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QUASI-REGULARITY PROPERTY FOR UNFOLDINGS OF
HYPERBOLIC POLYCYCLES
M. El Morsalani, A. Mourtada and R. Roussarie

1. INTRODUCTION.

Let X be a real analytical vector field on R>. A polycycle I of X is an
immersion of the circle, union of trajectories (Singular points and separatrices
whose o and w limits are contained in this set of singular points). Moreover
one supposes that I' is oriented by the flow of X' and that a return map
P(z) along T is defined on some interval ¢ with one end point on I' : o is
parametrized by analytical variable 2 € [0,2,], {r =0} = o NT = {q} and
P(z) : [0,z9] — [0, z1] for some 2 €]0. [

We say that I' is an _hyperbolic polvcycle if all the singular points in 7
are hyperbolic saddle points. Let {p1,... ,p} the set of these singular points
listing in the way they are encountered when we describe I' starting at g. We

/

"

define the _hyperbolicity ratio of p;. i = 1,... ,k to be r; = Li where — i
Hs

w! are the eigenvalues at p; (u}, pif > 0).

The Poincaré map P(z) is analytic for x > 0, and extends continuously at
0 by P(0) =0.

In 1985, Yu. Ilyashenko [I1] introduced a notion (the almost-regularity)
similar to the following one up to a composition by the logarithm :

Definition. Let g(z) : [0,29] — R a function, analytic for £ > 0, and
continuous at x = 0. One says that g is _quasi-reqular if:

QR,) g(z) has a formal expansion of _Dulac type. This means that there
exists a formal series:

g(z) = Z a2 Pi(Inax)
=0

S.M. F.
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where \; is a strictly increasing sequence of positive real numbers 0 < Ao <
A1 < ... tending to infinity and for each i, P; is a polynomial, and § is a
formal expansion of g(z) in the following sense:

Vn>0 g(z) — Zn: i Pi(Inzx) = o(z>*).
=0

QR,) Let G(&) = g(e™¢) for £ € [€o = —logxg, 0.
Then G has a bounded holomorphic extension in a domain Q(C) C C
where QC) ={( =&+ 1in|£* > C(1+n?)} for some C > 0.

In the same paper [I1], Ilyashenko proved that the shift map 6(z) = P(z)—z
is quasi-regular. The property QR; was already established by Dulac in [D].

As a consequence of the Phragmen-Lindeldf theorem (see [C]) a flat quasi-
regular function (g(z) = o(z™),Vn) is necessarily equal to zero, and it follows
from this that I' cannot be accumulated by limit cvcles of X ( a limit cycle
of X is an isolated periodic orbit).

This result was a first step in the solution of the ”Dulac problem”, for which
one needs to look not only at hyperbolic polycycles but more generally at all
elementary polycycles. As it is well known, this general solution ( [EMMR],
[E1], [E2], [12], [13]) involved more elaborated technics, and we limit ourselves
to the hyperbolic polycycles in this paper.

Here we want to consider the unfoldings (.X'»,T") of a hyperbolic polycycle
T', germs of finite parameter family (X)), with Xy = X defined by a represen-
tative family on V x W where V' is a neighborhood of I"' and W neighborhood
of 0 in the parameter space.

As it was shown in [R], it is useful to obtain quasi-regularity property for
1-parameter unfoldings, in order to study finite cyclicity for general unfoldings
of hyperbolic polycycles. In the present paper, we extend to any 1-parameter
unfoldings a result of [R], proved there for hyperbolic loops (singular cycles
with just 1 singular point):

Theorem 1. Let (X, ,I') a 1-parameter analytic unfolding of an hyperbolic
polycycleT for Xy with k vertices. Let P(x,¢€) the unfolding of the return map
where = is some analytic parameter defined as above for Xo. Let 6(z,€) =
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laié(x, 0)

P(z,e) — z. Let 3(.1.',6) = Zﬁ;(x)ei (i.e: &;(x) = T he

=0

) the formal

expansion of § in e.

Then, there exists some R > 0 ( depending on r1(0),... ,7k(0)) such that
for Vi e N, z'R6;(z) is quasi-regular.

Remarks.

1) Given an unfolding X, and a transversal o ~ [0, z;] chosen as above for
Xo, the return map P(z, A) is defined in a domain D = Uew [(€), z1] where
a(e) is a continuous function, such that a(0) = 0. So, given any z €]0, z,], the
return map P(z, ) is defined for x if |¢| is small enough. From this it follows
that the functions é;(x) in the above theorem, are defined for Vz €]0, z4].

2) Theorem 1 extends Ilyashenko’s one which corresponds to the quasi-
regularity of 6o(x).

The generalization brought by theorem 1 is useful to study unfolding of
identical polycycles, i.e polycycles such that 6(2) = P(z) — 2 = 0. Suppose
for instance that A = € € R. Then, if (', X)) is an identical polycycle, one
can write:

8(x,€) = €"6(x,¢€)

for some n > 1, with a function 8(z,€) such that &(x,0) Z 0. Then from
theorem 1, we have that 6(z,0) has a non-trivial Dulac expansion.

_So, the equation for limit cycles {6(x.€) = 0}, which is equivalent to
{6(z, €) = 0}, has the same properties that in the non-identical case (6(z,0) #
0).

This allows us to develop for some identical unfoldings a proof similar to the
one for unfolding of non-identical polyvcycles. In [R] these ideas were applied
to prove the finite cyclicity of any analytic unfolding of loops (Singular cycles
with just one singular hyperbolic point). Here we extend it to some polycycles
with 2 singular points:

Theorem 2. Let (X,T') an analytic unfolding of an hyperbolic 2-polycycle
I' (a polycycle with 2 singular points py, pa ). Let ri()), ro()) the A\-depending
hyperbolicity ratio at py, ps. Suppose that:
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1) For all A, 7‘1(A)7’2(A) =1
2) at least one of the two saddle connexions remains unbroken (for all A).
Then (X, T") has a finite cyclicity.

Remark.

A part the conditions 1,2, no other conditions are imposed on (X,T') and
the polycycle I' may be identical. The non-identical case was already worked
out in a previous paper [ELM]. Moreover, if r1(0) = r5(0)™" ¢ Q, a result of
finite cyclicity was obtained in [M], without the conditions 1,2.

The conditions 1,2 in the theorem 2 may seem very restrictive. Netherthe-
less the theorem has the following natural application to polynomial vector
fields. Let P, be the family of all polynomial vector fields of some even de-
gree 2p, p > 1. It is easy to extend P, in an analytic family of vector fields
on the sphere (X). This family (.X')) is equivalent to P2, on the interior
of a 2-disk D?, whose boundary dD? corresponds to the "circle at infinity
Yoo - Singular points of (X)) appears at infinity in pairs of opposite points
(p,q) and a consequence of the even degree is that the tangential eigenvalues
at p,q are opposite and the same for the two radial eigenvalues. It follows
that the product of the ratios of hyperbolicity at p and ¢ is one. Then if for
some value Ag (that we can suppose equal to 0), X, = X, has just a pair
of singular points p,q on 7. and if there exists a connection I'; of p and ¢
in int(D?), one can apply theorem 2 to the unfolding (X, T') where I is one
of the 2 polycycles containing I'; and an arc I's of v, joigning p and g; we
have r;(A)r2(A) =1 as noted above and the connection I'; at infinity remains
unbroken. This applies to the quadratic family P, and allows to prove the
finite cyclicity of some of the 121 possible cases of periodic limit sets listed
for this family in [DRR] (cases labelled: H{, H} in this article).

In the first paragraph, we prove the theorem 1. Of course, we hope that
the quasi-regularity property proved here will have a more general application
that the one given in theorem 2 and proved below in the second paragraph.
In fact the proof uses the existence of a well ordered expansion for §(z, \) at
any order of differentiability. This expansion was established for unfoldings
like in theorem 2 in [E1.M] and we recall it bellow. In this paper it was used to
prove the finite cyclicity in the non-identical case. Here, we use it to reduce in
some sense the general case to the non-identical case, by the method already
described in the loop case in [R]. This is made in the second paragraph.

Firstly a natural ideal in the space of parameter functions germs, the
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coefficient Ideal J is associated to any unfolding of identical graphic . If
{#1,...,di} is a system of generators for J, and, in our case, when it exists
a well- ordered expansion for é(x, \), one can divide é(z, A) in the ideal:

8(x,A) =Y di(Ndi(x, )

with functions 6;(z,A) having also a well-ordered expansion. The theorem
1 is then used to prove that "for most of indices ", 6;(z,0) is quasi-regular
and then has a non-trivial Dulac expansion; and we can apply, as in [R] for
the loop case, a derivation-division algorithm similar to the one used for the
non-identical case. Here we will use the precise procedure developed in [El.M]
for the non identical case.

2. QUASI-REGULARITY PROPERTY

2.1 Reduction to the quasi-regularity property for saddle transitions.—
We recall here a definition used in [I1]:

DEFINITION 1 [I1].— A domain L of C is said to be of class T if it
contains a domain Q(C) of the form

QC)={¢=¢E+m&" >C1+77)}

for some C > 0.

In the neighbourhood of each saddle point p;, choose as in [I1] a chart
analytical in (z;,y;, €) in which the field X, takes the form

{ I; = x;
¥ = —yi[ri(e) + a7 yifi(xi, yiy €)]

where n; € N and n; > r;(0) and the functions f; are analytical on A; =
{lzi] <1} x {Jyi| < 1}%] — €0, €o[ and satisfy

inf (1,7;(€)/2).
€|<|col

sup | fi [<
A |

Denote by o; = {(zi,4:); yi = 1}, 0} = 0: N[0, 1] x {1}, 7 = {(z, ys); & = 1},
¥ = 7,0 {1} x [0,1], D;i(.,€) the Dulac map which send o} on 7

yi = Di(xvi.€) = Di (x;)
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and G(.,€) the analytical map which send 7; on 6;41 (with cyclic notation)

Tit1 = Gi(yi €) = G; .(yi).

The return map on ai" is given by

P(wla 6) = Gk,e o Dk,e 0Gr_1.0 Di_qyc0--+0 Gl,e o Dl,e'

Put H; = Dy, Hy = Gi,..., Hap—1 = Dy, Hor = Gj, and agree that the
composition is made with respect to the first variable

P(zy,€) = Hop 0 Hop—q 0+ -0 Hi(x1,€),

for all n € N, we can write

anP n n n
e (581,6) = § : § s § : Athz»fh,-'- WP2k,qzk X

P2r+qzk=lak=1 par_1+qar_1=l2r-1=1 =1
1)

o ( o Zksz

ax’l’”‘efhk

alw_“-[{Zk:—l B“Hl
X W OHQ]\‘_QO...OH|(.’I'],€)) X...X ( Dehs (1‘1,6))

oHsp_10...0H|(21.€))X%

the coefficients A;, 5, g....
Using [I1], we see that the maps v1 — H;0 H;_y0---0 Hy(x,0) are quasi-
regular and their continuation to the complex plane, after conjugacy by the
map e~¢, send a domain of class Z on a domain of class Z. Furthermore, the
analytical maps G; can be naturally continued to complex disks in biholomor-
phic maps and their partial derivatives of all order 8%G;/92% €% (x;,0) are
quasi-regular. So the Theorem 1 is a consequence of the Lemma 1 below.

P2k q2k € Z

2.2 Quasi-regularity for unfolding of hyperbolic saddle transition.—
This section is devoted to the proof of the following Lemma

LEMMA 1. Let P be a saddle point of an analytical planar field Xy
and X an analytical unfolding of Xo near P ( the parameter A belonging
to some neighbourhood V™ of 0 in R™ ). Let D(.,\) the Dulac map defined
as above and r(X) the hyperbolicity ratio of the saddle point P(X). Let R =
Max(1,7(0)), then for alln € N andp+q1 + ¢2 + - - - + ¢m = n, the map

nR "D
DV R

=7

(2.0)
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s quasi-reqular.

Remark—.

The Lemma for n = 0 is proved in [I1]; the proof in the general case is
based on this one. The multiplying function z"F is not the best one for
some values of (p,q1,...,qm). But this choice allows an easy estimate of the
constant R in Theorem 1: If we put R; = Max(1,r;(0)) then in Theorem 1,
take R = R; --- Rg. The result of this Lemma and the remark above show
that Theorem 1 may be extended to any unfolding X with m > 1: the maps
zy > zPRI"P/ONT .. AIm(z1,0) are quasi-regular.

Proof of Lemma 1.— We use the notations of [I1]. Choose an analytical
chart (z,y,\) so that the field X', takes the form

(2.2.1) { vo=a
2 i =yl + 2y ey )]

with n > rop = r(0) and f analytical on A = {|| < 1} x {|y| < 1} x V™ and
satisfying

(2.2.2) StAlplfI < jnf (1.7(2)/2)

the family (X)) is induced by the family (.X,,) given by

(2.2.3) { L=
- gy ==ylr() +a"yf(z.y, N)

where p = (po,A) € V™! ¢ R™*! and r(u) = ro + po. Denote by ot =
{(z,y);y =1and z € [0,1]}, 77 = {(z,y);2 = 1 and y € [0,1]} and D(.,p)
the Dulac map which sends ot on 7+

y = D(x. ).

Extend the real field X, to a field f,l defined on C? with local variables (z, w)
and complexify the parameter A to A € V& C C?

(2.2.4) {'é =7
o W = —w[r+ 2" wf(z.w, \)]

we keep the parameter fi real for reason given helow.
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We will say that the complex family (2.2.4) as above, with up € R belongs
to the Siegel domain because the ratio of hyperbolicity remains real. Denote
by dop and d; the punctured disks of coordinate z

do = {(z,w);0 < |z] £ 1,w =0},

dy = {(z,w);0 < |2| € Low = 1},

and by c’l:), dy their universal covering with base point respectively on (1,0),
(1,1) and with coordinate ( = —Lnz. Denote also by d, the punctured disk
of coordinate w

do = {(z,w);0< |w| <1,z =1}

and by El} his universal covering with base point on (1,1) and coordinate
v = —Lnw. Let us show that for \ € V&, € small enough and C' > 0 big
enough, there exists a map D holomorphic in (¢, X) € Q(C) x V&, analytical
in po €] — €, €[ and with values in ci_;; furthermore, for Aeym = V& NR™,
the map D is the complex continuation of the map D defined on ot C d;.

Let ¢ = £ +in € Q(C) and ¢ the union of the two segments [0, ], [, (]
parametrized by the arc-length s (see fig. 2a): s(0) =0, s(§)=¢, s(()=
&+ |n|=S. Let 7o and 7; the curves on fig. 2b defined by

Mm=%%,1: [0,S]—Cx{1}, s— (Exp(—ac(s)), 1),

Yo=70: [0,5]—Cx{0}, s— (Exp(a(s)-(),0),

and u = r(u)Lnz + Lnw the first integral of the linear field associated to the
field X,. The formula

2 (0?) = ~20lPr(1) + Re(="wf(z,w, B)]

and the hypothesis (2.2.2) show that through each point p = (z,w) with z # 0
and |w| < 1 passes a curve, solution of the system (2.2.4), which cover the
segment [z, z/|z|] of the curve v under the projection 7, : (2,w) — z and
which is entirely contained in the polydisk P = {|z| < 1, |w| < 1}. Let us show
now that if p = (2,1) = (Exp(—(),1), then this curve can be extented to a
curve 7, which cover the curve . o under the projection 7, and is contained in
the intersection of P with the surface ¢, (the complex solution of the system
(2.2.4) passing through p ). To prove this point, an estimate of u along this
curve is usefull. Parametrize the arc of 3; defined above by s € [0,£]; on the
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end of this arc, we have |w| < 1. Hence, suppose that the curve 7, exists for
s € [0,T] with T > £ and differentiate u along this curve

u=z"wf(z,w, X);

one can compute |z"w| < |[z70w| = |z7H0|.|z"w| = |z7#0|.|e*|; along the curve
Jc, we have e7¢ < |z] < 1, and |z7#°| < A = Sup(et*¢,1); therefore, we
get |4] < A.le¥|. Put v(s) = |u(J¢(s)) — u(p)|; as along the curve 7 we have
|dt/ds| = 1, one can easily verify that

|dv/ds| < A.erétr(s) < g=FEtu(s),

From now on, the same arguments as in [I1] can be used; so we conclude that
for C' > 0 big enough, we get v(s) < 1 along the curve ¥, for all ¢ € Q(C) and
for all p = (,uo,X) €] — €, e[xVZ. The extension of th curve 7, for s € [0, 5] is
done as in [I1] and we put

D(¢, 1) = v(F¢(8)) = w(F¢(8)) = r(1)¢ + h(¢, 1)

with |h((, p)| = v(S) < 1; the same estimate as above shows that h((, x) — 0
as ( — oo and ¢ € Q(C) uniformly on p €] — €, e[ x V.

Remark that for pg € C, the results above are false in domains of class
7 , but still valid in domams of the form w(C,C") = {(&,n); &€ > C(1+
C’ 2)1/ 2}. Unfortunately, the Phragmen- Lindelsf theorem does not apply on
such domains. R R

The extension map D is holomorphic in (¢.X) € Q(C) x V& and analytic
in po €] — €, €[ and we have D(x, i) = e'D(:L"I"i""\) for = €]0, o) and p =
(po, A) € V""H Denote by F((, jto, ) = e~ P(C10.3); the analytic extension of
the partial derlvatives O"D/dxP g /\(1“ A%m to the domain QC)x]—e€, [xVE
is a function of the form

n—p+l
ePs Z ot FA
=1 acl,l(l/\‘h /\?71:1
with a; € Z. As the function F is bounded on Q(C)x] — €, €[x Vg and holo-
morphic in ({, A), we begin by studying the functions 8" F/dpu{; but we have

D(¢, ) = —Lnw(#(S), p, ). Then if we put w, (+(S), p, pr) =(8"w/0ug)(¢(S), p, 1),
we see that it suffices to study the functions w,, = w,/w. Let us begin by

the function u;: using the fact that »(;t) = r9 + 10 and the second line of the
system (2.2.4), we get

Wy = —wi[r+:"wfi] —w
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and then 4; = u;2"wf; — 1, where f); and f; are holomorphic functions in
(z,w,X) bounded on £ = {|z] < 1} x {|w] < 1} x V&. Put v; = |uy|, then
one can easily show that |dv;/ds| < Ajjvy|e*| + 1 where 4;; = A.S; and
$1 = Sup{|f1(z,w,N)|, (z,w,)) € L}: so we get

dvy

| ds I S ‘411’|(’—%Q£ +1

for some constant A,; this yield after integration between s = 0 and s = £+ ||

v < ATleFE(eMEHNTEE )
and this show that there exists B; > 0 such that |e=™¢u; (¢, ;)| < By for all
(¢, p) € QUC)X] —€,€[xVE .

Remark that the multiplying function can be replaced by the function (!
and this is optimal for the linear part of the field. The same procedure and
an induction on n permit us to show that there exist B, > 0 such that
le=""0Cup (¢, )] < By for all (¢, j1) € C)x] — e, e]xVT .

Now, let V& = di(0,a1) x - -+ X dy(0.a,,) where a; > 0, (C})ien some
strictly increasing sequences with Cp = C and tending to some C' < oo
and (a;;)ien some strictly decreasing sequences with a; 9 = a;, tending to
some a'; > 0 for all ¢ = 1,...,m. The theorem of derivation under the
integral sign and the Cauchy’s integral formulas show that for all n € N and
Pp+q+q+ -+ qm = n, there exist B 4.q,.... .q., > 0 such that

011F
ACPUIAD . PYA

|€_(P+qro)c (C- /l)l < Bp,q,ql,... “dm

for all (¢, u) € QC")x] — €,€[xd1(0.a’'y) x -+ x dn(0,al,) and this finish the
proof of Lemma 1.

3. FINITE CYCLICITY RESULT.

3. .1 The well ordered expansion for the shift map

We consider a real analytic family of vector ficlds X on the plane. This
family depends on a parameter A € R*, for some A € N. Suppose that
for A = 0, Xy has an identical hyperbolic polvevele Ty with two vertices Py
and P;. In order to study the cvelicity of Ty in the family X, we restrict
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ourselves to a fixed neighbourhood U of I'y in the plane. We choose U as
union of three sets A;, Ay and Az i.e U = A; U Ay U A3, and we denote W a
neighbourhood of A = 0 in RA. Now X will be represented in 4; x W, A5 x
W and A3z x W respectively by X}, X7 and X3 three analytic vector fields
depending analytically in (m,)) € R? x R*. The three charts verify the
following properties :

i) In A; with local coordinates (z1,y1), A1 = {(z1,¥1);|z1]| <2 and |y1| <
2} the family X} has a unique singular point P;(\), which is an hyperbolic
saddle point situated in the origin of 4; i.e Pj(A) = 0. Also the stable
separatrix and the unstable one are respectively the axis oy; and oz;. Finally,
the 1- jet of X3 in 0 is equal to :

J1X0) = ;1'.% - rl()\)yl-a—% (3.1.1)
this formula defines on W an analvtic function r{(\): the hyperbolicity ratio
of the saddle point P;.

ii) In Ay with local coordinates (22, y2), A2 = {(x2,y2); |z2| < 2 and |y2| <
2}, the family X2 has a unique singular point P()\) which is an hyperbolic
saddle point, situated in the origin i.e ’»(A) = 0.The 1- jet of X3 in 0 is given
by :

d d
.1 — -2 = Yo —— — o To 1.
I (=X3)(0) = o o r2(A)a (3.1.2)

- 81172
the stable and unstable separatrices of (—X73) at 0 are respectively the axis
ozy and oys; and the hyperbolicity ratio of (—=X73) at P is ra()).

iii) In A3 the vector field X3 has no singularities. Furthermore the points
Qi(1,0), s;(0,1) in the two charts A; ¢ = 1,2 and the regular segments of
I'o joining them are contained in 43 (figure 3).

The family X verifies the two following conditions :
a) forall A in W r1(A) = ra(A).

b) at least one of the saddle connections remains unbroken for all .
Remark.

The condition a) is equivalent to the first condition in Theorem 2.

Now let us define the maps that will permit us to study the cyclicity of T.
Firstly consider:

o ={(zi,yi) € Aisyi =1} and 7, ={(v;.y) € Az =1} i=1,2
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of ={(zi,4:) €0i;2: 20} and 7} = {(2s,9:) € ;9 20} i=1,2

the segments o;, 7; are parametrized respectively by z;, y; ¢ = 1,2 and are
transversal to the vector field X for all A in W.

The flow of X3, X\ € W in Aj; defines two analytic diffeomorphisms, the regular
transition maps, R; » and Ra )

Rip:mf — 02, Rop:rf — oy

The flow of X3 in A; (resp of (—X73) in A4») defines the transition map D, )
(resp D, ) called the Dulac map.

Dyy:of — 7, Daoy:rd — 09
the map D (resp D)) is analytic for 1 > 0 (resp y2 > 0), but it’s extended

by continuity in 0: D; »(0) = 0 and D5 ,(0) = 0 for all A in W.

Remark.

To define the above maps, we have perhaps to reduce the neighbourhood
W to a some smaller one.
Finally the shift map will be defined by :

6(1‘, /\) = Rly,\ [¢] Dl.)\ [¢] R'_)_)\(.T) - Df_),)\(x)
where z = y, is the parametrization of the transversal 7,.
Proposition 1. Given K arbitrary integer, there exists a neighbourhood

Wi C W of 0 in RA, analytic functions ’)’,'IJ\" : Wi — R such that on [0, zo] X
Wy the map 6(x,A) has the form :

Doz, )= Y. A2V pep))  if r(0)¢Q
ir(0)+j<K+1

2)6(z, \) = Z vEa O + (2. A)  if r(0) = Peq,prg=1
0<j<i<K+1 q

where r()\) is the common hyperbolicity’s ratio of X} at P; and (—X?%) at P,.
The function w is defined by: let cvi(\) = r(0) — r(A),

TN S () £0
W) ={ mmy o et #
—Ina, for a1 (A) = 0.
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éx(z, ) is a C* function, k-flat at = 0 for any .

In order to prove this proposition we have to extend the field X in the
complex domain; besides we’ll restrict ourselves to the case r(0) = 1 because
the other cases are resolved in the same way.

3. .2 The complex continuation of é

The family X, € RA has a natural holomorphic extension X5. This
extension is obtained by extending the vector fields Xf; t =1,2,3 to holo-
morphic ones in domains extending the different charts A; x W.

In the following we will denote this holomorphic extension by X5 , e CA,
we will work with the same notations as in the real domains with caps symbols
to subline that we are in the complex ones.

We can suppose, up to a holomorphic conjugacy, that the vector fields Xxi are

defined in the charts A; : polydisks |x;|> + |y:|* < 2;(x;,y:) € C%,i = 1,2.

The origin in each chart A; is the only singular point with hyperbolic 1-jet:
0 0

7' X51(0) = x](?—xl - (1- al))’lé‘y—l

d
dy»

- 0
—(1—ay)xe7—

Jl("X,\Z)(O) =Y2 3y2
where 1—-a; (X) = r()\) is the complex continuation of the hyperbolicity ratio.
We define :

o; ={(xi,yi) € Ai;y;i =1} and 7 ={(xi,y:) € Ai;x; =1}
of is (resp 77) a sector in o; (resp in 7;) defined by :

of = {(xi,y:) € 01 |Arg(x;)| < 6o} 0<6p < z

[\

respectively

it ={(xi.yi) € 7i:|Arg(yi)| < 6o}
the disks o;, 7; are transversal to the local invariant manifolds of Xfx.
The Dulac and the regular transition maps defined above have unique holo-
morphic extensions. So the shift map has a unique holomorphic extension
noted by é(z,A) in (75 \ {0} x W) and prolonged in 0 by 0.
Let the function @(x, A) be the continuation of the real one defined above.
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Theorem 3. For any arbitrary integer I, there exists a neighbourhood W g
of 0 in W C C? and holomorphic functions ?,’]‘ : Wy — C continuation of

the real functions 'y{‘j’ such that on 7§ x Wy the function g(x, X) has the
form :

5(x,\) = Z A?{}'(X)x"@j + R (x, )
0<j<i<K

where ¥X is a function of class C, in the real sense, I{—flat in x = 0.

Remark.

This development is what we call the well ordered expansion of order
K. The monomials x'@w’ are totally ordered by the lexicographic order :
x'w! X x™w" if and only if i < m or i = m and j > n.

The proposition 1 is an immediat consequence of theorem 3, it suffices to
restrict all the different neighbourhoods. charts and functions in C* and C?
respectively to RA and R2.

Proof of the theorem 3.

Given an integer I # 0 we may apply the results of [R]. There exists a
neighbourhood W of 0 in C*, some transversals depending on the parameter
e CA, 5; (resp T;) tangent to o;in 0 (resp to o;) such that the Dulac maps :
l~)1,;\~ : 51" — 77 and 132’;( : ?f_;* — 09 are written under the form :

~

1,\(x1)_x1+ Z Fif(NFD + -+ O a XD + Pk (%1, )
1<G<i<K

523(3’2) =y + Z Biﬁéfﬁj +---+ 31\.;.1 YRS 4 1/7,\ (y2,)\)
1<j<i<K+1

where &;;,0;; are holomorphic functions on Wy ', 2 are C K in the real
sense, K—flat resp. to x; =0.y> =0.

The same arguments as in [R] work here hecause X'IX and (—X%) have respec-

tively the same hyperbolicity ratio r(:\) in P, and P.
Now there exist ¢, 5 7 = 1,2 (resp 0,5 ¢ = 1.2) holomorphic diffeomor-
phisms defined by the flow of X& between a; and a; (resp 7; and 7;.)

gﬁi'x 0] —/™ 0, O, 3 Ti — T
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with VA € W, ¢,5(0) =, 5(0)=0 i=1.2
So the Dulac maps :

Dl,'X : ai" — 77 and Df_,‘; : 'r,_;* — 09
are written :
D, 5(x1) = (¢74 0D, 509,5) 1)
D, 5(y2) = (‘r’r_:x ° DQ.X ° ‘bz.i) (¥2)

by using the lemma 2 below we obtain that the Dulac maps have the following
development for a choosen K :

Di(x1) =x1 + Z Qi (VXD + o+ g xBTS + Pk(x1, V)
1<i<i<K

Dy(y2) =y2 + Z BiiNYsd + -+ + Br1ay5 710 + vk (y2, A)
1<;<i<K

the functions oj, Bij, z/)ll\.— have the same properties as &;j, Bij, ¥k

Lemma 2. Let f be a holomorphic function of 6t x W i where ot is a sector
as the ones defined below. If f(0.)\) = 0 then there exists a holomorphic
function g such that :

Bx(1+£),X) = (1+6,(Ng)a(x.X) +g
if a#0:&(ax,\) = (1+0(d1))3(x,A) — Ina(l + o(@,)
w(ax(1l +f), X) = (14 0(a;))@(x.\) — Ina(l +o(a1))+g
To finish the proof, we have to develop :

g(x,:\\)=( soD,5°R, )() Dz,i(x)

where R, 5 and R, 5 are the regular transition maps. We can write them as :

R, 5(x) = bo(}) + bi(N)x + by (A)x* + - - - + b (N)x + o(xK)

R, 5(x) = a; (V)% + a2 (N)x? + a3(A)x® + -« + ag (N)xF + o(xX)

Using again the lemma 2, we find the expansion of 8.
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3. .3 Division in the ideal of coefficients

Let’s recall some definitions and results from [R] :
For all zo €]0,¢0), the domain of the function éy(z) = 6(z,)) and for all
A € W, § is an analytic function in (z¢. ). Then we can write it as follows :

6(z, X)) = Za;(/\.mo)(m — )t (3.3.1)
i=0

for x close to zg.

Consider the ideal J,, generated by the germs of the functions a; in A = 0.
We will note them by a;. In [R], it is proved that the ideal J,, does not depend
on the point zg # 0. J is called the ideal of coefficients associated to 6. J C O
the ring of the germs of analytic functions in A = 0.

In the following we will suppose that .J # O ic é(x,0) = 0. This corresponds
to the case: I'g is identical. The other case .J = O, ie §(z,0) # 0, was studied
in [El.M] and corresponds I'g non identical. The definitions introduced here
are available also in the complex domain.

So let J the complexified ideal of .J. It's easy to see that J = J, for any
Xo € 75 where Jy, is the ideal of coefficients of g(x,X), extension of §(z, A)

defined above.

Proposition 1. Let ’y\,’J‘, K > 2 the cocfficients of the expansion of § to an

~K
order K. Given any k such that 1 < k < K then the germ ?,; € J for
0<j<i<k

Proof.

We will apply the same algorithm as in [E7.)]
Consider the well ordered development of & up to order K :

B, A= Y AEXD 4l G+ yFx)) (332)
0<;<i<k

For x # 0, the germ in A = 0 of the function A — 8,(X) = 8(x, ) is in J.

Moreover each monomial in (3.3.2), apart the first one which is equal to 1,
corresponds to a nonzero power of x. It follows that :

g(x. X) = ’?()() + w()(x. X) (333)
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where to(x,A) — 0 when x — 0, uniformly in X. Because the ideal
J is closed we conclude that 7 has its germ in J.

Suppose now that we have proved that the germs of ‘75 are in J for all the
monomials x!@J < x™Z" where < is the order introduced above. We use also
the lexicographic order between the couples (i, j) < (m,n). Let :

gmn = g_ Z 71] X w]
(i.)<(m.n) (3.3.4)

- 7mn(’\) mAn + + 1/’[\ (X A)

For each x # 0, the germ in X = 0 of the function A — Emn(x, X) isin J.
But we have to remark that the sequence of monomials x*@? does not form a
scale of infinitisimals in x ( in uniform way in ), because the ratio of x'%9
and x'@!, for j < 1, is equal to &7+ and does not tend to zero, uniformly in
X, if x — 0. So we cannot apply directly to 7% | the same argument we have
applied to 7. We will apply it after a first step where we will transform bmn
by division and derivation. This is based on the following observation : if a
function f(x, X) has a well ordered development up to some order K, like the

function &, then for Vs,l! € R and any order of derivation r < I, the function
T

Av———»xw o (x )\)hasagermln/\-—OmJ for Vx # 0.

Starting w1th the monomials x'@/, i,j € N, the derivation with respect
to x produces more general monomials x+ts815J, So, firstly we extend the
total order introduced above in a partial one hetween these new monomials.
For i,5 € N and s,l € Z we take :

z+la1 o < x1+ka1w : { 1<) or

i=731l=k and 7r>s.

the notation ” f +--- ” will be for a sum of f and a combination of monomials

with larger order.
Now let us explain our first step. Starting with Ag = é,p, we divide it by
xm .

Al mAO - ’)/15\”1 " + lmn-—-lan ! + e Rl (335)

with R; = ¢¥Kx~™ of order (I’ — m). is more differentiable and flatter than
the last term in +- - -

If n = 0, our first step is achieved: Ay = 3,,, + ©1(X, A) where @1(X, A) —
0 when x — 0, uniformly in X. and we can repeat now, the argument used
above for 3§
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If n > 0, after noticing that % = —x"17% we have :
s, OA K~
Ay = x0Tl — gl "1 44 Ry (3:3.6)

where R; is a convenient remaining term as Ry above. Repeating n — 1 times
again the same procedure, we obtain finally :

Apyr = 77,!:)’\’\'7 + -4+ Ryt
T B (3.3.7)
= "’!717\111 + Pnt1 (x, ’\)

with a convenient remaining term R, ;. Now ¢, 4, has an expansion whose
first monomial has a positive power in x. so that @n4+1(x,A) — 0 when
x +— 0, uniformly in A. As above this implies that the germ of 7% is in J.

3. .4 The proof of theorem 2

As O is noetherian, J has a finite svstem of generators 51, 5«_;, cee 5;; where
(¢1, b2, -+ , 1) are holomorphic in W.
Using the proposition 1 and the same arguments as in theorem 7 of [R],we
can write g(x, X) under the form :

8(x,%) =3 ¢:i(MhF (x,}) (3.4.1)

where K is an arbitrary integer,the functions h} (x, X) are holomorphic for
x # 0 and have the well ordered expansions of order K. We deduce the
following proposition in the real domain :

Proposition 2 [R]. Let (¢1,¢2,- -+ ,¢;) analytic functions in W whose germs
in A = 0 generate the ideal of coefficients .J. Let K an arbitrary integer, then
there exists a neighbourhood Wy C W in RA and functions hX (z,)), with
1 <4 <1 having well ordered expansions of order K :

hE(2,0) = DXRE (2, \) + ¢ (x.X)  in [0,20) x Wk

K1 K _ (N om, n K K41
D hi* (z,)\) = E Yo T W e+ Ve 0 T W
0<n<m< I\
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the hX are analytic for x # 0. They permit us to write 6(z,\) as follows :

)
8(z, ) =D _ di(Mhf (z,)) (3.4.2)

=1

we can choose a system of generators (¢, ¢a,- -, ¢;) verifying some prop-
erties as in [R] :

i) (¢1, P2, -+, ¢1) is minimal in the sense that it is a basis of the vector space
J/MJ where M is the maximal ideal of O.

ii) For A = 0 the values of A% (z,0) of the expression (3.4.2) don’t depend
on K. So we can define the functions h;(z) = h¥(z,0) for any K. In the
neighbourhood of z = 0, we can associate to them a formal power serie called
the Dulac’s development, we note by :

D®hi(z)= Y Y0} (=Inz)" (3.4.3)
0<n<m

where 7:,,,(0) = vi& (0) for any I’ > Sup{m.n}. This development is unique.
We obtain it from (3.4.2) by remarking that for A =0: 2™w" = 2™(~Inz)".
The functions h; are analytic for @ # 0 and h; # 0. But, we cannot assert that
D>h; # 0, this would be true if h; was quasi-regular. If D>®°h; # 0 then it will
be equivalent to ™ or z™ Inx . This equivalency allows us to define an order
of flatness between the h; such that D>h; # 0 by : order(h;) < order(h;)
if and only if hj/h;i — 0 when 2 — 0. We say that order(h;) = oo if
D*>h; =0.

iii) There exists an index s,0 < s <[ such that :
order(hy) < order(hs) < --- < order(hs) < oo

and
order(h;) = oo for j>s+1

we say that h; are ordered.

The properties 1i,ii,iii of the system (@, 2, -, ¢;) are not sufficient to
conclude the finite cyclicity of I'g. That is why, we consider the map of
desingularization of the set {A\ ¢1¢2--- ¢ = 0}.

There exists ¢ : W Wa proper analytic map of a compact domain W onto
W neighbourhood of 0 € RA. ¢ is the map of Hironaka’s desingularization.
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We consider the family X5 = X, for X € W. Take D = go‘l{O} we
associate to X5 at every pomt Do € D, an ideal of coefficients noted J C 0,‘,

ring of analytic germs at A=0. As D is compact, the cyclicity of 'y in X
will be finite if this is true for the X;-germ at every Ag € D.

Let 6(:1: )\) = é(z, ©(X)) the shift map of X3, Xin a neighbourhood of
Xo € D. Then it's easy to see that ]A will be generated by ¢,(/\) = ¢; 0
go()\). Furthermore, there exists ‘VX(, a nelghbonrhood of X¢ with coordinates
21,22, ,2a(where Ao = (0,0,0,---,0)) such that :

é:X) = u;() (3.4.4)

II: |>
—
tr
]
~

the functions u,(X) are analytic and nonzero for all e on , pj~ are integers.

Let’s note H 2P = d’i(i), then 5,—(}) = 'll,'(X)‘L",'(X).
Jj=1

Proposition 3 [R]. From the system (G1.Ga.- - . d1) we can extract a system

(biy, Pigy - ,qﬁ,L) possessing properties i,ii,1ii as (d)l,d)g, -+ ,¢1). ie there
exists 5,0 < s < L such that if §(x, \) = Z] ) c),JH" (z, ) then order(H;) <
order(Hs3) < -+ < order(H,) < o and order(H;) = oo, where H; is defined
as below.

Remark.

The division of é in J5 is not degenerated in a sense we will explain below.

Until the end we are going to work with the family ‘Yx,g(x,X), ;f;i,», HE, ...
and we will show the finite cyclicity of T’y for this family.

From now on, we discard the caps in the notation X,qﬁT, ... So that, we
suppose we have a family X with :

8(z,\) = Zo MR (N

where
order(hy) < order(hy) < -+ < order(hg) < 00
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and
order(h;) =00 i>s

and ¢;(A) = u;i(A)YA) with ¢;(A) = HA P and (z1, 22, -+, 24) local coor-

Jj=17j
dinates in W),

Lemma 3 [R]. Consider W; = {X € W), \ [¥i(A)| > |¢;(A)] for j # i}.
Let I = {i\ Ao € W;}. Then we have the following results :
i) Let © € I then there exists an analytic arc A(¢) : [0,&0] — W), with
A(0) = Ao such that :

order(y; o X)e=o < order(¢'; o X).=o for VEX)

ii) U;e1W; is a neighbourhood of Xg.

Proposition 3. Ifi € I then D>h; # 0. This means that I C {1,2,---,s}.

Proof.
Let ¢ € I and A(¢) the analytic arc in 1Vy,. Let us consider the subfamily
depending on 1-parameter :

_XE = .Y)\(s) SS [0.50]

let 5(:1:, €) the map 6 associated to this family. obviously, g(x, ) = 6(z, A(¢))
where 6(z, M) is the shift map of .X'5. So. for a given integer K, we can write :

L
8(z,€) = @i 0 MM (2. \(<)) (3.4.5)
i=1

for all indices j :
hi (2, Ae)) = hj(a) + O(¢)

and
#i(A(e)) =a;je™ +0(") a; #0

We replace in equality (3.4.5) to obtain :

8(x,€) = aihi(x)=" + O(e™) (3.4.6)
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the formula (3.4.6) indicates that up a multiplication by nonzero coefficient,
hi(z) is the principal part of the development of & in serie of €. Furthermore,
by theorem 1 of this article, there exist quasi regular functions I(z), up to
some factor z7E, such that :

8(x,e) = ely(z) + 2L(x) + - - - + () + O(e7) (3.4.7)
for any integer j.
If we equalize the two expressions (3.4.6) and (3.4.7), we find that :
ahi(x) =1, ()

as h;(z) is not identically zero, its Dulac’s development that coincides with
the one of I;(z) is not identically null. (Here I, is eventually quasi- regular
because it is the first non zero term in the expansion (3.4.7).)

Remember that ¢;(z,\) = u;(A)¢(X) with w;(X) # O for every A € W),
so we may find a real r : 0 < r < 1 such that : if V" = {};|¢:(N)| > 7|¢;(N)]
for i j} then U_,V/" is a neighbourhood of A.

To end the proof, we remark that we have the same situation as in para-
graph 8 of [R), therefore we can conclude that for all i : 1 <7 < s, there exists
N; € N, a neighbourhood 1V; of A, and a real x; : 0 < x; < xo such that
6(z, A) has less than N; zeros in [0, .x;] for all A € V" N W;.
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