Astérisque

ISAO NAKAI

A rigidity theorem for transverse dynamics of real analytic foliations of codimension one

Astérisque, tome 222 (1994), p. 327-343 <http://www.numdam.org/item?id=AST_1994_222_327_0>

© Société mathématique de France, 1994, tous droits réservés.

L'accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

A rigidity theorem for transverse dynamics of real analytic foliations of codimension one

Isao Nakai

The purpose of this paper is to prove

Theorem 1. Let (M_i^n, \mathcal{F}_i) , i = 1, 2, be real analytic and orientable foliations of n-manifolds of codimension 1 and $h : (M_1^n, \mathcal{F}_1) \to (M_2^n, \mathcal{F}_2)$ a foliation preserving homeomorphism. Assume that all leaves of \mathcal{F}_1 are dense and there exists a leaf of \mathcal{F}_1 with holonomy group $\neq 1, \mathbb{Z}$. Then h is transversely real analytic.

This applies to prove the following topological rigidity of the Godbillon-Vey class of real analytic foliations of codimension one.

Corollary 2. Let (M_i, \mathcal{F}_i) , h be as in Theorem 1. Then $h^*(\mathrm{GV}(\mathcal{F}_2) = \mathrm{GV}(\mathcal{F}_1)$ holds.

Here $\operatorname{GV}(\mathcal{F}_i) \in H^3(M, \mathbb{R})$ denotes the Godbillon-Vey class of \mathcal{F}_i , which is represented by the 3-form $\alpha \wedge d\alpha$ with a C^{∞} -1-form α on M such that $d\theta = \theta \wedge \alpha$ holds with a C^{∞} -1-form θ defining \mathcal{F} . It is easy to see that the Godbillon-Vey class is invariant under C^2 -diffeomorphisms. Ghys, Tsuboi [9] and Raby [18] proved the invariance under C^1 -diffeomorphisms, while the invariance is known to fail in some C^0 -cases (see [5,9,11]). (Corollary 2 seems to admit the various generalisations allowing the existence of compact leaves. But we will not touch on those generalisations. See also the papers [5,7].)

The proof of the C^1 -invariance due to Ghys and Tsuboi is based on a certain rigidity for C^1 -conjugacies of transverse dynamics of foliations along compact leaves as well as minimal exceptional leaves cutting Cantor sets on transverse sections. The proof of Theorem 1 is based on the topological rigidity theorem for pseudogroups of diffeomorphisms of \mathbb{R} (Theorem 3(1)).

To state Theorem 3 we prepare some notions. Let Γ^{ω}_{+} be the pseudogroup of real analytic and orientation preserving diffeomorphisms of open neighbourhoods of the line \mathbb{R} respecting 0. We call a mapping $\phi: G \to \Gamma^{\omega}_+$ of a group G to the pseudogroup Γ^{ω}_{+} a morphism if the set $\phi(G)_{0}$ of germs of $\phi(f), f \in G$ form a group and ϕ induces a group homomorphism of G to $\phi(G)_0$. Therefore $\phi(f): U_{\phi(f)}, 0 \to \phi(f)(U_{\phi(f)}), 0$ is a real analytic diffeomorphism of open neighbourhoods of $0 \in \mathbb{R}$ for $f \in G$ representing the germ of $\phi(f)$. We call $\phi(G)_0$ the germ of $\phi(G)$ and say ϕ is solvable (respectively commutative, etc) if $\phi(G)_0$ is so. The orbit $\mathcal{O}(x)$ of an $x \in \mathbb{R}$ is the set of those x_l joined by a sequence $(x_0, x_1, ..., x_l)$ with $x = x_0, x_{i+1} = \phi(f_i)(x_i), x_i \in U_{\phi(f_i)}, i = 0, ..., l-1$ for arbitrary $l \geq 0$. The basin $B_{\phi(G)}$ of 0 is the set of those x for which the closure of the orbit $\mathcal{O}(x)$ contains 0. If $\phi(G)$ is non trivial, i.e. $\phi(f) \neq id$ for an $f \in G, B_{\phi(G)}$ is an open neighbourhood of 0 [17]. Morphisms $\phi, \psi: G \to \Gamma^{\omega}_{+}$ are topologically (resp. C^{r} -) conjugate if there exists a homeomorphism (resp. C^{r} -diffeomorphism) $h: U, 0 \to h(U), 0$ of open neighbourhoods of 0 such that $U_{\phi(f)}, \phi(f)(U_{\phi(f)}) \subset U, U_{\psi(f)}, \psi(f)(U_{\psi(f)}) \subset h(U) \text{ and } h \circ \phi(f) = \psi(f) \circ h$ holds on $U_{\phi(f)}$ for all $f \in G$. We call h a linking homeomorphism (resp. linking diffeomorphism) and we denote $h: \phi \to \psi$.

Theorem 3 (The rigidity theorem for pseudogroups). Let $\phi, \psi : G \to \Gamma^{\omega}_{+}$ be morphisms which are topologically conjugate with each other and $h : \phi \to \psi$ a linking homeomorphism.

(1) If $\phi(G)_0, \psi(G)_0$ are not isomorphic to \mathbb{Z} and non trivial, the restriction $h: B_{\phi(G)} - 0 \to B_{\psi(G)} - 0$ is a real analytic diffeomorphism.

(2) If $\phi(G)_0, \psi(G)_0$ are non commutative, h is unique and there exist even positive integers i, j such that $|h(\epsilon x^i)|^{1/j} : \tilde{B}^{\epsilon}_{\phi(G)} \to \tilde{B}^{\epsilon}_{\psi(G)}$ is a real analytic diffeomorphism for $\epsilon = \pm 1$. Here $\tilde{B}^{\epsilon}_{\phi(G)}$ is the set of those x such that $\epsilon x^i \in B_{\phi(G)}$ and $\tilde{B}^{\epsilon}_{\psi(G)}$ is the set of those x such that $x^j(resp. - x^j) \in B_{\psi(G)}$ if hmaps \mathbb{R}^{ϵ} to \mathbb{R}^+ (resp. \mathbb{R}^-). Now we apply the above rigidity theorem to the analytic action of the surface group on the circle S^1 . Let Σ_g be the oriented closed surface of genus g and $\Gamma^g = \pi_1(\Sigma_g)$. For $r = 1, \ldots, \infty$ and ω , $\operatorname{Diff}_+^r(S^1)$ denotes the group of orientation preserving C^r -diffeomorphisms of the circle. The suspension M of a homomorphism $\phi: \Gamma^g \to \operatorname{Diff}_+^r(S^1)$ is the quotient of $S^1 \times D^2$ by the product $\phi \times \Gamma$ with a discrete cocompact subgroup $\Gamma^g \simeq \Gamma \subset \operatorname{PSL}(2, \mathbb{R})$ acting freely on the interior of the Poincaré disc D^2 . The second projection of $S^1 \times D^2$ induces the submersion of M onto $\Sigma_g = D^2/\Gamma$ with the fiber S^1 . Since the action $\phi \times \Gamma$ respects the foliation of $S^1 \times D^2$ by the discs $x \times D^2, x \in S^1$, the suspension M is a foliated S^1 -bundle of which the fibres are the quotients of the discs. In this way the topology of foliated S^1 -bundles interchanges with that of the actions of Γ^g on S^1 . The Euler number $\operatorname{eu}(\phi)$ of a homomorphism $\phi: \Gamma^g \to \operatorname{Diff}_+^r(S^1)$ is defined to be that of the S^1 -bundle associated to ϕ . The Milnor-Wood inequality [15,22] asserts

$$|eu(\phi)| \le |\chi(\Sigma_g)| = 2g - 2.$$

The Euler number enjoys the following relations with the orbit structure:

(1) $eu(\phi) = 0$ if there exists a finite orbit,

(2) If $eu(\phi) \neq 0$, there exist a minimal set $\mathcal{M} \subset S^1$ of ϕ , an $x \in \mathcal{M}$ and an $f \in \operatorname{stab}(x)$ such that $\phi(f)|_{\mathcal{M}} \neq id$ [13], and if $r = \omega$ all orbits are dense [6] (see also [16]),

(3) If $|eu(\phi)| = |\chi(\Sigma_g)|$ and $r \ge 2$, all orbits are dense [6], where stab(x) denotes the stabiliser of x consisting of $f \in \Gamma^g$ with $\phi(f)(x) = x$. Homomorphisms $\phi, \psi : \Gamma^g \to \text{Diff}^r_+(S^1)$ are C^s -conjugate if there exists a C^s -diffeomorphism h of S^1 such that $\psi(f) \circ h = h \circ \phi(f)$ holds for $f \in \Gamma^g$. We say ϕ, ψ are topologically conjugate if s = 0, semi conjugate if h is monotone map of degree one (possibly discontinuous). We call h a linking homeomorphism and denote $h : \phi \to \psi$. It is known that the Euler number (and the bounded Euler class) concentrate the homotopic property of the action, namely

Theorem(Ghys [3]). ϕ, ψ are semi conjugate if and only if $\phi^*(\chi_{\mathbb{Z}}) = \psi^*(\chi_{\mathbb{Z}})$

in the bounded cohomology group $H^2_b(\Gamma^g : \mathbb{Z})$, where $\chi_{\mathbb{Z}} \in H^2_b(\text{Diff}^0_+(S^1) : \mathbb{Z}) = \mathbb{Z}$ is the generator, the bounded Euler class.

Theorem (Matsumoto [13]). If $eu(\phi) = eu(\psi) = \pm \chi(\Sigma_g)$, ϕ, ψ are semi conjugate, and if $2 \leq r$, they are topologically conjugate with each other, and in particular, conjugate with a discrete cocompact subgroup of $PSL(2, \mathbb{R})$ naturally acting on S^1 the boundary of the Poincaré disc.

Theorem Ghys [8]. If a homomorphism $\phi : \Gamma^g \to \text{Diff}^r_+(S^1)$ attains the maximum of $|eu(\phi)|$ and $3 \leq r$, ϕ is C^r -smoothly conjugate with a discrete cocompact subgroup of $PSL(2, \mathbb{R})$.

In contrast to the above results, the properties of homomorphisms with $|eu(\phi)| \leq |\chi(\Sigma_g)|$ are less known (see [16]). Applying Theorem 3 to the action of the stabiliser subgroup $\operatorname{stab}(x)$ on (S^1, x) for an $x \in S^1$, we obtain

Corollary 4. Let $\phi, \psi : \Gamma_g \to \text{Diff}^{\omega}_+(S^1)$ be homomorphisms with $|\text{eu}(\phi)|$, $|\text{eu}(\psi)| \neq 0, |\chi(\Sigma_g)|$, which are topologically conjugate, and $h : \phi \to \psi$ a linking homeomorphism. Assume that for an $x \in S^1$, the stabiliser subgroup $\text{stab}(x) \subset \Gamma_g$ of x is not isomorphic to \mathbb{Z} and non trivial. Then h is a real analytic diffeomorphism and orientation preserving or reversing respectively whether $\text{eu}(\phi) = \text{eu}(\psi)$ or $\text{eu}(\phi) = -\text{eu}(\psi)$.

The statement remains valid for morphisms of groups G into $\text{Diff}^{\omega}_{+}(S^{1})$ replacing the condition on the Euler number by the existence of a dense orbit.

The author would like to thank Matsumoto, Minakawa, Nishimori, Tsuboi and Moriyama for their helpful comments.

2. SEQUENCE GEOMETRY

In this paper $f^{(n)}$ denotes the *n*-fold iteration $f \circ \cdots \circ f$ of $f: U_f \to f(U_f)$ in Γ^{ω}_+ . Let $\mathcal{X} = \{x_i\}, \mathcal{Y} = \{y_i\}, i = 1, 2, \ldots$ be monotone sequences of positive numbers decreasing to 0. Define the *address function* $\operatorname{add}_{\mathcal{Y}}(x)$ of an x > 0relative to \mathcal{Y} to be the smallest integer *i* such that $y_i \leq x$. It is easy to see that $\operatorname{add}_{\mathcal{Y}}(x)$ is a decreasing function of *x* and $y_{\operatorname{add}_{\mathcal{Y}}(x)-1} > x \geq y_{\operatorname{add}_{\mathcal{Y}}(x)}$. Define the address function $\operatorname{add}_{\mathcal{X},\mathcal{Y}}$ by

$$\operatorname{add}_{\mathcal{X},\mathcal{Y}}(i) = \operatorname{add}_{\mathcal{Y}}(x_i)$$

for i = 1, 2, ... The address function enjoys the following inequality for a triple of sequences \mathcal{X}, \mathcal{Y} and $\mathcal{Z} = \{z_i\}$.

Proposition 6. Let \mathcal{X}, \mathcal{Y} and $\mathcal{Z} = \{z_i\}$ be sequences of positive numbers decreasing to 0. Then

$$\operatorname{add}_{\mathcal{Y},\mathcal{Z}}(\operatorname{add}_{\mathcal{X},\mathcal{Y}}(i)-1) \leq \operatorname{add}_{\mathcal{X},\mathcal{Z}}(i) \leq \operatorname{add}_{\mathcal{Y},\mathcal{Z}}(\operatorname{add}_{\mathcal{X},\mathcal{Y}}(i))$$

for $x_i - 1 < y_0$.

We say two functions $P, Q : \mathbb{N} \cup 0 \to \mathbb{N} \cup 0$ are *equivalent* if there exist integers $c_1, ..., c_4$ such that

$$Q(i + c_1) + c_2 \le P(i) \le Q(i + c_3) + c_4$$

holds for all sufficiently large i.

Now let $\phi: G \to \Gamma^{\omega}_+$ be a morphism, and let $x_0 \in U_{\phi(g)}, y_0 \in U_{\phi(f)}$ be positive and sufficiently small and assume that $x_i = \phi(g)^{(i)}(x_0), y_i = \phi(f)^{(i)}(y_0)$ are decreasing to 0 as $i \to \infty$, replacing f, g by their inverses if necessary, and denote $\mathcal{X} = \{x_i\}, \mathcal{Y} = \{y_i\}.$

Proposition 7. The equivalence class of the address function $\operatorname{add}_{\mathcal{X},\mathcal{Y}}$ is independent of the choice of the initial values x_0, y_0 .

proof. To prove the statement let $x_0 \neq x'_0 > 0, y_0 \neq y'_0 > 0$ and define the sequences $\mathcal{X}', \mathcal{Y}'$ similarly with x'_0, y'_0 . It is easy to see

$$\operatorname{add}_{\mathcal{X}',\mathcal{X}}(i) = i + c$$

for sufficiently large i, where

$$c = \begin{cases} \operatorname{add}_{\mathcal{X}}(x'_0), & \text{if } x_0 \ge x'_0 \\ 1 - \operatorname{add}_{\mathcal{X}'}(x_0) & \text{if } x'_0 > x_0, \ x_0 \neq x'_j, \ j = 0, 1, \dots \\ -\operatorname{add}_{\mathcal{X}'}(x_0) & \text{if } x'_0 > x_0, \ x_0 \in \mathcal{X}' \end{cases}$$

From Proposition 6 we obtain

(1)
$$\operatorname{add}_{\mathcal{X},\mathcal{Y}}(i+c-1) \leq \operatorname{add}_{\mathcal{X}',\mathcal{Y}}(i) \leq \operatorname{add}_{\mathcal{X},\mathcal{Y}}(i+c)$$

for sufficiently large i. Similarly we obtain

$$\operatorname{add}_{\mathcal{X}',\mathcal{Y}} + c' - 1 = (\operatorname{add}_{\mathcal{Y},\mathcal{Y}'}(\operatorname{add}_{\mathcal{X}',\mathcal{Y}} - 1)$$
$$\leq \operatorname{add}_{\mathcal{X}',\mathcal{Y}'}$$
$$\leq \operatorname{add}_{\mathcal{Y},\mathcal{Y}'}(\operatorname{add}_{\mathcal{X}',\mathcal{Y}})$$
$$= \operatorname{add}_{\mathcal{X}',\mathcal{Y}} + c'$$

with

$$c' = \begin{cases} \operatorname{add}_{\mathcal{Y}'}(y_0), & \text{if } y'_0 \ge y_0 \\ 1 - \operatorname{add}_{\mathcal{Y}}(y'_0), & \text{if } y_0 > y'_0, \ y'_0 \neq y_j, \ j = 0, 1, \dots \\ -\operatorname{add}_{\mathcal{Y}}(y'_0), & \text{if } y_0 > y'_0, \ y'_0 \in \mathcal{Z} \end{cases}$$

and by (1),

$$\operatorname{add}_{\mathcal{X},\mathcal{Y}}(i+c-1)c'-1 \leq \operatorname{add}_{\mathcal{X}',\mathcal{Y}'}(i) \leq \operatorname{add}_{\mathcal{X},\mathcal{Y}}(i+c)+c'$$

for sufficiently large i. This completes the proof.

3. FORMAL INVARIANTS FOR NON SOLVABLE PSEUDOGROUPS

It is shown in the paper [17] that the non solvable group $\phi(G)$ contains diffeomorphisms $\phi(f), f \in G$ with Taylor expansion at x = 0

$$\phi(f)(x) = x - \frac{K}{i}(x^{i+1} + \cdots),$$

 $K \neq 0$ with *i* greater than an arbitrary large integer. So let

$$\phi(g)(x) = x - \frac{L}{j}(x^{j+1} + \cdots),$$

 $L \neq 0, i < j$ for a $g \in G$. We call the *i*, *j* the orders of the flatness for $\phi(f), \phi(g)$ respectively. By Proposition 6 the equivalence class of the address function

 $\operatorname{add}_{\mathcal{X},\mathcal{Y}}$ is independent of the choice of x_0, y_0 . We denote the equivalence class by $\operatorname{add}_{\phi(g),\phi(f)}$.

First we consider the orbit \mathcal{Y} of y_0 under $\phi(f)$. It is known ([20]) that with a suitable analytic coordinate we may assume $\phi(f)$ has the Taylor expansion

$$\phi(f)(x) = x - \frac{K}{i}(x^{i+1} + (-A + \frac{i+1}{2})x^{2i+1} + \cdots),$$

which is formally conjugate with

$$\phi'(f)(x) = \exp{-\frac{K}{i}(\frac{x^{i+1}}{1+Ax^i})\partial/\partial x}.$$

The -iA/K is known as the residue of f. By a result due to Takens [20] there exists a C^{∞} diffeomorphism $\lambda : \mathbb{R}, 0 \to \mathbb{R}, 0$ i-flat at 0 such that $\lambda \circ \phi(f) = \phi'(f) \circ \lambda$ holds on $U_{\phi(f)}$ shrinking $U_{\phi(f)}$. Introducing the coordinate $\tilde{x} = \xi_{i,A}(x) = x^{-i} + A \log x^{-i}$ for x > 0, $\phi'(f)$ induces the translation $\tilde{\phi}(f) = \exp K\partial/\partial \tilde{x}$ on the \tilde{x} -line at ∞ . Let $y'_n = \lambda(y_n)$ and $\tilde{y}_n = \xi_{i,A}(y'_n)$ for $n = 0, 1, \ldots$ Then

(a)
$$\tilde{y}_n = \tilde{\phi}(f)^{(n)}(\tilde{y}_0) = \tilde{y}_0 + nK.$$

(The existence of the coordinate \tilde{x} with Property (a) is proved by the sectorial normalisation theorem [12,21] as well as the existence of the solution of Abel's equation by Szekeres [19]. Those results imply the existence of the nomalising diffeomorphism λ real analyticity off 0. But the differentiability at 0 is not an obvious consequence. The analyticity of the conjugacy h off 0 in Theorem 3(1) follows from that of λ . In this paper the smoothness of h (Proposition 9) is first proved and analyticity is proved by the uniqueness (Proposition 10) and the convergence of the formal conjugacy due to Cerveau and Moussu [2].)

We apply the same argument to the slow dynamics $\phi(g)$. Let $\mu : \mathbb{R}, 0 \to \mathbb{R}, 0$ be a C^{∞} diffeomorphism j-flat at 0 such that $\mu \circ \phi(g) = \phi'(g) \circ \mu$ holds on $U_{\phi(g)}$, where $\phi'(g)(x) = \exp -\frac{L}{j}(\frac{x^{j+1}}{1+Bx^{j}})\partial/\partial x$ with a constant *B*. Let $\tilde{\tilde{x}} = \xi_{j,B}(x) = x^{-j} + B\log x^{-j}$ for x > 0. On the $\tilde{\tilde{x}}$ -line, $\phi'(g)$ lifts to the translation $\tilde{\tilde{\phi}}(g) = \exp L \partial/\partial \tilde{\tilde{x}}$ at ∞ .

Let $x'_n = \mu(x_n)$ and $\tilde{\tilde{x}}_n = \xi_{j,B}(x'_n)$ for $n = 0, 1, \ldots$ Then $\tilde{\tilde{x}}_n = \tilde{\tilde{x}}_0 + nL$, from which we obtain the estimate for the $\phi(g)$ -orbit \mathcal{X} , $x_n = (nL)^{-1/j} + o(n^{-1/j})$ for $n = 0, 1, \ldots$ To compare \mathcal{X} to \mathcal{Y} , let

(b)
$$\tilde{x}_n = x_n^{-i} + A \log x_n^{-i} = (nL)^{i/j} + o(n^{i/j}).$$

From (a) and (b) we obtain

(c)
$$\operatorname{add}_{\phi(g),\phi(f)}(n) = \frac{L^{i/j}}{K} n^{\frac{j}{j}} + o(n^{\frac{j}{j}}).$$

Proposition 8. $L^{\frac{i}{j}}/K$ and $\frac{i}{j}$ are topological invariants for the pseudogroup generated by $\phi(f)$ and $\phi(g)$.

Proof. Assume h is orientation preserving. The linking homeomorphism h sends the pairs of the orbits of x_0 under $\phi(f), \phi(g)$ to that of $h(x_0)$ under $\psi(f), \psi(g)$, and those pairs have the same topological structure and define the same address function up to the equivalence relation. By (c) the i/j is the exponent of the address function and $L^{\frac{j}{2}}/K$ is its coefficient, which are clearly invariant under the equivalence relation. If h is orientation reversing, an alternative argument goes through.

4. PROOF OF THE THEOREM 3 FOR NON SOLVABLE PSEUDOGROUPS

First we prove Theorem 3(1) for non solvable pseudogroups. If the linking homeomorphism h is orientation reversing, the homeomorphism -h is orientation preserving and links ϕ to the reversed pseudogroup ψ' consinting of the orientation preserving diffeomorphisms $\psi'(f) : -U_f \to -f(U_f), f \in G$ defined by $\psi'(f)(x) = -\psi(f)(-x)$. So we assume that h is orientation preserving throughout this section. Let $\psi(f)(x) = x - \frac{K'}{i'}(x^{i'+1} + ...)$ and $\psi(g)(x) = x - \frac{L'}{j'}(x^{j'+1} + ...)$. First assume (i, j) = (i', j') and h is orientation preserving for simplicity. By a linear coordinate transformation we may assume K = K' and then it follows L = L' from Proposition 8. By an analytic coordinate transformation we may assume

$$\psi(f)(x) = x - \frac{K}{i}(x^{i+1} + (-A' + \frac{i+1}{2})x^{2i+1} + \cdots).$$

Let $\lambda' : \mathbb{R}, 0 \to \mathbb{R}, 0$ be a C^{∞} -diffeomorphism j-flat at 0 such that $\lambda' \circ \psi(f) = \psi'(f) \circ \lambda'$ holds on $U_{\psi(f)}$, where

$$\psi'(f) = \exp - \frac{K}{i} \frac{x^{i+1}}{1 + A'x^i} \partial/\partial x.$$

Let $\tilde{y} = \xi_{i,A'}(x) = x^{-i} + A' \log x^{-i}$. Since $\phi(f)^{(n)}(x_0) \to 0$, we see K > 0.

On the \tilde{x} -line the diffeomorphism $\phi(g)$ induces the "non-linear translation"

$$\tilde{\phi}(g)(\tilde{x}) = \tilde{x} + \frac{i}{j}L \ \tilde{x}^{\frac{i-j}{i}} + o(\tilde{x}^{\frac{i-j}{i}})$$

from which

$$\tilde{\phi}(f)^{(-n)} \circ \tilde{\phi}(g) \circ \tilde{\phi}(f)^{(n)}(\tilde{x}) = \tilde{x} + \frac{i}{j}L(nK)^{\frac{i-j}{i}} + o(n^{\frac{i-j}{i}})$$

from which

$$\lim_{n \to \infty} n^{\frac{j-i}{i}} (\tilde{\phi}(f)^{(-n)} \circ \tilde{\phi}(g) \circ \tilde{\phi}(f)^{(n)} - \operatorname{id}) \, \partial/\partial \tilde{x} = \frac{iL}{j} K^{\frac{i-j}{i}} \partial/\partial \tilde{x}$$

holds at the end of the \tilde{x} -line. The flow of the above limit vector field is approximated arbitrarily closely by the discrete dynamical system of type

$$\tilde{\phi}(f)^{(-n)} \circ \tilde{\phi}(g)^{(m)} \circ \tilde{\phi}(f)^{(n)}, \qquad m = 0, 1, \dots$$

with a sufficiently large n > 0 ([17]).

Similarly the $\tilde{\psi}(f), \tilde{\psi}(g)$ define the vector field $\frac{iL}{j}K^{\frac{i-j}{i}}\partial/\partial \tilde{y}$ on the \tilde{y} -line. The lift $\tilde{h}_+: \tilde{x} - \text{line}, \infty \to \tilde{y} - \text{line}, \infty$ of the restiction h_+ of h to \mathbb{R}^+ sends the orbit of

$$ilde{\phi}(f)^{(-n)} \circ ilde{\phi}(g)^{(m)} \circ ilde{\phi}(f)^{(n)}$$

to that of

$$ilde{\psi}(f)^{(-n)} \circ ilde{\psi}(g)^{(m)} \circ ilde{\psi}(f)^{(n)}.$$

Therefore \tilde{h}_+ is compatible with the above flows respecting time hence it is a translation by a constant α_+ (see [17] for a detailed argument) and

$$h_{+}(x) = \lambda'^{(-1)} \circ \xi_{i,A'}^{-1}(\xi_{i,A} \circ \lambda(x) + \alpha_{+}),$$

which is i-flat at 0. Similarly we can show that the restriction h_{-} of h to \mathbb{R}^{-} is of the form

$$h_{-}(x) = {\lambda'}^{(-1)} \circ \xi_{i,A'}^{-1}(\xi_{i,A} \circ \lambda(x) + \alpha_{-}),$$

with a constant α_{-} , which is i-flat at 0. With both the above smoothness of h_{+} and h_{-} , we see that the linking homeomorphism h is a C^{i} -smooth diffeomorphism on a neighbourhood of 0 and i-flat at 0.

Proposition 9. The linking homeomorphism h is C^{∞} -smooth on a neighbourhood of 0.

Proof. Since $\phi(G)_0$ is non solvable, the *i* can be chosen arbitrary large. Therefore *h* is C^{∞} -smooth at 0. The smoothness off 0 is clear by the form of h_{\pm} above presented.

By the proposition $\phi(f)$ and $\psi(f)$ are C^{∞} -conjugate. Since the residues A, A' are invariant under formal conjugacy relation of germs of analytic diffeomorphisms, we obtain A = A' hence $\tilde{\phi}(f) = \tilde{\psi}(f)$ and

$$\begin{cases} \lambda' \circ h_+ \circ \lambda^{(-1)} = \exp \frac{-\alpha_+}{i} \chi & \text{on } \mathbb{R}^+ \\ \lambda' \circ h_- \circ \lambda^{(-1)} = \exp \frac{-\alpha_-}{i} \chi & \text{on } \mathbb{R}^-, \end{cases}$$

where χ denotes $\frac{x^{i+1}}{1+Ax^i}\partial/\partial x$.

Proposition 10. $\alpha_{+} = \alpha_{-}$ and the germ of h at 0 is unique.

Proof. Since $h_{+}^{(-1)} \circ \phi(g) \circ h_{+} = \psi(g)$ and $h_{-}^{(-1)} \circ \phi(g) \circ h_{-} = \psi(g)$ hold on \mathbb{R}^{+} and \mathbb{R}^{-} respectively at 0, we obtain the formal equalities

$$\lambda^{(-1)} \circ \exp \frac{\alpha_+}{i} \chi \circ \lambda' \circ \phi(g) \circ {\lambda'}^{(-1)} \circ \exp \frac{-\alpha_+}{i} \chi \circ \lambda = \phi(f)$$

 and

$$\lambda^{(-1)} \circ \exp \frac{\alpha_-}{i} \chi \circ \lambda' \circ \phi(g) \circ {\lambda'}^{(-1)} \circ \exp \frac{-\alpha_-}{i} \chi \circ \lambda = \phi(f).$$

This shows that $\lambda'^{(-1)} \circ \exp \frac{\alpha_+ - \alpha_+}{i} \chi \circ \lambda$ commutes with $\phi(g)$, and by formal calculation, it follows $\alpha_+ = \alpha_- = \alpha$ (since $i \neq j$). Therefore $h = \lambda^{(-1)} \circ \exp \frac{\alpha}{i} \chi \circ \lambda'$.

Next assume $h' = \lambda^{(-1)} \circ \exp -\frac{\beta}{i}\chi \circ \lambda'$ satisfies $h'^{(-1)} \circ \phi(g) \circ h' = \psi(g)$. Then it follows $\alpha = \beta$ from a similar argument. This shows the uiqueness of h.

By a result due to Cerveau and Moussu [2], a formal conjugacy is convergent to give a real analytic conjugacy for non solvable groups of germs of diffeomorphisms. Therefore the Taylor series of h at 0 is convergent to an analytic diffeomorphism \tilde{h} linking $\phi(G)_0$ to $\psi(G)_0$. Then the uniqueness of the linking homeomorphism (Proposition 10) asserts that the germ of h is nothing but the \tilde{h} real analytic on a neighbourhood of 0. The analyticity propagates to whole $B_{\phi(G)}$ by the same argument in the proof of Theorem 1 in §6. This completes the proof of Theorem 3 for the case (i, j) = (i', j') and h is orientation preserving.

Now we prove the theorem for general non solvable pseudogroups. Assume that $\phi(f), \phi(g)$ and $\psi(f), \psi(g)$ have the orders of flatness i, j and i', j' respectively. By Proposition 7, we may write i'/i = j'/j = p/q with even positive integers p, q. Define the lift $\phi_p^{\epsilon}: G \to \Gamma_+^{\omega}$ by $\phi_p^{\epsilon}(f): U_{\phi_p^{\epsilon}(f)} \to \phi_p^{\epsilon}(f)(U_{\phi_p^{\epsilon}(f)}),$ $\phi_p^{\epsilon}(f)(x) = (\epsilon\phi(f)(\epsilon x^p))^{1/p}$ for $\epsilon = \pm 1$, where $U_{\phi\epsilon_p(f)}$ is the preimage of $U_{\phi(f)}$ by $x :\to \epsilon x^p$. Define the lift $\psi_q^{\epsilon}: G \to \Gamma_+^{\omega}$ similarly. Then $\phi_p^{\epsilon}(f), \phi_p^{\epsilon}(g)$ have the orders of flatness pi, pj respectively. The linking homeomorphism h lifts to the orientation preserving homeomorphism $K^{\epsilon} = (\epsilon \ h(\epsilon x^p))^{1/q}$ of $U_p^{\epsilon} = \{x \mid \epsilon x^p \in U\}$ to $U_q^{\epsilon} = \{y \mid \epsilon y^q \in h(U)\}$, which is linking ϕ_p^{ϵ} to ψ_q^{ϵ} for $\epsilon = \pm 1$.

Proposition 11. (1) ϕ is solvable if and only if ϕ_p^1 is solvable if and only if ϕ_p^{-1} is solvable.

(2) $B_{\phi_{\epsilon}} = \{x \mid \epsilon x^p \in B_{\phi}\}$ for $\epsilon = \pm 1$.

Proof. The homomorphism of pseudogroups which asigns $\phi_p^{\epsilon}(f)$ to $\phi(f)$ for $f \in G$ induces a group isomorphism of the germs $\phi(G)_0$ to $\phi_p^{\epsilon}(G)_0$ for $\epsilon = \pm 1$. So Statement (1) is clear. Statement (2) for the basin follows from the definition.

By the result obtained previously in this section, the lift K^{ϵ} is a unique real analytic diffeomorphism. In particular h is unique and the restriction $h: B_{\phi}(G) - 0 \rightarrow B_{\psi}(G) - 0$ is a real analytic diffeomorphism. This completes the proof of Theorem 3 for non solvable pseudogroups.

5. PROOF OF THEOREM 3 FOR SOLVABLE PSEUDOGROUPS

Theorem 12 ([17]). A solvable subgroup H of the group of germs of analytic diffeomorphisms of \mathbb{R} respecting 0 is C^{ω} -conjugate with one of the following:

(1) *H* consists of linear functions ax with the coefficients a in a subgroup L of \mathbb{R}^* .

(2) *H* consists of $f^{(\alpha)} = x + \alpha K x^{i+1} + \cdots, \alpha \neq 0$ with α in a subgroup $\Lambda \subset \mathbb{R}, 1 \in \Lambda$. Here $f \in H, f(x) = x + K x^{i+1} + \cdots$ and $f^{(\alpha)}$ is the unique real analytic diffeomorphism with the Taylor expansion $f^{(\alpha)}(x) = x + \alpha K x^{i+1} + \cdots$ such that $f^{(\alpha)} \circ f = f \circ f^{(\alpha)} = f^{(\alpha+1)}$. If Λ is dense in \mathbb{R} , those $f^{(\alpha)}$ are written as exp $\alpha \chi$ with an i-flat real analytic vector field χ on \mathbb{R} . (for the definition of the α -times iteration $f^{(\alpha)}$ see the papers [17.19].)

(3) *H* consists of those $f^{(\alpha)}$ and $-f^{(\alpha+\beta)}$ with $\alpha \in \Lambda \subset \mathbb{R}$ and a $\beta, 2\beta \in \Lambda$ and *f* satisfies the relation f(-x) = -f(x).

(4) *H* consists of those f^{α} in (2) and $af^{(\alpha+\beta(a))}$ with *a* in a subgroup $L \subset \mathbb{R}^*, a^i \neq 1$. Here *f* satisfies the relation $a^{-1}f(ax) = f^{(a^i)}$ for $a \in L$ and $\beta: L \to \mathbb{R}$ is a function and $\operatorname{res}(f) = 0$. i.e. *f* is formally and C^{∞} -conjugate with $\exp Kx^{i+1}\partial/\partial x, K \neq 0$.

In Cases (1),(2) and (3), the H is commutative, and in Case (4), H is non commutative but solvable.

A RIGIDITY THEOREM

Since the members of our pseudogroups $\phi(G)$, $\psi(G)$ are all orientation preserving, the germs $\phi(G)_0$, $\psi(G)_0$ are C^{ω} -conjugate to one of the H in Cases (1),(2) and (4). In the following we assume the germs are of the form in those cases and prove the the analyticity of the restrictions h_+, h_- of the linking homeomorphism h to $\mathbb{R}^+, \mathbb{R}^-$ on a neighbourhood of 0. The differentiability propagates to whole $B_{\phi(G)} - 0$ by the same argument as in the proof of theorem 1 in §6.

Case (1). Assume $\phi(G)_0 \neq \mathbb{Z}$. This assumption is equivalent to that the linear term group L_{ϕ} of $\phi(G)_0$ is a dense subgroup of \mathbb{R}^* , in other words, all orbits are dense nearby 0. Let $\log L_{\phi}$ denote the subgroup of \mathbb{R} consisting of the logarithms of the linear terms of $\phi(f), f \in G$. Since h sends the $\phi(G)$ orbit of an x to the $\psi(G)$ -orbit of h(x). h induces a homomorphism \tilde{h} of the subgroups $\log L_{\phi}$ to $\log L_{\psi}$, which extends to a linear function kx. By this form we see $\log \circ h \circ \exp(x)$ is an affine transformation kx + l, from which $h(x) = (\exp l)x^k$ for x > 0. A similar argument shows the analyticity of h_- .

Case (2). In this case the germs of $\phi(f)^{(\alpha)}$ are of the form $\exp \alpha \chi$ with a flat analytic vector field χ and α in a subgroup $\Lambda \subset \mathbb{R}$. The hypothesis that $\phi(G)_0$ is not isomorphic to \mathbb{Z} implies that Λ is a dense subgroup. Let $\Lambda' \subset \mathbb{R}$ be the group associated to $\psi(G)$. The correspondence of $\phi(G)$ -orbits and $\psi(G)$ -orbits in \mathbb{R}^+ by h induces a linear transformation of Λ to Λ' , which describes the h conversely. Therefore the h_+ is real analytic off 0, and similarly it is shown that h_- is analytic off 0.

Case (4). Let $\phi(G)_0^0 \subset \phi(G)_0$ denote the subgroup consisting of the i-flat germs of diffeomorphisms $\phi(f)^{(\alpha)}, \alpha \in \Lambda \subset \mathbb{R}$ of $\phi(G)$, and $\psi(G)_0^0 \subset \psi(G)_0$ the subgroup consisting of j-flat germs of diffeomorphisms $\psi(f)^{(\alpha)}, \alpha \in \Lambda \subset \mathbb{R}$. It suffices here to prove the analyticity of h for the case i = j.

Lemma 13. Let $\phi(f), \psi(f) : \mathbb{R}, 0 \to \mathbb{R}, 0$ be germs of analytic diffeomorphisms with the linear term x and the order of flatness $i \ge 1$, and let $h : \mathbb{R}, 0 \to \mathbb{R}, 0$ be a germ of homeomorphism such that $h \circ \phi(f) = \psi(f) \circ h$. Then h is differentiable at 0.

I. NAKAI

Proof. By C^{∞} - coordinate change we may assume $\phi(f) = \exp - \frac{K}{i} \frac{x^{i+1}}{1+Ax^i} \partial/\partial x$ and $\psi(f) = \exp - \frac{L}{i} \frac{x^{i+1}}{1+Bx^i} \partial/\partial x$, and by a linear coordinate transformation, K = L > 0. These diffeomorphisms lift to the translations by K respectively on the \tilde{x} -line, $\tilde{x} = \xi_{i,A}(x) = x^{-i} + A\log x^{-i}(x > 0)$, and the \tilde{y} -line, $\tilde{y} = \xi_{i,B}(y)$. And these translations are conjugate by the lift $\tilde{h} : \tilde{x} - line \to \tilde{y} - line$ of h. So we obtain an extimate $|\tilde{h}(\tilde{x}) - \tilde{x} - T| \leq K$, with a constant T, from which

$$\xi_{i,B}^{-1}(\xi_{i,A}(x) + T + K) \le h(x) \le \xi_{i,B}^{-1}(\xi_{i,A}(x) + T - K)$$

This implies the differentiability of h at 0.

Next let $\phi(g)(x) = ax + \cdots, a \neq 0, 1$ be a diffeomorphism non commutative with $\phi(f)$ and $\psi(g)(x) = a'x + \cdots a' \neq 0, 1$. By assumption $\psi(g) \circ h = h \circ \phi(g)$ holds, and by the differentiability of h at 0, we obtain a = a'.

Lemma 14. Let $h : \mathbb{R}, 0 \to \mathbb{R}, 0$ be the germ of a mapping commutating with a linear function ax. If h is differentiable at 0, h is linear.

Proof. By the commutativity, $h(a^i x)/a^i x = h(x)/x$ for all x and i = 0, 1, ...By the differentiability, h(x)/x is a constant independent of x.

By the Poincaré linearization theorem $\phi(g), \psi(g)$ are analytically conjugate with ax. Here Lemma 14 applies to say that the germ of h at 0 is linear. In this situation the relation $h \circ \phi(f) = \psi(f) \circ h$ admits the unique linear map h. This completes the proof of Theorem 3.

6. PROOF OF THEOREM 1AND COROLLARIES 2,4

Proof of Theorem 1. Let L be a leaf of \mathcal{F}_1 with holonomy group $\neq 0, \mathbb{Z}$. Then the image h(L) has holonomy isomorphic to that of L and, by Theorem 4, h is transversely analytic on a deleted neighbourhood U - L of an $x \in L$. Let $x' \in M_1$ be an arbitrary point. The leaf $L_{x'}$ of \mathcal{F}_1 containing x' is dense by assumption, hence a point $x'' \in L_{x'}$ is contained in U - L. Clearly the translation $T_{x',x''}$ along a path in $L_{x'}$ sending the transverse section at x' to that of x'' is analytic, and the germs of h at x', x'' link the $T_{x',x''}$ to the transverse dynamics $T_{h(x'),h(x'')}$ along $h(L_{x'}) = L_{h(x')}$. Therefore the transverse analyticity of h at x'' induces the transverse analyticity on a neighbourhood of x'. This completes the proof of Theorem 1.

Proof of Corollary 2. The Godbillon-Vey class $\mathrm{GV}(\mathcal{F})$ of \mathcal{F} may be defined by the pull back $\rho(\mathcal{F})^*c$ of a cocycle $c \in H^3(B\Gamma^{\infty}_{\mathbb{R}}, \mathbb{R})$ of the classifying space $B\Gamma^{\infty}_{\mathbb{R}}$ of the pseudogroup $\Gamma^{\infty}_{\mathbb{R}}$ of orientation preserving C^{∞} -diffeomrphisms of open subsets of \mathbb{R} by the classifying map $\rho(\mathcal{F}) : M \to B\Gamma^{\infty}_{\mathbb{R}}$ ([1]). Since $h(\mathcal{F}) = \mathcal{F}'$ and h is transversely real analytic, if follows $\rho(\mathcal{F}') \circ h = \rho(\mathcal{F}')$, from which $\mathrm{GV}(\mathcal{F}) = h^*\mathrm{GV}(\mathcal{F}')$. This completes the proof of Corollary 2.

Proof of Corollary 4. Let $\phi, \psi : \Gamma^g \to \text{Diff}^{\omega}_+(S^1)$ be homomorphisms and $h : \phi \to \psi$ a linking homeomorphism. Let $\operatorname{stab}(x_0) \subset \Gamma^g$ be the stabiliser of an $x_0 \in S^1$. Then h links the restriction of ϕ to $\operatorname{stab}(x_0)$ to that of ψ . Assume that $\phi(\operatorname{stab}(x_0))$ is not isomorphic to \mathbb{Z} and non trivial. Then by the rigidity theorem (Theorem 3), h is a real analytic diffeomorphism on a deleted neighbourhood $U - x_0$ of x_0 in S^1 . By a result due to Ghys [6], if $|\operatorname{eu}(\phi)| \neq 0$, all orbits are dense in S^1 . So, for any $y \in S^1$, there is a $g \in G$ such that $\phi(g)(y) \in U - x_0$. Then the equality $h \circ \phi(g) = \psi(g) \circ h$ implies that h is a real analytic diffeomorphism at y. This completes the proof of Corollary 4.

References

R. Bott, A. Haefliger, On characteristic classes of Γ-foliations, 1039-1044,
 78, No. 6, 1972, Bull. A.M.S..

[2] D. Cerveau, R. Moussu, Groupes d'automorphismes de \mathbb{C} et équations differentielles $y \, dy + \cdots = 0$, Bull. Soc. Math. France, **116**, no. 4, 459-488, 1988.

 [3] E. Ghys, Groupes d'homéomorphismes du cercle et cohomologie bornée, Contemp. Math., 58, III, 1987, 81-106. [4] Actions localement libres du groupe affine, Invent. Math., 82, 479-526, 1985.

[5] _____, Sur l'invariance topologique de la classe de Godbillon-Vey,
 Ann. Inst. Fourier, Grenoble, 37, 4, 59-76, 1987.

[6] ———, Classe d'Euler et minimal exceptionnel, Topology, 26, No.1.
93-105, 1987.

 [9] E. Ghys, T. Tsuboi, Différentiabilité des conjugaisons entre systèmes dynamiques de dimension 1, Ann. Inst. Fourier, Grenoble, 38, 1, 215-244, 1988.

[10] G. Hector, V. Hirsch, Introduction to the geometry of foliations Part B, Vieweg. Wiesbaden, 1983.

[11] S. Hurder, A. Katok, Differentiability. rigidity and Godbillon-Vey class for Anosov foliations, jour Publ. IHES, no. 72, 5-61, 1990.

[12] Yu.S. Il'yashenko, Finiteness Theorem for limit cycles, Translations of Mathematical Monographs AMS, **94**, 1991.

S. Matsumoto, Some remarks on foliated S¹-bundles, Invent. Math.,
 90, 343-358, 1987.

[14] ———––, *Problems in Nagoya*. Conference on dynamical systems in Nagoya University organised by Shiraiwa (1990).

[15] J. Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv., **32**, 215-223, 1957-1958.

[16] H. Minakawa, Examples of exceptional homomorphisms which have nontrivial euler numbers, Topology, **30**, No.3, 429-438, 1991.

342

 [17] I. Nakai, Separatrix for conformal transformation groups of C.0, Preprint, Hokkaido Univ., 1991.

[18] G. Raby, L'invariant de Godbillon-Vey est stable par C^1 -difféomorhpisme, Ann. Inst. Fourier, Grenoble, **38-1**, 205-213, 1988.

[19] G. Szekeres, Fractional iteration of entire and rational functions, J. Austral. Math. Soc., 4, 129-142, 1964.

[20] F. Takens, Normal forms for certain singular vector fields, Ann. Inst. Fourier, Grenoble, **23**,**2**, 163-195. 1973.

[21] S.M. Voronin, Analytic classification of germs of maps $(\mathbb{C}, 0) \to (\mathbb{C}, 0)$ with identical linear part, Funct. Anal. 15. no.1, 1-17, 1981.

[22] J. W. Wood, Bundles with totally disconnected structure group, Comment. Math, Helv. 46, 257-273, 1971.

Department of Mathematics Hokkaido University Sapporo, 606, Japan nakai@math.hokudai.ac.jp