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Exposé V

SEMI-STABLE REDUCTION AND CRYSTALLINE
COHOMOLOGY WITH LOGARITHMIC POLES

by Osamu Hyodo and Kazuya Kato

Introduction

The results of this paper were obtained by the collaboration with J.—
M. Fontaine and L. Illusie.

We say a scheme X over a discrete valuation ring A4 is with semi-
stable reduction if etale locally on X, there is a smooth morphism X —
Spec(A[Ty,...,T.)/(Ty--- T, — 7) for some r > 0, where # is a uniformizing
parameter. This condition is equivalent to the condition that X is regular, the
generic fiber of X is smooth, and the closed fiber of X is a reduced divisor
with normal crossings on X.

Let A be a complete discrete valuation ring with field of fractions K and
with residue field & such that char{ ') = 0, char{k) = p > 0, and k is perfect,
and let Iy be the field of fractions of the ring W = W (k) of Witt vectors. Let
X be a proper scheme over A with semi-stable reduction, andlet ¥ = X ® 4 k.
Then, the crystalline cohomology group H}, (Y/W) &w Ko (m € Z) is not
a “good cohomology” when Y is singular. However U. Jannsen conjectured
in [J] that there is a “new crystalline cohomology group” D, which is a finite

dimensional Ky-vector space endowed with

— a bijective frobenius—linear operator ¢ : D — D called the frobe-
nius,

- a nilpotent operator A : D — D called the monodromy operator,

satisfying Ny = po/A,

S M. F.
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0. HYODO, K. KATO

— a I{-isomorphism with the de Rham cohomology
p: D@y, K — HEp(Xk/K) (Ap=X®4K).

This space I} is a mixed characteristic analogue of the limit Hodge
structure [S).

The triple (D, ¢, A) is constructed in Hyodo [H2] by using some de Rham-
Witt complex with logarithmic poles. In this paper, we give another construc-
tion of (D, ,N) using the crystalline cohomology theory with logarithmic
poles and give the isomorphism p. The 4-ple (D, p, NV, p) has the following

further properties.

- (D,p,N) depends only on the scheme X ®4 A/m% over Afm?

where m 4 denotes the maximal ideal of 4 (cf. (1.7)).

— The isomorphism p depends on a choice of a prime element = of A.

If we indicate the choice of 7 as pr, we have

Pru = Pr O eXp(lOg(lL)N)

for u € AX, where we denote the K -linear operator on D @, K induced by
N by the same letter A. The K -linear operator proN op; ' on HEp( Xk /K)
is independent of the choice of @ (¢f. Thm. 5.1)).
~ As is shown in [H2], the triple {D,p,N) is @w K, of a triple
(H,p,N) with H a canonically defined W{k)-module of finite type. L. Illusie
has proposed a method to show that the operator N : H — H is already
nilpotent before @wKy. This has been carried out by A. Mokrane, see [M].
The theory of crystalline cohomology with logarithmic poles used in this
paper is based on the theory of “logarithmic structures” of Fontaine-Illusie
reported in [K1] {cf. §2 for a summary of this theory). In fact, by using
this theory of logarithmic structures, we construct (D, @, N, p) in this paper
not only for X as above, but also for a scheme over A with a “smooth
logarithmic structure whose reduction is of Cartier type” (for example, a
product of schemes with semi-stable reduction is such a scheme). We give
also the detailed study of the de Rham-Witt complexes with logarithmic

poles associated to such general situation (§4).
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EXPOSE V : CRYSTALLINE COHOMOLOGY WITH LOGARITHMIC POLES

In [J], Jannsen presented a conjecture on the relation between the 4-ple
(D, @, N, p) and the p-adic etale cohomology HZ(X ©4 K, Q.), which was
formulated in a more precise form and proved in the case of abelian variety
by Fontaine [Fol]. We discuss this conjecture in another paper [K2).

The subject of this paper is studied independently by Faltings [Fa] §4, and
a different formulation of logarithmic structure is given in [Fa] §2. The triple
(D, ¢, N) is obtained also from his theory. The study of the de Rham-Witt
complex of this paper is not contained in [Fa].

A different approach to this subject using syntomic sheaves is given in
[Fo2]. The authors heard that P. Deligne considered a mixed characteristic
analogue of the limit Hodge structure in rather old days (unpublished}. Some
related topics are discussed in [112], [113], [T14].

The authors thank especially Professors J.-M. Fontaine and L. Illusie for
their collaboration, stimulating discussions and suggestions. Professor Illusie
made many improvements of the manuscript. They also thank Professors
P. Berthelot, B. Mazur and M. Raynaud for their help. They thank Université
de Paris—Sud for its support and its hospitality.

1. — A fast construction of (D, p, N)

Before we start the use of the crystalline cohomology theory with logarith-
mic poles, we remark in this section that it is possible to construct (D, ¢, N)
in the semi-stable reduction case without using such theory, but using only
the classical theory of the de Rham—Witt complexes. The proofs of some state-
ments are not given in this section. However proofs using the theory of log
structures are given in later sections for generalized versions of the statements.
Proofs without using the theory of log structures exist, but we do not discuss
them.

In this section, let A be a discrete valuation ring with field of fractions K
and with residue field k, and assume that % is a perfect field of characteristic
p > 0. Let X be a scheme over 4 with semi-stable reduction, and let
Y=X®R4k.

All sheaves considered in this section are those on small etale sites.

(1.1). — We define a complex W,w; on Y, as follows. This complex is
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O, HYODO, K KATO

nothing but the de Rham-Witt complex in [H2], but the construction here is
different and more elementary. Though this complex in fact depends in general
on the scheme X @4 A/m% over A/m%, not only on ¥, we use the notation
Wiwy for simplicity.

Take a dense open subscheme UV of ¥ which is smooth over &, and let
¢+ I/ — Y be the inclusion map. We define W,w;. as a subcomplex of
u, W, 0}, where W, (Y}, is the usual de Rham-Witt complex ([I11}) of U/. Let

Y—i>X*LX1\-

be the inclusion maps. Then i7'(0%) — i7'j,(0% ) is injective and the
restriction of 1715,{O% )/{"HO%) to U is isomorphic to the constant sheaf

% JA* . From this we see that there exists a unique homomorphism
dlog : i717,(0%, ) — w.WaQp

which induces on ©~'i7{O% ) the composite map

dlog
w”HTHOX) — O — W,.Qp

and induces the zero map on ' *. Define W,wy to be the W, (Oy )-subalgebra
of u, W, generated by dW,(Oy) and dlog(i~'7.(0%, )). Then Wowy
becomes a subcomplex of u, W, Q. As it is easily scen, W,w;- is independent
of the choice of U.

(1.2). — One can check the following facts easily. The operators

- FiuW,o1Q, — v W, 0}, Viu WL, Q) — w W Q)
madiuce
FWow) — Waet, VWi — W, w)
respectively, satisfying FV = p, VF = p, dF = pFd, Vd = pdV, FdV = d.
The absolute frobenius of ¥ induces an endomorphism of the differential
algebra
v Wahwy — Whwy

which mmduces p7 £ on 1-V,,,w§“..
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(1.3). — Now fix m € Z and let
D, =H™Y,Wywy), De=lmH™Y, Wowy), D=Dg®wlip.

If Y is proper over k, it can be shown that each D, is a W, (k)-module of finite
length and D is a finitely generated W {k)-module (cf. (3.2)}. The frobenius
@ on Wywi (1.2) induces D, — Dy, Do — Dy and D — D, which we denote
also by . The map ¢ : D — I} is bijective as is seen from the existence of the

endomorphism of complexes g = (p" 9V : Wowy — Wiowd )eez for r bigger

than the dimension of ¥ which satisfies pg = g = p"t1.

(1.4). — To obtain the monodromy operator A/, we define a complex W,&3
on Y (which also depends on X @4 A/m%). Let u: U — Y be as in (1.2),

and consider the graded differential algebra
A = w (W 20)[6)/(6)
where 8 is an indeterminate in degree one satisfying
fa=(-1)%l (a€uW,0), do=0.
We are going to define W, ;- to be a W, (Oy )-subalgebra of A" Let
dlog : i~ 5. (0%, ) — A

be the unique homomorphism which induces on u=1i~1(0%) the composite
map
dl
w08 — 0F 25 W0k
and induces on K* the map a — ordg(a)f (here ordy is the normalized
additive discrete valuation of K). We define W,y to be the W,(Oy)-
subalgebra of A" generated by dW,,(Qy) and the image of dlog. Then W,a3

becomes a subcomplex of A", and is independent of the choice of U.

ProrosiTioN (1.5). — The sequence

0 — Wywy[—1] — W&, — Wyhwy — 0

a—af, 8§ —20
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1§ ezact.
This will be proven in (4.20).

(1.6). — Define N : D, — D, as the connecting homomorphism of the

exact sequence (1.5). The commutative diagram of exact sequences

0 — Wywy[-1] — Wywy — Whwy — 0
pe l @ l ® l
0 — Wywy[-1] — aWy  — oy — 0

where the middle ¢ is induced from the ring homomorphism A" — A" which
extends ¢ of u, W, by 8 — pf, proves Np = ppN. If Y is proper over k,
this equation and the bijectivity of ¢ show that A" : D —+ D is nilpotent,

(1.7). — One can check that the complexes W,w; and W, &, depend only
on the scheme X ® 4 A/m? over A/m?%, and hence (D,,,N) (n > 1) depends
only on X ®4 A/m% over A/m?%. This last fact can also be scen, by using
the theory of log structures, from the fact that (D,, @, A) is determined by
certain log structures on Y and on Spec(k) {cf. §3) which depend only on the
scheme X @4 A/m?% over A/m¥.

2. — Crystalline cohomology with logarithmic poles

In this section, we give a summary of the paper {{1] on the logarithmic
structures of Fontaine-Illusie, and add a logarithmic version (2.24) of a result
[BO2] (1.6) of Berthelot-Ogus.

In this section, monoids are assumed to be commutative and have a unit
element, and homomorphisms of monoids are assumed to preserve the unit
elements. For a monoid P, let P9 be the associated commutative group
{ab=';a,b € P}. We call a monoid integral if P — P9 is injective (i.e. if

“gb = ac = b = ¢” holds).

(2.1). — For a scheme X, a pre-logarithmic structure on X is a sheaf of

monoids M on the etale site X,,, endowed with a homomorphism o : M — Ox
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EXPOSE V : CRYSTALLINE COHOMOLOGY WITH LOGARITHMIC POLES

with respect to the multiplicative law on Ox. A pre-logarithmic structure is

called a logarithmic structure (or a log structure) if
a HOF) = 0% viaa.

For example, the sheaf M = O% with the inclusion map O — Ox is a log
structure which we call the trivial log structure. If M is a log structure, we
identify O% with the subsheaf a™'(OQ%) of M via a.

A morphism between schemes with log structures is defined in the evident

way.

(2.2). — For a pre-log structure M on X, the log structure M* on X
associated to M is defined as the push out of O «— a™'(0%) — M in the

category of sheaves of monoids. That is,
M® = (Ox @ M)/ ~
where ~ is the equivalent relation

(u,a) ~ (v,b) <= there exist (locally) ¢, d € o™ (O%) such that
a{c)u =a(d)v and ad=bc

(the map M® — Ox is the sum of M — Ox and the inclusion map
0% — Ox). The natural morphism M — M? is universal among morphisms

from M to log structures on X.

(2.3). — For a morphism of schemes f : X — Y and a log structure M on Y,
the inverse image f*M of M is defined to be the log structure on X associated
to the pre-log structure f~1(M) (endowed with f~1 (M) — f~}(Oy) — Ox).

(2.4). — The category of schemes with log structures has finite inverse limits.
For a finite inverse system (X, My}, its inverse limit (X, M) is described
as follows. The scheme X is the inverse limit of the inverse system (X ). If
Py + X — X, denote the projections and M’ denotes the inductive limit of
the system (p} (M)}, in the category of sheaves of monoids on Xy, M is

the log structure associated to the pre-log structure M.
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(2.5). — For a morphism of schemes with log structures f : (X, M) —
(Y,N), we define an Ox—module W(IX,M)/(Y,N)’ which is called the sheaf of
differenttal forms with logarithmic poles relative to f and is often denoted
simply as wﬁqy, to be the quotient of Qﬁ(/YEB(OX ®z M) divided by the Ox-
submodule generated by local sections of the forms (da(a),0) — (0,a{a) ® a)
(a € M) and (0,1®a) (a € f~1(N)). The class of (0,1®a) (a € M) inwk,y is
denoted by dlog(a}. Define wf,,, = AL w) )y for ¢ € Z. Then with the map
d:w,y — wihy; d(adlog(by) A--- Adlog(by)) = daAdlog(br)A---dlog(bg)
{a € Ox,by,...,b, € M), (w'X/},,d) becomes a complex.

(2.6). — We say a log structure M on a scheme X is fine if etale locally
on X, there is a finitely generated integral monoid P and a homorphism
h : Py = (Ox where Px denotes the constant sheaf defined by P, such
that M is isomorphic to the log structure associated to the pre-log structure
(Pyx,a).

A standard example of a fine log structure is the following. Let X be a

regular scheme and D a reduced divisor with normal crossings on X. Let
M=0xn;0[ (j: U=X—-D— X)

with the inclusion map o : M — Ox. Then M is a fine log structure which is

associated etale locally to

NTX — O,\' . (mi)lgiSr — Hﬂ‘;’ni

13

where m; € Oy define regular subschemnes of X whose union is ). The reason
why we work with the ctale topology in the theory of log structures is that

the definition of “normal crossing” is etale local.
(2.7). — For a morphism f : (X, M) — (¥, N) between schemes with fine log

. ¢ h
structures, a chartof f is asystem (Py == M, Qy — N, Q — P) where P
and @ are finitely gencrated integral monoids and s, ¢, & are homomorphisms
satisfying the following conditions : s and ¢ induce isomorphisms { Px )¢ — M

and (Qy)? — N, respectively {(here Py is regarded as a pre-log structure
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via Py — M — O, and Qy similarly), and {f, h) commutes with (s, ?) in
the evident sense. A chart of f exists etale locally.

In the following (2.8)-(2.12), let f : (X,M) — (Y,N) be a morphism
of schemes with fine log structures. We give definitions of several types of
morphisms (cf. [K1] §3 and §4).

(2.8). — Wessay f is a closed immersion (resp. an ezact closed immersion)
if the underlying morphism f : X — Y is a closed immersion and the map

f*N — M is surjective (resp. bijective).

(2.9). — It can be proven that the following two conditions (i) and (ii} (resp.
(1)’ and (ii)’) are equivalent. We say f is smooth (resp. etale) if the equivalent
conditions (1) and (ii) (resp. (i)’ and (i1)’) are satisfied.

(1) (resp. (1)’). The underlying morphism X — Y is locally of finite
presentation, and for any commutative diagram of schemes with fine log

structures of the form

(T L) — (X, M)

g L

(1,L) — (Y,N)

where 7 is an exact closed immersion such that the ideal of TV in T is
nilpotent, there exists etale locally on 7" a morphism (resp. there exists a
unique morphism) ¢ : (T, L} — (X, M) such that gi = s and fg = t.

(i1) (resp. (ii)"). Etale locally on X and on Y, there exists a chart
(Px = M,Qy - N, Q LA P) of f such that the kernel and the torsion part of
the cokernel (resp. the kernel and the cokernel) of the induced homomorphism
h9? . Q97 — P97 are finite groups whose orders are invertible on X, and such

that the induced map X — ¥ Xgpee(ziop) Spec(Z[P]) is etale in the usual sense.
We have :

(2.9.1). — If f is smooth, the (O xy-module qu/Y is locally free of finite type
for any gq.
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(2.9.2). — If X is locally of finite type over Y, there exists etale locally
on X a factorization (X, M) N (Z,L) =5 (Y,N) with L fine, i a closed

immersion and g smooth. This follows from the existence of local charts of f
[K1, 2.9 (2)]V

(2.9.3). — 1If f is a closed immersion, there exists etale locally on X a

factorization (X, M) — (Z,L) -5 (Y, N) with L fine, ¢ an exact closed

immersion and g etale [K1, 4.10].

(2.10). -— It can be proved that the following conditions (i) and (ii) are

equivalent. We say f is integral if there equivalent conditions are satisfied.

) By [K1, 2.9 (2)] we may assume X and Y are affine and we have a global
chart of f : Spec(A) — Spec(B) given by (P — A, Q@ — B, u : @ — P).
We thus have a factorization (X, M) , (X1,L1) — (Y,N) where X; =
Y Xspec(zjo)) Spec{Z[P]) and L, is the log structure associated to P — Z[P] —
B, = A ®zq Z[P]. Morcover, M = i{L;. Now, choose a surjective map
v : N — P, and consider the factorization of u given by @ — Q@ &N — P
where the first map sends a to {a,0) and the second one (a,b) to u(a) + v(b).
Taking the pull-back by ¥ — Spec(Z[Q] of Spec(Z[P]) — Spec(Z[QBN"]) —
Spec(Z[P]), we get a factorization (X1,L;) 2, (X2, L) — (Y,N) where iy
is a closed immersion and (X2, La) — (¥, N) is smooth. Here Xy = Spec(B,),
with By = A &g Z[@ @ N7]. Finally, choose a surjective map of Bj-
algebras D[t;,...,t,] — B and endow Z; = Spec(Bi[ty,...,ta}) (resp.
Zy = Spec(Ba[ty,...,t,])) with the inverse image log structure of X; (resp.
X3). We thus get a factorization (X, M) — (Z;, M) — (Z2,M2) — (Y. N)
where (X, M) — (Z,, M) is a closed immersion and (Zz, M) — (Y, N) is

smooth, as desired.
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(i) For any scheme Y’ with a fine log structure N’ and for any mor-
phism (Y’',N’) — (Y,N), the log structure of the fiber product
(X,M) X(¥,N) (Y’,N’) is fine.

(i) Etale locally on X and on Y, there exists a chart (Px — M, Qy —
N, Q@ N P) of f such that the ring homomorphism Z[@] — Z[P] induced by
h is flat.
We have (cf. [K1] §4) :
(2.10.1). — The morphism f is integral if f*¥N — M or if Ng/(’);ﬁj is
generated by one element for any y € ¥ ({ )y denotes the stalk at a geometric

point dominating y).

(2.10.2). — If f is smooth and integral, the underlying morphism X — Y
is flat.

(2.11). — We say f is ezact if the diagram

7Ny — M

! |

f-l (NP — MoP

is cartesian (then a closed immersion (2.7} is exact if and only if it is an exact

closed immersion in the sense of (2.7)).

(2.12)., — For a prime number p and a scheme § over F,, with a fine log. str.
L, the absolute frobenius Fig 1y : (S,L} — (5, L) is defined to be the pair of the

absolute frobenius Fs : § — S and the p-th power map F3'(L) & L 2L
where we used the natural isomorphism Fg Y(F) = F of any sheaf F on S,,.
In the case X and Y are schemes over F,, we say f is of Cartier type if f

1s integral and the morphism g in the following commutative diagram with a
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cartesian square is exact.

Fixmn

(X, M) -5 (X' M) (X, M)

(2.12.1)
f’J O f
F;

YNy 4

If f is smooth and of Cartier type, we have a Cartier isomorphism
(2.12.2) C™liwkeyy — Hiwyyy) (0€2)
characterized by

C~'(adlog(h*(b1)) A -+ Adlog{h*(bs})) = g*(a}dlog(by) A - - - A dlog(by)

(0 € Ox,....bi,... by € M).

(2.13). — We give remarks on smooth morphisms and morphisms of Cartier
type.
(2.13.1). — Let 4 be a discrete valuation ring. Then, we call the log

structure on Spec(4) corresponding to the closed point (regarded as a reduced
divisor with normal crossings) in the sense of (2.6) the canonical log structure
of Spec(A). If A’ is a discrete valuation ring which is finite over A and N, N’
denote the canonical log structures on Spec{A) and Spec(A'), respectively,
the following three conditions on f : (Spec(A’),N') — (Spec(A),N) are

equivalent. (i) f is etale. {ii) f is smooth. (iii) A" is tamely ramified over A.

(2.13.2). — Let A be asin (2.13.1) and X be a scheme over A with semi-

stable reduction. Let YV = X ¢4 & where & is the residue field of A, let
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M be the log structure on X corresponding to Y (regarded as a divisor
with normal crossings on X), and let N be the canonical log structure
on Spec(A). Then, the morphism (X, M) — (Spec(A),N) is smooth (and
it is integral by (2.10.1)). If k is of positive characteristic, the morphism
(Y, M) — (Spec(k), N), where M and N denote the inverse images of M and

N, respectively, 1s smooth of Cartier type.

(2.13.3). — Let &k be a field and j : U — X be a toroidal embedding
of a smooth k—variety U into a normal k-variety X. Then if M denotes the
log structure Ox N 7,.0F, (X, M) is smooth over Spec(k) where Spec(k) is
endowed with the trivial log structure (2.1). The equivalence between (2.9) (i)
and (2.9) (ii) in the case Y = Spec(k) and N is the trivial log structure says
that the notion of toroidal embeddings over & is essentially equivalent to the

notion of a scheme with a fine log structure which is smooth over Spec(k).

(2.13.4). — Smooth integral morphisms are stable under base changes,
compositions, and under taking fiber products. The same is true for smooth
morphisms of Cartier type in characteristic p > 0. For example, for X and

A as in {2.13.2) with Y singular and for a discrete valuation ring A’ which

is finite with ramification index > 1 over A, X' def X ®a A" is not regular.
However from the view point of log structures, X’ is not so ugly : with the
log structure M’ as the fiber product, (X', M’) is smooth over (Spec(A’), N')

with N’ the canonical log structure on Spec(A’).

(2.14). — The theory of crystalline cohomology is generalized to schemes
with fine log structures as follows. As a base, we take a 4-ple (S,L,I,v)
where 5 is a scheme such that g is killed by a non—zero integer, L is a fine
log structure on S, I is a quasi-coherent ideal on S, and vy is a PD (= divided
power) structure on I. Let (X, M) be a scheme with fine log structure over
(S, L) such that + extends to X. We keep these notations in {2.15)-(2.17) and
in (2.19)-(2.22).

(2.15). — We define the crystalline site ((X,M)/(S,L,I,7))erys (which
we abbreviate as {{X,M)/(S, L))erys or as (X/S)L?%s) as follows. An object

is a d-ple (U, T, My,1,8) where U is an etale scheme over X, (T, M7) is a
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scheme with a fine log structure over (S, L), 7 is an exact closed immersion
(U,M\y) — (T, Mr) over (S,L), and 6 is a PD-structure on the ideal of U
in 7" which is compatible with . Morphisms are defined in the evident way.

A family of morphisms
gx: (U/\'.'T)h MTA 3 i)\: 6)) — (U, T, MT, i, 6)

is a covering if the morphisms of schemes gy : Ty — T are etale and form a
covering for the etale topology, and Uy ~ Ty xp U for all A
The structure sheaf Ox;s of (X/S)1%8 _ is defined by

erys

Ox;s(U, T, Mr,i,6) =T(T,Or).

(2.16). — Leti: (X,M) — (X',M') be a closed immersion over (S5, L)
with M’ fine. Then, the PD-envelope (D, Mp) of (X,M) in (X', M') is
defined having the following characterization. Etale locally on X, ¢ factors
as (X, M) LR (X", M"y L (X', M) with M" fine, i’ an exact closed
immersion and g etale, and D is the usual PD-envelope of X in X" with
the inverse image Mp of M’. This (D, Mp) has the desired universality as
in the classical case. If ¢ is an exact closed immersion, then I is the usual
PD-envelope of X in X' and Mp is the inverse image of M'.

For example, let X = Spec(k[t]) with & a field and ¢ an indeterminate,
and let M be the log structure on X associated to the divisor “t = 07".
Let (X', M) wf (X, M) Xgpec(k) (X, M) where Spec(k) is endowed with the
trivial log structure {2.1) and let ¢ : (X,M) — (X', M’) be the diagonal
morphism. Then, X' = Spec(k[t1,t2]), M’ is the log structure corresponding
to the divisor “¢t; = 0" U “t, = 07, i is a closed immersion but not exact. As
(X", M), we can take X" = Spec(k[t,, ta, t1t; ', 1] t2]) with the log structure
M" corresponding to the divisor “t; = 0" (= “t2 = 0)”. Hence the PD-
envelope of (X, M) in (X', M’} is Spec(k[t;] < v >) where v = ;257 — 1
regarded as an indeterminate endowed with the log structure associated to

N = kft;] <v>;1—-t;. (<> means the PD-polynomial ring.)

(2.17). — The theory of crystals is generalized to schemes with fine log
structures as follows. A sheaf of Ox/g-modules F on (X/ S)]c‘;%s is called a
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crystal if the map
Or Qo Fr — Fr,

is an isomorphism for any morphism 7' — T in (X/S)g%,, where Fr
and Fr+ denote the sheaves on T,y and T, induced by F, respectively. If
(X, M) - (Z,N) is a closed immersion over {S, L) with N fine and (Z, N)
smooth over (S, L), the following two categories (a) (b) are equivalent. Let
(D, Mp) be the PD-envelope (2.16) of (X, M) in (Z, N).

(a) The category of crystals on (X/5)!°8

cryst

(b) The category of Op—modules K on D, = X,; endowed with
ViK—K®o, wlz/s

satisfying the following conditions (i)—(iii).

(i) V is additive and
V{am) =aV(m)+m®da {(a € Op, meK).
(ii) The composite
K2k R0, Was - K &o, ("’ZZ/S
is zero where we extend V to
K ®o0, wys K R0, qu';';; Vim@uw)=V(m)Aw+mdw.

(iii) If z € D and y denotes the image of x in Z, and if t;,...,t, are
elements of NE‘"” such that (dlog(#;)); is a basis of the free Oz z—module w}, 155

then for any m € Xz we have

(1‘[ 11 M‘:g—n,-)) (m) =0

1<i<r1<j<e;
for some ¢; > 0, n; € Z. Here Vl;"_g is defined by

Vim)= Y Vi¥(m)@dlegt) (me€Ks).

1<i<r
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The definition of the functor giving the equivalence of categories follows

faithfully the classical case. In particular, X = Fp as an O p-module.

Remark (2.17.1). — Under the conditions (i) and (ii}, (K ®o, w;Z/S,V)

becomes a complex.

Remark (2.17.2). — Under the conditions (i) and (ii}, if (iii) is satisfied

for one choice of (¢;);, then it is satisfied for any choice of (¢;);.

(2.17.3). — Let {Z’,N’) be the fiber product of two copies of (Z,N)
over (S,L) in the category of schemes with fine log structures (2.13.3),
let (D',Mp) be the PD-envelope of (X,M) in (Z',N'), and let pq,
pr : D' — D be the two projections. Assume t,,...,t. as above are
given globally. Then, (p is isomorphic via ps to the PD-polynomial ring
Op < s$1,..-,8, > with s1,...,s, indeterminates, and the isomorphism is

given by s; — pi(¢;)p5(t;)~! — 1. The composite

(*) ICD-*pT]CD’:“iCD: ’:Vpgchg @ HSER-']®]CD
neNT 4

is given by

(+4) m— (IT ™ I1 I (v -am) -

1<i<r 1<i<r 1<j<n;

A similar fact holds for crystals in the sense of derived categories ({B] V 3.6.1) :
(1]

i

if K 1s a crystal in the derived category and V]t?g denotes the s
of Kp — Kp then (*) is given by (**).

—component

(2.18). — To give an explicit description of the crystalline cohomology
of crystals (2.20), we give here a preliminary definition. For a morphism of
schemes with fine log structures f : (X, M) — (S, L) (at this point we don’t
need any PD-structure) such that the underlying morphism X — S is locally
of finite type, an embedding system for f is a pair of simplicial objects (X, M’}
and (Z', N') in the category of schemes with fine log structures endowed with

morphisms

(X' ,M) = (X, M), (X \M)—(Z,N), (Z,N)—{(51L)
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(here (X, M) and (S, L) are regarded as constant simplicial objects) satisfying
the following conditions (i)—{iv).

(1) The diagram

(X M) — (2N

(X,M) — (S, L)

1s commmutative,

(i1) The morphism X — X is a hyper—covering for the etale topology,

and M* (i > 0) is the inverse image of M on X' for each .
(iii) Bach (Z°, N?) — (&, L) is smooth,
(iv) Each (X', M?) — (Z% N*) is a closed immersion.
It is easily secn that embedding systems for f exist.
Let (X')2; be the topos whose object is a system which associates to each
i > 0 a sheaf 7' on X},, and to each increasing map s : {0,...,i} — {0,...,7}
a morphism p, : s~'(F) — F7 where s denotes the morphism X7 — X*

corresponding to s, satisfying p;q. = id. and ps;r = ps - 57 (pe).

~

The obvious morphism of topoi 8 : (X)), — X (X denotes the topos of

sheaves on X,4) satisfies
F = Ro0THF)

for any abelian sheaf F on X.; ([SD]). For a complex 7" in (X)7; bounded
below, R, (F") is computed as follows. By replacing F* with a complex which
is quasi-isomorphic to F, we assume R98;,(F¥) = 0 for any ¢ > 0 and any
i, §, where 6; denotes X! — X and F" denotes the degree j part of the
complex on X* defined by F'. Then RO,(F) is represented by the double
complex (8;,.(F™));; ([SD]).

DeriniTion (2.19). — With notations as in (2.14), assume X is locally
of finite type over S. Fiz an embedding system ((X',M"), (Z',N")) for
(X,M) — (S,L), and let (D', Mp:) be the PD-envelope of (X', M*) in
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(Z!, N%). For a crystal F on (X/8)58,, define the complez Cxyg 7 in (X )5
by

A% v v
CX/S,}' = (fD — Fp Lo, w%'/S — Fp Ko, w%'/‘s —_ _),

and call it the crystalline complez of F. If F = Oxys we denote Cx;s.r
simply by Cxys.

ProprosITION (2.20). — Let the situation be as in (2.19). Let ui)ﬁs be the

canonical morphism from (X/S)\%8  to X,,. Then there exists a canonical

crys
somorphism

Ru')‘z?s.(f) & Re*(CX/S,}') .
(2.21). — In (2.19), crystalline complexes associated to two different

embedding systems E, FE’ are related to each other as follows. There is an
embedding system £’ having morphisms E” — E and E” — E' of embedding
systems. Denote the crystalline complex associated to E (resp. E', resp. E")
by Cx;s 5 (resp. C'y /5.7 Tesp. C% /5, ). Then the canonical morphisms

RO.(Cx;s,7) — RO/(Cxys.5) — RO(Cx;57)

with 8, #’, " the evident morphisms of topoi, are isomorphisms, and compat-
ible with the isomorphism of (2.20).

The following lemma on crystalline complexes is used frequently in this
paper.

LeMMA (2.22). — In (2.19), if f : (X, M) — (S, L) factors as (X, M) -1
(S, L) N (S,L) with f smooth integral and i an ezact closed immersion

such that the ideal of S in S is a sub-PD—ideal of I, then Cxys s flat over
01 f=1{Os) for any choice of an embedding system.

PRroOF. It is enough to show that D is flat over S. First, we show that
it is suflicient to prove (2.22) for one choice of an embedding system. If
(X, M),(Z,N")) is an embedding system, (Z°, N') is integral over (5", L")

238



EXPOSE V : CRYSTALLINE COHOMOLOGY WITH LOGARITHMIC POLES

on a neighbourhood of X in Z. So we may assume (Z°,N°) is integral
over (S,L). Assume we have two embedding systems ({(X', M}, (Z,N"})),
(XY, (M), ((Z),(NY)) with (Z',N') and ((Z')’,N")') integral over
(S, L), and let (((X)", (M}, ((Z'}',(N")"} be the third embedding system
defined by (X'} = X' xx (X'} and ((Z)",(N%)") = (Z,N") x(5,1)
((Z%Y, (N)). If (D', Mpi) (resp. ((D'Y,Mp:y)) denotes the PD-envelope
of (X7, M*) in (Z', N%) (resp. ({X!), (M%) in ((Z!),(N'))), and similarly
((D*), M(piy) denotes the PD-envolope of (X!, M*) in (Z%)",(N*)") then
etale locally
(DY) 2 Spec(Opi < t1,...,t, >)

(Di)” = SPEC(O(De‘)r < t’l,. c b >)

where #1,...,¢.,t],...,t., are indeterminates and < > means the PD poly-
nomial ring (same proof as in [[(1] (6.5)). Hence the flatness of D' over S is
equivalent to that of (D?)’. We may work locally on X, so we can choose an
embedding system such that X* = X for any i, (Z*, N') is a constant simpli-
cial object (Z,N), X = Z x5 S and (Z,N) — (S, L) is smooth and integral.
Then, D! = Z for any i and Z is flat over § by (2.10.2).

The base change theorem for crystalline cohomology ([B] V 3.5) is general-
ized to log structures (cf. {K1] (6.10)). We shall use the following special case

of the generalization.

ProposITION (2.23). — Let

(X, M) = (X, M)

Lo ]

(5.I — (5,I)

! l

(S’,L,,I,,'Y') — (SaL3117)

be a commutative diagram of schemes with fine log structures such that .

f (X, M) — (8,L) is smooth integral and the upper square is cartesian, the
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lower two vertical arrows are ezact closed immersions, S (resp.?r) is defines
in S (resp. S') by a PD-subideal of I (resp.I'), and S =S is radicial. Then
for a flat crystal F on (X/5)1°8 . we have

crys;?

lo ~ i *
OS‘"[X' ®é5|xa RU'X?S* (F)|X‘ — Ru)(;%/sf(gcrys(f)) .

Here for a sheaf G on X, § or 8/, G|x+ denotes the inverse image of G on X'.
This is proved by using

Osiixr @0gx (Cxysrix) — Cxrysige, (F)

and the flatness of Cx;s 7 over Os (2.22).

The following result (2.24) is the log structure version of the result of
Berthelot—Ogus {BO2] (1.4) on the bijectivity of the relative frobenius map
®Q on the relative crystalline cohomology.

PrOPOSITION {2.24). — Let p be e prime number and let f : (X, M) —
(S, L) be a smooth morphism of Cartier type (2.12) between schemes over F,
with fine log structures. Assume we are given schemes with fine log structures

(Th,Ln), n > 1 with ezact closed immersions
(S,L) = (T, L) = (Ta, La) — -+
and a PD—structure on the ideal of S in T, for each n, and assume that the
following (1)-(iv) are satisfied.
(i) Fach T, — T,y is ¢ PD-morphism.
(i) T, is a flat scheme over Z/p"Z and T, — Ty @ Z/p"L.
(iii) {rankx(wkjs}}xex is bounded. (Remark : the condition (ifi) is

satisfied if X is quasi-compact).
Consider the diagram (2.12.1) and let

¢ RuYS 7. (Oxiys) = RugSr. (Ox)r,)

be the morphism of projective systems induced by g in (2.12.1), where

we identify Xo and X, via the canonical equivelence. Then, if r =
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max{rankx(wkl,s) ; & € X}, there exists a homomorphism of projective sys-
tems i : Ru];;g,T‘:(OX/T“) — Rul;i,T‘:(Oxa/T“) satisfying ¥ = p~ and
Yo =p".

Proor. We follow faithfully the method in [BOZ2].

There exist an etale covering /' — X, schemes with fine log structures
(Zn,Np) and (Z,,N,) over Z/p*Z (n > 1), smooth integral morphisms
(Zp,Ny) — (Tn,L,) and (Z),N,;) — (T,,L,), exact closed immersions
(ZasNa) = (Zugt, Nuv1) and (20, N3) = (Zugt, Nag1) over (Tass, Lu)
which induce Z, = Z,4 ® Z/p"Z and Z,, — Z, | ® Z/p"Z, respectively,
morphisms (Z,,N,,) — Z!,N!) over (T,,, L,,) which are compatible with the
above closed immersions, and exact closed immersions (U, M|y} — (Z1, M)
and (U’, M;,) — (%1, N{) where U" = U x x X’ such that the two squares in

the diagram

(UMy) — (U.Ml) — (5I)

! ! !

(ZlaNl) — (ZirN{) B— (TI'JLI)

are commutative and cartesian. We identify (X}7, and (X'')7;. We consider
the crystalline complex Cx;r, (resp. Cx/7,) defined with respect to the em-
bedding system (X', M), (Z4, N5) (resp. ((X5) (M), ((Z4), (N))))
where X* (resp. (X’)? is the fiber product of i + 1 copies of U {resp. U’) over
X (resp. X') and (Z%, N.) (resp. ((Z2')},(N’)!) is the fiber product of 1+ 1
copics of (Z,, Ny,) (resp. (Z;,N})) over (T, L,,). Note that Cx,r, is flat over
Z/p"Z (2.22) and Cx/r,,, ® Z/p"Z — Cx/7,, and the same things hold for
Cxr/r,- We define the complex E;, on (X'),; as follows. Let

Eg ={ae€ qu;?//T,,; da € pq"'le/T“} C C;I//T“ )

El = Eq ¢ [p"EY form>n+q.

Then EZ is independent of the choice of m > n + ¢, and with d : E¢ — E3t!
induced by d : C4 — C#+! for m > n+ g+ 1, (E;,d) becomes a complex. As

™m nt
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is seen easily, the image of ¢ : C%, T, ™ < /T is contained in E‘;{, and thus

R Cg{'/’r,,. — Cg(/Tm for m > n + g defines @ : C? > ER-

LemMma (2.25). — © defines a quasi-isomorphism of complezes
(CX'/T,,wd)_’(Eﬁsd)-

The proof of (2.25) is identical with the classical case given in [BO1] §8,
[BO2] §1 and we ormit it.

Now we finish the proof of (2.24). For any complex C and for i € Z,
let 7<;C' be the subcomplex of C' whose degree ¢ part is C9 (resp. 0,
resp. Ker(d : C?7 — C91)) for ¢ < i (resp. ¢ > i, resp. ¢ = ). Let
r = max{rank,(w} ¢)}. Then, the canonical morphism 7¢,C — C is a quasi-
isomorphism if C = Cx/r,, Cx /1, or E,, since H4(C) = 0if ¢ > r for these C.
Let ¥ : 7<.Cx1, = 7<-E; be the map induced from 7<.Cx;1,, — 1<, E},,
a — pTa with m > n + r, and define ¢ to be the composite map in the

derived category

by %' by @
R8.E,

Rus . (Ox1,) Rulg 1. (Ox/m,)-

=

It is easy to see that iy = p” and ¥ = p".

3. — Crystalline construction of (D, p, N)
We construct (D, ¢, N') using the theory of crystalline cohomology with

logarithmic poles in a more general situation than §1.

DEeFINITION (3.1). — Let p be a prime number and let S be a scheme over
Fp with a log structure M. Let n > 1, and let W,(S) = Spec(W,(Og)). We
define the log structure W,(M) on W,(S) called the canonical lifting of M
to be M & Ker(W,(0g)* — OF) which is endowed with the homomorphism
to W,(Og) induced by M — W,(Og) ; a — (a(a),0,...,0). The morphism
(Wo(S), Wh(M)) — (Wo(8), W,.(M)) defined by the usual frobenius F :
Wa(S) — Wa(S) and by F~'(Wa(M)}) = Wo(M) —» Wa(M); (p on M) &
(F* on Ker(W,{Og)* — OF) is called the frobenius of (W,(S), W,(M)).

(3.2). — Let k be a perfect field of characteristic p > 0 and fix a fine
log structure L on Spec(k). Let W,, = Spec(W,,(k)). Then we have the log
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structure W, (L) on W,,. Let Y be a scheme with a fine log structure M and
with a smooth morphism f: (Y, M) — (Spec(k), L). Take m € Z and let

Dy = Hm(((Y= M)/(Wm Wn(L)))cryss OY/W,.)

be the m~-th crystalline cohomology group of (Y, M) over {W,,, W, (L)), where
W, 1s endowed with the usual PD-structure on pW,,. In particular, it follows
from (2.20) that

(3.2.1) Dy = H™(Y,wy) where wy = Wiy, M)/ (Spec(k).L) *
The absolute frobenius of (Y, M) and that of (W,, W,(L)) induce
p: D, — D,.

Let D =<li_mDn, D=D,.®4Q.
If f is smooth and integral and if Y is proper over k, (3.2.1) and the exact

sequence of crystalline complexes

0 — Cyp(Wo Wi (L)) = CVf(Won Wyl L)) = Cy W, w(1)) — 0

(2.22) (here Y is endowed with M; we do not abbreviate W.(L) since
sometimes we shall consider also the trivial log structure on W) show that
D, is of finite length over W, (k) and D is finitely generated over W (k). If
f is smooth and of Cartier type, ¢ : D — D is bijective by (2.23) and (2.24).
(Here, (2.23) is applied by taking the frobenius (W,,, W,(1)) — (W,, W,(L))
as (S§', L") — (S,L) of (2.23}, and the frobenius {Spec(k), L) — Spec(k),L)
as (3'",2’) — (S, L). We then obtain

lo ~t 1
Walk) > BwamRuyfiw, wany (Oviw,) = Ruylyw, w1y (Oviyw,))
The bijectivity of ¢ : D — D is proved also using the de Rham-Witt
complex of §4, by the same argument as in (1.3).
Without the Cartier type assumption, the bijectivity of ¢ need not hold as

in the simple example (3.3) below.
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The monodromy operator will be discussed in (3.4)-(3.6). In the situation
of semi-stable reduction, we will see in (4.20) that this (D, @, A') coincides
with that of §1.

{3.3). — Consider the case Y = Spec(&[t]/(¢")) with ¢ and indeterminate,
(p,7) = 1,L (resp. M) is the log structure on Spec(k) (resp.Y’} associated
to N = Ogpeciiy; 1+ 0, (tesp.N — Oy; 1+ t),and f : (Y, M) —
(Spec(k), L) is induced from N — N; 1 ~— r. Such (Y, M) — (Spec(k), L)
appears as the reduction of a tamely ramified extension of a discrete valuation
ring (2.13.1). Then, f is smooth and integral, but if r > 1, it is not of Cartier
type. The crystalline cohomology of degree m of (Y, M) over (W,, W,(L))
vanishes for m # 0, and for m = 0 we have D, = W,[{]/{t") with the
frobenius ¢ which extends the usual frobenius of W, (k) by @(t) = tP. Hence
w: D — D is not bijective if r > 1.

(3.4). — Now we define the monodromy operator.
Let f : (Y,M) — (Spec(k),L) and (by fixing m) D, be as in (3.2), and
assume that f is smooth and L is the log structure associated to N — &;

1 — 0. We define the monodromy operator N : D, — D, in two ways

(3.5) (3.6).

(3.8). — Let (D,Lp) be the PD-envelope of (Spec(k), L) in the fiber
product of two copies of (W,, W, (L)) over W,, where the last W, is endowed
with the trivial log structure, and let p, : (D, Lp) — (W,, W,(L)) be the two
projections. Let e be any section of L whose image in L/G,, @ Nis1eN,
and regard it as a section of W, (L) via the embedding L C W,(L). Then,
D = Spec(W,, < v — 1 >) where u is the image of p}(e)p3(e)~!, which is
independent of the choice of e and which is regarded as an indeterminate in

this isomorphism. Let

K = RT{Y, M)/ (W, Wa (L)) erys, Ovyw, )
K' = RT{({Y. M)/(D,Lp))ecryss Ovi) -
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Then we have a morphism

(3.5.1) K— Lpj(K) =K' = Lpy(K) =2 Pu- sk

iEN
where the first and the sccond isomorphisms are by the base change theorem
(2.23). We define the endomorphism N : D, = H™(K) — D, to be the map
induced from the (u— 1)1~ component K — K of the morphism (3.5.1) (then,
{3.5.1) is given by

S(w-ve J[ W=-»).

i>0 0<j<i

The property Ny = poN is easily verified.

(3.6). — Another construction of AV is as follows. Consider the exact closed
immersion (W,,, W,(L}) — (Spec(W,[t]),L) where L is the log structure
associated to N — W,[t]; 1 — ¢ (here ¢ is an indeterminate) defined by
W,[t] » Wy t—0and £ — W,(L); 1 € N+—— 1 & N. Take an embedding
system (Y, M), (Z',N")) of (Y, M) — {Spec(W,[]), L). Let Cy,;w,, where
W, is endowed with the trivial log structure (resp.Clyy;spec(Ww, <t>), Where
W, < t > isthe PD polynomial ring over W, in one variable ¢ and Spec(W, <
t >) is endowed with the inverse image of £), be the crystalline complex
associated to the embedding system ((Y',M"), (Z',N")) (resp.((Y ",M"),
(Z" Xspec(Wapy)) Spec(W, < t >), (N'))) where (N")’ is the inverse image

of N'). We obtain an exact sequence

0 — Cy/specwo<i>)[—1] — Cyyw, — Cyyspec(Woct>) — 0

where the sccond arrow is a +—— aAdlog(f). Since W, @w, <1> Cy/ spec(w, <t>)
with respect to W, < t >— Wy; tll — 0 (4 > 1) is the crystalline
complex Cyw, w,(ry With respect to the embedding system ((Y", M),
(Z" Xspec(Wa(t)) Wa, (IV')")) where (N")" is the inverse image of N, we obtain

an exact sequence

0 — Cypw, waiL)y — Wa Qw,<t> Cyyw, — Cypw, wory — 0.
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We define A to be the connecting homomorphism of this exact sequence.
The coincidence of the two definitions of A given in (3.5) and (3.6) is
proved by the method of [B] V 3.6.

4, — De Rham-Witt complexes

In this section, k& denotes a perfect field of characteristic p > 0, and Y
denotes a scheme with a fine log structure M and with a smooth morphism
of Cartier type f: (Y, M) — (Spec(k), L).

We consider in this section the de Rham-Witt complex of (Y, M) over
(Spec(k), L) generalizing [H1] [H2] which treated the semi-stable reduction
case. We give the definition (4.1), descriptions of the structure of the de Rham-—
Witt complex in (4.4)—(4.7), relation with the crystalline cohomology in (4.19),
and the relation with §1 in (4.20).

In this section, we shall consider the two log structures W, (L) and O!)/(V,,
on W,,. We do not abbreviate W,(L) when W, is endowed with W, (L), and
abbreviate O"f‘,“ when W, is endowed with O;‘Vn. For exarnple, in the notation
R“l}??(w,.,w,.( L) (resp.Rul}?fwn), Y is endowed with M and W, is endowed
with W,(L) (resp. Oy, ).

(4.1). — We define the de Rham-Witt complex as follows. Let

1
Waw} = Rq”}?,%(w,,,w,,(m)- (Ovyw,)-

We define the operators
d: Wowi — an‘{,“ , FiWapwd - Wewl, V:iWewl = Wepwy
satisfying
(41.1) d*=0, FV=VF=p, dF =pFd, Vd=pdV, FdV =d

as below, following the classical case [[R]. W,w; becomes a complex with
respect to the differential d.

In this section, we choose embedding systems ((Y*,M*),(Z:, Ni}) as in
the proof of 2.24 (with X replaced by Y and (T, L,,) by (W, W,(L))), and
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denote the corresponding crystalline complexes Cycw,, w, (1)) simply by C,.
Note C;, is flat over W), and C,, ®z,nz Z/p™L — C;, for m < n.

First, d is defined to be the connecting homomorphism in the exact
sequence of cohomology sheaves associated to the exact sequence of crystalline

complexes
0—C, 20y, — C — 0.
Next, F (resp. V) is the map induced by C,, ., — C,, (resp.p: C;, = C; ).

The relations (4.1.1) are proved easily. For n = 1, we have the Cartier

isomorphism
(4.1.2) C:Wiwd = HYwy) — wi  (cf. (3.2.1) and (2.12.2)).
(4.2). — We define a canonical homomorphism

Ty o Wn+1Wi/ —_— anY

as follows. With the notations of the proof of 2.24, the map p? : C,‘§+1 —

: ~ d .
Criqt1 sends Ker(Cryy — Cgii) into Ker(E2, ., — E3*') and induces

Tyt HHChpy) = Wopiwi — HY(E,) =2 W,w] where the last isomorphism
is by (2.25).
We call this map =, and its composite Wywi — Wowi (m > n) the

canonical projection.

DEFINITION (4.3). — Define a chain of subsheaves of wi.
0 = Bow{ C Bywyj C Bawi C -+ C Zowy C Ziwy C Zowi = wy
by the formulas

Bow} =10, Zywy = wi,

Biwl = dw¥ !, 21wl = Ker(d : wi — ¥,
C—l

anf, — Bn+1w€//Blw§’/

-1

angz T Zn_{_lwf,/leg/
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and by induction on n (cf. Ilusie [111]0.(2.2.2)).

We can generalize the structure theorem for the de Rham-Witt complexes
[111] I §3B to the case with log structures,

THEOREM (4.4). — The map 7, : Wopwi — Wihwi is surjective and the

composite map

o (V™avr)

1 -1
s Wit @ Wiut

wy Dwi Woti1wd
induces an isomorphism

(wi @wg,_l)/Ri = Ker(m, : Watiwy — Wowi)
where RY is defined by the exact sequence

(O

00— R ——>Bn+1w€/@2nw§’,_ Bjw] — 0.

Proor. The problem is local and hence we consider the crystalline com-
plexes for embedding systems consisting of constant simmplicial objects. The
facts that [mage(V™,dV™) C Ker(r,) and RY dies in Ker(n,) are easy
and left to the reader. The surjectivity of w, follows from the surjectiv-
ity of p? : CJ ) 4o — Ej 4=¢ which is checked easily. The surjectivity of
(Vr,dV?") « Wi @ Wiwi ' — Ker(r,) is proved also easily. Indeed, if
a € Cz+1,d=0 and the class of a in W, w{ is annihilated by 7,, then
pla = d{p?™'h) + p™{(pe) in CI, 4, for some b € CIL1. and for some
¢ € Cp, .41 such that dec € pcgi;+1. If b (resp.%) denotes the class of b
(resp. ¢) in Wiwi™! (resp. Wiwi), we obtain a = dV"™(H) + V**(2) in Wy wi-.

Finally we prove that the kernel of the map in problem s : wi @ wqy_l —
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Ker(r,) coincides with R¢. The commutative diagram

Wiwd & Wiwi ™t W) 174 a
1wy & Wiwy R n+1Wy

q-1 dv" q
Wiwy — Wywy

and induction on n show that if (a,b) € Ker(s), then b € ang,_l. Hence
(a,b) = (a’',0)mod R for some o’ € wy. Since the kernel of V : W,wi{ —

1 . .
— W,w{ which coincides

Was1wd comes from the boundary map Wiwy™
with dV™~1 as is easily seen, we have V*~1C~1(a’) = dV"~1C~1(¢) for some
c € w‘f,_l. Therefore, by induction on n, a’ belongs to B,wj (= KerC" :
B41wf —+ Biwy) and hence (a’,0) € RY. Q.E.D.

By the method as in the classical case [I11], we can deduce the following

facts from (4.4).

CoroLLARY (4.5). — (1) If m > n, p" : Wowl — W,wy factors
through the canonical projection Wwi — Wi _nwi. The induced map “p™” :
Wenwy — Whwy s injective and Wpwy/ 9" "(Wh—nwy) = Wawy 5 @
quasi—isomorphism.

(2) *li_man‘{, is torsion free for any q.

n

We give two presentations (4.6) {4.7) of W,wi..
ProposiTioN (4.6). — Wyhw] is canonically isomorphic to
—1
(46.1) (WaOy® Az MP/fTHI?)) & (WaOy® Nz M /§7 (L)) F

where F is the subsheaf of the direct sum generated by local sections of the

forms
(eilefar)) @ (a1 A A ay),0) = p(0,e;(a{ar)) ® (ag A--- Aay))

(ay,...,0q €M, 0<i<n).
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Here for b € Oy, we denote (0,...,0,b,0,...,0) € W,{Oy) by c:(b).
N —

7 times

ProposiTiON (4.7). — (1) There exists a canonical isomorphism of graded

differential algebras
D rarrywawary | 17 = D Wawh
qeZ qcZ

where W,(Y) is endowed with the canonical lifting W,(M) (3.1) of M and Z
is the graded subideal of the algebra generated locally by local sections of the
forms n; ;b and dn;j .6 (0<j<i<n,a€ Oy, be M) where

Tijab = £i(a)de;(a(B)) — ei(ac(b)? ™ )dlog(h) .

(2) For each q and each x € Y, Tz coincides with the image of

(“’{spec(wmy‘;n/spec(w@))mor T WWL (V) (Wa Wa(L))F

where Spec(W,(OQyz)) (resp.Spec(W(k))) is endowed with the log struc-
ture associated to Mz — W(Oyz) (resp.I'(Spec(k), L} — W(k)); a +—

(a(a),0,0,...), and tor denotes the torsion part.

ProrosiTiON (4.8). — Let T be an object of ({Spec(k),L)/Wy)erys (Whn
is endowed here with the trivial log structure). Then, there exists a functorial

homomorphism between graded O(T)-ealgebras

(4.8.1) P OT) @w, k) Wawt — P RIu3%,. (Ovy1),

920 ¢20
which is an isomorphism if T is flal over W,

(4.9). — We prove (4.6)-(4.8) together. We may work etale locally, and
hence we can take in (2.24} Y =Y, (Z', N') to be a constant simplical object
(Z, N). Consider the crystalline complex for this system. We define a ring
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homomorphism 7 : W,(Oy) — 'HO(Ci,/T), an additive map § : W,(Oy) —
H(Cy;7) which is a derivation with respect to 7 and a homomorphism
dlog : M9? — H'(Cy,r), by

n—1
. i~p™T?
T:{(Qgy...,0n_1) F— E pa;
=0

n—1
— -n—c'_l
§:(agy...,an-1) — E af da;

=0

dlog : b+ dlog(h),

{a; € Oy, b € M) where @; is any lifting of a; to Op and b is any lifting of b
to the log structure N of Z. The map 7 (resp. 8, resp. dlog) is well defined by
virtue of the following fact : for a € Op and h € Ker(Op — Oy),

Pla+h)? " =pe? in Op

(resp. for ¢ € Op and h € Ker{Op — Oy),

@+ )P o+ h)—a?" Tlda=d| Y ¢ iR
1<j<pn—i
in Op ®o, wlz/T where ¢; = (p“"')!((p"_" ——j)!)_lpi_" €Z, resp.fora € N
and u € Ker(OF — O5),

dlog(au) — dlog(e) € Op Qo ulz/T is the image of log{u) € Op

under d: Op — Op o, wlz/T)-

In the case T = W,,, 7 is a ring homomorphism W, (Oy) — W,w},, and 6
coincides with the composite W, (Oy) — Wow? —% W,wl. It is not difficult
to see that there exists a W,(Oy)-homomorphism “"II/V,,(Y) JWa WalL))
HY(Cy;r) which sends da (a € W,(Oy)) to é(a) and dlog(h) (b € M)
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to dlog(d), that this map induces a homomorphism of W, (QOy )-algebras
¥ €D wiy vy wawacnyy — @ HI(Cyyr) and that the last map annihilates
q>0 e g0

Z. If (W,wi ) denotes the sheaf (4.6.1) and 7, denotes the degree g part of

7, we have a commutative diagram

&

(Wawi)' —_— HYCyyr)
(4.9.1) N /by

(“gv,.(y)/(w,.,wn(b)))/zq

where s (resp.t) sends (w ® (b1 A --+ A by),0) to 7(w)dlog(h,)---dlog(b,)
(resp.wdlog{®) A -+ A dlog(by)) and (0,w @ (bi A -+ A bg_1)) to
5(w)dlog(by) - - - dlog(bg—1) (resp.dw A dlog(bi) A -+ A dlog(by_1)).

We prove s is bijective in the case T = W,,.

Let Fil'{({Wpw})") be the image of

((Vftwn(OY))ca Nz M) & (Vi(Wo(Oy))® Az M“’) — (Wawd)'.

Then, s sends Fil* into the kernel of the canonical projection W,w{ — Wwl,
and the isomorphism (4.4) (Vi,dV)C™1: wl @ wi ' - Ker(m;) factors as
Wi ol — Fil' /Rl 25 Ker(m),

where the first map is a surjection defined by
(adlog(b) A -+ Adlog(b,),0) — (gi(a) @ (by A--- Aby),0)
(0,ad log{b1) A--- Adlog(by_1) — (0,e:(a) ® (b A -+ Abg_1))

which is well defined as is checked easily. This shows that s is an isomorphism
and proves (4.6).

Next we show that ¢ in (4.9.1) is surjective. This will prove (4.7)(1). We are
reduced to the case ¢ = 1. As a sheaf of abelian groups, wildfn(Y)/(Wn,Wn(L))
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is generated locally by e;(a)de;(b) (a,b € Oy, 0 < 7, 7 < n) and wdlog(b)
(w € Wo(Oy),be M). It i > j, ei(a)de;(b) clearly belongs to Z; 4+ Image(?).
If ¢ < j, e:(a)de(b) = d(e;{a)e; (b)) — g,(b)de;(a) € I; + Image(t).

We prove (4.7.) (2). Let G = WS pec(W( Oy 2))/ Spec( W (R))E" First,

Image(G,,.) C Tz follows from the fact that limW,wy is torsion free.

T

Next we show that #; ;.4 is, when regarded as an element of G, a tor-
sion element. Let ¢ : G9 — G? be the map induced by the frobenius of
W(Oyz) and W(k) and the p-th power maps on Mz and I'(Spec(k),L).
Then, ¢ : G?®@ Q@ — G7® Q is bijective. Indeed, this is reduced to the
case ¢ < 1. For g = 0, ¢ : G @ @ - G° ® Q has the inverse map
(ag,ai,...) ¥— p~1(0,ap,a;,...) and hence is bijective. For ¢ = 1, the in-

verse map is given by
adb — o~ (a)dp ™! (b) (a,b € W(Oyz) @ Q),
adlog(h) s p~ o (a)dlog(h) (a € W({Oyz)®Q, be Mz)

(cf. [I11] T (4.3)). On the other hand, the 2j-th iteration of ¢ : G' — G!

annihilates 1; ; . » since
0 (01 ) = €l Yde; (b)) — ex(a®” a(b)P" )d log(b”)
= plei(a®” Ydeo(a(b”)) — plei(a?™ Jeo(a(b)? )dlog(b”' ) = 0.

Finally we prove (4.8). We define the O(T")-homomorphism in (4.8) to be

the one induced from

Wl ——— (Wawl) = HI(Cy,p)

where s is as in (4.9.1). The bijectivity statement in the case T is flat over
Z/p"Z is reduced to the case n = 1 by using the long exact sequence of

cohomology sheaves associated to the exact sequence

n—1

P
0 — Cyprezpzy — Cyyr — Cyprezspr-1z) — 0.
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In the case n = 1, by working locally, we may assume that Y = Z x Spec(k).
Then, D = Z and our task is to prove

O(T) ®x H¥(wy) — H'(wiyr) -
By Cartier isomorphism (2.12), this map is rewritten as

O(T) "\ & wi — O(T)\ ®o(ry wgr
7] ¥

where ¢ : a — aP. Since ¢ : O(T) — O(T) factors through the canonical
surjection O(T) — k and &k ®o(r) wy,p = w§, we are done.

Remark (4.10). — The existence of the canonical homomorphism W,wj —
un];,’;T, (Oyyr) in (4.8) is not an evident fact, for we do not have a morphism
(T, Lt) ~ (Wy,Wy(L)). The authors do not know if this homomorphism

comes from a homomorphism in the derived category
lo 1
(*) RUY?(W,.,W"(L))‘(OY/Wn) - R”;?T*(OY/T)-

The meaning of (4.8) is that W,w{ grows “neglecting” log structures when we
take PD-thickenings of Spec(k). To see how the problem is delicate, assume
only that f is smooth integral but not that f is of Cartier type. Then we have
the following counterexample of (4.8).

Let L be the log structure associated to N — k; 1 — 0, Y =
Spec(k[t]/(t7)), (p,7) = 1, M is the log structure associated to N — k[t]/(t7);
1 — t, and (Y,M) — (Spec(k),L) induced by N — N; 1 —— r. Then,
Y, Wowl ) = W, (k)[t)/(t7). If we take T = Spec(W,(k) < s >) with s an
indeterminate and cndow T' with the log structure associated to N — W, (k) <

§ >:; 1+ s and with the usual FPD-structure,
(T, R wyy. (Oyyr)) = Walk) < s > [t}/(1" —s).

But W, (k) < s > @w,(gWa(k)[t}/(t7) and W, (k) < s > [t]/(t" — s) are not
isomorphic as W, (k) < s >-algebras if r > 2.

The following (4.13) says that a good homomorphism (*) desired in (4.10)
exists at least “modulo torsion which is bounded independently of n” under
a certain assumption. This (4.13) will play a key role in §5 in the definition

of pr.
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DEFINITION (4.11). — For a sequence of functors between categories
A Ani M
Cag 220, — o My,

let ps(C.) be the category of systems {(A,, 8n)}a>1 where A, is an object of
Crn and 3y, is a morphism A, (Any1) — An. We often abbreviate {(An, 52) }n>1
as {An}tn.

DEFINITION (4.12). — For an additive category C, we denote by Q @ C the
category whose set of objects is the same as C but whose set of morphisms
between objects A, B is Q@ @ Home(A, B). An object A of C is denoted by
Q ® A when it is regarded as an object of QR C.

ProprosITION (4.13). — Assume we are given for eachn > 1 an object Ty, of
((Wo, Wo(L))/Wa)erys with the log structure Ly, a morphism F : (T, L) —
(Ty,Ln) and an exact closed immersion (T,,,L,} — (Tny1, Lat1) which are
compatible with PD—structures and have the following properties (i)—(iii).

(i) With respect to the morphisms (W.,W.(L)) — (T',L.) — W. (the last
W. is endowed with the trivial log structure), F commutes with the frobenius
of (Wi, Wr(L)) and that of Wy, and (T, Ly) = (Tht1, Lny1) commutes with
F, with (W,,W,(L)) > (Wpit1, Wpt1(L)) and with W, — W, 4,.

(ii) T, is flat over W, and T,, — Tp41 @ 2/p"Z for each n.

(i) For each n > 1, the ideal I,, of W, in T, is generated etale locally by

local sections of the form
all (i>1) with a € Image(L, — Or,)NT,.
Forn > 1, define
Kn= R”]}??T,: (Oy/r,), K= Ru];?(W,.,W,,(L))‘(OY/WR)

and let B3, : Kn — K! be the canonical morphism. Then, in the category
Q ® ps(D(Ye,, O(T))), there exists a unique isomorphism

h:QR{O(Th) 8w, Ki}n — Q® {Kn}n
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satisfying the following ({.13.1) (4.13.2).

(4.13.1). — (B.)n o h coincides with the morphism induced by O(T,) —
Wa(k).
(4.13.2). — If we denote the morphisms O(T,) — O(T,), Kn — K, and

Kl — K induced by the frobenius morphisms by the same letter p, then h
commutes with ¢ @ ¢ on QR {O(T,) ®w, KiL}n and ¢ on Q@ {K, }4-

The rough idea of the proof of (4.13) is that the frobenius on X}, is near to
an isomorphism and the frobenius on 7, is near to zero, and this forces the
morphism {K,}, — {K. }. to split in Q@ @ ps(D((X.)er, W.(K))).

To prove (4.13), we use the following lemma.

LEMMa (4.14). — LetC be a triangulated category and ® : C — C be an ezxact

functor. Assume we are given o distinguished triangle A = B oL
A[1] and morphisms ¢4 : P(A) = A, ¢p : ®(B) = B, pc : ®(C)— C, inC
(we denote all of them simply by ) such that

ap = pd(a), Bp=yp2(B), ve=7yl]2().

Let p be a prime number, sy = 1, 51, 82,... be integers such that s;|s;4) for
alli > 0 and lim;_, ordp(siHsi'l) = 0o, let 7 > 0 be an integer, and assume
the following (1}-(ili) are satisfied.

(i) There exist morphisms @; : ®(A) — A for i > 0 such that po = Ida,
e®(p)--- BN ) = sip; for all i > 1, and (si415]  )piy1 = p®(p;i) for all
1> 0.

(i) There exists ¢ : C — ®(C) such that ¢t (resp. 1) is the multiplication
by p" on C (resp. 2(C)).

(iii) The set of homomorphisms from C to A is annihilated by a power of p.

Take an integer ¢ > 0 such that p™*tt|s., and an integer d > 0 such that
p 0 D|s;p? for alli > 0. Then the kernel (resp.cokernel) of

[C,B|, — [C,Cl,: h+— Bh

is annihilated by p*< (vesp. pe’T9), where [C, B), denotes the set of morphisms
h:C — B such that hp = p®(h), and [C,C), is defined similarly.
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ProoF. For X = A or C, denote p®(p)---0*~1{p) : &' (X) — X by @
and denote ®'1(3) - B(yp)y 1 X — (X)) by ). We show first [C, A, is
annihilated by p°". Indeed, for h € [C, A],, we have

prch — hfp(c)";b(c) — go(c)':;,c(h)l)b(::) - Sc(‘oc@c(h‘)w(c) :prcagoc(ﬁC(h)?’[)(c)
for some a € pZ. Hence
P = pap () = peatip B(p ) BH(RPES = - =0.

This proof shows also [C, A[1]],, = 0. In particular, we have p"y = 0.

Next we show that the kernel of [C,B], — [C,C], is killed by p*".
Indeed, let h be an element of this kernel. Then, there exists h' : C — A
such that h = ah'. Since a{p®(h') — h'¢) = ®(h) — hp = 0, there exists
h" : ®(C) — C[-1] such that ¢®(h") — k' = v[-1]h". By p*"y = 0, we have
PR € [C, A, and hence p?“"h' = 0 and p**"h = 0.

Finally we show the cokernel of [C, B], — [C,C], is killed by p*"+9. Let
h € [C,C],. Since p"y = 0, we have v(p“"h) = 0 and hence there exists
h': C — B such that 8h' = p*"h. We have 3(o®(h'} — 'y} = 0. Hence there
exists b : ®(C) — A such that p®(h') — K’ = ah”. Define t : C — B by

[ = pdhf + Z(pd—r(i-}-l)si)a(pi@i(hﬂ)w(i-f-l) .
i>0

Then t € [C, B], and 8t = p"teh.
(4.15). — To prove (4.13), we apply (4.14) by taking

A=1,®br,) Kn where I, =Ker(O(T,) — Wa(k)),

B=K,, CZIC:w B=5n, (I’:Wn(k)\@{;v,,(k)(?)’ siz(pi)!'l
¥

and ; as follows. For m > 1, we have ¢'(I,,) C p'\I,,. Indeed, if a € L,, and

ala) € I, (here o : L, — O, is the canonical map),
#(a(a)) € (@) W07, = u; jo(a)P O,
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where u;; = (p'j){(j)7!, and u; ; € p''Z, if j > 1. Hence we have a map
of projective systems (p*!)~1p : I. — I., which defines ¢; : I, — I,. We
define ; : ®*(A) — A as (p; on L) @ (¢ on K,). Then, the assumptions (i)
(iii) in (4.14) are satisfied clearly and (ii) is satisfied by (2.24). Note when
n varies, we can take the same s;, r, ¢ and d independently of n. Hence we
have the uniquements of /i stated in (4.13). We show the existence of such
h as follows. By (4.14), we find h!, € [K},K,], such that 3,h, = ptd.
Now when we vary n, the morphism p?*"h’ coincides with the morphism
induced by p?¢"h/, . Thus (p**"h!), is a morphism {K,}, — {Ka}a in
ps(D(¥or, W.(K))). Define h" = p=37=1 @ (267R) : Q@ {K",}n — Q® {Kal
and let h: Q® {O(T,,) ®w, K, }» — Q® {K,}» be the morphism induced by
h". It remains to prove that h is an isomorphism. By lemma (4.17) below, it

suffices to show that the morphism induced by A
(4.15.1) Q®{O(Tx) 8w, Wawl }a — Q® {R™W}S1. (Oy/1,)}n

is an isomorphism in Q®ps((T.)-modules)) for each g. But this follows from

LEMMA (4.16). — The morphism (4.15.1) coincides with the one induced
by the isomorphism in (4.8).

ProoF. By a similar argument to that in (4.14) we can show that there

exists a unique morphism whose composite with
lo
Q® {uny;;j"; (OY/T,. }—Q® {angf}ﬂ

coincides with the morphism induced by O{T,,) — W, (k) and which
commutes with frobenius. The morphism induced by (4.8) also has these

properties,
In (4.15) we have used

LemMMa (4.17). — Let C; (1 > 1) be abelian categories, D{(C;) their derived

categories, and let
An X
D(Cps1) — D(Cn) — - — D(C1)
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be exact functors. Let {Ap}n and {Bp}, be objects of ps(D(C))) and let
h:{A.}n — {Bun}n be a morphism. Assume there exists r > 0 such that

#{gel; HU(A)#0 or HI(B,) #0}<r

for all n. Then, the following two conditions are eguivalent.

(i) Q@ {An}n = QR {B,}, s an isomorphism in Q ® ps(D(C.)).

(i) There ezists a non-zero integer m such that the kernel and the cokernel
of HY(A,) — H¥(B,) are killed by m for any q and anyn. Here HY : D{C,) —
Cn 15 the canonical cohomology functor.

Proor. The implication (i) = (ii} is easily seen. We prove (ii) == (i).
For each n > 1, take any distinguished triangle A, LN B, — C, —.
If (ii) is satisfied, HY(C,) is killed by m? for any g and for any n. By
(4.18) below, this shows that C, is killed by M = m?” for any n. By the
exact sequence Hom(B,, 4,) — Hom(B,, B,) — Hom(B,,C,), there exists
gn : Bn — Ay such that h,g, = M. We see easily that (Mg,).>1 is a
morphism {Bp}r, — {A,}n in ps(D(C.)) and satisfies

ho(Mgg) = M?, (Mg, h, = M* for any n.

LEMMaA (4.18). — Let C be an abelian category, A an object of the derived
category D(C), S a finite subset of Z, m, (q € S) integers, and assume that
HYA) =0 for q ¢ S, and that HI(A) is killed by m, for g € S. Then A is

Killed by ] my,.
g€S

Proor. The case #(5) < 1 is clear. Assume #(S) > 2, let r = max(S5),

and consider the distinguished triangle
T<ro1A— A= 75,4 — .

By induction on #(S}, <r—14 is killed by [] mg and 75,4 is killed by m,..
gES
g

By the exact sequence
Hom(A, r¢,_1A) — Hom(A, A) — Hom(A, 75, A4),
we see that the identity morphism of A is killed by [] m,.

gqES
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THEOREM (4.19). — (cf. [II] 11 §1 in the case without log structures). In
the derived category, we have a canonical isomorphism

e lo
Wawy & Ruyfoy, w, iy (Oviw.)

compatible with frobenius and with the transition maps when n varies.

Here the transition map W, 11wy — Wyhwy means the canonical projection.

Proor. The proof is the same as in the classical case [I11] II §1 (cf. also
[Bl} IIT §2). Take an embedding system (Y, M), (Z",N")) for (Y, M) —
W, W (L)) such that there exists a morphism (W, (Y"), W, (M"}) — (Z',N")
for which the diagram

(Y, M) 4 (W, Wa(L))

N s
(Z'WN)

is commutative, and consider the crystalline complex €, with respect to
this system. We define a homomorphism of complexes C,, — 8~ H{Wywy ),
where 8 : (Y')o; — Y7, as follows. Let (D', Mp.) be the PD-envelope of

et
(Y',M) in (Z', N'). By the universal property of the PD-envelope and the
usual PD-structurc on the ideal of ¥ in W, (Y) (which is characterized by
gi(a)l? = (p - 1)!_15@_1(&1’«,’—1)) for a € Oy, i > 1) we have (W, (Y"),
W, (M) — (D, Mp), and this morphism gives a homomorphism of com-

s * q - 5
plexes C, — Wi (V) /(W Wl DD where gjwwn(Y')/(Wn.W“(L)),[] is the quo
tient of g}o Wiy (y-) (W a1y DY the ideal gencrated locally by local sections

of the form
(4.19.1) Aty = ' Mda (a € Ker(Wo (Oy) — Oy ). i21).
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Since the image of (4.19.1) in W,w, is zero (this is seen for example, by the

fact that lim W,wy is torsion free and
—

i(d(ay — ali=Yda) = d(a’) - ia"~1da = 0),
we have wy yvonw, iy — Wawy = 6= (W,w; ). Thus we obtain
the desired map C, — 8 '(W,w; ). By applying R, we have

lo
Ruyyw, wan)-
is reduced to the case n = 1 by (4.5){(1). Foo n =1, if we take Y = Z =Y,

wy = C] — Wiw} coincides with the Cartier isomorphism C~!.

(Oy;w,) — Whwy. The fact that this is an isomorphism

(4.20). — We show that in the semi-stable reduction case treated in §1,
the de Rham—Witt complex in §1 is canonically isomorphic to the de Rham-—
Witt complex of this section. Let the situation be as in §1 and define the log
structures on Y and on Spec(k) as in (2.13.2). Let Wywy,; (resp. Wawy 1f)
be the de Rham-Witt complex of §1 (resp. §4). Let U be a dense open
subscheme of Y which is smooth over k, and let u ; I/ — Y be the inclusion
map. Then, T/Vnwa[ = W0, = T/Vnw'U,” by the reduction to the classical
case [IR], and hence Whwy ; and Wyhwy ;; are regarded as subcomplexes of
the same complex u*VVnwa = u*IVnw'UJI (here use (4.4) to see the map
Wawy rp — wWywy gy s injective). By the presentation (4.6) of Wywy, 4, we
see that these subcomplexes are the same. Q.E.D.

We give a proof of the exactness of (1.5). Let (W,,w{.)’ be the sheaf obtained
by replacing f~!(L9) in (4.6.1) by the trivial group sheaf, and let (W,w{.)’
be the sheaf (4.6.1). Then we have an evident surjection (W,o7. Y — W,&}

which sits in a commutative diagram

(Wawi™) — (W34) — (Wawd) — 0

1 ! !

0 — We{™' ~—— W3, — W — 0

Here the upper row is exact, the left and the right vertical arrows are
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isomorphisms by (4.6), and the lower row is exact except possibly at W,w{..
This shows the exactness of the lower row.

~

In the above, we obtained (W,&{) — W,&7. From this we obtain also

(qejo wgv,.(}’)//w,.)/f = gaﬂwnag’, where W, (Y) is endowed with W,(M),

W, is endowed with the trivial log structure, and 7 is the ideal generated
locally by #i,j,0,6 and dnijab (4.7) regarded as local sections of wiy, (3w, -
Finally the coincidence of the monodromy operator of §1 and that of §3

follows from the commutative diagram of exact sequences

0 —_— Cn[_l] —_— Wn ®W“(i> CY/W“ —_ Cn RN O

| 1 |

0 — 0~ (Wowi)[-1] — 87 (Wady)  — 67 (Wawy) — 0

where the upper row is the exact sequence in (3.6), the left and the right
vertical arrows are as in the proof of (4.19), and the midlle vertical arrow is

defined in the same way as the left and the right ones.

5. — de Rham cohomology

The aim of this section is to prove

THEOREM (5.1). — Let A be a complete discrete valuation ring with field
of fractions K and with perfect residue field k such that char(K) = 0 and
char(k) = p > 0, and let N be the canonical log structure on Spec(A) (2.13).
Let X be a scheme with a fine log structure M and with a smooth morphism
Fi(X, M) - (Spec(A),N) and let Y = X @4 k. Denote the inverse image of
M (resp. N} on Y (resp.Spec(k)) by M (resp. L). Assume that X is proper
over A and the morphism (Y, M) — (Spec(k), L) is of Cartier type. Fizm € Z,
and let

D= Q 2 ‘liﬂHﬂl(((Y'a M)/(Wna Wn(L)))crys ) (-{)Y/W“) :

n
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Then, to each prime element m of A, we can associate a canonical K-
isomorphism

pr i K @p, D= HEg(Xk/K)

(Ko denotes the field of fractions of W(k), X = X®@a K endowed with the log
structure induced by M, end HEp(Xk/K) = H™( Xk, wy, i), satisfying

Pru = Pr eXp(log(u)N) forue A%
In particular, the linear operator proNop;! on HRp(X g /K) is independent
of 7.

We shall use the following notations. Let 4, = A®Z/p"Z, X, = X®Z/p"1.
We endow Spec(A,) (resp. X,,) with the inverse image of N (resp. M). We

denote Ruiolg*; simply by [+/+'].

LEMMA (5.2). — Fiz a prime element 7 of A, and let Spec(R,,) be the PD-
envelope of Spec{A,) in Spec(W,[t]) with respect to the closed immersion
t — 7. Endow Spec(R,) with the log structure associated to N — R, ;
1+——t. Then, we have a canonical isomorphism in Q ® ps(D((X.)er, R.))

ha : @@ {Rn @iy, [Y/(Wa, Wa(L)]}nz1 = Q@® {[Xn/ Spec(Ru)]}n>1 -

Proor. Note [X,/Spec(R,)] = [X,/Spec(R,)]. Take r > 0 such that
(ma)? C pA. We define A, to be the composite of

Q3 {Rn ®%, [Y/(Wa, Wa(L))]}n

o QB (R N\ O /W Wa D)l (229)

(5.2.1)
~Q® {R, } ®w.<i>Y/Spec(W, <t >)]},  (4.13)

L), @ ® {[X1/ Spec(Ra)]}n = Q& { X/ Spec(Rn)}}n

where ¢ are the frobeniuses, Spec(W, < t >) is endowed with the log
structure associated to N — W, <t >; 1+ t,g: W, <t > R, is

the homomorphism

t— ", ar~— @ (a) foraeW,,
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and the arrow (*) is induced by the left big square of the commutative diagram
below. Though the log structures are abbreviated for simplicity, this diagram
is a commutative diagram of schemes with log structures. In this diagram the

composites of the horizontal arrows are the r—th iteration of the frobenius.

X — Y e X,
| e ]
Spec{A;) — Spec(k) —— Spec(A;)

! ! !

Spec(R,) 2, Spec(W,, <t >») — Spec(R,)

It is easily seen that h, is R,—linear and is independent of the choice of r.

The following (5.3) shows that h, is an isomorphism.
LeMma (5.3). — The arrow () in (5.2.1) 45 an isomorphism.

Proor.

Q{R. \ B, <15 [Y/ Spec(W, <>)]}, 2 Q{R. > ®%, [X1/ Spec(Ra )]}
g
{by (2.23) since (**) is cartesian)

— Q{[X./ Spec(Ra)]}n

1®p"
by (2.24).
(5.4). — The isomorphism ki, induces an isomorphism in
ps(D((X.)et, A.))
Q® {A. @y, [Y/(Wa, Wa(LD]}n ~— Q@@ {An ®%, [Xn/ Spec(Bn)]}n

and the last object is isomorphic to Q@ {[X ./ Spec(A,)]}» by the base change
theorem (2.23). Since

Q © Jim H™ (X, [Xa/ Spec(An))) & Ha(Xx /K),

n
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we obtain an isomorphism

pr i K @w Hm H™({((Y, M)/ (Wa, Wa(L)))erys, Oyyw,) — Hpr(Xk/K).

(5.5). — Finally we prove the relation between p. and p., stated in
(5.1). Since A* is generated by 1 + m4 and the image of the multiplicative
representative A : k* — A* | it is sufficient to consider the case u = 1modmy4
and the case u = A(c) for c € k.

We consider first the case u = 1 modm 4. Let r be as in the proof of (5.2).

Consider the morphism

QE {[Y/(Wa, W L)} 2 QE {[V/(Wa, Wal D)}
Qe {[Y/Wa <t >]} 5 Q0 {[X1/44]}.

(i = 1,2), where s is the morphism induced by A in (4.13) by taking
T, = Spec(W,, < t >) whose log structure is as in the proof of (5.2), and
the arrow f; (resp. f2) is induced by

G W <t>— Ay; tr— 7P u?

(resp. go : W, <t >— Ap; t— #nP ). Then the map pry (resp. pr): D —
H™(X g /K) coincides with H™(f) 0 s 0 @™ ") (resp. H™(fy 0 s 0 ™ "}). Let
(D, Mp: ) be the PD-envelope of Spec(W,, < ¢t >) in Spec(W,, < t1,t3 >),
where Spec(W, < t >) is endowed with the log structure associated to
N — W, <t >; 1+ tand Spec(W, < t1,t2 >) is endowed with the
product log structure. Let p; : D' — Spec(W, < ¢t >) (i = 1, 2) be the
i-th projection. Since g, modp and g» mod p coincide (as morphisms of log
schemes), we have by (2.17.3)

pi=> (tt;' = 1lpso T (W =3)

i>0 0<j<i

as morphisms [Y/W, < t >] — [Y/D"], where N’ = V°% and p} denotes the
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pull back by p;. From this we obtain

A=Y -Dlife T W-17)

i>0 0<j<i
=Y log(u )l f 0 A,
i>0

Hence we have

pru=H™ (Zlog(upr)["]fz oNioso 90"”)

i>0

= B (S togw i fy 050 47) 0 (p"AY

i>0

(by N o s = 50N which is easily seen, and by Ny = ppN)

“Zz! (log(w))’ PWONI

>0
Next assume u € A(k™). Then, the PD-morphism over W,
fWo<to— W, <t>;, tr—ut

preserves the frobenius, and this fact and the characterization of the isomor-
phism (4.13) show that the diagram

Q& {[Y/(Wa, Wi(L))|}n

by (4.13)/ \by (4.13)

Q @ {[Y/ Spec(Wn < t >)]}x 7 Q® {[Y/Spec(Wn <t >)]}n

is commutative. The fact p, = py. follows from this easily.
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