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On a specialization map in K;-cohomology

Andreas Langer

Introduction

Let K be an algebraic number field, K its algebraic closure. Let K o be the
completion of K at a prime p lying above p, p > 2. Denote by o, the integers
in K, and let k£ be its residue field. A central observation in the Iwasawa
theory of abelian varieties is the following;:

Let A/K be an abelian variety with good reduction at all primes above p and
let
0 — A%(p) — A(p) — A(p)** — 0

be the étale-local decomposition of its p-divisible group over o,. Then we
have a specialization map A(K,) — A(k) such that the following diagram
commutes: . .
A(P)(Ky) —  A(K,)
4 :

Alp)i(k) —  A(k)

Here the groups on the left hand side coincide with the p-primary torsion
group of the corresponding groups on the right hand side. This fact can
be used to show that the p-primary Selmer group over the cyclotomic Z,-
extension K, denoted by Spe (Ko, A) only depends on the Tate-module
Tp(A) and coincides with the flat cohomology H}(0co, A(p)), Where o is
the ring of integers in K. The result is originally due to Greenberg [Gr].

Now let X be a smooth projective variety over K, with good reduction,
X =X x K, and Y; be the closed fiber of a smooth proper model of X

K,
over o, and let us consider its motive H2?(X)(2). It turns out that, similarly
to the Kummer sequence of an abelian variety we can associate a Kummer

sequence to the motive H?(X)(2)
— - - 1
0— Hezt(Xa QP/ZP(z)) - H}ar(X7,C2) - H‘IZa'r(XvK:Z) & z[E] — 0

where H}, (X, K2) denotes the Zariski- K-cohomology of the Quillen K-sheaf
K2 (compare [CT-R], [S]).

In his paper [S] P. Schneider gave two possible candidates for Iwasawa-
Modules of an arbitrary motive H!(X )(n), one of which generalizes the flat

S. M. F.
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A. LANGER

Mazur cohomology H },(ooo, A(p)), the other one the Selmer group in case of
H'(A)(1) for an abelian variety A and its dual A. In order to give more sense
to this new theory there should be a close link between the two candidates.
A similar analysis as in the case of an abelian variety, which, however, we are
not going to specify here, leads, for the motive H%(X)(2), to the following
question, which is also interesting within the study of motivic cohomology:

Is there a specialization map
HI(X-, Kz) — HI(Y;, Kz)
such that the following diagram commutes:

0 — Hezt(:)?, Qp/zp(z)) - Hl(—X—a ]C2)

$ l

0 — H'(Y, K2)(p) —  H'(Y:,K»)

where the left vertical map should be surjective.

In this paper we give an affirmative answer under a slightly stronger hypoth-
esis.

Theorem 1

Assume K, is unramified over Qp. Let X/K, be a smooth projective va-
riety with ordinary good reduction, such that dimX < p — 1. Assume that
Pic(Y%)(p) = 0, where Yy is defined as above. Then we have a specialization
map

f:HY (X,K;) — HY (Y, K2)

which 18 surjective on the p-primary torsion groups.

The main idea of the proof is to show that the map from the étale cohomology
group H2,(X,Z/p™(2)) onto the highest quotient of the filtration induced by
the spectral sequence of p-adic vanishing cycles (which degenerates under the
assumptions of the theorem) factorizes through the Eg’z-term of the Bloch-
Ogus spectral sequence of coniveau. This provides an interesting link between
results of Bloch-Kato on p-adic étale cohomology in the case of ordinary
reduction and assertions of Suslin, Lichtenbaum, Colliot-Théléne and Raskind
with respect to the sheaf K., resp. K2/p™ and its Zariski-cohomology, in
particular in characteristic p.
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ON A SPECIALIZATION MAP IN K3-COHOMOLOGY

The second part of this paper has been taken from the author’s thesis [La].
He wishes to express his gratitude to P. Schneider for his constant support
and valuable advice. Furthermore he thanks C. Beckmann, W. Raskind and
P. Salberger for useful discussions and U. Jannsen for proposing the ques-
tion preceding Prop. 1.1. Finally he appreciates the referee’s suggestions to
improve the paper.
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81 Construction of the specialization map

We will construct the specialization map in a more general context. Let S
be the spectrum of a discrete valuation ring with generic point n and closed
point s. Denote by K = k(n), k = k(s) the corresponding residue fields. Let
X be a smooth S-scheme with generic fiber X, and closed fiber X,. Fix a
uniformizing element 7 of S and regard = as a section in H°(X,,Gy). Let
Ox,, denote the local ring at a point z € X. Bloch has proven the Gersten-
Conjecture for K3/ Spec Oy , ([Bl], Corollary A2).

Let i, : Spec k(z) — & denote the inclusion of a point z € X'. In particular,
let ix : Speck(X) — &, i1x, : Speck(X,) — X and ix, : Spec k(X,) — X be
the inclusion of the generic points of X', X, and X,. The Gersten-Quillen-
resolutions of Ky /X,, K3 /X and K, /X, give rise to a commutative diagram
with exact rows and columns:

0 0

l l

ix,«k(Xs)*  — Il 4% — 0

yeEX]
l !

(%) i a(k(X)) = I i k(y)* — Il 4Z — 0
yeX? yeX?

=l l l
an.’CZ(k(Xn)) - H iy*k(y)* — ]_[ iy, — O

yeX] yeX?

l l
0

0
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A. LANGER

Passing to global sections we derive, by using homological algebra, the fol-
lowing exact sequence
(%) H(X,,K;) — H°(X,,K1) — HY(X,K3) — HY(X,,K>2)

2, Pic(X,)

Consider now the following commutative diagram with exact vertical se-
quences

0 0

l l

Ko(k(Xs)  — I ky)* —

yeX?
l !
(x5 %) Ka(k(X)) — 11 Ka(k(y)) — 11 k(y)* —>
yeX! yeX?
-1 l ) l
Ks(k(Xy) — I Kalk(y) > I k) —
yeEX] YyEX?
L l
0 0

Note that the upper and the lower horizontal sequence compute Zariski-K-
cohomology. By applying the snake lemma (we don’t need the Gersten Con-
jecture for K3 /X — this was pointed out to me by P. Salberger) we get from
the diagram (* * *) a boundary map

HY(X,,K3) -2 HY(X,,Kz) .
By composing &' with the map

HY(X,,K2) — HY(X,,K3)

a— 7l
we have defined our specialization map
f : Hl(X'r]aK2) B Hl(Xsa ’C2)

(compare with 12.16.5 and the discussion thereafter in [J1] and §8 in [G]).
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ON A SPECIALIZATION MAP IN K- COHOMOLOGY

If:: X — &, 5:X, — X denote the natural inclusions of the closed and
open fiber, there are natural maps

it HY(X,Ky) — HY (X, K2)
7 HY(X,K) — HY(Xy,K3)

Now the following question is quite natural:
Are the maps * and f compatible with each other?

The affirmative answer is given in the next proposition.

Proposition 1.1.

Assume that k s infinite or that the relative dimension of X over S is positive.
Then the diagram

s

HY(X,K,) 15 HZ(X,,K.)

N\ ¥

HI(X87K2)

commutes.

Remark:

For technical reasons we cannot avoid the disturbing assumption, the neces-
sity of which will become clear in the proof.

Before proving Proposition 1.1 we show an analogous statement for “Pic”,
namely that the following diagram commutes:

Pic(X) = Pic(X,) — HY(X,,K,)

-1 leo

Pic(X,) = Pic(X,)

(The left vertical map is the reduction map for “Pic” on the closed fiber.)
The claim for “Pic” follows immediately from the following lemma.
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A. LANGER

Lemma 1.2.

Let v denote the discrete valuation on K*. Then the following diagram com-
mutes:

Pic(X,) ® K* 1% Pic(X,)® Z = Pic(X)
cup—productl l -
HY(X,,K,) -2 Pic(X,)

Remark:

The statement of this lemma is used throughout the proof of Proposition 1.3
in [R1], but not proven there.

Proof of the lemma:

Consider again the diagram ().
Using homological algebra we see that the map 0 is induced by the restriction

@ of :
@ H iy, k(y)" — H iy .
yeXicx? yEX]
Let y € X}, and let z¥,...,z¥ be the points in X} which lie in the closure

{y} of y in X. These are points of codimension 1 in {y}. For a € k(y)* we
then have

r
Pla) = Zordu,y(a) € H Z .
i=1 z¥,...,z¥

Note that O_{;T v has dimension 1 and therefore ord,y is defined on
Quot O{—y}- o+ = k(y). The surjection [[ Z —» Pic(Xy,) defines a surjection
Ty yEX},

I & — Pic(X,) ® K*
yeX]

Regard an element z ® # € Pic(X,) ® K* in this way as an element

Zﬂ"‘ e [[ &*c [] ) .

yGX}, yeX},
Then we have

T o (ld@v)(z ® ) = v(B) - Z € Pic(Xs) -
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ON A SPECIALIZATION MAP IN K5-COHOMOLOGY

Here 7 is defined as follows: Let (ny,...,n,) € ][] Z be a cycle, which is

zeX]
defined in the points zl, ..., 2y and which represents z. Under ~ : Pic(X) —
Pic(X,) let ~(z;) = E nizi. Then 7 is the image of Z n; E n% under the
=1 =1
map [[ Z— P1c(X ) On the other hand z ® # is mapped to

yeX!]

§(_B8™) =D ¢(B™) = Sn Zord (B) -

=1

It remains to show: v(f) - n; = ordz;; (B). Let f = m wlo.g. ord,i(nr) =
E(O—{-Z—J ,i/7), where £(A) denotes the length of a local ring A.

Since X'/ Spec S is smooth and S is regular, X is regular, i.e. all local rings
of the structure sheaf of Oy are UFDs. Therefore Weil-divisors correspond
uniquely to Cartier-divisors. The effective Cartier divisor, which belongs
to {z;}, induces an effective Cartier divisor (U, f) in a neighbourhood U of
Spec OX,:;I with f € OX,I;; such that U N {z} = (f) as divisors on U.

Then: O{Z_'} »i = Ox ;i /f and therefore
tfod; [hat¥]

O{z}I/W—OX:c/(Wf) OXx/(f)
where f denotes the restriction of f on U N X,. By definition we have

i =vai(F) = 0x, .1 /(F) -

This finishes the proof of lemma 1.2.

Proof of Proposition 1.1.

Throughout the proof we will use the following well-known facts about alge-
braic K-groups:

— Ky(F) = KMY(F) for any field F, i.e., K(F) is generated by symbols.

— The Gersten-Quillen spectral sequence as given in ([Q], §5) is compatible
with A-operations ([So], Theorem 4). Since there are canonical maps
a; : KMY(F) — K;(F) for any field F and all ¢ such that Im(a;) C
FIK(F) (F. ,; means ~-filtration, compare [So]), we can conclude by the
compatibility of the boundary maps (as proved in [Gra]) that there is
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A. LANGER

a map between the complex denoted by (S,) in ([K1], §1) using Milnor
K-groups and the Gersten-Quillen complex ([Q], §5). This implies that
the boundary in the Gersten-Quillen resolution, when restricted to Milnor
K-groups via the maps «;, coincides with the tame symbol as given in

([K1], 81).

Consider now the diagram (* * *) which was used to construct the special-
ization map f. The maps I' and T', are induced by the “tame symbol”.

Let [a] € H'(X,K2) be represented by the cycle « € [][ k(y)* with image
yex?t

r .

ap € I k(y)*. ay = > «a; supported in in the points y;,...,y,. Simi-
yeX] =1

larly as for the situation for “Pic”above, the boundary map § is given by the

restriction I'" of I":

D: I Kok(v) — IT k)™ -

yeEX]) yeX!

7 U [ory] is represented by the “symbol”

(man} =3 (majy e [[ Kak(w)) -

yEX]

Then we have

P({m an}) = —T{an, 7)) = > [ tamey,,{oy, =)™,

yeX] i=1

where tamey, ,({a},7}) denotes the y-component of the image under

f‘|,cz(k(y‘.)), considered as an element in HyeX} k(y)*. It is clear that I'({, anl)
= f([an])-

In order to be able to compare f([ay]) with :*([a]), we have to study the
map ¢* more precisely on “symbols”: We will construct a map between the
Gersten-Quillen-resolutions of the sheaves Ky /A and 7.K2 /X, which extends
the canonical map K3/X — .K2/X,. Let tamex, be the tame symbol
on KM(k(X)) with respect to the discrete valuation vy,, associated to the
generic point of X,. Here XM is Milnor K-group.
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ON A SPECIALIZATION MAP IN K5-COHOMOLOGY

Claim 1:

The diagram
Ka/X —  ix Ka(k(X))

! Lr

K2/ Xy —  ix,Ka(k(X,))

commutes, where f° is defined as follows:
IfU C X,, then foLix, Ko(k(X))(U))=0. fU CX,UNX, #0, then f° is
given by

f°{e, B}) := tamex,({a, B,7}) .

Proof:

We show the claim in each stalk. If x € X, the claim follows. Let z € X,.

For the stalk of K2/& in z we have lim K2(U) = K2(Ox,z) (compare [Q]
Uszx
(5.3)). The map K2/X — 1.K2/X, is given in z as follows:

’Cz(Ox,z) - hi,n ’CZ(Xs N U) = ’C2(OXa,x) .
Uszx

Observe that (X, N U)y is a system of neighbourhoods of z in X,. Now let
Ox,» be the local ring at the generic point of X;. The commutative diagram

OX,:c — OX,ﬂ'

l l

Ox,z = OX,I/“’T — OX,ﬂ'/‘rr = k(XS)

8

gives rise to a commutative diagram

K2(Ox:) — K2(Oxrx)

l l

K2(0x,,z) — Ka(k(Xs))
It therefore suffices to show that the diagram

K2(0x,x) — Ka2(k(X))

N\ Lfe
Ka(k(X,)
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A. LANGER

commutes.

Since Oy r is a local ring with infinite residue field k(X ;) (here we need the
assumption in the proposition) we know that XM (Ox ) = K(Ox, =), i.e. that
K2(Ox,r) is generated by symbols {a, b}, a,b € O% , (compare [Guin], pages
22, 95 and [v.d.K.]). So the map K2(Ox ) — K2(k(X,)) is just induced
by the projection Ox r — k(X,). For {a,b} € K2(Ox, ) we obviously have
vx,(a) = vx,(b) = 0. This means that tamex,({a,b,7}) = {@, b} (compare
[K1] §1). Therefore the diagram also commutes in the stalks in z € X,.

Claim 2:

The diagram P
i Ka(k(X) I [T k()"

z codim 1

in X
fol lfl
. a . )
ix. Ka(k(X,)) — ]EI IZy.k(y)
y codim
n X,

commutes, where fl is defined as follows:
It is zero in a stalk in o € X,. In a neighbourhood U of xo € X, it is given
as follows:

r . .
Let a = > a* + z, where a* € k(x;)* for a point z; € U of codimension 1 in
i=1
Xy, and z € k(X,)*. Consider now the following complez of Milnor K -groups:

KMe() Es J] Kalk(a) 25 I kw)* .

zrcodim 1 y codim 2
in U in U

It is shown in Prop. 1 in [K1] that this is in fact a complex. Then define
fi(a) by

)= > (J]tames y({a',7})~"

yeX?! i=1
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ON A SPECIALIZATION MAP IN K5- COHOMOLOGY

Proof of claim 2:

From the exactness of the Gersten-Quillen-resolution it follows that

(tamex, yotamex,({a, B,7})( H tameg yo( Z tame;({a,B,7}))) =1

a:GU1 chdilr}ll
in
zeX, zeX,

(tamex, denotes the tame symbol on XM (k(X)), associated to the generic
point of X, and tamex, , the tame symbol on K3(k(X,)) associated to the
point y € X1).

We also know that tame,({«, 8,7}) = {tame(a, 8), 7}, because m is a unit
in Oy g,z € X ,1, From these considerations, together with the definition of

f° and f! above, Claim 2 follows.

Since the sheaf [[ is,7 of cycles of codimension 2 is equal to the cokernel
z codim 2

F: H Zx*z“‘—’ H Z'y*%

z codim 2 y codim 2
in A in X,

of dy, the map

together with the maps f° and f! give rise to a morphism between the
Gersten-Quillen-resolution of K5/X and #. (more precisely, the Gersten-
Quillen-resolution of K2/X,, and ¢ : X, — X ). Since 2, transforms acyclic
sheaves in acyclic sheaves, we can conclude for abstract reasons of homological
algebra that the map f! induces the map

i* HY(X,Kp) — HY(X,,K3)

on cohomology. If [a] is a cohomology class in H'(X,K;), the comparison
immediately implies that

*([a]) = fF1([a]) = f([ay]) -

This finishes the proof of Proposition 1.

Remarks:

— The above maps f° and f! reflect the operation “intersection of algebraic
cycles on X' with the closed fiber X,;” on K-theoretic symbols.

— The referee pointed out that it is possible to remove the hypothesis in
Proposition 1.1, i.e., to prove it for any smooth S-scheme X'.
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§2 Proof of Theorem 1

We now consider the following situation.

Let K,/Q, be alocal field of char 0. X /K, projective, smooth, geometrically
connected with good reduction. If o, are the integers in K, let now R be a
discrete valuation ring with Quot R = L and residue field k, where & denotes

the residue field of o,. Obviously we have o, = lim R, where R is as above.
R

Let X be a smooth proper model of X over o,, Xr := & x R and Y}, Yy
Op
the closed fiber of X and Xg. Let X1 = X x L. The exact sequence (*x*),
K,

applied to our present situation, looks as follows:

HY(Xp,Ky) — HY(Y, Ky) — HY (X, Ky) — HY(X1,K2) -2 Pic(Y).
I
E*

The composition of the first map with the canonical map from K»(Xr) to
H°(Xy,K2) yields the tame symbol map K,(Xp) — Ky(Yg) = %", It is sur-
jective.

The Gersten-Quillen spectral sequence is contravariant for flat morphisms
of noetherian schemes. In particular the spectral sequence for X = lim X,

(over L as above) is the inductive limit of the spectral sequences for X7r,.

This implies:
HI(Y, ’Cz) = ].imHl(XL,ICQ)

For a finite extension of discretely valuated fields L'/ L with valuations v, v,
and with ramification index e the diagram

L = 7z
! e
Y SRS AN/

commutes. Therefore Lemma 1.2 implies that the following diagram com-
mutes:

HY(X,Ky) -2 Pic(Yy)

l l.e

HY(X1,Ky) -2 Pic(Yy)
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ON A SPECIALIZATION MAP IN K5-COHOMOLOGY

Passing to the limit R — 3,,, L = Quot R — K we get the following exact
sequence

0 — lim H'(Xg,K2) — HY(X,K2) -2 Pic(¥7) @ Q .
R

In particular, we can conclude for the p-primary torsion:

liLnHl(XR,lcz)(P) >~ HY(X,K2)(p) -
R

Since for R C R’ the diagram

X
/
Yz !
N\
Xr

commutes, we can consider the natural reduction map * on the limit

i*:liI_,nHI(XR7,C2) - HI(YE”CZ) :
R

Using Proposition 1.1, it is now clear that Theorem 1 follows from the fol-
lowing proposition.

Proposition 2.1:

The notations are as above. In addition let Yi be ordinary in the sense of
(/BK], §7) and Pic(Yy)(p) =0, dmX < p — 1, K/Q, unramified. Then the
map
i*:@HI(XR,Kz) — HI(YE,KZ)
R

18 surjective on the p-primary torsion groups.

Remark:

Proposition 2.1 completes a result of Raskind, asserting that the ¢-primary
torsion groups for £ f p of H'(Xg,K2) and H' (Y%, K2) under the map :* are
isomorphic ([R1], Theorem 2.5 b).
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A. LANGER

Proof of Proposition 2.1:
We first note that

HY(X,K2)(p) = HZ(X, Qy/ Zp(2))
by ([CT-R], Theorem 2.1). The exact sequence
0 — Ky — K3 — K3/p" — 0 (in char p)

together with the p-divisibility of H°(Y%, K2) ([R2], Theorem 2.3) induces an
isomorphism
H (Y, K2)(p) = lim HO (Y, K2/p")

Throughout the proof let : denote the closed immersions Y3 — A'r resp.
Yz — A5, and f the open immersions X — X5, resp. X; — Ar. For a
scheme Z let 7: Zo.y — Zz,, be the canonical morphism of sites. The idea of
the proof can be described as follows:

We have seen that :* induces a map

Hezt(ya QP/ZP(Z)) E— ].lI_I»l Hf(z)t(YE7 IC?/pn)

on the p-primary torsion groups. Since (with the assumptions in Proposition
2.1) the spectral sequence of p-adic vanishing cycles

H(Yg, "R f.Z/p™ (n)) = H™ (X, Z/p™(n))
degenerates ([K2], Theorem 4.3), we have a surjection
HZ(X,Qp/Zp(2)) —» lim H, (Y, 1" R f.Z/p"(2))

= h_n} Hgt(YZ’ Wanzog)
where the last isomorphism is proven in ([BK] §6), using the assumption that
Yy is ordinary. H (Y%, WnQ{og) denotes logarithmic Hodge-Witt cohomology,
as introduced in ([I], §3.3). New results of Lichtenbaum (compare Lemma 2.2
in the proof) imply that K,/p" = 7, W,Q3%, g+ Therefore the proof of the
proposition boils down to the compatibility of the above maps under this
isomorphism, more precisely to the following
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ON A SPECIALIZATION MAP IN K5-COHOMOLOGY

Claim: The diagram on the following page is commutative.

That the left vertical arrow is an isomorphism, follows from the proper
base change theorem. The maps (1), (2) and (3) are canonical maps of
sections of presheaves into sections of sheaves. In (3) we have to observe that
there is an isomorphism H?2 = K,/p™, where H? is the sheaf (in the Zariski
topology) associated to the presheaf U — H2,(U,Z/p™(2)). This follows from
a comparison of the Quillen resolution of the sheaf K2 (and tensoring with
Z/p™) and the Bloch-Ogus resolution of the Zar1sk1 sheaf H? using the fact
that the Galois symbol K,(F)/p® — H?(F, u 2) is an ismorphism for a field
F, char F # p (Merkurjev-Suslin), see ([CT- R] section 1). Then (3) is just
the natural map from the E2- to the E'g 2_term arising from the Bloch-Ogus

spectral sequence of coniveau. R?f,Z/p™(2) is the Zariski sheaf associated
to the presheaf U — HZ,(f~'(U),Z/p™(2)) on X5,. (7) is induced by the

universal property of the sheafification functor

HZ(FY(U), Z/p™(2)) =5 HZ(fY(U), Z/p™(2)) — HE(fH(U))

The diagrams (A) and (B) commute for trivial reasons.
We have a commutative diagram of isomorphisms:

H°(X,K2/p") = H°(X5,, fK2/p"™)

L= L=
lim H%XL,K;/p") = lim  H°(XR, fuk2/p")

L as above R as above

Lemma 2.2:

,Cg/pn = W*Wnﬂ?og mn (Y'k")Zar

Proof:
Following ([L], Lemma 2.7) we have the exact triangle (in char p):

log[ 2]
+1 ./ ) N
I'(2) RN r'(2)

This is one of the axioms for the Lichtenbaum-complexes I'(n) (compare [L]),
which are known to exist for n < 2 and regular schemes over fields. Apply the
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© H(X,Z[p"(2)) [S4]
(1) (3) ®

HY(X5,, R . IL/p"(2)) Jm HyoXoKafp™) o HU(XK2) Ker(3)
<

I ® || T~ .

HYoo(%, TR LZ[0"(2) —  HY, (%, R2fZ/p"(2)) G m g, (Xr, fKa/p") (i) lim HY,,(Xr,K2/p") —  lim H'(Xr,K;)/ker(3) E
R R o)

l | ! l &
H%M(Y;,i*w,.R2f*Z/p"(2)) — H%M(Y;,i*ﬁfﬂ/p”@)) (3) H%M(Yz,i*lg/p") - H‘(Yg,i‘lcz)/lm(ker@))

o) ® 16 ! !
H%ar(Y;:, W*i*sz,E/p"@)) (%3 H%ar(YF’W*WnQ%og) (;:) H%ar(YE’CZ/Pn) N HI(YF,K:2)

1
I

HY(Yg, "R T /p"(2))



ON A SPECIALIZATION MAP IN K5-COHOMOLOGY

functor R, to the above triangle. Then the fact that R*7,['(2) = 0 (axiom
“Hilbert 90”) yields the exact triangle

T an?og [_2]

+1 N
TSQRW*F(2) — T$2R7T*F(2) in (YE)Zar )

where T7<2K is the truncated complex

K 15K -sK' 5 Kerd? -0— ...
in degree 2. The statement

R*7,T(2) = (K2)zar ([L], Theorem 2.10.)

finishes the proof of the Lemma.

The isomorphism (K2 /p™)et = WnQ,Zog in (Y%)et implies in particular

H%a'r(YE7 ,CZ/pn) = Hgt(Yfa ’C2/pn) .

Therefore (11) is an isomorphism.
The map (4) is induced by the canonical natural transformation

' — et
between the functors of topoi

" S(AX5, )er — S(Y3)Zar
and

W*i*: S(ng)et — S(YF)Zar

One can easily see that under the map (4) the diagram (C) commutes. (5) is
defined by composing the other arrows in diagram (E). (6) is an isomorphism
by ([BK], Theorem 9.2).

Remark:

The map
*REf.ZZ/p™(2) — W*WnQ,zog ,

which induces (5) factorizes through the Zariski sheaf
R*m,*Rf.Z/p™(2) ,

which was studied by O. Gabber (compare ([BK], section 6.6)). It is the
Zariski analog of the étale sheaf i* R?f,Z/p™(2) of p-adic vanishing cycles.
But it is not needed here.
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Lemma 2.3:

Let Pic(Y3)(p) be torsion-free, R as above, L = Quot R.

Then:
H_II_}HO(XR’ Kq/p™) & HO(Y’ K2/p™)
R
Proof:
We show:

H°(XR,K/p") = H(X1,K2/p")
As in the case H!(X,K;) the claim then follows from

lim H(X 1, K2/p") = HO(X, K /p") .
L

Following Raskind (see [R1], Proposition 1.1) the Gersten-Quillen complex
mod p” is a flabby resolution of the sheaf K /p™ over Xr. Consider now the
following commutative diagram:

0 0 0

T T T
0 — Ka(k(X1))/p" — ] *=)*/p" - ][ Z/p"

zGXi zGX%

I T T
0 — Ka(k(XR)/p" — [ k) /p" — [ %/p"

TeX} TEXZ
T T T
0 0 - k)t — [ z/»"
reXl
k
T T
0 0

Compare this with the diagram (%) in §1. This yields the exact sequence:
0 — H%(Xg,K2/p") — H*(X1,Ko/p") — H° (Y, K1/P") .
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In char p we have the exact sequence
0— K 25Ky — Ky/p" — 0

Since HO(Y7,Ky) = E HO( ,K1) is an isomorphism, we get:

H°(Yz,K1/p") = Pic(Y¢)p» = 0 by assumption, therefore:
H° (XRaK:Z/p ) = HU(-XL,K2/p )

Lemma 2.3 implies that (13) is an isomorphism. The right vertical arrows in
diagram II are induced by the map ¢*. The commutativity of (F') follows from
Suslin ([Su], §4). (12) is induced from the short exact sequences of sheaves

0—)anZ2"—)K2——)I——*O

00— I — Ky — Ky/p" — 0
and the fact that H?(X, ,»K2) = 0. In particular we have:
ker (3) = HY (X, ;nK2)

The unnamed arrows are canonical maps and the unnamed diagrams com-
mute for trivial reasons. It remains to show that the diagram (D) commutes.

Lemma 2.4

The canonical map

R*f.Z/p"(2) — feH?

18 an 180morphism.

Proof:
We prove this stalkwise. Let £ € X. Then it is clear that

R*f.Z/p™(2): = lim H2(U,Z/p"(2)) = im H*(U) .
S

Let now x € Yz. Then we need to show that the canonical map

lim H?(f~H(U), Z/p"(2)) — lLm H*(f~1(U))
Usx Udx
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is an isomorphism. Consider the following commutative diagram, which is
taken from the proof of Lemma 1.1 in [CT-R] (H!(upn) denotes the Zariski
sheaf associated to the presheaf U — H:,(U, pupn) on X)

0 — H' (X, H" (ppn)) = H*(X, ppn) — H (X, H?*(ppn)) — 0

=T I l=

0— Pic(X)/p" — H*X,ppn)—  pBr(X) —O0.

The exact upper row arises from the Bloch-Ogus spectral sequence and uses
results from [BO]. The lower exact sequence is part of the étale cohomology
sequence associated to the Kummer sequence. The isomorphism on the left
hand side is also established in [BO]. Now consider the same commutative
diagram for f~1(U) instead of X for any U,z € U. One gets the following
exact sequence using the left and right vertical isomorphisms:

0 lim Pic(f (1)) /p"— lim H2(f ™ (U), pn )= lim HO(£ = (U), H2(ptpn ))—0
U U U

One knows that lim f~'(U) = Spec Ox;, . [%] Therefore we conclude:
U
lim Pic(f~1(U))/p™ = Pic(Spec OX;WI[%])/P"- Let zr be the image sheaf
U
of z under A5, — A'r. Then we have Spec Oxsg,,m[%] = lim Spec OXR,J:R[;I;]-

R
Since OXR,xR[%] is the localization of a UFD it is a UFD itself. This implies

Pic(Spec OxR,IR[%]) = 0 and also
Pic(Spec Ox;, . [%]) = lim Pic(Spec OXR,IR[%]) = 0. This means that there is
R

an isomorphism

lim H2,(f 7Y (U), ppn) — Um HO(F 1 (U), H2 (ppn)) -
U U

By tensoring with p,» the assertion follows.

Lemma 2.4 implies that the arrow (7) is in fact an isomorphism. Now the
commutativity of the diagram (D) follows from the subsequent observations:

a) The sheaf K, is locally generated by symbols in the Zariski topology and
as well in the étale topology.
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b) The following diagrams of Zariski sheaves commute:

R2f,7/p™(2) — Ka/p"

l l

Tatst*R2fL /D™ (2) —  muini®*(K2/P")et

*(K2/p™) xn — 7 (K2 /P") xp,et
!
| 726" (K2 /P™) X et
!
(K2/p"™)zar, v - T (K2/P" )y et

For the lower isomorphism see Lemma 2.2.

c) The sheaf :*R? f,Z/p™(2) is étale-locally generated by “symbols” of the
form i*z; ® i*zy, where z; € R' f.Z/p™(1), zi = O(y;) with y; € f.O%
and O denotes the boundary operator in the following exact sequence

0 — faptpr — f*O*Y — f*O_*)_(. — le*Z/pn(l) —0

(compare [BK] §6). Furthermore we may assume that y; € O} for
Op
i = 1,2 or that y; € O%_ and y = 7, the uniformizing element in Of.
°p

d) The map A : *R2f.Z/p"(2) — W,Q?  which induces the isomorphism

log
(6) is given on “symbols” as follows: Let y;,y2 € O% , A(#*0(y1) ®
%p

1*Ny2)) = %l A %, where ¥, is the image of y; under the map i*O’/f‘t% —
O;‘/Z_. Otherwise A\(:*9(y1) @ ©) = 0.

This finishes the proof of Proposition 2.1 and of Theorem 1.
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