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Bloch’s higher Chow groups revisited

Marc LEVINE

Introduction

Bloch defined his higher Chow groups CHY(—, p) in [B], with the object
of defining an integral cohomology theory which rationally gives the weight-
graded pieces K,( —){@ of K-theory. For a variety X, the higher Chow group
CHY(X,p) is defined as the pth homology of the complex Z9(X, %), which in
turn is built out of the codimension ¢ cycles on X x AP for varying p, using
the cosimplicial structure on the collection of varieties {X xA? | p =0,1,...}.
In order to relate CH?(X, p) with K,(X), Bloch used Gillet’s construction of
Chern classes with values in a Bloch-Ogus twisted duality theory [G]; this
requires, among other things, that the complexes Z9(X, *) satisfy a Mayer-
Vietoris property for the Zariski topology, and that they satisfy a contraviant
functoriality. Bloch attempted to prove the Mayer-Vietoris property by prov-
ing a localization theorem, identifying the cone of the restriction map

Z(X, %) = Z(U, %),

for U — X a Zariski open subset of X, with the complex Z(X\U, *)[1], up to
quasi-isomorphism. There is a gap in Bloch’s proof, which left open the local-
ization property and the Mayer-Vietoris property for the complexes Z9(X, *);
essentially the same problem leaves a gap in the proof of contravariant functo-
riality. Recently, Bloch [B3] has provided a new argument which fills the gap
in the proof of localization; this, together with a new argument for contravari-
ant functoriality, should allow Bloch’s original program for relating CH?( X, p)
with K,(X) to go through without further problem.
As part of the argument in [B], Bloch defined a map

(1) CH(X,p) @ Q — K,(X)

for X smooth and quasi-projective over a field, relying on a A-ring structure
on relative K-theory with supports. It turns out that this approach can be
followed and extended to show that the map (1) is an isomorphism, without
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relying on Chern classes (Theorem 3.1). An important new ingredient in this
line of argument is the computation of certain relative Ky-groups in terms
of the Ky of an associated iterated double (see Theorem 1.10 and Corollary
1.11). A bit more work then enables us to prove the Mayer-Vietoris property
(Theorem 3.3), a weak version of localization (essentially Poincaré duality)
(Theorem 3.4), and contravariant functoriality (Corollary 4.9) for the ratio-
nal complexes Z9(X,*) ® Q. We also construct a product for the rational
complexes Z9(X,*) ® Q, and prove the projective bundle formula (Corollary
5.4). The arguments used in [B] then give rational Chern classes

Cq,p: K2q—p(X) - CHY(X,29 — p) ® Q,

satisfying the standard properties.

It turns out that it is somewhat more convenient to work with a mod-
ified version of Z9(X,*), using a cubical structure rather than a simplicial
structure. We show that the cubical complexes Z9(X, )¢ are integrally quasi-
isomorphic to the simplicial version Z9(X, *) (Theorem 4.7), and have a nat-
ural exterior product in the derived category (see §5, especially Theorem 5.2).
We also consider the “alternating” complexes N9(k) defined by Bloch [B2],
and used to construct a candidate for a motivic Lie algebra. We show that
there is a natural quasi-isomorphism

Z9(Spec(k), *)° ® Q — N¥(k)

(Theorem 4.11). The product structures are not quite compatible via this
quasi-isomorphism; it is necessary to reverse the order of the product in one
of the complexes to get a product-compatible quasi-isomorphism (Corollary
5.5).

The paper is organized as follows: We begin in §1 by proving some ex-
tensions of the results of Vorst on K,-regularity, which we use to prove a
basic result on the Kjy-regularity of certain iterated doubles. We also recall
some basic facts about relative K-theory, and use the Kj-regularity results to
compute certain relative Ky groups in terms of the usual K, of an iterated
double. In §2 we use, following Bloch, the A-operations on relative K-theory
with supports to give a cycle-theoretic interpretation of certain relative K
groups, analogous to the classical Grothendieck-Riemann-Roch theorem re-
lating the rational Chow ring to the rational K, for a smooth variety (see
Theorem 2.7). In §3, we use this to show that Bloch’s map

CHY(X,p) ® Q — K,(X)¥
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is an isomorphism for X smooth and quasi-projective. In §4, we relate the
cubical complexes with Bloch’s simplicial version, and also with his alternating
version. In §5 we define products and prove the projective bundle formula for
the rational complexes.

As a matter of notation, a scheme will always mean a separated, Noethe-
rian scheme. For an abelian group A, we denote A®zQ by Ag; for a homolog-
ical complex C,, we denote the cycles in degree p by Z,(C.), the boundaries
by B,(Cy) and the homology by H,(C\).

We would like to thank Spencer Bloch and Stephen Lichtenbaum for
their encouragement and suggestions, and thank as well the organizers of the
Strasbourg K-theory conference for assembling this volume. We would also
like to thank Dan Grayson for his comments on an earlier version of this
paper, and especially thank Chuck Weibel for pointing out the need for the
Ky-regularity results in §1, and suggesting the use of his homotopy K-theory
functor K H.

§1. NK and relative K,

In this section, we give a description of relative Ky, Ko(X;Y7,...,Y,),
in terms of the K, of the so-called iterated double D(X;Y3,...,Y,), under
certain assumptions on the scheme X and subschemes Y7,...,Y,. We begin

by extending some of Vorst’s results on NK, of rings (see [V]) to schemes
over a ring.

Fix a commutative ring A, and let Alg, denote the category of com-
mutative A-algebras, Ab the category of abelian groups. For a ring R, let
pr: R[T] — R be the R-algebra homomorphism pr(7) = 0. For a functor
F:Alg, — Ab, let NF: Alg, — Ab be the functor

NF(R) = ker[F(pr): F(R[T]) — F(R)].
Define the associated functors N?F for ¢ > 1 inductively by
N!F = N(N97'F).

We set N°F = F.
For R € Alg, and r € R, the R-algebra map

ér: R[T] — R[T)
¢-(T)=rT

237



M. LEVINE

gives rise to the endomorphism N F(¢,): NF(R) — NF(R), thus NF(R) be-
comes a Z[T]-module with T acting via ¢,. Let NF(R)[, denote the localiza-

tion Z[T, T~ '] @z NF(R). If r is a unit, then the map NF(R) — NF(R)[
is an 1somorph1s Tllettmg R, denote the locallzatlon of R with respect to the
powers of r, the natural map

NF(R) —» NF(R,)
factors canonically through N(R):

NF(R) — NF(R)[T]
\ 7
NF(R,)

For elements r1,...,r, of R, form the “augmented Cech complex”

(1.1)
0 >NF(R)S @ NF(R;)— ...
1<i<n

— b NF(Rr i, ,.ri,) = --» = NF(Rr,_r,) = 0.
1Slo<ll <...<i,,§n

where the map

P NF(Rrriy,riy) = & NF(Rryy iy yoyriy )
1Si0<i1<...<ip§n 1Sio<i1<...<ip+1sn

is given as the direct sum over indices (1 < ip < i3 < ... < tpp1 < n) of the
alternating sums:

p+1

z: Pl —~

) 0( 1)]6 EB NF(RT‘O,...,T‘,'J- ’~-~>7'ip+1) — NF(Rrioy...,rip+1 )?
]—
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and where

§;: NF(R  — ) > NF(Rryy,.r, )

TigyeenaTijyeensTip g

is the canonical map. The map € is the direct sum of the canonical maps
NF(R) - NF(R.,;).

Lemma 1.1. Suppose R is a commutative A-algebra, ry,...,r, elements of
R which generate the unit ideal. Suppose further that the map

NF(R[T] o i, )[r;j] - NF(R[T]T‘-O,,,,,,-,-?)

TigyeensTijgeees

is an isomorphism, for each set of indicies 1 < 39 < ... < tp < n. Then the
complex (1.1) is exact. In particular, the map

e NF(R) — @} NF(R,;)

is injective.
Proof. This is proved in ([V], Theorem 1.2); there the functor F is a functor
from Alg; to Ab, but, as the proof uses only the restriction of F' to the

category Algpg, the argument works as well in the case of a functor F: Alg 4, —
O

Let X be a scheme. We let Pz denote the category of locally free sheaves
of finite rank on X, and let K(X) denote the space 2BQPz; the pth K-group
K,(X), p> 0, is thus defined as the homotopy group 7,(K(X)). Letting A
denote the affine line over X, and Gmx the open subscheme A% \0x, we have
the “fundamental exact sequence” for p > 0

(1.2)
0— Kpi1(X) = Kpi1(AX) ® Kpi1(Ak) = Kp1(Gmx) — Kp(X) — 0

where the maps are those arising from a spectral sequence computing the
K-groups of P via the standard cover

PL = AL UAL.
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This allows the inductive definition of the K-groups K,(X) for p < 0 by
forcing the exactness of

Kpi1(AX) @ Kpy1(Ak) — Kpp1(Gmx) — Kp(X) — 0

for all p; it then follows (see [T], Theorem 6.6) that the sequence (1.2) is exact
for all p € Z.

Let 79: X — A% be the inclusion as the zero section. Recall the inductive
definition of the groups N9K,(X) as

Ky(X) for q=0,

q —
NIK,y(X) = {ker[i(’;: NI1K,(AY) > NT1K, (X)) for ¢ > 0.

We recall that a scheme X is K,-regular if N9K,(X) = 0 for each ¢ > 0.
Let U = {U,} be a Zariski open cover of X. Then there is a spectral
sequence (see [T], Proposition 8.3)

(1.3) EP? = @ao,..a) N K _p(Uay N...NUs,) = N'E_p_o(X).

The E,-term is the Cech cohomology with coefficients in the presheaf N 1K_p,
H{ ,(U,N*K_p); the sequence is strongly convergent for finite covers.

For an A-scheme X, and element f € A, we let X; denote the open
subscheme defined by the non-vanishing of f. Let Fx: Alg4 — Ab be the
functor

Fx(R) = Kp(X ®4 R);
in particular, we have N9F(R) = N'K,(X ®4 R). For f € A, we use the
notation NYK,(X)(s for N9Fx(A)(-

Lemma 1.2. Let A be a commutative ring, f € A and X an A-scheme.
Suppose we have a covering of X by affine open subsets Uy = Spec(Aq) such
that, for each «, either f is a non-zero divisor in A, or f is contained in some
minimal prime ideal of A,. Then the natural map

N1Ky(X )iy — NOKp(X;)
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is an isomorphism.

Proof. Let B be a commutative ring and suppose g € B is either a non-zero
divisor in B, or is contained in some minimal prime ideal of B. Then Vorst
([V], Lemma 1.4) has shown that the natural map

NYK,(B)y — NIK,(B,)

is an isomorphism (Vorst only proves this for p > 0, but the general result
follows from this and the fundamental exact sequence (1.2)). The general

result follows from this and the spectral sequence (1.3). O
Theorem 1.3. Let A be a commutative ring, X a reduced A-scheme. Sup-
pose we have elements fi,..., f, in A generating the unit ideal such that X
is Kp-regular for each j = 1,...,n. Then X is K,-regular.

Proof. Take ¢ > 0. Let F be the functor N~ ! Fx. Since X is reduced, the
scheme X ®4 B is reduced for all flat A-algebras B, in particular, for all B
which are localizations of a polynomial ring A[T]. By Lemma 1.1 together
with Lemma 1.2, the map

NIK,(X) = @1 NI Ky(Xy;)

is injective. Since each Xy, is K)-regular, the groups NYK,(Xy, ) are all zero
for all ¢ > 0, hence N9K,(X) is zero for all ¢ > 0, i.e., X is Kp-regular. O

Corollary 1.4. Let X be a scheme. If X is Kp-regular, then X is K,_1-
regular.

Proof. The exact sequence (1.2) gives the exact sequence:
N1K,(A%)® N'K,(A%) - N'K,(Gmx) — NYK,_1(X) — 0

for all ¢ > 0. If X is K,-regular, then Ak is clearly K,-regular; applying
Lemma 1.2, with A = Z[t], f = t, we see that Gmx is also K,-regular.
The exact sequence above then shows that X is K,_;-regular, completing the
proof. O

We recall that the n-cube <n> is the category associated to the set of
subsets of {1,...,n}, ordered under inclusion, i.e., the objects of <n> are
the subsets I of {1,...,n}, and there is a unique morphism ¢;-5: I — J if

241



M. LEVINE

and only if I C J. If C is a category, we have the category of n-cubes in C,
C(<n>), being the category of functors from <n> to C, e.g., n-cubes of sets,
schemes, topological spaces, etc. The split n-cube is the category <n>,,,
gotten by adjoining to <n> morphisms prcjy:J — I'if I C J, with

LIcruJ © pyjcrug = prcrotrcy; XK CcInNnJ
PICT O PICK = PICK

A functor from <n>,, to C is called a split n-cube, and an extension of
F:<n> — C to Fspi: <n>4p — C is a splitting of F. We note that sending
I to its complement I° defines isomorphisms <n> — <n>° and <n>.p —
<n>:£,; we often define an n-cube or a split n-cube on the opposite category
via these isomorphisms; when we wish to maintain the distinction, we will
refer to an opposite n-cube, or a split opposite n-cube.

Let X be a scheme, Y a closed subscheme. The double of X along Y,

D(X;Y), is the scheme making the following square co-Cartesian:

Yy 5 X
el lm
X 3 DX;Y)

i.e., D(X;Y) is two copies of X glued along Y.

If X = Spec(R) is affine, and Y is defined by an ideal I, then D(X;Y)
is Spec(D(R;1I)), where D(R;I) is the subring of R x R consisting of pairs
(r,7") with r — r’ € I. If R is Noetherian, then the R-submodule D(R;I) of
R X R is thus a finite R-module, hence D(R; I) is Noetherian if R is. Sending
the pair (R; I) to the ring D(R; I) is clearly functorial; thus, as every scheme
has an affine open cover, the double D(X;Y") exists for each scheme X and
closed subscheme Y.

‘We have the map

p:D(X,)Y)—> X

splitting the two inclusions r;: X — D(X;Y). If Z is a closed subscheme of
X, there is a natural identification of D(Z;Y NZ) with p~(Z); we denote the
closed subscheme p~1(Z) by D(Z,Y). This allows us to define the iterated
double D(X;Y;,Y;) as the double of the D(X;Y;) along p~*(Y2). The further
iterated double D(X;Y1,...,Y,) is defined inductively along these lines:

D(X;Yi,...,Y,) = D(D(X;Y1,...,Yn_1); D(Yn; Ya, ..., Yuo1)).
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Suppose we have closed subschemes Y7,...,Y, of a scheme X. We form
the opposite n-cube of subschemes of X, (X;Y7,...,Y,)., by

(X5Y1,...,Y0)r = NierYs
for each subset I C {1,...,n}; the map
(-X;Ka"'7Yn)I - (X;}/l""vyn).f

for J C I is the natural inclusion. We call the collection of closed subschemes
Yi,...,Y, split if the resulting opposite n-cube is split. We say that Y7,...,Y,
define a normal crossing divisor on X if for each subset I of {1,...,n}, the
subscheme (X;Y7,...,Y,)s is a regular scheme of codimension |I| on X (or is
empty); we call the resulting divisor Y7 + ...+ Y, a normal crossing divisor.

Lemma 1.5. Let X be a scheme, Y a closed subscheme. Suppose that the
inclusion 1: Y — X is split. Then the sequence

0 — Ko(D(X; V) 5P Ko (X) @ Ko(X) &5 Ko(Y) — 0

is exact.

Proof. For a scheme Z, let IsoPz the set of isomorphism classes in Pz; we let
[E] denote the isomorphism class of a locally free sheaf. The category Pp(x;y)

is equivalent to the category of triples (E, E', ¢), where E and E’ are locally
free sheaves on X, and ¢::*E — *E' is an isomorphism. Since the inclusion :
1s split, each automorphism p of :* E lifts to an automorphism g of F; thus the
isomorphism class of (E, E', ¢) is independent of the choice of isomorphism
¢. Thus, IsoPp(x;y) is the set of pairs ([E], [E']) of isomorphism classes of

locally free sheaves on X, such that ¢*[E] = i*[E’]. Using the splitting of ¢
again, this implies that the sequence

Z[IsoPp(x;y)] — Z[IsoPx] ® Z[IsoPx]| — Z[IsoPy] — 0
is exact, and the kernel of the first map is generated by elements of the form

(1.4) ([E], [E']) — (L), [E"]) + ([F), [E"]) — ([F]), [E"]).
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For a scheme Z, let Rz denote the kernel of the surjection
Z(IsoPz] — Ko(2);

i.e., Rz is the subgroup of Z[IsoPz] generated by expressions of the form
[E] — [E'] — [E"], where 0 —» E' — E — E" — 0 is exact. Since 7 is split, the
sequence

Rpx;y) > Rx ®Rx = Ry — 0

is exact. On the other hand, for elements ([E], [E']), ([E], [E"]),([F],[E"]),
([F1, [E"]) in IsoPp(x;y) We have the relations in Ko(D(X;Y)):

bl

(E], [E) + ([F), [E"]) = ([E ® F],[E’' ® E"])
=([F & F],[E" ® E'])
= ([E], [E"]) + ([F], [E"D).

Thus, elements of the form (1.4) are contained in Rp(x,;y); a diagram chase
finishes the proof. |

Theorem 1.6. Let X be a reduced A-scheme, A a commutative ring, and
let Y1,...,Y, be subschemes of X, defining a normal crossing divisor on X.
Suppose that there are elements f1,..., fr of A such that the collection of
closed subschemes Y1 N Xy, ,..., Y, N Xy, of Xy, is split foreach 3 =1,...,k.

Then the iterated double D(X;Y1,...,Y,) is Kp-regular for all p < 0.

Proof. By Corollary 1.4, we need only consider the case p = 0. If we replace
X and Y3,...,Y, with A% and A%,l Sy A%,n , the hypotheses of the theorem
remain valid; thus, we need only show that

N'Ko(D(X;Y1,...,Yy)) =0.
We have the natural map
D(X;Y1,...,Y,) — X;

which identifies the iterated double D(Xf; Y1NXy,...,Y,NXf) with the local-
ization D(X;Y3,...,Y,)s for each f € A. By Theorem 1.3, and our hypothe-
ses, we may assume that the collection of subschemes Y7,...,Y,, is split. The
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split, normal crossing hypotheses pass to the collection of closed subschemes
Y1NY,,..., Y1 NYy,; by induction we may assume that D(X;Y¥7,...,Yn_1)
and D(Y,; Y1 NY,,...,Y,_1 NY,) are Ky-regular. Our hypothesis that the
collection of subschemes Y, ...,Y,, is split implies that the natural inclusion

D(Y,;YiNYy,...,.Yao1 NY,) = D(X;Y1,..., Y 1)

is split.
We use the notation

D,(X;Y,):=D(X;Y1,...,Y,)
Dno1(X,Y.) := D(X; Y, ..., Y,)
D, 1(Yn;Y.NY,) =D(Yo;Y1NY,,...,. Y1 NY,).

The iterated double D,(X;Y,) is the same as the double of the scheme
D,_1(X;Y,) along the subscheme D, _;(Y,;Y.NY,). Thus we have the com-
mutative diagram

0 0
{ i
Ko(Dn(X;Y5)) —  Ko(Dn(Ak;AY))

1 1
I{O(Dn_l(X;Y*)) I{O(Dn—l(Aﬁ(;A%’.))

57 — D
I{O(Dn_l(X,Y*)) I{O(Dn—liA}(;A%ﬂ ))

1

Ko(Dn1(Yn; YaNYn)) —  Ko(Dn1(AY,5AY y, )
1 !

0 0

By Lemma 1.3, the columns above are exact; since the iterated doubles
D, _1(X;Y,) and D,_1(Y,;Y. NY,) are Ky-regular, and we have natural
isomorphisms

Dn1(A%;AY,) = Abx.vi.. Yot

1 . al 1
Dn—l(AYn’AY.nY,,) - Aon_l(y,,;y,ny,,),
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the last two horizontal arrows are isomorphisms, hence the first horizontal
arrow is an isomorphism. Thus N!Ky(D,(X;Y.)) = 0, completing the proof.
O

For a scheme X, let KB(X) denote the (possibly non-connective) spec-
trum defined by Thomason in ([T], §6) with 7,(KB(X)) = K,.(X), for n € Z.
If X is regular, all negative homotopy groups vanish. We also will consider
the spectrum KH(X) (defined by Weibel [W] for X affine and extended to
the case of a scheme by Thomason in [T] §9.11); the nth homotopy group
of KH(X) is denoted K H,(X). We recall from [W] and [T] that there is a
natural map

KB(X) > KH(X).

There is a spectral sequence (Theorem 1.3 of [W] for X affine, extended to
the case of a scheme using [T] §9.11)

(1.5) EPI=NTPK_((X)= KH_p,_4X).
In particular, if X is K,-regular for all p < n, then the map
Kp(X) — KHy(X)
is an isomorphism for all p < n. In addition, the “homotopy K-groups of X”,
KH,(X), satisfy:
KH-1) (Homotopy) the map

KH,(X)—> KH,(AY)

is an isomorphism.

K H-2) (Excision) Let ¢: A — B be a map of commutative rings, I an ideal
of A such that I = ¢(I)B. Then, letting KH(A,I) and KH(B,I) denote the
respective homotopy fibers of the maps

KH(A) — KH(A/I)
KH(B) — KH(B/I)

the map KH(A,I) — KH(B,I) induced by ¢ is a weak equivalence.
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K H-3) (Mayer-Vietoris for open subschemes) If X = U UV, with U and V
open subschemes of X, then

KH(X)— KH({U) x KH(V) - KHUNV).

is a homotopy fiber sequence.

We now recall the definition of relative K-theory, using the language of
n-cubes.

If X:<n> — C is an n-cube in C, we form the map of (n — 1)-cubes

X*E X+t 5 X~
by taking
Xf =X X[ =XpnmpXFf=XTcIu{n}).

This determines a functor from the category of n-cubes in C to the category
of maps of (n — 1)-cubes in C. If X: <n> — Top* is an n-cube of pointed
spaces, let Fib(X): <n — 1> — Top™ be the (n — 1)-cube defined by setting
Fib(X) equal to the homotopy fiber of the map

This gives the functor
Fib: Top*(<n>) — Top™*(<n — 1>);
iterating Fib n times defines the iterated homotopy fiber functor
Fib": Top*(<n>) — Top*;

we call Fib™(X) the iterated homotopy fiber of X. A similar construction
defines the iterated homotopy fiber of an n-cube of spectra.
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Let X be a scheme, and Yi,...,Y, subschemes. Applying the func-
tor K(—) to the opposite n-cube (X;Y7,...,Y,). gives the n-cube of spaces
K(X;Y1,...,Y,). with

K(Xa Yi,..., Yn)] = I{(niGIy})'

Let K(X;Y1,...,Y,) denote the iterated homotopy fiber over this n-cube
of spaces. K(X;Y1,...,Y,) is a model for the K-theory of X relative to
Yi,...,Y, and the relative K-groups are given by

Ky(X;Y1,...,Y,) = mp(K(X;Y4,...,Y)).

Applying the functors KZ(—) and KH(-) to (X;Y1,...,Y,)« and taking
iterated homotopy fibers defines the spectra

KB(X;v1,...,Y,) and KH(X;Y1,...,Y%);
denote the nth homotopy groups, n € Z, by
KB(X;v1,...,Y,) and KH,(X;Y1,...,Ys),

respectively. If Y :=Y; + ...+ Y, is a normal crossing divisor, we often write

K(X;Y), KB(X;Y) and KH(X;Y) for
K(X;Yi,...,Y), KB(X;Yi,...,Y,) and KH(X;YA,...,Yy),

respectively.
We have the natural map

KB(X;vi,...,Y,) » KH(X;Y1,...,Ys)
and a natural isomorphism

K.(X;Y1,...,Y,) » KB(X;11,....Y)
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for n > 0. If all the subschemes Y7 := N;eY; are regular, then
KB(X;v1,...,V,) » KH(X;Y:1,...,Y,)

is a weak equivalence.
Let D = D(X;Y3,...,Y,), with X reduced. As a topological space, D is
quotient of the disjoint union of 2" copies of X:

D = H X/ =

Ie<n>

where z in the copy of X indexed by I is identified with = in the copy of X
indexed by J if I D J and z is in Y\ ;. We denote the copy of X indexed

by I € {1,...,n} by X, and let ¢;: X; — D denote the inclusion. Let
D,,...,D, be the reduced closed subschemes of D,

D; = Uy with jerXr

Then i3(D;) = Y; (scheme-theoretically) for each j = 1,..., n, so the inclusion
1¢ defines the maps

tg: K(D;Dy,...,Dyp) = K(X;Y1,...,Yy)
ig: KB(D; Dy,...,Dy,) —» KB(X;Y1,...,Yn)
tg: KH(D; Dy,...,Dy) - KH(X;Y1,...,Y5)
If Z is a closed subscheme of X, the iterated double

D(Z;Y1NZ,...,Y,NZ)

is naturally a closed subscheme of D; we denote this closed subscheme of D
by D(Z;Y1,...,Yy).
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Lemma 1.8. Let Z be a scheme, W1,...,W,, closed subschemes. Then the
map

KH(D(Z;W,); D(Wy; W), - .., D(Wn—1; W), D1)
SKH(Z;Wh,. .., W)

is a weak equivalence.

Proof. We may suppose Z is affine; the general case follows by taking an

affine open cover of Z, noting that D(Z;W,) is a finite Z-scheme, and using

Mayer-Vietoris (K H-3) for the resulting open covers of Z and D(Z; W,,).
The spectra

KH(D(Z;W,); DIW;Wya),...,D(Wyp_1;W,), D)

and
KH(Z;W17"'7Wn)

are the iterated homotopy fibers over the n-cubes of spectra:

I— KH(D(Z;W,); D(Wy; Wy), ..., D(Wn_1; Wa), D1)1
I— KH(Z;Wy,...,Wu)r

The map ¢y thus gives the map of n-cubes of spectra

KH(D(Z;W); D(W1;Wy),...,D(Wn_1; Why), D1)x
SKH(Z; Wi, ..., Wn)

whence the commutative square of (n — 1)-cubes

(1.6)
KH(D(Z, W)a D(Wl; Wn)a o aD(Wn—l; Wn)7 Dl);‘_ N
N\ ig
KH(Z;W1,...,W)¥
1 1
KH(D(Z;W); DIW1; Wy),...,D(Wyp_1;Wy),D1);y
N\ g

KH(Z;Wy,...,Wy)s.
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For each I C {1,...,n — 1}, we have

(D(W1; Wa), ..., D(Wa_1; W), D1);r = D(Wr; W,)
(D(W1; Wa), ..., D(Wn—1;Wn), D1)1u{ny = D(Wr; Wa) N Dy

Taking * = I in (1.6) thus gives the commutative square

KH(D(Wr; W) — KH(Wr)

(1.7) ! !
KH(D(W;;W,)NDy) — KH(W;nW,).

Since Z is affine, so are Wi and W,; thus, (1.7) is gotten by applying the
functor K H to the diagram of rings

DR;I) B8 R
ml Ip
R 2 R/I

Here, W; = Spec(R), and the subscheme Wi N W,, of W is defined by the
ideal I; the maps pg and p; are the maps

po(r,r')y=r; pi(r,r') =7,

and p: R — R/I is the quotient map. Since p; is surjective with kernel (I,0),
we may apply excision to the square (1.7), and conclude that the induced map

(1.8)r KH(D(Wr;Wy);Wr) - KH(Wr, WrNWy,)

is a weak equivalence. As the iterated homotopy fiber over an n-cube of
spectra X is formed by first taking the (n—1)-cube of homotopy fibers Fib(X)
of the map X*: X+ — X~ and then taking the iterated homotopy fiber over
the (n — 1)-cube Fib(X), the weak equivalences (1.8); for I C {1,...,n — 1},
together with the Quetzalcoatl lemma, imply that :j is a weak equivalence,
as desired. O
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Proposition 1.9. Let X be a scheme, Y7,...,Y, closed subschemes. Then
the map

is: KH(D(X;Yi,...,Yn); D1,...,Dp) = KH(X;Y1,...,Y,)

is a weak equivalence.

Proof. Repeatedly applying Lemma 1.8, we have the weak equivalences

KH(D(X;Y1,...,Yn); D1,...,Dy)
— KH(D(X;Y1,...,Yn-1);D1,..., Dpn—1, D(Yy;Y1,...,Yn—1))

— KH(X;Y1,...,Yy).

This proves the result. O
Theorem 1.10. Let X be a scheme, Y7,...,Y, closed subschemes. Suppose
that

i) For each I C {1,...,n} the scheme Y7 is regular.

ii) The iterated double D(X;Y1,...,Yy) is Kp-regular.

Then the map
i;:Kg(D(X;Yl,...,Yn);Dl,...,Dn) — KB(X;v:y,...,Y,)
is an isomorphism. If m > 0, then the map
i Km(D(X;Y1,...,Y0); D1,...,Dp) = Kn(X;5Y1,...,Y0)

is an isomorphism.

Proof. Under the assumption (i), the map

KB(Y;) » KH(Y)
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is a weak equivalence for each I C {1,...,n}. Thus, the natural map
KB(XxX;v1,...,Y,) » KH(X;Y3,...,Ys)

is a weak equivalence. Under the assumption of K,,-regularity, it follows from
Corollary 1.4 and the spectral sequence (1.5) that the natural map

KB(D(X;Y1,...,Y,)) = KHy(D(X;Y1,...,Y%))

is an isomorphism.
The opposite n-cube of schemes

(D(X;}/l’-'-ayn);Dlv' "aDn)*
is split; thus there are natural projections

KB(D(X;11,...,Yn) » KB(D(X;Y1,...,Y2); D1,...,Dy)
KH,(D(X;Y:,...,Y,)) » KH,(D(X;Y1,...,Y,); D1,...,D,)

making the diagram

KB(D(X;1i,...,Y3)) — KB(D(X;Yi,...,Y);Dq,...,Dy)
1

!
KHn(D(X;Y1,...,Y,)) — KHn(D(X;Y1,...,Y,);D1,...,D,)

commute. Thus, the natural map
KB(D(X;vh,...,Y,); D1,...,D,) - KHy(D(X;Y1,...,Yn); D1,...,Dy)

is an isomorphism as well. From the commutative diagram

l
KHn(D(X;Yi,...,Yn);Dy,...,D) — KHnp(X;Yh,...,Y,)

KB(D(X;Yy,...,Yn); D4,...,D,) — KB(X;1i,...,Y,)
l
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we see that
KB(D(X;Yh,...,Yn);Dy,...,D,) = KB(X;13,...,Y,)

is an isomorphism, completing the proof of the first assertion. The second
follows from the fact that

KB(D(X;Yi,...,Yn);D1,...,D,) = Kn(D(X;Y1,...,Y,); Dy, ...,Dy)
KB(X;Y1,...,Y) = Knn(X;Y4,...,Y,)

for all m > 0. ]

The results of this section fit together to give an explicit description
of certain relative K, groups, in the following form. Let X be a scheme,
Y1, ..., Y, closed subschemes; let

T Vo 1oLy . 2 .y
ZJ.Y] d X, Zj,k-Y],k 4 Y,, Zj,k’Yiyk e Yk

be the inclusions. Let Px.y, ...y, be the following category: The objects are
pairs (FEy, %« ), where E, is a map from the set of subsets of {1,...,n} to
the objects of Px,

I — Ey € Px,

and 1, « is a collection of isomorphisms
Yr,;:15(Er) — 5(Erogsy)
such that ¢;; =id if j € I, and
i (Wrugsy ) 0 ik(r) = 5k (Drogry,s) 0 trk(r,k)-
for IC {1,...,n} and j,k € {1,...,n}. A map

f*: (E*, lb*,*) - (F*, ¢*,*)

254



BLOCH’S HIGHER CHOW GROUPS REVISITED

in Px.v,,...,y, is a collection of maps
fI: E[ — FI

in Px, with
i5(frugsy) o ¥r,; = ¢r1,5 045 (fr).

A sequence
0 = (Ex,Yux) = (Exytux) = (Brythan)’ — 0
is exact if the sequence
0—-E;—FEr—Ef—0
is exact for each I C {1,...,n}. We have the functors
8;: Px;vi,....Y, — Pxivi,...,Ya

defined by
65 (Ens Yu,) = (85(Exs), 8(x,x)),

with

. S h L
0i(Ea)1 = Eniy, 6i(¥ss)1k = {;/:11\{’}"" a i;

We have the commuting projections
pj: Ko(Px;vy,...va) = Ko(Px;vi,....¥, )
3 =1,...,n, defined by

Pi((Bas upn)) = (Bus Yue) = 6i((Ews tu,x))-
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Let
p: Ko(Px;vh,...v.) = Ko(Px;vy,....Y,)

be the composition

P=PnOPn-10...0pP1.

Corollary 1.11. Let X be a regular A-scheme, Y1, ...,Y, closed subschemes.
Suppose

i) The closed subschemes Y} are regular for each I C {1,...,n}.

ii) There are elements fi,..., fr of A, generating the unit ideal, such that
the opposite n-cube of schemes (Xyz;Y1 N Xy,..., Y, N X¢). is split, for

f=h,...,f=fr
Then there is a natural isomorphism

Ko(X;Yy,...,Y,) = p(Ko(Px;vy,....,Yn))

Proof. Let T denote the iterated double D(X;Y3,...,Y,). We have the ob-

vious equivalence of exact categories
Pxivi,...Y, — Pr,

giving the isomorphism

U: Ko(Px;vi,...,v,) — Ko(T)
The isomorphism ¥ then induces a natural isomorphism

U: p(Ko(Px;vi,....,vn)) — Ko(T;Dq,...,D5).
By Theorem 1.6 and Theorem 1.10, the natural map
Ko(T;Dy,...,Dy,) > Ko(X; Yq,...,Y,)

is an isomorphism, completing the proof. O
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§2 Relative cycles and relative K,

We use Bloch’s idea of a relative cycle to give a cycle-theoretic interpre-
tation of the relative Ko. We start with a discussion of relative K-theory with
supports, and the functorial A-operations on these groups.

If X = Spec(R) is an affine scheme, Hiller [H] and Kratzer [K] have

defined A-operations A\F: K,(X) — K,(X), satisfying the special A-ring iden-
tities, by giving maps

\:BGL,(X)* - BGL(X)™

which are stable, up to homotopy, in n.

Let Y be a scheme, and U an open subscheme; let Z be the complement
Y\U. Define the space KZ(Y) as the homotopy ﬁber of the restriction map
K(Y) — K(U). Similarly, if we have closed subschemes D,,...D, of Y,

define K4(Y; D,,...,D,) as the homotopy fiber of the restriction map
K(Y;Dy,...,D,) = K(U;UNDy,...,UN Dy).

The group
KZ(Y) = mp(KZ(Y))

is the pth K-group of Y with supports along Z; the group
KZ(Y;D,...,Dp) == np(K?(Y;D1,...,Dy))

is the pth K-group of Y with supports along Z, relative to D,...,D,.

Suppose that X is a regular scheme over a field. Then, following Gillet
[G], we have the following sheaf-theoretic description of K,(X). Form the
sheaf K x of simplicial sets on X associated to the pre-sheaf

V — BGL(T(V,0v))* x Z.

Then there is a natural isomorphism K,(X) — H7?(X,Kx). We have as well
the sheaves of simplicial sets K x,, gotten by using BGL} instead of BGL;

the stability results of Suslin [S] show that, for fixed p, H™?(X,Kx,») =
Kp(X) for all n sufficiently large.
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Soulé [So] has given A-operations on the sheaf level, \X:Kx,, — Kx,
which satisfy the special A-ring identities in the closed model category of
simplicial sheaves on the big Zariski site over X, and are stable, in the model
category, in n. This then gives functorial \-operations A\* on the groups
KPZ (X), satisfying the special A-ring identities. These operations agree with
the A-operations of Hiller and Kratzer on K,(X) when X is affine.

Grayson [Grl] has another approach to the construction of A-operations,
which gives functorial operations for an arbitrary scheme, and agrees with
the operations of Soulé or with those of Hiller-Kratzer when defined. It is not
known, however, whether Grayson’s A-operations satisfy the special A-ring
identities. We now give a brief sketch of Grayson’s construction.

If P is an exact category, Grayson and Gillet [GG] have constructed a
functorial simplicial set GG(P) whose geometric realization is naturally ho-
motopy equivalent to QBQ7P. Grayson constructs the A-operation A\* as a
simplicial map from a certain subdivision of GG(P) to a certain other sub-
division. This gives the operation A* on the geometric realization of GG(P),
functorial in the category P. Grayson has shown that these operations agree
with those defined by Hiller and Kratzer in the case P = Px for X affine;
this implies that they agree with the operations of Soulé in the regular case.
In any case, we may apply the construction of Grayson to any iterated ho-
motopy fiber as above, giving functorial A-operations on the relative groups
with supports I(}‘;Z(X; D,,...,D,), which agree with the operations defined
by Hiller-Kratzer or Soulé, when the latter operations are defined. Grayson’s
A-operations also agree with the classical A-operations on the Grothendieck
group Ko(Px). Since Grayson’s operations are functorial, they defines func-
torial Adams operations %* on Ix’PZ(X;Dl, ..., Dy), although the standard
properties of the Adams operations are only known in the cases discussed by
Hiller-Kratzer, Soulé, or for K¢(X). Additionally, Grayson [Gr2] has defined

a delooping of ¥¥; in particular, the operations ¥* on I\"pZ(X; D,,...,D,) are
group homomorphisms for all p > 0.

We fix an integer £ > 1, and let I{};Z(X; D1,...,D,)? denote the k9-
characteristic subspace of ¥ acting on KPZ(X; D,,...,Dy)q; i.e., the set of

v E I\’pZ(X;Dl, ..., Dy)qg such that
(% — k7 -id)N(0) = 0

for some N > 0.

Lemma 2.1. If X is regular and Dy + ...+ D, is a normal crossing divisor,
we have the functorial finite direct sum decomposition

KZ(X;Ds,...,Dn)g = ®KZ(X;D1,...,Dn)?,
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In addition, there is an integer N such that KPZ(X;Dl,...,Dn)(Q) is the
subspace for which (* — k9 -id)VY = 0.

Proof. Let V be a Q-vector spaces with an endomorphism L, and suppose we
have an L-stable flag

o=V, CcViC...cV,=V

in V. Suppose further that each quotient W; := V;/V;_; breaks up into a
finite direct sum of subspaces

Wi — @qu(q),

where L acts on Wi(q) by multiplication by £?. Then one easily sees that V

is a finite direct sum of subspaces V(9 where V(9 is the subspace of V on
which (L — k7 -id)™ = 0. Thus the finite direct sum decomposition

V = @qv(q)

is functorial on the full subcategory of the category of Q[L]-modules consisting
of those Q[L]-modules with finite filtration as above.

By considering the various long exact localization and relativization se-
quences associated with Z, X and D;,...,D,, we see that each relative K-
group with supports I(pZ(X; D, ...,Dy)g has a F-stable filtration with suc-
cessive quotients being 1*-subquotients of 1)*-modules of the form K, (Y)q,
where Y is a regular scheme. Thus, the considerations of the previous para-
graph prove the lemma. O

In the general setting, we have only the functorial subspaces
KZ(X;Dy,...,Dp)® C KZ(X;Dy,..., D).

Let X be a regular k-scheme, and s a finite set of closed subsets of X
with X € s. Let Z4(X) denote the group of codimension d cycles on X,
Z2(X) the subgroup of Z¢(X) consisting of cycles which intersect S properly
for each S € s. We will always assume that X is in s, if s = {X}, we
note that Z¢(X) = Z4X). If D4,..., D, are distinct locally principal closed
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subschemes of X, and I is a subset of {1,...,n}, let Dy = N;e;D;. Let D be
the divisor Dy +...+ Dy, let s(D) = {Dr | I C {1,...,n}}, and s(D)N s the
set of closed subsets DyN S, for I C {1,...,n} and S € 5. Let Z¢(X; D) be
the subgroup of Zf( D)ns(X) consisting of cycles Z with Z - D = 0; we often

write Z¢(X; D) for fo}(X; D). Bloch [B] has defined a homomorphism

cyct: Z4(X; D) - Ko(X; D)@,

which now describe.
If W is a closed subset of X, let Z¢(X;D)" denote the subgroup of

Z%(X; D) consisting of cycles supported on W.
If W C T are closed subsets of X, let

iw,re: KV (X; D)9 — KI(X; D)@

be the natural map. Similarly, suppose we have W C Y C X, where Y is
a regular closed subscheme of X, of pure codimension ¢, with Y intersecting
each Dy properly. The natural maps

K(YND;)— KY"P1(Dp); K(YND/\W) - KY"P\W (D \W)
followed by the natural maps
KYP1y(D;) —» K(Dy); KY"P\W(DA\W) — K(D;\W)
defines the map
pYex:KY(Y;Y NnD)— KY(X;D).
Composing p¥, cx Wwith the inclusion

w . —c w .
KX (Y;YnD)4 9 - KV(Y;Y ND)g
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and the projection
KY(X;D)o — K) (X; D)9

defines the map
PYex: K (Y;Y N D)™ — KV (X; D)9,
Similarly, the inclusions W C T and ¥ C X induce the maps
iw,re: Z4X; D)WY — ZYX; D) pYex: 2y YD) — 24X, D)V

Lemma 2.2. Let W be a pure codimension d closed subset of X, such that
each irreducible component of W intersects each D properly. Then

i) There is an isomorphism
cyc: Z4 X, D)g — KV (X; D)9,
functorial for pull-back by flat maps X' — X.

i1) If W' is another pure codimension d closed subset of X with W C W',
and Z is in ZP(X; D)g, then

iw,wix(cyc¥ (2)) = ey (2).

i1i) Suppose W C Y C X, where Y is a regular codimension c closed sub-
scheme of X such that Y intersects each Dy properly. Then the diagram

Zi—(v;DNY)E LS KF(Y;DNY)Eo
PYex | Lp¥ex
z4x; D) Y KW(X;D)®
commutes.
Proof. (following Bloch) We have D = Dy + ...+ D,, with each D; regular.
We first show, by induction on n, that

(2.1) KY(Xx;D)®» =0; fora>0,b<d.
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Suppose first that n = d = 0; we may then suppose W = X. If F is a field,
Soulé [So] has shown that

(2.2) K (F)® =0 fors>0,q<0.

Let XP? denote the set of codimension p points of X. Since X is regular over
a field, we have the Quillen spectral sequence

(2.3) EP? = @rexr K_og(k(2)®™P = K_,_ (X)¥.

By (2.2), this proves (2.1) for n = 0, W = X. Now suppose W is regular of
codimension d. By the Riemann-Roch theorem [G], the map

(2.4) PWex: K (W)@ - KWV (x)(e+d

is an isomorphism. This proves (2.1) in this case. If W is an arbitrary closed
subset of X of pure codimension d, let W' be a closed subset of W such that
WA\W' is regular, and W' has pure codimension d+1. By downward induction
on d (starting with d = dim(X )+ 1) we may assume that (2.1) is true for W'.
Then (2.1) for W follows from the exact localization sequence

o KV (xX)® 5 EV(xX)® o KW (x\wH®

a

This completes the proof of (2.1) for n = 0. The general case follows by
induction and the exact relativization sequence

= KNP (Dy, Dy N Dy,y...,DaNDpy)® — KV (X,Dy,...,Dy)"
— KWY(X,Dq,...,Dpn_1)® — ...

We now prove the statement of the lemma, proceeding by induction on
n. For n = 0, we use (2.4) to give the isomorphism

(2.5) Pl x: Ko(W)©® = K (X)@,
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in case W is regular. Using the spectral sequence (2.3) (with X = W), we see
that the restriction map

is an isomorphism. As Ko(k(W))(® = Ky(k(W))g is the Q-vector space
on the irreducible components of W, the inverse of the isomorphism (2.6)
composed with the isomorphism (2.5) defines the isomorphism

cyc: Z20(W)g — KV (X)),

If W is an arbitrary closed subset of codimension d, let W’ C W be a closed
subset of codimension d + 1 on X such that W\W' is regular. Then the
spectral sequence (2.3) implies the map

KEY (X))@ - g\ (x\w"H@

is an isomorphism. As Z°(W) — Z%(W\W') is also an isomorphism, the

map cycW\W' induces the isomorphism

cyc”: Z29(W)g — KV (X)),

in this case as well. Let T' D W be a closed subset of X, of pure codimension
d. The compatibility

(2.7) LW, T O cyc” =cyeT o LW, T

is obvious if W is a connected component of T'; in general, we may remove a
closed subset of T' of codimension d + 1 on X to reduce the proof of (2.7) to
this case.

If Y is a regular closed codimension ¢ subset of X, and W Cc Y C X
is a regular closed codimension d closed subset of X, we have the homotopy
commutative diagram

KW) =  KW()

N v
KW (X)
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This gives the compatibility

(2.8) pYex ocyc” =cyc” o PV x

in this case; for W an arbitrary closed codimension d closed subset, the com-
patibility (2.8) follows by localization as above.

In addition, Serre’s intersection multiplicity formula shows that, for A4 a
closed regular subscheme of X, intersecting each component of W properly,
we have the commutative digram

w
24Xy S KF(X)@
‘A Y
Zd(A)gnA Cyc_vinA I((}/VnA(A)(d)-

For general n, we have the divisor (D — D,,) - D, on D,. We have the
long exact relativization sequence

. oKWY Pr(p (D - D,)-D,)?P - KY(X; D)
1 0

— K (X;D — D) — K¥Pn(D,; (D — D) - Dy)@.
Since KlwnDn (Dpn; (D — Dy) - D)9 = 0, we have the exact sequence
0— IX’(}/V(X; D)(d) — I\’(YV(X,D — Dn)(d) N I{S’VﬁDn(Dn; (D — D,,) - Dn)(d)-

This in turn gives the commutative ladder with exact columns

0 0
1 . !
Z4X; D)y Rt KW (X; D)@

1

w
ZUX;D — D)y JEAN KY(X;D — D,)®
-D, | Liy,
w
ZUDp;(D — Dy)- D)y "Pr S K "Pr(Dp; (D — Dy) - D)@,
1 l
0 0
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The lemma now follows by induction and the five lemma. O

Let s be a finite set of closed subsets of X, with X € s. Let K¢(X; D)gd)

denote the direct limit of the groups K¢V (X; D)(®, as W ranges over pure
codimension d closed subsets of X which intersect each Dy properly and
intersect each Dj; N S properly for each S € s. From Lemma 2.2, we have the
isomorphism

cyct: Z4(X; D)o — K&(X; D).

We now investigate the natural map Kg(X; D)gd) — Ko(X; D)9,

Theorem 2.3. Suppose X is a regular, quasi-projective scheme over a field k,
and the divisor D = Y1 +...4Y, is a normal crossing divisor. Supppose further
that X is an A-scheme for some ring A, and there are elements fy,..., f, of A,
generating the unit ideal, such that, for each f = f;, the collection of closed
subschemes Yiy5,...,Yny of Xy is split. Let s be a finite collection of closed
subsets of X. Then the map

K3(X; D)@ — Ko(X; D)

is surjective.

Proof. Let G denote the Galois group of k over k. Then

(K§(Xg; Dp)i)C = K¢(X; D)V
(Ko(Xg; Dp))C = Ko(X; D)?,

so we may assume that k is infinite. We may also suppose that X is irreducible.
Let T be the iterated double

T:=D(X;Y1,...,Yn)

We recall that T has 2™ irreducible components, each isomorphic to X; as in
section 1, we index the components of T' by the subsets I of {1,...,n}, and
let Ty,...,T, denote the closed subschemes

T; = Ur with jerXr1-
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Via this indexing we have the inclusion i3: X — T, and we have
w(T;) =Y, 5=1,...,n.
By Theorem 1.6 and Theorem 1.10, the map

i3 Ko(T;Th, ..., Tn) = Ko(X;Yh,...,Y5)

is an isomorphism. The map :j is therefore an isomorphism of *-modules.
The group (Z/2)" acts on T for each ¢ = 1,...,n, we may view T as the
double

A ~

(2.9) T =D(D(X;Yi,....Vi,....Ya)i D(YsYi,.... Vi, .., Yn))

We then have the involution

T,':T—>T

gotten by exchanging the two copies of D(X;Y7,..., Yi,..., Y, ) in the above
representation of 7T'. Similarly, the representation (2.9) of T defines the ith
inclusion

L,-:D(X;}/'l,...,ﬁ,...,Yn) — T
identifying D(X;Y1,...,Y;,...,Y,) with T}, and also defines the ith projec-
tion

7T — D(X;Y1,...,Y5,..., V)

The inclusion
I{O(T, Tl, ceey Tn) - I{o(T)

is then split by the projection operator
n

o= Z(id — 7wl o).

=1
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Similarly, if W is a closed subset of T, invariant under the automorphisms ;,
we have the splitting of the map

KV (T;Th,...,Ta) — KV(T),

with splitting ¢" defined by the same formula as above i.e., we have the
commutative diagram

K¥(T) O K¥(T;Ti,...,T,)
i l

-4

KJ(T) 3 Ko(T;Ti,...,Tn).

By Grothendieck [Gro], Ko(T') is a special A-ring; as Ko(T;Th,...,Ty) is
a A-summand of Ky(T), it follows that Ko(T;Ti,...,Tn) is a special A-ring
(without identity) as well.

We recall the result of Fulton [F]: Let Z be a quasi-projective scheme over
a field k, and let n be an element of Ko(Z). Then there is a map f: Z — H,
where H is a homogeneous space for GL,/k, for some n, H is proper over
Spec(k), and there is an element p of Ko(H) with f*(p) = 7.

Let then n be an element of Ko(T;Ty,...,Tn)® = Ko(X;Y1,...,Y,)®.
Consider n as an element of Ko(7)(?¥. Take f:Y — H and p € Ko(H)qg as
above, so that f*(p) = 7 in Ko(T)?. We may project p to p(¥ € Ko(H)®;
since Ko(T;T1,...,Ty,) is a special A-ring, the projection on this subspace is
thus functorial, and we have

(D) =n.

On the other hand, using the Riemann-Roch theorem on the smooth
variety H, there is a pure codimension d closed subset Z of H and an element
x of KZ(H) with image p(? in Ko(H)qg.

For S € s, let T(S) denote the subscheme D(S,Y7,...,Y,;) of T. We
now apply the tranversality result of Kleiman [Kl], which states that there
is an element g of GL,(k) such that f~!(¢gZ) is pure codimension d on T
and intersects X, N ... N X1, N T(S) of T properly, for each collection of
indices Iy,...,I;, I; C {1,...,n}, and each closed subset S € s. Additionally,
GL, (k) acts trivially on K¢(H), so we may assume g = id, after changing
notation. Let W be a pure codimension d closed subset of 7' containing
f~1(2), intersecting each X, N...N X, NT(S) properly and invariant under
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all the 7;,¢ = 1,...,n. Let v be the element o(f*(x)) of K3V (T). Then v is in
KY¥(T;Ty,...,T,) and has image n in Ko(T;Ty,...,Th)g- Let W' = ig(W)
and let 8 = ¢5(7),

Be KV (X;v1,...,Y,).

Then B goes tonin K¢(X;Yi,...,Y,)g. By Lemma 2.1, we have the functorial
finite direct sum decomposition

KV (X;D) = @,K¥ (X; D).

Let a be the projection of 8 to the factor K¢V (X; D)(?; then « has image 7
in Ko(X; D)g, proving the theorem. O

Let
eye: Z4X; D)o — Ko(X; D)

be the composition of the map
cyct: Z4X; D)o — K§(X; D)@
and the natural map
K¢(X;D)?P - K&(X; D)D.

Corollary 2.4. Suppose X is a regular, quasi-projective scheme over an
infinite field, and the divisor D = Dy + ...+ Dy, is a normal crossing divisor.
Suppose further that X is an A-scheme for some commutative ring A, and
there are elements fy,..., f, of A, generating the unit ideal, such that, for
each f = fi, the collection of closed subschemes D1¢,...,Dny of Xy is split.
Let s be a finite collection of closed subsets of X. Then the map

eye: Z4(X; D)o — Ko(X; D)

is surjective.

Proof. This follows directly from Lemma 2.2 and Theorem 2.3. 0
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We now investigate the kernel of the map cyc. For a set s of closed subsets
of X, let s x A! denote the set of closed subsets S x A! of X x A! with S € s.
We have the group Z2_,,(X x A}; D x A + X x 1) and the subgroup

Z% ovexar (X x AL D x A' + X x1) C 2L (X x AL, D x A + X x 1)
consisting of cycles which intersect X x 0 properly. This gives the map
Z% ousxar (X x Al;D x A + X x 1) —» Z4(X; D)

by identifying X with X x 0 and intersecting a cycle in Z4(X x A'; D x Al +
X x 1) with X x 0. We let CH4(X; D) denote the quotient group

ZHX; D) [Im(Z% xousxar (X x A; D x Al + X x 1)).
Lemma 2.5. The map
eye: Z4(X;D)g — Ko(X; D)@
descends to a map
cyc: CH:‘(X; D)g — Ko(X;D)(d)

Proof. We have the commutative diagram

Zd (X xALDxA'+X x1)g Y  24X;D)g

cye | 1l eye
Ko(X x AL D x Al + X x 1)@ "XX°  E(X; D)@,

We have as well the exact relativization sequence

= Kpp1(X x AL D x A') —» Kp (X x 1;D x 1)
—Kp(X x A';D x A'+ X x 1) > K,(X x A; D x Al)

- Kpy(X x1;Dx1)—>...;
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since the maps
Ky(X x A;D x A') » K,p(X x 1;D x 1)

are all isomorphisms by the homotopy property for the K-groups of regular
schemes, the groups

Ky(X xA';D x A' + X x 1)
are all zero. Thus the composition
cyco(— X x0): 2% o(X x Al; D x A + X x 1)g — Ko(X; D)
is the zero map, proving the lemma. O

Let U be an open subset of X, W the complement X\U, Dy the divisor
D NU. Using the model BQP_ for Q 1 K(—), we form the spaces

Q'K(X x AD x Al + X x 1+ X x 0),
QIK(X x A, D x A' + X x 1+ U x0),
Q'KWY(X; D)
and
Q 'K(U; Dy);

U x 0 is not closed, but we define Q71K (X x A1, D x A+ X x1+ U x 0)
as the homotopy fiber of the map

QKX xAL,DxA' + X x1) - Q 'K(U x 0,Dy x 0).
By the Quetzalcoatl lemma, the homotopy fiber of the map

QKX x A", DxA' + X x1+4+ X x0) —
QIK(X xA;Dx A' + X x 1+ U % 0)
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is the homotopy fiber of * — Q7 'KW(X; D), i.e., KW (X; D). This gives us
the homotopy commutative diagram

KW(X;D) = KY(X;D)
l 1
(2.10) K(X;D) —» Q'K(XxAL,DxA'+X x14+X x0)
1 !

K({U;Dy) — Q'K(XxALZ,DxA'+X x14U x0)
where the columns are homotopy fiber sequences.

Let
E=D; xA'+...+D, xA'+ X x1+ X x0.

Let T be a closed subset of X x A! such that T intersects each E; properly,
let Wx0=TNX x0andlet U =X\W. Since TNU x 0= 0, we have a
canonical lifting of the map

QKT X x AL DX A"+ X x1) - Q'K(X x AL, D x A + X x 1)
to a map
p:QTKT(X x AL, Dx A"+ X x1) 5 Q' K(X xAY, DxA'+ X x 14U x0).

Additionally, the space 2 'K (X x Al; D x Al + X x 1) is contractible, hence

the horizontal arrows in (2.10) are homotopy equivalences.

Lemma 2.6. Let n be an element of KI (X x A'; D x A! + X x 1), and let
7 € K1(U; D) be the element going to ¢(n) under the natural map

Ki(U;D) = Ko(X x AL, D x A' + X x 1+ U x 0)

given by the diagram (2.10). Let é: K1(U, Dy) — KJ¥(X; D) be the boundary

map in the long exact localization sequence

K (U,Dy) — KV (X; D) = Ko(X; D) — Ko(U; Dy),
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and let
in: KI(X x A, D x A' + X x 1) » KV (X; D)
denote the pullback by the zero-section i9: X — X x Al. Then
6(r) = ig(m)-
Proof. Let
8 (QTTK(X x AL, D x A + X x 14U x0)) - KX (X; D)

be the boundary map coming from the second column in (2.10). Then é(7) =
6'(¢(n)), by the homotopy commutativity of (2.10). The relevant relativiza-
tion sequences gives the homotopy commutative ladder

(2.11)
KV (X, D) _ KY(X,D)
1 1
Q'KT(X x AD x A+ X x 1+ X x0)
N\
QIK(X xAL D x A+ X x 14+ X x0)
1 1
Q'KT(X x AL, D xA'+ X x1+U x0)
N\ ¢
QIK(X xAL D xA'+ X x14+U x0)
it | !
Q1KY (X, D) - Q1KY (X; D)

where the columns are homotopy fiber sequences. This shows that

§'(#(m)) = i5(n),

proving the lemma. a

Theorem 2.7. Let X be a regular, quasi-projective scheme over an infinite
field, and D = Dy + ...+ D, a normal crossing divisor. Let s be a finite set
of closed subsets of X. Suppose that
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i) X is an A-scheme for some commutative ring A, and there are elements
fi,..., fn of A, generating the unit ideal, such that, for each f = f;, the
collection of closed subschemes D1y, ...,Dyps of Xy is split.

ii) Let W' be a closed subset of X of pure codimension d, such that W'
intersects each Y and each Yy NS, S € s, properly. Then there is a
closed, pure codimension d subset W of X, containing W', such that W
intersects each Yy and each Yy N S properly, and, for each f = f;, the
collection of closed subschemes Dy s\W',..., D¢ \W of X (\W is split.

Then the map
cye: CHY(X; D)o — Ko(X; D)@

is an isomorphism.

Proof. Surjectivity follows from Corollary 2.4. Let then Z be in Z¢(X; D)g
and suppose cyc(Z) = 0. Let W be the support of Z and let U = X\W.
We may suppose that W satisfies the conditions of (ii) above. We have the
localization sequence

.= K (U; D) P ESEY (X; D) - Ko(X; D)D

so there is an element 7 of K;(U; Dy)® with §(1) = cyc" (Z). We have the
isomorphism

Ko(Ux AL, DxA'+U x14U x 0¥ - K,(U; Dy)¥;

let 77 be the element of Ko(U x A}; D x A + U x 1+ U x O)(d) corresponding
to 7. Let

E=D; xA'+...,D, xA'4+ X x1+ X x0,

Ey = ENU x Al. Note that (X x Al E) and (U x Al, Ey) both satisfy
the splitting conditions of Corollary 2.4; indeed, we need only replace the
ring A with the ring A[z], and the elements fy,..., f, of A with the elements
f1y. s fn,(—1)f1,...,(x—1)fn of A[x} By Corollary 2.4, there is a pure
codimension d closed subset Ty of U x A, intersecting each Ey; and each

Ey;n S x A! properly, and an element 5y of K(;‘FU(U x A'; Ey)(@ mapping
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to 7 under the natural map. By Lemma 2.2, there is a cycle Zy in Z4U x
Al; EU):‘S" with cyc™v (Zy) = nu.
Let T be the closure of Ty in X x Al. We claim that T intersects each

component of E;f and E; NS x A! properly. Indeed, each E7 is either of the
form Dy x A', Dy x 0 or Dj x 1, for some J. Additionally we have

TNE;C (W x Al) NENU(Ty N Eyr).

Since Ty intersects Eyy properly, the term Ty N Eyr has the proper dimen-
sion. Since W intersects each D; properly on X, it follows that W x Al
intersects Dy x Al, D; x 0 and D x 1 properly on X x A'. Thus the term
(W x A') N E; has the proper dimension as well, proving our claim for Fr;
the proof for E; NS x A! is similar. In particular, we have

ZUX x AVYT = Z¢ 4 (X x ADT.

Let 79: X — X x Al, 110 X — X' x Al be the inclusions as the zero-section
and the one-section. Let Z € Z& . ,:1(X x A)T be the closure of Zy. Let

Zy=2-(Xx1). As Zy - U x1 =0, it follows that Z, has support contained
in W. Replacing Z with Z — (Z; x A!), and changing notation, we have
Z- (X x1)=0and Zy = ZN (U x A!).
Let ¢ be an integer, 0 < < n — 1. Since
Z- (D) x A")YNU = Zy - (D; x A")
=0,

it follows that Z - (D? x A') = Z? x Al, for some cycle Z? supported on W.
Thus

0=(Z -X x1)-(D? x A")
=(Z-(D} x A1) (X x 1)
=(Z) x A')- (X x 1)
= z0.

Similarly, Z - (D} x Al) = 0, hence Z is in the subgroup

Zg(xo,sxAl(X S AlED x Al + X x 1)8
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of Z& ,unt(X x ANE. Let
n=cycl(Z)e KT (X x A;D; x A',..., D, x A1, X x 1)@,
By Lemma 2.6, we have

ey (Z - (X % 0)) = ig(eye(2))
= 1p(7n)
= 8(7)
= cyc" (2).

w

Since cyc” is an isomorphism, we see that

Z (X x0)= 2,
so Z = 0 in CH%(X; D)g, proving injectivity. O

§3 Relative cycles and K,

Following Bloch [B], we give a cycle-theoretic description of the rational
higher K-groups of a regular, quasi-projective scheme over a field. We use
a “cubical” version rather than a simplicial version for reasons which will
become apparent. We will define an isomorphism of the cubically defined
groups with Bloch’s simplicial version in the next section.

Let k£ be a fielde, X a k-scheme, and s a finite set of closed subsets of
X with X € s. Let 0* = A". Let D} be the subscheme z; = 1, D? the
subscheme z; = 0, and D; the subscheme z;(z; — 1) = 0. Let 00" be divisor
Dy + ...+ D,, and let 8t0O" be the divisor 0" — D?. If s is a finite set of
closed subsets of X, and £ = E; + ... E; is a reduced divisor on a k-scheme
Y, we let s x E denote the set of closed subsets

{SxEr|Ses, Ic{l,...t}}

of X xY. By a face of X x O, we mean a irreducible component of an
intersection of some of the divisors X x D;, ¢« = 1,...,p; we also consider
X x [P as a face of X x OF.
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Let Z2(X,n)° be the group
ZX,n)° = ZI 4o (X xO% X x 810M).
Intersection with the face D? defines map d,: Z(X,n)® — ZI(X,n — 1)°.
Since
dn—10dn(Z)=D5_, - (Dy - 2)

= D?z : (D?z—l 'Z)
=07

we have the complex (ZJ(X,*)¢,d)
Lt zax nyeds L R 29X, 0)C.
By definition, we have
H,(Z2(X,*)%) = CHI(X xP; X x o).
We define CHI(X,p)¢ to be Hy(Z(X,*)°); we often omit the subscript s

when s = {X}.

Theorem 3.1. Let X be a smooth, quasi-projective k-scheme, s a finite set
of closed subsets of X. Then the map

cye: CHY (X x OP; X x 0P )g — Ko(X x OP; X x oP) @)
defines an isomorphism

cYcq pt CHZ(X,p)b — I{p(X)(q).

Proof. Using the homotopy property of K-theory of regular schemes, there is
a natural homotopy equivalence

K(X xP; X x 0P) — QP (K (X))
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giving the isomorphism
Ko(X xP; X x aP) @ — K,(X)@.

Suppose we have verified the hypotheses of Theorem 2.7 for the normal cross-
ing divisor
D=Xx00=D1+...+ D,

on X x [?; then the map
cyc: CHL (X xP; X x 0P )g — Ko(X x OP; X x op)(@

is an isomorphism, proving the theorem.
We now proceed to verify the hypotheses of Theorem 2.7. Let A =
k[z1,...,zp). For each I C {1,...,p}, let f; be the element of A defined by

fr=1J= x [[(=z: = 1),

i€l 1194

and let vy = N;er(z; = 0)NN;gr(z; = 1). Then, for each I, vy is a closed point
of (P (with coordinates either 0 or 1), and the divisor fr = 0 is the sum of com-
ponents of O passing through vy. Thus, the n-cubes (O0%,; D1y, ..., Dpy,)
for different I are all isomorphic; for I = {1,...,n}, this n-cube is the collec-
tion of coordinate hyperplanes z; = 0 in the open subscheme [[,(1 —z;) # 0
of CP. In particular, the collection {fr | I C {1,...,n}} generate the unit

ideal in A. Additionally, the n-cube (DPI; Digyy...,Dpg)s is a split n-cube;
for I = {1,...,n}, the splitting is generated by the linear projections
7):0P — DY
W?(tl, cen ,tp) = (tl, .o ,ti_l,O,t,’+1, e ,tp).

This verifies the condition (i) in Theorem 2.7.
For condition (ii), let 7} be the linear projection

7}: 0P — D}
W}(tl,...,tp) = (tl,...,t,‘_l,l,ti+1,...,tp).
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Let W' be a pure codimension d closed subset of X x [P, intersecting each
face of O properly. From the condition it follows that for each ¢, the closed
subsets W? and W} defined by

WP = ()" {(W'NnX x D?); Wi=(@=H)"' (W nX x D}

are of pure codimension d on X X [P, and intersect each face of X x 9
properly. Indeed, for a face F of X x 9P, the projection n?(F') is again face
of X x 0P, and is contained in X x D?. We have

codimp(W N F) = codim,,?(p)((W' NX x D7) N} (F))
= codim oy (W' N 7 (F))
>d

The computation for W} is similar. Thus, letting W be the closed subset of
X x [P,

wW=w'u (Ui":lep) U (Ulewil)’

W has pure codimension d on X x O, and intersects each face of X x o
properly. By construction, the linear projections n? and n} map X x ?P\W
into DI\W and D}\W, respectively. Thus the n-cube

(X xP\W) g5 (D1\W)gys .-, (Dp\W)g,)

is split for each I € {1,...,p}, verifying condition (ii). This completes the
proof of the theorem. O

For a scheme X, the space BQPx gives the canonical delooping of the
space K(X). If we have closed subschemes Y7,...,Y,, the iterated homotopy
fiber over the n-cube

I — BQPy,

gives the canonical delooping of the iterated homotopy fiber K(X;Y7,...,Y,);
denote this delooping by Q' K(X;Y1,...,Y,). We let BQP%(n) denote the
connected component of the base point in Q71K (X x O™ X x 60") and
let BQP%(n + 1)* denote the connected component of the base point in
QIK(X xoOtl; X x otart?).
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Corollary 3.2. Let X be a smooth quasi-projective variety over a field k,
and let s be a finite set of closed subsets of X. Then the map

Z.g(_, *)a - ZQ(_’ *)a

is a quasi-isomorphism.

Proof. We have the commutative diagram
Hp(Zg(—a*)ccg) - Hp(zq(_,*)a)
CYCq,p "\ o cyc??
K,( X))@
As the maps cyc?? are isomorphisms for all p by Theorem 3.1, the map

Z{(—*)g = Z(—*)g

is a quasi-isomorphism, as desired. O

Theorem 3.3. The complexes Z9(—,*)g satisfy the Mayer-Vietoris axiom
for the Zariski topology, i.e., if U and V' are open subsets of X with X = UUV,
then the natural map

29X, *)6 — Cone(Z9(U, *)a ® ZYV, *)6 — ZI(UNYV, *)6)[—1]

is a quasi-isomorphism.

Proof. Let C denote the complex
Cone(Z9(U,*)g @ ZUV,*)g — Z9(U NV, %)§)[—1].
We first show how the isomorphism
cye: Hy(29(X,p)§) — Kp(X)D

extends to a map

cye: Hy(C) — Kp(X)@,
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Let F'? be the iterated homotopy fiber over the square

BQPH(n+ 1)t x BQPL(n+ 1)t — BQPi v(n+1)*
(3.2) l i
BQng(n) X BQ'P{'/(n) — BQ'Pg,nV(n).

As each term in this square can be functorially delooped, the homotopy groups
of F'? are all abelian groups, including m.

Let 7], denote the complex of abelian groups associated to the double
complex

11 (BQPE(n+1)T) Gf 1 (BQPL(n+1)T) — m(BQPEHAy(n+ 1))
l
71(BQPE(n)) @ m1(BQPY(n)) — T1(BQPAy(n)),

with differential decreasing degree and with 71(BQP¢~y(n)) in degree —1.
The long exact fibration sequences associated to the square (3.2) then give
the following exact sequence describing mo(F'9):

(3.3) m2(BQPHAy(n)) — mo(F7) — Ho(ri,) — 0.

The Adams operation * acts on the square (3.2), inducing an action on
the homology Ho(#{,) and a functorial finite decomposition

Ho(7{,)q = @aHo(7{,)®;

there is also an action on mo(F'?), but this latter action may conceivably be
non-additive. On the other hand, the maps cyc? induces an isomorphism of
the square

Zi9U,p+ 1)@ 29(V,p+1)g — ZY(U,p+1)
(3.4) ! |
Zp(Z9(U, %)) ® Zp(Z9(V,*))o — Zp(Z29(U,*))q

to the square (77:(11*)8)' Letting Tot(3.4) denote the total (homological) com-

plex of the square (3.4), with Z,(Z9(U, *))qg in degree —1, the map cyc? thus
gives an isomorphism

Ho(eye?)o: Ho(Tot(3.4)) — Ho(ri,) .
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Composing this with the surjection Z,(C) — Ho(T0t(3.4)) gives the map
Zy(cyc®): Z,(C) — Ho(nf,)®.
Let F = F°. The spaces
BQPy(p+1)*, BQPy(p+1)* and BQPynv(p+1)*
are all contractible, hence we have the homotopy equivalence
F — QFib(BQPu(p) x BQPv(p) —» BQPunv(p)),

compatible with the v *-action. By the Mayer-Vietoris property for the func-
tor K(—), this gives the homotopy equivalence

F - K(X xOf; X x o),

compatible with the *-action; similarly, the exact sequence (3.3) for ¢ = 0
gives the commutative diagram of abelian groups

T2(BQPLAv (7)) — mo(F°)
(3.5) ) !
Ki(UNV xP;UNV xP) — Ko(X xP; X x o0P);

here the map
K (UNV x??;,UNV xoP) - Ko(X xP; X x oP)

arises from the Mayer-Vietoris sequence for the covering {U x P,V x 0P} of

X x[P. The maps in (3.5) are compatible with the )*-action and the vertical

maps are isomorphisms; in particular, the ¥*-action on 7o(F?°) is additive
Let

p?:mo(F?)o — Ko(X xO0P; X x oP)@
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be the composition
70(F9)g — mo(F%)g — Ko(X xP; X x 8P)g — Ko(X xP; X x P)(@,

where the first map in induced by the map F¢ — F?°, the second comes from
the square (3.5) and the third is the projection of Ko(X x [O0P; X x 90P)g

onto the summand Ko(X x0P; X x 00P)(?. Suppose we have an element n of
m2(BQPE v (n)) with image h € 7o(F'?) under the map in (3.3). Then p?(h)
can be gotten by applying the composition of maps

T2(BQPfay (n)) = m2(BQPyAv(R))
— Ko(X x OP; X x OP)
— Ko(X xP; X x o)

to the element n. As this composition is the same as the composition

T2(BRQPHAv(n)) — 7’2(BQ'P£I]nV(n))(q)
— m2(BQPYAv(n)?
— Ko(X xOP; X x BDP)(‘I)

and as m(BQPEy(n)@ = 0 by (2.1) in the proof of Lemma 2.2, we see
that p?(h) = 0. Thus the map p? factors through the quotient Hy(n],) of
mo(F'?), and we may define the map

Z,(cye): Z,(C) — Ko(X x OP; X x o) @

by setting
Zp(cyc)(a) = pi(h), a € Z,(C),

where h € 7o(F?)q is any lifting of Z,(cyc?)(a) € Ho(7{,)® via the sequence
(3.3). One checks easily that this is indeed an extension of the map

cycq p: Zp(Z29(X,%)g) — Ko(X xP; X x o) (@,
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Using the argument of Theorem 2.7, we see that Z,(cyc) descends to the
map

Hp(cye): Hp(C)g — Ko(X x P; X x 0F) 0 = K,(X)@.

We have the commutative diagram

cyc?? cP
Hp1 (29U, %) @ Hp41 (Z9(V,))o ¥ BV Kpi1(U)D @ Kpir (V)@
l l

Hpr (29U NV, 9))o = E(UNV)@
l 1
Hp(C)Q HPSyC) KP(X)(q)
1 1

cyc?? Peyct? (@) (@)-
Hp(Zq(Ua*))Q EBHP(Z(I(U’*))Q - I{p(U) 69I{p+1(V) )

thus H,(cyc) is an isomorphism by the five lemma. O

For W a closed subset of X, let j: X\W — X be the inclusion of the
complement, and let Z{, (X, *)¢ denote the complex

Cone(5*: Z9(X,*)° — Z9(X\W, *)°)[-1].
If W is a closed subscheme of pure codimension d, we have the natural map
iwa: Z97HW, %) = ZL(X, *)°.
We let CHY, (X, p) = Hp(Z%, (X, %)°).
Theorem 3.4. Let X be a regular, quasi-projective k-scheme, 1: W — X

a closed subscheme, j:U — X the inclusion of the complement U = X\W.
Then there are natural isomorphisms

cycly: CHY, (X, p)o — I{:V(X)(q)
giving the commutative diagram

— CH!(U,p+1l)gq — CHy(X,p)o — CH(X,p)o —
cycqp+1 | cycm i cycq,p L
— K, (UH)@ - EKXV(X)@ - K, (X))@ — .
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In addition, if W is regular, of pure codimension d on X, then the map
iws@: ZT7H W, %) — ZE (X, %)

is a quasi-isomorphism.

Proof. The construction of the map cyc;"’; is similar to that of the map

H,(cyc) in Theorem 3.2. We give a sketch of the construction.
Let U = X\W. Let GY? be the iterated homotopy fiber over the commu-
tative square

BQP4(n+1)* — BQPL(n)
(3.6) ! l
BQPH(n+ 1)t —  BQPEL(n).

By considering the square of abelian groups gotten by applying the functor
m1 to the square (3.6) for ¢ and for ¢ = 0 as in the proof of Theorem 3.2, we

arrive at definition of the map cycgf';,.
In addition, if W is regular and pure codimension d on X, we have the
commutative diagram

CH" ' (W,p)q "% CH§(X,p)o
cycq—dap | L eyel,

K,(Ww)la—9 o KY(X)@.
Since cycq—d,p, cycm and
iwe: Kp(W)=D — KV (X)@
are isomorphisms, the map
iw«: CHT™ (W, p)o — CH{ (X, p)o

is an isomorphism as well, proving the second assertion. a
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§4 Cubes and simplices

In this section, we show that the higher Chow groups defined via cubes
agrees with Bloch’s higher Chow groups defined via simplices. To do this we
first prove the weak moving lemma and the homotopy property for the cubical
complexes ZJ(X, *)¢. The proofs are essentially the same as Bloch’s proofs of
the a.nalogous properties for the simplicialy defined complexes ZI(X, ), only
rather easier, as the cubical structure allows us to circumvent the necessity of
taking subdivisions, as is required in the simpicial version. For this reason,
we will be rather sketchy in our proofs, refering for the most part to Bloch’s
argument for details. We then use the homotopy property for both complexes
to define the desired quasi-isomorphism. We also consider the QQ-complexes
Bloch has defined by using alternating cycles on X x O", and we show that
these complexes are quasi-isomorphic to Z9(X, *)g

We note that the complexes ZJ(X, *)¢ are contravariantly functorial for
flat maps, and covariantly functorial (with approriate shift in codimension)
for proper maps. If K is a finite field extension of k, X the extension of X
to a scheme over K, and n: X — X the projection, then

(4.1) meom® =[K : k] -id
Let tyyx: WX — X xO"t! x P! be the subvariety of
X xO"t! x P! = X x Spec(k[z1,..-,Znt+1]) X Proj(k[To, T1])
defined by the equation
To(1 — 22)(1 — Tny1) = To — T1.
Let 7m,: WX — X x O" be the map defined by
Tn(Z,T1,- -y Tnt1,(t0 1 1)) = (2, %1, -y, Tn—1,Tn + Tnt1 — TnTnt1)-

Let
pr: X xO"! x P! — X xgnt?

be the projection. For a cycle Z € Z9(X x O"), we let WX(Z) denote the
cycle pux(iwx «(71(Z)), when 7, (Z) is defined.
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Lemma 4.1. i) The cycle WX(Z2) is defined for all Z in Z9(X x O")
i)
Z € Zliomm (X xO") = WX(2) € 21 jopin (X x O™,

ii) For Z in Z9(X x O"), we have
WX(Z) - (¢n41 = 0) = Z = WX(Z) - (zn = 0).
In this last formula, we identify the locus z, = 0 with X x O" by sending

Tpt1 tOT,.

Proof. Let A! C P! be the affine open subset Ty # 0. Then WX is contained
in X x O"t1 x Al; letting ¢t = Ty /Ty be the coordinate on A!, the subscheme

WX of X xO"*t! x Al is defined by the equation
1=Zn+ Tpnt1 — TnTnsti-
Thus, WX is regular, the map
Dn © inz:Wf — X xg*t!
is an isomorphism, and the map 7, can also be given as

7Tn(($,.’1,'1,...,1‘n+],t)) = ("L‘awla"'7wn—l7t)'

From this latter formula, it follows that 7w, is flat with 1-dimensional fibers.
This proves (i).
For (ii1), let
X xO"t! x Al - X xO"

be the projection

g(z,z1,...,Cnt1,t) = (2, 21,...,ZTpn-1,1).
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Then the map 7, is the composition g o sy x. Thus, for Z € Z9(X xO"), we
have

T (Z) = WX - ¢*(2),

the intersction product taking place in X x O0"*! x Al. Since the restriction
of the projection p, to WX is an isomorphism, hence proper, we have

WX (Z) = pns(WF - ¢*(2).
Let A, C X xO" x A, Ap,y1 C X xO" x Al denote the “diagonals”

An = {(x7$17~--,xn,0,t) | t :xn}
An-l-l = {(:C-)xl,---,o,wn_i_l,t) I t = $n+1}

Then, in X x O x A!, we have
WX(Z) - (2n41 = 0) = Ag; Wf(xn =0) = Anp41.
Thus, for Z € Z9(X x O"), we have

WX(Z) (Znt1 = 0) = pps(W,F - ¢*(Z)) - (Tn41 = 0)
= prua((W - ¢*(2)) - (Tnt1 = 0))
= Pra((W5' - (Zny1 = 0)) - ¢*(2))
= Pns(An - q*(Z))
= Z.

This proves the first formula in (iii); the second is proved similarly.
For (ii) let E be a face of X x 90", let S be in s and suppose Z is in
Z] ogn (X xO"%). If E is contained in the locus £,41 = 0, then the argument

proving (iii) shows that

supp(W;X (Z2)) N (2n41 = 0) = {(z,21,-..,2n, 1) | (2,21,...,25) € supp(Z)}.
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Since Z intersects E N S x O" properly in X x O, it follows that WX (Z2)
intersects E N S x O**! properly in X x O"*t1. A similar argument handles
the situation in case E is contained in the locus z, = 0. From the equation
describing WX, it follows that WX N (zp41 = 1) is the locus z,4; =t = 1,
and WX N (z, = 1) is the locus z, = ¢t = 1. From this, it follows as in the
proof of (iii) that

supp(W;(2)) N (Tny1 = 1)
== {(w7$1’~"’wn—l7wn71) l (:ca"xl,"'awn—la 1) S SUPP(Z)},

and

supp(W, (2)) N (zn = 1)
={(z,z1,---yTn-1,1,Zn41) | (z,Z1,...,Zn-1,1) € supp(2)}.
These two identities allow us to verify (ii) in case E is contained in the locus

Tpy1 = 1 or z, = 1, completing the proof. O

We suppose we have an algebraic group G and an action of G on X.
Let K be an extension field of k, and let 3: A}, — Gk be a morphism with
(1) = id. Let ¢: X x AL, — X x A}, be the isomorphism

¢(:I,',t) = ("b(t) : il,',t)-

Let gp:P — P~ ! be the projection on the first n — 1 factors. For a cycle Z
in Z9(X xP™1), we write Z x A! for ¢, '(Z).
We define the map

ha: 2%« pp (X xO") — Z9(Xx xO"F)
by
ho(Z) =2 x A' — ¢(Z x AY) = WX(dZ x A1) + WXK($(dZ x A1)).

Here dZ = Z - (X x Dg).
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Lemma 4.2. Let X be a k-scheme, with finite collections y, s of closed
subsets of X. Suppose G -Y = X for eachY € y, and that ¥ (z) is k-generic
for each x € A'(k). Then, for each Z € Z1(X,n)¢, hn(Z) isin ZI(Xg,n+1)°
and ¥(0)(2) is in Z},s(XKk,n + 1)°. In addition,

dhn(Z) = Z —(0)(Z) — dZ x A' + ¢(dZ x A).

Proof. Let Z be in Z{(X, n) Arguing as in the proof of Lemma(2.2) of [B]
shows that (0)(Z) is in 2] s(Xk,n+1)¢, that Z x A! and ¢(Z x A!) are in
Z] o+ (X xO*1), and that dZ x A' and ¢(dZ x A') are in 2], 5. (X xO").
We have

(Z X Al —¢(Z X AI))'(.’L'-,H.] = 1)=0
(Z x A = $(Z x A1) - (znt1 = 0) = Z — (0)(Z)
(Z x Al — $(Z x A1) - (20 = 1) = 0
(Z x A — ¢(Z x A1) - (2, =0) =dZ x A! — ¢(dZ x A?)

and all other intersections (Z x A! — $(Z x A'))-(z; = 0,1) are zero. Applying
Lemma 4.1, we see that hn(Z) is in ZJ 5.4 (X X D""'l) It follows from

formula (iii) of Lemma 4.1 that
hn(Z) - (2;, =0)=hp(Z)-(z;=1)=0

forz=1,...,n, and
hn(Z) - (Tny1=1) =0
as well. Thus h,(Z) is in Z(Xgk,n + 1)°. The formula for dh,(Z) follows

directly from the definition of h,, the intersection computations made above,
and formula (iii) of Lemma 4.1. O

Lemma 4.3. Suppose G-Y = X for each Y € y, and that ¢ (z) is k-generic
for each x € A'(k). Let m: X — X be the natural projection. Then the map

7 ZI(X, %)) Zgus(X, %) — Z2(X ke, %)/ Zyus(X ke, %)°

is null-homotopic. If K is a pure transcendental extension of k, then the
inclusion

Zyus(X,#)° C ZI(X, %)°
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is a quasi-isomorphism.

Proof. For the first assertion, the maps h, define a null-homotopy. For the
second, if k is finite, we may find an infinite, algebraic, pure p-power extension
k,, for each prime integer p. If we prove the assertion for k, and k; with p # ¢,
the result then follows for k, using the formula (4.1). We therefore assume
k is infinite. Thus, if T,...,T, are in Z5,,(Xk,p)", K = k(t1,...,tm), we
can find an open subset U of A7* such that the T; are the restnctlon to the
generic point of cycles 7; in Z U‘.,(X x U,p)¢, for i = 1,...,7. We may then
find a k-point z € U and form the specialization spx(T) = 13(7;), arriving
at the cycles sp,(Ti) € Z]us(X,p)°. We have a similar specialization for
Zi(Xk,p)°.

It suffices to show that ZI(X,*)°/Z/ (X, *)° is acyclic. Since the map
7* is null-homotopic, it suffices to show that 7* is injective on homology. If
7*(Z) = dW, then we may specialize to get

*

Z = spz(dW) = d(spz(W)),

proving injectivity. O

Proposition 4.4. Let X be a k-scheme, with a finite collection s of closed
subsets of X. Let y = {X x Hy,...,X x H,}, where H; is a closed subset of
A", :=1,...,r, n > 0. Then the inclusion

Z;’UP;(S)(X x A", *)° C ZJ. « 5y (X X AT, %)

is a quasi-isomorphism. Here p}(s) is the collection of subsets {SxA™ | S € s}.

Proof. Let G = A™/k, acting on A" by translation. Let #1,...,t,,u1,...,Up
be transcendental over k, and map A} to Gk by the mapping

z — (t1 + zUL, ..., tn + TUR).

Applying Lemma 4.3 proves the proposition. O

We now can prove the homotopy property for the complexes ZI(X, *)°.
The proof follows the method of Bloch in [B].
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Theorem 4.5. Suppose X is a k-scheme. Let s be a finite collection of closed
subsets of X. Let p: X x A" — X be the projection. Then the map

pT: 2 X, *)¢ — Zg:(a)(X X A™, )¢

is a quasi-isomorphism.
Proof. By induction, we need only consider the case n = 1. Let P be a finite
set of k-points of Al. By Proposition 4.4, the inclusion

Zq

1 1
Xxpup;(s)(X x Al %) C Z:’;(s)(X x Al x)°

is a quasi-isomorphism. Next, let 79: X — X x A!, {1: X — X x Al the
zero-section and the one-section. We claim that the two maps

%
Zg(x{o,l}uP;(s)(X x Al’*)c : qu(X’ *)c

.
31

are homotopic. Indeed, identify X x A! x O® with X x O"*! by sending
(z,t,z1,...,2n) to (z,21,...,Zp,t). Let

H,: Z.;I(x{o,l}(X x Al,n)® — Z9(X,n +1)°
be defined by
Ho(2)=2Z —i3(Z) x A —=W2X(dZ) + WX [(:3(dZ)) x A'.
By Lemma 4.2, H,, does in fact define a map

Z?{x{o,uu;’;(s)(X x A',n)® — Z{(X,n+ 1)c.

We also have

dH,(2) = i(Z) — i*(Z) — dZ + i¥(dZ) x Al,
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SO
(dHn + Hn_1d)(Z) = i%(2) — i(2Z) — dZ + i3(dZ) x Al
+dZ — i*(dZ) x Al

=15(2) —41(2),

giving the desired homotopy.

Finally, let 7: Al x Al — Al be the multiplication map 7(z,y) = zy. T
is flat, hence 7*: Z9(X x Al %) — Z9(X x Al x Al )¢ is defined. Consider
the diagram (we omit the subscripts s etc. for clarity)

29X, %) DL 29X x AL, %) T ZI(X x Al x Al %)
Pi \a / q.iso . T q.iso
29X x AL, %)% 0.1 T ZUX x AN x AL )% a0
ol L
ZUX x Al %)
For Z in Zg{x{o,l}(X x Al %)¢, we have
0t (2) =2, g7 (2) = piie(2);
since ¢7 = i§ on homology, the map p] is surjective on homology. Since
igpi(Z) = Z, p} is injective on homology, proving the theorem. |

Let A™ = Spec(k[to,...,tn]/ > ;ti —1). Let
LA™ 5 AR ol: A" — A"

be the morphisms with

tj lfj <1

6 (ty) = {0 if j =1
17} ifj<:
o) = ti+tipr =i
ti—1 if j >4
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This forms the co-simplicial scheme X x A°®. Let OA™ be the normal crossing
divisor (¢p =0)+ (¢1 =0)+...+4+ (¢, = 0). Form the simplicial abelian group
Z1(X x A®) with n-simplices

ZUX x A%)p = Z1 gan (X x A™)

and with boundary and degeneracy maps induced by §:* and oi*. Let Z3(X, *)
be the normalized chain complex of Z¢(X x A®). Bloch’s higher Chow groups,
CHY(X, p) are defined by

CHS(X,p) = Hp(ZJ(X, ¥));

we omit the subscript s in case s = {X }. Bloch has shown that the complexes
Z9(X, *) are contravariantly functorial for flat maps, covariantly functorial for
proper maps and that

(1) (Theorem 2.1 of [B]) Let X be a scheme over k, s a finite set of closed
subsets of X. The pull-back

P ZI(X, %) = 2 (X x A, %)

is a quasi-isomorphism.

(2) (Lemma 2.3 of [B]) Let X be a scheme over k, s and y finite sets of closed
subsets of X, K an extension field of k. Suppose G -Y = X for each
Y € y, and that ¥(z) is k-generic for each = € Al(k) (notation as above).
Let m: X — X be the natural projection. Then the map

T ZI(X,*) ] Zyus (X, %) = Z{( Xk, %)/ Zyus(X K, *)

is null-homotopic. If K is a pure transcendental extension of k, then the
inclusion
Zyus(X,*) C ZI(X, %)

is a quasi-isomorphism.
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We now proceed to show that the complexes ZJ(X, *) and ZI(X, *)¢ are
quasi-isomorphic. Let

ZUX,m,n) C Z], (ommxaniamxaany(X xO7 x A™)
be the subgroup consisting of cycles Z such that
Z - (X x(z;=0)xA")=0 fori=1,...,n—1
Z- (X x(z;i=1)xA")=0 fore=1,...,n

Z- (X xO"x((#;=0)=0 fori=1,...,n;

we also assume the cycle Z intersects each S x Dy x AJ properly, where S is
in s, Dy is a face of O™ and AJ is a face of A™. Let

d:Z3(X,m,n) —» ZI(X,m —1,n)

be the map
Zw— Z (X x(zm=0)xA"),
and let
d"Z{(X,m,n) —» ZI(X,m,n — 1)
be the map

Zw— Z (X xO™ x (to = 0)).

This gives us a double complex (Z¢(X,m,n),d',d"); we let Tot, be the asso-
ciated total complex with differential d = d' + (—1)™d" on ZJ(X, m,n). We
have the augmentations

e': Tot, — Z9(X, *)S

and
€": Tot, — ZI(X, *).
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Lemma 4.6. For n,m > 1, the complexes
(24(X,m,*),d") and (Z}(X,*,n),d")

are acyclic .

Proof. Let (I — Ck, 1) be an n-cube of homological complexes. We consider
Cy,x as an (n + 1)-dimensional complex, and let Tot(C, «) denote the associ-
ated total complex, with Cy ¢ in degree zero. Let 02,0 denote the intersection

of the kernels of the maps

S

Cipop—Chpiy t=1,...
Then we have the natural map
CS,Q — Tot(Cly «)
which is a quasi-isomorphism if, for each p, the n-cube of abelian groups
I—-Cpr; ICA{1,...,n}

is split.
For I C {1,...,n}, we let A; denote the face of A™ defined by ¢; = 0 for
1 € I. We apply the above considerations to the n-cube of complexes C, ;:

I 2 op (X x A %)°.

The inclusion maps

Aru(iy — Ar

are split by linear projections

A1 — Arugiys
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so the n-cube C, s is split. Thus we have the quasi-isomorphism

C2 y — Tot(Cu ).

*

The homotopy property Proposition 4.4, together with the weak moving
lemma Lemma 4.3 imply that Tot(C\,,.) is acyclic for n > 1. As

CS,@ = (ZE(X7 *, n)7 d’)7

we have proved this half of the lemma. The proof of the other half is similar
(using properties (1) and (2) above instead of Lemma 4.3 and Proposition 4.5),
to show the necessary splitting, one uses the construction of the projections
7, defined in (4.2) below. The details are left to the reader. O

Theorem 4.7. Let X be a scheme over k, s a finite collection of closed
subsets of X with X € s. Then there is a natural quasi-isomorphism
290X, %)° = ZI(X, %).
Proof. Consider the (homological) spectral sequence
Etll,b = Hb(zg(Xa a, *)) = Ha+b(TOt*)'
By Lemma 4.6, the spectral sequence degenerates at E', and the augmenta-
tion
€": Tot, — ZI(X,*)
is a quasi-isomorphism. Similarly, the augmentation

€': Tot, — Z9(X, %)

is a quasi-isomorphism. Thus

" 1—1

is the desired quasi-isomorphism. O
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Corollary 4.8. Let X be a regular quasi-projective scheme over k, s a finite
collection of closed subsets of X. Then the inclusion

Zg(X’ *)Q - Zq(Xa *)Q'

is a quasi-isomorphism.

Proof. By Theorem 4.7 we have a commutative diagram, with the vertical
arrows quasi-isomorphisms

ZUX, N — ZUX,%)§
l l
Zi(X,¥)e — ZU(X,*)o-

By Corollory 3.2, the top horizontal arrow is a quasi-isomorphism, hence the
bottom horizontal arrow is a quasi-isomorphism as well. O

Corollary 4.9. The assignments

X - 29X, %)
X — Z9(X,%)§

extend to a contravarient functor from the category of smooth quasi-projective
k-schemes to the derived category D (Ab) of homological complexes which
are zero in sufficiently large negative degree.

Proof. If f:Y — X is a morphism of quasi-projective k-schemes, with X
smooth, let S; = {z € X | dimf~! > ¢}, and let
s =s(f) =1{X,S,S51,...,5nv = 0}.

One checks (as in [B], proof of Theorem 4.1) that f~1(Z) is defined for each
cycle in ZJ(X,*)¢. Let

ig: ZI(X,%)§ — Z9U(X,%)d
be the inclusion, and let

29X, *)a — ZY, *)a
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be the composition in D} (Ab)

i—l *
ZU(X, %) o ZIX, )G 5 29, %G
If y is any other set of closed subsets of X such that
frZ20(X, %) — Z9(Y, %)°

is defined, then, the commutativity of the diagram of inclusions

Zi,(X,x)e Y ZH(X )
iy,sz l \ Z‘.~3L.J'y l z..sr
ZH(X,*)° - Z1(X, x)°
shows that
froigt = froigj, =froi,l.

This gives the functoriality f* o g* = (g o f)* for composable maps f and g,
completing the proof for the cubical complexes Z9(X, *)¢. The proof for the
complexes Z9(X, *) is the same. ]

Notation. Let f:Y — X be a morphism of quasi-projective k-schemes, with
X smooth, and let s(f) be the set of closed subsets of X given in the proof
of Cor. 4.8. We set Z{(X,*)° = Zg(f)(X, *)C.

Bloch [B2] has defined Q-complexes N9(X),; for X = Spec(k), Bloch

has defined products
U N9(k)y @ N (k)y — NI (E),

making the homology. @, ,Hp(N?(k)«) into a bi-graded ring (graded com-
mutative in the p-grading, commutative in the ¢-grading). We conclude this
section by defining quasi-isomorphisms

Alt?: Z9(X, %) — NU(X)..
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After we define products on the complexes Z9(—, *)g in the next section,
we will show how Alt* is compatible with the products when X = Spec(k)
(actually, the two ring structures are opposites of each other).

Let F}, be the subgroup of the the group of k-automorphisms of [P gen-
erated by the permutations

(Z1,-.-,2p) = (To15-+ -, Top),
o € ¥, and the map
T(21,22,...,2p) = (1 —z1,22,...,2p).

F, is the semi-direct product of (Z/2)? with ¥,, with o, acting on (Z/2)P by
permuting the factors. In particular, the homomorphism

sgn: X, — {£1}

and the sum

(Z/2)P - Z/]2
extend uniquely to the homomorphism
sgn: F, — {£1}.

Let Alt, be the central idempotent in the rational group ring Q[Fp]:

1 sgn{ v

veF,
F, acts on 25 50 (X xOP) in the obvious way; the group N'9(X), is defined
by
NUX)p = Alty(Z25% o (X X OP)Q) C 2% o (X x P ).
Sending Z to 2p(Z - (z, = 0)) defines the map

dp: N (X)p = N (X)p—1
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giving the complex (M9(k).,d). The product
U:NU(k)y @ N (k) — NI (k),.
is defined by Z U W = Altyyp(023(Z x W) for Z € NU(k)p, W € N (k)

where
023:X><l:|”><X><EJP'—>X><X><D”><[:}”'.

is the exchange of factors.
We now define a projection

(4.2) Tp: Z% o (X X OP) — 29X, p)°
in two steps: 7, = g2 0 ¢1. To define ¢y, let ¢;:P~! — @ be the inclusion
1j(T1,. 0 Zp_1) = (T1,.. ., 21,1, Zj,. .., Tp_1),
j=1,...,p, and let p;:0» — OP~! be the projection
Pi(Z1,-- s Tp) = (T1,. ., Tjo1, 41,445 Zp)-

For Z € Z5% , o (X x OP), define ¢1(Z) to be the cycle Z — 3°%_, p3(i3(2)).
This defines

q1: Z% o (X XOP) = Z% o (X xP5(x1 = 1)+ (22 = 1) +... +(zp = 1)).
Then

@1(Z)-(zj=1)=0 j=1,...,p
q1(Z) (z;=0=2Z-(z;=0)-Z-(zj=1) j=1,...,p

To define g2, we let 7; € ¥, be the permutation

i ifi < j
Tj(i)={i—1 if i > j

p if 7 = 3.
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and let pj: (z; = 0) — ! be the isomorphism
pi(x1,y 3 2j=1,0,Z541,.. ., Zp) = (T1,.+ ., Tj—1, Tjt15. .., Tp).
For Z € Z% , gp (X x OP), let WJ(Z) be the cycle 73 (WX (p;(Z - (z; = 0))).
Define
q2: Z% o (X X ) = Z5 o (X xOP)

by

w(2)=2 -3 Wi

j=1

By Lemma 4.1, we have
92(2) (z;=1)=Z-(z;=1) j=1,...,p

2(Z)-(z;j=0)=0 j=1,...,p—1

02(2) - (2p=0)=Z (e, =0) = > Z-(z; =0)

Letting 7, = g2 0 q1, we have defined the desired projection.
We form the complex Z9(X,*)4! by

ZYX, %)M = 2L o0 (X x TP),

with
dP: Zq(-X7p)Alt - Zq(X’p - 1)Alt

being the map

dp(2) = [ Y (1) py(2)] - [(zp = 0) — (zp = 1)].

Pezp
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Then the inclusions
i Z29(X, %) — ZUX, ), JNI(X). C 29X, %)
are maps of complexes, as is the projection
7 Z9(X, ) 5 Z9(X, *%)°.

The reader will easily verify that m o¢ = id.

The action of F}, on [P induces an action of F}, on Z,(Z29(X, *)¢). If we
let F, act on OP*! by identifying P! with ¥ x A, and letting p € F}, act
via p xid, we see that the action of F}, on Z,(Z9(X, *)°) descends to an action
on CHY(X, p)¢; for p € Fp, let

p«: CHY (X, p)° —» CHY( X, p)°

denote the resulting action on CH?Y(X, p)°.

Although a single element o € F, does not canonically give rise to an au-
tomorphism of the complex Z9(X, *)¢, a compatible family of automorphisms
does. For future use we consider on some special examples of compatible
families.

For a homological complex C,, let CZ=? be the subcomplex

0 forn <p
Crzp = { ker(d:Cp — Cp_1) forn=p
Chr for n > p,

and let C}ZP be the subcomplex

C*ZP—{O forn<p

C, for n > p.

For 0 < ¢ < p, let a;, € ¥, be the permutation (z,p), and let o, =
op-0%-...-0b~1. We have the inclusion ¥, — ¥, for n > p, where o € I, acts

by the identity on {p+1,...,n}, and by o on {1,...,p}. The automorphism

(—l)p_ia';,*: ZiX, n)A“ — Z9(X, n)A“; n > p,
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extends to the automorphism
obP: Z9( X, %)A o ZI(X, *)Al

of the complex Z9(X,*)4! by operating by (—1)?~*c}, on Z%(X,n)4! for
n > p, by (=1)""toi, on Z9(X,n)4 for i < n < p and by the identity on
Z9(X,n)A4" for n <. This in turn gives us the endomorphism

sVP: Z9(X, %) — Z9(X,*)°
by
sVP(Z) = m(a"(i(2)))-
Finally, since s4P(Z) = Z for Z € Z9(X,n)°, n < i, the compositions
(4.3) sbPos?Po., . osh™ 1P
p > n, all have the same action on Z9(X,n)¢. Letting
sp: 29X, n)° — 29X, n)°
be the composition (4.3) for p > n, the s, define the map of complexes
sx: 29X, %) - Z9(X,*)°.

p(p+1) p+1

Clearly, s,(Z) = (—1) op(Z) for Z € Z,(Z9(X, *)°).

We have a similar construction for the map
T(T1,22,...,2p) = (1 — 21, T2,...,Tp).
Indeed, the automorphisms
—Tn: 29X, n)A" 5 Z9X, )M n>1
extends to automorphism
—To: ZY( X, %) 5 29X, 5)AN
by acting by the identity on Z9(X,0)4!. We let
t: Z9(X, %) — Z9(X, *)°

be the composition 7, 0 —7, 0 1.
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Lemma 4.10.
(i) The maps
oPPoi: ZY(X,*)° — ZU(X, )M
—Ty 04: ZY(X, %) — ZI(X,x)Al

are homotopic to the inclusion z.
(ii) The map

skt 29X, %) — 29X, *)".

is homotopic to the identity.
(iii) For p € F,, the map

(—1)#p,: CHY(X,p)° — CHY(X,p)°

is the identity.

Proof. We begin with the first assertion. We first consider the case of o =
011,’_1 € Xp. Let

Tj forj#p—1,p
tj = Tp—1Tp —Tp—1 — Tp+1 forj=p-—1
Tp—1Zp forj=p
Define the map g,:0" — O" by gn(z1,...,Zn) = ($1,...,tn).

We form the complex B(X, *) by setting
B(X,n) = Z{, _o,(X xO%X x 80" — (zp-1 = 1) = (zp = 1) — (e = 0))
and defining d: BY(X,n) — BY(X,n—1) by d(Z) = Z - (z» = 0).

The maps
gne: 29X xO") — Z9(X xO")
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and
29X xO") —» Z9(X xO")

induce maps
ge: Z9( X, %)° *>p _, BY(X, *)*Zp
q*:Bq(X, *)*Zp — Zq(X, *)Alt *>p

with
7"(qx(2)) = 1(Z) + 0.(:(2))

for Z € Z9(X, p)°*>P
Since the map i — 0P~ 1P 07 is the zero map on Z%(X,n)¢ for n < p, we
have the factorization

29X, %) T ze(x, Al

gx "\ S q*
BI(X,*)*2P,

where we extend ¢, and ¢* by zero to give the above maps.

Arguing as in the proof of of Lemma 4.6, the homotopy property Theorem
4.5, together with Proposition 4.4, shows that the complex BY(X,*)*2P is
acyclic. Since Z9(X, *)¢ is a complex of free Z-modules, the map

g+: Z9(X,*%)¢ — BI(X, *)*21’

is homotopic to zero. Thus i —o?~1Po; is homotopic to zero, proving (i) in this
case. To prove (i) for the map o*?, we use the identity c*? = g*t1:P o0 gt*+1
to give

i — VP = gtt1P o (¢ — ol o 1)+ — ot t1P o4,

By induction, i — o'*1P 04 is homotoplc to zero; we have already shown that
i —obitlogis homotopic to zero, proving (a) for o“P. We note that we may

take the homotopy h.(o* P Z9(X, %) — ZY( X, * + l)Alt of i —oit1P o4 to
zero to be zero for x < 1.
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The argument for the map —7, is similar, after replacing the maps ¢,
with the map

T‘n(:l:l,wz, e ,:L'n) = (:z:l(l - :L‘l),xz, e ,(Bn),
and replacing B?(k, *) with the complex A9(k, *):

.Aq(kv n) = Zq(X X Dn;X x oO" — (1131 = 1) - (CL‘n = 0))(1511:0)'

For (ii), following the homotopy h.(c*?) with 7 gives the homotopy
hy(s¥?) of sy with the identity, with hn(sy?) = 0 for n < 7. These in

turn gives the homotopy h.(j,p) of .s,lk’p 0327 o ...0 sPP with the identity.
Since h,(s4?) = 0 for n < 7 and si? is the identity for n < 2, we have

hn(j,p) = hn(j + ,p+ m) for n < j < p and for I,m > 0. Thus, we may
define the homotopy k. from s, to the identity by taking h, = h,(n+1,n+2),
proving (ii).

The assertion (iii) follows directly from (i), the identities

oo™ oi = (—1)sg“(";)aj~ on Zp,(29(X,*)°), fori<j<p
mo —Ty 01 = —7 on Z,(Z29(X, *)),

and the fact that F}, is generated by the a; and 7. This completes the proof.
O
Theorem 4.11. The map
Alt?: Z9( X, *)g = NU(X)..
is a quasi-isomorphism.

Proof. For each n, and for each cycle Z on X x O", the cycle W;X(Z) on
X x O™t is symmetric with respect to the automorphism

(Z1,- sy Ty Tnt1) — (T1,- 00y Tng1,Th).
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Similarly, the cycle Z x A! is symmetric with respect to the automorphism
(15 s ZTnyTpt1) = (T1,.. ., Tny 1 — Tpy1)-
From these facts, together with a simple direct computation, we have
Alt!(m(3(2)) =2

for Z € N9(k).. On the other hand, by Lemma 4.10, the composition 7 o
J o Alt? induces the identity map on the homology of Z9(X, *)qg, hence is a
quasi-isomorphism. This proves the theorem. O

§5 Products and the projective bundle formula

In this section, we define, for X and Y smooth and quasi-projective over
a field k, a product

Z4X, %) ® ZXY, %) - 2T X xx ¥, %)°

in the derived category. Taking X = Y, tensoring with Q, and pulling back
bythe diagonal defines a cup product, in the derived category

29X, %) ® 2P0 g — 27X, %)q,

giving @,,,CHY(X, p)§ the structure of a bi-graded ring, commutative with re-
spect to the g-grading and graded commutative with respect to the p-grading,.

Note. If one had functorial pull-backs, in the derived category, for the com-
plexes Z%(—,*)¢, the construction of this section would give a cup product
for the bi-graded group @®,,CHY(X,p)¢. It seems that the techniques used
to prove Chow’s moving lemma for cycles modulo rational equivalence give
a proof of integral version of our “moving lemma” Corollary 4.8 for either
smooth projective or smooth affine varieties; this would then give the desired
contravariant functoriality, and product structure, for @, ,CH?(X, p)¢, among
smooth projective and smooth affine varieties. The situation for the general
smooth quasi-projective variety seems, at present, to be unclear.
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Let Y be a k-scheme, s a finite set of closed subsets of Y, and let

Z{Y,m,n)* C ZI y ¥ x O™ xo")

x (é0™ xOr +0m™ x o0™
be the subgroup consisting of cycles Z such that

Z - (Y x(z;=0)xO0")=0 fori=1,...,m—1
Z-(Yx(z;=1)x0O%)=0 fori=1,...,m
Z- (Y xO" x(z;=0)=0 forz=1,...,n—1
Z-(YxO"x(z;=1)=0 forz=1,...,n.

We also assume that Z intersects S x Dj x Dj properly for each S € s, and
each face Dy of O™ and face Dy of O". Let

d:Z3(Y,m,n)* — ZI(Y,m — 1,n)°

be the map
Zw— Z-(Y x(zm =0) xO),
and let
d":Z9(Y,m,n)¢ — Z9(Y,m,n — 1)°
be the map

Zvw— Z-(Y xO™ x (zn = 0)).
This gives us a double complex (Z(Y,m,n)¢,d',d"); we let Tot(Y)S be the

associated total complex with differential d = d' + (—1)™d" on Z9(Y, m,n)".
We have the map

e Z3(Y,*)¢ — Tot(Y)§
gotten by identifying ZI(Y, *)¢ with Z!(Y,0, *)¢ and the map

€': ZI(Y,*)¢ — Tot(Y)$

gotten by identifying ZJ(Y, *)¢ with ZI(Y, *,0)°.
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Lemma 5.1. The maps

e Z1(Y,*)° — Tot(Y)S
and
€': Z1(Y, %) — Tot(Y)S

are quasi-isomorphisms. The composition €' oe™?! is the identity (in D (Ab)).

Proof. The proof of the first assertion is essentially the same as the argument
used in the proof of Theorem 4.7. We have the spectral sequence

Egp = Hy(2](Y,a,%)%) = Happ(Tot(Y),).

As in the proof of Lemma 4.6, the homotopy property Theorem 4.5, together
with Proposition 4.4, shows that E1 = 0 for a > 0, hence the spectral

sequence degenerates at E! and € is a qua.si—isomorphism. The proof for € is
the same. ) .

For the second assertion, let Z, ,(Z{(Y,*,%)°) and Z, ,(Z4(Y, *,*)°) de-
note the kernel of d' and d", respectively, on ZJ(Y, a,b)¢. Take an element
n € Zp(Z4Y,*)), and let no , € ZL(Y,0,p)°, np,o € ZI(Y,p,0)° be the ele-
ments

Nop = €(n), Mp,o = €(n).

Identify 0% x **! with O**%+1! by
((wla"'awa)a(yla"-,yb+l)) — (fvl"-°awa—1,y1a-"’ybaxa,yb—{—l)’

and let WYb CY xO* x**! be the image of WY, C Y xO%**+! under this
identification. Using the obvious modification of the construction of the map

WY:Z9Y xO*) - ZYY xoOt!)
we construct the map

Wiy Z9Y xO* xO) = Z9Y xO* x*+)
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satisfying the analog of Lemma 4.1. In particular, WI » defines the map

WYy Zy y(Z8(Y, %, %)) = Z4(Y,a,b+ 1)°

with

d"(WXy(2) = (=1)*Z for Z € Z, ,(Z4(Y, a, b))
(5.1)

d(WXH(2)) = Tape(Z) for Z € Z, ,(Z4(Y, a,b)°),
where

Ta,b((‘rlv cee ,$a),(y1, v vyb)) = (((.’El, e ,xa—])a(xa, Y1,Y2 .- - ’yb))'

This gives us the elements

WP,O(T]P,O) eZ.g(Y’ p, 1)0
Wp—1,1(d' (Wp,0(np,0))) €2I(Y,p—1,2)°
Wp—2,2(d'(Wp_1,1(d'(Wp,0(np0)))) €2I(Y,p —2,3)°

Wip—1(. .. (d'(Wp,0(np,0))) - - -) €2{(Y,1,p)°
Define h5~*2%1(n) inductively by hb!(n) = (—=1)?Wp,0(np,0), and
hE=4 () = (= 1P Wp_a o (d'BG™*T(0)
fora=1,...,p— 1. Letting

p—1

hp(n) = D hE~4*F(n),

a=0
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we have
(d + d")(Bp(1)) = 0 — (1) T 0 (m0,p)

for n € Z,(24(Y, *)°). We now proceed to extend h, to all of ZI(Y, p)°.
For Z € Z{(Y,p)°, let hp'(Z) = (—1)?Wpo(Z). Then h2'(Z) is in
Z{(Y,p,1)¢, and

d"(h2'(2)) =Z
d' (R (2)) = — h2Z1'(dZ).
Define h2~%**1(Z) inductively, satisfying
d"(RE=**Y(Z)) = —d'h2=**1%(Z) — REZT(dZ).

Then
d" o d'(RE=%+1(2)) =d'RE=4%(dZ)
—- _ dllh};_;l 1, a+1(dZ),

so d"(d'h2=®e+1(Z) 4 h2Z$~1**1(dZ)) = 0. Thus, if we define

hP a— 1a+2(Z)_.( 1)p—-—a —a— 1a+](d'hp aa+1(Z)+hp a— 1a+1(dZ)),
we have
d"(hz_“_l’“'”(Z)) — —d’hg_a’a_'_l(Z) _ hﬁ:‘;_l'a_'_l(dZ)

and the induction goes through.
Let hy(Z) = Y P_ h2=%%(Z), for Z € Z§(Y,p)°. Then this extends
our earlier definition of h, on Z,(Z4(Y,*)°). Let o} be the permutation

(¢2,p) € £p. Then 0, = 0-11, . 0'11,’_20-’}:_1; let

Z' = (- 1)pp+1woa;*oi(...(woap{’*zoz(woa 104i(Z)...) = s.(2),
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where s, is the map defined in (4.3). Then a direct computation gives
(d + d"Vhp(Z) + hyor(dZ) = €(2) — €(Z") = e(Z) — €(s(2)).
By Lemma 4.10(ii), the map Z — s,(Z) is homotopic to the identity. Thus

€' and e are homotopic, completing the proof. O

The complex Tot(Y)¢ is covariantly functorial for proper maps, and
Tot(Y )¢ contravariantly functorial for appropriate maps (depending on s).

Suppose we have non-negative integers ¢, ¢’ and ¢" with ¢’ + ¢" = ¢, and
k-schemes X and Y. Let

Xmnt 27 (X,m)* ® 29 (Y,n)* — 29X x Y,m,n)°
be the map Xmn(Z @ W) = 023.(Z x W), where
o23: (X xO™) x (Y xO") - (X xY) x (@™ xO*)

is the exchange of factors. Then the maps X, give rise to a map of total
complexes

Tot(x)? 4" : Z9(X,%)° @ Z¢ (Y, *)°) — Tot(X x Y)°.

Suppose X and Y are smooth and quasi-projective over k. Composing the

map Tot( ><)‘1"‘1” with the inverse of the quasi-isomorphism e defines the map
in D4, (Ab)

<44 29(X,%)° @ 29 (¥, %)° — 29X x Y, *)°.

Let Ax: X — X XX be the diagonal. If X is smooth and quasi-projective
over k, we have the pull-back map

A% ZYX x X,x)g — 29X, *)p
in D4 (Ab); define

T 29 (X, 05 @ 29 (X, %) — Z9(X, %)%
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as the composition A% o xgéjgg. This gives product maps
U8, CHY (X, p')o ® CHY (X, p")g — CHY T (X, p' + p")q

Theorem 5.2. Let X be smooth and quasi-projective over k. The maps
,, define the structure of a bi-graded ring (graded commutative with

Uq'vq
PP

respect to p and commutative with respect to q) on the bi-graded group

@p, CH! (X, p)g such that

(a) for each morphism f: X — Y of smooth quasi-projective varieties, the
map f* is a ring homomorphism.

(b) if f: X — Y is a proper morphism of smooth quasi-projective varieties,
we have the projection formula

frla U f5(B)) = fu(a)UB

for « € CH*(X, *)qg, B € CH*(Y, %)q.

(c) the restriction of U to @,CH?(X,0)q is the usual product structure on
the rational Chow ring of X.

(d) Suppose we have Z € Z9(X,p)¢, W € Z9(X,p')¢ representing classes in
CHY(X,p), CHY (X,"), resp. Then

ZUW = (=1)P" A% (0234(Z x W)) = A% (023:.(W x 2))

Proof. We first verify that U is graded commutative with respect p and com-
mutative with respect to q. Let

trop: 29X x X xO°* x ) = 29X x X xO° x0*)

be the automorphism induced by exchanging the factors X and X, and the
factors O0* and 0. The maps tr, ; give rise to the automorphism ¢r of Tot(X x
X)¢ defined by

tr(Z) = (=1)*®tr, 4(2)
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for Z € Z9(X x X xO* x ). Let 7 be the canonical isomorphism
r:Tot(Z29 (X, %) ® 29 (X, *)) — Tot(Zq"(X, *) ® Zq'(X, *))

induced by the exchange of factors in the tensor product. Then we have

Tot(x) o7 = tr o Tot(x)

€ =eotr
From Lemma 5.1, it follows that U o 7 = U on homology; as
T(A® B) = (-1)**(B ® A)

for Ae Z9(X,a), B € 29'(X,b), we have

AUB = (-1)**(BU A)

for A € CHY (X,a)q, B € CH? (X, b)q.

Associativity of the product U follows by considering the triple complex
analogue of the double complex considered in Lemma 5.1; we leave the details
to the reader.

To prove (a), note that the exterior product Tot(x) clearly satisfies

F*(Tot(x)(Z @ W)) = Tot(x)(f*(2) ® f*(W))

The result then follows from the naturality of the quasi-isomorphism e and
the relation

Ak o(fx f)* = f"oAy.

We now prove the projection formula (b). Let Z be in Z9(Y x X, p) such
that ((f x id) o Ax)*(Z) is defined. Then A3} ((id x f).(Z)) 1s also defined,
and we have the identity of cycles

(5.2) Ay ((id x )e(2)) = ((f x id) 0 Ax)*(Z).
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The maps (id x f). and (f x id)* induce maps

(f xid)*: Tot ;(¥Y x X)¢ — Tots(X x X)°
and
(id X f)a: Totp(Y x X)¢ — Tote(Y x Y)°.

By the naturality of the quasi-isomorphisms €, we have the commutative di-
agram

Tot(X x X)° Y Tot,v xx)e X Toyy x v)e
(5.3) exxx | eyxx | eyxy |

29X x X, TV e (v x X0 CE zey xy e

We have as well the commutative diagram

29X, 95 ® ZI(X,%)g ) Tot(X x X)§
f*®id* 1 1 Tot(x)
c c Tot(x) c
(5-4) ZUY, %)g ® ZUX, %) o Tot fxia (Y x X)§
id® fu l L (3d x f)«
ZIY, )G @ ZU(Y; %) s Tot(Y x Y)§

Putting (5.2), (5.3) and (5.4) together proves (b).
For (d) we retain the notation of the proof of Lemma 5.1. Let

PP gt
be the automorphism

Tp,p' (T1se e s TpyY1s-o s Yp') = (Y15 oo, Yp/s Tpye ooy T1)-
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‘We have

(d' + d")Y(Wp,p (Xpp (Z @W) = Wp_1 pr41(d' (W, pr (Xpp (Z @ W))) + ...
(1P W i pr—1 (- - - (d' (W0 (X0 (Z @ W))))...))

(p+1)
= (—1)”(><p,p:(Z, W) — (_1)p K Xo,p4p" (Tp,prx(Z X W)).
Since
Sgn(Tp,p’) = (_1)pp'+p Ein ’
we have

e (xpp (2, W)) = (—1)PP(Z x W).

By Lemma 4.10, (—1)P?'(Z x W) = W x Z in homology. The formula (d)
then follows from the definition of the product U. The assertion (c) follows
from (d). O

Let X and Y be smooth quasi-projective varieties, with X projective.
Let

dx/y = dim(X) — dim(Y").
For a codimension d cycle W on Y x X, form the homomorphism
Wi @q,,CHY (X, p)o — EBq,pCI‘Iq—Hl*dX/Y(Y, P)Q
by Wi(n) = p1+«(W U p3(n)). We recall the pairing
0:CH*(Z x Y)g x CH*(Y x X)g — CH*™®(Z x X)g
defined by
W2 o W1 = przxx«(przxy(W2) U pry . x(W1))

This is defined if YV is projective and X, Y and Z are smooth and quasi-
projective over k, and gives CH*(X x X)g the structure of a graded ring, if X
is smooth and projective over k. In addition, we have (WyoW;), = Wa,oWi,.
Finally, if W is the graph of a morphism f:Y — X, then W,.(n) = f*(n).

316



BLOCH’S HIGHER CHOW GROUPS REVISITED

Corollary 5.3. Suppose X and Y are smooth and quasi-projective over k,
and X is projective. Sending Z to ~z descends to a homomorphism

v: ®¢CHY(X x V) — @®4,,Hom(CH!(X,p)g, CHITI=x/¥ (Y, p)g).

This makes &, 4CHY(X, p)q into a graded CH*(X x X)qg-module.
Proof. This follows directly from Theorem 5.2. O

Corollary 5.4. Let E — X be a vector bundle of rank n + 1 over a smooth,
quasi-projective variety X, and let m: P — X be the associated projective
space bundle. Let ( be the class of O(1) in CH'(P). Then the maps

a;: CHY (X, *)g — CHY(P,*)g

ai(n) = 7*(n) U ¢’
t:=0,...,n

define an isomorphism for each p:
3 it @1, CHI (X, p)g — CHY(P, p)q-
i=0

Proof. That )., «; gives an isomorphism for p = 0 is well-known. In par-
ticular, the CH™(P x x P)-class of the diagonal A C P xx P can be written

as

n
[A] =) pi(ai) Up3(¢™TY).
=0
Let n be in CHY(P, p)g. Then

n = [Al.(n)
= p2.(pi (M) U A)

= p2(PI(M) U D _ pi(ai) Up3(¢™Y))

=0

= 3 U (palpi (U ),

1=0
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so Y o, a; is in general surjective. Suppose E::oj ai(r;) = 0 for 7; €

CH? (X,p)g,i =0,...,n—j with 7,_; # 0. Then (JUS "/ 7*(m;)U(? =0,
SO

0=m () m(rij) U¢H)

i=j
n .
= ZT,'_]') U W*(Cl)
=3

= Tn—j,
since

in_JO Hfo<i<n

(¢ = {[X] if 5 = n.

Thus all the 7; were zero, and ., «; is injective. O

We recall from §4 the product
U N9(k)y @ N (k)y — NI (K),

defined by
ZUW = Alt9H 9 (Z x W).

Corollary 5.5. Let
t: Z9(X,%)§ ® Z9 (X, %)§ — Z7 (X, %)§ ® 29(X,%)§

be the canonical isomorphism induced by the exchange of factors in ®. Then
the diagram

Uot

29X, *%)§ ® Z9(X, *)§) Zotd (X, )5
(5.5) Alt? @ Alt? | | Alga+e’
N(k), @ N (k). — N+ (k).
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commutes in D, (Ab).
Proof. By Theorem 5.2(d), we have

ZUW = (—1)PP(ZxW)=W x Z

for Z € CHY(k,p)g, W € CHY (k,p')o. From this and the definition of the
product on N*(k),, the diagram (5.4) induces a commutative diagram after
taking homology. Since the complexes in (5.5) are complexes of Q-vector
spaces, this implies that (5.5) commutes in D (Ab). O
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