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A FEW REMARKS ON THE LIFTING PROBLEM 

by Luca Chiantini and Ciro Ciliberto* 

0. Introduction 

Let X be a reduced, non-degenerate variety of dimension n in Pr, the projective 
space of dimension r over an algebraically closed field k of characteristic zero. If 
W is an irreducible variety of dimension n+m and degree s containing X, then for a 
general point t in the grassmannian Grass(h,r) of the h-planes in Pr, with h+n>r, the 
corresponding h-plane Lt intersects X along a subvariety Xt=XnLt lying on the 
irreducible variety Wt=WnLt of dimension h+n+m-r and degree s. 

Conversely, assume we have the following situation: 

(0.1) Let X be a reduced, non-degenerate variety of dimension n in Pr, let B be a 
smooth scheme and f: B^Grass(h,r) a dominant smooth morphism, h+n>r. For any 
te B we let Lt be the h-plane corresponding to the point f(t)e Grass(h,r). Let W in 
BxPr be a family of projective varieties flat over B. For te B we let Wt be the fibre 
of W over t. We suppose that the general fibre Wt of W is irreducible of dimension 
h+n+m-r and degree s, and that for te B one has LQWQXt=XnLt. 

In such a situation it is not true in general that there is a variety W of dimension 
n+m and degree s containing X and such that Wt=WnLt for teB: e.g. a general 
plane section of an irreducible curve of degree five in P3 lies on a conic, whereas 
there are such quintic curves lying in no quadrics. 

The lifting problem consists in looking for suitable conditions on the variety X 
and the family W ensuring the existence of the variety W such that Wt=WnL( for 
teB. 

* Both authors have been supported by MURST and CNR of Italy. The research has been 
performed in the framework of Europroj's project "Hyperplane sections". 
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The problem has been first considered for the case of curves in P3, i.e. n=l, 
r=3, by Laudal [5], who gave a solution later refined by Gruson and Peskine [3]. 
Gruson-Peskine's result asserts that if X is a reduced, irreducible curve of degree d 
in P3, whose general plane section lies on some curve T of degree s, and if d>s2+l, 
then X lies on a surface of degree s whose general plane section is T. Curves arising 
from sections of a null-correlation bundle show that the bound d>s2+l is sharp (see 
[3], [12]). More results on the lifting problem, especially for curves in P3, have 
been found by Strano with a purely algebraic approach relating the lifting problem 
to the syzigies of the resolution of the ideal of Xt (see [11], [9] and [6]). 

Inspired by Gruson-Peskine's result mentioned above, we will restrict ourselves 
to the search of a function D(s,h,r,n,m) such that, if (0.1) holds, the lifting problem 
has a positive answer for d>D(s,h,r,n,m). And one could be so optimistic to try to 
find an optimal such function, i.e. a function D(s,h,r,n,m) with the above properties 
and such that there are counterexamples to the lifting problem for d<D(s,h,r,n,m), 
e.g. in Gruson-Peskine's case (h=2, r=3, n=m=l) the optimal function is D(s)=s2+1. 
The question, if one puts in this form, makes sense only if dim Wt=dim Xt+1, i.e. 
only if m=l (see however § 3). Consider in fact the following: 

Example: Let V be a smooth projection of the Veronese surface in P4, which is 
known to be not contained in any quadric 3-fold. Let X be an irreducible curve cut 
out on V by a hypersurface of degree d>3. By the theorem of Bezout X does not lie 
on any quadric 3-fold in P4, whereas its general hyperplane section is contained on 
a quartic rational curve, hence it does lie on a quadric surface in P3. 

Hence in the present paper we will mainly restrict our attention to the case m=l, 
and we will determine a function D(s,h,r,n) such that if X has dimension n and 
degree d>D(s,h,r,n), and if there is a family W as in (0.1) with m=l, then there is a 
variety W of dimension n+1 such that Wt=WnLt for teU. The proof makes use of 
the differential-geometric concepts of foci and of focal locus for families of 
projective varieties, a classical notion firstly systematised by C. Segre [10] for 
families of linear subspaces and recently extended in [1] to any family of projective 
varieties. Similar ideas are already present in implicit form in [3]. We collect in § 1 
all basic facts about foci and focal loci of a family which we need in the sequel. In § 
2 we show that, if the lifting problem for X and the family W as in (0.1) with m=l 
has a negative answer, then the points of X either lie in the focal locus of W or Xt 
lies in the singular locus of Wt for t a general point in B. Then by estimating the 
degrees of these loci, we prove the following: 
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Theorem (0.2).- Let X be a reduced, non-degenerate, projective subvariety of 
dimension n and degree d in Pr and let us suppose there is a family W as in (0.1) 
with m=l. If 

d>D(s,h,r,n) :=(r+h-3)s+k(k-1 )(r-n-1 )+2ek-2 
where s-l=k(r-n-l)+e, 0<e<r-n-l, then the image W of W in Pris a variety of 
dimension n+1 and degree s, containing X and such that Wt=WnLt for teB. 

Our function D(s,h,r,n) is not optimal in general. Slight improvements can be 
obtained in some cases with a more detailed analysis in the same vein of our proof 
below: for example the case of codimension two, n=r-2, has been recently carefully 
investigated by E. Mezzetti [7], whose result fully generalizes Gruson-Peskine's 
theorem to the case r<5. She also makes a nice conjecture on the optimal function 
D(s,r-l,r,r-2). However we point out that, although in general not optimal, our 
function D(s,h,r,n) is asymptotically optimal. Indeed for instance in the case of 
curves we have that D(s,r):=D(s,r-l,r,l)=[s2/(r-2)]+o(s) and we find in § 3 curves 
X in Pr of degree d=d(s)»0 with d<D(s,r) but with D(s,r)=d(s)+o(s), for which the 
lifting fails. These curves, as well as the curves in P3 achieving Gruson-Peskine's 
bound, are obtained as sections of suitable rank two vector bundles on certain 
rational normal scrolls. At the end of § 3 we will also briefly discuss an extension 
of theorem (0.2) to the case m>l. 

In conclusion we want to mention that our approach via the focal loci has 
unexpected close relationships with Strano's algebraic approach mentioned above. 
We do not exploit this in the present paper, but we hope to come back on this 
subject in the future. 

1. Generalities on foci. 

In this section we let: 
B be a non singular scheme of dimension b 
W inside BxPr be a family, flat over B, of irreducible projective varieties of 
dimension w 
V be a desingularization of W 
After having shrinked B we may assume that V is flat over B, with smooth and 
irreducible fibres. Indeed, we may assume that for teB, the fibre Vt of V—»B over 
t is a desingularization of the corresponding fibre Wt of W—>B. 

The natural morphism u: V->BxPr yields the map of sheaves du: Tv-^uTexpr 
which is generically injective, and therefore injective, since Tv is locally free. The 
cokernel of du is, by definition, the normal sheaf Nu to the map u, thus we have the 
exact sequence 
(1.1) 0->Tv-̂ u*TBxpr->NU^0 
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and we notice that, in general, Nu is not necessarily torsion free. 
We let p: BxPr—>B and q: BxPr-»Pr be the projections. Then we have another 

natural map dq: uTexpr—>u*q*Tpr which is surjective. The kernel of dq is a locally 
free sheaf T(q) of rank b on V and we have the exact sequence 
(1.2) 0-^T(q)^u*TBxpr->u*q*TPr->0 

The above sequences (1.1) and (1.2) fit into the commutative exact diagram 

0-

0 

L 

0 

T(q) — N u 

0->Tv ->u*TBxpr > Nu^ 0 
a 

u*q*TPr =u*q*TPr 

0 
where 3 is the differential of the map qou, X is the characteristic map for the family 
V and L is the kernel of X. 

Since we are in characteristic 0, q is smooth at the general point of W. So if we 
set w0=dim q(W), then we have 

rk 3=w0, rk L=rk Tv -w0=b+w-w0, rk ̂ =w0-w 
where of course w0-w =dim q(W)-w>0. 

Next we consider the restriction of A, to a general fibre of V—»B. Take teB and 
let Vt be the corresponding fibre of V—>B. Let U be an affine open neighborhood 
of t in B over which TB trivializes. Then over p_1(U) the map dq: TBXP*—>q*Tpr has 
a trivial kernel. Accordingly T(q) also trivializes over V^u^p-KU), hence we have 
an isomorphism 
(1.3) T(q),v^Ovb 

Now we denote by Nt the normal sheaf to the induced map ut=qoU|vt : Vt-^Pr, 
and we prove the following basic: 

Proposition (1.4).- One has Nu | yt = Nt. 
Proof. Consider the following commutative exact diagram: 
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0 0 

0 -> TVt -> u*q*TPr i vt -> Nt -> 0 

Tv i vt -> u*TBxpr i vt -» Nu i vt - > 0 
a 

NVt,V —P^U*NPr,BxPr I Vt 

0 0 

Since V-»B is smooth, we have Nvt,v = TB>t ® Oyt. Similarly one has u*NprjBxpri Vt= 
TB,t® O v t - A straightforward local computation shows now that p is in fact an 
isomorphism. The assertion follows then by the diagram, q.e.d. 

In view of the isomorphism (1.3) and by proposition (1.4), we may interpret the 
restriction t̂ of the characteristic map X to a fibre Vt as a map 

Xt: 0 V t b - > Nt 
We notice that on a suitable dense open subset At of Vt the kernel of t̂ coincides 
with Lt=Livt. Hence at a general point pe Vt we have 

rk t̂ = w0-w 
Futhermore if pe V is a general point, then we have 

dim ((qou)-1((qou)(p))) = b+w-w0 
and the map 

Tv,p -> u*TBxpr,P 
is injective. 

Now we are in position to give the following: 

Definition (1.5).- A point pe V is called: 
i) a focus, or a focal point, if the map 

V T(q)®k(p)->Nu®k(p) 
has rank r<w0-w; 

ii) a fundamental point if the fibre (qou)-K(qou)(p)) has dimension 8>b+w-w0; 
iii) a cuspidal point if the map 

Tv,p -» u*TBxPr p 
is not injective. 
The focal (resp. fundamental, cuspidal) locus is the set of all focal (resp. 

fundamental, cuspidal) points of V. Vt is a focal (resp. fundamental, cuspidal) fibre 
if it is contained in the focal (resp. fundamental, cuspidal) locus. 
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Remark (1.6).- i) The cuspidal locus is the set of all points pe V such that 
TorKNu^p))^, hence it is the torsion locus of Nu, thus it is Zariski closed. Notice 
that if p is a cuspidal point, then p'=u(p) is a singular point of W, otherwise Nu 
would be locally free at p. Accordingly p' is singular in the fibre of W->B in which 
it sits. 
ii) The focal locus is closed off the cuspidal locus. Indeed it is then defined as the set 
of points where the map 

AP X: AP T(q)->AP Nu, (p=rk X) 
drops rank. 

Proposition (1.7).- A fundamental point is either a focal or a cuspidal point. 
Proof. Consider the commutative exact diagram 

0 

T(q)P — V> NU,P 

Tv ,p ->u*TBxpr,p > NU)P-> 0 

u*q*Tpr,p =u*q*Tpr,p 

0 
and set Dp=ker 3P. By assumption, since p is a fundamental point, we have dim 
Dp>b+w-w0. If p is not cuspidal, then the map 

Tv,p -> u*TBxpr,P 
is injective, hence Dp is nothing but the kernel of Xp. q.e.d. 

In the next two examples the reader will find an easy application of the above 
definitions and propositions and the description of a situation which shows that in 
general the behaviour of the focal and cuspidal loci can be rather tricky. 

Example (1.8).- The classical trisecant lemma [5] says that a general chord of a 
reduced, non-degenerate space curve C is not a trisecant. An easy proof of this fact 
follows by proposition (1.7). 

Let C be the regular locus of C and let A be the diagonal in C x C . We set 
B=C'xC,-A, and cosider the incidence correspondence 

V={(x,y,z)eBxP3: ze line joining x and y} 
V is a smooth familiy of lines defined over B, and we use for it the notation 
introduced above. Since C is non-degenerate, we have that q: V —»P3 is dominant. 
Hence wehave b = 2 ^ w = 1 ^ Wq = 3 
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thus L has rank 0, i.e. L=0. Let te B be a general point. On the corresponding line 
Vt we have the map 

Xt: O v t 2 - > Nt^vtd)2 
which is given by a 2x2 matrix At of linear forms. Since the general fibre Vt is not 
focal because rk t̂=w0-w=2, then the focal locus on Vt consists of at most two 
points, defined by the quadratic equation det(At)=0, unless Vt is a focal fibre. On 
the other hand the points in q_1(q(Vt)nC) are clearly fundamental points of V and 
since V is smooth they are focal points. Hence q(Vt) intersects C at two distinct 
points, where the intersection has to be transverse, since the tangent lines to C form 
a 1-dimensional system only. 

Essentially the same argument can be applied more generally to control the 
dimension of the family of (n+2)-secant lines to a variety of dimension n in Pn+2, 
thus proving a theorem of Z. Ran's [8], whose approach is based on differential 
geometric ideas which are very close to the ones we introduce in the present paper. 

Note that if C is a smooth complete intersection of a quadric cone Q and of a 
smooth quadric, then the vertex of the cone gives rise to a fundamental point of V. 
So any line Vt such that q(Vt) is contained in Q has at least three focal points, thus is 
a focal fibre. A general point on such a line is a focal point which is not a 
fundamental point. 

Example (1.9).- We sketch now an example which shows the existence of 
fundamental points which are not foci and an example of a focal locus which is not 
Zariski closed. 

Let C be a smooth conic in P2. Let pi,...,ps be general points on C and p9,..., pn 
be four more general points in P2. Let us consider the rational map f: P2-»P2 
determined by the two-dimensional linear system of all quartics through the points 
Pi,...,pi2- Consider now the smooth family p: V—>P! given by the pencil of lines 
through y=pi2- The map f induces a map q: V—>P2 and accordingly a map u=pxq: 
V—>P!xP2. Since f contracts C, every point x of C, regarded as a point of the line 
xy of V, is a fundamental point for q: V—>P2. Furthermore there are two points x, 
x' of C such that the lines xy, x'y are tangent to C. The points x, x', regarded as 
points of the lines xy, x'y, hence as points of V, are clearly cuspidal point with 
respect to q: V->P2. In view of proposition (1.7), the general point of C is a focus, 
but x and x' are not foci. In fact with our usual notation, we have b=w=l, wo=2 but 
the map 

A,x: T(q)<g>k(x)̂ Nu<8>k(x) 
is non-zero, since Nu®k(x) has dimension 2, acquiring a 1-dimensional torsion 
summand, and the image of x̂ is exactly the torsion summand. The same holds for 
x\ 
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2. Bounds for the degree of the focal locus. 

In this section we prove the theorem (0.2) stated in the introduction, by giving a 
bound for the degree of the focal locus of a family W as in (0.1), with m=l. The 
bound will be derived from Castelnuovo's bound on the genus of projective curves. 

Let V be a reduced, irreducible, non-degenerate, projective subvariety of degree 
s and dimension n in Pr and let n: V'->V be a desingularization of V. We denote by 
S(V) the reduced variety formed by the union of all codimension one irreducible 
components of Sing(V) and by s(V) its degree. We let H' be the pull-back by n of a 
general hyperplane section of V. Then H' is smooth and irreducible by Bertini's 
theorem. For all divisors D of V, we define the degree of D to be 

deg(D):=DH'ni 
In particular we have deg(H')=s. Notice that the degree can be interpreted as a 
homomorphism of Pic(V') in Z. 

Notice that if Y is a reduced subvariety of V of pure dimension n-1 and D is an 
effective divisor on V such that 7i(D)uS(V)3Y, then deg(Y)<deg(D)+s(V). Indeed 
if Y' is the union of all components of Y not contained in S(V), then 
deg(Y')<deg(7c(D))=deg(D). 

Proposition (2.1).- Let V be as above. Then 
s(V)< [k(k-l)/2](r-n)+ke 

where s-1 =k(r-n)+e, 0<e<r-n. Moreover, if K' is the canonical class of V, one has 
deg(K')<( 1 -n)s-2s( V)+k(k-1 )(r-n)+2ek-2 

Proof. A curve C which is the pull-back via n of a general curve section C of V is 
smooth and irreducible. Indeed K\cm. C—>C is the normalization morphism for C. 
We denote by g (resp. g') the arithmetic genus of C (resp. C). Of course every 
point of CnS(V) is singular for C, hence 

0<g'<g-s(V) 
Since C is a non-degenerate curve in p™+i, Castelnuovo's bound yields 

g<[k(k-l)/2](r-n)+ke 
whence the estimate for s(V) easily follows. Furthermore the adjunction formula 
yields 

2g'-2=K'C'+(n-1 )H'C'=deg(K')+(n-1 )s 
whence the estimate for deg(K') follows, q.e.d. 

Remark (2.2).- The first part of proposition (2.1) can be extended as follows. Let V 
be a reduced variety of degree s and of pure dimension n>l in Pr and let Si(V) be 
the Zariski closure of the locus of singular points of codimension i in V. Then 

deg(Si(V))<S2i 
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In fact consider a general Pf-n-2 and project V from this P'-n-2 into a Pn+1 as a 
hypersurface V. Take a general polar of V in Pn+1. The cone from the original Pr-
n2 over V" is a hypersurface of degree s-1 passing through all singular points of V. 
Now it is easy to see that the cones over V from the pr-n-2's of Pr cut out V set 
theoretically and indeed scheme theoretically along the smooth points of V. This 
yields that the family of hypersurfaces like V" above has no base points on V except 
at the singular points. Hence if we take n-1 general such hypersurfaces, their 
intersection with V contains a one-dimensional component C passing through all 
isolated singularities of V and singular there. By Fulton's version of Bezout's 
theorem [F, pg. 223], we have 

deg(C)< sCs-l)11-1̂ 11 
On the other hand the theorem clearly holds for n=i=l, whence the assertion. 

We now go back to consider our original reduced, irreducible, non-degenerate 
variety X of dimension n in Pr with the family W as in (0.1), with m=l. For this 
family W we use the notation we introduced in § 2, e.g. V is a desingularization of 
W, etc. In particular we have the morphism q: W^Pr and we denote by W the 
Zariski closure of q(W), which is an irreducible subvariety of Pr. 

Proposition (2.3).- One has dim W>n+1 and if dim W=n+1, then deg(W)=s. 
Proof. For a general h-plane Lt corresponding to a general point te B, WnLt is 
irreducible and it contains Wt which has dimension h+n-r+1. Hence clearly dim 
W>n+1 and if the equality holds, then WnLt=Wt, whence the assertion, q.e.d. 

Assume now dim W > n+2. Consider then a general projection K of W onto 
pn+2 We denote by W ' the image of W via the map px(7Coq): W^BxPn+2. We may 
assume, after perhaps having shrinked B, that: 
i) K: W—>Pn+2 is dominant; 
ii) n maps X birationally onto its image; 
iii) if h<n+2 then K restricts to an isomorphism to Wt for all te B; 
iv) if h>n+2 then n restricts to a birational map to Wt for all te B; furthermore, 

since dim Wt=h+n-r+l<n, then all components of S(7c(Wt)) are birational 
projections of components of S(Wt) and s(Wt)=s(7c(Wt)), for all teB; 

v) W '->B is flat. 
Then we may look at V as a desingularization of W 1 and we denote by u' the 
obvious map V->BxPn+2 and by q' the composition of u' with the projection onto 
the second factor. 

Proposition (2.4).- Every point xeq'U^X)) is a fundamental point. 
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Proof. Since q' is dominant, then a general fibre of qf has dimension b+h-r-1. Pick 
XG V such that y=q(x) is a general point of X. The Shubert cycle Gy of h-planes of 
Pr containing y has codimension r-h in Grass(h,r). By the construction of W the 
projection on B of the fibre q_1(y) contains f_1(Gy). Hence dim q1(q(x))>b+h-r, and 
then for such a xe V one a fortiori has dim q'-Kq'OO^b+h-r, whence the assertion, 
q.e.d. 

We are now in position to conclude the: 

Proof of theorem (0.2). We keep the above notation. If dim W=n+1, we are done 
by proposition (2.3). Assume that dim W >n+2. Let t be a general point in B and let 
Vt be the corresponding fibre of V-»B and let Ft be the focal locus of Vt in relation 
with the family W '. Since 7c(Xt) has codimension one in 7c(Wt), propositions (1.7) 
and (2.4) vield 

q'(Ft)uS(7t(Wt))=m(Xt) 
so that 

d=deg(X)=deg(7i(X))=deg(7u(Xt))<deg(q,(Ft))+s(7c(Wt)) 
Look now at the characteristic map 

relative to the family W '. Since q' is dominant, Xt is generically surjective. Hence, 
off the cuspidal locus, Ft is contained in some effective divisor D whose first Chern 
class is ci(Nt) defined by a non-zero section of Ovt(ci(Nt)) given by Ar"h+1̂ t. One 
has 

ci(Nt)=Kt+(n+3)Ht 
where Kt is the canonical class of Vt and Ht is the pull-back of a hyperplane of Pn+2 
via the map q'. Therefore 

d<deg(Kt)+(n+3)s+s(7c(Wt)) 
Then proposition (2.1) yields 

d<(r-h+3)s+k(k-1 )(r-n-1 )+2ek-2=D(s,h,r,n) 
a contradiction, q.e.d. 

3. Comments, examples and extensions. 

In this section we collect a few remarks and an example which shows that 
theorem (0.2) is asymptotically sharp. At the end of the section we briefly discuss 
an extension to the case m>2 of theorem (0.2). 

Remark (3.1).- In the case of curves n=l, one has to take h=r-l, and our function 
D(s,h,r,n) becomes a function D(s,r)=[s2/(r-2)]+o(s). In particular for r=3 one has 
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D(s,3)=s(s+1), and we thus recover Laudal's theorem [5] later extended by Gruson 
and Peskine [3] (see the Introduction). 

Example (3.2).- Let M be a smooth threefold of degree r-2 in Pr, r>5. Such 
threefolds are described in [4]: M is a scroll in planes over a rational curve and 
Pic(M) is freely generated by the class F of a plane and by the hyperplane class H. 
The canonical class of M is 

KM = -3H+(r-4)F 
In what follows we will need the: 

Lemma (3.3).- hKOM(aH+bF))=0 for any ae Z and for any b>0. 
Proof. It is well known that the assertion holds for b=0. We proceed by induction 
on b. The exact sequence 

0-^OM(aH+bF)^OM(aH+(b+l)F)^OF(aH)^0 
shows that h1(OM(aH+(b+l)F))=0, since h1(OM(aH+bF))=0 by induction and 
hKOF(aH))=0. q.e.d. 

We will assume from now on that the class H-(r-4)F is effective on M, 
representing a smooth irreducible quadric surface Q inside M. 

Let Y be a union of r-1 disjoint lines in M, each contained in a plane of M. We 
will assume Y to be general under the above conditions. We make the following: 

Claim (3.4).- Let S be a surface in M containing Y then deg(S)>r-l. 
Proof of the claim. It goes by induction on r, the case r=5 being trivial. Assume 
r>6 and let S be a surface of minimal degree containing Y. Then perform a 
projection of M from a point of one of the lines of Y to a scroll M' in Prl. Then the 
remaining lines of Y are projected to a set Y' of r-2 general lines of M', contained 
in the projection S' of S. Then by induction deg(S)-l>deg(S')>r-2, whence 
deg(S)>r-l. q.e.d. 

Let COY be the dualizing sheaf of Y and let IY the ideal sheaf of Y in M. Then 
OY = 0Y(-2H-KM-H-F) = coY(-H-F-KM) s 

^^2(OY,OM(KM))(-H-F-KM) ^2(OY,OM(-H-F)) ^1(/y(H+F),OM) 
The map 

Ext1(/Y(H+F),OM)-^H0(ßc^(/Y(H+F),OM)) = H0(OY) -k 
is surjective, since its cokernel sits inside 

H2(//^(7Y(H+F),0M)) = №(0M(-H-F)) = 0 
So a constant in k s H°(0Y) = H°(£X-̂ (/Y(H+F),OM)) lifts to an extension 

0->OM->E->/Y(H+F)->0 
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with E locally free of rank two: indeed Extl{E,Ou) turns out to be zero since 
Extl(0M,0M) is such and 0M = Hom(0M,OM)-J>Extl(IYQi+F),OM) = OY is surjective 
by construction. Furthermore ci(E)=H+F and C2(E) = deg(Y)=r-l. Let X be a curve 
which is the 0-locus of some section of E(aH), for a»0, which is clearly non-
degenerate. We may also assume X to be smooth and irreducible. Its degree is 

d=deg(X)=Hc2(E(aH))=a2(r-2)+(a+l)(r-l) 
Let X0 be a general hyperplane section of X. 

Claim (3.5).- X0 is contained in some curve of degree s=(a+l)(r-2). 
Proof of the claim. In fact X0 sits on the general hyperplane section M0 of M, and 
we have the exact sequence 

0->OMO-*EO /̂YO(H+F)->0 
where Y0 is the general hyperplane section of Y and E0 is E|Mo. Note that Y0 
consists of r-1 points in Prl, hence Y0 is degenerate, i.e. h°(/Yo(H))̂ 0. Hence 
h°(Eo(-F))̂ 0 since hl(OMo(-F)))=0. From the exact sequence 

0->OMô Eo(aH)->/xo((2a+l)H+F)->0 
we have h°(/Xo((a+l)H)M) proving the claim, q.e.d. 

We remark now that h°(E);*0 yields hO(/x((a+l)H+F))*0, hence X lies on 
surfaces of degree (a+l)(r-2)+l. On the other hand we make the following: 

Claim (3.6).- If r>7 then X is not contained on any surface of degree o<(a+l)(r-2). 
Proof of the claim. We argue by contradiction. Let S be such a surface and assume 
it has minimal degree, so that it is reduced and irreducible. By the theorem of 
Bezout S has to lie on M since a»0, hence ^(^(S))^. 

Notice that S-F-(a+l)H has negative degree, hence h°(OM(S-F-(a+l)H))=0. Thus 
if hO(E(S-F-(a+l)H))*0, then h°(/Y(S-aH))*0 contradicting the claim (3.4), since 
deg(S-aH)=o-a(r-2)<r-2. Hence we have h<>(E(S-F-(a+l)H))=0 which yields 
hi(OM(S-F-(2a+l)H))^0. Let S=aH+pF in Pic(M) hence S-F-(2a+l)H=(a-2a-
1)H+(P-1)F. By lemma (3.3) we must have P<0. Then by the Kodaira vanishing 
theorem we must have a>2a+l. 

Remark now that 
S Q H=(aH2+pF H) (H-(r-4)F)=2a+P 

Since S and Q are irreducible and distinct, it is clear that 2oc+P>0. But then, since 
deg(S)=oc(r-2)+p<(a+l)(r-2) 

we should have 
(2a+1 )(r-4)<oc(r-4)<(a+1 )(r-2) 

i.e. r<6, a contradiction, q.e.d. 

Finally we notice that we have 
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s-l=a(r-2)+(r-3) 
hence with the notation of theorem (0.2), we have k=a, e=r-3. Hence 

D(s,r)=(r-2)(a2+5a+4)-2(a+l) 
and therefore 
(3.7) D(s,r)-d=(r-2)(5a+4)-(a+l)(r+l)=o(a)=o(s) 
If r>7 then, according to theorem (0,2), we have D(s,r)>d, but (3.7) shows that 
indeed the optimal function differs from our D(s,r) by a function 8(s,r)=o(s). 

Remark (3.8).- In the proof of theorem (0.2) an important role is played by the 
hypothesis that the general fibre Wt of W is irreducible. Sometimes this assumption 
can be replaced by the assumption that X itself is irreducible. For example if 
n+m=r-l, i.e. Wt is a hypersurface in Lt and s is the minimal degree of such a 
hypersurface containing Xt, then Wt is clearly irreducible if n>2, and the same 
happens by monodromy if n=l. 

Remark (3.9).- Let us go back to the proof of theorem (0.2). One of the main 
points there is the fact that the focal locus Ft is contained in some effective divisor 
D whose first Chern class is ci(Nt). This follows from the consideration of the map 
of generically maximal rank 

Xt: 0 V t b - > Nt 
where b=dim B>dim Grass(h,r)=(h+l)(r-h)>rk Nt=r-h+l. Let us then consider the 
map 

A'-h+i?lt: Ar-h+iOVtb-> det(N0 
whose image gives rise to a linear system 8 of divisors in the linear system 
IOvt,(det(Nt))l, the so called focal linear system introduced in [7]. If dim 8 is 
sufficiently large, then one has better estimates for the degree of the focal locus, 
thus improving the estimate for the function D(s,h,r,n). This idea, exploited in [7], 
is very useful in the case n=r-2. However it does not seem equally useful in the case 
of varieties of high codimension, in particular for curves. 

Remark (3.10).- Let we weaken the hypotheses in (0.1) in the following way: f: 
B—>Grass(h,r) is no more necessarily dominant, but the union of the h-planes 
parametrized by the points of f(B) is dense in Pr and b>r-h+l. Then the map t̂ is 
still generically surjective and the proof of theorem (0.2) still goes through, except 
that proposition (2.3) could fail to hold. 

For instance let us take for X the disjoint union of three lines on a smooth 
quadric surface W in P3 and let us take for B the set of all tangent planes to W. For 
all te B the corresponding plane Lt meets X at three points on a line Wt and these 
lines form a two-dimensional flat family W verifying the assumptions of (0.1), 
modified as above. Of course proposition (2.3) does not hold for such a family, 
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inasmuch as for a general point teB, the corresponding plane Lt is such that WnLt 
is reducible. 

In order to let theorem (0.2) still work if f: B->Grass(h,r) is not dominant we 
must therefore make the following assumptions: 
i) the union of the h-planes parametrized by the points of f(B) is dense in Pr and 
b>r-h+l; 
ii) for a general point te B, the corresponding plane Lt is such that WnLt is 
irreducible, where as usual W is the Zariski closure of q(W). 

Condition ii) is rather unpleasant. However it is automatically verified if, for 
instance, f(B) is dense in some Schubert cycle. 

In conclusion we want to briefly point out the following extension of theorem 
(0.2) to the case m>2: 

Proposition (3.11).- Let X be a reduced, irreducible, non-degenerate variety of 
dimension n>2 in Pr, and suppose we have a situation like in (0.1) with h+n>r. 
Suppose that d>(2rs)2m. Then there is a variety Y containing X, with dim Y=n+m-i 
and deg(Y)<(2rs)21 such that for te B general, one has LgWQYQXt. 
Proof. We proceed by induction on m. The case m=l follows by theorem (0.2). Let 
m>2. Now we use the notation introduced in § 2. As in proposition (2.3) we see that 
dim W>n+m and if the eqauality holds then deg(W)=s. So we may assume dim 
W>n+m+l and we make a general projection n to pn+m+i The statement of 
proposition (2.4) still holds. Hence as in the proof of theorem (0.1) we have 

q'(Ft)uSing(7c(Wt))37c(Xt) 
Since dim X>2 and therefore Xt is irreducible, we have either Sing(7c(Wt))37c(Xt) 
or q'(Ft)37c(Xt). Now we claim that in either case 7c(Xt) is contained in some 
irreducible subvariety of 7c(Wt) of codimension one and of "low" degree. In fact in 
the first case one can prove, with an argument already used in remark (2.2), that 
(Sing(7t(Wt)) is certainly contained in some hypersurface of degree s-1 not 
containing Tc(Wt). In the latter case we notice that the map V- Ovt,b —> Nt relative 
to the family W ' is generically of maximal rank. Hence we can consider the focal 
linear system inside IOvt(det(Nt))l=IKvt+(n+m+2)HvJ (see remark (3.9)), and by 
proposition (2.1) we have 

deg(KVt +(n+m+2)HVt)<2rs2 
Now, after may be a base change, we have a new family of varieties verifying (0.1) 
with m replaced by m-1. Futrthermore since 

(2rs2)2m"1<(2rs)2m<d 
by induction we have that there is a variety Y containing X, with dim Y=n+m-l-i 
and 

deg(Y)<[2r(2rs2)]2i=(2rs)2i+1 
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such that for te B general, one has LQWQYtDXt. This proves our assertion, 
q.e.d. 

It is useless to say that the hypothesis d>(2rs)2m is very rough and could be 
refined as well as the bound for the degree of Y. It is also possible that the 
hypothesis dim X>2, which we introduced for technical reasons, could be dropped. 
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