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HOLOMORPHIC GERBES AND 
THE BEILINSON REGULATOR 

by Jean-Luc BRYLINSKI 

Introduction 

For X a smooth complex projective variety, Beilinson has defined reg­

ulator maps Cm,i : Ki(X) —> H2rn~t(X,Z(m)D) from algebraic K-theory to 

Deligne cohomology [Bel] . For a variety over Q, the conjectures of Beilin­

son express the leading term of the expansion of the Hasse-Weil L-functions 

at an integer in terms of this regulator. 

Many computations of the regulator have been performed by Beilinson 

himself [Bel] [Be2] and by other authors [D- W ] [Ra2]. There are however 

few cases where the regulator map has been described geometrically, the 

main reason being that the Deligne cohomology groups themselves do not 

have an easy global geometric interpretation. There is an important case 

where a geometric interpretation has been obtained by Bloch, Deligne and 

Ramakrishnan, namely that of the regulator C2,2 · K2{X) —• i ? 2 ( X , Z(2)x>). 

For X projective, this goes as follows: Deligne showed that the group 

H2(X, Z(2)£>) identifies with the group of isomorphism classes of holomor-

phic line bundles over X equipped with a holomorphic connection. Then 

Bloch [Bl] and Deligne [De2], constructed a holomorphic line bundle asso­

ciated to a pair of invertible holomorphic functions, and Bloch showed that 

this gives a regulator map from K2(X) to the group of isomorphism classes 

of holomorphic line bundles with connection. Ramakrishnan gave an inter­

pretation of this construction in terms of the three-dimensional Heisenberg 

group [Ral] . 

s. M. F. 
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J.-L. BRYLINSKI 

Line bundles can however be used only in describing this special case 
of the Beilinson regulator. Other Deligne cohomology groups are in fact 
related to higher analogs of line bundles, which are called gerbes [G] 
(with band the sheaf of invertible holomorphic functions), 2-gerbes [Bre], 
etc.... In this paper, we give a geometric description for the regulator 
map C2,i : K\{X) —» H3(X,Z(2)£>). This is based on the interpretation 
of the Deligne cohomology group H3(X, Z(2)£>) as the group of equiva­
lence classes of holomorphic gerbes equipped with a holomorphic connective 
structure. These notions were developed in [Bryl] and [Bry2] where they 
were applied to the geometry of loop spaces and of the space of knots in a 
three-manifold. For X projective, the Deligne cohomology group in ques­
tion is the quotient of the dual of ^(X, M) by the linear forms of the type 
7 i—• ^S(J^UJ), for uj a holomorphic 2-form, and S denotes the imaginary 
part. In terms of holomorphic gerbes, the linear form on H^iX,R) thus 
obtained is the holonomy of the holomorphic gerbe. In fact, the geometric 
significance of gerbes is that they give rise to such holonomy functionals 
for mappings of surfaces into the ambient manifold. 

Underlying this is a theory of curvings compatible with the holomor­
phic structure of a gerbe. These curvings which are flat (i.e., have zero 
3-curvature) are unique precisely up to a holomorphic 2-form; this is our 
geometric explanation for the ambiguity of a holomorphic 2-form in the 
regulator map. 

In principle such ideas will lead to a geometric description of all reg­
ulator maps, once the categorical aspects have been cleared up. Hopefully 
this would lead to a better understanding of algebraic K-theory itself. 

T o make this paper self-contained, we have included a discussion of 

holomorphic gerbes and their differential geometry (connective structure, 

curving and 3-curvature). W e only discuss Deligne cohomology, as op­

posed to the more delicate Deligne-Beilinson cohomology, except for some 

comments related to growth structures on gerbes, at the end of §2. 

Finally in §5 we give the geometric description of the regulator 

Ki(X) —* H3(X, /x® 2 ) for m odd. This uses an analog of the line bundle 
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HOLOMORPHIC GERBES AND THE BEILINSON REGULATOR 

(/, g) of Bloch and Deligne, associated to a pair / , g of invertible regular 
functions. This analog is a gerbe, which is the obstruction to lifting an 
abelian covering with group /x^ x / x m to a covering whose group is a finite 
Heisenberg group. The obstruction vanishes when g = 1 — / , due to the 
existence of an embedding of / x ® - 1 into the jacobian of the Fermât curve 

xm _|_ ym _ ^ This is closely related to work of Deligne [De3] and Ihara 

[1]· 
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It is a pleasure to thank Christian Kassel, Jean-Louis Loday and Norbert 
Schappacher for organizing a very interesting and pleasant conference in 
Strasbourg. 
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1. Construction of holomorphic gerbes 

W e recall the notion of gerbe C on a space X , with band a commuta­
tive sheaf of groups A. This is a sheaf of categories (or stack) over X in 
the following sense. For every continuous map f :Y —* X, which is a local 
homeomorphism, there is category C(Y-^-+X) (or simply C(Y)). Given a 
diagram Z-^Y-^X of local homeomorphisms, there is a pull-back func­
tor g* : C(Y^X) C(Z-^X). We do not require that (hg)* = g*h*, 
since this does not hold in geometric situations. We do assume that there is 
a given invertible natural transformation 69ih · 9*h*^>(hg)*, such that some 
commutative diagram commutes, for any diagram V-^WZ-^Y-^->X 
(we refer the reader to [Bry2] for details). Given a diagram of local 
homeomorphisms Z-^->Y—>X, with g surjective, one has a descent cat­
egory, whose objects are pairs (P, 0), where P is an object of C ( Z ) , and 
(f) : PIP-^P^P is an isomorphism between objects of C(Z x y Z). W e say 
that C is a sheaf of categories if the natural functor from C(Y) to the 
above descent category is an equivalence of categories, for any such dia­
gram Z-^Y-^X. 
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J.-L BRYLINSKI 

Let now A be a sheaf of abelian groups over X. A gerbe over X with 
band A is a sheaf of categories C over X, together with an isomorphism a p : 
A-^AutiP) for any object P of C(Y)1 such that the following properties 
are satisfied: 

(1) T h e categories C(Y) are groupoids (i.e., every morphism is invert-
ible). 

(2) T h e isomorphisms otp commute with all morphisms in C. 
(3) T w o objects of C(Y) are locally isomorphic. 
(4) There exists a surjective local homeomorphism / : Y —> X such 

that C(Y) is non-empty. 
A gerbe on X with band A leads to a cohomology class in H2(X, A). 

In fact, Giraud proved [G] that H2(X, A) identifies with the group of equiv­
alence classes of gerbes over X with band A. 

W e will study gerbes over a complex-analytic manifold X, with band 
equal to the sheaf of groups OX. Such gerbes will be called holomorphic 
gerbes. 

Recall briefly how a divisor D on X leads to a line bundle O(D). 
Here D = Ei riiDi is a formal combination, with integer coefficients, of 
irreducible subvarieties of codimension one. There are several descriptions 
of O(D). First we can describe the space of sections T(U, 0{D)) for any 
open set U, as comprised of all meromorphic functions / on U such that 
div(f) + D > 0 in U, where div(f) is the divisor of / . If we wish merely to 
describe the class of O(D) in Pic(X) — H1(XJ O ^ ) , we may use the exact 
sequence of sheaves on X 

0 o*x -> O x ( * Y y ^ v Y +Zy -+ 0 ( i - i ) 

where Y = Ui:ni^o Di is the support of D , uy : Y —> Y is the normalization 

of Y. Note that Y = \Ji Di, where Di is the normalization of Di. T h e sheaf 

of algebras Ox(*Y) is the direct limit of the Ox{n · Y) for n > 1; in other 

words, a section of Ox(*Y) over an open subset U of X is a holomorphic 

function on U \ Y, which is meromomorphic over U. The homomorphism 

vy associates to a meromorphic function / its polar divisor. More precisely, 
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the function vy(f) takes o n ^ C F a value equal to the order m* of the pole 
of / along Di. Then we have a boundary map 6 : H°(Y, Z ) HX(X, 0*x). 
T h e divisor D induces a function n o n 7 , whose value on Di is equal to 
rii. Then we have 

Proposition 1.1. The class ofO(D) in ^(X^Ox) is equal to 6(n). 

W e want to use the exact sequence (1-1) to construct holomorphic 
gerbes over X. W e will consider the boundary map 6± : i f 1 ( ? , Z ) —-> 
H2(X,Ox). According to [G], it has the following geometric interpreta­
tion. To explain it, we will use the notion of a torsor F under a sheaf 
A of groups over X (also called an A-torsor). This means a sheaf F, to­
gether with a left action of A on i*1, which is locally simply transitive. The 
group of isomorphism classe of A-torsors over X identifies with i 7 1 ( X , A). 
If / : A —• B is a homomorphism of sheaves of groups, and if F is an 
A-torsor, then the contracted product B x A F, quotient of B x F by the 
diagonal action of A , is a J3-torsor. Let F be a torsor under the sheaf of 
groups V>Y ^Lyr over X. Then we have a holomorphic gerbe C over X. W e 
will describe the category C(J7), for an open set U in X . A n object of C(U) 
is a pair (H,(f>), where i f is a torsor under the sheaf Ox(*Y)*u over [7, 
and <f> is an isomorphism of uy *Zy-torsors <f> : F-^uy * Z y x ° x ' * y ' * H. 
A morphism from (Hi,<f>i) to (#2,^2) is an isomorphism i\> : Hx-Z^H2 of 
0x (*3O*-torsors , which makes the following diagram commute: 

F <t>l uy * Z y x o * < * > T H l 

Id 4> 

F <t>2 uy * Z y x ° * W H2 

It is easy to see that C is a holomorphic gerbe. To obtain a more 

concrete description of C, we will assume that the torsor F under VY .ZY  

is given by a family (fi) of invertible holomorphic functions on Di. W e 

note that a torsor on X under uy * Z y is exactly the same thing as a torsor 

on Y under Z y . Hence we will describe a Z^- torsor over Y. For an open 

subset V of Y, a section of F over V will be a family of functions hi over 
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V n Di such that exp(hi) = fa. A section n = (n») of Zy over V acts on F 
by n · (hi) = (hi + 27Ty/—T · m). 

W e now need the Une bundle ( / , g) of Bloch [Bl] and Deligne [De2] 
associated to a pair of invertible holomorphic functions / and g over a 
complex manifold M. This line bundle is characterized by the fact that 
any local branch Log(f) of a logarithm for / defines a section of Ly denoted 
by {Log(f), g}. One imposes a relation between local sections defined by 
different branches of the logarithm: 

{Log(f) + 2n^=l n,g} = gn- {Log(f), g}. ( 1 - 2 ) 

Equivalently, one considers the trivial line bundle over the infinite cyclic 
covering M of M , which is the fiber product M = M x c * C*, where 
C* —• C* is the universal covering, and M maps to C* via / . One de­
scends the trivial line bundle to a line bundle on M via the "monodromy 
automorphism" which is multiplication by g. 

W e are now ready to describe the category C(U) over an open subset 
U of X. A n object of C(U) will be a pair (Z/,/C), where 

(1) L is a holomorphic line bundle over U\Y. 
(2) fC is a sheaf on Y Pi £7, consisting of meromorphic trivializations of 

the line bundle 
Oi (Fi, gi)O-1 O L 

defined in a neighborhood of Di n (7, where gi is a local equation of Di and 

jPi is an invertible holomorphic function which extends /* G 0 * ( I ^ n i 7 ) . We 

require that the sheaf fCi is a torsor under Ou, which acts on meromorphic 

trivializations by multiplication. 

W e have to explain (2) in a little more detail. First if we replace gi 
by another equation g^, we have: g[ = gi · Ui, where Ui is an invertible 

holomorphic function. Then the line bundle (Fi,g[) is the tensor product 

of (Fi,gi) with (Fi,v,i). The line bundle (F^Ui) is in fact defined over 

U; hence if we have a sheaf /C as in (2) , there results a sheaf KJ of local 

trivializations of 

®i (Fi^gl)®-1®!; = ®i (Fi^Ui)®-1 ® ®i (Fi^gi)®-1®!; 
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consisting of the products a <g> ¡3, where a is an invertible section of 

®< (Film)®-1, and/3 e K. 

Similarly, if we replace Fi by another function i*1/, we have F[ = Fi + 

gi-qi. For our purpose, we may assume that qi is invertible and l + ^ i ^ " 1 ^ 

is invertible, since any function is locally a linear combimation of functions 

with these properties. Therefore ( i * 1 / , ^ ) is the tensor product of (i^,<?i) 

with the line bundle (1 + 9%F~xqi, gi). Now we have 

Proposition 1.2. ( Block [BlJ Deligne [De2]) Let h be an invertible 

holomorphic function on M such that 1 — h is invertible. Then the line 

bundle (1 — h,h) is canonically trivialized. 

Thus (1 + g%F~xqi,gi) is isomorphic to (1 + giF~xqi, — i ^ ç " 1 ) , which 

extends to a holomorphic line bundle in a neighborhood of Di. Hence the 

change from Fi to F[ is accompanied by an isomorphism of the correspond­

ing (9^-torsors. 

A morphism from (L\,K\) to ( ¿2 ,^2) in C(U) is an isomorphism <j> : 

L\ L2, which transforms a local trivialization in K\ to one in /C2. Then 

we have: 

Proposition 1.3. The presheaf of categories C is a holomorphic gerbe 

over X. The corresponding element of H2(X,Ox) is equal to Si([(fi)])> 

where [(fi)] € HX(Y,Z) = HX(DUZ) is the class of the (fi). 

W e now discuss the connective structure on this holomorphic gerbe. 

W e recall from [Bryl] [Bry2] that a connective structure on C consists in 

the following: 

( C I ) For any local homeomorphism Y —> X and any object P of C(Y), 

we have a torsor Co(P) under Qy. 

(C2) For a diagram Z-^Y —> X of local homeomorphisms and any o b ­

ject P of C(Y), we have an isomorphism of J7^-torsors h*Co(P)j:+Co(h*P). 

(C3) Any isomorphism <j> : P^Q in C(Y) unduces a functorial iso­

morphism 0* : Co(P)-z+Co(Q), such that g*(D) = D — g~xdg for the 

automorphism induced by a section g of O x . 
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There are some required compatibilities between (C2) and (C3) , for 
which we refer to [Bry2, Chapter 5]. 

T o give the connective structure on the gerbe C, we will need the holo­
morphic connection V on the Deligne line bundle ( / , 9 ) . It is characterized 
by the equation: 

V({Log(f),g}) = 
1 

2 T T V C : T 
Log(f) • 

dg 

9 
®{Log(f),g}, ( 1 - 3 ) 

Then for an open set U in X , and for an object (L, fC) of C(U), we 
define the fij^-torsor Co{L, /C) as a subsheaf of the sheaf of holomorphic 
connections D on L over U\Y as follows. Note that D induces a connection 
— V i + D on <S>i(Fi, g ^ ) ® - 1 ® L, where V ; is the connection on ( i ^ , gi). 
This connection should send a section in /C to a holomorphic 1-form. Then 
we have: 

Proposition 1.4. The assignment (£,/C) Co(L,JC) defines a 
holomorphic connective structure on C. 

2. Holomorphic gerbes and Deligne cohomology 

For a complex manifold X , and a subring A of M , the Deligne complex 

A(m)r> is the complex of sheaves 

Cone {A{m) 0 F m f t ^ -> Qm

x) [ -1] ( 2 - 1 ) 

where Q x is the holomorphic de Rham complex of sheaves, and Frn(Qx) 

is the truncation (filtration bete) 

Ωχ -> Ω ™ + 1 · · · 8 

T h e Deligne complex is the complex of sheaves 

A(m) Ox MX … MX

-1 

( 2 - 2 ) 
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T h e Deligne cohomology groups are the hypercohomology groups 
W(X,A(m)D). 

For A = Z , there is a quasi-isomorphism of complex of sheaves 

Z ( m ) OX 
MX … MX 

a (27r v/^î) 1-m (27TV

/=T) 1-m(2 - 3) 

0 Ox d log MX … MX 

where a(f) = e x p ( ( 2 7 r \ / — T ) 1 _ m · / ) . This of course requires the choice of 

a square root of —1. 

For X a smooth complex algebraic variety, Beilinson [Bel] has intro­

duced a version of Deligne cohomology which involves a compactification of 

X. This modified cohomology is called Deligne-Beilinson cohomology; for 

X projective, it coincides with Deligne cohomology. Beilinson constructed 

a regulator map C; j P : KP(X) —• H2l~p(X, A(i)r>) from the algebraic K-

theory of X to its Deligne-Beilinson cohomology. His famous conjectures 

on values of L-functions of algebraic varieties over Q involve the regulator 

map for A = R. 
Beilinson did some beautiful computations of his regulator in the case 

of a curve X , mostly for an elliptic curve with complex multiplication 

and for a modular curve [Bel] [ D - W ] . The regulator which is relevant 

for the value at s = 2 of the ^-function L(H1(X), s) is C2,2 : K^{X) —• 
H2(X, Z ( 2 ) d ) . The group H2(X, Z(2)r>) has a nice geometric interpreta­

tion. The complex of sheaves Z(2)r> is quasi-isomorphic to O^—^Q^x^ so 

that H2(X, Z ( 2 ) d ) is isomorphic to HX(X, O x ^ x ) . This latter group 

was shown by Deligne [De2] to be identical to the group of isomorphism 

classes of holomorphic line bundles equipped with a holomorphic connec­

tion. On the other hand, for X projective, the Deligne cohomology group 

H2(X,U(2)D) is isomorphic to HX(X,C)/H 1 ( X , M ( 2 ) ) = y/=l · H^X^M). 
The map 02,2 has the following geometric interpretation, for X a curve. 

In that case the line bundle is flat, and the regulator map (for A = R ) 

associates to a holomorphic line bundle with holomorphic connection the 

logarithm of the absolute value of the monodromy of the line bundle. W e 
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refer to [Bel] [E-V] for an explicit formula for this monodromy, as an 

iterated integral. 

Our purpose is to give a similar interpretation for another regulator 

map, namely C2,i : Ki(X) —* H3(X,Z(2)r>). The Deligne cohomology 

group H3(X, Z(2)£>) is isomorphic to H2(X, Oxd-^*Q}x), using the quasi-

isomorphism (2-3). W e have the following interpretation of the latter group. 

Theorem 2 . 1 . ( 7 B r y 2 , Chapter 5j) The group H2(X,0*x 

d log MX 

is canonically isomorphic to the group of equivalence classes of holomorphic 

gerbes over X equipped with a holomorphic connective structure. 

W e will write down a Cech cocycle correspond to a holomorphic gerbe 

C equipped with a connective structure Co. Let (Ui) be an open covering 

of X, with all non-empty intersections Stein and contractible. Let Uij = 

Ui n Uj, Uijk = Ui n Uj n C/jfe, and so on. Pick an object Pi of C(Ui) 

and isomorphisms Uij : (Pj)/Uij^(Pi)/Uij. Then hijk = uìku*3uàk *s a n 

automorphism of Pk over ET̂ fe? hence gives a section of O x over L/y*. Then 

(hijk) is a Cech 2-cocycle with coefficients in O x . Next pick a section V i 

of Co(Pi), and define a section otij of Qx over Uij by 

otij — V^ *V j 

(which makes sense since V» and Uij *SJ j are both sections of the £ix~ 

torsor Co(Pi)). Then (hijk^ij) is a Cech 2-cocycle of the covering (Ui) 

with coefficients in the complex of sheaves Ox

d—^Qx. This represents the 

cohomology class of the pair (C, C o ) . 

Thus the holomorphic gerbe with connective structure of §1, associ­

ated to a family (fi) of invertible holomorphic functions on the divisors Di, 

yields a class in the Deligne cohomology group H3(X, Z(2)r>). W e want to 

identify this cohomology class geometrically. W e note that there exists a 

push-forward map i f 1 (JD i , Z( l ) r>) H3(X,Z(2)D)) in Deligne cohomol­

ogy. This follows formally from the existence of a Deligne homology theory 

such that all the axioms of Bloch and Ogus [B-O] are satisfied: this is 

explained in [Bel] and in more details in [J]. 
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To describe concretely this map, we first reduce attention to the case 
where the divisors Di are smooth and do not intersect. 

L e m m a 2.2 . Let X be a complex manifold, and let Z c X be a closed 
complex-analytic subvariety of codimension > 2. Then the restriction map 
H3(X,A{2)D) -+ H3(X\Z,A(2)D) is injective. 

Proof. The exact sequence of complexes of sheaves 0 —> Qx /F2QX —» 
A(2)o —• A(2) —• 0 gives rise to an exact sequence 

H2(X,A(2)) H1(X,MX — MX — … H3(X,A(2)D) H*(X,A(2)) 

and a similar exact sequence for X \ Z. Note that given a morphism of 

exact sequences of groups 

A1 B1 
C1 Dx 

OL ß y t 
A2 B2 C2 D2 

if a is surjective, and ß and 6 are injective, then 7 is injective. 

In our case, the restriction map H2(X, A) —» H2(X\ Z, A) is bijective, 
and the restriction map H3(X, A) —• H3((X \ Z,A) is injective, because 
the cohomology group with support H^(X, A) is 0 for p < 4. Lastly we 
have to prove that the restriction map H1(X, fix —> Q x —• · · ·) —» 
Z,QX —> Q x —>···) is injective. Since H1(X,QX —• fix —>···) injects 
into HX(X, ftx —• fix), it suffices to show that HX(X, fix —• fix) maps 
injectively to H1(X \ Z , fix —* fix). W e have an exact sequence 

H°(X, o x ) Н°(Х,П*Х) H \ x , n x - + n x ) H^X,Çlx). 

The restriction maps H°(X,ÙX) —• H°(X \ Z,Q,X) are bijective for all p, 

by Hartogs' theorem. The map HX{X, Qx) —»· HX{X \ Z,QX) is injective 

because H^(X, £lx) vanishes [S-T]. This finishes the proof. 
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This lemma implies that for the purpose of checking that some formula 
for a class in H2(X, O x —• Qx) is correct, we may delete from X any 
closed analytic subvariety of codimension > 2. Returning to the invertible 
holomorphic functions /* on Di, we have the following 

Proposition 2 .3 . The class in H2(Ox —• Qx) of the holomorphic 
gerbe C with holomorphic connective structure Co is the opposite of the sum 
over i of the push-forward of [fi] G Hx(Di, Z(1)D). 

Proof. Using Lemma 2.2, we may assume that each Di is smooth, 
and that Di D Dj = 0 for i ^ j . We may also assume that there exists 
a neighborhood Vi of Di in X over which there exists an invertible holo­
morphic function Fi such that (Fi)/D. = fi, and there exists an equation 
gi of Di over Vi. Without loss of generality, we may assume Vi C\Vj = 0 
for i ^ j . Then we cover each Vi by open sets C/»,a such that there exists 
a branch Loga(Fi) of a logarithm of Fi over Ui,a- Let Loga(fi) b e the in­
duced logarithm function of fi over Di n Ui,a. Then, for each i, we have 
a Cech 1-cocycle of the covering (Di n £/*,a)a of Di, with coefficients in 
Z(1)D, which represents [fi], namely (Loga(fi) — Logb(fi), Loga(fi)). The 
corresponding class in H3(X, Z(2)o)—^H2(X, O x —• l ^ x ) then has a con­
crete Cech representative for the open covering consisting of the J7»,a and of 
Uo = X \ Y. This Cech cocycle is a pair (g, a), where g is a Cech 2-cocycle 
with coefficients in O x , and a is a Cech 1-cochain with coefficients in Q x . 

W e have: <70,(i,a),(i,fc) = 9i 
Loga(Fi)-Logb(Fi) 271-̂ / — ! and p(t,a),(i,6),(t,c) = 1; this defines 

(? since all other possible intersections of three open sets are empty. A n d 

we have: aO,(z,a) = ( 2 π λ / = Τ ) - 1 · Loga{Fi) • dai 
9i 

, and <*(»,a),(t,6) = 0. Now 

we get the opposite cocycle corresponding to the gerbe C with connective 

structure, if we make the following choices the following choices: over Uo, 
we take the object Ojjq of C(Uo). Over Z7(t,a)? w e take for P(»,a) the pair 

((Fi, gi), can), where can consists of the nowhere vanishing holomorphic 

sections of the trivial line bundle ( i ^ , ^ ) ® - 1 <g) (Fi,gi). W e have to give 

isomorphisms Uij of objects over the intersection of two open sets. W h e n 
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these open sets are E/(*,a) and f7(t,6), we take the isomorphism to b e the 
identity. W h e n the open sets are Uo and t/(i,a)> we take u^a^o to be given 
by the section {Loga(Fi), gi} of (Fi.gi) over U0 (1 E^a) Next we need a 
section of Co((Fi, <ft), can) , which will be given by the standard connection 
on (Fi, gi). The Cech cocycle for these data is exactly equal to the opposite 

Of 

W e will now discuss the relation of holomorphic gerbes on a smooth 
quasi-projective algebraic variety X , to Deligne-Beilinson cohomology. 
This requires introducing a smooth compactification j : X C—• X such 
that Z = X \ X is a divisor with normal crossings in X. Then the Deligne-
Beilinson cohomology group H3(X,Z(2)OB) is defined as the hypercoho-
mology group 

H3(X,Cone (Rj+Z(2)x © F2Q^(Log Z) R ? * C X ) ) ( 2 - 5 ) 

where QZ-{Log Z) is the complex of sheaves over X consisting of meromor-
phic differential forms with logarithmic poles along Z , and F2QZ-(Log Z) 
is the Hodge filtration (truncation in degrees > 2) . 

Let K% be the cone of the morphism of complexes of sheaves occurring 
in (2-2) . It is hard to write down an explicit complex representing K*y 

because there is no easy realization of the object K j * Z ( 2 ) x of a derived 
category (this situation has however recently been remedied by Karoubi 
[K], who uses non-commutative differential forms). However, there is an 
explicit logarithmic complex which maps to this cone. Indeed we have the 
exact sequence of sheaves on X: 

0 Z ( l ) y = ;7,Z(l)x OX 
exp 

j * raer ο χ Α \ 7 . Ζ χ ( 1 ) 0 ( 2 - 6 ) 

where j * merOx denotes the meromorphic direct image. It follows that 

the cone of the morphism c r < 1 R j J | c Z ( l ) x —• O-^ is quasi-isomorphic to 

j * merOx- Here a<q denotes Deligne's truncation of a complex in de­

grees < q. Let then L* be the cone of the morphism <r< iR7*Z( l )x 0 
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F2ft^(LogZ) r%(LogZ), so that there is a canonical morphism of com­

plexes of sheaves from L* to K*. We may view L* as the cone of a morphism 

of complexes of sheaves < T < I R J * Z ( 1 ) X —> [ O ^ —> fïl^Z/ogr Z ) ] , which can 

be identified with the complex of sheaves j*Ox —• fi^(.Lo# Z ) . So we 

obtain 

Proposition 2,4 . There is a natural morphism of complex of sheaves 

from j * mer Ox —• fi^r(Z,o<7 Z ) ¿0 the cone of the morphism 

Uj^Z(2)x ®F2Q^{Log Z) -> R j . C * . 

The hypercohomology group H2{X,j* merOx —• Q^(Lo(jr Z ) ) has a 

description in terms of gerbes. First we define a meromorphic gerbe C 

over X: this is a gerbe over X , with band equal to the sheaf of groups 

i* merOx- This gives in particular a holomorphic gerbe over X , together 

with the notion of meromorphic object of C over U n X, for U any open 

set in X. However, there are topological obstructions to extend such a 

holomorphic gerbe C over X to a meromorphic gerbe over X. The first 

obstruction is an element of H°(Z, i* Rzj*I*(l)), where i : Z ^ X is the 

inclusion; this class is the obstruction to finding a local object of the sheaf 

of groupoids j*C. The second obstruction lives in H°(Z, 2* i ? 2 j * Z ( l ) ) ; it is 

the obstruction to showing that two objects of j*C are locally isomorphic. 

Then a connective structure with logarithmic poles on the meromor­

phic gerbe C associates to any object P of C{U) a torsor Co(P) under 

Q^r(Log Z ) . This must satisfy axioms similar to those of ordinary connec-

tive structures. Then we have easily 

Proposit ion 2.5· The group of equivalence classes of meromorphic 

gerbes over X equipped with a connective structure with logarithmic poles is 

isomorphic to the hypercohomology group H2(X,j* merOx —• Q^(Log Z)), 

which maps to the Deligne-Beilinson cohomology group H3{X^Z{2)DB)-

Now if we start from invertible regular functions fi on divisors Di, 

the question arises to construct a compactification X such that the cor­

responding holomorphic over X has a meromorphic extension to X. W e 
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these open sets are U^a) and E/(i,6)> we take the isomorphism to b e the 
identity. W h e n the open sets are Uo and ?7(t,a)> we take u^^^o to be given 
by the section {Loga(F%), 9%} of (Fi.gi) over U0 n C/(i,a) Next we need a 
section of Co((Fi, gi), can), which will be given by the standard connection 
on (Fi*, gi). The Cech cocycle for these data is exactly equal to the opposite 
of (g,a)-

W e will now discuss the relation of holomorphic gerbes on a smooth 
quasi-projective algebraic variety X , to Deligne-Beilinson cohomology. 
This requires introducing a smooth compactification j : X <—+ X such 
that Z = X \ X is a divisor with normal crossings in X. Then the Deligne-
Beilinson cohomology group H3(X, Z(2)DB) is defined as the hypercoho-
mology group 

H3(X,Cone ( R ? * Z ( 2 ) x © F2tt^(Log Z) R ? * C x ) ) ( 2 - 5 ) 

where iVr-(Log Z) is the complex of sheaves over X consisting of meromor-
phic differential forms with logarithmic poles along and F2£V^r(Log Z) 
is the Hodge filtration (truncation in degrees > 2) . 

Let K* be the cone of the morphism of complexes of sheaves occurring 
in (2-2) . It is hard to write down an explicit complex representing K*, 
because there is no easy realization of the object K j * Z ( 2 ) x of a derived 
category (this situation has however recently been remedied by Karoubi 
[K], who uses non-commutative differential forms). However, there is an 
explicit logarithmic complex which maps to this cone. Indeed we have the 
exact sequence of sheaves on X: 

0 Z ( l ) x = j . Z ( l ) x Οχ 
exp j * mer^X B \ ? * Z x ( l ) 0 ( 2 - 6 ) 

where j * merOx denotes the meromorphic direct image. It follows that 
the cone of the morphism a<{Rj*Jj(l)x —• Ox is quasi-isomorphic to 
J* merOx. Here a<q denotes Deligne's truncation of a complex in de­
grees < q. Let then L* be the cone of the morphism a<iRjf*Z(l)x 0 
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F2Q^(LogZ) Q^(LogZ), so that there is a canonical morphism of com­

plexes of sheaves from L% to K*. We may view L* as the cone of a morphism 

of complexes of sheaves < T < I R J + Z ( 1 ) X —• [O^ —• ÇÏ^(Log Z)}, which can 

be identified with the complex of sheaves j*Ox —> Q^r(Log Z). So we 

obtain 

Proposition 2 .4 . There is a natural morphism of complex of sheaves 

from j * merOx —• Qj^(Log Z) to the cone of the morphism 

R ? * Z ( 2 ) x ®F2Q^(Log Z) -+ Rj*Cx. 

The hypercohomology group H2(X,j* merOx —• Q^(Log Z)) has a 

description in terms of gerbes. First we define a meromorphic gerbe C 

over X: this is a gerbe over X, with band equal to the sheaf of groups 

J* m&rOx. This gives in particular a holomorphic gerbe over X, together 

with the notion of meromorphic object of C over f / f l l , for U any open 

set in X. However, there are topological obstructions to extend such a 

holomorphic gerbe C over X to a meromorphic gerbe over X. The first 

obstruction is an element of H°(Z, i * i ? 3 j * Z ( l ) ) , where i : Z c—> X is the 

inclusion; this class is the obstruction to finding a local object of the sheaf 

of groupoids j*C. The second obstruction lives in H°(Z, i*R2j*Z(l)); it is 

the obstruction to showing that two objects of j*C are locally isomorphic. 

Then a connective structure with logarithmic poles on the meromor­

phic gerbe C associates to any object P of C(U) a torsor Co(P) under 

Q^r(Log Z). This must satisfy axioms similar to those of ordinary connec­

tive structures. Then we have easily 

Proposit ion 2 .5 . The group of equivalence classes of meromorphic 

gerbes over X equipped with a connective structure with logarithmic poles is 

isomorphic to the hypercohomology group H2(X,j* merOx —* Q^(Log Z)), 

which maps to the Deligne-Beilinson cohomology group H3(X,Z(2)DB)-

Now if we start from invertible regular functions fi on divisors Di, 

the question arises to construct a compactification X such that the cor­

responding holomorphic over X has a meromorphic extension to X. W e 
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discuss this when the Di are smooth. Then we can pick X c—> X such that 
the closure Di of Di is smooth, and transverse to all the components of Z 
and to their pairwise intersections. Under these conditions, the topologi­
cal obstructions vanish and we have a meromorphic gerbe with connective 
structure, hence a class in Beilinson-Deligne cohomology. 

3. The regulator map from HX(X,K2) to H3(X,Z(2)D). 

W e wish to give a geometric description for the Beilinson regulator 
map ci,2 : K±(X) —•* H3 (X, A(2) &), for X a smooth projective algebraic 
variety over C. All sheaves and groups in this section are taken in the 
algebraic sense, except when we put the superscript an as in Ox1. W e 
recall that the group K\(X) (g>Q decomposes into simultaneous eigenspaces 
of the Adams operations, each one of which is identified with a term of the 
Gersten-Quillen spectral sequence [Q] [So ]: 

K1(X)®Q = Σ 
i>0 

J P ( X , i G + 1 ) ® Q . 

T h e term of this decomposition which is relevant for the regulator map 
Ci?2 is H1(X, Ko). Therefore we will describe geometrically the regulator 
map c i , 2 : ^(X^K^) -> H3(X,Z(2)D). The group H^iX.K^) is the first 
cohomology group of the Gersten complex [QJ 

K2(C(x)) 61 e x G x ( i ) ад* So θχ€Χ(2) Ζ. ( 3 - 1 ) 

Here X(p) denotes the set of points of X of codimension p , and for a point 

x , C(x) is the field of rational functions on the corresponding subvariety of 

X. 
Our task is therefore as follows: we start with a finite family (Di) 

of irreducible codimension one subvarieties in X , and a family fi of non­

zero meromorphic functions on the Di, such that Y^fi fi is in the kernel 

of 60. For these data, we must construct a holomorphic gerbe over X, 
with a holomorphic connective structure. If all fi are actually invertible 
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holomorphic functions on Z?i, then we have produced such a gerbe in §1. 
W e now wish to generalize this construction. This depends on the following 
"moving lemma for i / ^ X , 1 £ 2 ) " . 

L e m m a 3 .1 . Let a G ^(X, K_2), a n d let x e X. Then there exists 
some Zariski open set U containing x, such that a has zero restriction to 
H^(U,K2). 

Proof. This in fact a general result about higher cohomology of any 
sheaf. 

W e will now associate a holomorphic gerbe C on X to a cocycle Ei fi 
in © x G x ( i ) C(a;)*, where each fi is a non-zero meromorphic function on the 
irreducible codimension one subvariety Di of X . Let Y = U< Di. For an 
open subset U of X , an object of the category C(U) will be a holomorphic 
line bundle L over U\Y, together with the following data at any point x 
of Y. For U a Zariski open set containing x, and a G K2(C(X)) such that 
Si(a) = y^2i fi over U, let C(a) be the corresponding Deligne line bundle 
over U\Y (it is indeed holomorphic outside of the support of 61(a)). Then, 
just as in §1, we should have a subsheaf K2(a) of the sheaf of meromorphic 
local trivializations of / ^ ( a ) ® - 1 & L, which is a torsor under Off1 *. 

These sheaves fC(a) should satisfy two sorts of conditions: 

(i) compatibility with restriction to smaller open sets; 

(ii) independence of a. 

W e explain the meaning of (ii). Let /3 G K2(C(X)) with 8i((3) = 
61(a) in U. Then the difference /3 — a belongs to H°(U,K_2), using the 

Gersten resolution. The line bundle C(/3 — a) = C(/3) (8) ^ ( a ) ® - 1 therefore 

is holomorphic over U. W e ask that a section s of ^ ( a ) ^ - 1 ! / belongs to 

K(a) if and only if, for a non-vanishing local section a of C(a — / ? ) , the 

section 5 (8) a of Cdd)®-1 ® L belongs to IC(/3). 

W e then obtain 
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T h e o r e m 3 .2 . The sheaf of groupoids C is a holomorphic gerbe over 
X. Furthermore, if to any object (L,K(a)) of C(U) we assign the Qxan-
torsor of meromorphic connections V on L such that the induced connec­
tion on ^ ( a ) ® - 1 <8> L is holomorphic, we obtain a holomorphic connective 
structure on C. 

The proof is very similar to that of Proposition 1 .3 . 

Now clearly the holomorphic gerbe with connective structure depends 
additively on the element of Ker(So)- W e will show that an element of 
Im(6i) gives a trivial gerbe with connective structure. Indeed given 6i(a) 
for a G K2(C(X)), there is a global object of C, given by the line bundle 
C(a) over X\Y, together with the obvious choice of /C(a). The fixa™-torsor 

has a global section, given by the Deligne connection on C(a). 
It follows that the equivalence class of the holomorphic gerbe with 

holomorphic connective structure depends only on a cohomology class in 
H\X,K2). 

W e now come to the main result of this paper 

Theorem 3 .3 . The map which to an element of HX(X,K_2) assigns 
the equivalence class of the above holomorphic gerbe with connective struc­
ture, is equal to the Beilinson regulator c\^2. 

Proof. Given an element ]TV fi of Ker(6o), we have to show that two 
elements of H3(X, fL(2)r>) coincide. According to Lemma 2 . 2 , we may ver­
ify this after removing from X some algebraic subvarieties of codimension 
at least 2 . Thus we may assume that each fi is an invertible regular function 
on £>i, in which case Proposition 2 . 3 describes the class of the holomorphic 
gerbe with connective structure as Ei ji * [fi], where ji : Di c—> X is the in­
clusion, and ji * is the push-forward map . H r l ( D i , Z ( l ) ^ ) —• H3(X, Z ( 2 ) J D ) 

in Deligne cohomology. Now we use the fact that the Beilinson regulator 
maps are part of a morphism of pairs of homology and cohomology the­
ories satisfying the axioms of [B-O]. Thus the regulator map we have a 
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commutative diagram 

Ki(Di) Эг * Κι{Χ) 

ci,i C2.1 
H1{DiiI.{\)D) Ji * H3(X,Z(2)D) 

Since the regulator map ci , i simply maps fi to [ / ; ] , this concludes the 

proof. 

4. Holonomy of gerbes and the Beilinson regulator 

In the last section we showed that, for X a projective complex man­
ifold, the Beilinson regulator map cii2 : H1(X,K_2) ~* H3(X,Z(2)D) may 
be described by associating to an element of H1(X,K_2) a holomorphic 
gerbe over X equipped with a holomorphic connective structure. W e will 
give a description of the real regulator ci,2 : i f 1 ( X , ^ 2 ) ~~> H3(X, R ( 2 ) j D ) 
using the holonomy of this gerbe. First of all, we recall the computat ion 
of H3(X,R(2)£>) from classical Hodge theory [Bel] . We have the exact 
sequence 

… F2H2{X, C)®H2{X, R ( 2 ) ) H2(XX) H2(X,WL(2)D) 

F2H3(X,C)®H3(X,№(2)) H3(X,C) 

T h e map F2H3(X,C) 0 J T 3 ( X , K ( 2 ) ) - * H3(X,C) is injective, and the 

cokernel of the map F2H2(X,C) 0 H2(X,R(2)) -> H2(X,C) identifies 

with y/^l-H^iX)* := ^/^l^H1>1(X)nH2(X,U). Therefore we see that 

H3(X,WL(2)D) ~ y/=l · i f ^ P O r . 
W e will use another equivalent description of this vector space, as 

the quotient of Hom(H2(X,Z),E(1)) by the homomorphisms of the type 

a i—• ^ ( J ^ u>), for a; a holomorphic 2-form. 

W e will consider gerbes Q on a smooth manifold X with band equal 

to the sheaf of smooth C*-valued functions. Note that such gerbes 

are classified, up to equivalence, by the cohomology group H2(X,<C*X) ~ 
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H3(X, Z ( l ) ) . For a gerbe Q with band C ^ , we have the notion of smooth 

connective structure Co on <?, which is defined similarly as in the holo­

morphic case, except that for a local object P of C, Co(P) is now an 

^x ,C"torsor, for ^ x j C the sheaf of smooth p-forms with complex coeffi­

cients. Then we have the notion of curving of the connective structure, as 

defined in [Bryl] and in [Bry2], A curving of Co associates to a section 

V of Co(P) a complex-valued 2-form K(V) such that 

(1) For any isomorphism <f> : P —> P' and any V G C o ( P ) , we have: 

K(<j>*V) = KÇS7) 

(2) W e have 

K(V + a) = K(V) + da 

for any complex-valued 1-form a. 

The differential forms K(V) are not closed in general. In fact, there 

is a closed 3-form f2, the so-called 3- curvature of the curving, such that 

f2 = d K(S7) for any local section V of Co(P), where P is a local object of 

Q. One of the main results of [Bry2, §5.3] is that the cohomology class of 

Q is an integral class multiplied by 27r\/—f, and is the image in H3(X, C ) 

of the Q G i 7 3 ( X , Z ( l ) ) . 

Given a curving of the connective structure, we can define the holon-

omy of the gerbe Q around a closed surface mapping into X. This is dis­

cussed in [Bry2, Chapter 6]. Let $ : E —* X be a smooth mapping from 

the closed oriented surface £ to X. W e will associate a number S(Q>) G C* 

(action functional or holonomy ) as follows. W e have the notion of the 

pull-back gerbe <&*Q over S, with band C £ , equipped with a pull-back con­

nective structure <&*Co and a pull-back curving. Pick a global object P of 

<&*Q and a section V of (3>*Co)(P). Then we set 

S(<&) = exp 
E 

.κ:(Φ*ν)). 

If we change V t o V + a, for a some 1-form, then the integral / E iiT(<&* V ) 

does not change. If we change P to another object, obtained by twisting 
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P by some C*-torsor Q over E, then J E i f (<&*V) gets transformed into 
J E i f (<&*V) + 2tt\/—1 · C i ( Q ) , so the exponential of the integral does not 
change. Therefore the holonomy (4-3) depends only on <& (and of course 
on the gerbe, connective structure and curving). 

Now given a holomorphic gerbe C on the complex manifold X , since 
we have a morphism of sheaves 0*x —» CX, there is a corresponding gerbe 
Q with band CX, and a holomorphic connective structure Co on C induces 
a connective structure Co00 on Q. Given a local object P of C, a section 
V of Co°°(P) is called holomorphic if it belongs to the subsheaf Co(P) 
of Co°°(P). Then a curving of Q will be said to be compatible with the 
holomorphic structure if it satisfies the following condition 

(3) For any local object P of C and any section V of c o ( P ) , we have: 

i f (V) e A 2 ' 0 . 

Then we have the following 

L e m m a 4 .1 . (a) There exists a curving of Q compatible with the 
holomorphic structure. 

(b) / / V '—* i f ( V ) is a curving which is compatible with the holomorphic 
structure, and ifu is a 2-form of type ( 2 , 0 ) , then V i—> K(V)+lj is another 
curving compatible with the holomorphic structure. Any such curving arises 
in this way from some 2-form of type ( 2 , 0 ) . 

This is very similar to a result of [Bry2], so the proof is omitted. 

W e then come to the main result of this section 

Proposit ion 4 .2 . (a) Let C be a holomorphic gerbe on the complex 
projective manifold X, and let Co be a holomorphic connective structure 
on C. Let G be the corresponding gerbe with band Çx. Then there exists a 
curving V i—• K(V) of Co such that 

(1) the curving is compatible with the holomorphic structure; 
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(2) the curving is Hat, that is to say, its 3- curvature is 0. 

(b) A curving satisfying the conditions in (a) is unique up to the ad­

dition of holomorphic 2-form on X. 

Proof. Take any curving V i—• i f ( V ) , which is compatible with the 

holomorphic structure. The 3-curvature Q. is equal locally to dK(V), for 

V a holomorphic section of Co(P), for some local holomorphic object P . 

Since K(S7) is purely of type (2 ,0 ) , Q has only components of types (3, 0) 

and ( 2 , 1 ) . However the cohomology class of £i is purely imaginary. The 

intersection of H3>° © H2'1 and of V=l • H3(X, R ) inside H3(X, C ) is zero 

by Hodge theory. Therefore there exists some differential form (3 of degree 

2 such that Q = d/3. It then follows from Hodge theory that the differential 

of the de Rham complex is strictly compatible with the Hodge filtration 

(see [Del]) . This implies that there exists a 2-form ¡3 of pure type (2 ,0 ) 

such that Q = dp. Then the new curving V f—• K(V) — /3 satisfies (1) and 

(2) . A curving as in (a) is unique up to adding a 2-form uj which is of type 

(2, 0) and satisfies duj = 0, which is equivalent to uj holomorphic. 

Corollary 4 .3 . The Beilinson regulator Ci,2 admits the following 

description, in terms of the holomorphic gerbe C with holomorphic con­

nective structure associated to an element a of H1(X,K_2)- Pick a curv­

ing as in Proposition 4-%- Then Ci^io) is the class of the homomorphism 

i 7 2 ( X , R ) R ( l ) given by $*[£] 2ttV=T · Log(S(&)), for<f>:E^Xa 

smooth map from a closed oriented surface E to X. Note that H2(X^) is 

generated by such classes <&*[£]. 

W e observe that the ambiguity of a holomorphic 2-form in the choice of 

a curving satisfying the conditions in Proposition 4.2 exactly corresponds 

to the fact that i f 3 ( X , R ( 2 ) D ) is the quotient of Hom(H2(X, R ) , R ) by the 

homomorphisms induced by a holomorphic 2-form. 
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5. Z-adic analogs 

W e wish to give a geometric description of the regulator map Ci j 2 : 

H1(XtjK_2) H3(X, Mm2) for X a scheme and m an integer which is 

invertible in Ox. Here H3(X,Mm2) is étale cohomology with coefficients 

in the étale sheaf / x m

2 = / x m <8> Mm- This is a special case of the regulator 

map from algebraic K-theory to étale cohomology, which was introduced 

and studied by Soulé [So]. 

First we need an étale analog of the Deligne line bundle (f,g) asso­

ciated with invertible holomorphic functions / and g. This means finding 

a description of the cup-product class in H2(X, Mm2)- without assuming 

that Ox contains fim,. Note that / G T(X, Ox) — T(X, G m ) gives a class 

[f]m £ ^(XifjLm) by taking the coboundary in the Kummer exact se­

quence of sheaves of groups 

1 Mm Gm 

xi—>xm 

Gm 1 ( 5 - 1 ) 

T h e element [f]m corresponds to the Galois covering X [ / 1 / m ] 

= Spec(Ox[f1/rn]) —• X with group (jl^. So we have the covering 

X[f1/m,91/rn] -+ X of X, with Galois group / i m x / w 

W e now introduce the Heisenberg group Hm, which is a finite étale 

group scheme over Spec(Z[l/m]). As a scheme, we have: i 7 m = /z® 2 x 

Mm x Mm- T h e product law is 

(c*i,Cl,^l) · (0J2 ,C2^ 2 ) = (a i · a 2 · (Ci ® ^ 2 ) , C i ' C2,^i · ^ 2 ) . ( 5 - 2 ) 

W e have an exact sequence of group schemes over X 

1 Mm Hm Mm X Mm 1. 

Using i J m , we define a gerbe C over X for the étale topology, with 

band equal to Mm2* Let / : Y —• X be an étale mapping; then an object of 

the category C(Y-^X) is a pair (P —+ Y, î/>), where 
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L e m m a 5.2 . There is an action of Hm on Pm, such that 

« <g> <) · a: = a: ( C ® 0 - y = y (C ® 0 · fc = C · f l , m 

( i , C , i ) - * = C - * ( i , C , i ) y = 2/ ( i , C , i ) - / c

1 / m = / c 1 / m 

(1 ,1 , C) · x = x (i,hO-y = C-y ( i , i , 0 - / c

1 / m = 1-2/ 
x 

rl/m 

Recall that we assume m odd. 

Now we wish to descend this covering to Q c Q[Mm]- First to descend 

the curve P m to Q , we take a e ( Z / m · Z ) * = GaZ(Q[ /x m ] /Q) and compare 

fa with W e see easily that f'(Ca)a/fc is an m-th power. It follows that the 

corresponding element of i i f 1 ( l A

m , /jtm) transforms according to the inverse 

of the Teichmiiller character. Therefore we get a Galois-invariant class in 

H 1(Ym, A*® 2), which descends to Q. This means that we obtain a covering 

of the jacobian variety Jac(Ym) defined over Q. Choosing a rational point 

a of Ym over Q , we get an Abel-Jacobi map / : Y m —+ J a c ( K m ) , f(x) = 
(x) — ( a ) , which is defined over Q. Then we pull-back the covering of 

Jac(Ym) to a covering of F m , with group / x m . Then one has to check that 

the action of Hm on P m is rational over Q, which poses no problem. Is is 

clear that the whole covering with Hm action is unramified outside of m, 

i.e. extends to Z [ l / m ] . We summarize this in 

Proposition 5.3 . There is an étale covering Pm —• Spec(Z[l/m,u, 
u - 1 , ( 1 — u ) - 1 ] ) with Galois group Hm, such that the corresponding covering 
with group iim x l^m is 

Spec(Z[±, u1'™, (1 - u)1'™, u~\ (1 - u)-1]) 

5 p e c ( Z [ ^ , ^ t i - 1 , ( l - n ) - 1 ] ) 

W e have therefore obtained, for m and odd integer, for X a scheme 

over Z [ l / m ] , and for / and g invertible regular functions on X , a gerbe on 

X with band / / ® 2 , which will de denoted by ( / , g)m- If g = 1 — / , the gerbe 

is trivial by Proposition 5.3. Hence, if X is a regular scheme over a field, 
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the equivalence class of ( / , <?) m in H2(X, / x m

2 ) , which is the cup-product 
[f]m U [ffjm, depends only on the class of { / , g} in H°(X, K2). 

It is interesting to recover the usual Severi-Brauer scheme associated 
to / and g [T], when Ox contains / z m . Fix a primitive rn-th root of unity 

W e then have the Stone-von Neumann representation p : Hm —• GL(m) 
of Hm, on which ( ® ( E / i ® 2 acts by £ · Id. This defines a homomorphism 
of exact sequences of groups schemes 

1 u®2 Hm fJ>rn X Mm 1 

p P 
1 Gm GL(m) PGL{m) 1 

Hence the covering of X with group j u m x ixm induces a principal bundle 

over X with structure group PGL{m). This gives a Severi-Brauer algebra 

over X (i.e., a sheaf of simple central algebras) of rank m 2 . This sheaf of 

algebras is the Ox-algebra generated by elements a and b, subject to the 

relations 

a m f,bm g,ab ζ-ba. ( 5 - 4 ) 

W e now turn to the regulator C i t 2 : Hl(X,K_2) —•»· i ? 3 ( X , / z ® 2 ) , where 
X is a scheme over a field k whose characteristic does not divide m. W e 
have a purity theorem for etale cohomology (see [ S G A 4 1 / 2 , p . 142]) 
which implies that for Y C X a subvariety of codimension > 2, we have an 
exact sequence 

0 hz{x,№) H*(X\Y,^) H$(X,»®2). ( 5 - 5 ) 

T h e group Hyr(X, /x® 2 ) is equal to the group of Galois-invariant elements 

of the similar group over the separable closure k of k. It therefore identifies 

with the free abelian group generated by the irreducible components of Y 
(over the base field k). 

Now the group H3(X, /x® 2 ) identifies with the group of equivalence 

classes of so-called 2-gerbes over X with band /x® 2- The theory of 2-gerbes 

has been developed by Breen [Bre]. Suffice it here to say that 2-gerbes are 
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certain 2-stacks (or sheaves of 2-categories) in which the 2-arrows are all 

invertible, and the 1-arrows are invertible up to a 2-arrow. The group of 

2-arrows from any given 1-arrow to itself is identified with our band /x® 2 . 

The exact sequence (5-5) means that a 2-gerbe on X is determined, up to 

equivalence, by its restriction to X \ Y. 

W e will use the Gersten resolution of K_2 to represent a class in 

H 1 ( X , K_2) by an element Eifi as in §3, where Di is an irreducible divisor 

in X, and fi is a non-zero meromorphic function on Di. After removing 

from X a subvariety of codimension > 2, we may assume that the Di are 

smooth and pairwise disjoint, and that each fi is a regular function on Di. 

W e will need the notion of a formal gerbe along Di. This will be a 

gerbe on the etale site of the completion X/D. of X along Di, with band 

/x® 2 . Also we have the notion of a meromorphic formal gerbe, which is a 

gerbe over X/Di with band /x® 2 . W e will choose a formal equation gi of Di, 

as well as an invertible formal function Fi G T(Di,Ox which induces 

fi on Di. Then we have the meromorphic formal gerbe (-F^ffi)™. along Di. 

W e are then ready to define a 2-gerbe Q. We will for simplicity only 

describe the bicategory Q{U) attached to an open subset U of X. A n object 

of G(JJ) is a triple (C,Cf, (</>*)), where 

(a) C is a gerbe with band /x® 2 over U \ Y; 

(b) Cf is a formal gerbe along DiHU C U; 

(c) for each i, fa : Cmer <8> (Fi,gi)m —• ( C / ) m e r is an equivalence of 

meromorphic formal gerbes along Di n U. Here C m e r (resp. ( C / ) m e r ) 

denotes the meromorphic formal gerbe associated to C (resp. Cf). 

Given two objects (C i , C/ , i , ((f>i,i)) and (C2, Cf^-, (^¿,2)), a morphism 

(or 1-arrow) from ( C i , C / f i , (<fc,i)) to (C2,Cfi2, (<t>iy2)) i sa t r ip le {a,f3, (7*)), 

where a : C\ —• C2 is an equivalence of gerbes, (3 : C/ , i —• C/,2 is an equiva­

lence of meromorphic gerbes, and 7* is a natural transformation from (fii,2a 

to f3<f>i,i. If ( a / , / ? ' , (7^)) is another such morphism from ( C i , C / , i , (<^,i)) to 

(C 2 ,C7 2 , ( ^ , 2 ) ) , a 2-arrow from (a , /? , (7*)) to ( a 7 , / ? 7 , (7·)) is pair (u,LJf), 

where a; is a natural transformation from a to ot!, u)f is a natural transfor­

mation from /3 to (3r, which satisfy 7^0; = cjfji. Then we have 
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Proposit ion 5.4. Q is a 2-gerbe over the étale site of X with band 
equal to /x® 2 . Its class in H3(X,/xm

2) i s equal to c^^iY^i fi), where c\^ : 
H 1 ^ , ^ ) H3(X,v®?) is the Soulé regulator. 

Over C , this 2-gerbe with band jx® 2 ~ / x m is obtained from the holo­
morphic e of §1 and §2, by the coboundary map in the exponential exact 
sequence. 
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