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STABLE TOPOLOGICAL CYCLIC HOMOLOGY IS 
TOPOLOGICAL HOCHSCHILD HOMOLOGY 

By LARS HESSELHOLT 

1 . INTRODUCTION 

1.1. Topological cyclic homology is the codomain of the cyclotomic trace from 
algebraic i^-theory 

trc: K(L) -> TC(L) . 
It was defined in [2] but for our purpose the exposition in [6] is more convenient. 
The cyclotomic trace is conjectured to induce a homotopy equivalence after p-
completion for a certain class of rings including the rings of algebraic integers 
in local fields of possitive residue characteristic p. We refer to [11] for a detailed 
discussion of conjectures and results in this direction. 

Recently B.Dundas and R.McCarthy have proven tha t the stabilization of 
algebraic i^-theory is naturally equivalent to topological Hochschild homology, 

KS(R;M) ~ T(R\ M) 

for any simplicial ring R and any simplicial i?-module M, cf. [4]. We note 
tha t bo th functors are defined for pairs (L; P) where L is a functor with smash 
product and P is an L-bimodule; cf. [12]. An outline of a proof in this set
ting and by quite different methods, has been given by R.Schwanzl, R.Staffelt 
and F.Waldhausen. Hence the following result is a necessary condition for the 
conjecture mentioned above to hold. 
Theorem. Let L be a functor with smash product and P an L-bimodule. Then 
there is a natural weak equivalence, TCS(L; P) ~ T(L; P) . 

It is not surprising tha t we have to p-complete in the case of T C since the 
cyclotomic t race is really an invariant of the p-completion of algebraic /^-theory, 
cf 1.4 below. The rest of this paragraph recalls cyclotomic spectra, topological 
Hochschild homology, topological cyclic homology and stabilization. In para
graph 2 we decompose topological Hochschild homology of a split extension of 
FSP ' s and approximate T C in a stable range. Finally in paragraph 3 we study 
free cyclic objects and use them to prove the theorem. 

Throughout G denotes the circle group, equivalence means weak homotopy 
equivalence and a G-equivalence is a G-map which induces an equivalence of 
if-fixed sets for any closed subgroup H < G. 
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1.2. Let L be an FSP and let P be an L-bimodule. Then T H H ( £ ; P ) . is the 
simplicial space with fc-simplices 

hol imF(S*° A . . . A Sik, P(S*°) A L(Six) A . . . A L(Sik)) 
Ik+1 

and Hochschild-type s t ructure maps, cf. [12], and THH(L; P) is its realization. 
When P = £ , considered as an L-bimodule in the obvious way, THH(L; L) 
is a cyclic space so THH(L; L) has a G-action. In bo th cases we use a thick 
realization to ensure tha t we get the right homotopy type, cf. the appendix. 
More generally if X is some space we let THH(L; P ; X ) . be the simplicial space 

hol imP(S*° A . . . A Sik, P(Sio) A L^S*1) A . . . A L(Sik) A X). 
Ik+1 

where X acts as a dummy for the simplicial s t ructure maps. If X has a G-action 
then THH(L; P ; X) becomes a G-space and T H H ( £ ; L; X) a G x G-space. We 
shall view the lat ter as a G-space via the diagonal map A: G —> G x G and then 
denote it THH(L; X). 

We define a G-prespectrum P ) in the sense of [9] whose O'th space is 
T H H ( L ; P ) . Let V be any orthogonal G-representation, or more precisely, any 
f.d. sub inner product space of a fixed 'complete G-universe' U. Then 

t ( L ; P ) ( 7 ) = T H H ( L ; P ; Sv), 

with the obvious G-maps 

a: SW~V A *(£; P)(V) — t(L; P)(W) 

as prespect rum st ructure maps. Here Sv is the one-point compactification of 
V and W — V is the orthogonal complement of V in W. We also define a 
G-spectrum T(L;P) associated with t ( L ; P ) , i.e. a G-prespectrum where the 
adjoints a of the s t ructure maps are homeomorphisms. We first replace t(L; P) 
by a thickened version tT(L; P) where the s t ructure maps a are closed inclusions. 
It has as T^'th space the homotopy colimit over suspensions of the s t ructure maps 

tT(L:P)(V) = holimi:v-zt(L:P)(Z) 
ZdV 
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TOPOLOGICAL CYCLIC AND HOCHSCHILD HOMOLOGY 

and as s t ructure maps the compositions ( t= t (L;P) ) 

£ ^ - v holim £ v - z * ( Z ) ~ holim E w " z t ( Z ) -> holim E ^ " z t ( Z ) 
ZrV z<zv Z(ZW 

Here the last map is induced by the inclusion of a subcategory and as such is 
a closed cofibration, in particular it is a closed inclusion. Furthermore since V 
is terminal among Z C V there is natural map 7r:tT (L; P) —> t(L\P) which is 
spacewise a G-homotopy equivalence. Next we define T(L; P) by 

T(L;P)(V)= lim Qw-ytT(L;P)(W 

WcU 

with the obvious s t ructure maps. 
We can replace THH(L; P; Sv) by THH(L; Sv) above and get a G-prespec-

t r u m t(L) and a G-spectrum T(L). These possess some extra s t ructure which 
allows the definition of TC(L) and we will now discuss this in some detail. For 
a complete account we refer to [6], see also [3]. 

1.3. Let G be a finite subgroup of G of order r and let J be the quotient. 
The r ' t h root pc'-G —» J is an isomorphism of groups and allows us to view 
a J-space X as a G-space p^X. Recall tha t the free loop space CX has the 
special proper ty tha t pc£Xc =Q CX for any finite subgroup of G. Cyclotomic 
spectra, as defined in [3] and [6], is a class of G-spectra which have the analogous 
property in the world of spectra. This section recalls the defintion. 

For a G-spectrum T there are two J-spectra Tc and <&CT each of which could 
be called the G-fixed spectrum of T. If V C Uc is a G-trivial representation, 
then 

TC(V) = T(V)C, ®CT{V) = lim Qw ~VT{W)C 

W(ZU 
and the s t ructure maps are évident. There is a natural map r ^ : Tc — » o f 
J-spectra; rc(V) is the composition 

T°(V) ^ lim F(SW-V,T(W))° lim F(SW°~v,T(W)C) = ®CT(V 
WCU wcu 

where the map ¿* is induced by the inclusion of G-fixed points. The difference 
between Tc and 3>CT is well illustated by the following example. 

Example. Consider the case of a suspension G-spectrum T — E ^ X , 

T(V)= lim nw-y(Sw AX). 
wcu 

We let EQH denote a universal H-free G-space, tha t is EQHK ~ * when H Pi 
K = 1 and EQHK = 0 when H D K ^ 1. Then on the one hand we have the 
torn Dieck splitt ing 

T(EG/H(C 
H<C 

T(EG/H(C/H)+ AC/H XH), 
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and on the other hand the lemma shows tha t ^c (T,^ X) ~j . Moreover 
the na tura l map rc' (T,??X)C —• <f>°(T,??X) is the projection onto the summand 
H = C. 

A J-spec t rum D defines a G-spectrum p*cD. However this G-spectrum is 
indexed on the G-universe p^jUc ra ther than on U. To get a G-spectrum in
dexed on U we must choose an isometric isomorphism fc'-U PQUC', then 
(pcD)(fc{V)) is the V'th space of the required G-spectrum, which we denote 
it p%D. 

We want the fc s to be compatible for any pair of finite subgroups, t ha t is 
the following diagram should commute 

U P*c 
phrsu°rs 

P*c 

P*cr(f P*cr(fcs)Cr PcMcUc°)°r. 

Moreover the restriction of fc to the G-trivial universe UG induces an automor
phism of UG which we request be the identity. We fix our universe, 

V 
фСг°т 

фСг°т 

where C(n) = C but with G acting through the n ' t h power map. The index cx 
is a dummy. Since p^C(n) = C(nr ) , where r is the order of G, we obtain the 
required maps fc by identifying Z = rZ . 

Definition. ([6]) A cyclotomic spectrum is a G-spectrum indexed on U together 
with a G-equivalence 

tpc:p£®CT-*T 

for everv finite C c G , such tha t for anv pair of finite subgroups the diagram 

pf $crpt $C*T РсгзфСг°т 

Р%Ф°г<Рса у с r s 

ptr®CrT <PCr T 

commutes. 
We prove in [6] tha t the topological Hochschild spectrum T(L) defined above 

is a cyclotomic spectrum. The rest of this section recalls the definition of the 
</?-maps for T(L). The definition goes back to [2] and begins with the concept 
of edgewise subdivision. 
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The realization of a cyclic space becomes a G-space upon identifying G with 
M/Z, and hence G may be identified with r _ 1 Z / Z . Edgewise subdivision as
sociates to a cyclic space Z% a simplicial G-space sdc Z9. It has fc-simplices 
sdc Zk = Zr(k+i)-i and the generator r - 1 + Z of G acts as rk+1. Moreover, 
there is a na tura l homeomorphism 

D:\sdc Z.\ — \Z.\ 

an IR/rZ-action on | s d c ^ . | which extends the simplicial G-action, and D is 
G-equivariant when M/rZ is identified with M/Z through division by r. 

We now consider the case of THH(L; X)m. Let us write G&(z'o,... , ik) for the 
pointed mapping space 

F(Sio A . . . A Sik, L(Sio) . A L(Sik) A X). 

Then the fc-simplices of the edgewise subdivision is the homotopy colimit 

sdc THH(L; X)k = holimGr(fc+i) . i . 

r + 1 

The G-action on sdc THH(L; X)k is not induced by one on Gr^-\-i)-i' We 
consider instead the composite functor Gr(fc+1)_1oAr where Ar : Ik+1 —> (jk+iy 
is the diagonal functor. It has G-action and the canonical map of homotopy 
colimits 

bk: holimGr(A:+i)_i o Ar 

r + 1 

holim G>(fc+i)_i 
r + 1 

is a G-equivariant inclusion and induces a homeomorphism of G-fixed sets. Let 
Y and Z be two G-spaces and consider the mapping space F(Y,Z). It is a 
G-space by conjugation and we have a natural map 

L*:F(Y,Z)C F(YC,ZC), 

which takes a C-equivariant map ip: Y —» Z to the induced map of C-fixed sets. 
In the case at hand ¿* gives us a natural transformation 

(Gr(fc+i)_i o Ar)c —* Gfc, 

and the induced map on homotopy colimits defines a map of simplicial spaces 

0c , . : s d c T H H ( L ; X ) f T H H ( L ; X C ) . . 

We define a G-equivariant map 

<t>c(V):p*ct(L)(V)c t(L)(f^(p*cVc)) 
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as the composite 

P*c\Tïm(L-sv) C D-1 
s d c T H H ( L ; 5 V ) a 4>c | T H H ( L ; 5 ^ ^ C ) | 

(fc1) I THH(L: S^lp^v°] 

Indeed it is G-equivariant by [2] lemma 1.11. Next we define a G-map 

<Pc(V):p*cT(L)(V)c TifcHpcV0)) 

as the map on colimits over W C U induced by the composition 

p*c(Qw-vtT(L)(W))c D PU^wC-vCtT{L){W)c) 

4>c{W ap'c(Wc-Vc).- (L)(f^(p*cWc)) 

fc ÇlfcX(Pc(W-V)c r(L)(f^(p*cWc)). 

Then the required maps tpc' PQQCT —* T of G-spectra are evident in view of 
the definitions. Furthermore [2] 1.12 shows tha t the diagram which relates the 
(/p-maps for a pair of finite subgroups of G commutes. We refer to [6] for the 
proof t ha t the (^-maps are G-equi valences. 

1.4. Let j : UG —> Uc be the inclusion of the trivial G-universe and let D be 
a J - spec t rum. The underlying non-equivariant spectrum of D is the spect rum 
j*D with its J -act ion forgotten. By abuse of notation we usually denote this D 
again. 

Let T be a cyclotomic spectrum, then rcr and cpcr induce a map of G-spectra 

~# rpCr£ • PÎAP&T0*)0- pls{pt®CrT)Cs - PcJCs 

It gives a map <frr:TCrs —+ TCs of underlying non-equivariant spectra and the 
compatibil i ty condition in definition 1.3 implies tha t $ r $ s = &rs- The inclusion 
of the fixed set of a bigger group in tha t of a smaller also defines a map of non-
equivariant spectra Dr:TCrs —• TCs, and these satisfies tha t DrDs = Drs. 
Moreover D,><3>t. = 

Topological cyclic homology of an FSP was defined in [2]; the presentat ion 
here is due to T. Goodwillie [5]. Let I be the category with ob II = {1, 2, 3 , . . . } 
and two morphisms <E>r, Dr: n —» m, whenever n — rm, subject to the relations 

Ф1 = D1 = idn 
$r$s = $rs, DrDs = Drs, 
(î) n - Г) è 

For a prime p we let lp denote the full subcategory with obIp = { l , p , p 2 , . . . }. 
The discussion above shows tha t a cyclotomic spectrum T defines a functor from 
I to the category of non-equivariant spectra, which takes n to TCri. 

180 



TOPOLOGICAL CYCLIC AND HOCHSCHILD HOMOLOGY 

Definition. ([21) TC(T) = ho l imTc*\ TC(T:p) = h o l i m T c ^ 
i iP 

If L is a functor with smash product then TC(L) and TC(L;p) are the con
nective covers of TC(T(L)) and TC(T(L)\p) respectively. It is often useful to 
have the definition of T C ( T ; p ) in the form it is given in [2], 

TC(T:v) 2* [holimTc>l'l<<^) ^ \holimTCps]h{D^ 
NJ MS 

Here (Dp) is the free monoid on Dp and Xh^D^ s tands for the (£>p)-homotopy 
fixed points of X. It is naturally equivalent to the homotopy fiber of 1 — Dp. 

The functor TC( —) is really not a stronger invariant t han the T C ( - ; p ) ' s . 
Indeed we have the following result, which will be proved elsewhere. 
Proposition. The projections TC(T) —• TC(T;p) induce an equivalence of 
T C ( T ) with the fiber product of the TC(T ; p) ?s over T. Moreover the p-complete 
theories agree, T C ( T ) ^ ~ T C ( T ; p ) " . • 

Remark. In [2] the authors define a space TC(L;p) and a T-space s t ructure on 
it. Furthermore they show tha t the cyclotomic trace trc: K(L) —+ TC(L;p) is a 
map of T-spaces. We show in [6] tha t the spectrum TC(£;£>) defined above is 
equivalent to the one determined by the T-space structure. • 
1.5. Stable i^T-theory of simplicial rings was defined by Waldhausen in [15], see 
also [8]. We conclude this paragraph with the definition of stable T C of a FSP 
and leave it to reader to see that stable i*T-theory also may be defined in this 
generality. 
Definition. Let P be an L-bimodule and K a space. The shift P[K] of P by 
K is the functor eriven bv P\K](X) = K A P(X) with s t ructure mans 

^X^Y^ = 1(^K ^XYY ° tw A idp(y^) , P[K] Y _ ID P 

We shall write P[n] for P[Sn]. 
We define a new FSP denoted L®P which is to be thought of as an extension 

of L by a square zero ideal P. 
Definition. Let L be an FSP and P an Z/-bimodule. We define the extension 
of L by P as L © P(X) = L(X) V P(X) with multiplication 

L®P(X)AL®P(Y) L(X)AL(Y)VL(X)AP(Y)VP(X AL(Y)VP(X)AP(Y) 
• L(XAY)VP(XAY)VP(XAY) I 0 P ( I A 7 ) . 

The first map is the canonical homeomorphism, the second is / i x , y v / x , y v r x , y v * 
and the last is convolution. Finally the unit in L © P is the composite 

X L(X) -+L®P(X). 

One verifies immediately tha t L © P is in fact an FSP and tha t it contains L 
as a retract . We shall write T C ( L © P) for the homotopy fiber of the induced 
retraction T C ( L © P) TC(L) . 
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Lemma. If K is contractible then so is T C ( L © P[K\). Furthermore a con
traction of K induces one of TC(L © P[K]). 

Proof. Let us write F instead of L © P[iiT]. If h: /+ A K —> K is a contraction 
we can define h(X): /+ A F{X) —> F{X) by the composition 

I+K(L(X)VKAP(X)) I+AL{X)WI+AKAP{X) pr2 V/iA id L ( X ) V ^ T A P ( X ) . 

It is compatible with the multiplication and unit in F, t ha t is the following 
diagrams commute 

I+A(F(X)AF(Y)) id A/j-x.V /+ A F{X A Y) 
AAid 

{I x /) + A F(X) A 
id A tw id 

Х̂ЛУ 
F(X Л Y) 
Mx.y 

J+ A FpQ A /+ A id Alx F(I)AF(y). 
and 

I+AX id Alx 1+ A F(X) 
XP 

X Ix 
h(X) 

F(X). 

Therefore the composition 

I+ A (F(Sio) A . . . A F(Sik)) tw o(AAid) J+ A F(Sio) A . . . A 7+ A F(S*fc) 
h(Sio^A...Ah(Si^ ) F(Sio) A . . . A F(Sik) 

gives rise to a cyclic map / iv . 1+ A T H H ( F ; F ; -» T H H ( F ; F ; 5V) whose 
realization is a G-equivariant homotopy 

hv:I+At(F)(V)^t(F)(V). 

Fur thermore these are compatible with the s tructure maps in the prespect rum 
such t ha t we get a G-equivariant homotopy 

H.I+ A T(F) -> T(F). 
This gives in t u rn a homotopy 7+ A T C ( F ) —> T C ( F ) from the identity to the 
retract ion onto the image of TC(L) . • 
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If we apply TC(Z/ © P[—]) to the cocartesian square of spaces 

Sn 

Dn+1 

Dl+1 

Sn+1 

we get a m a p from T C ( L © P[n]) to the homotopy limit of 

T C ( L © P[Dl+1]) TC(L® P\Sn+1],p) T C ( £ © P[zr+1]) 
By the lemma the radial contrations of the discs Dn+1 give a preferred contrac
tion of T C ( L © P[Dn+1}). Hence we obtain a natural map from the homotopy 
limit above to J1TC(L © P[n + 1]). All in all we get a stabilization map 

a: TC(L © P[n]) -* QTC(L © P[n + 1]) 
which is na tura l in L and P. 
Definition. Let L be an FSP and P an L-bimodule. Then 

TCS(L; P) = holimftn+1TC(L © P[n]), 

n 
with the colimit taken over the stabilization maps. 

2 .S T A B L E APPROXIMATION OF TC(L © P ) 

2.1. In the rest of this paper the prime p is fixed and we shall always consider 
the functor T C ( - ; p ) ra ther than T C ( - ) . 

Recall t ha t by definition L 0 ? ( y ) = L ( ^ ) V P ( S 2 ) . Thus we can decompose 
the smash product 

L 0 P(Sl°) A . . . A L 0 P(52fc) 
into a wedge of summands of the form 

Fo(Sio) A . . . A Fk(Sik), 
where F{ — L} P. A summand where = P} — a will be called an a-
configuration and the one-point space * will be considered an a-configuration 
for any a > 0 . 

Recall from 1.3 the functor Gk = Gk{L © P ; X) whose homotopy colimit is 
T H H ( j L © P ; X)k> The a-configurations define subspaces 

Ga,k{io, • • • 7 ik) Ga,k{io, • • • 7 ik) 
preserved under G t f f n , . . . , fk), i-e. we get a functor Gn k = Gn U(L © P ; X) 
The spaces 

T H H a ( L © P ; X ) f c : h o l i m G a , A ; ( ^ 0 P ; X ) 
K=1 

form a cyclic subspace THHa(L © P\X)m C THH(L © P;X)m with realization 
THHa(JL ffi P;X). Like in 1.2 we can define a G-prespectrum ta(L © P ) and a 
G-spectrum Ta{L © P ) . Then Ta(L © P ) is a retract of T(L © P ) . We show 
below tha t as a G-spectrum T(L ffi P ) is the wedge sum of the Ta(L © P ) ' s . 
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Lemma. Let j be a G-prespectrum and let J be the G-spectrum associatei 
with jT. If Jr ~ * for any finite subgroup T C G and j{V)G ~ * for any V C I 
then J —Q *• 

Proof. Let T be the family of finite subgroups of the circle, then J is T 
contractible. Since J A ET+ —> J is an ^"-equivalence, J A EF+ is also T 
contractible. However J A ET+ is G-equivalent to an ^"-CW-spectrum an( 
therefore it is in fact G-contractible by the ^"-Whitehead theorem, [9] p.63 
Now 

(J AET+)(V iimQw(jT(V + W) A 
w 

and jT(V) A ET+ —+ jT(V) is an G-equivalence since j(V)G ~ *. Therefore 
J ~G J A ET+ and we have already seen tha t the latter is G-contractible. • 

Lemma. Let H be a compact Lie group, let X a finite H-CW-complex and 
let Ya a family of H-spaces. For K < H a closed subgroup we let n{K) — 
mina{conn(Ya/<:)}. Then the inclusion 

a 
F(X,Ya)H ^F(X,\jYa)H 

A 

is 2 m i n { n ( K ) - d\m{XK)\K < H} + 1-connected. 

Proof The inclusion above fits into a commutative square 

\JaF(X,YAF F{X,VaYa)c 

'aF(X,Ya)c F{X,]XaYa)c, 

where Yl' is the weak product , i.e. the subspace of the product where all bu t a 
finite number of coordinates are at the basepoint. The lower horizontal map is 
a homeomorphism because X is finite, and the connectivity of the vertical maps 
may be est imated by elementary equivariant obstruction theory. For example 
the connectivity of an equivariant mapping space satisfies 

conn( F(X,Y)H] m i n { c o n n ( y x ) àim{XK)\K < H}. 

Therefore the left vertical map is 2 min{n(K) — dim(XK)\K < +1-connected. 

Proposition. T(L © P) ~ Va T*(L © P ) ' 
Proof. We apply the first lemma with j the G-prespectrum whose V^ih space is 
the homotopy fiber of the inclusion 

OO 

A=Q 
ta(L®P)(V)^t{L®P){V). 
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We first consider a finite subgroup T <Z G and show tha t J r ~ *. It suffices 
to show tha t j(V)° is dim(Vc) + fc(V, G)-connected, where k(V, C) —• oo as V 
runs through the f.d. sub inner product spaces of £7, for any subgroup C c T . 
We use edgewise subdivision to get a simplicial G-action, tha t is we can identify 
j(V)° with the homotopy fiber of 

A 
sdc THHa(L © P ; Sv)^\ I sdc T H H ( L © P ; S v ) f |. 

As in the 1.3 we consider the diagonal functor Ar:i"fc+1 —-*(̂(fc+i)-! Then the 
second lemma shows tha t the inclusion 

a 
(Gflj7.(jb+i)_i o Ar(i0, . . . , ifc))c • (^( fc+ i ) - ! o Ar(z0,. . . , IK))C 

is 2 d i m ( y c ) —1-connected. By [1] theorem 1.5 the same is t rue for the homotopy 
colimits over Ik+1. Hence the inclusion map 

A 
' s d c T H H a ( L © P ; S ^ ) £ sdc T H H ( £ © P ; Sv)k 

is 2d\m(Vc) — 1-connected. Finally the spectral sequence of [13] shows tha t the 
induced map on realizations is 2 d i m ( ^ c ) — 1-connected. It follows tha t J r ~ *. 

We have only left to show tha t j(V)G ~ *. If X . is a cyclic space, then l-X".^ 
is homeomorphic to the subspace {x G X0\sox ^^ISIX} of the O-simplices. For 
the domain and the codomain of j(V) this is Sv and j(V) is the identity. • 

2.2. Let us write a = psk with (k,p) = 1 and denote Ta{L © P ) by Tk(L © P ) . 
Then the cyclotomic s tructure map cp = <pcp induces a G-equivalence 

cpsipt $ C * T ^ ( L © P ) Т3к_г(ЬфР), s > 0 , 

where for convenience Tkx(L © P ) denotes the trivial G-spectrum *. 

Lemma, i) The cyclotomic structure map induces a map of underlying non-
equivariant spectra 

Tk(L®P[n])c*r Tk{L®P[n])cvr-> 
which is kpn-connected. 
ii) T$(L © P[n])cvr is kn-connected. 

Proof. Let EG be the mapping cone of the map TT: EG+ —» S° which collapses 
EG to the non-basepoint of S°. It comes with a G-map t: S° —• EG and a 
G-null homotopy of the composition 

P G + A S 0 ^ EG. 
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We can also describe EG as the unreduced suspension of EG and L as the 
inclusion of S° as the two cone vertices. Finally we note t ha t EG is non-
equivariantly contractible while EGC — S° for any non-trivial subgroup C < G. 

Let us write Ts for TJ?(L 0 P[n\). We can smash the sequence above with 
Ts and take Cpr-fixed points. Then we get maps of underlying non-equivariant 
spectra 

[EG+ A Ts]c-r ̂  T?pr [EG A Ts]c*>r 

and a preferred null homotopy of their composition. These da ta specifies a map 
from [EG+ A Ts]cpr to the homotopy fiber of ¿* and this an equivalence. 

We identify the right hand term. Recall the natural map rcr : Ta P —>• <&CPTS 

from 1.3. It factors as a composition 

T?P [EG A Ts]°pr $C"T8, 

where rc{V) is induced from the restriction map 

F(sw-v £Q A TjW)\cr F(SwCp-v,T(W)c»). 

Moreover rcp{V) is a fibration with fiber the equivariant (pointed) mapping 
space 

F(Sw-v/SwCp-v, EG A T(W))C*>. 

If we regard W as a Cp^-space, then WCp is the singular set, so Sw v/Sw P v 
is a free Cp^-CW-complex in the pointed sense. Since EG is non-equivariantly 
contractible it follows tha t fcp is a Cp^/Cp-equivalence. The map <&p of under
lying non-equivariant spectra defined in 1.4 restricts to a map 

rpCpr 
rCpr/CT 
Cp (^Cvrp^CvT /Cp {p% <f>c*>Ts)cpr-1 

Vcp ryPvr-\ 
1 s-1 

Our calculation above shows tha t its homotopy fiber is equivalent to the under
lying non-equivariant spectrum of [EG+ A Ts]cpr. We contend tha t this is as 
highly connected as is Ts. Indeed the skeleton filtration of EG gives rise to a 
first quadrant spectral sequence 

Elt = Hs(Cpr;7rt(Ts)) ns+t([EG+ATs}c^), 

where 7rt(Ts) is a trivial Cp^-module. The identification of the £,2-term uses the 
transfer equivalence of [91 p . 89. • 
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Proposition. In the stable range < 2n we have 

TC(L © P[n}) ~2n h o l i m T ^ L 0 P [ n ] ; p ) c ^ , 
r 

with the limit taken over the inclusion maps D. 
Proof. We get from the connectivity s tatements in the lemma that 

T(L 0 P[n))c*>r ~2n TX{L 0 P[n])c*>r 
oo 

5 = 0 
T}(L®P\n\)c^ 

~2n 
r 

s = 0 
TUL® P[n])CPR-S 

r 

t=0 
^(LePln])^. 

Under these equivalences <&: T(L © P[n])G^r —• T(L © P[n] )0^_1 becomes pro
jection onto the first r summands. Therefore 

TC(L® P\n]-v) = [ h o l i m f ( L © P [ n l ) c ^ M j D > 
4> 

2n 
oo 

t=( 
T^{L®P[n])c^]h^ 

The lat ter spectrum is naturally equivalent to the homotopy limit s ta ted above. 

Remark. When P — L there is an unstable formula for T C ( L $ L[n]). It was 
found in [6] and used to evaluate T C of rings of dual numbers over finite fields. 

3.FREE CYCLIC OBJECTS 
3 . 1 . In this paragraph we examine the cyclic spaces t\(L®P)(V). we introduced 
in 2.2. They t u rn out to be the free cyclic spaces generated by the simplicial 
spaces t(L; P)(V). from 1.2. First we study free cyclic objects. 

Suppose K.I —• J is a functor between small categories and C a category 
which have all colimits. Then the functor K*: CJ —+ C7 has a left adjoint F. If 
X: I —> C is a functor then 

FX{j) = hm((K lj)2H+I2£+C) 

where (K [ j) is the category of objects iiT-over j . It is called the left Kan 
extension of X along K, cf. [10]. As an instance of this construction suppose 
/ and J are monoids, i.e. categories with one object, and C the category of 
(unbased) spaces. Then a functor X:I —+ C is just an / -space and FX is the 
J-space J XJ X. 
Definition. Let Xm be a simplicial object in C. The free cyclic object generated 
by X. is the left Kan extension of X, along the forgetfull functor K: Aop —• Aop. 
It is denoted FX%. 

If X is an object in C and S is a set, then we let S K X denote the coproduct 
of copies of X indexed by S. We give a concrete description of FX.. 
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Lemma. Let Cn+i = {1, rn, r 2 , . . . , r ™ } . Then FX. has n-simplices 

FXn = Cn+i K X^ , 

and the cyclic structure maps are 

Si(TnKX) r^l_1\<di+sx , if i -\- s < n 

.s —1 7 , if Z + 5 > n 
Si(TnKX) r^l_1\<di+sx , if Z -h 5 < 72 

s + 1 , if i + s > n 

Si(TnKX) r^l_1\<di+sx 

AJJ indicices are to be understood as the principal representatives modulo n + 1. 

Proof. Both A and A has objects the finite ordered sets n = { 0 , . . . , n} bu t A 
has more morphism than A . Specifically A(n, m) = A(n , m) x AutA(n) and 
AutA(n) is a cyclic group of order n + 1. As a generator for AutA(n) we choose 
the cyclic permuta t ion rn: n —> n; rn(i) = i — 1 (mod n + 1). 

Consider the full subcategory C(n) C (K I n) whose objects are the auto
morphisms Km —> n, i.e. o b C ( n ) = Cn+\. The restriction of colimits comes 
with a m a p 

lim(C(n) AOP C) lim((lT I n) ̂  A°P C) = FXN, 

and from the definitions one may readily show tha t this is an isomorphism. Since 
in AOP there are no automorphisms of n apar t from the identity, the category 
C(n) is a discrete category, i.e. any morphism is an identity. We conclude tha t 

FXr 
obC(N 

Xn — CVi+i x XTl. 

It is straightforward to check tha t the cyclic s t ructure maps are as claimed. • 
Example. Suppose C is the category of commutative rings, where the coproduct 
is tensor product of rings, and R. — R is a constant simplicial ring. Then the 
complex associated with FR is the s tandard Hochschild complex Z(R) whose 
homology is HH*(f?). 
3.2. We now take C to be the category of pointed topological spaces and study 
the relation between F and realization. 
Lemma. There is a natural G-homeomorphism \FX.\ = G+ A |-X".|. 

Proof. Consider the s tandard cyclic sets A[n] = A( —,n) and their realizations 
An. From [7], 3.4 we know tha t as cocyclic spaces A* = G x A*, so we may view 
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A* as a cocyclic G-space. Now suppose Y is a (based) G-space. We can define 
a cyclic space C.CY) as the equivariant mapping space 

C.(Y) = FG(A\Y), 

with the compact open topology. Then one immediately verifies tha t C. is right 
adjoint to the realization functor | — |. The realization functor for simplicial 
spaces also has a right adjoint. It is given as S.(X) = F(A*,X) with the 
compact open topology. Finally the forgetfull functor U from G-spaces to spaces 
is right adjoint to the functor G+ A —. 

By a very general principle in category theory called conjunction, to prove 
the lemma we may as well show tha t Sm(UY) = K*C.(Y) for any G-space Y. 
But this is evident since FG(G+ AX,Y) = F(X, UY) • 
Proposition. There is a natural equivalence of Gspectra 

G+ A T ( L ; P ) ~G T i ( L 0 ? ) . 

The V'th space in the smash product G-spectrum on the left is naturally 
homeomorphic to limQw~v(G+ A tT(L; P)(W)), where G acts diagonally on 

w 
G+ AtT(L;P)(W) 
Proof. The smash product P(Sio) A 1/(5^) A . . . A L(Sik) is a 1-configuration, 
cf. 2.1. Thus we have an inclusion map Trlrl(L;P]X)k <-+ T H H i ( L © P;X)k 
and these commutes with the simplicial s tructure maps. By definition we get a 
map of cyclic spaces 

j(X).:F T H H ( £ ; P ; X). THHi (L © P ; X). 

and lemma 3.2 shows tha t on realizations this gives rise to a G-equivariant map 

j ( J ) : G + A T H H ( L ; P ; X ) T H H i ( £ © P ; X ) . 

When X runs through the spheres Sv these maps form a map j of G-prespectra. 
Let us write G+ A tT(L; P) for the G-spectrum whose V ' th space is the colimit 

lim nw~v(G+ A f (L;P)(W)). 
w<zu 

T h e n j induces a map J : G+AtT(L; P) —± T i ( L © P ) and an argument completel; 
analogous to the proof of proposition 2.1 shows tha t this is a G-equivalence 
Finallv the canonical inclusion 

G+ A f (L; P)(V) G+ A T(L; P)(V) 

gives a map G+ A tT\L\ P) —• G+ A T(L; P ) and this is a homeomorphism, cf. 
the appendix. • 

189 



L. HESSELHOLT 

3 . 3 . Before we prove our main theorem we need the following key lemma, also 
used extensively in [6]. 

Lemma. Let T be a G-spectrum. Then there is a natural equivalence of non-
equivariant spectra 

[T /\G+}c*r - T V S T , 

and the inclusion D: [T A G+]c*r ^ [TA Gjr\cpr~1 becomes p V id. Here p 
denotes multiplication by p. 

Proof. The Thorn collaps t: Sc -+ SiR A G+ of S(C) C C gives rise to a G-
equivariant transfer map 

r: F(G+, ET) G+ A T 

which is a G-homotopy equivalence, cf [9], p.89. There is a cofibration sequence 
of CPr-spaces 

Grpr-\- c—G_|_ —> Cp-r_^_ A 

where S1 is Gpr-trivial. We may apply T c p ^ —,ET) and get a cofibration se
quence of spectra 

F(S\ET) —• (G+,ET) ET. 

Finally ev^ is natural ly split by the adjoint of the G-action G+ A E T —• E T . 

Proof of theorem. If we compare proposition 3.2 and lemma 3.3 we find tha t 

T i ( L e P ) C p r ^ T(L-P) V E T ( £ ; P ) . 

Now holim of a string of maps 

fi fi — l f"2 v fl v fo v 
> JLn > * ' * • JS.2 • ^ 1 » ^ 0 

where every / j = pgi for some ^ vanishes after p-completion, so by proposition 
2.2 and lemma 3.3 we get 

T C ( L © P [ n ] ) ~2n E T ( L ; P [ n ] ) . 

The functor T(L,P) is linear in the second variable, cf. [12] 2.13, so therefore 

fin+1TC(Le?[n]) ^n £T+1ET(L;P[n] ) ~ T ( L ; P ) . 

It remains only to check tha t the stabilization maps defined in 1.5 induce an 
eauivalence of T(L: P). Thev do. • 
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A P P E N D I X 

A.l . Let C be either of the categories A or A and let X: C —• Top* be a functor 
to pointed spaces. We define a new functor X:C —• Top* by the homotopy 
colimit 

holim((- i C)op Cop Cop TopJ, 

where (n J, C) is the category under n, cf. [10]. If 0:n —• m is a morphism 
in A (not C), which is surjective, then #*: (m j C) —• (n j C) is an inclusion 
functor. In general inclusions of indexcategories induces closed cofibrations^ on 
homotopy colimits. In particular #*:Xm —• Xn is a closed cofibration, so X is 
good in the sense of [14]. Moreover we have a homotopy equivalence Xn —> Xn 
because id: n —• n is initial in (n j C). 

A.2. This section explains a technical point in the passage from G-prespectra 
to G-spectra. Let GVU denote the category of G-prespectra indexed on the 
universe U and let GSU be the full subcategory of G-spectra. In [9] the authors 
prove tha t the forgetful functor /: GSU —• GVU has a left adjoint L: GVU —> 
GSU. We call this functor spec i f i c a t i on and if £ £ GVU then we call Lt the 
associated G-spectrum. Such a functor is needed since many constructions such 
as X A — and any (homotopy) colimits do not preserve G-spectra. However 
L has the serious drawback tha t in general it looses (weak) homotopy type, 
i.e. the homotopy type of (Lt)(V) cannot be described in terms of tha t of the 
spaces t(W). To control the homotopy type the G-prespectrum t has to be 
an inclusion G-prespectrum, tha t is the s tructure maps a:t(V) —• Qw~vt(W) 
must be inclusions, then 

(Lt)(V) lim Qw-vt(W). 
w<zu 

This is the case for example if the adjoints a: T,w~vt(V) —* t(W) are closed 
inclusions. The thickening functor (—)T defined in 1.2 produces G-prespectra of 
this kind. Therefore L(tT) has the right homotopy type. 

If a: GVU —+ GVU is a functor we define A: GSU —> GSU as the composite 
functor Lai and if a has a right adjoint 6, then B is the right adjoint of A. 
Suppose b preserves G-spectra, then b(lT) = IB(T) for any T e.GSU. By 
coniueation we ecet 

A(Lt) ^ Lait) 

for any t G GVU. The functors a we consider take a G-prespectrum, whose 
s t ructure maps a are closed inclusions, to a G-prespectrum of the same kind. 
Hence the homotopy type of La(tT) and therefore A(L(tT)) may be calculated. 
This shows tha t all G-spectra considered in this paper have the right homotopy 
type. 
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