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P. SCHAPIRA, J.-P. SCHNEIDERS 

1 I n t r o d u c t i o n 

Let / : X —• Y be a morphism of complex analytic manifolds, M. a coherent module 
over the ring T>x of differential operators on I , F an IR-constructible object on X. In 
this first paper, we give a criterion insuring that the derived direct images of the T>x-
module F(g)M are coherent VY-modules, and we prove related duality and Kunneth 
formulas. Part of these results were announced in [20, 21]. 

In [22], making full use of these results, we shall associate to (M,F) a characteristic 
class and show its compatibility with direct image, thus obtaining an index theorem 
generalizing (in some sense) the Atiyah-Singer index theorem as well as its relative 
version [1, 3]. 

Let us describe our results with more details, beginning with the non-relative case 
for the sake of simplicity. 

An elliptic pair on a complex analytic manifold X is the data of a coherent Vx-
module M. and an IR-constructible sheaf F on X (more precisely, objects of the derived 
categories), these data satisfying the transversality condition 

char(M) H SS(F) C TXX. (1.1) 

Here char(A'f) denotes the characteristic variety of M SS(F) the micro-support of F 
(see [12]) and TXX the zero section of the cotangent bundle T*X. 

This notion unifies many classical situations. For example, if M is a coherent Vx-
module, then the pair (M$x) is elliptic. If U is an open subset of X with smooth 
boundary dU, the pair (M$u) is elliptic if and only if dU is non characteristic for M. 
If X is the complexification of a real analytic manifold M , then (.M,(EM) is an elliptic 
pair if and only if M is elliptic on M in the classical sense. If F is IR-constructible 
on X, then (OxyF) is an elliptic pair. If Q is a coherent (9x-module, we can associate 
to it the coherent P^-module G ®Qx T>x, and the results obtained for the elliptic pair 
(G ®0x T>x,®x) will give similar results for Q. See §8 for a more detailed discussion. 

If / : X —• Y is a morphism of complex analytic manifolds, we generalize the 
preceding definition and introduce the notion of an /-elliptic pair, replacing in (1.1) 
char(.M) by char/(wM), the /-characteristic variety of M (this set was already defined 
in [19] when / is smooth). 

The main results of this paper assert that if the pair (M,F) is /-elliptic, / is proper 
on supp(-M) fl supp(F) and M is endowed with a good filtration, then: 

1) the direct image (in the sense of £>-modules) fj(M 0 F) has Py-coherent coho-
mology, 

2) the duality morphism 

l(D'F ® DXM) —* DyfjiM 0 F) 

is an isomorphism (here, JD denotes the dualizing functor for ^-modules and D' 
is the simple dual for sheaves), 
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3) there is a Kunneth formula for elliptic pairs, 

4) direct image commutes with microlocalization. 

See Theorem 4.2, Theorem 5.15, Theorem 6.7 and Theorem 7.5 below for more details. 
In fact, we obtain these results in a relative situation over a smooth complex manifold 

S, working with the rings of relative differential operators. This relative setting makes 
notations a little heavy but it gives us the freedom on the base manifold we need in 
the proofs. Even if we want the final result over a base manifold reduced to a point, in 
the proofs, we need to use other bases. So, it is better to work in a relative situation 
everywhere. Moreover, the base change Theorem 6.5 is a natural way to get the Kunneth 
formula for elliptic pairs. 

The idea of the proof of the finiteness result goes as follows. 
First, using the graph embedding, we are reduced to prove the theorem for a closed 

embedding (this one does not offer much difficulty) and for a projection. Then, using 
the same trick as in [8], we reduce to the case Y = S. Then it remains to treat the case 
where X = Z x S, f : X —• S is the second projection, M is a P^s-module endowed 
with a good filtration and F = G[x](Es where G is an IR-constructible sheaf on Z. We 
call it the projection case and we have to prove that in this case Rf\(F$)M ®p Y | 5 Ox) 
is Os coherent and Os dual to Rf\RHomv (F <g> M,ilx\s[dx ~ ds])-

For that purpose, we "trivialize" F by replacing it by a bounded complex of sheaves 
of the form (&a®ua, the Ua

ys being relatively compact subanalytic open subsets of X 
satisfying the regularity condition: 

D' (Cux) Cumx. 

This construction is made possible thanks to the triangulation theorem and a result of 
Kashiwara [11]. 

Next, we consider the relative realification MJR\S of M obtained by adding the rel­
ative Cauchy-Riemann system to the D^xs^-module M and remark that since M is 
assumed to be good we may always find a resolution of A4JR\S by finite free ^z^xsis-
modules near subsets of Zn x S of the form K x A where K is a compact subset 
of Z and A is an open polydisc in 5*. Moreover, since the solutions of the relative 
Cauchy-Riemann system are the same in the sheaves of analytic functions, differen-
tiable functions or distributions with holomorphic parameters in S, we can compute 
the holomorphic solutions of M as the relative analytic, differentiable or distributional 
Solutions Of M]R\S-

Now, the elliptic hypothesis insures the regularity theorem, that is, the isomorphism 

F C-0 M t£ Ox ^ RHom(D'F, M ^ Ox). 

Applying Rj) to this isomorphism, we shall compute both sides using the trivialization 
of F and a finite free resolution of the relative realification of M using analytic (resp. 
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differentiable) solutions for the left (resp. right) hand side. This will give us a continuous 
C?s-linear quasi-isomorphism 

n\ K2 (1.2) 
where the components of the left (resp. right) hand side are DFN-free (resp. FN-free) 
topological modules over the Frechet algebra Os- The coherence then follows from an 
extension of Houzel's finiteness theorem [7] due to one of the authors [25]. Note that we 
found no way of applying the original Houzel's theorem in our situation since it is not 
obvious to find the requested chain of nuclear quasi-isomorphisms for a given elliptic 
pair. 

The duality result is proved along the same lines once we have a clear construction 
of the general duality morphism which makes it easy to check its compatibility with 
the various simplifications and transformations used in the proof. 

Note that the hypothesis that the P-module M is endowed with a good filtration 
could be relaxed by using cohomological descent techniques as in [24]. However, doing 
so would have cluttered the proof with unessential technical difficulties. This is why we 
have preferred to stay to a simpler setting, sufficient for all known applications. 

Our theorems provide a wide generalization of many classical results as shown in 
the last section. 

In particular, we obtain Grauert's theorem [6] (in the smooth case) on direct images 
of coherent (9-modules and the corresponding duality result of Ramis-Ruget-Verdier [15, 
16]. Since we treat l>-modules, we are allowed to "realify" the manifolds by adding 
the Cauchy-Riemann system to the module, and the rigidity of the complex situation 
disappears, which makes the proofs much simpler and, may be, more natural than the 
classical ones. 

We also obtain Kashiwara's theorem [9] on direct images of coherent D-modules as 
well as its extension to the non-proper case of [8] (whose detailed proof had never been 
published) and the corresponding duality result of [23, 24]. 

In the absolute case, we regain and generalize many well-known theorems concerning 
regularity, finiteness or duality for £>-modules (in particular those of [2, 13, 14]), see §8 
for a more detailed discussion. 

2 El l ipt ic pairs and regularity 

2.1 Relative D-modules 

In this section, we recall some basic facts about relative P-modules. 
In the sequel, by an analytic manifold we mean a complex analytic manifold X of 

finite dimension dx- Keeping the notations of [12], we denote by 

T-.TX —• X and 7T : T*X —• X 

the tangent and cotangent bundles of X. 
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To every complex analytic map / : X —• Y, we associate the natural maps 

TX —• XxyTY —> TY f U 
T*X <— XxYT*Y —• T*Y. 

U 
Let S be an analytic manifold. A relative analytic manifold over S is an analytic 

manifold X endowed with a surjective analytic submersion ex : X —• S. We often use 
the notation X\S for such an object when we want to avoid confusion on the basis and 
set for short dx\s — dx — ds-

A morphism f : X\S —• Y\S of relative analytic manifolds is the data of a complex 
analytic map / : X —• Y such that ey o / = ex> 

Let X | S be a relative analytic manifold over S. 
Since e : X —• S is smooth, the map 

TX —>XxsTS 
e' 

is surjective. Its kernel is thus a sub-bundle of TX. We denote it by TX\S and call 
it the relative tangent bundle of X\S. Its holomorphic sections form the sheaf Qx\s of 
vertical holomorphic vector fields on X\S. Recall that a holomorphic vector field 6 is 
vertical if and only if 

6(hoex) = 0 
for any section h of Os- The dual map 

X xsT*S—• T*X 

is injective. Its cokernel is thus a quotient-bundle of T*X which is isomorphic to the 
dual of TX\S. This is the relative cotangent bundle of X\S, we denote it by T*X\S 
and denote by 

pxls : T*X —^ T*X\S 
the canonical projection. The holomorphic sections of f\pT*X\S form the sheaf QPX\S 
of relative holomorphic differential forms of degree p. To shorten the notations, we set 

&>X\S = ^x\S ' 

To every morphism / : X\S —• Y\S, we associate the natural maps 

TX\S —> XxyTYlS —> TY\S 
T*X\S <— XxYT*Y\S —> T*Y\S. 

Note that we use the same notations as in the non-relative case since the context will 
avoid any confusion. 

The subring of Horn $ (Ox, Ox) generated by the derivatives along vertical holo­
morphic vector fields and multiplication with holomorphic functions is denoted by VX\s-
We call it the ring of relative differential operators on X\S. 
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The basic algebraic properties of T>x\s are easily obtained using the usual fil­
tration/graduation techniques. We will not review them here and refer the reader 
to [18, 19]. 

As usual, we denote by Mod{Vx\s) the abelian category of left £>x|s-modules and 
by Co\i(VX\s) the full subcategory of coherent modules. The category Coh(X>x|s) is 
a thick subcategory of Mod{VX\s) (i-e. it is full and stable by kernel, cokernel and 
extensions). 

A coherent VX\s-^od\\\e M is good if, in a neighborhood of any compact subset of 
X, M admits a finite filtration by coherent I>x|s-submodules Mk (k = 1,... ,£) such 
that each quotient Mk/Mk-i can be endowed with a good filtration. We denote by 
Good(X>x|s') the full subcategory of Coh(VX\s) consisting of good £>x|,s-modules. This 
definition ensures that Good(VX\s) is the smallest thick subcategory of Mod(Dx\s) 
containing the modules which can be endowed with good nitrations on a neighborhood 
of any compact subset of X. 

We denote by D(VX\s) the derived category of Mod(VX\s) and by Db(VX\s) its 
full triangulated subcategory consisting of objects with bounded amplitude. The full 
triangulated subcategory of *Db(Dx\s) consisting of objects with coherent (resp. good) 
cohomology modules is denoted by Bboh(VX\s) (resp. D^ood(DX|s)). 

We introduce similar notations with the ring Vx\s replaced by the opposite ring V°^s 
to deal with right P;q£-modules. Since the categories Mod(Vx\s) and Mod(X>̂ F|5) are 
equivalent, we will work only in the most convenient one depending on the problem at 
hand. 

In the sequel, we will often need to work with bimodule structures. Let A: be a field. 
Recall that if A and B are A;-algebras, giving a left (A,B)-bimodule structure on an 
abelian group M is just giving M a left structure of A-module and a left structure of 
^-module such that 

a - (b • m) = b • (a • m) 
(c • a) • (b • m) = (c • b) • (a • m) 

for any oGi4 , ftG5, cGfc and m G M. Hence, it is equivalent to consider that 
M is endowed with a structure of A <S>k JB-module. Using this point of view it is easy 
to extend to bimodules the notions and notations defined usually for modules. For 
example, we will denote by Mod(Vx\s 0 ^x\s) the category of left T>x\s bimodules and 
by D(VX\s ^ 2>x|s) the corresponding derived category. 

Let f : X\S —• Y\S be a morphism of relative analytic manifolds over S. 
Recall that 

^X\S-^Y\S = Ox ®/-ioy f~L^Y\S 

has a natural structure of left X>x|s-module compatible with its structure of right 
/-1£V|s-module. Using this transfer module, we may define the relative proper di­
rect image of an object M of Db(X>^5) by the formula 

l]s<(M) = Rf\(M ®^ VXLS^Y\s) 
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It is an object of Db(D^5). 
Recall also that if M (resp. AO is a right (resp. left) £>x|,s-module then there is on 

M <8>0x N a unique structure of right X>x|s-module such that 

(m 0 n) • 9 — m • 9 0 n — m 0 9 • n 
(?n 0 n) • /i = m • h®n — m 0 /i • n 

for any sections ?n, n, 0 and /i of A4, A/", ©x|s and Ox respectively. 
In the same way, if AO V are two left Z>x|s-niodules then there is on N <8>Gx V a 

unique structure of left P^is-module such that 

9 • (n®p) — 9 - n®p-\- n® 9 - p 
h • in 0 p) = h-n®p = n®h'p 

for any sections n, p, 9 and h of AO P> ©x|s and Ox respectively. 
Finally, recall the following exchange lemma which will be useful in the sequel. 

Lemma 2.1 If M is a right VX\s-module and AO *P are left VX\s-modules then the 
map 

M^, (Af®0xV) — (M ®0x M) ®p V 
m® (n®p) i—* (m ®n)®p 

is a canonical isomorphism. 
Let X be a relative analytic manifold over S. R.ecall that the characteristic variety of 

a coherent Z>x|s-module M is a conic analytic subset of T*X\S denoted by charts(A4) 
and that 

char(Dx 0pX|S M) = px\sdi^rX\s{M). 
Hence theorem 11.3.3 of [12] gives the equality 

SS(RHomVxis(M,Ox)) = Px]sch^x\s(M). 
The sheaf £lx\s of relative holomorphic differential forms of maximal degree is canon-

ically endowed with a structure of right T>x\s-mod\i\e which is compatible with its struc­
ture of Ox-module and characterized by the fact that, for every open subset U of X, 
one has UJ.9 = —Leuj if a; £ ftx\s(U) and 9 is a vertical vector field defined on U. 

Definition 2.2 The dualizing complex for right £>x|s-niodules is the complex of right 
^x|s-bimodules defined by setting 

fcx\s = tix\s[dx\s] ®ox ^*\s 
and using the natural structure of right X>x|s-bimodule on the sheaf Qx\s ®ox T^x\s-

The dual of an object M of D " ^ ^ ) is 

R H o m ^ d x s iM^Kxis) 
as an object of D+(£>^5). We denote it by DX^S(M). 

The functor D_x\s is the dualizing functor for right X>x|s-modules. 
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As in algebraic geometry, the terminology used in the preceding definition is justified 
by the following biduality result. 

Lemma 2.3 There is a canonical sheaf involution of ftx\s ®ox ̂ x\s interchanging its 
two right T>x\s-module structures. 

Proof: Let us consider the sheaf VX\s ®ox ^x\s where the tensor product uses the left 
Ox module structures of the two copies of VX\s- This sheaf is obviously endowed with 
one structure of left £>x|s-niodule and two structures of right £>x|s-module which are 
compatible with each other. 

The involution 

T>x\s ®0x VX\s —• VX\s <8>0x VX\s 
P®Q Q®P 

exchanges the two right structures and preserves the left one. 
Tensoring over VX\s with Ctx\s using its right structure and the left structure of 

f^xis^ox ^x\s and aPPlym6 the exchange lemma 2.1 gives us the requested involution. 
• 

Proposition 2.4 For any object M of D ,̂h(Z>^5), the canonical arrow 

M —• RHomv^s{RHomVx^s{M,K:x\s)^x\s) 

deduced from the involution of the preceding lemma is an isomorphism. 

Proof: Since M. is locally isomorphic to a bounded complex of finite free right T>x\s-
modules it is sufficient to prove the result for M. — T>x\s where it is an easy consequence 
of the preceding lemma and the fact that £lx\s is a locally free Ox module of rank one. 

• 

It follows that the characteristic variety does not change by duality: 

Proposition 2.5 If M is an object of T>boh(D^s) then one has 

ch'dYx\s(M) = chaxX\s{J2x\sM). 

2.2 Relative /-characteristic variety 

In this subsection, we consider a morphism / : X\S —• Y\S of relative analytic 
manifolds over S and define the relative characteristic variety char/(A1) of a coherent 
D^|S-module M. First, we consider the case of a relative submersion where such a 
variety was already defined in [19] for S = {pt}. Next, by using the graph embed­
ding, we extend this definition to the general case. Finally, we show how the relative 
characteristic variety controls the micro-support of M ®^ ̂ PX *DX\S->Y\S-
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Let / : X\S —• Y\S be a relative analytic submersion over S. Since / is smooth, 
we have the following exact sequence of vector bundles on X: 

0 —• x xY T*Y\S —• T*X\S —• T*X\Y —• 0. ipf <f>f 

Working as in paragraph III. 1.3 of [19] we get the following lemmas. 

Lemma 2.6 Assume Mo is a coherent T>X\Y-module. Then 

<haiX\s(Px\s ®pX|y -Mo) = <f>Jl<harX\Y{Mo). 

Lemma 2.7 Assume M is a coherent VX\s-module and assume Mo, Mo are two co­
herent VX\y-submodules of M which generates it as a VX\S-module then 

charX\Y(Mo) = charX|y(A/o). 

Hence, we may introduce the following definition. 

Definition 2.8 Let M be a coherent X>x|s-module. One defines the relative charac­
teristic variety charts (A4) of M with respect to f to be the subset of T*X\S which 
coincide on T*U\S with cfrj1 char U\Y (Mo) for any open subset U and any coherent VJJ\Y-
submodule Mo of M\u which generates M\u as a XV|,s-module. 

It is clear that cXvcirf\S(M) is a closed conic analytic subvariety of T*X\S and that 

<harf\s(M) = chai7|5(M) + rj)f{X xY T*Y\S). 

The functor cliar/|5 is additive: 

Proposition 2.9 If f : X —• Y is a relative analytic submersion over S and if 

0—+C—+M —>M—>0 

is an exact sequence of coherent VX\S-modules then 

ctiarf\s(M) = char/|5(£) U charf\s{J\f). 

In the sequel we will need the following lemma essentially due to [8]. 

Lemma 2.10 Let f : X\S —> Y\S be a relative analytic submersion over S and let K 
be a compact subset of X. Assume M is a T>X\s-module which admits a good filtration 
in a neighborhood of K. Then, in a neighborhood of K, M has a left resolution by 
Vx\s-modules of the form 

VX\s <& Dx,y 
N 

where the VX\y-niodule N admits a good filtration and is such that 

(/^charxjyCAO C chaif\s{M). 
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Proof: In this proof, we always work in some neighborhood of K. 
Since M. admits a good filtration, we can find a coherent Ox-submodule Mo of M 

which generates it as a VX\S-mo&\Ae. Set Af0 = VX\YMQ. By construction, J\f0 is a 
X>x|Y-submodule of M which generates it as a £>x|s-module. Obviously, A/o admits a 
good filtration. Moreover, by definition, 

^charxiyCA/o) = <haxf\S(M). 

The kernel K of the canonical £>x|s-finear epimorphism 

VX\S 0px|y Mo —>M —> 0 

is a Pxis-module which admits a good filtration and we have 

char/|5(/C) c charf\S(VX\s ®DXIY -MO = char/|s(A<). 

We may thus start over the same construction with M replaced by K and build the 
requested resolution by induction. • 

Now, by using the graph factorization, we will define the notion of relative charac­
teristic variety for a map which is not necessarily a relative submersion. 

Let f : X\S —• Y\S be any morphism of relative analytic manifolds. 
Denote by 

X—> XxsY —>Y i q 
the relative graph factorization of / . 

First, we notice: 

Lemma 2.11 Assume f is a î eiative submersion and M is a coherent VX\S-module. 
Then 

Qhoif\s{M) = H'i^chaiqisdisiiM)). 

Hence, for a general / , the following definition is a natural extension of our previous 
one. 

Definition 2.12 For any coherent X>x|s-module M, we set 

diaif\s(M) = H'iIK^chaig^siiM)). 

As usual, for an object M of Dboh(VX\s), we also set 

char^CM) = |J ctmrfls(Hj(M)). 
jell 

We also introduce similar definitions for right 2)x|s-modules. 
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Note that char f\s(M) is a closed conic analytic subset of T*X\S and that 

char^CM) = char/|5(-M) + 1>f(x XY T*Y\S). 
A link between the relative characteristic variety and the micro-local theory of 

sheaves is given in the following theorem: 

Theorem 2.13 Let f : X\S —• Y\S be a morphism of relative analytic manifolds 
over S and assume M is an object of D£oh(P ĵ5). Then 

SS(M ®£x|s VX\s^y\s) C v^j&axf\s(M). 

Proof: Consider the graph factorization of / : 

X—> XxsY —>Y. 
t Q 

By Proposition 5.4.4 of [12], if F is a sheaf on X, then SS(i*F) is the natural image of 
SS(F). Hence, in view of the definition of charts, it is enough to prove the inclusion: 

SS(ii(M ®£X|5 VX\S^Y\S)) C p~lcharqls(ilSi{M)) 

where we write p instead of pxxSY\s- Since 

*l(M ®VX]S VX\S->Y\S) ^ i\S\(M) ®%XxsYls VxxSY\S-+Y\S, 
we have reduced the proof to the case where / is a relative submersion, what we shall 
assume now. 

Since the problem is local on X and 

char^CM) = U chax/|5(WJ'(M)), 
j E z 

we may assume M is a coherent right £>x|s-module. Using Lemma 2.10, we are then 
reduced to consider the case where M = Mo ®r>x|r ^x|s> f°r a coherent right VX\Y-
module Mo- Now, 

M®kVX \s->Y\s ^ M O ^ D X Y VX\S^Y\S 

=г (Mo ®¿x|y Ox) ®f-10y rlT>Y\s. 

This last sheaf is locally on X a direct sum of an infinite number of copies of Mo ®% 
Ox> Applying [12] Exercise V.5(i) (which is an easy consequence of Proposition 5.1.1(3) 
[loc. cit.]) we get successively 

SS(M^aVx\ DXs-#Y\s) = SS (Mo®£xlYOx) 

= SS i(Modxy^Vx^Ox) 

= char (M) 0pX|y Vx) 

= p"V/lcnarx|y(A^0) 

= pochai f\s(M) 

where the third equality comes from theorem 11.3.3 of [12]. • 
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2.3 Relative elliptic pairs 

We shall now define the main object of study of this paper. 
Let D(X) denote the derived category of the category of sheaves of (C-vector spaces 

on X and let Db(X) denote the full triangulated subcategory of complexes with bounded 
amplitude. 

Recall that a sheaf F of (E-vector spaces is IR-constructible if there is a subanalytic 
stratification of X along the strata of which Hj(F) is a locally constant sheaf of finite 
rank for any j e IL. Following [12], we denote by D^_C(X) the full triangulated sub­
category of T>h(X) consisting of complexes with IR-constructible cohomology sheaves. 
We say for short that an object of Djl_c(X) is an IR-constructible complex. For such 
an object, SS(F) is a closed subanalytic Lagrangian subset of T*XU where Xn denotes 
X considered with its underlying real analytic manifold structure. We shall identify 
T*XU with (T*X)U as for example in [12] and simply denote it by T*X. In this pa­
per, we will have to consider most of the time the simple dual D'F of F and not its 
Poincaré-Verdier dual DF. Recall that since X is an oriented topological manifold of 
dimension 2dx: 

D'F = RHom{F, (Ex) and DF = RHom{Fìux) ^ KHom(F, ®x[2dx}) 

so the two duals coincide up to shift. Since F is constructible, we have the local biduality 
isomorphism F ^+ D'D'F. 

Definition 2.14 Let / : X\S —• Y\S be a morphism of relative analytic manifolds 
over S. A pair (M,F) is a relative f-elliptic pair if: 

• M is an object of Dcboh(̂ p|5), 

• F is an object of D^_C(X), 

• p-làmrfìs(M) fi SS(F) C TXX. 

Such a pair is good if moreover M is an object of Dg0od(P^<9). Its support is the set 
supp(A'f) fl supp(F). When / is the canonical map ex : X\S —• S\S we will say for 
short that (M,F) is a (good) relative elliptic pair on X\S. When S = {pt}, we drop 
the word "relative" in the preceding definitions. 

Since chaif\s(M) contains charx|s(-M), a relative /-elliptic pair is a relative elliptic 
pair. Moreover, on a neighborhood of supp M, 

SS{F) fi X xs T*S C TXX. 

In particular, an elliptic pair (M,F) on X is the data of a complex of coherent right 
£>x-niodules M and an IR-constructible complex F such that 

char(M) H SS(F) c TXX. 

We shall see in §8 below why this notion is a natural generalization of that of an elliptic 
system on a real manifold. There, we will also explain why Theorem 2.15 below may 
be considered as a generalization of the classical regularity theorem for elliptic systems. 
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Theorem 2.15 Let (M,F) be an f-elliptic pair. Then the canonical morphism 

F®(M g£x|s VX\S-+Y\S) —• RHom(D'F, M ®£x|s VX\S^Y\S), 

induced by the morphism F —• D'D'F, is an isomorphism. 

Proof: By [12] Proposition 5.4.14, we know that if G belongs to Db(X) (and F is 
IR-constructible as above), the natural morphism 

F®G-^RHom (D'F,G) 

is an isomorphism as soon as 

SS(F)a n SS(G) C TXX. 

Hence, the conclusion follows from Theorem 2.13 by applying the preceding result to 

G = M ®%xisd VXLS^Y\s. 

• 

When Y — 5, we get: 

Corollary 2.16 Let M and F be objects of D|?oh(2^5) and D^_C(X) respectively. 
Assume the transversality condition 

p-lchavx]s(M) fl SS(F) C TXX 

where p : T*X —• T*X\S is the canonical projection. Then the canonical morphism 

F®(M ®£xis Ox) —> RHomVx{s{DfF,MDXS^s Ox) 

is an isomorphism. 

Definition 2.17 The dxialoi a relative pair (M,F) is the pair (D_X\s{M),D'F). 

It follows from this definition that a relative pair is /-elliptic if and only if so is its 
dual pair. 

3 Tools 

If X is a complex analytic manifold, we have already encountered X11, the real un­
derlying analytic manifold to X. Here, we shall also make use of X, the complex 
manifold with Xu as underlying space for which the holomorphic functions are the 
anti-holomorphic functions on X. Recall that X x X is a natural complexification of 
Xu via the diagonal embedding. 
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3.1 Dolbeault complexes with parameters 
Let Z and S be complex analytic manifolds and let qz : Z x S —• Z be the second 
projection. 

We will denote by Azxs\s (resp. Fzxs\s, ̂ bzxs\s) the sheaf of real analytic functions 
(resp. infinitely differentiate functions, distributions) on Z x S which are holomorphic 
in S. 

We will also set 
Vz^xsis = (DZxZxs\s)\znxs-

using the diagonal embedding of ZH in Z x Z. Locally, operators in Vz^.xs\s are of 
the form 

aaiP(z,z,s)D«D§ 
a,(3 

where aa>/j(jz, z, s) is a section of Azxs\s\ (z U —• (Cdz) and (s : V —• (Kds) being 
holomorphic local coordinate systems on Z and S respectively. 

For any X>£iRx̂ -module M we will consider the parametric Dolbeault complex 

A'zxs\s(M) 

defined by setting 
Ap,q d:j^%s(M) —> Affx%{M) 

the formulas for the differentials being given locally by 

d:j^%s(M) —> Affx%{M) (3.1) 

ap'q <g> m ^ dap,q ® m + dZ 

i = 1 
dz* Л а™ 0 D.im 

and 

d:AVxS]s(M) — AÇfrUM) 

(Г4 (x) m ь-> der4 0 m + 
dz 

i=l 
dz1 Л ар>" ® Djirn 

where (z : [/ —• <Edz) is a holomorphic local coordinate system on Z. Obviously, this 
definition is independent on the chosen local coordinate system. 

When M is equal to Azxs\s (resp. Tzxs\s, ^bZxs\s) we will denote the corre­
sponding parametric Dolbeault complex simply by A'zxs\s (resP- f'zxs\s> ^zxs\s)- ^ 
course, the natural maps 

(3.2) 

lLZxS\S ^ZxS\S ^ZxSlS uuZxS\S 

are quasi-isomorphisms. 
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Let M be another V^IRx^-module. Using the natural structure of Dzxs sis-module 
on the sheaf Af ®4Zx5|s M we define the parametric Dolbeault complex of M with 
coefficients in M by the formula 

^-•\M) = A^S[s{M®AzxSiSM). 

The associated simple complex is the parametric de Rham complex of M with coeffi­
cients in N. We denote it by N'(M). 

In this paper, we will only use the preceding notions when N is Fzxs\s or Vbzxs\s-
In this case, we have of course 

F ZxSIS Р,Я (M) = т p,q ZxSÌS ® -AzxS\S 
M 

Vb ZxS\S (M) = Vb ZxS\S 0 Azxs\s M 

and the differentials d and d are given locally by formulas similar to (3.1) and (3.2). 

3.2 Realification with parameters 

Let Z and S be complex analytic manifolds and set n — dz- Consider Z x S as a 
relative manifold over S through the second projection e. 

The parametric realification of a left I^x sis-module M is the sheaf 

MM\S = .Azxsis ®oZxS M-

In this formula, the X>̂ IRXj5|5-1110dule structure is described locally by the formulas 

DZj (a 0 TO) = DZja 0 m + a 0 DZjm 
DZj (a 0 m) — Eh? a 0 m 

/(a 0 77?,) = fa<S>m 

where aj and m are sections of Azxs\s and M respectively; (z : U —• (C ) being a 
local holomorphic coordinate system on Z. 

Since Azxs\s is flat over Ozxs, parametric realification is an exact functor. 
Let us consider the map 

b'•: Z x S —> Z xZ x S 

{z,s) ^ (z,z,s). 

It is clear that 
è l(PzxZxS\s) - VZ^xS\S-

Hence the sheaf inverse image by 6 of a PZx^x5|S-module is naturally a Vzm.xS\s-
module. Moreover, one checks easily that 

MRS 6-1 (O 
ZxZxS Kyq~lOzxS q-lM) = 6-\MElOz). 
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where q : Z x Z x S —• Z x S is the natural projection and g] denotes the external 
product of P-modules. 

As usual, using "side changing" functors, we may also define the parametric real-
ification of a right T>ZxS\s-mod\i\e M. We still denote it by MJR\S and check easily 
that 

Mtus = A%s ®OZx$ m = 6r\Mmsh). 
Parametric realification is a powerful tool to simplify problems dealing with VZxs\s-

modules thanks to the following result. 

Proposition 3.1 Let K be a compact subset of Z and let A be a closed polydisc of S. 
Assume M is a good VZxs\s-module. Then, in a neighborhood of K x A, M\R\S has a 
left resolution by finite free Vzm.xS\S-modules . 

Proof: The assumption insures that M^O-^ is a good ̂ ZxZxs\s~mo^XJ^e- Hence it is 
generated by a coherent 0ZxZxS-modu\e in a neighborhood of the Stein compact subset 
6{K x A) of the complex analytic manifold Z x Z x S. By Cartan's Theorem A, it is 
thus finitely generated in a neighborhood of 6(K x A). The conclusion follows easily. 
• 

In order to be able to use effectively the preceding proposition in the sequel, we need 
to understand the links between parametric realification and the finiteness and duality 
results. These links are made explicit in the following five lemmas. Since the proofs are 
just easy computational verifications we leave them to the reader. Recall that Horn' 
denotes as usual the internal Horn functor of the category of complexes of sheaves. 

Lemma 3.2 a) The sheaf A°Z,PXS^S(VZ\RXS\S) is naturally endowed with a structure of 
left VZxS\s-module and a structure of right VZTRxS\S-module and the differential 
d is compatible with these two structures. 

b) As a complex of (T>ZxS\s, Vzp1RxS^s)-bimodules A°Z,XS^S(VznxS\s) is quasi-isomor-
phic to (DZXS\S)JR\S[—ft] (where the realification uses the right module structure 
ofVZxs\s) 

Lemma 3.3 The map 

^°ZxS\s(VZ^xS\s) ®DZLRXS]S ^ZxSlS • ^ZxS\S 
(a°'p ®Q)®u a°>p A Qu 

is an isomorphism of complexes of left VZxs\s-modules. Combined with the Dolbeault 
quasi-isomorphism 

0ZxS —> fzxs\s> 
it induces in the derived category the isomorphism 

MO LD ZXS s Ozxs — MR/S -N O LD rxs/s F 

20 



ELLIPTIC PAIRS L RELATIVE FINITENESS AND DUALITY 

for any complex of right Vzxs\s-modules M. We have also similar results with T 
replaced by Vb or A. 

Lemma 3.4 The map 

^ZxS\S [-»] n(^znxS,s(Azxs\s(vz*xs\s)>VbjxSls) 

n,r+n [u°>-r 0 Q H (<pn>r+n A LJ°>-R) • Q] 

is an isomorphism of complexes of right VZxs\s-modules. Combined with the Dolbeault 
quasi-isomorphism 

lLZxS\S * U0ZxS\Si 
it induces in the derived category the isomorphism 

RHom ?>ZxS\S (MjR\S[-n},Vb^s]s) RHom ?>ZxS\S (MjR\S[-n},Vb^s]s) 

for any complex of right VZxS\s-modules M. We have also similar results with Vb 
replaced by A or T. 

Lemma 3.5 The natural arrow 

fi>zxs\s(Dzxs\s) —• ^zxs\s[-n} 
(resp. Vb-ZxSls(Vznxs\s) —* Vb¥xSls[-2n} ) 

of complexes of right Vyxs\s (resp. T>YIRxS\S ) modules is a quasi-isomorphism. Together 
with the relative de Rham quasi-isomorphism 

e 1Os ft'zxs\s 
(resp. rxOs VbZxS\s ) 

it induces the t lOs linear pairing 

nnZxs\s[n}®£ZxSlsOZxs — rlOs[2n] 

(resp. -DbfxSis®% R ?zxs\s rlOs[2n] ). 

Lemma 3.6 Assume M is an object of T>^oh(VzpxS^s). We have the commutative 
diagram 

{M ®LS|S °z*s) ®^os RnamvZxS^M, fi5xS[n]) ^€->Os[2n] 

(MjRÌS ® L 
^Z^xS\S 

Fzxs\s) 0L 
e-10 s 

RHomv 
Z^xS\S 

Fzxs\s) 0L 2n ZxSÌS e-lOs\2n} 

where the horizontal arrows are constructed by contraction followed by the pairings of 
the preceding lemma, the first vertical arrow being the tensor product of the isomor­
phisms of Lemma 3.3 and 3.4 while the second vertical arrow is the identity. 
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3.3 Trivialization of IR-constructible sheaves 
In this section, we follow the notations of [12, Ch. VIII]. As in the classical theory of 
simplicial complexes, the sets U(x) of [loc. cit.] are called open stars. Let us first point 
out some basic facts about the topology of polyhedra. 

Lemma 3.7 Let (5, E) be a simplicial set and let x G Then 
(a)yeU(x) {x,y}cU(x) 

(b)yedU(x) =» [x,y[cU(x) 
where U(x) denotes the open star of x in \S\. 
Proof: (a) One knows that 

u(x)= U h . 
<JD<J(X) 

Thus, ify € U (.x), there is a o D CF{X) such that y G \cr\. Since it is clear that ]x, y] C \a\ 
and that x G U(x), one gets that [x,y] C U(x). 

(b) The set {a G E : a D a(x)} being finite, one has the equality 

U(x)= |J k|. 
crDcr(x) 

Hence, since y G dU(x), there is a simplex a D a(x) such that y G \a\ \ \a\. Let a' 
be a simplex included in a such that y G \a'\. If a' D a(x) then ]x,y[ C |(7;| C U(x) 
as requested. If (j' 7$ <j(,t) then d'7 = a' U <j(x) is a simplex of E included in a and 
]x,y[ C |cr;/| C U(x) and the conclusion follows. • 

Lemma 3.8 If (5T, E) is a simplicial set and if x G |5| then one has the following 
commutative diagram 

dU(x) x ]0,1] /dU{x) x {1} U{x) 
1 _L_ 

at/(ar) x [0,1] /dU(x) x {1} 
where the horizontal arrows are homeomorphisms, the vertical arrows being the natural 
inclusions. 

Proof: Let us define the continuous application 

/ : dU(x) x [0,1] — U(x) 
by setting f(u, t) = (1 - t)n + tx. The preceding lemma shows that f(u, t) = f(ufy t!) if 
either t = t1 = 1 or = (uf,tf). Moreover, it is clear that for every u G U(x) there 
is G dU{x) such that i/. G [x,v\. From these facts, one deduces that the continuous 
map 

g : dU(x) x [0,1] /dU(x) x {1} —> U(x) 
associated to / is bijective. Since dll(x) x [0,1] is a compact space, g is an homeomor-
phism. To conclude, it remains to note that F-1 (U(x) = dU(x) x ]0,1]. • 
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Proposition 3.9 If (S, E) is a simplicial set, then for every open star U(x) of x € |5| 
one has 

D'\S\(®U(x)) = %(̂ y 
Proof: It is clear that 

D\s\(®u(x)) = i?Wom((Et/(x),(C|s|) 
= Rju(x)*(®U(x))-

It remains to prove that the canonical arrow 

®U(x) > RJu(x)*(®U(x)) 

is a quasi-isomorphism on U{x). Thanks to the preceding lemma, there is a neighbor­
hood и of dU(x) in U(x) and an homeomorphism 

ф : ш —+ dU(x) x [0, c[ 

such that ф(шпи(х)) — dU(x) x ]0, e[. We are thus reduced to show that the canonical 
arrows 

<E —> lim Я°(Кх]0, ?/[;«) 
vev,ri>Q 

0 —• lim Hk(V x ]0,??[;(C) (A; > 1) 
V̂€V,77>0 

are isomorphisms when V is a fundamental system of neighborhoods of у € <9[/(x). But, 
using homotopy, it is clear that 

Hk(V x]V,rj[;<E) -^Hk(V;<E) 

and the proof is complete. • 

The following proposition is the main result of this section and will be used as a 
basic tool in the sequel. 

Proposition 3.10 An JR-constructible sheaf F on a real analytic manifold M is quasi-
isomorphic to a bounded complex T of the form 

. . . 0 — . . . Ф cw e ov —>... e (c^ _ • о - - -
iaela tfcG/jt гь€1ь b 

where each family (H4,ifc)tfce/fc is locally finite, the open subsets Wkjik being subanalytic, 
relatively compact, connected and such that 

D'M (CWk, ik) C w k, ik 
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the differential being such that the induced map 

(dr-)ji : GVfc.i —• ®wk+lij 

is either 0 ifWk,% Wk+i,j or a complex multiple (^i^wk+1Jwkti of the canonical inclusion 
map ifWk>i C Wk+itj. 

Moreover, if F has compact support, we may assume that the set h is finite for 
every k e l 

Proof: From the theory of IR-constructible sheaves, one knows that there is a simpli-
cial set (S, E) and an homeomorphism i : \S\ —• M such that i~lF is a simplicialy 
constructible sheaf. Prom a construction due to M. Kashiwara [11] one knows that such 
a sheaf is quasi-isomorphic to a bounded complex T such that each Tk is a locally finite 
direct sum of the sheaves (S>u(o) associated to the open stars of the simplexes of E where 
F is non zero. Since we have just proven in the preceding lemma that for such a sheaf 
one has 

9'(<rf7(<r)) ~ D v(x). 
the first part of the proposition is clear. 

Concerning the differential of the complex, we note that if a, a' are two simplexes 
of E then 

Hom((Ct/(a), (Ef/̂ )) ~ r([/(cr); ®u(*)nu(a>)) 
hence the conclusion since U(a) is a connected open set. 

In case F has compact support K, the open stars U(a) meeting K are in finite 
number and since only these stars appear in the components of T', the sets Ik are finite. 

• 

3.4 Topological Os-modules 
Let 5 be a complex analytic manifold. Recall that the sheaf Os of holomorphic functions 
on S is a multiplicatively convex sheaf of Frechet algebras over S (see [7, 25]). Also 
recall that if V is a relatively compact open subset of a Stein open subset [/ of X then 
the restriction map 

r(U;Os)—>r(V;Os) 
is (E-nuclear. From this it follows easily that Y(U\Ou) is a Frechet nuclear (FN) space 
and that T(V, Os) is a dual Frechet nuclear (DFN) space. 

As in [7], we will consider Os as a sheaf of complete bornological algebras and 
deal with the category Born(Os) of complete bornological modules over Os- Recall 
that Houzel has shown that Born(Os) has a natural internal horn functor denoted by 
C0s{',-) and an associated tensor product functor denoted by • ®Qs •. They are linked 
by the adjunction formula 

HomBorn(0s)(M 0OsM,V) = HomBora(0s)(M,£05(^P)). 
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We denote by Lc>s(-,-) the global sections of C0s(-,-) considered as a bornological 
vector space. For any AA in Born(C?s), the functor L0s(A4,-) has a left adjoint. We 
denote it by • ® AA. 

Following [15], an FN-free (resp. a DFN-free) (9s-module is a module isomorphic to 
E<g>Os for some Frechet nuclear (resp. dual Frechet nuclear) space E. It is easily shown 
that the Os topological dual C0s(AA, Os) of an FN-free (resp. a DFN-free) O -̂module 
AA is DFN-free (resp. FN-free). Moreover both FN-free and DFN-free Os-modules are 
Os reflexive. 

The results needed for the proof of the fmiteness, duality and base change theorems 
for relative elliptic pairs are summarized in the three following propositions. The first 
one is Corollary 5.1 of [25] and the next two ones are easily deduced from the results 
in §1-2 of [15] (see also [16]). 

Proposition 3.11 Let AA' (resp. Af') be a complex of DFN-free (resp. FN-free) Os-
modules. Assume AA' and Af' are bounded from above and 

u : AA' —• Af' 

is a continuous Os-lmear morphism. Assume moreover that u is a quasi-isomorphism 
forgetting the topology. Then AA' and Af' have Os-coherent cohomology. 

Proposition 3.12 Let AA' be a complex of FN-free Os-modules and let Af be a DFN 
Os-module. Assume AA' is bounded from above and has Os-coherent cohomology. 
Then the natural morphism ofD+(Os) 

C0s{M\N) — RHom0s(M-,M) 

is an isomorphism. 

Proposition 3.13 Let AA be a complex of FN-free (resp. DFN-free) Os-modules and 
let Af be an FN (resp. DFN) Os-module. Assume AA is bounded from above and has 
Os-coherent cohomology. Then the natural morphism of*D~(Os) 

\4m<8>£sAr—+M'®0sAf 

is an isomorphism. 

In the sequel, when applying the preceding propositions, we will use the following 
well-known result. 

Proposition 3.14 Assume Z, S are complex manifolds. Denote by e : Z x S —• S 
the second projection. Then, we have the following isomorphisms: 

e*TZxs\s ^ r(Z;JTz)0 05 
e&bZx'ste ~ TC(Z; VP***) ®Os = C0U.rZxSis, Os). 
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Hence, e\Vb%£j\S is a DFN-free Os-module which is the topological dual over Os of the 
FN-free Os-module e*TZxs\s- Moreover, 

e*0ZxS = r(Z;OZ)®OS. 

Hence, if K is a compact subset of Z, we have 

**[{AZXS\S)KXS] ^ № AZ) ® Os 

and €*[(AZXS\S)KXS] is a DFN-free topological Os-module. Finally, if T is another 
complex manifold and p : Z xT x S —• .9 and q :T x S —• S denotes the canonical 
projections, we have 

V*FzxTxS\TxS — ^*^ZxS\S <êos Q*OTXS-

4 F i n i t e n e s s 

4.1 The case of a projection 

Proposition 4.1 Let Z, S be complex analytic manifolds. Consider Zx S as a relative 
analytic manifold over S through the second projection e. Let G be an object of 
Djl_c(Z) and set F — G\x\(£S- Assume that (M,F) is a good relative elliptic pair with 
e-proper support on Z x S\S. Then 

Ro(F®M®£zxs]sOZxS) 

is an object of D*oh(Os). 

Proof: By "dévissage", it is obviously sufficient to prove the result when M. is a 
Pzx5|5-module which admits a good filtration on a neighborhood of any compact subset 
of Zx S. 

It follows from the relative regularity theorem (Theorem 2.15) that the canonical 
map 

F c>o M a i zs21 0ZxS —> RHom(D'F, M (±zs5z GZxS) 

is an isomorphism. Using Lemma 3.3, we get the isomorphism 

R(t(F ® MU\s ®vznx^ Az*s\s) (4.1) 

—» RttKHom(D,F,MBis®k „ vs;1 ?zxs\s). 

Let V be the interior of a closed polydisc A of S. Since supp(AI) Hsupp(F) fl( _1(A) 
is compact, we can find a compact subset K in Z such that K x V is a neighborhood 
of supp(A/f) f! supp(F) fl c~L(V). Replacing S by V and G by GK shows that we may 
assume from the beginning that G has compact support. Moreover, by Proposition 3.1 
we may also assume that M]R\S is quasi-isomorphic to complex C whose components 
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are free Z^m^is-modules of finite rank. Since MJR\S has bounded amplitude, we may-
even assume Ck — 0 for A: » 0. 

We know by Proposition 3.10 that D'G is isomorphic to a bounded complex T' of 
the form 

> .© ®wkti — • • • 

where Wk,i is relatively compact subanalytic subset of Z such that D'((Kwkii) — ®wki-
Thus G ~ D'D'G is quasi-isomorphic to a complex C' of the form 

• • ' • 0 (Cu7, . • ' ' ' 
ieik Wh' 

It is clear that the sheaf (Azxs)\KxS (resp. (JrZxs)\UxS) *s acyclic for the the functor 
£\Kxs+ (resp. e|t/X5+) for any compact subset K (resp. any open subset U) of Z. Hence 
we may view isomorphism (4.1) more explicitly as the morphism 

€.((C- M Vs) ® £ ®pzm)<s|s AZxSls) (4.2) 
— eMom{T m <C5) £• ®pzlRxs|s ^xS|5) 

in the category of complexes of C^-modules (not the derived category). Let us denote 
by VJX (resp. 7l2) the source (resp. target) of the preceding arrow. 

The components of 1Z\ (resp. 7Z2) are easily seen to be finite sums of the sheaves 

e\wktixs^AZxs\slWk.xS) (resp. e\wktixst{?:zxs\slWktiXS) )• 

Hence, 1ZX (resp. 7Z2) is naturally a complex of DFN-free (resp. FN-free) topological 
Os-modules. For these natural topologies, the regularity quasi-isomorphism is clearly 
continuous. Applying Proposition 3.11 we conclude that 1Z2 has (^-coherent cohomol-
ogy and the proof is complete. • 

4.2 The general case 

Theorem 4.2 Let f : X\S —> Yr\S be a morphism of relative analytic manifolds over 
S. Assume (M, F) is a good relative f-elliptic pair with f-proper support; i.e. 

• M is an object of D^ood(^|5), 

• F is an object of B^_C(X), 

• (f)-lcharfls(M) fl SS(F) C T*XX, 

• supp(A'f) D supp(F) is f-proper. 

Then /|S,(M ® F) is an object of Bbsood(V°YPls). 
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Proof: By "dévissage", it is obviously sufficient to prove the result when M is a VX\s-
module which admits a good filtration on a neighborhood of any compact subset of 
X. 

Decomposing / through its graph embedding 

i : X —> X x Y 

shows that it is sufficient to prove the finiteness theorem for the second projection 

p2 : X x Y\S —• Y\S 

and the pair ilS\(M) G 0b(D^ood(D^pxy|5)), FE)<Cy G Ob(D^_c(X x Y)) since by the 
projection formula we have 

i\s\(M) ® (FE1 <Dy) ̂  i\s\(M ® F). 

From the definition of char/|s(.M), it is clear that 

charP2|5(i)5!(^()) fl SS(FEl<Cy) 

is contained in the zero section of T*(X x Y\S). So if Y = S, the theorem is a 
consequence of the results obtained in the case of a projection. 

To conclude, we will show that if / is a relative submersion and the theorem is true 
for / : X\Y —• Y\Y then it is also true for / : X\S —• Y\S. 

We will use a device introduced in [8] and extended in Lemma 2.10. 
Let A be a polydisc in Y and denote by K the compact subset of X defined by 

K = supp(M) H SS(F) n /_1(A). 

Using Lemma 2.10, it is easy to see that, in a neighborhood of K, M is isomorphic 
to a complex of right X>x|s-modules of the form 71 ®pX|y f)x\s where 7Z is a coherent 
right £>x|Y-submodule which admits a good filtration and is such that 

0_1charx|y(7^) C chaif\s(M). 

Moreover, this complex may be assumed to be bounded from above. 
Since the functor f_^s] has finite cohomological dimension, it is thus sufficient to 

prove the coherence on A of the cohomology of f_\Sl(F ® M) when M has the special 
form M — Mo ®DX|Y ̂ x\s where Mo is a coherent VX\Y-mod\ile which admits a good 
filtration. 

In this case, one knows that the complex £\Yl(F®Mo) has CV-coherent cohomology, 
and the chain of isomorphisms 

Rfi(F®M8%xisVX\s-+Y\s) 

= Rf\(F ® (Mo ®%x]y VX\s) «éX|s VX\S^Y\S) 

Rf\(F ® Mo ®%xiv Vx^y\s) 

^ R M F ® Mo^xlY Ox)^y VYls 

shows that /LS (F ® M) belongs to Bhgood(VYls). • 
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Corollary 4.3 In the situation of the preceding theorem, the well known formula: 

/|S,(F ® M) OLdys Oy — RMF ® M ®£x|s Ox) 

gives the inclusion: 

chary|5(/|5,(F (8) M)) C / ^ " ' c h a r ^ C M ) 

Proof: By Theorem 2.13 and Proposition 5.4.4 and 5.4.14 of [12], we know that 

Pr[scharr|S(/|s,(F ® M)) = 55(/ls,(F ® .M) ®^|s Oy) 

= SS(RMF ® M ®£xis Ox)) 

z utrlss{F ® M®dxs sox) 

C /.V'"1(55(F)+p^charX|5(A<)). 

Note that by hypothesis: 

Px\schaif\s(M) H SS(F) c TXX. 

Moreover, one has: 

p-x\sc\™X\S{M) + ' / ' (X xY T*Y) C vx\sc\™ns{M). 

Hence, 

[px\schavxls(M) + SS(F)] n 7'(X xy T*Y) C p^charX|S(.M) fl 7 '(X xy T*y) 

SO 

7'_1(55(F) +^}scharX|5(^)) C 7'_1fcfScharX|S(A<)) 

and the proof is complete. • 

5 D u a l i t y 

Let f : X\S —• Y\S be a morphism of relative complex manifolds. Our aim in this 
section is to prove that, under suitable hypotheses, duality commutes with direct images 
(see Theorem 5.15 for a precise statement). The proof will use the graph decomposition 
of / and various "dévissages". Hence, it is necessary to construct first the natural 
transformation: 

Llsl°Rx\s—>Ry\s°l Flsl 

and to check its compatibility with respect to composition in / . This will be a conse­
quence of the explicit construction of the trace morphism for D-modules given in the 
next section. We follow the lines of [24] (see also [11, 17]). 
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5.1 The relative duality morphism 

Recall that if / : X —• y is a holomorphic map then it induces integration maps 

JP,q . j{D\f^dx^dx > jyyp-dy ,q+dy 

commuting with the Dolbeault operators. We will use this fact and the machinery of 
distributional Dolbeault complexes of §3.1 to construct canonically the duality map for 
right T>-modules. 

Let Ai be a left £>x-module. To simplify notations, we will set 

Vbx{M) = Vbx 
x{pt}|{pt}(-̂ lR|{pt})-

Hence, the components are 

Vb^iM) = Wxq ®0x M 

and the differentials are given in a local coordinate system z : U —• Œdz by 

cF'q : Vbxq ®0x M —* Vbp+l'"®0xM dx 
u®P ^ dp>qu® P + YldziAu®DziP 

i = 1 

and 

Ж'4 : VÏÏx ®ox M —> VWxq+x®0xM 

u®P —• V'4u®P 

respectively. Also recall that we denote by Vbx(M) the simple complex associated 
with Vb'x(M). 

Lemma 5.1 The differential of Vbx(Vx) is compatible with the right Vx-module 
structure of its components and, in DB(X>X3), one has a canonical isomorphism: 

mx{vx)[dx]^> nx. 

Proof: The compatibility of the differential of Vbx(Vx) with the right £>x-module 
structure of its components is a direct consequence of the local forms of d and d recalled 
above. 

Using the fact that Vx is flat over Ox and the Dolbeault resolution of QPX) we get 
the quasi-isomorphisms 

fix ®ox T>x Vbpx- ®Qx Vx Vbpx(Vx). 

Hence, Weil's lemma shows that the natural morphism 

DRX{VX) -^Vbx(Vx) 
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from the holomorphic to the distributional de Rham complex of Vx is a quasi-isomorph­
ism of complexes of right Px-modules and the conclusion follows from the Spencer 
quasi-isomorphism 

DRx(Vx)^ nx[-dx}. 
• 

Lemma 5.2 To any morphism f : X —• Y of analytic manifolds one can associate a 
canonical integration morphism 

/. : fiVbx(Vx^Y)[2dx} —> VbY(VY)[2dy}. 

in the category of bounded complexes of right Vy-modules. 

Proof: At the level of components the integration morphism is obtained as the follow­
ing chain of morphisms: 

flVlf+d^sd^(Vx^Y) — /,(VV?dx'qJHlx ®rlOY f-'Vy) 
fiVlfx+dx^dx(8)OYVy 

—+ Vlfy+dY>q+dY ®0yVY 
_^ Vbp^dY^dy(Vy). 

To get the second morphism one has used the projection formula, the fact that Vbx is 
a soft sheaf and the fact that Vy is locally free over Oy. The third arrow is deduced 
from the integration of distributions along the fibers of / . 

To conclude, we need to show that the integration morphism is compatible with the 
differentials of the complexes involved. Thanks to the local forms of the differentials, 
this is an easy computational verification and we leave it to the reader. • 

Lemma 5.3 If f : X • Y and g : Y • Z are morphisms of complex analytic 
manifolds, one has the following commutative diagram: 

gl(flVbx(Vx-,Y)[2dx} ®pY vY^Z) gi{VbY{VY)[2dy] <g^ VY^Z) 

gij\Vbx{Vx->z)[2dx} - 1 * Vbz{Vz)[2dz). 

In this diagram, arrow (1) is deduced by tensor product and proper direct image from 
/*, arrow (2) is an isomorphism deduced from the projection formula, arrow (3) is g* 
and arrow (4) is equal to (g o /)+. 

Proof: Going back to the definition of the various morphisms, one sees easily that the 
commutativity of the preceding diagram is a consequence of the Fubini theorem for 
distributions, that is, the formula 

(</ o /).(«) = g.(Mu)) 

where <y* and /* denotes the push-forward of distributions along g and / respectively, 
u being a distribution with // o /' proper support. • 
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Proposition 5.4 If f : X —• Y is a morphism of complex analytic manifolds then 
there is a canonical integration arrow 

jf:l(ax[dx])^ nY[dY] 

in Db(PyP). Moreover, if g : Y —• Z is a second morphism of complex analytic 
manifolds then 

hof = fg°9\Uf) 
Proof: One gets the arrow Jf by composing the morphisms: 

l(nx[dx}) —* R№x[dx)®LxVx^Y) 
— Rfi(Vbx(Vx^Y)[2dx)) 
— MVbx(Vx^Y)[2dx)) 
—• VbY(VY)[2dY] 

fiy [dY] 

Let us point out that the second and last isomorphisms come from Lemma 5.1, that 
the third one is deduced from the fact that VlFxq(Vx^Y) is c-soft and that the fourth 
arrow is given by Lemma 5.2. 

The compatibility of integration with composition is then a direct consequence of 
Lemma 5.3. • 

Corollary 5.5 If f : X\S —• Y\S is a morphism of relative analytic manifolds over S 
then there is a canonical arrow 

Sf\s : L\Sl№x\s[dx\s\) —• ^Y\s[dy\s]' 

Moreover, if g : Y\S —• Z\S is another morphism of relative analytic manifolds over 
S then 

I9of\s = Ig\s ° 9\s\Uf\s) 
Proof: Using the canonical morphism 

tox[dx] ^ x | s VX-+Y —> ttx[dx] ®£x VX^Y 

and the integration morphism 

Jf : Rfi(Qx[dx] ®%x * W ) —+ nY[dY] 

we get the morphism 

RMClx[dx] «^x|s VX^Y) —• Oy[dy]. 

Since 
VX-Y * VX\S^Y\S ®/-i2V|s rLT>Y 
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as a {T>x\sJ 1^yP)-bimodule and fly is a right £V-module, we get a Py|s-linear mor-
phism: 

Rf№x[dx] ®£X{S T>X\S^Y\S) —* Oy[dy]. 
Tensoring on both sides by e y 1 ^ ! d s ] and using the projection formula, we get the 
requested relative integration map: 

Rf\№x\s[dx\s] ®vxls vX\S-+Y\S) —> tty\s[dy\s}' 

The last part of the corollary is then an easy consequence of the similar result for 
5 = {pt}. O 

Definition 5.6 One defines the direct image of a right {VX\s, Px|s)-bimodule M by 
setting: 

£isi(M) = RM(M<2&XisVx\s-.Y\s)<8%xisVXIS-.Y\s) 

Lemma 5.7 There is a canonical isomorphism 

№>x\s ®ox vx\s) ®%X{S VX\S-+Y\S] ®£X|5 VX\S^Y\S 

VX\S^Y\S ® f-ioYrL VY\S 

compatible both with the structure of left VX\s-module and the structure of right 
(f-lVYlsJ-lVyls)-bimodule. 

Proof: One has the chain of isomorphisms 

№>x\s ®ox vx\s) ®£x|s VX\S-+Y\S] ®%XLS VX\S^Y\S 

[Vx\s ®ox VXIS-YIS] ®vxls V*\s-*y\s 
Vx\S-+Y\S ®ox *Dx\S^>Y\S 

VX\S-*Y\S Qf-iOy f"X^Y\S 

VX\S^Y\S ®f-ivY]s U-lVy\s ®f-i0y rLT>Y\s) 

— VX\S^Y\S ®f-^s V~lvy\s ®f-ioY f~LVY\s) 

In the second isomorphism we have used the exchange lemma. In the fourth line, the 
last tensor product uses the structure of left /-1CV-module of f~lVy\s- In the fifth 
isomorphism the last tensor product uses the structure of right /-1CV-module of the 
first factor and the structure of left /_1(9y-module °f the second one. Finally, in the 
last line, we have used the exchange lemma again. • 

Proposition 5.8 Let M be a right VX\s-inodule tind let M®0 T>x\s be the associated 
right Vx\s-bimodule. If f : X —• Y is a morphism of relative analytic manifolds over 
S then one has the following canonical isomorphism 

l^(M ::t';v PY|,) — ^(M) ::<h. VY]S 

in the derived category D(P^S, Q Z>°JL). 
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Proof: This is a direct consequence of the preceding lemma. • 

Definition 5.9 The differential trace map associated to a morphism 

/ : X | S — y | S 

of relative analytic manifolds over .5 is defined to be the arrow 

tr/ : L\Sfix\s —v K-y\s 

in the derived category D(Pyj5 ® 7)y^s) obtained by composing the following arrows: 

4***1* = L\SPx\s[dx\s] <Y Vxp) 
(llsPx\s[dX\s}) ®oY VY\S 
ttY\s[dY\s}®oYVYls 

where the first arrow comes from the definition of )Cx\s (see p. 11), the second one 
being a consequence of the preceding proposition and the third one being constructed 
by tensor product with the integration arrow of Corollary 5.5. By construction, tr/ is 
compatible with the composition of maps. 

Proposition 5.10 Assume f : X\S —• Y\S is a morphism of relative analytic mani­
folds over S. Then the differential trace map 

tr7 : L\S^x\s —y Ky\s 

induces a morphism 
du, : Llsfix\s(M) —• DYls(£[s,M) 

for any object M. of T>h(V°^s). Moreover, this morphism is functorial in M. and 
compatible with composition in /. 

Proof: Since, by definition, 

DX\s{M) = RHomVx^s{MXx\s) 

we have a canonical morphism 

lls]Rxls(M) —• ^^pr |S ( / | 5 !^5 / | 5 !*x | 5 ) 

in D(X>yj5). Composing this morphism with the morphism 

Rn^vY^(L\s\ Mi Lx\Sfx\s) —* Rnomv^s(l^M,1CY\s) 

associated to tr/ gives the requested duality morphism. The construction shows that it 
is natural in M. The compatibility with composition in / comes from the corresponding 
property of tr/. • 
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To conclude this section, we will show that the differential duality morphism is 
compatible with the duality morphism of complex analytic geometry. 

Recall that since Vx\s is an Ox-module, we have a well defined scalar extension 
functor 

£x|<? : Mod(Ox) —* Mod(^p|5) 
T ^ T®0xVX\s-

The image by this functor of an Ox-module T is coherent as a right Z>x|s-module if 
and only if T is coherent as an Ox-module. For a coherent Ox-module T, one sets 

DX\s{F) = RHom0x{T, nX\s[dx\s}) 

hence, we have the canonical isomorphism: 

DX\s(f) ®ox vx\s ^ DX\S{T ®0x VX\sY 

Moreover, if / : X\S —• Y\S is a morphism of relative analytic manifolds and T is a 
coherent Ox-module we have the canonical isomorphism: 

(RfiF) 0Oy VYls ^ £lsl(F 0Ox VX\s). 

With these facts in mind, we can now state: 

Proposition 5.11 Let f : X\S —• Y\S be a morphism of relative analytic manifolds. 
Assume T is a coherent Ox-module. Then we have the commutative diagram: 

RfiDX\s(F) ®oY vY\S — Dy\s{Rf\T) ®Qy VY\S 
i i 

£lslDx]s(f®oxVx]s) —• DYls(llsl(T®0x VX\s)) 
where the first and second horizontal arrows come respectively from the geometric and 
differential duality morphisms, and the vertical arrows isomorphisms are deduced from 
the compatibility with direct image and duality of the scalar extensions functors EX\$ 
and Ey\s-

Proof: Consider the morphism 

fix|s[dx|s] —• £>x\s (5.1) 
UJ H-> U)®lx\S-

It follows easily from the definition of the differential integration map that we have 
the following commutative diagram: 

Rf\^x\s[dx\s] —• fiY|s[dy|s] 
i I 

Lsfa\s —• KY\S> 
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In the preceding diagram the horizontal arrows are the geometric and differential trace 
maps, the first vertical arrow is deduced from (5.1) by using the canonical section 
1X\S-+Y\S of VX\S->Y\S and the second vertical arrow is (5.1) with X replaced by Y. 

Since the geometric and differential duality morphisms are directly constructed from 
the corresponding trace maps the result is easily reduced to the commutativity of the 
preceding diagram. • 

5.2 The case of a closed embedding 

Proposition 5.12 Let i : X\S —• Y\S be a closed relative embedding. Then, for 
every coherent right VX\s-module M, the canonical morphism 

i\s\Rx\s(M) —>DYls(ils,M) 

is an isomorphism. 

Proof: Since the problem is local on X, we may assume M has a bounded resolution 
by finite free right Dxis-modules. Thus it is sufficient to prove the result for M — VX\s> 
Since we have 

VX\s = Ox Dxs Vx\s 
it follows from Proposition 5.11 that the result is a direct consequence of the corre­
sponding result for (9-modules. Since we do not have a precise direct reference for this 
well known result we recall it in the following lemma. • 

Lemma 5.13 If i : Z • X is a closed embedding of analytic manifolds, then for any 
object T of T>^oh(Oz) the complex RuT is an object of T>^oh(Ox) and the geometric 
duality morphism 

RuRHo)n0z(T,Q,z[dz]) —> RHom0x{Ri]T,nx[dx}) 

is an isomorphism. 

Proof: Since the result is of local nature and the duality morphism is compatible with 
composition, it sufficient to consider the case when T — Oz and 

i : U' —• U' x U" 
z' i • (^,0) 

where U' (resp. U") is an open neighborhood of 0 in (£dz (resp. (D). 
In this case, the arrow 

i\^z[dz] — RHcm0x{i\Oz,Slx[dx\) 

corresponds up to shift to the arrow 

hftz —> RHom0x{i\OzMx[l]) 
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deduced from the arrow 

ifrz — Hom0x(iiOZiVbd^[l]) (5.2) 
i\uj >—• (i\h i—> i*(hu;)) 

by using the natural map from Hom0x to RHom0x and the Dolbeault resolution 
f]v Vbdx''. Using the negative Koszul complex K.(z",Ox) as a free resolution of 
i\Oz, the map (5.2) corresponds to the morphism of complexes 

uQz — Hcrni0x(K.(z",Ox),Vbaxx>') (5.3) 

which associates to i\u the morphism of complexes which sends h to i*(h\zv) in degree 
zero and is zero in other degrees. 

The target of the preceding arrow is the simple complex associated to the double 
complex K''' below 

2%£'° —• Vb**'1 ••• —• Vbdj*'dx 
V T« V 

T>bdxx>° —> VbdxxA . . . — • 2%£'DX 

where the horizontal maps are the d Dolbeault operators, the vertical ones being mul­
tiplication by z". In the preceding diagram the term of bidegree (0,0) is in the upper 
left corner and the image of i\u by the arrow (5.3) corresponds to the section i*uj of 
Vbj?'1 in bidegree (-1,1). 

Since the canonical inclusion of K.(z,f>£lx) m the simple complex sK''' is a quasi-
isomorphism, it follows that the cohomology of sK'1' is concentrated in degree zero and 
that H°(sK') is isomorphic to Clx/z'Tlx. 

Now we have successively 

UU = UJ(Z') A 8(z")dx" A dy" 

= u(z' )Ad 
dz" 

2mz" 

= d UJ(Z') A 
dz" 

2m z" 

and this shows that uu has the same cohomology class in H"(sK''') as the section 
UJ(Z') A (dz"/2i7r) of K°'°. Hence the arrow (**) corresponds at the level of H° to the 
isomorphism 

iiQz —• Qx/J'tox 

iw — uo(z') A dz" 
2Z7T 2"QX 

and the conclusion follows. 
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5.3 The case of a projection 

As for the finiteness theorem our starting point will be the case of a projection. 

Proposition 5.14 Let Z, S be complex analytic manifolds and denote by n the com­
plex dimension of Z. Consider Z x S as a relative analytic manifold over S through 
the second projection e. Let G be an object of DbR_c(Z) and set F = G\x\(ES- Assume 
that (M,F) is a good relative elliptic pair with e-proper support on Z x S\S. Then the 
natural pairing 

Re*{M ® F ®£zxs|5 0ZxS) ®£s Rei(DfF ® RHomVz^s{M, «Sxs|sM)) —> Os 

identifies each complex with the Os dual of the other. 

Proof: Since the dual of a relative elliptic pair is a relative elliptic pair, we need only 
to show that the map 

Re<(D'F 0 RHomVzxsis(M, ilnZxS]s[n}) 
—> RHom0s(Re*(F <g> M ®£ Dzxs 0ZxS), Os) 

deduced from the duality pairing is an isomorphism in the derived category. 
Using Lemmas 3.3, 3.4 and 3.6 and the regularity quasi-isomorphism, it is equivalent 

to prove that the canonical map 

Ra(D'F 0 RHom.VzMxsJMn\s, Vb^s]s)) (5.4) 

— RHom0 (RetRHom(D'F,Mu)s ®v Dzxs Fzxs),Os)) 

is an isomorphism in the derived category. 
We will work as in the proof of Proposition 4.1 and use the notations introduced 

there. Using the resolution C of MJR\S and the resolution T of D'G, we will compute 
explicitly the preceding morphism. We already know that 

Re*RHom(DfF, Mn\s Dzxs m F ^zxs) 

t.Hom(T[x|fl'.v.C ®p m . . fx*s) - Fi2. 

Since Vbwk,ixs is acyclic for the functor qn/Mx.y,, we get 

Rt\{D'F & RHam,Vz]RxsJMms,T)bn/;sls)) 
— N (BT mats) ® nomVznxsis{c;vb™s\S)). 

We denote by 7£3 this last complex. 
The components of 7l2 (resp. K3) are finite sums of the sheaves 

€| wk,i x s+ (fwkti x s) (resp. e\Wkti x sy(pbwl% xs) ) 
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which are FN-free (resp. DFN-free) Os-modules. Hence, 1Z2 and 1Z3 are naturally 
complexes of topological Os-modules. 

For any open subset U of Z, we know that 

tuxs\sPb{j^SxS - C0M\uxs\s*Fuxs\s,Os) 

where the second member of the preceding equality is the sheaf of continuous Os-linear 
homomorphisms between the FN-free Os-module e\uxs\s+fuxs\s and Os. Hence we get 
the canonical isomorphism 

Як^ С0(Щк,03) 
for any integer k. One checks easily that these maps define an isomorphism of complexes 

n3^ C0s{K2)Os). 

Moreover, the composition of this morphism with the natural morphism 

£o5№> °s) RHom0s{K2) Os) (5.5) 

gives the map (5.4). 
Since 1Z2 has Os-coherent cohomology, Proposition 3.12 shows that (5.5) is a quasi-

isomorphism and the proof is complete. • 

5.4 The general case 

Theorem 5.15 Let f : X\S —• Y\S be a morphism of relative analytic manifolds 
over S. Assume (M, F) is a good relative f-elliptic pair with f-proper support; i.e. 

• M is an object of B^ood(V^s), 

• F is an object of D^_C(X), 

• </>-lcharf\S(M) H SS(F) C T{X, 

• supp(.M) fl supp(F) is f-proper. 

Then the duality morphism 

lls,(D'F G DX[S(M)) —* DYls(lls,(F Q M)) 

is an isomorphism. 

Proof: Using the factorization of / through its graph embedding 

i:X —• X x Y 

we deduce from the results obtained for closed embeddings that the theorem will be 
true if it is true for the second projection 

q : X x Y\S —• Y\S 
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and the pair 

G|5.(A4),FEI<Dy) € Ob(Dbeood(V^Y]s) x BbR_c(X x V)). 

From the definition of cha,rf\S(M)> it is clear that 

charg|5(i|5i(-M)) n 55(FEJ(Cy) 

is in the zero section of T*(X x V \S). So if V = 5, the theorem is a consequence of the 
results obtained in the product case. 

To conclude, we will show that if / is a relative submersion and the theorem is true 
for / : X\Y —• Y\Y then it is also true for / : X\S —• Y\S. 

Let us assume first that there is a coherent right X>x|y-module Mo such that 

M = Mo 0px)y VX\s-

One get successively: 

DY\s{fj{F ® M)) 
^ RHomVyts([RMF ® Mo ®^Y OX)\ ®^Y £>Y|S, KY[S) 

RHom0y Fy ® Mo), OY) ®OY KY\S 
^ L\YSD'F ® £X\Y(M0)) ®0Y KY\S 

RMD'F ® RHomVxiY(M0, ICX\Y) «£X|y Ox ®f-1<Dy f^s) 
RMD'F ® RHomVxiy(M0> ICxls) DLyx Vx^Y\s) 

^ L]SX{D'F ® RHomVx[s{Mo ^X| r Z>*|s, K*|s)) 
^ lis,(D'F®DX\S(M)) 

and the theorem is proved. 
The general case is reduced to the preceding case by using Lemma 2.10 as in the 

proof of Theorem 4.2. 

• 

6 B a s e c h a n g e and K i i n n e t h formula 

6.1 Base change 

Recall that to any morphism b : Sb —• S of complex manifolds is associated a base 
change functor 

(•)6:Man(S) —• Man(Sb) 
X\S —• XxsSb\Sb 
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which transforms relative manifolds over S into relative manifolds over Sb> The aim of 
this section is to study the behavior of relative elliptic pairs under this functor. The 
main result is Theorem 6.5. 

Let us fix a base change map b : Sb —• S. For any relative manifold X\S, we denote 
by Xb\Sb its image by the base change functor (•)& and by bx the projection from Xb to 
X. By construction, we have the cartesian square: 

X fx s 
Ьх ь 

Xb 
eXb 

Sb. 

Hence, there is a canonical ring morphism 

bxlVx\s —• VXb\sb 

and we may introduce the following definition. 

Definition 6.1 The base change functor for relative right V-modules is the functor 

D(2^s) — D0D£|St) 

M E X M L 
bx vx\s VXb\Sb-

This functor clearly induces a functor from Dg0od(£> 5̂) to D^d(Z>^P|5J. 
The base change functor for sheaves of (^-vector spaces is the functor 

D(X) — B(Xb) 
F ^ bxlF. 

This functor clearly induces a functor from Djl_c(X) to D^_C(X6). Since the context 
will avoid any possible confusion, we denote all these functors by (•)*>. 

Let us consider now a morphism f : X\S —• Y\S of relative manifolds. We denote 
by fb : Xb\Sb —> Yb\Sb the image of / by the base change associated with b. One checks 
easily that the square: 

X Y 
]*>X ]l>Y (6.1) 

Xb —» Yb 
h 

is cartesian. 

Proposition 6.2 Using the notations introduced above: 

a) There is a canonical morphism 

bXlT>x\S-+Y\S ®f-ibyiVYls fblVYb\Sb • VXh\Sb-+Yh\Sb 

in Bb (b-1 Dxls ® fblV°llSb). 
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b) The preceding morphism induces a natural morphism 

(¿,5,(^0)6 —» &цы(Мь) 

for M in D(©3U. 

c) The morphisms in (a) and (b) are isomorphisms if either f or b is a closed em­
bedding. 

Proof: Since 

bxlVX\S^Y\S ®£ Viv |5 fblT>Y,\Sh — bxlOX ®tff-iOy fb^Yb\Sb 

and 
Vxb\Sb-+Yb\Sb 0Xb ®f-1Oyb fblVYb\Sb 

the canonical morphism bxlOx —• Oxb induces the morphism in (a). 
For any M. in D(P^|5), we construct the morphism in (b) as the chain of morphisms: 

(lls,M)b = bYlRf,(M ®¿x|s Vxis^Y\s) ®b-^Y]S VYb\sb 

— Rfb,bxl(M ®¿x|s -DX\s-.Yis) %IVy[S VYb\sb 

— RUbxlM ®bL-xiVx]S bxlVx]s^s uss Vxv,s- fblvn\sb) 

— Rfb,(bxlM ®bv Dx V*b\Sb-*Yb\Sb) 

íb,s.t(Mb). 

This chain of morphisms is obtained using the definition of the base change functor, the 
fact that the square (6.1) is cartesian, the projection formula, the morphism constructed 
in (a) and again the definition of the base change functor. 

To conclude the proof, it is sufficient to show that if either / or b is a closed embed­
ding then the morphism constructed in (a) is an isomorphism. 

Assume / is a closed embedding. The problem being local, we may assume there 
are open neighborhoods U and V of zero in (Cn and (Dm respectively with X = U x 5, 
Y = U x V x S and 

f:U x S —> UxVxS 

(u,s) —• (u,0,s). 

Then, we get Xb = U x Sb, Yb — U x V x Sb and 

fb:U x Sb — UxVxSb 

(ll,Sb) • (lX, 0,5ft). 

Moreover, bx(u,sb) = (u,b(sb)) and 6y(^,f,5ft) = ^,f,6(5ft)). In this simple geometric 
situation, we have the Koszul quasi-isomorphisms: 

K (0Y;vu...,vn) f*Ox 

K.[0Yh\vi obY)...,vn o by) ^ fb*0Xb 
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where v\,..., vn denotes the functions on Y induced by the standard coordinates on V. 
Hence, we get the isomorphisms: 

bxlOx®^r.OYfh-lVYb\sh * fiT1KXT>Yblsb;v1obY,...,vnobY) 

Oxb^OYbfh-lVyb\Sb ^ fclKXVYh\sh]vlobY,...,vnobY) 

and the conclusion follows. 
The case where b is a closed embedding is treated in a similar way. • 

The following easy lemma will be useful in the sequel. We leave its proof to the 
reader. 

Lemma 6.3 Let f : X\S —• Y\S be a relative submersion and let b : Sb —• S be a 
base map. Consider X as a relative manifold over Y through the map f and assume 
N is an object ofD(V°x^Y). Then 

fb ' Xb\Yb —• Yb\Yb 

is the image of f : X\Y —• Y\Y by the base change associated with by and 

W®Dxiy Vx\s)^Mby 0pxt|n VXblSb. 

The behavior of the characteristic variety under base change is given by the following 
result. 

Proposition 6.4 Let f : X\S —• Y\S be a morphism of relative manifolds. In the 
diagram 

T*Xb\Sb ^— Xb xxT*X\S bxs T*X\S 

the first arrow is an isomorphism and for any object M of D^oh(V°x^s) we have 

ch&rMSb(Mb) C '(^)'(6x);1char/|s(yW). 

Proof: Using the graph factorization of / and part (c) of Proposition 6.2 we are reduced 
to the case where / is a relative submersion. In this case, assume M is generated as 
a right £>x|s-module by a coherent right I^xiY-module -Mo- Thanks to Lemma 6.3 the 
epimorphism 

Mo ®px|y VX\S —• M —• 0 

induces the epimorphism 

(Mo)bY ®pXfc(yfc VXb\Sb —>Mb-^0. 

Hence, 
ch&Tfb\sb(Mb) C (^charx.in^.MoW) 

and the result will be true for / : X\S —> Y\S and the base change by b if it is true 
for / : X\Y —• Y\Y and the base change by by. In other words, we are reduced to the 
obvious case where Y — S. • 
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Theorem 6.5 Let / : X\S —• Y\S be a morphism of relative manifolds and let 
b : Sb —• S be a base map. Denote by fb : Xb\Sb —• Yb\Sb the image of f by the base 
change associated to b. Assume (M,F) is a good relative f-elliptic pair. Then 

a) (Mb,Fb) is an fb-elliptic pair in some neighborhood of supp Mb, 

b) the canonical morphism 

\llst(F ® M)\b — hw(Fb ® Mb) 

is an isomorphism. 

Proof: Since (M,F) is a relative elliptic pair, F is non characteristic for bx in a 
neighborhood of supp A4 and [12, Proposition 5.4.13] gives us an estimate of the micro-
support of Fb which together with the preceding proposition gives us (a). 

To prove part (b), we will use the graph factorization of / and part (c) of Propo­
sition 6.2 to reduce the problem to the case where / : X\S —• Y\S is a relative 
submersion. 

As in the preceding proposition, it is sufficient to treat the case Y = S. Assume 
Mo is a right X>x|y-module and set M — Mo Dyz^x\s- We have successively: 

[lls<(M)}b * ll]Y](Mo)®OYVYls]b 

- [llYf(Mo)]bY ®oYb VYb\Sb 

and 

k\Sb^M^ - A\sb\^M^by^vXblYbVxb\sb] 

- A\Yb\[(M°M®OybVYi,\Sb-

Hence, using Lemma 2.10, we see that the theorem will be true for / : X\S —• Y\S 
and the base change by b if it is true for / : X\Y —• Y\Y and the base change by bY. 

Finally, factorizing / and b through their graphs and using once more part (c) of 
Proposition 6.2, we see that it is sufficient to treat the case where / : Z x S\S —• 51*5 
is the second projection. We may also assume that the corresponding /-elliptic pair is 
of the form (M,G\Z\®s) where G and M are objects of D^_C(Z) and D^ood(P°px5|5) 
respectively, and that b : T x S —• S is the first projection. This product case is 
treated in Proposition 6.6 below. • 

Proposition 6.6 Let Z, S, T be complex analytic manifolds. Consider Z x S as a 
relative analytic manifold over S through the second projection t. Let G be an object 
of D^_C(Z) and set F — GlxjŒs. Consider the cartesian square 

Z x S t S 
|P • |& 

Z x T x S -!U T x S 
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where the maps are the canonical projections. Assume that (M,F) is a relative elliptic 
pair with e-proper support on Z x S\S. Then the canonical map 

b-'Re^F ® M <8£zxs|5 0ZxS) ®b-i0s 0T*s 

— Rr},{v-lF ^p-lM^.1VzxsisOZxT.s) 

is an isomorphism. 

Proof: Thanks to the regularity theorem 2.15 and Lemma 3.3, it is equivalent to prove 
that the canonical morphism: 

b~lRuRHom{D'F, Mu ®£ ro Fzxs) ®b-i0s ®TXS 
UZ^xS\S S 

Rri*KHom(p-lD'F,p-1Mm. &>L_lp M FZxTxs\txs) 
V ^z^-xsis 

is an isomorphism. For short, let us denote by S[ (resp. «S2) the source (resp. target) 
of the preceding arrow. Clearly, it is sufficient to prove that for any open polydisc A 
of T, the induced morphism 

№*(SllAxS) ^ Rb*(S2]AxS) (6.2) 

is an isomorphism. We will compute this morphism explicitly as in the proof of Propo­
sition 4.1. Using the notations introduced there, we already know that 

Re*RHom(D'F, MJR\S <8>ij ra TZxs) 

e*Hom(T № (Cs, £ 0p m Tzxs) = ^2-

Since 1Z2 nas Os-coherent cohomology, 

Rb*(sllAxS) ~ RK(b-ln2®bL_10soAxS) 

n2 ®¿s KOAxS. 

Moreover, we have: 

'Z^xSlS ' 
P*^ZxAxS\Axs) 

~ t*Hom(T\xi(Vs,C 0D 
Z^xS\S 

P*^ZxAxS\Axs)-

Let us denote 7£4 this last complex. Since we have the isomorphism 

^P*iwxAxsJwxAxS^ZxAxS\AxS ^ Y{W\Jrw) 0 r(A; 0A) (g) Os 

for any open subset W of Z, a direct computation shows that 

KA 1Z2 ®0s b*0AxS. 

Clearly, the morphism (6.2) corresponds to the canonical morphism 

W2 0 ^ b*0AxS • K2 ®Os b*°*xS-

Since 1Z2 has Os-coherent cohomology, Proposition 3.13 shows that it is an isomorphism 
and the conclusion follows. • 

Rb*(S2ÌAxS) ~ RctR?íom(D'F,Mn®v 
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6.2 Kunneth formula 
Theorem 6.7 Let fa : XX\S —• YX\S and fa : X2\S —• Y2\S be two morphisms of 
relative manifolds. Assume 

i) (Mi,Fi) is a good relative fi-elliptic pair with fi-proper support, 

ii) (M2,F2) is a good relative f2-elliptic pair with f2-proper support. 

Then: 

a) (M\\E\SM2,F\\EisF2) is a good relative fi xs fa-elliptic pair with faxs fa-proper 
support, 

b) the natural morphism 

fa{sl(Fi 0 Mi) Ms k\s№ ® M^ —> A *sf2{J(Fi EI sF2) ®(Mims M2)\ 

is an isomorphism. 

Proof: Part (a) being obvious, we skip directly to part (b). Since 

До,(*1®Л<1) 

has IV^s-coherent cohomology, the formula 

fi xs h = (idx! x5 /2) o (/1 xs idx2) 

allows us to restrict to the case f2 = idx2- So, we need only to prove that the canonical 
map 

fi]sl(Fi 0 Mi) Ms № ® M2) — /1 xsidx2lJFi\xisF2) 0 ( M i E s M2) 

is an isomorphism. Using the projection formula, we may get rid of F2. So we assume 
F2 = (Cx2- The problem being local on Yi xs X2l we may further assume that M2 is 
equal to VX2\s-

The image of /1 : X\\S —• YX\S under the base change associated with e2 : X2 —• 
S is 

/1 x5idx2 : Xx xsX2\X2 —> Yi xsX2\X2. 
Hence, by Theorem 6.5, we have the isomorphism: 

/1|s!(Fl ®Ml)]e2 ^(/ lX5idxJ|YJ(Fl®.Ml)e2]. 

By scalar extension, we get the isomorphism: 

A|5|(F1 ® Ml) Ms VX2\S fl X5JdX2|c,[(Fl[X]5(Cx2) ® (Ml 2>*a|s)] 

and the conclusion follows. 
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7 Micro loca l i za t ion 

Here, we shall prove that direct image commutes with microlocalization. More precisely, 
denote by Sx the sheaf of (finite order) microdifferential operators on T*X (see [18] 
or [19] for a detailed exposition). 

Consider a morphism / : X —• Y of complex analytic manifolds and the associated 
diagram: 

TX^r—X xy T*Y —T—>T*Y 
f u 

and recall that the microlocal proper direct image of a right £x-module M is defined 
through the formula 

fJM) = RU'f'-'1M ^0 LF,.1SX SX^Y), 

where Sx^y denotes the micro-differential transfer module associated to / . 
Also recall that the microlocalization of a right £>x-module M is the right Sx-

module MS defined on T*X by setting 

MS = TT^M ®^VX SX. 

In this section, we prove that, under the hypothesis of the finiteness theorem, we 
have 

\l(M®F)]£~ l[(M ® F)S]. 
This result was established by Kashiwara [9] when F = (Ex and / is projective. It was 
also announced in a non proper case in [8]. 

7.1 The topology of the sheaf Cy\x{0) 

Let us show that the sheaf Cy\x(0) of [18] is naturally a sheaf of topological vector 
spaces and that its sections on a compact subset of TYX form a DFN space. 

Proposition 7.1 Let X be a complex analytic manifold. Assume Y is a complex 
submanifold of X and denote by Cy\x(0) the sheaf of holomorphic microfunctions of 
order 0 on TYX. Then, for any compact subset K C TYX, the space 

r(K;CYlx(0)) 

has a canonical DFN topology. 

Proof: Locally, we may use a coordinate system (x\,... ,#d,yi,... ,yn-d) where Y is 
defined by the equations 

x\ — 0, • • • ,Xd = 0. 
Denote by (yi, • • • ,yn-d,£i, •••,&) the corresponding coordinates on TYX. It follows 
from [18, Theorem 1.4.5] that, for any open subset U of TYX, the formula 

J6ip- (x,OHx,y)dx = £ aj(y,()6{j)(p) (7.1) 
j=-oo 
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establishes a one to one correspondence between holomorphic microfunctions 

u(x,y)er(U;CY]x(0)) 

and sequences of homogeneous holomorphic functions 

aj{x,Qer{U;Or}X(j)) (j<0) 

such that for any compact subset K C U 

o 

? = -00 
(aj (x, E), |k e-j 

(-j)! < +00 

for some e > 0. 
Let us first construct the requested DFN topology in two special cases. 
Case a. Assume K is a convex compact subset of TYX on which f* ^ 0. Denote by 

p : TYX —• PYX the canonical projection. The preceding discussion shows that the 
map 

r(K;CY\x(0)) —+ r(p(K)x{0};Op.Xx<i) 

ЩХ,У) ^ Jk(y,ÇiT) = 
+00 

J = 0 
c - j (y, E/Ek) 

T3 

j1 

is an isomorphism. Using this isomorphism, we endow T(K;CY\x(0)) with the usual 
DFN topology of F(p(K) x {0}; C^xxcr). If, moreover, ^ ^ 0 on K, one has 

fk(y,£,r) = fi(y,Ç,TÇk/Çi). 

Hence, the DFN topology of T(K\CY\X(0)) does not depend on k. 
Case b. Let 7r denote the canonical projection of the bundle TYX on its base Y 

identified to the zero section. Assume K is a convex compact subset of TYX such that 
TT(K) C K. It follows from (7.1) that 

T(K-CYIX(0)) —> r(7r(/0;Oy) 

u{x,y) »-> ao(y,0) 

is an isomorphism. We use this isomorphism to transport on F(K;CY\x(0)) the usual 
DFN topology of r(7r(/0; OY). 

One checks easily that, if K\ C K2 are two compact subsets of TYX of the kind 
treated in case (a) or (b) above, then the restriction map 

r(K2;CYlx(0)) —>r(#i;Cy|X(0)) 

is continuous. 
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Let K be an arbitrary compact subset of TYX. The preceding discussion shows that 
we can find a finite covering (Ki)ia of K by compact subsets such that Y{Ki\ CY\X(0)) 
and T{Ki fl Kj;Cy\x(0)) are DFN spaces. Thanks to the exact sequence 

0 _ > T(K;CY\x(0)) b r№<;<V|x(°)) b II TOO A-jjCypcW), 
tei i, j Ei 

we may use a to transport on T(K; CY|x(0)) the DFN topology of ker/3. To show 
that this topology is independent of the chosen covering, it is sufficient to show that 
it is equivalent to the topology induced by a finer covering. Since such a topology is 
obviously weaker, the conclusion follows from the closed graph theorem. 

Since a direct computation shows that the above defined topology is independent of 
the chosen coordinate systems, the conclusion follows easily. • 

Corollary 7.2 Let X be a complex analytic manifold. Assume K is a compact subset 
ofT*X. Then 

R (K ; E x (0)) 
has a canonical DFN topology. 

Proof: Apply the preceding proposition to CAX|XXX(0). • 

Proposition 7.3 Let X, Z be complex analytic manifolds and let Y be a complex 
submanifold of X. We identify Tj*ZxY){Z x X) and Z x TYX. We denote by q : 
Z x TYX —• TYX the second projection. Then, for any Stein compact subset K C Z, 
one has 

Rq\[(CZxY\zxx(0))KxT}x] * T(K;Oz)®CYlx. 

Proof: Let S be a complex manifold. Denote by ps : Z x 5 —> S the second projection. 
By classical results of analytic geometry, we know that 

RPS\[(OZXS)KXS] * r(tf; Oz) ® OS. 

Using the explicit isomorphisms constructed in the proof of the preceding proposition, 
the conclusion follows easily. • 

Corollary 7.4 Let Z, Y be complex analytic manifolds and denote by 

f . Z x Y ^ Y 

the second projection. Assume K is a Stein compact subset of Z. Then 

Rf*i[(SzxY^Y(0))KxT*Y] * r(if; Oz) ® SY(0). 

Proof: Apply the preceding proposition to CZXAY\ZX(YXY)(0). • 
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7.2 Direct image and microlocalization 

Theorem 7.5 Assume f : X —• Y is a morphism of complex analytic manifolds and 
(M, F) is an f-elliptic pair on X with f-proper support. Then the canonical map 

[l(M®F)]S^ l,({M®F}e) 

is an isomorphism in Dç0h(£y). 

Proof: Recall that we have the commutative diagram 

т*х 7 ' X Xy T*Y fx T*Y 

TTx 7T 7Ty 

X X 
f 

Y 

Hence, we have successively 

*Ï% (M ® F)}® ÍVY EY 

= Rfn[ir-'iM <8> FDx VX^Y)\ ®^VY £Y 

= Rfn[*-l(M ® F DX VX^Y) ®f-^vY f*l£v] 

= RUir-'iM ® F) ®* dX (TT-'VX^Y ®f-\^vY f?£y)]-

Note that there is a canonical map 

*-lVx->Y ®f-\YivY I«£Y — SX^Y. (7.2) 

Hence, we get a canonical morphism 

*Y%(M ® F)] %-IVY SY —+ i^x\M ® F) ^-iVx €x}. (7.3) 

When / is a closed embedding, (7.2) is an isomorphism. Hence (7.3) is an isomor­
phism for any M e jy^h(Vx) and any F e D[\_C(X). 

In the general case, consider the graph embedding 

i :X —• X x Y 

and the projection 
p:XxY —>Y. 

Since (M,F) is an /-elliptic pair, the pair (ijwM,F[x](Ey) is p-elliptic. Since our result 
holds for closed embeddings and 

j , M 0 ( F S ( i ; r ) - i ! ( M 0 F ) , 

we are reduced to prove the theorem for the pair (ii.M,F[x](Ey) and the map p. 
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We may thus assume that / is the second projection from X — Z x Y to Y and 
that F = G[x] (Cy where G is an object of Djl_c(Z). Moreover, working as in §4, we 
may also assume that M = N' ®vX\Y ^x wnere is a coherent £>x|y-module. In this 
case, 

irYl\f,(M®F)) ®nv 1Vy Sy 

= RM*-1\ M ® F) ®z_lVx (n-lvx^Y ®kWVy f~leY)] 

= R U f r - W 1 ( n ®(Gm<Ey)) ®^X|y (n-LOX ®f-WoY K1ZY)] 

and 
U*X4M ® F) ®^Vx Sx] = RUdir-1^® (Gm(Су)) ®,-ipX|y ^ - И -

Hence, we are reduced to show that the canonical arrow 

n~lOx ®{-WOy / -^y(0) — ^ y ( O ) 

induces an isomorphism 

Rfn<[ir~l(N®(6'[x](Cy)) в£_1рх|у (тг-^х % V O y ЛГ^у(О))] (7.4) 

ВДтг-ЧЛГ® (G|x](Dy)) O D xy £r-.y(0)] 

As a matter of fact, £X-*Y — £X-*Y{0) ^ / - ^ ( O ) fn £Y as a (X>x|y5£r)-bimodule and a 
scalar extension of (7.4) gives the theorem. 

Using the realification process as in §4, we may assume from the beginning that Z 
is a complexification of a real analytic manifold M and that G is supported by M. 

Since the result is local on T*Y (hence on Y), we may assume also that N has a 
projective resolution C by finite free £>x|Y-modules (see Proposition 3.1). 

As for G, we may assume it is isomorphic to a bounded complex T* of the type 

0 e 
ifcG/fc 

Ck k,ik e 
ifcG/fc 

Ck k,ik e 
ifcG/fc 

Ck k,ik 0 

where the sets Д- are finite and Kk,ik is a subanalytic compact subset of M (see Propo­
sition 3.10). 

Hence, 
Af 0 (F [x] (Cy) - £• 0 (T m (Ту) 

and the components of this last complex are finite direct sums of sheaves of the type 
VX\Y 0 ®KxY 

where К is a subanalytic compact subset of M. 
Note that 

n-4Vx\Y <8 <Cjf xr) ®;-ipV|î. U ''Ох ®и-гп-г0у /- ' ír(O)) (7.5) 

*-\Ox)K*Y ®f-^-}ÖY f^SY(0) 

тг_1(^х|у ® ŒKXY) ®»-4>.v,y ^ у ( О ) (7.6) 
(£л—у(0))л:хГ*У 
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The right hand side of (7.5) is acyclic for /^j thanks to usual properties of Stein 
compact subsets. Moreover, Corollary 7.4 shows that the right hand side of (7.6) is also 
acyclic for /TT,. Hence, the morphism (7.4) of Db(£y(0)) is represented in Cb(£y(0)) by 
the morphism 

f*i[*-\C ® (T-EKCy)) ^-1Px|y (TT-'OX ®KW°Y J**8*™ (7-7) 
— f*i[*'l(£ ® (T'ElCCy)) ®w-ix>X|y £^y(0)] 

Let us denote by R the complex 

/I[£'®(T'®(Cy)®Djc|y Ox]. 
Its components are direct sums of sheaves of the type 

f\[(Ox)KxY]*r(K;Oz) ® OY 
which are DFN-free Oy-modules. It is easy to check that the Oy-linear differential of 
R is continuous with respect to the these natural topologies. Hence, we may consider 
R as a topological complex of DFN-free CV-modules. Using Corollary 7.4, we have 
successively 

/J /*,[(£x^y(0)Wy] * r(K;Oz)®£Y(0) 
^ [T(K; Oz) ® TTy'Oy] 0^Oy £Y(0) 
* *Y1M(OX)KXY}®1TYIOY£Y(0) 

and (7.7) is represented as the canonical morphism 
7T~LR ®w_10y £Y(0) — TT-'R ®^10Y £y(0). 

Since R has CV-coherent cohomology, Proposition 3.13 allows us to conclude the proof. 
• 

Corollary 7.6 Let M. be a coherent Vx-module endowed with a good titration. As­
sume: 

(i) f is proper on supp M, 

(ii) f„ is finite on V '-^charM) fl (X xy f*Y), where f*Y = T*Y \ TyY. 
Then, for j ^ 0, Hj{f_xM) is a flat connection (i.e. its characteristic variety is contained 
in the zero section). 

Proof: The second hypothesis implies that fj(M£) is concentrated in degree zero on 
T*Y. The first hypothesis and Theorem 7.5 imply that 

(f,M)£ - fXMS). 
Hence, for j / 0, supp Hj[(£rA4)£] is contained in the zero section. Since £ is flat over 
TT~1V, the conclusion follows easily. • 

This Corollary has important applications when studying correspondences of V-
modules, such as, for example, the Penrose correspondence. We refer the interested 
reader to [5] for more details. 
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8 M a i n corol laries 

8.1 Extension to the non proper case 

In this subsection, we shall generalize Theorems 4.2 and 5.15 to a non proper situation, 
using the techniques of [8, 12]. 

Let f : X\S —• Y\S be a morphism of complex manifolds over S and let </?: X —• 
IR be a real analytic function. Set 

Ay, = {(x,dip(x)) : x G X}. 

This is a Lagrangian submanifold of T*X (which is not conic for a non locally constant 
</?). We also associate to </? the following subsets of X: 

Zt = {x e X np(x)<t}, 
Ut = { x e X:<p(x)<t}, 

and denote by jt : Ut —• X the open embedding. Recall finally that the image of a 
subset S of T*X by the antipodal map is denoted by Sa. 

Corollary 8.1 Let M and F be objects of B^ood(V°^s) and D^_C(X) respectively 
and assume: 

i) for each t G IR, / is proper on supp M fl supp F fl Zt, 

ii) p-lchsLTfls(M) n SS(F) C TXX, 

Hi) there is to G IR, such that 

Av n (p^diiacflsiM) + SS(F)a) С ^~\Zt0). 

Then: 

a) setting 
Ft=jtljrlF- Fut, 

the canonical morphisms: 

f,JFt®M) — fs,J(F ® M) 
fIQ(D'Ft®Dx,s(M)) — f^s(D'F ® Dx]sM) 

are isomorphisms for t > to, 

b) both 

l]sl(F О M) and £iSt(D'F ® Dxls(M)) 

яге objects of Dgoot ( D i V ^ ) , 
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c) the natural duality morphism: 

llSt(D'F®Dxls(M)) —v DYlslls,(F ® M) 

is an isomorphism. 

Note that replacing SS(F) by SS(F)a in hypothesis (iii), we get a similar conclusion 
after interchanging f^sl and f_^. Also note that it would be possible to generalize to 
a non proper situation the results of §6 but for the sake of brevity, we leave it to the 
reader. 

Proof: Let x G X. If x G suppM fl suppF and x & ZtQ, then dip(x) & char(wM) + 
SS(F)a by hypothesis (iii) and in particular d(p{x) -=f=- 0. Applying Proposition 5.4.8 
of [12], we find for t > t0: 

SS(Ft) C 55(F) + IR+A^ 

where 1R+Ay? = {(x; Xd(p(x)) : x G X, A > 0}. Since: 

p-Miar^JW) H (55(F) 4- ]R+A„) C TXX U T T " 1 ^ ) , 

again by hypothesis (iii), we obtain that (<M, Ft) satisfies the hypothesis of Theorems 4.2 
and 5.15 for t > t0. Hence, the conclusions of these theorems apply to the pair (M, Ft) 
and part (b) and (c) are consequences of part (a) which we shall now prove. 

First, we consider the morphism 

fAsl(Ft®M)—^liS, (F ® M). (8.1) 

Set G = F®M®£^sVX\S^Y\S. By Theorem 2.15, hypothesis (ii) and Proposition 5.4.14 
of [12] we have: 

SS(G) c SS(F) + p-1char/|S(X). 
Since 

p'1 charfls(M) = p-W/isCM) + lf(X xy T*Y), 
the above morphism (8.1) is an isomorphism by Proposition 5.4.17 of [12]. 

To prove the second isomorphism in (a), consider the chain of isomorphisms which 
follows from the regularity theorem applied first to Ft, then to F: 

Rf* {D'Ft ® DX\sM ®£ 2?X|5^y|s) 

~ Rf,R№m(Ft,nx]sM®%>x^Vx\s-*Y\s) 
- RhRjuhlRHom{F,DX\SM ®%x]s VX]S-+Y\s) 
~ Rf*Rjuj;\-1D'F ® DX{SM «£x|s Vxls^Yls). 

Set 
G = D'F®DX\SM g£ Dx VX\S~Y\S-
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Isomorphism (8.1) applied to {D'Ft, D_X\sM) tells us in particular that the projective 
system 

Rf*(D'Ft®DX\SM ®£X|S VX\S^Y\S) 

is essentially constant for t > t0. Hence, the projective system Rf*Rjt*3tlG is also 
essentially constant for t > t0 and using the Mittag-Leffler theorem we get the isomor­
phism 

RUG ^ Rf*RjtJrlG 
which completes the proof. • 

8.2 Special cases and examples 

In this subsection, we will consider various special situations and give the corresponding 
form of Theorem 4.2 and 5.15 leaving the reader do the same thing for Theorem 6.7. 

First, let us specialize our results to the non relative case taking S — {pt}. 

Corollary 8.2 Let f : X —• Y be a morphism of complex analytic manifolds. Assume 
(M,F) is a good f-elliptic pair with f-proper support i.e.: 

• M is an object of Vbgood(V°»), 

• F is an object of DbR_c(X), 

• chavf(M) fl SS(F) c TXX, 

• supp(A4) fl supp(F) is f-proper. 

Then 

• lr(M ® F) is an object o/DBOOD(PYP), 

• L[RX(M) 0 D'F] — DyllXM <8> F)}. 

When we take F = (Ex in the preceding corollary we recover the coherence theorem 
for D-modules of Kashiwara [9] (who treated only projective morphisms). Moreover, 
using Corollary 8.1, we also recover the finiteness theorem for non proper morphisms 
of [8] and the corresponding duality result of [24]. 

It is well known that an (9x-module T is coherent if and only if the induced VX-
module T ®GX VX is itself coherent. Moreover, this scalar extension process is com­
patible with direct images and duality (see Proposition 5.11). Applying the preceding 
corollary to the pair (T ®Q VX,(EX) we recover Grauert's coherence theorem [6] and 
Ramis-Ruget-Verdier's relative duality theorem [15, 16] in the important special case 
of analytic manifolds. 

Taking Y = {pt} in the preceding corollary, we get the following absolute result: 

Corollary 8.3 Let X be a complex analytic manifold. Assume (M,F) is a good elliptic 
pair with compact support i.e.: 
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• M is an object of T>bgood(V%), 

• F is an object of T>^_C(X), 

• char(.M) H SS(F) c TXX, 

• supp(jVf) D supp(F) is compact. 

Then the complexes 

RT(X- M®F®^x Ox) and RT(X; RHomVx (M 0 F, nx[dx})) 

have finite dimensional cohomology and are dual one to each other. 

In the special case where F = (Ex, we get an absolute finiteness and duality result 
for good Px-rnodules which was considered by Mebkhout in [14]. For coherent analytic 
sheaves, the preceding corollary corresponds to the very classical Cartan-Serre [4] and 
Serre [26]'s theorems. 

In the case Y = S, Theorem 4.2 and 5.15 give information on analytic families of 
absolute elliptic pairs. 

Corollary 8.4 Let X\S be a relative analytic manifold and let (M, F) be a relative 
elliptic pair on X\S i.e.: 

• M is an object of Bbgood(V°^s), 

• F is an object of D^_C(X), 

• p-idinrxisiM) n SS(F) c TXX, 
• supp(M) fl supp(F) is ex-proper, 

where p : T*X —• T*X\S is the canonical projection. Then 

Rfi(F 0 M PDXS Ox) and Rf\RHomVx^s(F 0 M, QX\s[dx\s]) 

are objects ofDboh(Os), dual one to each other, i.e. the canonical morphism: 

Rf\RHomVx^(F 0 M,nX\s[dX\s}) —> RHom0s(Rf\(F 0 M OLdx Ox)M 

is an isomorphism. 

Combining the preceding corollary with the base change formula, we get: 

Corollary 8.5 Let X\S be a relative analytic manifold. For any s G 5, denote by bs 
the canonical inclusion of {s} in S. Assume (M,F) is a good relative elliptic pair with 
e-proper support on X\S. Then for any s G S, (Mbs,FbJ is a good elliptic pair with 
compact support (on a neighborhood of suppA'U, in Xbs, the fiber of X over s) and 
the Euler-Poincare index: 

x(mXb;,Mb.®Fb.®£Y dX Ox J) 

is a locally constant function on S. 
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Proof: Let us denote by X the ideal of holomorphic functions vanishing at s. The base 
change Theorem 6.5 tells us that: 

RT(XBA; Mbs ® FBA <a£^ GXhs) = [Os/I Dx Re*(M 0 F ®£x|s 0*)],. 

We know by the finiteness theorem that 

Ret{M ® F ®^s Ox) 

has Os coherent cohomology. Hence, it is locally quasi-isomorphic to a bounded com­
plex of finite free (9s-modules. The conclusion follows easily since [Os/1]s = (C. 
• 

Remark 8.6 Let P0 : E —• F, P\ : E —• F be two complex analytic linear differen­
tial operators between holomorphic vector bundles on X. Assume that their principal 
symbols induce the same morphism of fiber bundles 

o : ir'lE —>TT-1F. 

Then, Fa = (1 — A)Po + APi is a one parameter analytic family of operators with 
principal symbols equal to o. Combining this remark with the preceding corollary, we 
recover, for example, the fact that the index of an elliptic operator on a compact real 
analytic manifold depends only on its principal symbol. 

Let us now consider a few explicit examples. For the sake of brevity, we only consider 
non-relative situations. 

Example 8.7 Let M be a real analytic manifold with X as a complexification and M. 
a good £>x-module. Then, as we have already noticed in the introduction, M. is elliptic 
on M in the classical sense if and only if (AA, (CM) is elliptic. In fact, SS((EM) = TM^X. 
Since (CM ® Ox = AM, the sheaf of real analytic functions on M and 

RHom(DF(EM,Ox) = BM 

the sheaf of Sato's hyperfunctions, the regularity theorem 2.15 entails the isomorphism: 

RHomVx(M, AM) ^ KHomVx(M,BM). (8.2) 

This is the Petrowski theorem for £>-modules which is often proved using micro-diffe­
rential equations as in [18]. Moreover, if M is compact and M is good, Corollary 8.3 
asserts that the spaces 

^'(Rr(M;PWomPM(M,BM))) = E x t ' ^ M ; M, BM) 

and 
Hn-i(RT(M; QM Odxm M)) = Tor^n(M; QM,M), 

are finite dimensional and dual to each other. Note that for solutions of elliptic operators 
the duality and finiteness theorems are well-known results. 
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Example 8.8 Let X be a complex manifold, U an open subset with real analytic 
boundary. Then (M^u) is an elliptic pair if and only if the boundary dU is non 
characteristic for M that is, char(.M) ClT^X C TXX. The regularity theorem yields 
the isomorphism: 

RHomVx(M, {Ox)u) KHomVx(M,Bru(Ox))- (8.3) 

In other words, the holomorphic solutions on U of the system M extend holomorphically 
through the boundary. If U is relatively compact, and M is good, we get that the spaces 
Ext^(C/,M ,Ox) andTor^n(U;ftx,M) are finite dimensional and dual to each other. 

Note that the regularity theorem is due to Zemer [27] (for the 0-th cohomology) 
and [2], both in case of one equation with one unknown, then to Kashiwara [10] for 
systems. The finiteness theorem is due to [2], this last result being extended in various 
directions by Kawai [13]. 

Example 8.9 One can generalize both preceding examples as follows. Let M be a real 
analytic manifold, X being a complexification of M and let U be an open subset of 
M with real analytic boundary. Then (M,(Hu) is an elliptic pair if and only if M is 
elliptic on M on a neighborhood of U and moreover the conormal vectors to dU in M 
are hyperbolic with respect to M. Then we get the isomorphism: 

RTLomVx(M, (AM)tt) ^ RHomVx{M,Tu{BM))-

(i.e.: the hyperfunction solutions of A4 on U are real analytic and extend analytically 
through the boundary), and we also get finiteness and duality results that we do not 
develop here. 

Example 8.10 A general situation including the preceding examples is the following. 
Let X = UaXa be a subanalytic ^-stratification (cf. [12, Chap. VIII]) and assume: 

SS(F) C U«T*aX, 
char(X) HTX(X C T^X Va. y ' } 

(In other words, F is locally constant on the strata Xa and these strata are non 
characteristic for M.) 

Then of course, the pair (M,F) is elliptic. If, moreover, supp(.A4) fl supp(F) is 
compact we may apply Theorem 4.2 and Theorem 5.15 and we obtain new finiteness 
and duality results. 

Example 8.11 For any F e Ob(D^_c(X)), the pair (Ox,F) is elliptic. Since F ~ 
Qx ®£ Ox ® F[-n] and D'F ~ RHomVx(F 0 Ox,Ox), one recovers the classical 
finiteness and duality theorem on constructible sheaves. In fact if M is a real analytic 
manifold and i : M X denote a complexification of M , to G G Ob(D^_c(M)) one 
associates the elliptic pair (Ox,i*G). 
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Example 8.12 Let M be a holonomic Px-niodule and let x0 e X. Let B(x0, e) denote 
the open ball with center xo and radius e > 0 in some local chart at XQ. By a result of 
Kashiwara [10], the pair (M, (EB{X0,E)) is elliptic for 0 < e <C 1. If X is open in (Cn and 
F e Ob(DbR_c(X)) has compact support, one proves similarly that (M,F * (Eb(o,£)) is 
elliptic for 0 < £ <C 1. (Here V denotes the convolution of sheaves; cf. [12] Exercise 
2.20.) 
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