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HIGHER CASTELNUOVO THEORY 

David Eisenbud, Mark Green, Joe Harris 1 

0. Introduction 
1. The geometric case: Castelnuovo theory 
2. The algebraic case 
3. Cayley-Bacharach theory 
4. A stepwise formulation 

0. Introduction. 
In this paper and others to follow, we intend to set out a series of con­

jectures concerning the Hilbert functions of points (or more generally, zero-
dimensional subschemes) in projective space; or, more generally still, the 
Hilbert functions of graded Artinian rings. We were first led to make some 
of these conjectures in Eisenbud-Harris [1982] in the course of our work on 
Castelnuovo theory. A special case of these was proved independently by us 
in that paper and by Miles Reid - though as Ciliberto later noted [1987] we 
were both anticipated by G. Fano [1894]. Recently, we saw how our con­
jectures might be generalized; and in this form they relate to a number of 
other areas: for example, another special case is equivalent to a conjectured 
generalization of the classical Cayley-Bacharach theorem (as we will also dis­
cuss here); another to the Kruskal-Katona and Clements-Lindstrom theorems 
of combinatorics (see, for example, Kleitman-Green [1978]); and still others, 
which we intend to describe in a later paper, to questions about the existence 
of exceptional linear series on complete intersection curves. 

Good references for unexplained terminology are Arbarello-Cornalba-
Griffiths-Harris [1985] or Eisenbud-Harris [1982]. 

1The authors are grateful to the NSF - the second through grant number 
DMS 88-02020 for partial support during the preparation of this work 

s. M. F. 
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1. Castelnuovo theory. 
Recall that a set of points in projective space is in uniform 'position if the 

Hilbert function (= postulation) of a subset depends only on the cardinality 
of the subset. Castelnuovo theory is concerned with the possible Hilbert func­
tions of points in uniform position. Its origins are classical: Castelnuovo first 
used estimates on the Hilbert functions of points to derive his upper bound on 
the genus of an irreducible nondegenerate curve C in projective space P r in 
terms of the degree d of C. Castelnuovo's argument has been reproduced too 
many times to repeat in detail here (see, for example, Eisenbud-Harris [1982] 
or Arbarello-Cornalba-Griffiths-Harris [1985]), but briefly what he shows first, 
by completely elementary means, is that if T C P71"""1 is a general hyperplane 
section of C then 

9(C) < F h\Pn-\lr(ld<dfdfdfg) 

or, in other words, the genus of C is bounded by the sum over all £ of the 
failure of r to impose independent conditons on hypersurfaces of degree L 
Curves of maximal genus for their degree therefore are likely to be those whose 
hyperplane sections V have the smallest possible Hilbert function Zip. Next, 
Castelnuovo shows that among all configurations r of d > 2n + 1 points in 
uniform position in P n _ 1 , the ones with minimal Hilbert function are exactly 
those lying on rational normal curves; he calculates his bound 7r(d, n) on 
the genus of a curve accordingly. Finally, since if T is a subset of a rational 
normal curve any quadric containing T will contain the rational normal curve, 
he shows that if C is a curve achieving his bound the quadrics containing C 
must cut out in P n a surface whose hyperplane section is a rational normal 
curve (in particular, a surface of degree n — 1, the minimum possible degree 
for a nondegenerate surface in P n ) . 

In Eisenbud-Harris [1982], we undertook to extend the results of Casteln­
uovo - in particular, his characterization of curves of maximal genus for their 
degree as lying on rational normal scrolls - to curves of high, but not maxi­
mal genus. This involved asking, for example, "What is the second smallest 
possible Hilbert function of a collection of points?" and in general, "What 
configurations of points have small Hilbert function?" What emerged was the 
following philosophy: The way to achieve a configuration T C P r in uniform 
position having small Hilbert function is to put T on a positive-dimensional 
variety with small Hilbert function - in effect, on a curve of smallest pos­
sible degree, and of largest possible genus given that degree - which is the 
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intersection of the hypersurfaces of low degree containing Y. 

To be specific, let T C P r be a nondegenerate collection of d points in 
uniform position; let hr be its Hilbert function, so that for example for (2) is 
the number of conditions imposed by T on quadrics. Castelnuovo says that if 
d > 2r + 3, then T must impose at least 2r + 1 conditions on quadrics; and if 
for(2) — 2r + 1 exactly, then T must lie on a rational normal curve. Extending 
this, it turned out that if d > 2r + 5 and if hr > 2r + 2 then necessarily 
T had to lie on an elliptic normal curve (Fano [1894],Eisenbud-Harris [1982], 
Reid [unpublished]). We deduced in particular that if a curve C C P n had 
genus exceeding a bound 71*! (G?, n) (substantially lower than 7r(<i, n)), then the 
quadrics containing C have to cut out a surface of degree n in P n , which 
allowed us to classify such curves. Both we and Miles Reid went on to con­
jecture that this pattern would persist, at least for a while: for a < r, we 
conjectured, under the hypothesis d > 2r + 2a + 1 we could conclude that 
either hr > 2r + a + 1 or T lay on a curve of degree r + a — 1 or less in P r . 

In all of these cases, the latter conclusion - that T lay on a curve of small 
degree - would follow immediately if one knew that the intersection of the 
quadrics containing T was in fact positive dimensional. This observation last 
year suggested to us a seemingly trivial restatement. If we hypothesize that 
T is cut out by quadrics, we can ask: given hr(2), what is the largest possible 
d? In other words, What is the largest number d(h) of points of intersection 
of a linear system of quadrics of codimension h in the space of all quadrics 
in P r , given that the intersection of those quadrics is zero-dimensional? In 
these terms, we may summarize the state of our knowledge as of 1981 (and 
its origins) as follows: 

d{r + 1) — r + 1 (elementary) 

d(r + 2) — r + 2 (elementary) 

d(2r — 1) = 2r — 1 (elementary) 

d(2r) = 2r (elementary) 

d(2r + 1) = 2r + 2 (Castelnuovo) 

d(2r + 2) = 2r + 4 (Fano, Eisenbud-Harris, Reid) 
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The conjectures mentioned above extend this pattern to: 

d(2r + 3) = 2r + 6 

d(3r - 3) = 4r - 6 

d(3r - 2) = 4r - 4. 

Note that this conjectured bound on the number of points is sharp, if it 
holds: for h < 2r, of course, any configuration of h points in linear general 
position will be cut out by quadrics and will impose independent conditions 
on quadrics; and for 2r+2 < h = 2r+a < 3r — 2 we can take T the interseciton 
of a linearly normal curve of degree r + a - that is, a curve of degree r + a 
and (maximal) genus a - with another quadric. Note, moreover, that in the 
last case - d(3r — 2) = 4r — 4 - there is also another example we can use to 
show that the bounds is sharp: we can take T the intersection of a rational 
normal scroll I c P r with two more quadrics. 

This last example suggests that at this point the pattern otd(h) increasing 
by 2 each time stops. Indeed, corresponding to the two examples above in 
case h = 3r — 2 there are two examples to suggest that the next value of d 
should be 

d(3r - 1) = 4r. 

On the one hand, the maximal genus of a curve of degree r + a in P r increases 
by 2 from a — r — 1 to a = r, with the result that a curve of degree 2r — 1 
and genus r — 1 in P r will lie on the same number of quadrics as a curve 
of degree 2r and genus r + 1 (that is, a canonical curve). Thus we can take 
r the intersection of a canonical curve in P r with a quadric to arrive at a 
configuration of 4r points imposing only 3r — 1 conditions on quadrics. On 
the other hand, in the latter example, if we replace the rational normal surface 
scroll 5, which has degree r — 1, with a linearly normal surface of one larger 
degree r (for example, a del Pezzo surface or a cone over an elliptic normal 
curve), the intersection of our surface with two quadrics will again have degree 
4r and impose 3r — 1 conditions on quadrics. 

Similar examples indicate that for the next r — 3 steps d(h) will increase 
by 4 each time we increase h: by way of an example, we can take T the 
intersection of a surface of degree r — 1 + (3 with two further quadrics. When 
we get to the case h = 4r — 5, however, we get a new example: the intersection 
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of a threefold rational normal scroll X with three additional quadrics, and 
thereafter we can increase the degree of T by 8 while increasing hy{2) by only 
1 by increasing the degree of X by 1. 

By now the pattern seems relatively clear, and we may state the 

CONJECTURE. Starting with the value d(r + 1) = r + 1, the successive differ­
ences of the function d(h) are: 

1,1,.............................,i 
2> 2............................,2 
4,4,............................,4 

(r — 1 times)] 
(r — 2 times); 
(r — 3 times); 

ff0(Pm+2,2h(2)fhgf (r — k times); 

2 r " 3 , 2 r " 3 , 
2 r " 2 . 

Where do we wind up at the end of this string? Here we have our first 
surprise: the last predicted value of d is 

d 
(2fc-c + l)sds 

2 
= 2 r , 

that is to say, the largest possible number of isolated points of intersectin of 
r quadrics in P r is 2 r . The fact that the terminal case of the conjecture is 
simply the Bezout theorem is striking. But more intriguing is the next case: 

d f r2 + r > 
2 

= 2 r - 2rd< " 2 , 

or, in other words, 

(*) 
The largest number of points of a complete intersection of quadrics in P r 

that another independent quadric can contain is 2 r — 2 r~" 2. 
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Let us express this conjecture in closed form. It will also be useful to 
replace the variable h, corresponding to the number of conditions imposed by 
a set of points T on quadrics, with the absolute number m of independent 
quadrics containing T - that is, ( r * 2 ) — h. 

First, some notation: given r, any number m > r + 1 can be uniquely 
written in the form 

m = (r + l ) + ( ! | ) + c > f f 0 (P m b > c > 0. 

With this notation, we make the 

CONJECTURE ( J m j f . ) . If T is any nondegenerate collection of d points in uni­
form position in P r lying on m independent quadrics whose intersection is 
zero-dimensionalj then 

d< (2fc-c + l ) . 2 r - 6 - 1 . 

In particular, the statement (*) above is simply the case (J r_|_i j r) of this con­
jecture. 

As suggested above, examples show that this bound, if indeed it holds, 
is sharp: for m quadrics, we can take T the intersection of r — b — 1 quadrics 
with a linearly normal variety of degree 2b — c + 1 and dimension r — b — 1 in 
P r (for example, the divisor residual to c + 1 planes in the intersection of a 
rational normal (r — fe)-fold scroll in P r with a quadric). 

Conjecture (I) remains an open problem in general, though we have been 
able to verify it for all r > 5 (note that all cases with r < 4 are covered by 
existing theorems of Castelnuovo, Fano, Eisenbud-Harris and Reid). We have 
also been able to verify the special case (7r_|_i)r) for all r < 6; we will give a 
proof in §3 below. 

2. The algebraic case. 
What happens if we omit the hypothesis of uniform position from our 

basic Conjecture (I), or for that matter if we allow arbitrary (nondegenerate) 
zero-dimensional subschemes of P r ? This problem is one that has a purely 
algebraic formulation. Passing to the homogeneous coordinate ring of the 
configuration T C P r modulo a general linear form, it becomes the question: 
what is the largest possible length e(m) of an Artinian ring of the form 

ff0(Pm+2,2h(2)ff0(Pm+2,2 
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where i" is the ideal generated by an m-dimensional vector space of homoge­
neous quadric polynomials in # i , . . . , xr? 

The extreme cases m = ( r '£ 1) and m = r are exactly the same as before: 
the corresponding values of e are r + 1 and 2 r . In between, though, the 
successive differences are quite different: they are expressed in the 

CONJECTURE. Starting with the value e(r) = 2 r , the (negative) successive 
differences of the function e(m) are: 

2 r - 2 , 2 r " 3 , 2 r - 4 , g f h f ff0(Pm+ 4,2,1,fg 

ff0(Pm+2,2h(2) ff0(Pm+2,2h(2) 4 2 1 ,-±, j . , 

4 ,2,1, 
2,1, 
1. 

In other words, they are the same successive differences as the function d, in 
a different order. 

As strange as the conjecture may sound, it also has been completely 
verified for r < 5 (including cases where the value of e differs from that of d). 
It should also be noted that the conjectured last two values of the function e 
before the Bezout case (e(r + 1) = 2 r - 2 r ~ 2 , e(r + 2) = 2 r - 2 r ~ 2 - 2 r ~ 3 ) are 
the same as for the function d; and these two values have also been verified 
for r < 6. 

As in the geometric case, it will be useful to have a form of the conjecture 
that applies to individual values of the function e. To do this, we write an 
arbitrary m < (r"£1) in the form 

m=Ofgfgfgfgfgfgzertyhh 
With this notation, we make the 

CONJECTURE ( J / M ) R ) . Let T C P r be any nondegenerate, zero-dimensional 
subscheme of degree d. If T lies on m quadrics whose intersection is zero-
dimensional, then 

ff0(Pm+2,2h(2)ff0(Pm+2,2hff0(Pm+2,2h(2)(2) 
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Equivalently, if R is an Artinian ring of the form 

R = k[xi,... , z r ] / J , 

where I is the ideal generated by an m-dimensional vector space of homoge­
neous quadric polynomials in #i, . . . , xrj then 

dimk(R) < 2U + 2V + r - u - 1. 

As in the case of Conjecture (I), this bound is sharp, if indeed it holds. 
To construct examples, let AC R C Pr be subspaces of dimension v and u + l, 
respectively. Let Ti be a O-dimensional complete intersection of quadrics in A, 
consisting of 2V points. Let C be a curve in Q given as a complete intersection 
of quadrics and containing Ti (that is, choose a regular sequence of quadrics 
in Q restricting to the quadrics in A cutting out Ti and add u — v more 
quadrics in Q containing A to form a regular sequence of length u. Let H be 
a hyperplane section of C. Let p i , . . . ,p r _ t t _i be r — u — 1 additional points 
in P r that, together with fi, span P r ; and set 

r = J ffUr 1 U{pi , . . . ,p r _ l l - i} . 

3. Cayley-Bacharach theory. 
There is another way to interpret the statement (*) (equivalently, (II r+i j r)) 

above, which is as an extension of the classical Cayley-Bacharach theorem. 
We start by reviewing the statement of the modern Cayley-Bacharach 

theorem. If T is a zero-dimensional scheme and r ' c T a closed subscheme, 
we define the residual subscheme of V in T to be the subscheme T" of T 
defined by the sheaf of ideals 

XT,, = Ann(lY' /Tr)-

In English: T" is the smallest subscheme of T such that any product of func­
tions vanishing on T' and T" vanishes on T. For example, if T is reduced then 
T" is the complement of V in T. 

In general, however, it is not true that the degree of Tu is the difference 
deg(r)—deg(r') (nor is either inequality valid); and the residual of the residual 
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of a subscheme r ' c T will not in general equal I". One circumstance, however, 
in which residuation does behave well is if Y is locally a complete intersection 
(or even locally Gorenstein): in this case, by liaison (Peskine-Szpiro [1974]) 
we do have 

ieg(r') + deg(r") = deg(r), 

and the residual of the residual of T is again T . In this case, we say that T 
and T" are residual to each other in I\ 

Note also that if the ideal of V1 in V is locally principal, then the equality 
on degrees holds (though it is not in general true in this case that the residual 
of the residual of V1 is T ) . 

With this, we may state a 

MODERN CAYLEY-BACHARACH THEOREM. (Davis-Geramita-Orecchia [1985]): 
Let r C P r be a complete intersection of hypersurfaces X\,... yXr of degrees 

and let r',r , /
 C T be closed subschemes residual to one another. 

Set 
ff0(Pm+2,2h(2) 

ra = — г — 1 + Ed 
Then, for any £ > 0, we have 

ff0(Pm+2,2h(2)ff0(Pm+2,2h(2)ff0(Pm+2,2h(2)ff0(Pm+2,2h(2)ff0(Pm+2,2h(2) 

In English: the number of hypersurfaces of degree 1 containing T' (modulo the 
ideal ofT) is exactly the failure of T" to impose independent conditions on 
hypersurfaces of degree m — I. 

According to Semple and Roth [1949], p. 98, the classical Cayley-Bacharach 
Theorem concerns the special case of where T is a reduced complete intersec­
tion of points in the plane. It asserts that if 

degree r" = (m - i + 2 \ 
2 

and the right hand side of the above equality is 0, then the left hand side is as 
well. This was asserted by Cayley without the hypothesis that the right hand 
side is 0 (which is automatic if m — £ = 0 and degree T" = 1), and corrected 
by Bacharach (Math. Annalen 26, p. 275). The most commonly stated form 
of the Theorem is this: 
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CLASSICAL CAYLEY-BACHARACH THEOREM. Let T c P r be a reduced com­

plete intersection of hypersurfaces ff0(Pm+2,2h(2) of degrees c?i,... ,¿/ r . Then any 
hypersurface of degree m = ^c?¿—r — 1 containing a closed subscheme of T 

of degree lididffd-ldf contains Tsd. 

This Cayley-Bacharach theorem says in particular that if ft C P r is a 
complete intersection of quadrics, then any hypersurface X C P r of degree 
r—1 containing all but one point of T contains T. We could ask more generally: 
Suppose ft is the complete intersection of r quadrics in P r . What is the largest 
degree g(k) of a subscheme of ft that a hypersurface of degree k, not containing 
ft, can contain? By Bezout in P r _ 1 , a hyperplane can contain at most 2 r _ 1 , 
so that 9(1) = 2 - 1 , while Bézout in P r says that g(r - 1) - T - 2 and 
9(r) = 2 r - l g k These two remarks are the cases Jfc = 1 and k = r — 1 of 

CONJECTURE (IIIkjr). (Generalized Cayley-Bacharach). Let fi C P r be a 
complete intersection of quadrics. Any hypersurface of degree k that contains 
a subscheme V C £1 of degree strictly greater than 2 r — 2r~k must contain ÇI. 

There is an appealing boundary case: 

CONJECTURE (IIIkyr, BOUNDARY CASE). Moreover, if X is a hypersurface 
of degree k with deg(X fl ft) = 2r — 2r~k, the scheme residual to X fl ft in ft 
is a complete intersection of quadrics in a subspace Pr~k, 

Note that the inequality in case (iY/2,r) of this conjecture is exactly the 
conjecture (i7"r+ijr) above. 

We will prove below the conjecture (IIIj^r) for all k and r < 6. To do 
this, it will be useful to introduce yet another conjecture: 

CONJECTURE (IVm)' Let F C Pr be any subscheme of a zero-dimensional 
complete intersection of quadrics, let d — deg(T), and suppose that T fails 
to impose independent conditions on hypersurfaces of degree m - that is, 

fc1(Pr,Ir(m))9dsfsqdqsdÉ0df. Then 
d> 2 m + 1 . 

Note that this conjecture is independent of the dimension r of the ambient 
projective space (in particular, we do not assume that T spans P r ) . 

CONJECTURE (IVm, BOUNDARY CASE). Equality holds in Conjecture (IVm) 
if and only if T is itself a complete intersection of quadrics in P m + 1 . 

THEOREM 1. The following are equivalent: 
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a. (IIIk,r) f°r all k and r; 
b. (IVm) for all m. 

In particular, either one implies (III2jr)y &nd hence (IIr+dfdr^r), for all r. 
Moreover, for any value of m, (IVm) implies (IIIk,fgr) for all k and r with 
r — k — 1 = m and in particular (IIr+1,r) for r = m + 3. (The same is true 
for the boundary cases of (IVm) and (IIIk,r))> 

PROOF: We first prove that (IVm) implies ( 7 / / r _ m _ l j r ) . We apply the 
modern Cayley-Bacharach Theorem. To begin with, assume (IVm)-, and let 
Q C P r be a complete intersection of quadrics. Let X be any hypersurface 
of degree ~k = r — m — 1 not containing M and let T be the subscheme of 
M residual to the intersection £1 fl X. By Cayley-Bacharach V must fail to 
impose independent conditions on hypersurfaces of degree m — r — 1 — k. 
By assumption, deg(T) > 2r~k and correspondingly deg(Xn M)<2r- > 2r~k. 

(The boundary case of (IVm) easily implies the boundary case of ( J / / r _ m _ i j r ) 
as well.) 

Now assume (IIIk,r) for all r. Let T be any subscheme of a complete 
intersection of quadrics and suppose that T fails to impose independent con­
ditions on hypersurfaces of degree k. Assuming that T spans a projective 
space P n , take Q, a complete intersection of quadrics in P n containing T, 
and let T' C M be the subscheme of f2 residual to T. By Cayley-Bacharach, 
T' lies on a hypersurface of degree n — 1 — k not containing £1] it follows 
that deg(r') < 2n - 2n~1~k and hence that deg(r) > 2 * + 1 . Moreover, if we 
have equality in the last inequality, then T is itself a complete intersection of 
quadrics. • 

As promised, we will prove (IIIk,r) for all k and r < 6 by establishing: 

THEOREM 2. Conjecture (IVm) holds for m < 3. 

We will make use of the following simple result several times. 

LEMMA. Let Q C P r be a finite subscheme, and let m be a nonnegative 
integer. Suppose that every form of degree m vanishing on a codegree 1 
subscheme of Q (that is, on a subscheme of degree one less than Q) vanishes 
on all ofQ. If H C P r is any hypersurface of degree k, and 0 is the subscheme 
residual to H f]Q, then any form of degree m — k vanishing on a codegree 1 
subscheme of 0 vanishes on all of 0. 
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P R O O F O F T H E L E M M A : T O say that a form G vanishes on a codegree 1 
subscheme of 0 is to say that ((G) + I®)/X® is a 1-dimensional vector space, 
or equivalently G E (I® ' NI) for some maximal ideal M of O®. 

Now let F be the form of degree k defining i7, let V = Hf]Q, and let 0 be 
the subscheme residual in Q to T. If G is a form of degree m — k vanishing on 
a codegree 1 subscheme of 0 , then G G (I® : M ) , so FG G (T® : M ) and FG 
vanishes on a codegree 1 subscheme of Q. Since FG has degree m it follows 
from our hypothesis on that FG vanishes on fi, and thus G £ (I® : F) = I® 
- that is, G vanishes on 0 . • 

P R O O F O F T H E O R E M 2: First we show that (IVm) holds for any m in case 
the linear span of the scheme T is a projective space of dimension n < m + 2. 
The modern Cayley-Bacharach Theorem implies that a complete intersection 
of quadrics in P n imposes independent conditions of hypersurfaces of degree 
rc, and any proper subscheme of it imposes independent conditions on hy­
persurfaces of degree n — 1, from which we get the case n < m + 1. If, on 
the other hand, n = m + 2, let Q be a complete intersection of quadrics in 
p m + 2 containing p, and let r' C £1 be the subscheme residual to T in Q. By 
Cayley-Bacharach the subscheme V lies in a hyperplane 
thus have 

p m + 1 pm+2iAfgC .We 

and hence 

deg(r') < 2 m + 1 

deg(r) > 2 m + 1 . 

Note, moreover, that if equality holds in the last inequality, then V must 
be a complete intersection of m + 1 quadrics in P m + 1 . It follows that the 
restriction map 

ff0(Pm+2,2h(2)ff0(Pm+2,2h(2)ff0(Pm+2,2h(2)sAC R C Prfg 

must have a kernel. In other words, the linear system of quadrics cutting out 
Q contains a reducible element Qo = Ho U LQ, with LQ = P m + 1 ^ r'. Since 
Q is a complete intersection, T is residual to T', and thus L \ vanishes on T, 
contradicting the hypothesis that V spanned P m + 2 . 

Conjecture (IVm) is immediate for m = 0 or 1; we will deal with the 
remaining two cases in turn. By what we have just done we may assume that 
T spans a space of dimension n > m + 2, and we wish to show tha t deg T > 
2m+1. yye mav as wejj assume that T is minimal among schemes failing to 
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impose independent conditions on hypersurfaces of degree m and thus that 
any hypersurface of degree m containing a subscheme of Y of codegree 1 in Y 
must in fact contain Y. 

Case i. m = 2. Suppose that Y spans a space of dimension r > 5. Then we 
can find a proper subscheme of Y of degree at least r contained a hyperplane 
H in T = P r ; let T' = H fl Y be the degree of Y'. Let 0 be the residual scheme 
to r in T. 

By the Lemma, 0 fails to impose independent conditions on hyperplanes. 
By the case m — 1 of our conjecture we have 

deg(G) > 4, 

so <f = deg(r) > deg(r') + 4 
> r + 4 

>9, 
as desired. 

Case ii. m — 3. Say Y spans a linear space P r of dimension r > 6 and fails to 
impose independent conditions on cubics. We must show that deg Y > 17. By 
Castelnuovo theory for schemes (see Eisenbud-Harris [1992]) any subscheme 
of P r in linearly general position imposes independent conditions on m-ics if 
d < mr + 1. If T were in linearly general position, then taking; m = 3 and 
r = 6 we find deg r > 3r + 1 = 19. and we would be done. Thus we may 
assume that there is a hyperplane H C P r intersecting T in a subscheme 
r = H n r of degree s > r + 1 > 7: we suppose that s is the maximal degree 
of such a subscheme. Let 0 C Y be the subscheme residual to Y1 in Y. Since 
the ideal of T' in Y is principal, we have deg 0 + deg T' = deg T, so we must 
show that s + degree 0 > 17. Thus we may assume that degree 0 < 9. 

By the Lemma, 0 fails to impose independent conditions on quadrics. 
By the case m = 2 we must have deg(0) > 8. If degree 0 = 8, then by 
case m = 2, 0 must be contained in a P 3 . It follows that some subscheme of 
length > 8 containing 0 is contained in a hyperplane in P r . Thus s > 9, and 
we are done. 

It remains to treat the case where degree 0 = 9. If 0 lies in a hyperplane, 
then s > degree 0 = 9, so we are done. If 0 were in linearly general position 
in P r then since 0 imposes dependent conditions on quadrics it follows as 
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above that deg© > 2r + 1. Since r > 6, this contradicts the assumption 
deg 0 = 9. Thus we may find a hyperplane section 0 ' = H' fl 0 C 0 of 
degree t > r + 1 > 7. 

Let S be the subscheme of 0 residual to 0 ' . By the Lemma, S fails to 
impose independent conditions on hyperplanes, so degree S > 3. Since 0 ' is 
cut out in 0 by just one equation, deg 0 = deg©' + degS > 7 + 3 = 10. 

4. A stepwise formulation. 
Another way of approaching Hilbert functions is to ask, simply: suppose 

we know the value h(m) of the Hilbert function of a graded ring in degree 
ra. What can we say about the value in degree m + 1? In this generality, the 
answer was supplied by Macaulay, who proved that if we wrote 

*<->-(™)+(r,i)+-+Ci) 
with am > a m _ i > . . . > a\ > 0, then h(m + 1) satisfied the inequality 

^+i)=(i"+

+i)+C^+1)+-+C"2

+1)-
Moreover, this bound is sharp. In line with what we have suggested above, 
however, we now ask what the estimate should be if we assume in addition 
that the ring is of the form 

R = k[xiy... ,xr]/I 

where / contains a regular sequence of length r in degree 2. Based on examples 
and some partial proofs, we make the 

CONJECTURE (Vm). Under this hypothesis, if h(m) is as above, the value 
h(m + 1) of the Hilbert function of R satisfies the inequality 

^+i)=(i"+

+i)+C^+1)+-+C"2

+1)-
This is sharp, if true; an example would be the ideal generated by the 

squares of the variables together with the lexicographical ideal of appropriate 
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size in degree ra. Moreover, if we sum up the estimates for h(rri) over all m, 
we arrive at the same estimate for the length of R in terms of h{2) given in 
Conjecture III; thus Conjecture (V) in general implies Conjecture (III). 

Moreover, Conjecture (V) is true if the ideal of / contains the squares of 
the variables. This follows from the Kruskal-Katona Theorem (see Kleitman-
Green [1978]), which is equivalent to the monomial case, and a deformation 
argument. Of course it follows in turn from this that the Theorem is true if 
i" contains a "sufficiently general" regular sequence of quadrics. 

In this setting, the hypothesis that the ideal J C k[x\,.. . , # r ] defining 
R contains a regular sequence specifically of quadrics is artificial. Conjecture 
(V) generalizes directly to the case where we assume just that i" contains 
a regular sequence ( / i , . . . , / 2 ) of homogeneous polynomials of arbitrary de­
grees. The case where the fi are powers of the variables then follows from 
the Clements-Lindstrôm Theorem, also treated in Kleitman-Green [1978]; we 
intend to devote a future paper to this and the cases of it that we can prove. 
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