^ i * ) of 
7T0(Fq), and we may define the map 

Zp(cyc): Zp{C) -> K0(X x r f ; X x dcf)(q) 

by sett ing 

Zp(cyc)(a) = pq(h), a G ZP(C), 

where h 6 7To(FQ)Q is any lifting of Zp{cyc*){a) € ffoKJ^ via the sequence 
(3.3). One checks easily tha t this is indeed an extension of the m a p 

cycqiP:Zp(ZQ(X,*)Q) K0(X x r f ; X x â ? ) w . 
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Using the argument of Theorem 2.7, we see tha t Zp(cyc) descends to the 
map 

Hp(cyc): HP(C)Q K0(X x r f ; I x de?)™ = KP{X)^\ 

We have the commutative diagram 

Hp+1(Z0(U, *))o Ф HP+1(Z"(V, *))Q cvcq,p (&cvcq,p Hp+1(Z0(U, *))o Ф HP+1(Z"(V, *))Q 

HV+1(Z4UC\ V,.))o 
cycq,p 

HV+1(Z4UC\ V,.))o 

tfp(C)Q 
Hp(cyc) tfp(C)Q 

HP(Z<!(U, *))Q e HP(Z4(U, *))Q cycq'p®cycq>p HP(Z<!(U, *))Q e HP(Z4(U, 

thus Hp(cyc) is an isomorphism by the five lemma. • 
For W a closed subset of X, let j:X\W —• X be the inclusion of the 

complement, and let Z^y(X, *)c denote the complex 

Cone(j*: Zq(X, *)c -> Zq(X\W, * ) c ) [ - l ] . 

If W is a closed subscheme of pure codimension d, we have the natura l map 

iWm:Z*-d(W,*)e ^ Z*y(X,*y. 

We let C H V ( ^ , p ) = Hp(Z*y(X,*)c). 

Theorem 3.4. Let X be a regular, quasi-projective k-scheme, i:W —» X 
a closed subscheme, j:U —• X the inclusion of the complement U = X\W. 
Then there are natural isomorphisms 

eye™: C H V ( * , P ) Q - K™{X)M 

giving the commutative diagram 

CW(U,p+ 1)Q 
CyCqìP+1 

кр(ху«) 

C H w ( x , p ) o 
w eye™ 

кр(ху«) 

dP(X,p)Q 
cVcq>p 

кр(ху«) 
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In addition, if W is regular, of pure codimension d on X, then the map 

iw*Q: Zq~d(W, *)CQ -> ZW(X, *)CQ. 

is a quasi-isomorphism. 
Proof The construction of the map cyc^p is similar to tha t of the map 
Hp(cyc) in Theorem 3.2. We give a sketch of the construction. 

Let U = X\W. Let Gq be the i terated homotopy fiber over the commu­
tat ive square 

(3.6) 
BQVqx{n + 1)+ 

i 
BQVlin + 1)+ 

BQVqx(n) 
i 

BQVUn). 

By considering the square of abelian groups gotten by applying the functor 
7Ti to the square (3.6) for q and for q = 0 as in the proof of Theorem 3.2, we 
arrive at definition of the map cyc^p. 

In addition, if W is regular and pure codimension d on X, we have the 
commutat ive diagram 

CHq-d(W,p)Q 
~ycq-d,p i 

Kp{wyq-d) 

iw* 

iw* 

cnqw(x,P)Q 
°УСЯ,Р 

~ycq-d,p i 

Since cycq-d,P, cyc^p and 

iw*:Kp(Wyq-V ^K™(X)^ 

are isomorphisms, the map 

iw*: CHq-d(W,p)Q — CKqw(X,p)Q 

is an isomorphism as well, proving the second assertion. 
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§4 Cubes and simplices 
In this section, we show tha t the higher Chow groups defined via cubes 

agrees with Bloch's higher Chow groups defined via simplices. To do this we 
first prove the weak moving lemma and the homotopy property for the cubical 
complexes Z%(X, *)c. The proofs are essentially the same as Bloch's proofs of 
the analogous properties for the simplicialy defined complexes Zj(X, *) , only 
ra ther easier, as the cubical structure allows us to circumvent the necessity of 
taking subdivisions, as is required in the simpicial version. For this reason, 
we will be ra ther sketchy in our proofs, refering for the most par t to Bloch's 
argument for details. We then use the homotopy property for both complexes 
to define the desired quasi-isomorphism. We also consider the Q-complexes 
Bloch has defined by using alternating cycles on X x dn, and we show tha t 
these complexes are quasi-isomorphic to ZQ(X, * ) Q 

We note tha t the complexes *)c are contravariantly functorial for 
flat maps , and covariantly functorial (with approriate shift in codimension) 
for proper maps. If K is a finite field extension of XK the extension of X 
to a scheme over K, and 7r: XK ~» X the projection, then 

(4.1) TT* o 7T* = [K : k] • id. 

Let iwx: W* -* X x D ^ 1 x P1 be the subvariety of 

X x Dn+1 x P1 = X x Spec(fc[a?i,. . . ,a?n+i]) x Proj(fc[T0, 7\]) 

defined by the equation 

T0(l — xn)(l — ajn+i) = T0 — Ti. 

Let 7rn: W„ —• X x D n be the m a p defined by 

тгп(х, . . . , Xn+ìJto : ¿i)) , X\, . . . , Xfi — \-, Xn -\- Xn-\-i % n% n-{-l )• 

Let 

pn: X x D71*1 x P1 -> X x Dn+1 

be the projection. For a cycle Z £ Zq(X x D n ) , we let W„(Z) denote the 
cycle PN*(«v^T^*(^N(^))? when t t*(Z) is defined. 
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Lemma 4.1. i) The cycle W*(Z) is defined for all Z in Z « ( X x • " ) 

ii 

z e z¡xaan(x x d«) w?(Z) e z¡xdnn+1(x x nn+1). 

Hi) For Z in Z q ( X x Dn), we have 

W?(Z) • (xn+1 = 0) = Z = W?(Z) • (xn = 0). 

In this last formula, we identify the locus xn = 0 with X x n n by sending 
3sn-\-l to OCj~i. 

Proof Let A 1 C P 1 be the affine open subset T 0 ^ 0. Then W* is contained 
in X x • n + 1 x A 1 ; letting t = T i / T 0 be the coordinate on A 1 , the subscheme 
W* of X x D n + 1 x A 1 is defined by the equation 

pn o iwx : W* X x Dn+1 

Thus, W* is regular, the maj 

pn o iwx : W* X x Dn+1 

is an isomorphism, and the map 7rn can also be given as 

7rn((x,x1,... , A ? N + I , i ) ) = (x,x1,. . . 

From this la t ter formula, it follows tha t 7rn is flat with 1-dimensional fibers. 
This proves (i). 

For (iii), let 

q: X x nn+1 x A1 X x Dn 

be the projection 

g(:R, A ? I , . . . , # N + I , * ) = S I , . . . , # N - I , * ) • 
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Then the m a p 7rn is the composition q o iw* • Thus, for Z G Zq{X x D n ) , we 
have 

< ( Z ) = W? • q*(Z), 

the intersction product taking place in X x Cf1"*"1 x A1. Since the restriction 
of the projection pn to is an isomorphism, hence proper, we have 

W*(Z) = Pn*(W? • q*(Z)). 

Let A „ C X x x A1, An+1 C X x Un x A1,denote the "diagonals" 

An = . . . ,xn,0, t) \ t — xn} 

An+i = {(x,xi,...,0,xn+1,t) J * = xn+1} 

Then, in X x Dn+1 x A1, we have 

W?(Z) • (xn+1 = 0) = An; W? •(xn = 0) = An+1. 

Thus , for Z G Z ' p f x • " ) , we have 

W*(Z) • (Xn+1 0) = Pn*(W? -q*(Z))-(xn+1 = 0 ) 

= P«.((W,r - 9 * ( Z ) ) . ( x № + 1 = 0 ) ) 
= P»*((W» • (*„+! = 0 ) ) - « * ( Z ) ) 
= pn.(An -q*(Z)) 

= Z 

This proves the first formula in (iii); the second is proved similarly. 
For (ii) let E be a face of X x don+1, let 5 be in s and suppose Z is in 

ZQXDCR(X x • " ) . If E is contained in the locus £„+i = 0, then the argument 
proving (iii) shows tha t 

s u p p ( W * ( Z ) ) H (xn+1 = 0) = {(x )P»*((W» •(*„+! =0))-«*(Z)) € supp(Z)} . 
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Since Z intersects E 0 S x Un properly in X x Dn, it follows tha t W„(Z) 
intersects E D S x d™4"1 properly in X x • n + 1 . A similar argument handles 
the si tuation in case E is contained in the locus xn = 0. From the equation 
describing W„ , it follows tha t W„ Pi (#n+i = 1) is the locus £n+i = i = 1, 
and H (#n = 1) is the locus xn = t = 1. From this, it follows as in the 
proof of (iii) t ha t 

swpv>(W?(Z))n(xn+1 = 1) 

= { ( x , x , . . . . x , - 1 1 ) | ( * , X1 , . . . , XN — \ , l ) e supp (Z)} , 

and 

supp(Wnx(Z)) H ( X „ = 1) 
= {(xn. ZqXxD„(X X • " ) l , # n + i ) I ( x , n . ZqXxD„(X X •")1) € s u p p ( Z ) } . 

These two identities allow us to verify (ii) in case E is contained in the locus 
xn+\ = 1 or xn = 1, completing the proof. • 

We suppose we have an algebraic group G and an action of G on X . 
Let K be an extension field of k, and let ^ : A ^ —> GK be a morphism with 
-0(1) = id. Let 4>:XK x AL —» XK x AL be the isomorphism 

n. (x,t) = (w t .")X,T. 

Let gp'.EP —> UF 1 be the projection on the first N — 1 factors. For a cycle Z 
in Zq(X x tf-1), we write Z x A 1 for q~^{Z). 

We define the map 

hn. ZqXxD„(X X • " ) - Z * ( X A - X n " + 1 ) 

by 

h „ ( Z ) = Z x A 1 - 0 x A 1 ) - (dZ X A1) + W?K(<f>(dZ X A1)). 

Here dZ = Z • {X X 
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Lemma 4.2. Let X be a k-scheme, with £nite collections y, s of closed 
subsets of X. Suppose G • Y = X for each Y € y, and that ^(x) is k-generic 
for each x € A^ifc). Then, for each Z € Zj{X,n)c, hn(Z) is in Zj(XK,n + l)c 
and ?/>(0)(Z) is in ZyyjsiXK,™ + l)c- In addition, 

dhn(Z) = Z - ^ (0 ) (Z ) - dZ x A1 + <j>(dZ x A1). 

Proof Let Z be in ZJ(X, n)°. Arguing as in the proof of Lemma(2.2) of [B] 
shows tha t ^ ( 0 ) ( Z ) is in ZyUS(X'K, n + 1)°? tha t Z x A1 and <^(Z x A1) are in 
ZQXDQN+1(X xnn+1) , and that DZXA1 and ^(DZXA1) are in ZQSXDNN{X XNN). 

We have 

(Z x A1 - <f>(Z X A1)) • (xn+! = 1) = 0 
(Z x A1 - <F>(Z X A1)) • (a?„+i = 0) = Z - ^ ( 0 ) ( Z ) 

(Z x A1 - <£(Z x A1)) • 0n = 1) = 0 

(Z x A1 - <F>(Z X A1)) - O N = 0) = dZ X A1 - ^ (dZ x A1) 

and all other intersections (Z x A1 — <f>(Z X A1)) • (x{ = 0,1) are zero. Applying 
Lemma 4.1 , we see tha t hn(Z) is in Zqsxdun+1{X X Ef1"1"1). It follows from 
formula (iii) of Lemma 4.1 tha t 

Än(Z) • O i = 0) = hn(Z) • (xi = 1) = 0 

for z = 1, . . . , n , and 

HN(Z) • O N + I = 1) = 0 

as well. Thus hN(Z) is in ZJ^XK^ + l)c- The formula for dhN(Z) follows 
directly from the definition of hn, the intersection computat ions made above, 
and formula (iii) of Lemma 4.1. • 

Lemma 4.3. Suppose G • Y = X for each Y 6 y, and that -if>(x) is k-generic 
for each x G A2(^). Let 7r: XK X be the natural projection. Then the map 

Tf *: Z\{X, *Y/ZlUB(X, *)c - Z](XK, *y/Z*yUs(XK, *)c 

is null-homotopic. If K is a pure transcendental extension of k, then the 
inclusion 

z9yus(x,*y cz*(x,*y 
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is a quasi-isomorphism. 

Proof. For the first assertion, the maps hn define a null-homotopy. For the 
second, if k is finite, we may find an infinite, algebraic, pure p-power extension 
kp, for each prime integer p. If we prove the assertion for kp and kq with p ^ q, 
the result then follows for k, using the formula (4.1). We therefore assume 
k is infinite. Thus , if T i , . . . ,Tr are in 2*U5(X^,p)c, K = k(t1,... ,£m), we 
can find an open subset U of A™ such tha t the Ti are the restriction to the 
generic point of cycles Ti in ZyUs(X x Z7,p)c, for i = 1 , . . . , r. We may then 
find a fc-point x G U and form the specialization spx(Ti) := i*(Ti), arriving 
at the cycles spx(Ti) G ZyU3(X,p)c. We have a similar specialization for 
zi(xK,Py. 

It suffices to show tha t Zj(X, *)c/ZyUs(X, *)c is acyclic. Since the map 
7f* is null-homotopic, it suffices to show tha t 7f* is injective on homology. If 
7t*(Z) = dW, then we may specialize to get 

Z = sPx(dW) = d(sPx(W)), 

proving injectivity. • 

Proposition 4 . 4 . Let X be a k-scheme, with a finite collection s of closed 
subsets of X. Let y = {X x . . . , X x Hr}, where Hi is a closed subset of 
An, i = 1 , . . . , r, n > 0. Then the inclusion 

x I—» (ti + XU\, ... ,tn + xun).d(sPx(W)), 

is a quasi-isomorphism. Here p*(s) is the collection of subsets { 5 x A n | S G s}. 

Proof. Let G = An/k, acting on An by translation. Let t\,..., tn, ui,..., un 
be t ranscendental over fc, and map A ^ to GK by the mapping 

x I—» (ti + XU\, . . . , t n + xun). 

Applying Lemma 4.3 proves the proposition. • 

We now can prove the homotopy property for the complexes Z\{X, *)c. 
The proof follows the method of Bloch in [B]. 
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Theorem 4.5. Suppose X is a A;-scheme. Let s be a finite collection of closed 
subsets of X. Let p: X x An —> X be the projection. Then the map 

rf: Z\{X, *)c - i%(a)(X x A", *)c 

is a quasi-isomorphism. 
Proof By induction, we need only consider the case n = 1. Let P be a finite 
set of ^-points of A 1 . By Proposition 4.4, the inclusion 

4 x P u P t W ( ^ x ^ V ) C C Zll{s){X x A1 , *)c 

is a quasi-isomorphism. Next, let io'. X —• X x A 1 , z'i:X —> X x A1 the 
zero-section and the one-section. We claim tha t the two maps 

2 Х х { 0 , 1 } и К ( з ) ( ^ Х А 1 , * ) 0 

z0 

7 * 

~ycq-d,p i 

a re h o m o t o p i c . I ndeed , ident i fy X x A1 x Dn w i t h X x D™-1-1 b y s e n d i n g 
( x , o ^ i , . . . , x n ) to # i , . . . , x n , t). Let 

Hn-Z9xx{o,i}(x x A l ^ ) C - Z*{X,n + l)c 

be defined by 

Hn(Z) = Z - i*(Z) x A1 - W*(dZ) + W^{il{dZ)) x A 1 . 

By Lemma 4.2, Hn does in fact define a map 

4 х . п „ „ , . ( ^ x A\nY - Zl(X,n + iy. 

We also have 

dHn(Z) = i*(Z) - i\(Z) -dZ + i\{dZ) x A 1 , 
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SO 

{dHn + Hn-id)(Z) = » S ( Z ) - i J ( Z ) - d Z + i*(dZ) x A 1 

+ dZ - %\{dZ) x A 1 

= i*0(Z)-il(Z), 

giving the desired homotopy. 
Finally, let r : A1 x A1 —> A1 be the multiplication map r(x,y) = xy. r 

is flat, hence r*: Zq(X x A1, *)c Zq{X x A1 x A1, *)c is defined. Consider 
the diagram (we omit the subscripts s etc. for clarity) 

Zq(X, * ) c ^ ^ * ( X x A 1 , * ) c 

Z"{Xx A 1 , . ) ^ ^ , ^ 
P i \ / q - i s o 

^ x A 1 x A 1 , * ) c 

F q . i s o 

Zq(X x A 1 x A 1 , x A i x ^ 0 1 j 

«; -L i it 
x A 1 , * ) c 

For Z in ^ x f o , ! } ^ x Al ' *)°' we have 

im1r*(Z) = Zi i*0r*(Z) = pli*0(Z); 

since i* = z'q on homology, the map is surjective on homology. Since 
i^p^(Z) = Z , p* is injective on homology, proving the theorem. • 

Let An = Spec(fc[*o , . . . ,*n ] /£ i* t - 1)- Let 

<5n: A n _ 1 A n , A n - > A n _ 1 

be the morphisms with 

if J < i 
t j if J < i 
0 if j = * 
tj-! if J > Ì 

if J < i 
t j if j < i 
ti + ti+! if j = i 
tj-1 if j > i 
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This forms the co-simplicial scheme X x A*. Let dAn be the normal crossing 
divisor (to = 0) + (ti = 0) + . . . + (tn = 0). Form the simplicial abelian group 
Zj(X x A#) with n-simplices 

Z*(X x A-)n = Z*xdAn(X x A " ) 

and with boundary and degeneracy maps induced by 6™ and cr™. Let Z%(X, *) 
be the normalized chain complex of Z$(X x A*). Bloch's higher Chow groups, 
C H f ( X , p ) are defined by 

CKl(X,p) = Hp(ZI(X,*)); 

we omit the subscript s in case s = {X}. Bloch has shown tha t the complexes 
ZQ(X, *) are contravariantly functorial for flat maps, covariantly functorial for 
proper maps and tha t 

(1) (Theorem 2.1 of [B]) Let X be a scheme over k, s a finite set of closed 
subsets of X. The pull-back 

p*:Z!(X,*)->Z«(XxAn,*) 

is a quasi-isomorphism. 
(2) (Lemma 2.3 of [B]) Let X be a scheme over k, s and y finite sets of closed 

subsets of X , K an extension field of k. Suppose G - Y = X for each 
Y € y, and tha t ifi(x) is fc-generic for each x € A1(k) (notat ion as above). 
Let 7r: XK —± X be the natural projection. Then the map 

Z*(X, *)/Z*Us(X, *) - Z*(XK, *)/Z*yUs(XK, *) 

is null-homotopic. If K is a pure transcendental extension of k, then the 
inclusion 

ZlUa(X,*)cZ*(X,*) 

is a quasi-isomorphism. 
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We now proceed to show tha t the complexes Zq{X, *) and Zq(X, *)c are 
quasi-isomorphic. Let 

Z%(X,m,n) C ^ x ( a a " i x A H D m x ô A ' i ) ) ( ^ x Dm x An) 

be the subgroup consisting of cycles Z such tha t 

Z - (X x (x{ = 0) x An) = 0 for i = 1 , . . . , n - 1 
Z - (X x 0 ; = 1) x An) = 0 for i = 1 , . . . , n 
Z • ( X x Dm x (*,• = 0)) = 0 for i = 1 , . . . , n; 

we also assume the cycle Z intersects each S x Dj x AJ properly, where 5* is 
in s, is a face of Dm and AJ is a face of An. Let 

d': Zq3{X, m, n) ^ J ( X , m - 1, n) 

be the m a p 

Z ^ Z - ( X x (xm - 0) x An) , 

and let 
d": Zq(X, m, n) -+ -Z*(X, m, n - 1] 

be the m a p 

Z h-* Z • ( X x Dm x (t0 = 0)). 

This gives us a double complex (Zq(X, m, n) , d', d"); we let Tot* be the asso­
ciated to ta l complex with differential d — d1 + ( —l)md" on Zq(X,m,n). We 
have the augmentat ions 

e': Tot* Zq{X,*)°8 

and 
e": Tot* -> ^ 1 ( X , * ) . 
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Lemma 4.6. For n, m > 1, the complexes 

(Zj(X, m, *) , d") and {Zj{X, *, n), d') 

are acyclic . 

Proof. Let ( / —• C*j) be an n-cube of homological complexes. We consider 
C*)+ as an (n + l)-dimensional complex, and let Tot(C*?*) denote the associ­
ated total complex, with COj0 in degree zero. Let C° 0 denote the intersection 
of the kernels of the maps 

C*,0 —> С*,{i} г = 1, . . . , П . 

Then we have the natura l map 

C.% - Tot(C.,„) 

which is a quasi-isomorphism if, for each p, the n-cube of abelian groups 

ICp,/; ^ c { l , . . . , n } 

is split. 
For / C { 1 , . . . , n } , we let A j denote the face of An defined by ti = 0 for 

i G I. We apply the above considerations to the n-cube of complexes C*j: 

1 ~ Z*sxdAi)(X x A7,*)c. 

The inclusion maps 

A/u{i} —• A / 

are split by linear projections 

A / —> A /u{ ,} , 
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so the n-cube C*J is split. Thus we have the quasi-isomorphism 

C% - Tbt(C„,.)-

The homotopy property Proposition 4.4, together with the weak moving 
lemma Lemma 4.3 imply tha t Tot(C*î+) is acyclic for n > 1. As 

C°d = ( Z « ( X , . , n ) , < f ) , 

we have proved this half of the lemma. The proof of the other half is similar 
(using properties (1) and (2) above instead of Lemma 4.3 and Proposit ion 4.5), 
to show the necessary splitting, one uses the construction of the projections 
7rp defined in (4.2) below. The details are left to the reader. • 
Theorem 4.7. Let X be a scheme over k, s a finite collection of closed 
subsets of X with X € s. Then there is a natural quasi-isomorphism 

C°d = (Z«(X,.,n),<f), 

Proof Consider the (homological) spectral sequence 

Eltb = Hb(Zl(X,a,*)) Ha+b(ToU). 

By Lemma 4.6, the spectral sequence degenerates at E1, and the augmenta­
t ion 

e": To t , Z*(X,*) 

is a quasi-isomorphism. Similarly, the augmentation 

e':ToU ^Z«(X,*)CS 

is a quasi-isomorphism. Thus 

E " O E ' _ 1 

is the desired quasi-isomorphism. 
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Corollary 4.8. Let X be a regular quasi-projective scheme over k, s a Unite 
collection of closed subsets of X. Then the inclusion 

Z*(X,*)Q-+Z*(X,*)Q. 

is a quasi-isomorphism. 
Proof By Theorem 4.7 we have a commutative diagram, with the vertical 
arrows quasi-isomorphisms 

zi(x,*yQ - z*(x,*yQ 
I i 

Z*(X,*)Q - &(X,*)Q. 

By Corollory 3.2, the top horizontal arrow is a quasi-isomorphism, hence the 
bo t tom horizontal arrow is a quasi-isomorphism as well. • 
Corollary 4.9. The assignments 

X » Z*(X,*)Q 
x^z*(x,*yQ 

extend to a contravarient functor from the category of smooth quasi-projective 
k-schemes to the derived category JD+(Ab) of homological complexes which 
are zero in sufficiently large negative degree. 
Proof. If / : Y —• X is a morphism of quasi-projective ^-schemes, with X 
smooth, let Si = {x € X | d i m / - 1 > z}, and let 

s = s(f) = {X,S0,S1,...,SN = $}. 

One checks (as in [B], proof of Theorem 4.1) tha t / X(Z) is defined for each 
cycle in Zj(X, *)c. Let 

is:Z*(X,*yQ-+Z«(X,*yQ 

be the inclusion, and let 

r:Z*(X,*yQ^Z*(Y,*yQ 
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be the composition in D + ( A b ) 

Z«(X,*)CQ ^ Z*(X,*)CQ £ Z"(Y,*yQ. 

If y is any other set of closed subsets of X such tha t 

f*:Z*(X,*y^Z«(Y,*y 

is defined, then, the commutativity of the diagram of inclusions 

2%иу(Х) *)° 
гу,зиу 

2%иу(Х) *)° 

Ìs,sUy 

i zsUy 

aze 

z¡(x,*y 
is 

z*(x,*y 

shows tha t 

f*:Z*(X,*y^Z«(Y,*y 

This gives the functoriality f*og* = (go / ) * for composable maps / and g, 
completing the proof for the cubical complexes Zq(X, *)c. The proof for the 
complexes Zq(X, *) is the same. • 

Notation. Let / : Y —•> X be a morphism of quasi-projective ^-schemes, with 
X smooth, and let be the set of closed subsets of X given in the proof 
of Cor. 4.8. We set Zqf(X,*)c = Zqs(f)(X, *)c. 

Bloch [B2] has defined Q-complexes Afq(X)*; for X = Spec(fc), Bloch 
has defined products 

U:Nq(k)*®Nq\k)* -^Arq+q\k)* 

making the homology, ®PiqHp(J\fq(k)*) into a bi-graded ring (graded com­
mutat ive in the p-grading, commutative in the ^-grading). We conclude this 
section by defining quasi-isomorphisms 

Altq:Zq(X,*)Q^ M*(X)+. 
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After we define products on the complexes 2q(—, * ) Q in the next section 
we will show how AH* is compatible with the products when X = Spec(k] 
(actually, the two ring structures are opposites of each other) . 

Let Fp be the subgroup of the the group of automorphisms of CP gen­
erated by the permutat ions 

( # 1 , . . . , Xp) I • (Xfjrl, . . . , #ORP), 

a £ £ n , and the map 

T(X1JX2,- • . ,xp) = (1 - x1,x2,... ,xp). 

Fp is the semi-direct product of (Z /2)p with Sp, with crp acting on (Z /2)p by 
permuting the factors. In particular, the homomorphism 

sgn: Sp —• {=bl} 

and the sum 
(Z/2)p - > Z / 2 

extend uniquely to the homomorphism 

sgn:Fp -* {±1} 

Let Altp be the central idempotent in the rational group ring Q[i^p]: 

Alt 1 

1̂ 1 v€Fp 
f*:) sgn(v)v. 

Fp acts on 2j(xdnP(X x tf) in the obvious way; the group Afq(X)p is denned 
by 

AT*(X)P = Altp{Z*Xxda>(X x rf)Q) c Z*XxdnP(X x C F ) Q . 

Sending Z to 2p(Z • (xp = 0)) defines the map 

dp:Mq{X)p -+M*(X)P-! 
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giving the complex (Afq(k)*,d). The product 

U:Afq(k)* ®.A/*?'(fc)* —* Jsfq+q'(k)+. 

is defined by Z U W = Altp+p,(cr23(Z x W)) for Z G Afq(k)p, W e Nq'(k)p> 
where 

a23:X x r f x l x t f - 4 l x l x c f x t f , 

is the exchange of factors. 
We now define a projection 

( 4 . 2 ) IIP : Axxap (Xxp) > Aq (X,p)c 

in two steps: 7rp = q2 o qlt To define gl9 let iJ-:Dp 1 —• be the inclusion 

ij (x1,..., xp-1 = (x1, 1..., xj-11,xj,..., x—) 

j = 1 , . . . , p , and let PjiCP —* CP 1 be the projection 

Pj(¿El ? • • • ? ^p) (^1 1 • • • 5 — 1 7 ? * * • 1 #p)« 

For Z € ^ x a n P ( X x define to be the cycle Z - X^=1 P*(¿KZ))* 
This defines 

9i= 4 x » ( x x tf) - SJcxacFC* x rf ; (x! = 1) + (z2 = 1) + . . . + (xp = 1)). 

Then 

qi(Z) • (xj = 1) = 0 j = l,...,p 

qi(Z) • (Xj = 0) = Z-(xj=0)-Z-(xj = l) j = l,...,p 

To define q2, we let tj G Ep be the permutat ion 

Tj(i) 

' i if i < j 
i — 1 if ¿ > j 

.p if ¿ = j . 
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a n d let pji (XJ = 0) —• CP 1 b e the i s o m o r p h i s m 

Pj(xlt • • • ? — l ? 0, + l, . . . , Xp) — (# i , . . . , Xj — i , + l , . . . , Xp). 

For Z e Z9XxdaP(X x c f ) , let be the cycle TJ{Wpx(Pj(Z • (xj = 0 ) ) ) . 
Define 

<jr2(Z) •(*,•= 0) =0 j = l,...,p-hxjtxfta 

by 

o2 (Z) = Z -
p-1 

j=1 
Z.(xj = 0) 

By Lemma 4 .1 , we have 

q2(Z) • (xj = 1)=Z- (xj = 1) j = 1, . . . ,p 

<jr2(Z) • ( * , • = 0) = 0 j = l , . . . , p - l 

g 2 ( Z ) • (xp = 0) = Z • (xp = 0) 
p - i 

j=1 
. £ • ( x , - = 0) 

Lett ing 7Tp = # 2 0 #1 ? we have defined the desired projection. 
We form the complex ZQ(X, *)ALT by 

ZQ(X, *)АН Zxxap (Xxp) 

with 
dv:Z4X,p)AU - Z4X,p- 1)AH 

being the map 

dp(Z) 
(XxLf 

( - l ) - B - W ^ ( Z ) ] • [(*, = 0 ) - ( x p = l ) l . 
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Then the inclusions 

i:Z*(X,*)c -+ Zq(X,*)Alt, j:Afq(X% C Zq(X,*)Alt 

are maps of complexes, as is the projection 

7r:Zq(X,*)Alt -+ Zq(X,*)c. 

The reader will easily verify tha t TT o i = id. 
The action of Fp on induces an action of Fp on Zp(Zq(X, *)c). If we 

let Fp act on CP"1"1 by identifying •p+1 with x A1, and letting p G Fp act 
via p x id, we see tha t the action of Fp on Zp(Zq(X, *)c) descends to an action 
on CHg(X,p)c ; for p G Fp, let 

p*:CHq(X,Py ^ CHq(X,p)c 

denote the resulting action on CHg(X, p)°. 
Although a single element a G Fp does not canonically give rise to an au­

tomorphism of the complex Zq(X, *)c, a compatible family of automorphisms 
does. For future use we consider on some special examples of compatible 
families. 

For a homological complex C*, let C£-p be the subcomplex 

S~1T>p 
о 
ker(d: Ср —• Cp-i) 
Сп 

for n < p 
for n = p 
for n > p, 

and let Ct~p be the subcomplex 

S~1T>p 0 for n < p 
Cn for n> p. 

For 0 < z < p, let <7p G Sp be the permutat ion (z,p), and let av — 
(jp - <Tp • . . . • cr£-1. We have the inclusion Sp —• Sn for n > p, where a G Sp acts 
by the identity on {p + 1, . . . , n } , and by cr on {!, . . . ,£>}. The automorphism 

(-ly-'aL: Z4X, п)лн - > 2ЦХ, n)Alt: n > p, 

302 



BLOCHS HIGHER CHOW GROUPS REVISITED 

extends to the automorphism 

er* '*: Z*(X, *)Alt -» Zq(X, *)Alt 

of the complex Zq(X, *)Alt by operating by ( - l ) * - * " ^ on Z*(X,n)AU for 
n > p, by ( — l ) n _ * < T ^ on Z9(X,n)AH tor i < n < p and by the identity on 
Zq(X, n)Alt for n < i. This in tu rn gives us the endomorphism 

sïp:Z*(X,*)c -> £?(X,*)C 

by 

4'P(Z) = »(a'>(i(Z))). 

Finally, since s]{p(Z) = Z for Z G Zq(X, n)c, n < i, the compositions 

(4.3) ^ o ^ o . . . o / n - ' ^ 

p > n, all have the same action on Zq(X, n)c. Letting 

s n : £ * ( X , n ) c ^ Zq(X,n)c 

be the composition (4.3) for p > n, the sn define the map of complexes 

s* : S*(X,*)C -> Zq(X,*)c 

Clearly, = ( - l ) £ ^ t i l a p ( Z ) for Z € ZP(Z*(X, *)c). 
We have a similar construction for the map 

T(X1,X2,...,XP) = (1 - x i , x 2 , . . . ,xp). 

Indeed, the automorphisms 

-rn: Zq(X, n)Alt -> Z*(X, n)A"; n > 1 

extends to automorphism 

- r „ : ^ ( X , *)A" Zq(X, *)AH 

by acting by the identity on Zq(X,0)Alt. We let 

U:Z*(X,*)C -> ^ g ( X , * ) c 

be the composition 7r* o — r* o i. 
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Lemma 4.10. 

(i) The maps 

o i: Zq(X, *)c Zq(X, *)A/t 

- t * o i: Zq(X, *)c -* Zq(X, *)Alt 

are homotopic to the inclusion z. 
(ii) The map 

s* : Zq(X,*)c -+ Zq(X,*)c. 

is homotopic to the identity, 
(iii) For p G Fp, the map 

( - l )8«n( '>p, :CH*(A\p)c C H g ( X , p ) c 

is the identity. 
Proof. We begin with the first assertion. We first consider the case of a = 
crP-1 G Ep. Let 

ij 
Xj 
Xp — \Xp Xp — \ Xp —f~ 1 
Xp — \ Xp 

for j ^ p — l , p 
for j = p ~ 1 
for j = p 

Define the m a p gn: D n —* D n by g n ( # i , • • • , xn) = ( * i , . . . , * n ) -
We form the complex B{X, *) by setting 

B (X, n ) = =0)(X x Cf ; I x 9 D n - ( v i = 1) - (*p = 1) - 0 " = 0)) 

and defining d: Bq(X, n ) -* Bq(X, n - 1) by = Z • (xn = 0) 
The maps 

fl„„: Z4X x 2 « ( J Í x 
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and 

q*: Zq(X X D N ) - + Zq(X X nn) 

induce maps 

q*: Zq(X, *)c *^ -+ Bq(X, 

q*:Bq(X,*Y^p Zq(X,*)Alt 

with 

5*(g.(Z)) = t(Z) + <7.(t(Z)) 

for z e z*(x,P)c*^r. 
Since the map I — AP~LIP o I is the zero map on Z9(X, N)° for n < p, we 

have the factorization 

Z*(X,*)C 

q* \ 

« - G P ~ 1 ; - J ' O I 

«-GP~1;-J'OI 

Zìi Y *\Alt 

where we extend q* and by zero to give the above maps. 
Arguing as in the proof of of Lemma 4.6, the homotopy property Theorem 

4.5, together with Proposition 4.4, shows tha t the complex Bq(X, is 
acyclic. Since Zq(X, *)c is a complex of free Z-modules, the map 

q*: Zq(X, *)c -> Bq(X, *)*^ 

is homotopic to zero. Thus I — CRP 1>POI is homotopic to zero, proving (i) in this 
case. To prove (i) for the map cr*'̂ , we use the identity ATLP = CRL+LIP o 
to give 

I - A1* = A^1* o (I - c r ^ + 1 o I) + I - A**1* O I. 

B y induction, I — AL+1'P O I is homotopic to zero; we have already shown tha t 
I — cr*>2+1 o I is homotopic to zero, proving (a) for AX'P. We note tha t we may 
take the homotopy K(A^P): Zq(X, *)c Zq(X, * + L)ALT of I - AI+1>P O I to 
zero to be zero for * < I. 
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The argument for the map — t* is similar, after replacing the maps qn 
with the m a p 

r n ( x i , z 2 , • . . , xn) = {x1{l — x1), x 2 , . . . , xn), 

and replacing Bq(k, *) with the complex Aq{k, *): 

Aq(k,n) = Zq(X x Un;X x dnn - (*! = 1) - (a;n = 0))(Xn=0). 

For (ii), following the homotopy h*(crl>p) with 7r gives the homotopy 
J&*(s*p) of s*p with the identity, with / ¿ „ ( 3 ^ ) = 0 for n < i. These in 
tu rn gives the homotopy h*(j,p) of o st'p o . . . o si,p with the identity. 
Since hn(s]{p) = 0 for n < i and sn,p is the identity for n < i, we have 
hn(j,p) = hn(j + l,p + ra) for n < j < p and for /, m > 0. Thus , we may 
define the homotopy h* from to the identity by taking hn = hn (n + l , n + 2), 
proving (ii). 

The assertion (iii) follows directly from (i), the identities 

7T o aiJ o i = (-l)8«nH)<7J on Zp(Zq(X, *)c), for i <j <p 

IR O - T * O i = - r on ZP(Z?(X, *)c), 

and the fact tha t i7^ is generated by the <jj and r . This completes the proof. 

Theorem 4.11. The map 

AUq:Zq(X,*)Q-+ATq(X)*. 

is a quasi-isomorphism. 

Proof. For each n, and for each cycle Z on X x Dn, the cycle W^{Z) on 
X x nn+1 is symmetric with respect to the automorphism 

( # 1 , . . . , Xn, # n + l ) 1 * xn+l ixn)-
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Similarly, the cycle Z x A1 is symmetric with respect to the automorphism 

Za(X, *)c <g> Zb(Y, *)c Za+h(X xkY, *)c 

From these facts, together with a simple direct computation, we have 

AW(K(J{Z))) = Z 

for Z G Afq(k)*. On the other hand, by Lemma 4.10, the composition 7r o 
j o Altq induces the identity map on the homology of Zq(X, *)q, hence is a 
quasi-isomorphism. This proves the theorem. • 

§5 Products and the projective bundle formula 

In this section, we define, for X and Y smooth and quasi-projective over 
a field a product 

Za(X, * ) c <g> Zb(Y, *)c Za+h(X xkY, *)c 

in the derived category. Taking X = Y, tensoring with Q, and pulling back 
by the diagonal defines a cup product , in the derived category 

za(x, *yQ <g> zb0C, *)CQ za+\x, *)Q, 

giving 0g)PCHg(X,p)Q the structure of a bi-graded ring, commutative with re­
spect to the çr-grading and graded commutative with respect to the p-grading. 

Note. If one had functorial pull-backs, in the derived category, for the com­
plexes Za( — ,*)c, the construction of this section would give a cup product 
for the bi-graded group 09jl,CHg(X, p)c. It seems tha t the techniques used 
to prove Chow's moving lemma for cycles modulo rational equivalence give 
a proof of integral version of our "moving lemma" Corollary 4.8 for either 
smooth projective or smooth affine varieties; this would then give the desired 
contravariant functoriality, and product structure, for ©gjPCHg(X,p)c, among 
smooth projective and smooth affine varieties. The situation for the general 
smooth quasi-projective variety seems, at present, to be unclear. 
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Let Y be a fc-scheme, s a finite set of closed subsets of Y, and let 

S | ( F , m , n ) c C ^x(ôamxnn+DmxôDn)(y x CT x • " ) 

be the subgroup consisting of cycles Z such tha t 

Z • (Y x (XÌ = 0) x • " ) = 0 for * = 1 , . . . , m - 1 
Z • (Y x (XÌ = 1) x = 0 for * = 1 , . . . , m 

Z • ( F x nm x (Xi = 0)) = 0 for i = 1 , . . . , n - 1 
Z • ( F x um x (x< = 1)) = 0 for i = 1 , . . . , n. 

We also assume tha t Z intersects S x Z>/ x Dj properly for each S G s, and 
each face Di of and face D j of • " . Let 

d ' : Z * ( y , m , n ) c -+ ZL(Y,m- l , n ) c 

be the m a p 

Z Z - (Y x (xro = 0) x Dn), 

and let 

d": Zq(Y, m, n)c i£g(Y, m, n - l)c 

be the m a p 

Z Z • ( F x DM x (xn = 0)). 

This gives us a double complex (Zq(Y,m,n)c,d!, d"); we let To t (F )^ be the 
associated to ta l complex with differential d = d1 + ( —l)md" on m, n)c. 
We have the map 

e:Zl(Y,*y ^ Tot(y)c3 

got ten by identifying Zj(Y, *)c with £ f ( y , 0 , *)° and the m a p 

e':Z«(Y,*)c^Tot(Y)cs 

got ten by identifying Z J ( y , * ) c with Zj(Y,*,0)c. 
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Lemma 5.1. The maps 

and 
e:Z*(Y,*)c-+Tot(Y)cm 

e':Zq(Y,*)c -> Tot(F)< 

are quasi-isomorphisms. The composition ef oe 1 is the identity (in D+(A.h)). 

Proof. The proof of the first assertion is essentially the same as the argument 
used in the proof of Theorem 4.7. We have the spectral sequence 

E\th=Hh(Zj(Y,a,*)e) Ha+b(Tot(Y)s). 

As in the proof of Lemma 4.6, the homotopy property Theorem 4.5, together 
with Proposit ion 4.4, shows tha t E\ b = 0 for a > 0, hence the spectral 
sequence degenerates at E1 and e is a quasi-isomorphism. The proof for ef is 
the same. 

For the second assertion, let Z'ath(Z2(Y, *, *)c) and Z'^b(Zq(Y, *, *)c) de­
note the kernel of df and d", respectively, on Zq(Y, a,b)°. Take an element 
RF € ZP(Z2(Y,*)C), and let rj0lP € Zq(Y,0,p)c, vP,o € Zf(Y,p ,0)c be t he ele­
ments 

e:Z*(Y,*)c-+Tot(Y)cm 

Identify DA x D6+1 with +b+1 by 

( ( > ! , . . . , a?a), ( y i , . . . , î / 6+ i ) ) . . . , # a _ i , y i , . . . , yb, xa, î / 6 + i ) , 

and let W£6 CY xna x D6+1 be the image of Wj+b <zYx na+h+1 under this 
identification. Using the obvious modification of the construction of the map 

W%: Zq(Y x nn) -+ Zq(Y x nn+1) 

we construct the map 

Wjih: Zq(Y x Ua x d) Zq(Y x na x D 6 + 1 ) 
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satisfying the analog of Lemma 4.1. In particular, Wjh defines the map 

Wjy. Z';>b(Z*(Y, *, *)c) - , Z!(Y, a, b + l)c 

with 

(5.1) 

d"{Wlb(Z)) = (-iyZ for Z e z';tb(Zj(Y,a,by) 

d'(Wlb{Z)) = raM(Z) for Z e Zvth(Z*(Y, a, 6)c), 

where 

T a , & ( ( > l , • • , X A ) , ( y i , . . . , VB)) = ( ( 0 * 1 , • . • , # a - l ) , ( ^ a , ^ 1 , ?/2 • • • , < /&)) . 

This gives us the elements 

WP)o(>?P)o) eZj(Y,P,iy 
wp-ltlWwPt0(Vp,0))) ezi(Y,p- i ,2 )c 

Wp-2,2(d '(Wi,_1,1(d'(Wp,o(T7,,o)))) e ^ ( F , p - 2,3)c 

• • (d!(Wp,0(r,Pt0))) ...) € ^ | ( y , l ,p)c 

Define ^ - a ' ° + 1 ( T 7 ) inductively by h*'1^) = (- l)pWP)0(7?p,o), and 

^ - a , a + l ( 7 ? ) = (-l)P-*+lWp-a,a(<thp'-*+1>\Ti)) 

for a = 1, . . . , p — 1. Letting 

hp(v) = 
a = 0 

^ - a , a + l ( r ? ) 5 
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we have 

(d' + d")(hp(r,)) = Vp,0 - ( - l ) ^ ^ , , ) 

for 77 e Zp(Zf(Y, *)c). We now proceed to extend hp to all of Zj{Y,p)c. 
For Z € ZI(Y,p)c, let h^\Z) = (-l)pWPt0(Z). Then h?/{Z) is in 

Z«(Y,p,iy, and 

d"(K>\z)) =z 

d'(hp/{Z)) = -hppZ\'\dZ). 

Define hp a>a+1(Z) inductively, satisfying 

d"(hP-a'a+1(Z)) = -d'hP-a+1'a(Z) - hv-_T{dZ). 

Then 

d" o d'(hP-a'a+1(Z)) =d'h*ZVa(dZ) 

= -d"hppzr1,a+1(dz), 

so d"(d'hP-a>a+1(Z) + hppZl~1,a+1(dZ)) = 0. Thus, if we define 

/ ip_a_1>a+2(z) = (_1)P-«Wrp_a_lja+1(d'ÄP-aI«+i(z) + hppZr1,a+1(dZ)), 

we have 

j " ( ^ - a - 1 , a + 2 ( ^ ) ) = -d'hp-a'a+1(z) - hppzr1,a+1(dz) 

and the induction goes through. 
Let hp(Z) = YZ=\ hp~a'a(Z), for Z € Zj{Y,p)c. Then this extends 

our earlier definition of hp on Zp(Zj(Y,*)c). Let (Tp be the permutation 
(i,p) e S p . Then ap = a\... AT-2 A*—1; let 

Z' = ( - 1 ) ^ « - o o i ( . . . (tt o AP~2 o o AP^ o . . . ) = 
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where is the map defined in (4.3). Then a direct computat ion gives 

(d! + d")hp(Z) + hp-!(dZ) = E ( Z ) - e'(Z') = e(Z) - e\s{Z)). 

By Lemma 4.10(h), the map Z i—• s*(Z) is homotopic to the identity. Thus 
ef and e are homotopic, completing the proof. • 

The complex Tot(K)c is covariantly functorial for proper maps , and 
Tot (y)£ contravariantly functorial for appropriate maps (depending on s). 

Suppose we have non-negative integers qf and q" with q' + q" = q, and 
k-schemes X and Y. Let 

Xmy.Zq'(X,m)c ® Zq"(Y,n)c Zq(X x F , m , n ) c 

be the map x m ? n ( Z <g> W ) = cr2z*(Z x W ) , where 

( J 2 3 : (X x D M ) x ( F x D N ) —> (X x Y) x ( D M x D N ) 

is the exchange of factors. Then the maps xm?n give rise to a m a p of total 
complexes 

Tot(xy'>q": Zq'(X,*)c ® Zq"(Y,*)c) -» To t (X x F ) c . 

Suppose X and y are smooth and quasi-projective over k. Composing the 
m a p T o t ( x ) g >q with the inverse of the quasi-isomorphism e defines the map 
in D + ( A b ) 

XX]Y: Zq'(X, * ) c ®L Zq"(Y, *)c — Zq(X x y , * ) c . 

Let A x : X - ^ I x l be the diagonal. If X is smooth and quasi-projective 
over k, we have the pull-back map 

A ^ : Z*{X x X, *YQ - *)CQ 

in Z>_j_(Ab); define 

и*'«":2*\Х, . ) Q ® ^ ? " ( * , * ) Q - Z«(X, * ) Q 
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a a 
as the composition o x x x ' ^h i s g*ves product maps 

U*',;j7,: C H « ' ( X , P ' ) Q ® C H 9 " ( X , P " ) Q — C H * ' + * " ( X , p ' + p")Q 

T h e o r e m 5.2. Let X be smooth and quasi-projective over k. The maps 
Uptprt define the structure of a bi-graded ring (graded commutative with 
respect to p and commutative with respect to q) on the bi-graded group 
©p?gCIJg(X,p)(Q such that 

(a) for each morphism f:X —* Y of smooth quasi-projective varieties, the 
map /* is a ring homomorphism. 

(b) if f: X —> Y is a proper morphism of smooth quasi-projective varieties, 
we have the projection formula 

/ . ( a U/*(/?)) = / . ( a ) U/3 

for a e C H * ( X , * ) Q , e C H * ( F , * ) Q . 

(c) the restriction of U to ®qCHq{X, 0)Q is the usual product structure on 
the rational Chow ring of X. 

(d) Suppose we have Z € Z9(X,p)c, W € Zq> (X,p')c representing classes in 
CH«(X,p), CHq'(X,'), resp. Then 

ZUW = (-I)*''A*X(*23*(Z x W)) = £,*X(<J2Z*{W x Z)) 

Proof We first verify tha t U is graded commutative with respect p and com­
mutat ive with respect to q. Let 

tray. Zq(X x X x Ua x Ub) -* Zq(X x X x D6 x DA) 

be the automorphism induced by exchanging the factors X and X , and the 
factors U]a and • . The maps tra & give rise to the automorphism tr of To t (X x 
X)c defined by 

tr(Z) = (-iybtraib(Z) 
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for Z G Zq{X x X x Da x D6). Let r be the canonical isomorphism 

r : T o t ( ^ * ' ( X , *) ® -Z*"(X, *)) -> To t (Z*"(X, *) ® Zq'(X, *)) 

induced by the exchange of factors in the tensor product . Then we have 

T o t ( x ) or = tro T o t ( x ) 
and 

ef = e o tr 

From Lemma 5.1, it follows tha t U o r = U on homology; as 

T(A®B) = ( — l)AB(B ® A) 

for A 6 Zq\X,a), B e Zq"(X,b), we have 

AUB = ( — l)ab(B U A) 

for A e CHg/(X,a)Q, B e CHq"(X,b)Q. 
Associativity of the product U follows by considering the triple complex 

analogue of the double complex considered in Lemma 5.1; we leave the details 
to the reader. 

To prove (a) , note tha t the exterior product T o t ( x ) clearly satisfies 

/ * ( T o t ( x ) ( Z ® W)) = T o t ( x ) C T ( Z ) ® f*(W)) 

The result then follows from the natural i ty of the quasi-isomorphism e and 
the relation 

o ( / x / ) * = / * o A y . 

We now prove the projection formula (b). Let Z be in Zq(Y x X , p) such 
tha t ( ( / x id) o AX)*(Z) is defined. Then A£( ( id x f)*(Z)) is also defined, 
and we have the identity of cycles 

(5.2) AM(id x fUZ)) = ( ( / x id) o Ax)*(Z). 
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The maps (id x / ) * and ( / x id)* induce maps 

( / x id)*:Tot/(r x X)c Tots(X x X)c 

and 
(id x / ) * : T o t / ( y x X)c Tot5(F x Y)c. 

By the natural i ty of the quasi-isomorphisms e, we have the commutative di­
agram 

(5.3^ 
T o t ( X x X ) c 
CXxX I 

Z*(X x X,*y 

( / x i d ) 

( /x id )* 

T o t / ( r x X ) c 
€YxX I 

Z}xid(YxX,*y 

( i d x / ) , 

( i d x / ) . 

T o t ( F x F )c 

Z*(Y x F, *)c 

We have as well the commutative diagram 

z<4x,*yQ®z*(x,*yQ 

Tot(x) 
Tot (X x xyQ 

(5.4) 

/ * ®id* t t Tot Cxi 

Z}(Y,*yQ®Z<>(X,*yQ 

Tot(x) T o t / x i d ( r x X)^ 

id ® / „ j I (id x / ) . 

2 * ( F , *)£ ® Z*(Y, *)CQ °^X) T o t ( F x Y)CQ 

Put t ing (5.2), (5.3) and (5.4) together proves (b) . 
For (d) we retain the notat ion of the proof of Lemma 5.1. Let 

Z}xid(YxX,*y 

be the automorphism 

Tp,p'(xi, . . . ,Xp, J/l, . . . ,yp>) = (j/i, . . . ,yp>,Xp, . . . ,rci). 
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We have 

(d' + d")(WPtP,(xPtP,(Z ®W)- Wp-lipl+1(d'(Wp>pl(xPtP,(Z 0 W))) + .. 
WltP+p,-X{... (d'(Wp,o(xP,P>(Z <g> W))))...)) 

= (-l)p(xP)P,(Z, W) - (-l)2^ x0,p+p. (rp,pU(Z x WO). 

Since 

s g n ( W ) = ( - I R ' + £ ^ T I L , 

we have 
e-\xp,p,(Z, W)) = (-1)PP'(Z x W). 

By Lemma 4.10, ( - l ) w ' ( Z x W ) = W x Z in homology. The formula (d) 
then follows from the definition of the product U. The assertion (c) follows 
from (d) . • 

Let X and Y be smooth quasi-projective varieties, with X projective. 
Let 

dx/Y = d im(X) - d i m ( F ) . 

For a codimension d cycle W on Y x X, form the homomorphism 

W*:®qiPCRq(X,p)Q — eG , P C H * + D - D ^ ( F , p ) Q 

by W*(T?) = pi*(W U p%(r])). We recall the pairing 

o: C H A ( Z x Y)Q x CRb(Y x X)® -+ C H A + 6 ( Z x X)Q 

defined by 

W2oW1 := przxX*(pr*ZxY(W2) U pr^KxiWi)) 

This is defined if Y is projective and X , Y and Z are smooth and quasi-
projective over fc, and gives C H * ( X X I ) Q the s tructure of a graded ring, if X 
is smooth and projective over k. In addition, we have ( W ^ 2 ° ^ i ) * = W 2 * ° W i * « 
Finally, if W is the graph of a morphism / : Y —> X, then W*(r]) = 
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Corollary 5.3. Suppose X and Y axe smooth and quasi-projective over k, 
and X is projective. Sending Z to jz descends to a homomorphism 

T.®DCHD(X x Y)Q -+ ®q,pRom(CUQ(X,p)Q,CHQ+D-DX^(Y,p)Q) 

This makes ®PiqCH.q (X,P)Q into a graded CH*(X x X)Q-module. 
Proof. This follows directly from Theorem 5.2. • 
Corollary 5.4. Let E —> X be a vector bundle of rank n + 1 over a smooth, 
quasi-projective variety X, and let 7r: P —> X be the associated projective 
space bundle. Let Q be the class of O(l) in CH1(P). Then the maps 

a{: CYLq-\X, *)Q CH*(P, *)Q 

<*i(Tl) = **М U С 
i = 0 , . . . , n 

define an isomorphism for each p: 

n 

I=0 
ai:®?=0CIlq-\X,p)Q CH*(P,p)Q. 

Proof. Tha t ^2™=0 oci gives an isomorphism for p — 0 is well-known. In par­
ticular, the CHn(P XX P)-class of the diagonal A c P x j P can be wri t ten 
as 

[A] = 
n 

I=0 
pU*I)vp*2(CN-T). 

Let 77 be in CH9(P,p)Q. Then 

ri = [AU(r¡) 

= P2.(P?(»7) U A) 

= P2.(P*(»7) U 
n 

I=0 
Pi(« . )u^(Cn- ' ) ) 

n 

2 = 0 
C-lV(P2*(PÏ(vUai)), 
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so Xir=oa* 1S *n general surjective. Suppose JZ7=o ai(Ti) = 0 for tj € 
CHff"i (X,p)Q, i = 0 , . . . , n - i with r n - j ^ 0 . T h e n C J " u £ ? ~ 0 J V ( r O U C = 0, 
so 

0 = 7T* 

n 

i=j 
ic'in-j) U C)) 

n 

i—3 
n-j) U tt.(C) 

— Tn—ji 

since 

,M\ 0 it 0 < z < n 
) = { [X] if i = n. 

Thus all the r,- were zero, and X*!Lo a* *s inJective. 

We recall from §4 the product 

U:Af*(k)m ®JV»'(fc). -»• Nq+q'(k)* 

defined by 

ZUW = Altq+q'(Z x W ) 

Corollary 5 .5 . Let 

t: Z"(X, *yQ ® Z« (X, *yQ -> Z* (X, *YQ ® Z*(X, *)C

Q 

be the canonical isomorphism induced by the exchange of factors in <g>. Then 
the diagram 

(5.5; 
zq(x,*yQ®zq'(x,*yQ 

Aitq ® Am' i 
Afq(k)*®Afq'(k)* 

Uot 

U  
> 

zq+q'(x,*yQ 
I Aitq+q' 

Afq+q'(k)* 
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commutes in D + ( A b ) . 

Proof. By Theorem 5.2(d), we have 

Z U W = {-1)PP\Z xW) = W x Z 

for Z e CRq(k,p)®, W e CHg'(fc,p')Q. From this and the definition of the 
product on JV*(&)*, the diagram (5.4) induces a commutative diagram after 
taking homology. Since the complexes in (5.5) are complexes of Q-vector 
spaces, this implies tha t (5.5) commutes in Z?+(Ab). • 
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